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Introduction

Italian Language

Lo scopo di della mia tesi e’ quello di parallelizzare Weighting Histogram Analysis

Method (WHAM), che e’ un popolare algoritmo usato per calcolare l’energia libera

di un sistema molecolare in simulazioni di Molecular Dynamics. WHAM lavora in

cooperazione con un altro algoritmo chiamato Umbrella Sampling.

Umbrella Sampling ha lo scopo di aggiungere un potenziale di energia (Biasing) al sis-

tema al fine di forzarlo a campionare specifiche regioni nello spazio di configurazione.

N diverse simulazioni indipendenti sono eseguite al fine di campionare tutte le regioni

di interesse. In seguito, l’algoritmo WHAM e’ usato per stimare l’originario sistema

energetico partendo dalle N traiettorie atomiche. La parallelizzazione di WHAM e’

stata fatta attraverso CUDA, un linguaggio che permette di lavorare nelle GPUs di

schede grafiche NVIDIA, le quali presentano una architettura parallela. L’ imple-

mentazione dovrebbe sensibilmente aumentare la velocita’ dell’ esecuzione di WHAM

comparata con le sue precedenti implementazioni seriali in CPU. Tuttavia, il codice

WHAM in CPU presenta delle criticita’ temporali all’ aumentare del numero di iter-

azioni.

L’ algoritmo e’ stato scritto in C++ ed eseguito in sistemi UNIX, purche’ dotati di una

scheda grafica NVIDIA. I risultati sono stati soddisfacenti, ottenendo un incremento

di prestazioni quando il modello e’ stato eseguito in schede grafiche con capacita’ di

elaborazione maggiore. Cio’ nonostante, le GPUs usate, per testare l’algoritmo, sono

molto vecchie e quindi non adatte al calcolo scientifico. E’ probabile che si otterrebbe

un ulteriore aumento di prestazione se l’algoritmo venisse eseguito su cluster di GPUs
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ad alto livello di efficienza computazionale. La tesi e’ organizzata nel seguente modo,

In primo luogo descrivo la formulazione matematica dell’ algoritmo Umbrella Sam-

pling e WHAM con le loro applicazioni nello studio dei canali ionici e del Docking

Molecolare (capitolo 1); poi, presentero’ l’architettura CUDA utilizzata per imple-

mentare il modello (capitolo 2) e infine, saranno presentati i risultati ottenuti dal

modello (capitolo 3).

English Language

The aim of my thesis is to parallelize the Weighting Histogram analysis Method

(WHAM), which is a popular algorithm used to calculate the Free Energy of a molu-

cular system in Molecular Dynamics simulations. WHAM works in post processing

in cooperation with another algorithm called Umbrella Sampling.

Umbrella Sampling has the purpose to add a biasing in the potential energy of the

system in order to force the system to sample a specific region in the configura-

tional space. Several N independent simulations are performed in order to sample

all the region of interest. Subsequently, the WHAM algorithm is used to estimate

the original system energy starting from the N atomic trajectories. The paralleliza-

tion of WHAM has been performed through CUDA, a language that allows to work

in GPUs of NVIDIA graphic cards, which have a parallel achitecture. The parallel

implementation may sensibly speed up the WHAM execution compared to previous

serial CPU imlementations. However, the WHAM CPU code presents some temporal

criticalities to very high numbers of interactions.

The algorithm has been written in C++ and executed in UNIX systems provided

with NVIDIA graphic cards. The results were satisfying obtaining an increase of

performances when the model was executed on graphics cards with compute capabil-

ity greater. Nonetheless, the GPUs used to test the algorithm is quite old and not

designated for scientific calculations. It is likely that a further performance increase

will be obtained if the algorithm would be executed in clusters of GPU at high level

of computational efficiency. The thesis is organized in the following way,
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I will first describe the mathematical formulation of Umbrella Sampling and WHAM

algorithm with their apllications in the study of ionic channels and in Molecular

Docking (Chapter 1); then, I will present the CUDA architectures used to implement

the model (Chapter 2); and finally, the results obtained on model systems will be

presented (Chapter 3).
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Chapter 1

Characterisation of Model

Biological membranes are very important structures and the most challenging targets

in structural biology. In biological membrane some elements are of great importance:

ion channels, protein molecules embedded in the lipid bilayer of the cell membrane.

They play a key role in various physiological functions like nerve transmission, mus-

cular contraction, and secretion. X-ray crystallography is the most important ex-

perimental technique to study ion channel structures; however, a small percentage

of membrane has been obtained by nuclear magnetic resonance (NMR). A crystal

structure is limited by the fact to be an average of many conformations of the crystal

produced during the experiments, which represent the best fit of them, and so these

three-dimensional models give only a partial representation of the dynamics of the

system. Therefore, computational simulations are important to associate energy be-

haviour of the molecular system with its dynamic.

Figure 1.1 shows an interesting computational simulation of K+ channel inserted in

lipid bilayer. Unfortunately, even with large-scale computing resources and parallel

codes it is still very difficult to simulate large biological time-scale. Firstly, the av-

erage time required for gating of a single ion is too long at time-scales of a classical

algorithm of molecular dynamics. Secondly, the enormous quantity of atoms that

constitutes a normal biological system impose limits to the length of simulations.
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Figure 1-1: The KirBac1.1 K+ channel structure (PDB 1P7B) embedded in a lipid

bilayer with individual lipids rendered as gray chains. The transmembrane -helices are

rendered in purple and the extracellular domain is colored according to its structure

(-sheet: yellow; random coil: white; turns: cyan). K+ ions inside the selectivity filter

of the channel are represented as yellow spheres. Other ions in solution are yellow

and orange spheres “Jorgensen and Ravimohan, 1985 in Domene and Furini, 2009”.

1.1 Free-Energy Calculations

Computational simulations of atoms provide the description of the behaviour of bio-

logical systems at the atomic level. In molecular dynamics, interactions between the

various atoms are described by empirical potential functions. Several characteristics

of the trajectory in a system over time, structural and thermodynamic properties can

be studied using the mathematical foundations of statistical mechanics, from which

emerges the need to calculate the free energy (FE) of a system that represents a bond

between mechanics and thermodynamics. The FE is the measure of the probability

of finding an atomic system in a given state1. If the absolute energy of a system is

1It represents a crucial descriptor when the characteristics of a system can be related to the
experiments or macroscopic properties of atomic system (Chandler, 1987; Hill, 1987).
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scarsely calculated, the difference of free energy between two different states of the

atomic system under consideration is easier to obtain. For example, in the field of

pharmacological research it can be useful to use calculation of free energy to identify

which molecule is the most powerful channel blocker. In this particular case the cal-

culation of the FE is useful to understand how much affinity there is between drug

molecule and the single channel to block. With the use of statistical thermodynamics,

it is possible to calculate FE with MD. In fact, the difference FE, ∆A, between two

configurations, 0 and 1, can be expressed as:

∆A = A1 − A0 = −KBT ln
P1

P0

(1.1)

Where KB is the Boltzmann’s constants, T is the temperature, and PO and P1,

respectively.

Configuration 0 is separated from its configuration 1 through a FE barrier. The

stability of the system will be reached in the nearest space of configuration 0; while

configuration 1 will never hit.

1.2 Thermodynamic Integration

In Thermodynamic Integration (TI) two states, linked by a path along the FE profile,

are analyzed2. We consider the Hamiltonian as the sum of the kinetic and potential

energy of a physical system or as the continuous function of parameter λ. As stated

before, the states of interest of the physical system can be described with 0 and 1;

thus, λ will be equal to 0 if the system is in configuration 0, while λ will be 1 if the

system is in configuration 1. In particular, λ is modelled as a series of λi so that to

for every λi point the system is completely relaxed. The FE difference between two

states is expressed by the following relation:

2Constrained MD (den Otter and Briels, 1998) and adaptive biasing force MD (Darve and Po-
horille, 2001) are variants of this technique as well as the popular steered MD method (Gulligsrund
et al., 1999)
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∆ATI(0→ 1) =

∫ 1

0

〈
∂H

∂λ

〉
λ

dλ ≈
n−1∑
i=1

〈
∂H

∂λ

〉
λi

(1.2)

Where H is the Hamiltonian and 〈〉λ is the average value of λ. In fact, in TI

calculation the calculation of averages are obtained by using molecular dynamics or

Monte Carlo sampling3. Given that FE is a state function it does not depend on the

path connecting the starting and final states, allowing the use of different, non physical

paths as long as the beginning and the end remain constant. Many simulations of λ

in the range 0-1 can be utilized to improve the numeric accuracy. To compare the

values obtained by the evaluation of two FE series, two methods can be used: the

forward sampling where the gradient is calculated as the increase of coefficient i that

is moved by λi to λi+1, and the backward sampling where the estimation of coefficient

i is obtained moving from λi+1 to λi. Due to the presence of a small gap between λi

and a quite long simulation, the difference of the integrals should be zero; practically,

this will not happen in this case where the measure of the accuracy of calculation will

be the difference, known as hysteresis error4.

1.3 Free-Energy Perturbation

Another approach to calculate the FE is using Zwanzig equation.

∆AFEP (0→ 1) = A1 − A0 = −kBT ln

〈
exp(−H1 −H0

kBT
)

〉
0

(1.3)

Where T is the temperature, kB is the Boltzmann’s constant, H is the Hamilto-

nian. FE path is calculated as the sum of intermediate configurations; hence, we can

write the Hamiltonian of intermediate state as:

3Due to fact that the FE is approximated by a sum over a discrete numbers errors can be present,
even though with more λi points, errors are likely to decrease

4Jorgensen and Ravimohan, 1985 in Domene and Furini, 2009
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H(λi) = λiH1 + (1− λi)H0

0 ≤ λi ≤ λi+1 ≤ 1
(1.4)

This equation transform Eq.1.3 as follow:

∆AFEP (0→ 1) =
n−1∑
i=0

∆AFEP (λi → λi+1)

=
n−1∑
i=0

−kBT ln

〈
exp(−H(λi+1)−H(λi)

kBT
)

〉
λi

.

(1.5)

Supposing that the sum of the series of FE is divided into intermediate states, it

is possible to affirm that the difference between the Hamiltonian is small; therefore,

we have to choose a better λi to obtain an overlap without doing unnecessary calcula-

tions. Since obtaining the ensemble for each value of λi is an independent process, the

method can be trivially parallelized by running each window using different proces-

sors. One inconvenience of the technique is the fact that it is hard to know in advance

what size of interval between the λi to choose. Pearlman’s dynamically modified win-

dows in some way mitigate the problem5. To solve the problem of representation of

geometries of intermediate states that allow to transform a chemical substance into

another, two approach have been analyzed: the single topology method and the dual

topology method. In the first the change between the starting and final states of the

system is represented by the alteration of atom types and internal coordinates; in

the latter, two complete versions of the starting and final states can coexist. Due to

the fact that more elaborated changes in topology can be better supported, the dual

topology method is more advisable.

5Pearlman and Kollman, 1989 in Domene and Furini, 2009
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1.4 Umbrella Sampling

Free energy calculations with the Thermodynamic integration or Free Energy Pertur-

bation methods allows to calculate the difference in energy between two states but not

the energy profile for the transformation from these two states. Umbrella Sampling

is a powerful algorithm to calculate free energy profiles of chemical reactions. To

understand the Umbrella Sampling (US) algorithm it is necessary to briefly introduce

the canonical partition function Q.6

Q =

∫
exp [−βE(r)]dNr (1.6)

Where β = 1
kBT

, kB is the Boltzmann’s constant, T is the absolute temperature

and N is the number of degrees of freedom of the system and E the potential energy.

Therefore, we can obtain FE through the following relation: A = −1
β

lnQ, so that

∆A and ∆G, which is the gap of free energy, are numerically similar. The reaction

coordinates describe the system state in the equation that allow us to derive A(ξ).

These ξ can be one or more dimensional, therefore, the probability distribution of the

system along ξ can be evaluated by the following equation:

Q(ξ) =

∫
δ[ξ(r)− ξ] exp[(−βE)dNr]∫

exp[(−βE)dNr]
(1.7)

Q(ξ)dξ can be seen as the probability of finding the system in a small interval

dξ around ξ. As a result, this allows to calculate FE along the reaction coordinates

as follow: A(ξ) = −1
β

lnQ(ξ), which is also called Potential of Mean Force (PMF)7.

In computer simulations, it is impossible to calculate the direct phase-space integrals

present in Eq.(1.6) and (1.7); however, it is supposed that the system is ergodic. In

fact, P (ξ)8 is describes as in Eq. (1.8) if every point in phase space is touched during

the simulation.

6If we consider the potential energy independent of the momentum, the integral in the phase
space is a multiplicative constant to Q

7PMF was introduced for the first time by Kirkwood in 1935 and it is used for studying the
behaviour of a molecular system.

8From now on, P (ξ) will refer to the normalized frequency of finding the system in the state
characterized by a given value of ξ
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P (ξ) = lim
t→+∞

1

t

∫ t

0

ρ[ξ(t∗)]dt∗ (1.8)

Where Q(ξ) is equal to the time average of P (ξ) for infinite sampling, t is the time

and ρ is the occurrence of ξ in a given interval (note that simulations are only run for

finite time). After the end of the algorithm, the results of different simulations are

integrated in a global FE profile A(ξ).

Umbrella Sampling was developed by Torrie and Valleau in 1977. Basically, the region

of interest are divided into R sets called windows, representing the points along of

the collective variables referring to ξ. An additional term, called Bias, is included in

the system to ensure the efficiency of the sampling along the coordinates of reaction.

Hence, the bias potential ωi of window i is another energy term depending only on

the reaction coordinate:

Eb(r) = Eu(r) + ωi(ξ) (1.9)

Where ‘b’ denotes the bias quantities and ‘u’ unbiased quantities.

To obtain unbiased FE Ai(ξ), we have to consider the unbiased distribution as

follow:

P u
i (ξ) =

∫
exp[−βE(r)]δ[ξ∗(r)− ξ]dNr∫

exp[−βE(r)]dNr
(1.10)

.

Modifying the previous equation by adding the biased potential, we obtain P b
i .

Assuming an ergodic system:

P b
i (ξ) =

∫
exp (−β[E(r) + ωi(ξ

∗(r))])δ[ξ∗(r)− ξ]dNr∫
exp (−β[E(r) + ωi(ξ∗(r))])dNr

(1.11)

.

Multiplying by β inside exp and gathering these outside, we obtain:

P b
i (ξ) = exp[−βωi(ξ)]×

∫
[−βE(r)]δ[ξ∗(r)− ξ]dNr∫

exp(−β[E(r) + ωi(ξ∗(r))])dNr
(1.12)
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.

Using Eq.(1.10) and Eq.(1.12):

P u
i (ξ)

∫
exp[−βE(r)]dNr∫

[−βE(r)]dNr
= δ[ξ∗(r)− ξ]dNr (1.13)

.

P b
i (ξ) = exp[−βωi(ξ)]×

∫
exp [−βE(r)]δ[ξ∗(r)− ξ]dNr∫

exp[−βE(r)] exp[−βωi(ξ∗(r))]dNr
(1.14)

.

Substituting (1.13) in the equation (1.14), we have the following relationship:

P u
i (ξ) = P b

i (ξ) exp[βωi(ξ)] 〈exp[−βωi(ξ)]〉 (1.15)

.

P b
i is obtained by the biased system simulations, ωi(ξ) is obtained analytically

and Fi = −−1
β

ln 〈−βωi(ξ)〉 is independent of ξ and is given by an approximation of

umbrella potentials ωi(ξ):

Ai(ξ) = − 1

β
lnP b

i (ξ)− ωi(ξ) + Fi (1.16)

.

If we want to calculate the FE of unbiased system, R simulations with different

bias potential and the R different estimates of the unbiased probability P u
i (ξ) have

to be combined; to obtain this, we use an algorithm called Weighted Histogram

Analysis Method (WHAM), of which we present a parallelized version for NVIDIA

CUDA Graphics Processing Unit (GPU).
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Figure 1-2: Dioxygen channel (grey surface) constituted by four amino-acids (green).

The copper centre and water molecules were respectively coloured in blue and

grey/red.“Molecular simulation reveal a new entry site in Quercetin 2,3-Dioxygenase.

A pathway for Dioxygen? S. Fiorucci;J. Golebiowski; D. Cabrol-Bass; S. Antonczak,

Proteins, 2006, 64, 845-850. ”

1.5 Bias Potential

The bias potential is selected so that sampling along the entire range of reaction

coordinate ξ is constant; for this reason the ideal bias potential is ωopt = −A(ξ).

This equation should give a uniform distribution P b
i (ξ). Nevertheless, A(ξ) is surely

unknown because the goal of Umbrella Sampling is to find it. Consequently, different

families of potential are discovered, namely harmonic biases in a series of windows

along ξ and an adaptive bias, which is realized to join −A(ξ) in only one window

covering the whole range of ξ. Often an harmonic bias of force constant ki is expressed

as follow:

ωi(ξ) =
ki
2

(ξ − ξrefi )2 (1.17)

After each simulation, all FE curves are combined with the WHAM algorithm. We

observe that the CPU time required to reach equilibrium increases with the number
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of simulations, but that in addition, the MD simulations are completely independent

and can be executed in parallel. However, we must assume that ki should be large

enough to drive the system above barrier. Anyway, ki too large can cause limited dis-

tribution P b
i (ξ) good overlap between the various distributions is required to perform

for WHAM algorithm.

1.6 Weighted Histogram Analysis Method (WHAM)

After Nw simulations obtained with Umbrella Sampling through a potential ωi(ξ)

evaluating it in different ξrefi and ki, from each simulation, it is achieved an appropri-

ate histogram hi(ξh) representing the probability of distribution P b
i along the reaction

coordinate ξ. Thus, in US simulations, bias is added to Hamiltonian of the atomic

system in order to optimize the sampling along the coordinates of reactions. There-

fore, the probability of finding the system in hi(ξh) of biased system is P b
i (ξh) where

ξh is the simulation window. P b
i (ξh) is obtained by the following equation, derived

forms Eq. (1.15):

P b
i (ξh) = P u(ξh)e

−β(Wi(ξh)−fi) (1.18)

From Equation (1.16) we observe that the free energy of the system is obtain only

by the knowledge of P u
i ; for this reason we should derive P u

i from Eq. (1.18), given by

Nw simulations; where w(βh) is the biasing potential, fi is a constant, while β = 1
kBT

,

kB is the Boltzmann’s constant.

For obtaining a profile of the unbiased probability for the region of interest it is neces-

sary to combine information of Umbrella Sampling from many different simulations.

In the WHAM algorithm the unbiased probability is defined as a linear combination

of Nw estimates to P u
i (ξh):

P u
i (ξh) =

Nw∑
i=1

wi(ξh)P
u
i (ξh) (1.19)

18



Where wi(ξh) are the weights that allow to minimize the statistical uncertainty

σ2[P u(ξh)]. 
P u(ξh) =

∑Nw
i=1

ηi
2τi(ξh)

ηj
2τj(ξh)

e−β(Wj(ξh)−fj)

fi = − 1
β

ln
∑

h P
u(ξh)e

−β(Wi(ξh)

(1.20)

Where ni is the number of samples inside bin hi and τi(ξh) is the integrated

autocorrelation time.

Thereafter, in a easier way, we can express Eq. (1.15) as:

Pij =
∑
j

ficijP
∗
j (1.21)

Where Pij is the unbiased probability and P ∗j biased probability, whilst fi a con-

stant and cij = exp [βωi(ξh)]. Pij is chosen in such a way that
∑

j Pij = 1 and then

f−1i =
∑M

j=1 cijP
∗
j . We can observe that an optimal estimation of P ∗j can be obtained

from the following relationship:

P ∗j =

∑S
i=1 nij∑S

i=1Nificij
(1.22)

Here nij is number of counts in the histogram hi(ξh) bin j for i simulations and

Ni total number of samples generated in the previous simulations.

WHAM algorithm generates M + S non-linear equations that can be solved iteratively.

WHAM proceeds in this way:

1. Starts with an arbitrary set of fi (for example f1 = f2 = ... = fS = 1).

2. Use this fi for calculate P u(ξh) with first equation of the system (1.20).

3. Use second equation of the system (1.20) to calculate the new fi.

4. Repeat the process until convergence.
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1.6.1 Traditional Derivation of the WHAM Equations

There are two ways to derive the following equations: the first, used by us, is the

most simple and follows the work of Ferrenberg and Swendsen and Kumar based

on a minimization of the estimated unbiased probability variance; the latter is more

complex and follows the work of Bartels and Karplus and it uses the technique of a

maximum likelihood.

By the equation (1.22) we know that the best estimate of unbiased probability, ob-

tained from the j bin using the i simulations, is given by the following Equation:

P u
ij(ξh) = Ωij =

nij
Nicijfi

(1.23)

We want to estimate the weights wi(ξh) of Eq. (1.19) that with S simulation and

Ωij becomes:

P ∗j = P u
ij(ξh) =

S∑
i=1

ωiΩij (1.24)

What we hope to seek is the value wi that minimizes the expected variance of P ∗j

var(p∗j) = 〈(p∗j − 〈p∗j〉)2〉 = 〈(
S∑
i=1

ωiΩ− ij − 〈
S∑
i=1

ωiΩij〉)2〉

= 〈(
S∑
i=1

ωi(Ωij − 〈Ωij)〉)2〉

(1.25)

We take δΩij = Ωij − 〈Ωij〉 and then:

var(p∗j) = 〈(
S∑
i=1

ωiδωij)
2〉 = 〈

S∑
i=1

ω2
i (δΩij)

2 +
S∑

k 6=l=1

ωkωlδΩkjδΩlj〉

=
S∑
i=1

ω2
i 〈(δΩij)

2〉+
S∑

k 6=l=1

ωkωl 〈δΩkjΩlj〉

(1.26)

But we know that: 〈(δΩij)
2〉 = var(Ωij); if we assume that the different simula-
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tions k and l are uncorrelated we obtain: 〈δΩkjδΩlj〉 = 0.

Therefore, the Eq.(1.26) becomes:

var(p∗j) =
S∑
i=1

ω2
i var(Ωij)) (1.27)

We want to remind that: Ωij =
nij

Nicijfi
substituting this in var(Ωij), we obtain the

variance of nij; however, to obtain this, we must remember that the variance of the

product of a constant a = 1
Nicijfi

and x = nij is given by:

var(ax) = 〈a2x2〉 − 〈ax〉2 = a2 〈x2〉 − (a 〈x〉)2 = a2var(x) (1.28)

Then we get:

var(Ωij) =
var(nij)

N2
i c

2
ijf

2
i

(1.29)

If we replace this last Equation in Eq. (1.27) we obtain the following equation:

var(p∗j) =
S∑
i=1

ω2
i var(nij)

N2
i c

2
ijf

2
i

(1.30)

What is the var(nij)? To answer this question, we pause to reflect: If we have Ni

independent sampling, data from previous simulations, the probability of nij counts

in a single bin of histogram is given by the Binomial distribution:

P (n) =

(
N

n

)
pn(1− p)N−n (1.31)

If p is the probability of bin, then the mean and the variance of this Binomial

distribution are respectively: np and np(1−p). Of course, if we assume a large N and

a small p, the Binomial distribution can be approximated by a Poisson distribution:
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P (n) = e−Np
(Np)n

n!
(1.32)

As we know, the probability of bin j in the simulations i is:

p = ficijp
∗
j (1.33)

Knowing that the variance, in the limit of the Poisson approximation, is expressed

as np, we have that the var(nij) = (Ni) ∗ (ficijp
∗
j), and if inserted in the equation

(1.30), we obtain:

var(p∗j) =
S∑
i=1

w2
i p
∗
j

Nicijfi
(1.34)

Now we need to minimize the function in respect of wi under the condition of

constraint
∑S

j=1wi = 1 using the Lagrange Multipliers 9.

Our function to minimize is:

Q =
S∑
i=1

w2
i p
∗
j

Nicijfi
+ λ

S∑
i=1

wi (1.35)

Therefore, we derive this compared to wi

∂Q

∂wk
=

2wkp
∗
j

Nkckjfk
+ λ = 0 (1.36)

Solving the equation we find that:

wk =
−Nkckj

2p∗j
λ (1.37)

Applying the boundary conditions we obtain:

9The Lagrange multipliers are the coefficients that are used to find the maximum/minimum of a
function of several variables respect to a real-valued constraint. The constraint g(x, y) = 0 is a three-
dimensional surface, which is detected in implicit form (ie as a place of zeros),the function f(x, y)
is a surface. The method involves introducing a new variable called the Lagrange multipliers, which
we call λ and determined in accordance with the stationary points of a new function, the function
of Lagrange is: L(x, y, λ) = f(x, y)− λg(x, y)
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S∑
k=1

wi =
−λ
2p∗j

S∑
k=1

Nkckj = 1 (1.38)

Thus, we can derive λ from equation (1.38):

λ =
−2p∗j∑S
i=1Nicij

(1.39)

In the end, we can get the optimal weights wi

wi =
Nicij∑S
k=0Nkcik

(1.40)

If we substitute Eq. (1.40) in Eq. (1.24) we obtain Eq. (1.22).

1.7 Applications Of Free-Energy Methods

The design of new drugs involves the constant discovery of molecules that can ef-

fectively block proteins, in particular: receptors or enzymes that involve important

physiological processes. Many ideas, applied to study the complex interactions such

as linked friendships in social networks like Facebook, can be used to understand the

metabolic networks and describe in detail the free energy required to start the bio-

chemical reactions that involve the connection of a single drug molecule to the enzyme

or cellular receptor.

In recent years new methods have been used to study the surface free energy for

the protein folding; describing how a globular protein assumes its well-defined three-

dimensional structure. Another important topic of study concerns the ionic channels

that are integral membrane proteins having the role to control the passive diffusion

along their electrochemical gradient. On the basis of these ionic species, the channel

are classified into three categories Na+, K+ and Ca2+. One of the first computa-

tional problems to be solved is the atomic structure of a K+ channel. Its structure

has inspired many computational studies that have found the conduction mechanism
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and selectivity of it. In recent years, the structure of Na+ channel was found and

through studies related to the free energy simulations it was possible to provide a

possible conduction mechanism of Na+ channel. Unlike what was observed for K+

channels, ionic movements through the Na+ channels appear highly uncorrelated.

1.7.1 Molecular Docking with Clustering and Cut-based FEP

Many techniques for the analysis of protein folding are based on a process of simulation

of a drug molecule by performing a clustering according to the mean square distance

between two snapshots of MD.

DRMS = [n−1
n∑
ij

(daij − dbij)2]1/2 (1.41)

Where dij is the intermolecular distance between the hydrogen atoms of the drug

molecule and the active site of the protein to block. The graph is formed by the nodes

representing clustering while the transitions are its edges.

Krivov and Karplus have found an analogy between the kinetics of a complex

process and equilibrium through a network graph developing an algorithm called free

energy cut-based FEP10. The input of this algorithm is the transition network that

is derived from the clustering of many simulations of the drug molecule on the active

site of the protein to block11. For each node i in the transition network the partition

function is described in Eq (1.42) and it is equal to the number of times that the node

i is visited.

Zi =
∑
j

cij (1.42)

Where cij is instead the number of direct transition from node i to node j. The

individual transition probabilities can be calculated in this way:

10Krivov SV, Karplus M (2006) one-dimensional free-energy profiles of complex systems: Progress
variables that preserve the barriers. J Phys Chem B 110: 1268912698.

11The Free Energy Landscape of Small Molecule UnbindingDanzhi Huang,Amedeo Caflisch.
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pij =
cij∑
k cik

(1.43)

For example, if the nodes of transition are partitioned into two groups: A and B

in which A contains the reference node ZA =
∑

i∈A Zi while B is ZB =
∑

i∈B Zi. The

number of transitions from node A to node B is expressed by:

zAB =
∑

i∈A,j∈B

cij (1.44)

The free energy of the transition is given by:

∆G = −kT ln(
ZAB
Z

) (1.45)

Where Z is the partition function of the entire network.

Basically, the algorithm consists in three steps:

1. Nodes are sorted according to increasing values of mean first passage time (mfpt)

which corresponds with the solution of the system of equations: mfpti = ∆t+∑
pjimfptj with boundary condition mfpt = reference−node = 0; mfpt of a

one node is defined as the sum of the time-step ∆t equal to the saving frequency

of 4 ps, and mfpt to adjacent node 12;

2. For each value of the progress variable are calculated relative partition function

ZA and ZAB;

3. It is mapped a point (x = ZA
Z

,y = −kT ln(ZAB
Z

)) in the graph of energy profile.

12Apaydin M, Brutlag D, Guesttin C, Hsu D, Latombe J (2002) Stochastic roadmap simulation:
An efficient representation and algorithm for analyzing molecular motion. In International Confer-
ence on Computational Molecular Biology (RECOMB).
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Figure 1-3: (a) The high-dimensional free-energy surface is coarse-grained into nodes
of the network. Two nodes are linked if the system proceeds from one to the other
along the considered timeseries. The mean first passage time (mfpt) is calculated
for each node analytically (see text). (b) For each value of mfpt the set A of all
nodes with a lower mfpt value is defined. The free-energy of the barrier between the
two states formed by the nodes in A and the remainder of the network B can be
calculated by the number of transitions between nodes of either set.(c) The cut-based
FEP is a projection of the free-energy surface onto the relative partition function,
which includes all pathways to the reference node. For each value of mfpt, the point
is added to the FEP. The cut-based FEP projects the free-energy surface faithfully for
all nodes to the left of the first barrier. After the first barrier, two or more basins
overlap if they have the same kinetic distance from the reference node. “The Free
Energy Landscape of Small Molecule Unbinding. Danzhi Huang,Amedeo Caflisch”.
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1.7.2 Free Energy Profile in Misfolding Diseases

One of the most complex bioinformatics problems, still unresolved, is the kinetics

of formation of the first ordered aggregates Amyloid fibrils which are the cause of

many serious neurodegenerative diseases like Alzheimer’s, Parkinson’s, Creutzfeld-

Jacob’s. These fibrils are aggregates of polypeptide with a basic structure in β-

sheets, in which the wires are perpendicular to the fibril axis. The initial phase of

the formation of this fibril is of particular interest since it indicates the formation of

precursors to soluble oligomers. Due to the transient nature of oligomeric precursors

is difficult to understand the nature of their formation. Recent discoveries of amyloid

functional in mammalian cells 13 lead to doubt that amyloid is always cytotoxic it is

very likely that the kinetics of aggregation of pathogenic slower compared to healthy

ones. Computational models of molecular dynamics have been used to understand the

association irreversible of the polypeptide chain on the fibril but are not coherent with

the experimental tests 14. However, only through simulations with models that use

a simplified representation of the geometry of the proteins has provided fundamental

principles of protein aggregation. Moreover, it was also analysed by an energetic

point of view. The computational model was obtained with an approximation based

on a polypeptide with 125 monomers in a cubic box. Analysis of the system, from the

point of view of the free energy profile, gives us very important information; inasmuch

different aggregation scenarios are observed varying the energy parameter dE = Eπ−

Eβ. The monomer has an internal flexibility with a profile of free energy with two

minima: the first at the state amyloidcompetent-β and the second at the state amyloid

protected-π, analyzed β-unstable (dE ≤ 2kcal/mol) and β-stable (dE ≥ 0kcal/mol)

models. Infact, non-fibrillar aggregates are observed only in the unstable amyloid

competent state with (dE) ≤ −2kcal/mol. This confirms that: β − unstable is more

slower than β − stable models 15.

13Functional amyloid formation within mammalian tissue. PLoS Biol. 4, e6. Fowler, D. M.,
Koulov, A. V., Alory-Jost, C., Marks,M. S., Balch, W. E. Kelly, J. W. (2006).

14O’Nuallain, B., Shivaprasad, S., Kheterpal, I. Wetzel,R. (2005). Thermodynamics of A(140)
amyloid fibril elongation. Biochemistry, 44, 127091271

15Interpreting the Aggregation Kinetics of Amyloid Peptides Riccardo Pellarin,Amedeo Caflisch.
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Figure 1-4: Effect of relative stability of the amyloid-competent state on nucleation and

elongation kinetics. (a) Time series of the fraction of ordered aggregation evaluated at

four values of the protected state stability dE. Ten independent simulations are shown

for each dE value. The degree of polymerization is normalized to the maximum for

each curve. Note that the average value at the plateau is about 10% smaller for the

dE = 2.5 kcal/mol than the dE = 0.0 kcal/mol model. It is not possible to directly

compare the slopes of the curves (i.e. elongation rates) at different values of dE

because of the logarithmic scale of the x-axis. (b) Influence of dE on the kinetics of

the system. The time needed to reach 50% of the maximal amplitude t50 (black circles

and y-axis legend on the right) and the elongation rate (red squares and y-axis legend

on the left) are displayed for seven dE values. Symbols represent the average value of

ten independent runs and the error bars are the maximum and minimum values. The

broken line and the gray band indicate the average and the maxmin values for the time

of micelle formation, respectively. All simulations were performed at a temperature

of 310 K and a concentration of 8.5 mM.“Interpreting the Aggregation Kinetics of

Amyloid Peptides Riccardo Pellarin, Amedeo Caflisch”.
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1.7.3 Conduction in Bacterial Na+ Channel

From experimental observations, it is noted that Na+ and K+ share the same general

structure. Therefore, we have a central pore where there is the passage of ions and

delimited by two transmembrane helices S5, S6 connected together by an intervening

loop. The data for the analysis are obtained from the crystallization of the channel

Na+ in the closed state. In the open state, the S6 helices bend and the cavity filled

with water becomes a continuous with the intracellular solution 16. The region that

is responsible for selecting the ions in the incoming channel is localized in the loop

between S5 and S6. We observe that the residues of Thr175 to Leu176 define the

two rings of carbonyl oxygen atoms at the intracellular ingress of the filter. The

molecules of water of hydration instead can interact through hydrogen bonds with

these two layers of carbonyl oxygen atoms. Thus, being able to define two binding

sites for Na+ ions by means of the convention introduced by Payandeh17 these sites

of selectivity may relate with the following nomenclature: the first and the second

SIN and SCEN , third as SHFS. MD simulations of time scales of nanoseconds are

not relevant for understanding the mechanism of conduction and selectivity in Na+

channels. Therefore, in order to understand better the process of permeation, it was

calculated the permeation free-energy profiles of Na+ and K+ channels with US18.

By applying WHAM algorithm, it is observed that the energy profile of a single ion

K+ passing through a potassium channel it is different from the energy profile of a

single ione through Na+ channel.

This energy profile is constituted by two minima:

1. In the first we observe that minimum of the Na+ is equal to K+;

2. In contrast to Na+, no local minimum is present in the region between the

carbonyl oxygen atoms of Leu176 and the side chain oxygen atoms of Glu177.

16Cuello LG, Romero JG, Cortes DM, Perozo E (1998) pH-Dependent gating in the Streptomyces
lividans K+ channel. Biochem 37: 32293236.

17Payandeh J, Scheuer T, Zheng N, Catterall WA (2011)The crystal structure of a voltage-gated
sodium channel. Nature 475: 353

18On Conduction in a Bacterial Sodium Channel Simone Furini, Carmen Domene Apr 05,
2012DOI: 10.1371/journal.pcbi.1002476
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Figure 1-5: Structure of the selectivity filter of NavAb. Residues 175 to 178 (TLES)
of two opposite subunits are shown in licorice representation. SIN, SCEN and SHFS
indicate possible ion binding sites. The distance between the C atoms of two Glu177
residues is indicated. doi:10.1371/journal.pcbi.1002476.g001.

However, it is noted that position of an ion in a plane perpendicular to the axis of

the pore is equal for both ions; furthermore it was also observed that a barrier higher

than 8 kcal/mol prevents movement of the individual ions from SHFS to extracellular

solution.

Hence, it seems plausible that the selectivity filter is occupied on average by one

or more positive ions and that conduction takes place during the movement to the

ions already inside the pore19. To test this hypothesis were made maps of the free

energy with two ions Na+, we observe in the conditions of stability both SCEN and

SHFS are occupied by ions Na+.

19Berneche S, Roux B (2001) Energetics of ion conduction through the K+ channel. Nature 414:
7377. doi: 10.1038/35102067.
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Figure 1-6: Potential of Mean force for conduction events with one Na+ ion and
one K+ ion. Values on the x-axis correspond to the distance between the permeat-
ing ion and the centre of the carbonyl oxygen atoms of residues Thr175 along the
pore axis. The free-energy for a permeating Na+ ion is shown in a blue continuous
line and K+ in a pink dashed line. Snapshots from the Umbrella Sampling trajec-
tories are shown for some significant configurations. Residues 175 to 178 of two
opposite subunits are depicted in licorice representation, together with the permeating
ion in VDW spheres, yellow and green for Na+ and K+. Water molecules closer
than 5 (licorice representation) and 15 (grey lines) from the ion are also shown.
doi:10.1371/journal.pcbi.1002476.g002.
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Figure 1-7: Potential of Mean force for conduction events with two Na+ ions. Values
on the x/y-axis correspond to distances along the pore axis between the permeating ions
and the centre of the carbonyl oxygen atoms of residues Thr175 (d1) and Leu176 (d2)
respectively. Counter lines are drawn every 1 kcal/mol. Snapshots from the Umbrella
Sampling trajectories are shown for some significant configurations. Residues 175 to
178 of two opposite subunits are depicted in licorice representation, together with the
permeating Na+ ion (yellow). Water molecules closer than 5 (licorice representation)
and 15 (grey lines) to the ion are shown. The minimum energy path between a
minimum with one ion in the cavity and a minimum with one ion in extracellular
solution is shown as a black line. The free energy along the minimum energy path is
shown in Figure S3.doi:10.1371/journal.pcbi.1002476.g003.
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Chapter 2

Description of CUDA Architecture

In recent years, new computational models have been developed in which new par-

allel architectures have allowed the improvement of computational abilities allowing

numerical simulations to be more efficient and quicker. One of the strategies used to

parallelize mathematical models is the use of GPGPUs (General Propose Computing

on Graphics Processing Unit). These have been used in several sectors such as the

image processing and also with efficiency in molecular dynamics. However, from 2007

on, it has been opened the possibility of programming GPUs with a specific language

called CUDA (Compute Unified Device Architecture). This language allows to im-

plement algorithms with a high-level programming language like C, which gives the

possibility to control the whole architecture in order to exploit all the multi-core pro-

cessors of GPU. It has to be said that in last years the computational capability of

these architectures is increasing exponentially in comparison with normal processors

called CPU (Central Processing Unit). Despite to the fact that the number of cores is

increasing, the majority of the normal CPUs exploits part of their transistors for the

logic control, while GPU cores, which are more in number, are simpler in architectures

and are optimized for numerical calculations.
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Figure 2-1: GPU vs CPU performance from“web2.infn.it”.

2.1 GPU Architecture

The GPU is usually connected to a host through a PCI-Express. In addition, GPU

has a memory containing several gigabytes and individual data are transferred be-

tween GPU and memory of the host using a programmable DMA which can operate

in the two directions. One important thing to keep in mind is that many GPUs do

not depend on a hierarchy of cache memory and also supports a deep width very high

memory bandwidth, using a wide data path. Each NVIDIA 1 GPUs is constituted by

a number of multiprocessors and each of these can run in parallel with the others. In

turn each multiprocessor consists of 8 or 16 Stream Processors ; for example, a Tesla

2 architecture has a group of 8 Stream Processors, while a Fermi 3 architecture has

two groups of 16 Stream Processors. Since, if Tesla presents 30 Multiprocessors and

1NVIDIA is a registered trademark of NVIDIA Corporation http://www.nvidia.com/
2http://www.nvidia.com/object/tesla-supercomputing-solutions.html
3http://www.nvidia.com/object/fermi-architecture.html
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8 Stream Processors, the total number of cores is 240, instead Fermi has two groups

of 16 Stream Processors for 16 Multiprocessors for a total number of cores of 512.

Each of these multiprocessors can perform mathematical operations such as addition,

multiplication, subtraction, etc in single precision (32-bit) or double precision (64

bit). The architecture of the GPUs NVIDIA offers also the possibility of a Shared

Memory accessible directly from all SM. The model of NVIDIA GPUs is SMID (Sin-

gle Instruction, Multiple Data) composed of only a control unit that executes one

instruction at a time by controlling more ALU that works in a synchronous manner.

For every single step all elements perform the same identical scalar instruction (eg.

sum) but each on different data; NVIDIA calls this SIMT (Single Instruction Multiple

Thread) because in his model CUDA the same instructions are actually carried out

from different Threads.

One basic thing to understand is that the decoding takes place every 4 clock cycles

of the multiprocessor, but each of them can launch an instruction for every clock

cycle. This means that each instruction decoded match 32 executions of the same

clock cycles, as a matter of fact Tesla graphics card possesses 8 stream processors,

and then 32 executions of the same instruction4.

Figure 2-2: NVIDIA Tesla Block Diagram from“http://www.pgroup.com” Copyright

2013 NVIDIA Corporation.

4NVIDIAs Fermi: The First Complete GPU Computing Architecture A white paper by Peter N.
Glaskowsky Prepared under contract with NVIDIA Corporation
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2.2 CUDA Parallel Programming

In the CUDA programming model there are two parts:

1. parts of code executed in series by the host system;

2. parts of the code, called kernels, which run in parallel.

A kernel can be seen as a grid which is composed of blocks, assigned sequentially

to the various CUDA multiprocessors. Inside each block there is the basic unit called

thread. A Thread belongs to one block and for this reason is identified by a unique

index. Each thread can even be assigned by three-dimensional index; for blocks we

can only have two-dimensional indices.

Listing 2.1: http://docs.nvidia.com/cuda/cuda-c-programming-guide

1 // Kernel definition

2 global void MatAdd(float A[N][N], float B[N][N],float C[N][N])

3 {

4 int i = threadIdx.x;

5 int j = threadIdx.y;

6 C[i][j] = A[i][j] + B[i][j];

7 }

8

9 int main()

10 {

11 ...

12 // Kernel invocation with one block of N ∗ N ∗ 1 threads

13 int numBlocks = 1;

14 dim3 threadsPerBlock(N, N);

15 MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

16 ...

17 }

As in code example 2.1 a single kernel is defined using the specifier global

and the number of blocks and threads are specified using the specifier operator
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≪ ... ≫, syntax can be of type int or dim3. As previously said, each thread that

executes the kernel is defined by a unique thread ID that be accessed via the built-in

variable threadIdx. Instead, to access the ID of a block is used blockIdx variable (values

from 0 to gridDim-1), whose size can be obtained through its blockDim variable.

Finally, the variable gridDim fives the grid size.

Figure 2-3: Grid of Thread Blocks in Running from “http://docs.nvidia.com”.
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For completeness, we extend the example 2.1 to deal multiple blocks:

Listing 2.2: http://docs.nvidia.com

1 // Kernel definition

2 global void MatAdd(float A[N][N], float B[N][N],float C[N][N])

3 {

4 int i = blockIdx.x ∗ blockDim.x + threadIdx.x;

5 int j = blockIdx.y ∗ blockDim.y + threadIdx.y;

6 if (i < N && j < N)

7 C[i][j] = A[i][j] + B[i][j];

8 }

9

10 int main()

11 {

12 ...

13 // Kernel invocation

14 dim3 threadsPerBlock(16, 16);

15 dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);

16 MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

17 ...

18 }

A very common choice is to take the block size equal to 16x16 (256 threads), which

in this case is given in an arbitrary manner. In this example, the grid is then created

to have a thread for each element of the array. However, we use the simplification

that the number of threads per grid in each dimension is divisible by the number of

threads of the block in that dimension5. Where each thread, that is the element of the

matrix, is represented by the following relation blockIdx.x * blockDim.x + threadIdx.x

for i and blockIdx.y * blockDim.y + threadIdx.y for j as represented in Figure 2.4.

5Example can be found at the following link: http://docs.nvidia.com/cuda/cuda-c-programming-
guide.
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Figure 2-4: Grid 2D of Thread Blocks from “http://3dgep.com”.

2.3 GPU Memory

In CUDA platform, knowledge of the memory and its use is of crucial importance to

obtain optimum efficiency in the numerical simulator that we are going to implement.

In GPUs we can distinguish six types of memory:

1. Global Memory

2. Constant Memory
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3. Texture Memory

4. Registers

5. Local Memory

6. Shared Memory

2.3.1 Global Memory

The Global Memory, which resides in device DRAM, is the main available in GPUs.

Depending on the model of the device, this memory ranges from 256MB to 1024MB.

Its capacity is in contrast with its speed. Infact, it is the slowest available to the

programmer, as it uses 400-600 cycles to access data6. There are two ways to declare

this memory: through a declaration by the global scope, using declaration specifier

device or dynamically allocated with cudaMalloc() as in the code 2.3.

In the previous sections we discussed how individual threads are clustered into blocks,

which are subsequently assigned to multiprocessors. This means that during the

running there is a grouping of treads for warp (block of threads divided into sub-blocks

is called ”warps”). Therefore, each multiprocessor in the GPU executes instructions

per warp in SIMD fashion. The size of each warp of any GPUs is 32 threads, thus,

device tries to coalesces Global Memory (Global Memory Coalescing) loads and stores

then issued by threads of a warp into minimal transactions in order to minimize

DRAM bandwidth7.

Listing 2.3: http://devblogs.nvidia.com

1

2

3 // Using declaration specifier:

4 device int globalArray[256];

5

6presentations NVIDIA GPU Computing Webinars Best Practises for OpenCL Program-
ming,2011

7http://devblogs.nvidia.com/parallelforall/how-access-global-memory-efficiently-cuda-c-kernels/
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6 void foo()

7 {

8 ...

9

10 int ∗myDeviceMemory = 0;

11 //Using dynamically allocated:

12 cudaError t result = cudaMalloc(&myDeviceMemory, 256 ∗ sizeof(int));

13

14 ...

15 }

To get started with the Global Memory, it is needed allocate global space memory

in the GPU to achieve this we use the following instructions:

1 int N = ...;

2 float ∗ dev A ;

3 cudaMalloc(&dev A, N∗sizeof(float)) ;

After allocating the memory the data need to be copied from GPU to CPU. This

process can be done with the following instructions:

1 int N=...;

2 float host A = ( float∗ )malloc (N∗sizeof(float)) ;

3 cudaMemcpy ( dev A , host A , N∗sizeof(float), cudaMemcpyHostToDevice);

Finally, when our processing is complete, the data can be downloaded once again

from Global Memory of our device to the CPU through the following statement.

1 cudaMemcpy(host A,dev A,N∗sizeof(float), cudaMemcpyDeviceToHost) ;
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2.3.2 Constant Memory

The Constant Memory is a memory used to load data in read-only, so it does not

change during the execution of the kernel. The size of this memory does not exceed

64 KB of total space thus, every multiprocessor, has available 8 KB.

In some situations it may be useful to use this memory type instead of the Global

Memory by reducing the bandwidth of memory required. This memory can only be

written by the host and not from the device because it would lose the connotation of

constant; this process is done through the function cudaMemcpyToSymbol().

1 constant float const [256] ;

2 float dataA [256] ;

3 cudaMemcpyToSymbol(const,dataA,sizeof(data));

4 cudaMemcpyFromSymbol(dataA,const,sizeof(data));

The method CUDA MemcpyToSymbol() allows to load data into Constant Mem-

ory, while CUDA MemcpyFromSymbol(), download them to the CPU.

1 constant float const [256] ;

2 float dataA [256] ;

3 cudaMemcpyToSymbol(const,dataA,sizeof(data));

4 cudaMemcpyFromSymbol(dataA,const,sizeof(data));

2.3.3 Texture Memory

As for the Constant Memory, Texture Memory is cached in the chip. However, this

type of memory is used for very frequent operations in computer graphics, such as:

mapping, deformation, or implanting a texture 2D of polygonal model. The texture

cache is then shared by all processors and provides a speed up in reading texture

memory, implemented as a read-only memory region of the device8. CUDA devices

have addition units called Texture Mapping Unit (TMU) that are not members of the

8Exploiting Graphical Processing Units for Data-Parallel Scientic Applications, A. Leist, D. P.
Playne and K. A. Hawick Computer Science,Institute of Information and Mathematical Sciences,
Massey University, Albany, Auckland, New Zealand,December 2008
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physical processors and are able to rotate or resize a bitmap placed on an arbitrary

plane of any given object as a 3D texture. The texture has an internal memory (on-

chip) using a buffer that is capable of taking data from global memory. A variable

of type texture is visible from both the kernel and the host code, and it must be

declared with global scope. As for the variables allocated in memory constant, it has

a duration equal to the life cycle of CUDA application. In order to use variables that

reside in Memory Texture is therefore necessary to declare a reference to the texture,

in this manner:

1 texture<float, cudaTextureType2D,cudaReadModeElementType> texRef;

And then perform the data binding that already reside in global memory:

1 cudaChannelFormatDesc channel= cudaCreateChannelDesc<float>();

2 cudaBindTexture (NULL, &deviceA,texref,&channel,size)

The data that are all inside of the kernel can be read via tex1Dfetch, if we made

the binding of a zone of linear memory, otherwise the primitive tex1D, tex2D and

tex3D, when an array is multidimensional. At the end of the application is proper to

make unbundling to free up resources through the following statement:

1 cudaUnbindTexture(texref);

2.3.4 Registers

They are at the disposal a type of on-chip memory that is very fast, its size is 32

bits and is visible from a single thread. The parameters of the local kernel are

automatically copied in the records without any specific operation by the developer.
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2.3.5 Local Memory

The Local Memory is called this way because it is ”local” in the scope of each thread.

It is not a hardware component of a multiprocessor 9 This type of memory physically

resides in global memory that is allocated by the compiler, so it will have the same

performance than any other global memory. The compiler generally can choose to

allocate our variables in local memory when:

1. many variables occupy too many registers;

2. Structures and Arrays, which take excessive large space in the registers;

3. the compiler is unable to determine if an array has a constant size.

2.3.6 Shared Memory

This type of memory is a hundred times faster than global memory and has the

distinction of being shared between threads in the same block10 and it can be used

to carry out communications and synchronizations between the same thread. The

Shared Memory is divided into 16 KB of memory per Streaming Multiprocessor but

bearing in mind that every SM has a private L1 cache, then it shares a fixed 64KB

of memory space with shared memory, so the memory on-chip RAM is divided into

16 KB L1 and 64 KB of shared memory and later, L2 cache is global on all the SM

with a size of 768 KB11. Life cycle of the variables stored in the shared memory are

connected with the life of the kernel when it ends its execution they are released.

The creations of these variables in the shared memory is done by prefixing the type

shared .

9http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/215900921
10http://www.sdsc.edu/us/training/assets/docs/NVIDIA-04-OptimizingCUDA.pdf
11Encyclopedia of Parallel Computing, David Padua, Springer Science LLC 2011
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Figure 2-5: CUDA Memory Model from “http://www.realworldtech.com”.

2.4 Threads and Blocks Managing

When designing kernels with high performance, we need to take into consideration not

only a careful use of the internal memory, but also a suitable division of the various

blocks in which our application works. If we take our graphics card with compute

capability 1.1 we have the following hardware characteristics respect:

1. maximum number threads to block = 512;

2. maximum number of blocks for SM = 8;

3. maximum number threads for SM = 768.

From the information above, we have that each SM can assign up to 768/32 =

24 warp, therefore, a very important rule to follow is that the number of threads

per block must be divisible by 32, otherwise it may happen that we will have warp
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partially filled and then adds fictitious thread to reach 32. The number of warp should

then be a divisor of 24 or we can risk not to achieve the maximum number of warp

assignable to every single SM. A further important rule to follow is that each block

must not be less than 24/8=3 warp threads 96 and therefore accordingly12. The total

number of blocks and warps that can reside and can be processed together on the

multiprocessor depends on the:

1. amount of registers and Shared Memory used by multiprocessor;

2. amount of registers and Shared Memory used by the kernel.

The formula to calculate the total number of warps Wblock in a single block is as

follows:

Wblock = ceil(
T

Wsize

, 1) (2.1)

1. T is the total number of threads per block;

2. Wsize is the wrap size that is equal to 32;

3. ceil(x, y) is equal to x rounded up to the nearby multiple of y.

The total number of registers Rblock allocated per block is provided by following

equation:

For devices of compute capability 1.x

Rblock = ceil(ceil(Wblock, GW )×Wsize ×Rk, GT ) (2.2)

For devices of compute capability 2.x

Rblock = ceil(Rk ×Wsize, GT )×Wblock (2.3)

1. GW is warp allocation granularity(equal to 2);

12Optimizing CUDA Applications, 3D Game Engine Programming, Execution Optimizations from
http://3dgep.com/?p=2081

46



2. Rk is the number of registers used by the kernel;

3. GT is the thread allocation granularity(equal to 256 for devices of capability 1.0

and 1.1).

The total amount of Shared Memory Sblock in bytes for a single block allocation

follows the following relationship:

Sblock = ceil(Sk, GS) (2.4)

1. Sk is the amount Shared Memory used by the kernel in bytes;

2. GS is the shared memory allocation granularity (equal to 512 for device of com-

pute capability 1.x).

These formulas were obtained by “NVIDIA CUDA C Programming Guide Version

4.0”.

2.5 Compilation Process

The compilation process is the initial step to run the code created for GPUs. CUDA

files typically have a file extension .cu and can be compiled only with a specific

compiler package provided by nvcc. In order to compile the innumerable CUDA files

of the thesis project it was created a make file that can be compiled via shell command

make.

2.6 Optimization

2.6.1 Coalescence

One of the fundamental processes to optimize the CUDA code is to gather more

accesses, both in reading and in writing, in a single transition from the memory

controller. More generally, the unit that we are referring is that of the half-warp,
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i.e. The memory accesses are not clustered in groups of 32 threads of the warp but

in groups of 16 threads. If we are able to organize access in a half-warp we can get

a performance boost through their coalescence. The guidelines to be followed vary

according to the compute capabilities of the graphics card. In general, for those with

compute capability 1.0 and 1.1 the accesses of a half warp are coalescing if:

1. 64 bytes - each thread reads a word: int,float, ...

2. 128 byte - each thread reads a double-word: int2,float2,...

3. 256 bytes - each thread reads a quad-word: int4,float4,...

In addition, the following restrictions must be observed:

1. The starting address of a region must be multiple of the size of the region;

2. The k-th thread in a half-warp must access the k-th element of a lock (read or

written), that access must be perfectly aligned between thread.

2.6.2 Synchronization

A limitation of the CUDA architecture is that the various threads of different blocks

can not communicate between them and exchange messages. The threads belonging

to a same block can do it through of a primitive call syncthreads() that can be

visualized as a point of stopping at a precise point which will start only when all

threads of the same block have achieved.
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Chapter 3

Code and Results

This chapter describes the details of the implemented code and the results obtained

by running this in different architectures by comparing it with the same code imple-

mented on the CPU.

All the code presented below is protected by GPLv3 1.

3.1 Code

The code consists of 11 files invoked as external functions and of a main file in which is

implemented variable initialization and the iterative algorithm. Each of these CUDA

external function contributes to the estimate of the constant Fi. Then, at the end of

the iterative cycle, results are recovered by means of a function, clock(), which also

temporize the iterative algorithm.

1Copyright (C) 2013 Nicolò Savioli This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version. This program is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.You should have received a copy of the GNU
General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
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3.1.1 Main

The main code runs the mathematical model using the same iterative steps described

in chapter 1 section 1.6, with the aim of calculating the constant Fi. Each of the

functions within the iterative algorithm (discussed below) run a single kernel in order

to performe a parallel operation in the GPU. Initially, the allocated variables are

used to load data in the global memory of the GPU2, then through malloc() they are

allocated in dynamics memory space3. The allocation of variables in the memory of

the graphics chip is done through cudaMalloc()4. Thereafter, we need to fill variables

allocated in the dynamic memory of the host in order to use them to allocate global

memory of graphics card. These data are acquired from a class called histogram,

whose builder is HIST, used to acquire the data of the model5. Finally, we arrive

to the convergence loop, it consists of two conditions: the number of iterations and

convergence condition6 where cudaMemcpy()7 is used to download the result in host

memory for comparison with the value of tolerance.

Listing 3.1: Extract of Main.cc

1 //GPLv3, Copyright (C) 2013 Nicolo’ Savioli

2 cudaDeviceReset();

3 // Allocate var for GPU

4 constant float∗ dev U;

5 constant float ∗ dev UU;

6 constant float ∗ dev Punnorm result;

7 float ∗ dev histmin;

8 int ∗ dev numbinwin;

9 float ∗ dev g;

10 float ∗ dev F;

11 float ∗ dev numwham;

2From line 10 to 34 of Main.cc
3From line 39 to 66 of Main.cc
4From line 69 to 95 of the Main.cc
5From line 97 to 123 of Main.cc
6From line 151 of Main.cc
7From line 172 of Main.cc
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12 float ∗ dev center;

13 float ∗ dev harmrest;

14 float ∗ dev delta;

15 int ∗ dev step;

16 int ∗ dev numbin;

17 float ∗ dev sum result;

18 float ∗ dev denwham;

19 float ∗ dev result Punnorm;

20 float ∗ dev sum normfactor for normprob and normcoef;

21 float ∗ dev P;

22 float ∗ dev A result;

23 float ∗ dev P old;

24 float ∗ dev rmsd result;

25 float ∗ dev F toBeNormalized;

26 float ∗ dev kT;

27 float ∗ dev sumP;

28 float ∗ dev P normalized;

29 int ∗ dev numhist;

30 int ∗ dev numwin;

31 int ∗ dev numdim;

32 // Dimension:

33 int size =HIST.numdim∗HIST.numwin;

34 int dimen = HIST.numhist∗HIST.numwin;

35 // Allocate space for CPU

36 float ∗ histmin = (float∗)malloc(sizeof(float)∗HIST.numdim);

37 float ∗ harmrest = (float∗)malloc(sizeof(float)∗size);

38 float ∗ center = (float∗)malloc(sizeof(float)∗size);

39 float ∗ numwham = (float∗)malloc(sizeof(float)∗HIST.numhist);

40 float ∗ g = (float∗)malloc(sizeof(float)∗HIST.numwin);

41 float ∗ F = (float∗)malloc(sizeof(float)∗HIST.numwin);

42 float ∗ delta= (float∗)malloc(sizeof(float)∗HIST.numdim);

43 int ∗ numbinwin=(int∗)malloc(sizeof(int)∗HIST.numwin);
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44 float ∗ denwham=(float∗)malloc(sizeof(float)∗HIST.numwin);

45 float ∗ sumP=(float∗)malloc(sizeof(float)∗HIST.numwin);

46 float ∗ U=(float∗)malloc(sizeof(float)∗dimen);

47 int ∗ numbin=(int∗)malloc(sizeof(int)∗HIST.numdim);

48 int ∗ step=(int∗)malloc(sizeof(int)∗HIST.numdim);

49 float ∗ dev sum result=(float∗)malloc(sizeof(float)∗HIST.numhist);

50 float ∗ Load kT=(float∗)malloc(sizeof(float));

51 float ∗ cpu result Punnorm=(float ∗)malloc(HIST.numhist ∗ sizeof(float));

52 float ∗ cpu F= (float ∗)malloc(HIST.numwin ∗ sizeof(float));

53 float ∗ cpu P = (float ∗)malloc(HIST.numhist∗sizeof(float));

54 float ∗ cpu A result = (float ∗)malloc(HIST.numhist∗sizeof(float));

55 float ∗ cpu rmsd result=(float ∗)malloc(sizeof(float));

56 float ∗ cpu P old=(float ∗)malloc(HIST.numhist∗sizeof(float));

57 float ∗ cpu U=(float ∗)malloc(HIST.numhist∗HIST.numwin ∗ sizeof(float));

58 float ∗ cpu Punnorm=(float ∗)malloc(HIST.numhist∗sizeof(float));

59 float ∗ cpu sumP = (float ∗)malloc(HIST.numwin∗sizeof(float));

60 float ∗ cpu UU = (float ∗)malloc(HIST.numhist∗HIST.numwin∗sizeof(float));

61 int ∗ cpu numhist=(int∗)malloc(sizeof(int));

62 int ∗ cpu numwin=(int∗)malloc(sizeof(int));

63 int ∗ cpu numdim=(int∗)malloc(sizeof(int));

64 printf(”Initialization Array...\n”);

65 // Allocation space for GPU:

66 cudaMalloc(&(dev histmin), HIST.numdim∗ sizeof(float));

67 cudaMalloc(&(dev numbinwin), HIST.numwin∗ sizeof(int));

68 cudaMalloc(&(dev g), HIST.numwin∗ sizeof(float));

69 cudaMalloc(&(dev F), HIST.numwin∗ sizeof(float));

70 cudaMalloc(&(dev numwham), HIST.numhist∗ sizeof(float));

71 cudaMalloc(&(dev center), size∗ sizeof(float));

72 cudaMalloc(&(dev harmrest), size∗ sizeof(float));

73 cudaMalloc(&(dev delta), HIST.numdim∗ sizeof(float));

74 cudaMalloc(&(dev step), HIST.numdim ∗ sizeof(int));

75 cudaMalloc(&(dev numbin), HIST.numdim∗ sizeof(int));
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76 cudaMalloc(&(dev U),dimen∗sizeof(float));

77 cudaMalloc(&(dev sumP),HIST.numwin∗sizeof(float));

78 cudaMalloc(&(dev result Punnorm),HIST.numhist∗ sizeof(float));

79 cudaMalloc(&(dev Punnorm result),HIST.numhist∗sizeof(float));

80 cudaMalloc(&(dev denwham),HIST.numhist∗sizeof(float));

81 cudaMalloc(&(dev F toBeNormalized),HIST.numwin∗sizeof(float));

82 cudaMalloc(&(dev sum normfactor for normprob and normcoef),sizeof(float));

83 cudaMalloc(&(dev P),HIST.numhist∗sizeof(float));

84 cudaMalloc(&(dev P normalized),HIST.numhist∗sizeof(float));

85 cudaMalloc(&(dev kT),sizeof(float));

86 cudaMalloc(&(dev A result),HIST.numhist∗sizeof(float));

87 cudaMalloc(&(dev P old),HIST.numhist∗sizeof(float));

88 cudaMalloc(&(dev rmsd result),HIST.numhist∗sizeof(float));

89 cudaMalloc(&(dev UU),HIST.numwin∗HIST.numhist∗sizeof(float));

90 cudaMalloc(&(dev numhist),sizeof(int));

91 cudaMalloc(&(dev numwin),sizeof(int));

92 cudaMalloc(&(dev numdim),sizeof(int));

93 Load kT[0]=kT;

94 cpu numhist[0]=HIST.numhist;

95 cpu numwin [0]=HIST.numwin;

96 cpu numdim [0]=HIST.numdim;

97 for(int i=0; i<size;i++){

98 center[i]= HIST.center[i];

99 harmrest[i]= HIST.harmrest[i];

100 U[i]=0.0;

101 }

102 for(int i=0; i<HIST.numhist;i++){

103 numwham[i]= HIST.numwham[i];

104 denwham[i]=0.0;

105 cpu P old[i]=0.0;

106 }

107 for(int i=0;i<HIST.numwin;i++){
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108 g[i]=HIST.g[i];

109 F[i]=HIST.F[i];

110 numbinwin[i]=HIST.numbinwin[i];

111 sumP[i]=0.0;

112 }

113 for(int i=0;i<HIST.numdim;i++)

114 {

115 delta[i]=HIST.delta[i];

116 numbin[i]=HIST.numbin[i];

117 histmin[i]=HIST.histmin[i];

118 step[i]=HIST.step[i];

119 }

120 printf(”Copy CPU var to GPU device ...\n”);

121 //Copy CPU sapce to GPU device :

122 cudaMemcpy(dev numhist,cpu numhist,sizeof(int),cudaMemcpyHostToDevice);

123 cudaMemcpy(dev numw in,cpu numwin,sizeof(int), cudaMemcpyHostToDevice);

124 cudaMemcpy(dev numdim,cpu numdim,sizeof(int), cudaMemcpyHostToDevice);

125 cudaMemcpy(dev histmin, histmin,HIST.numdim∗ sizeof(float ∗),

126 cudaMemcpyHostToDevice);

127 cudaMemcpy(dev numbinwin, numbinwin,HIST.numwin∗ sizeof(int),cudaMemcpyHostToDevice);

128 cudaMemcpy(dev g, g,HIST.numwin∗ sizeof(float),cudaMemcpyHostToDevice);

129 cudaMemcpy(dev F, F,HIST.numwin∗ sizeof(float),cudaMemcpyHostToDevice);

130 cudaMemcpy(dev numwham, numwham,HIST.numhist∗ sizeof(float), cudaMemcpyHostToDevice);

131 cudaMemcpy(dev center, center,(HIST.numdim∗HIST.numwin)∗ sizeof(float),

132 cudaMemcpyHostToDevice);

133 cudaMemcpy(dev harmrest, harmrest,(HIST.numdim∗HIST.numwin)∗ sizeof(float),

134 cudaMemcpyHostToDevice);

135 cudaMemcpy(dev delta, delta,HIST.numdim∗ sizeof(float),cudaMemcpyHostToDevice);

136 cudaMemcpy(dev step, step,HIST.numdim∗ sizeof(int),cudaMemcpyHostToDevice);

137 cudaMemcpy(dev numbin, numbin,HIST.numdim∗ sizeof(int) cudaMemcpyHostToDevice);

138 cudaMemcpy(dev sumP, sumP,HIST.numwin∗ sizeof(float) cudaMemcpyHostToDevice);

139 cudaMemcpy(dev denwham, denwham,HIST.numhist∗ sizeof(float),cudaMemcpyHostToDevice);
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140 cudaMemcpy(dev kT, Load kT,sizeof(float),cudaMemcpyHostToDevice);

141 cudaMemcpy(dev P old, cpu P old,HIST.numhist∗sizeof(float),cudaMemcpyHostToDevice);

142 printf(”GPU Processing ...\n”);

143 // −− Calculation of Potential −−

144 initGPU=clock();

145 Bias(HIST.numhist, HIST.numwin,HIST.numdim,dev numhist,dev numdim,dev histmin,dev center,

146 dev harmrest, dev delta,dev step,dev numbin,dev U,dev numwham);

147 while((it < numit)&&(!converged)){

148 //Calculating new probability

149 NewProbabilities(cpu numhist[0],cpu numwin[0],dev numhist,dev numwin,

150 dev numbinwin,dev g,dev numwham,dev U,dev F,dev denwham,dev Punnorm result);

151 //Calculating new Sum

152 summationP (cpu numhist[0],cpu numwin[0],

153 dev numhist,dev numwin,dev U,dev UU,dev numwham);

154 NewSum (dev numhist,cpu numwin[0],dev sumP,dev UU,dev Punnorm result,dev numwham);

155 //Calculating new constant F

156 NewConstants(cpu numhist[0],cpu numwin[0],dev U,dev Punnorm result,

157 dev sumP,dev F,dev numwham);

158 //Calculating Normalization Constant

159 NormFactor(cpu numhist[0],dev Punnorm result,

160 dev sum normfactor for normprob and normcoef,dev numwham);

161 //Normalization of P

162 NormProbabilities (cpu numhist[0],dev sum normfactor for normprob and normcoef,

163 dev Punnorm result,dev P,dev numwham);

164 //Normalization of F

165 NormCoefficient(cpu numwin[0],dev sum normfactor for normprob and normcoef

166 ,dev F,dev sumP);

167 //Convergence of the Math Model

168 CheckConvergence(cpu numhist[0],dev P,dev P old,HIST.numgood,

169 dev rmsd result,dev numwham);

170 //Calculating Free Energy

171 ComputeEnergy(cpu numhist[0],dev P,dev kT,dev A result,dev P old,dev denwham);
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172 cudaMemcpy(cpu rmsd result,dev rmsd result,sizeof (float),cudaMemcpyDeviceToHost);

173 if (cpu rmsd result[0] < tol)

174 converged = true;//Is it converged ?

175 it++;

176 }

177 finalGPU=clock()−initGPU;

3.1.2 Calculating Bias

After invoking a kernel from extern ”C” void Bias(), we create a grid of size numdim *

numhist, where numdim is the dimensionality of the grid (1D,2D,3D) while, numhist

is the number of all bins. In addition to the grid blocks numhist*numwin are allo-

cated, where numwin is the number of simulations. Inside the kernel we initialize the

variables of interaction of the blocks, which allow to scroll the various blocks with ihist

and iwin. Instead, iteri runs harmrest which is a vector that contains the constants

Ki of the potential and vector center which instead contains the coordinates where

are sampled molecules in space. After, calculating the potential in the line of code 18

that replicates the formula 1.17 of Chapter 1 where pos is the index that translates

the simulation windows. Finally, each of these simulations is passed to a temporary

array in global memory with iterj.

In order to minimize the operations of the memory access, Bias is loaded into the

array dev U which contains the data calculated by Bias.cu on constant memory be-

cause has a faster access and it often used by iterative cycle. The same strategy was

used for vector which contains P u
i (ξ), i.e. dev Punnorm result.

Listing 3.2: Bias.cu

1 //GPLv3, Copyright (C) 2013 Nicolo’ Savioli

2 #include <assert.h>

3 #include <helper cuda.h>

4 global void BiasKernel(int ∗ dev numhist,int ∗ dev numdim,

5 float ∗ histmin,float ∗ center,float ∗ harmrest,float ∗ delta,
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6 int ∗ step,int∗ numbin,float ∗ temp U,float ∗ dev numwham){

7 double pos=0.0;

8 int ipos=0;

9 int ihist=blockIdx.x;

10 int iwin=blockIdx.y;

11 int idim=threadIdx.x;

12 int iter i=idim+iwin∗dev numdim[0];

13 int iter j=ihist+iwin∗dev numhist[0];

14 float U=0.0;

15 if(ihist<dev numhist[0]){

16 if(dev numwham[ihist]>1){

17 ipos = (int)((ihist/step[idim]) % numbin[idim]);

18 pos = histmin[idim] + ipos∗delta[idim];

19 U += 0.5 ∗ harmrest[iter i] ∗(pos − center[iter i])∗(pos − center[iter i]);

20 temp U[iter j] = U;

21 syncthreads();

22 }}}

23 extern ”C” void Bias (int numhist,int numwin,int numdim,

24 int ∗ dev numhist, int ∗ dev numdim,

25 float ∗ histmin,float ∗ center,

26 float ∗ harmrest,float ∗ delta,

27 int ∗ step,int∗ numbin,float ∗ temp U,

28 float ∗ dev numwham){

29 dim3 dimGrid(numdim,numhist);

30 dim3 dimBlock(numhist,numwin);

31 // Kernel invocation

32 BiasKernel<<<dimBlock,dimGrid>>>(dev numhist,dev numdim,histmin,

33 center,harmrest,delta,step,numbin,

34 temp U,dev numwham);

35 getLastCudaError(”Cuda Bias execution failed\n”);

36 }
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3.1.3 Probability Update: Calculation of New Probability

This kernel in NewProbabilities.cu has the aim to calculate the first equation of the

system (1.20) of Chapter 1, in order to perform this, the blocks are initialized with

dimension numhist*numwin after several tests it was decided to use expf to speed

up the calculation of the exponential function.

Listing 3.3: NewProbabilitie.cu

1 //GPLv3, Copyright (C) 2013 Nicolo’ Savioli

2 #include <assert.h>

3 #include <helper cuda.h>

4

5 global void NewProbabilitiesKernel(int ∗ dev numhist,int ∗ dev numwin,

6 int ∗ numbinwin,float ∗ g,float∗ numwham,

7 float∗ U,float ∗ F,float ∗denwham,

8 float ∗ sum result){

9 int ihist = blockIdx.x;

10 int iwin = blockIdx.y;

11 if((ihist<dev numhist[0])&&(iwin<dev numwin[0])){

12 if(numwham[ihist]>1){

13 denwham[ihist] += (numbinwin[iwin]/g[iwin]) ∗ expf(F[iwin]−U[ihist+iwin∗dev numhist[0]]);

14 sum result[ihist] =numwham[ihist]/denwham[ihist];

15 syncthreads();

16 }}}

17 extern ”C” void NewProbabilities (int numhist,int numwin,int ∗ dev numhist,

18 int ∗ dev numwin,int ∗ numbinwin,float ∗ g,

19 float∗ numwham,float∗ U,float ∗ F,float ∗ denwham,

20 float ∗ sum result){

21 dim3 Block(numhist,numwin);

22 NewProbabilitiesKernel<<<Block,1>>>(dev numhist,dev numwin,numbinwin,

23 g,numwham,U,F,denwham,sum result);

24 getLastCudaError(”Cuda NewProbabilities execution failed\n”);

25 }
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3.1.4 Constants Update: Calculation of Constant Fi

The result of the previous kernel is used in order to update the constant Fi by means

of the second equation of the system (1.20) of Chapter 1. In order to speed up the algo-

rithm, the calculation of the kernel is divided into two part: the first kernel computes

the most critical part of the operation −βeWi(ξh); and the second kernel, performs a

simple multiplication operation between P u
i (ξ), calculated with NewProbabilities.cu,

and −βeWi(ξh) previously calculated.

Listing 3.4: summationP.cu First part of kernel used for the calculation of Fi

1 //GPLv3, Copyright (C) 2013 Nicolo’ Savioli

2 #include <assert.h>

3 #include <helper cuda.h>

4

5 global void summationPKernel (int ∗ dev numhist,int ∗ dev numwin,float∗ U,

6 float ∗ dev UU,float ∗ dev numwham){

7 int ihist = blockIdx.y;

8 int iwin = blockIdx.x;

9 if((iwin<dev numwin[0])&&(ihist<dev numhist[0])){

10 if(dev numwham[ihist]>1)

11 dev UU[ihist+iwin∗dev numhist[0]] = expf(−U[ihist+iwin∗dev numhist[0]]);

12 syncthreads();

13 }}

14 extern ”C” void summationP (int numhist,int numwin,int ∗ dev numhist,

15 int ∗ dev numwin,float ∗ U,float ∗ dev UU,

16 float ∗ dev numwham){

17 dim3 dimBlock(numwin,numhist);

18 // Kernel invocation

19 summationPKernel<<<dimBlock, 1>>>(dev numhist,dev numwin,U,dev UU,dev numwham);

20 getLastCudaError(”Cuda summationPexecution failed\n”);
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21 }

Listing 3.5: NewSum.cu Second part of kernel used for the calculation of Fi

1 //GPLv3, Copyright (C) 2013 Nicolo’ Savioli

2 #include <assert.h>

3 #include <helper cuda.h>

4

5 global void NewSumKernel (int ∗ dev numhist,

6 float ∗ sumP,float ∗ U,

7 float ∗ Punnorm,

8 float ∗ numwham){

9 int iwin = blockIdx.x;

10 for(int i=0;i<dev numhist[0];i++)

11 {

12 if(numwham[i]>1)

13 sumP[iwin] +=U[i+iwin∗dev numhist[0]]∗Punnorm[i];

14 }}

15 extern ”C” void NewSum (int ∗ dev numhist,int numwin,

16 float ∗ sumP,float ∗ U,

17 float ∗ Punnorm, float ∗ numwham){

18 dim3 dimBlock(numwin,1);

19 // Kernel invocation

20 NewSumKernel<<<dimBlock,1>>>(dev numhist,sumP,U,Punnorm,numwham);

21 getLastCudaError(”Cuda NewSum execution failed\n”);

22 }

3.1.5 Normalization

The normalization process involves both: P u
i (ξ) and Fi. This normalization, is made

by two CUDA external function: the first, which normalizes P u
i (ξ) , is NormProb-

abilities.cu while the second,which has instead the function of normalizing Fi, is

NormCoefficient.cu. Them both these processes require a coefficient of normalization
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which it is computed as the sum of all probabilities P u
i (ξ). In order to optimize the

process of summation we used a technique called sum reduction.

This technique uses a tree-based approach for each thread of a block. Allowing it to

be capable of processing large arrays and each thread block reduces a portion of the

array therefore, if each thread of a block is synchronized and it can produce a single

result that can be shared with another through shared memory ; finally, the result of

that block, is written to global memory. This normalization factor is calculated with

the kernel of NormFactor.cu external function that implements the code below.

Figure 3-1: Sum Reduction from “http://cs.anu.edu.au/”.
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Listing 3.6: NormFactor.cu

1 //GPLv3, Copyright (C) 2013 Nicolo’ Savioli

2 #include <assert.h>

3 #include <helper cuda.h>

4

5 global void NormFactorKernel(int numhist,float∗ Punnorm,float∗ sum result,float ∗ dev numwham){

6 // use shared memory to speed up the operation of summation

7 extern shared float sdata[];

8 int tx = threadIdx.x;

9 float sum=0.0;

10

11 if(tx<numhist){

12 if (dev numwham[tx]>1)

13 sum=Punnorm[tx];

14 sdata[tx] = sum;

15 syncthreads();

16 }

17 for(int offset = blockDim.x / 2;offset > 0;offset >>= 1){

18 if(tx < offset){

19 // add a partial sum upstream to our own

20 sdata[tx] += sdata[tx + offset];

21 }

22 syncthreads();

23 }

24 // finally, thread 0 writes the result

25 if(threadIdx.x == 0){

26 // note that the result is per−block

27 // not per−thread

28 sum result[0] = sdata[0];

29 }}

30

31 extern ”C” void NormFactor (int numhist,float∗ Punnorm,float ∗ sum result,float ∗ dev numwham)
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32 {

33 int smem sz = (256)∗sizeof(float);

34 dim3 Block(numhist,1);

35 NormFactorKernel<<<Block,256,smem sz>>>(numhist,Punnorm,sum result,dev numwham);

36 getLastCudaError(”Cuda NormFactor execution failed\n”);

37 }

Normalization of P u
i (ξ) is done dividing by this norm factor as implemented in

the external function NormProbabilities.cu.

Listing 3.7: NormProbabilities.cu

1 //GPLv3, Copyright (C) 2013 Nicolo’ Savioli

2 #include <assert.h>

3 #include <helper cuda.h>

4

5 global void NormProbabilitiesKernel(int numhist,float ∗ sum result,

6 float ∗ Punnorm,float ∗ P,

7 float ∗ dev numwham){

8 int ihist = blockIdx.x;

9 if(ihist<numhist){

10 if(dev numwham[ihist]>1)

11 P[ihist]=Punnorm[ihist]/sum result[0];

12 syncthreads();

13 }}

14

15 extern ”C” void NormProbabilities(int numhist,float ∗ sum result,

16 float ∗ Punnorm,float ∗ P,

17 float ∗ dev numwham){

18 dim3 Block(numhist,1);

19 NormProbabilitiesKernel<<<Block,1>>>(numhist,sum result,Punnorm,P,dev numwham);

20 getLastCudaError(”Cuda NormProbabilities execution failed\n”);

21

22 }
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The normalization of the constant Fi is done by adding the logarithm of the

normalization factor as implemented in the kernel of the external function NormCo-

efficient.cu. In this function it is also initialized in global memory sumP which acts

as a accumulator for the calculation of the constant Fi in the kernel of NewSum.cu.

3.1.6 Calculation of the Free Energy

The calculation of the free energy follows the Equation 1.5 in Chapter 1, then we go

to calculate −kT logP u
i (ξ) in the kernel of the external function ComputeEnergy.cu.

In order to calculate the convergence, we insert the values of P u
i (ξ) in a state vector

that at each iteration contains P u
i (ξ) values of the previous iteration.

Listing 3.8: ComputeEnergy.cu

1 //GPLv3, Copyright (C) 2013 Nicolo’ Savioli

2 #include <assert.h>

3 #include <helper cuda.h>

4

5

6 global void ComputeEnergyKernel(int numhist,float ∗ P,float ∗ kT,

7 float ∗ A result,float ∗ P old,

8 float ∗ denwham){

9 int ihist = blockIdx.x;

10 if(ihist<numhist){

11 A result[ihist] = −kT[0]∗ logf(P[ihist]);

12 P old[ihist]=P[ihist];

13 denwham[ihist]=0.0;

14 syncthreads();

15 }}

16 extern ”C” void ComputeEnergy(int numhist,float ∗ P,

17 float ∗ kT,float ∗ A result,

18 float ∗ P old,float ∗ denwham){
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19 dim3 Block(numhist,1);

20 ComputeEnergyKernel<<<Block,1>>>(numhist,P,kT,A result,P old,denwham);

21 getLastCudaError(”Cuda ComputeEnergy execution failed\n”);

22 }

3.1.7 Convergence Checking

The calculation of the stability of the model is a critical step since it allows to stop the

iterative cycle when it is converged. The logic with which ensures that the algorithm

has reached convergence is to check if the sum of the deviations between the calculated

P u
i−1(ξ) at the iteration i− 1 and the one at iteration i is less than a tolerance value.

It is implemented through the kernel of the function CheckConvergence.cu, for better

performances the computation is implemented a sum reduction.

Listing 3.9: CheckConvergence.cu

1 //GPLv3, Copyright (C) 2013 Nicolo’ Savioli

2 #include <assert.h>

3 #include <helper cuda.h>

4

5 global void CheckConvergenceKernel(int numhist,float ∗ P new,

6 float ∗ P old,int numgood,

7 float ∗ Check result,float ∗ dev numwham){

8

9 // use shared memory to speed up the operation of summation

10 extern shared float sdata[];

11

12 int tx = threadIdx.x;

13 float sum=0.0;

14

15 if(tx<numhist){

16 if(dev numwham[tx])

17 sum=(P new[tx] − P old[tx]) ∗ (P new[tx] − P old[tx]);
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18 sdata[tx] = sum;

19 syncthreads();

20 }

21

22 for(int offset = blockDim.x / 2;offset > 0;offset >>= 1){

23 if(tx < offset)

24 {

25 // add a partial sum upstream to our own

26 sdata[tx] += sdata[tx + offset];

27 }

28 syncthreads();

29 }

30 // finally, thread 0 writes the result

31 if(threadIdx.x == 0){

32 // note that the result is per−block

33 // not per−thread

34 Check result[0] = sqrt(sdata[0]/numgood);

35 }}

36

37 extern ”C” void CheckConvergence(int numhist,float ∗ P new,

38 float ∗ P old,int numgood,

39 float ∗ Check result,float ∗ dev numwham){

40 int smem sz = (256)∗sizeof(float);

41 dim3 Block(numhist,1);

42 CheckConvergenceKernel<<<Block,256,smem sz>>>(numhist,P new,P old,

43 numgood,Check result,dev numwham);

44 getLastCudaError(”Cuda CheckConvergence execution failed\n”);

45 }
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3.2 Hardware Specifications

The work of this thesis was mainly carried out in two different GPUs architectures

in which we compared the running times of the code. What we want to prove is

that the code has a performance increase when the computational capability of the

GPU to increase. To this end we took two GPUs with two different level of Compute

Capability : GT 9500 with a Compute Capability of 1.1 and GT 320M of 1.0.

The GeForce 9500 GT has 32 CUDA cores with a graphics clock of 550 MHz and 800

MHz to GDDR3 Memory Clock with 500 MHz of DDR2, the memory bandwidth for

GDDR3 is 25.6 GB/sec and 16.0 GB/s for DDR28.

The 320M is an integrated version of the GT 320 for desktop and it has lower hardware

specific. The GT 320M is in possession of 24 CUDA cores with a graphics clock of

500 MHz. Instead, memory clock, has a clock of 790 MHz (1580 MHz data rate) with

a memory interface of 128-bit.

The results were compared with two different CPU architecture: Intel i5 series 3400,

which is a quad core processor where each core has a clock 64-bit of 2.24GHz with a

cache size to 3072 KB, and an dual core Athlon 64 bit X2 that each core has a clock

of 1.8 GHz with cache size to 512 KB.

3.3 Results

It is to be noted that the software presented here was adapted for working on graphics

cards with low compute capability and then with some limitations such as the ability

to work in double precision. The main purpose of the test was to demonstrate that

the performances of the software improve with the increase of the compute capability

of the graphics card.The results are presented in the graphs below.

8http://www.geforce.com/hardware/desktop-gpus/geforce-9500-gt/specifications
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Figure 3-2: The figure compares the different architectures of CPUs and GPUs in
a grid of 85 points. As expected, the code shows better performances when it was
executed in graphics cards with a greater compute capability (1.1). In fact, as it can
be seen from the graph, there is a decrease of coefficient angle of about -53.3% from
a GPU with compute capability 1.0 to compute capability 1.1. However, we note the
inability of GPUs at our disposal to overcome CPUs.
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Figure 3-3: The figure describes that varying size of the grid, at equal iteration, the
ratio between the GPUs and CPUs remained constant. It is possible to obtain better
results if the ratio was made between a fast GPU and a slow processor CPU. It is clear
that the relations between the GPU and CPU with the same number of iterations
and variable grid tends to decrease gradually with the increase in the speed of the
GPU, while the ratio remained constant.
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Figure 3-4: The figure describes the constancy of the ratio between the CPU and
GPU when varying the number of iterations, where we see the same phenomenon
seen before, i.e. the ratio drops to increase the speed of the GPU.
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Figure 3-5: The figure, describes the convergence of the model analyzed in function
of time. Observing the figure, it denotes a more rapid convergence to the GT 9500
with compute capability 1.1, compared GT 320 that has compute capability 1.0.
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Conclusion

After having analysed the algorithm proposed in different GPUs architectures, it has

been understood how the algorithm shows an improvement in the speed of execution

when it is used by GPUs with higher compute capabilities. Furthermore, it has

been noticed that the relations between GPUs and CPUs, where the algorithm was

tested, remain constant. In addition, this relation decreases when the speed of the

GPU increases and at the decrease of the speed of CPU; indeed, from the proposed

graphs it has been shown that at equal number of iterations, varying the point of

the grid (where it is calculated the free energy), the relation between the fastest

GPU (GT 9500) and the slowest CPU (Athlon X2 64-bit) is the smallest above the

entire ratios. This is confirmed by one of the charts that correlates this relation with

the variation of number of iterations, showing that the smallest ratio is maintained

constant from the use of the same GPU and CPU the previous graph. In conclusion,

having considered the architectural limits where the simulation are executed, it is

possible to understood how a use of GPUs with higher compute capabilities can

decrease the times of execution of WHAM. The implemented model is limited because

it can works only in one-dimensional grids. Indeed, due to an implementative choice,

bi- or three-dimensional grids have been converted in 1D arrays. This choice brings to

an incapacity to calculate grids with dimensions higher than one-dimension because

the maximum dimension of the CPU grid is 512. To solve this problem, it should

have been worked from the beginning with bi- or three- dimensional. However, the

problem is partially avoidable if the calculation of the grid is made through several

steps with size less than 512. Another use that can be done thank to this algorithm is

that of distributing the calculations at the same time in GPU and CPU in the same
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PC used, using one more resources to compute.

The main aim of all the thesis has been that of implementing a free energy method

to speed up the calculation of free energy in GPU. It has been demonstrated how the

implementation of free energy method in GPU, as WHAM algorithm, can improve

the performances of calculation. This approach might be extended in other situations

where the use of GPU present in graphic cards at high performance computing, could

bring an advantage in the computational times without the use of expensive data

centres, optimizing costs and benefits.
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