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Ma, parlando sul serio,

niente si assomiglia piú

che contare e raccontare.

Entrambi uni�cano il mondo,

lo districano e lo liberano. [...]

Una storia, puó anche

essere inventata, ma con

l'aritmetica che le é propria

é in grado di scardinare il mondo.
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Introduction

In recent years it has been witnessed a gradual extension of the ideas and

methods of statistical physics in a vast range of complex phenomena outside

the traditional boundaries of physical science: biology, economics, social sci-

ences and linguistics.

In particular, the application of ideas from statistical physics to text analysis

has a long tradition, since Shannon's usage of entropy as the central concept

in Information Theory, in 1948 [25].

At the same time, even the study of networks has emerged in di�erent dis-

ciplines as a mean of analysing complex relational data, for example human

language. In fact human language is a natural code, capable of codifying and

transmitting highly non trivial information, thus its structures and evolution

can be explored with the help of Network Theory [13] [25].

Humans build their language using a very small number of units, words and

punctuation, and their co-occurrences in sentences are not trivial. In fact,

syntactical and grammatical rules and the use of particular expressions im-

ply that some words co-occur with certain words at higher probability than

with others. Both written and spoken language have complex grammatical

structures that dictate how information can be communicated from one in-

dividual to another: texts are organised in a precise way and they need to

be well concatenated [6].

For this reason, in the last decades physicists have proposed new approaches

to text analysis, based on concepts from Network Theory. This has been

done for a variety of applications, related to fundamental linguistic: to iden-
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tify literary movements [5], to recognize patterns in poetry and prose [24]

[28], to characterize authors' style [3], to study the complexity of a text [4],

to generate and evaluate summaries [8].

The use of statistic applied to human language and texts provide a picture of

their macroscopic structures. One of the most generic statistical properties

of written language is Zipf's law, discovered by the philologist George Zipf in

1936, that describes a scaling law in the distribution of the words frequency.

In his Human Behaviour and the Principle of Least E�ort. An Introduction

to Human Ecology (1949), Zipf explained his law by the principle of least ef-

fort : he tought that the statistic of word usage would depend on the balance

between the e�orts invested by speaker and hearer in the communication

process.

The second important statistical feature of written language is Heaps' law,

that usually coexists with Zipf's one. It was discovered by Harold Heaps in

1978 and it predicts the vocabulary size of a document from its length, that

is the number of words it contains [14].

These two statistical patterns are universal trends, shared by all spoken lan-

guages [27]. However, Zipf and Heaps' laws are not the the only two struc-

tures present in all languages: these share universal tendencies at di�erent

levels of organization, for example syntactic and semantic categories, or ex-

pressed concepts. At the same time there are also deep di�erences between

languages, for example prepositions are not present everywhere.

In this thesis, we will study a set of important Italian books, written be-

tween 19th and 20th centuries. Each of them will be analysed even in some

di�erent versions: shu�ing their words, deleting stopwords and eliminating

terms appearing only once. The aim is to understand which measures of

Network Theory are able to distinguish masterpieces from their variations.

Texts will be transformed in networks with words as vertices and links cre-

ated between adjacent nodes, following the reading order, then they will be

visualised with the help of the open-source software Gephi, that can also
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provide some useful measurements.

The methods for text analysis that we will consider, can be divided in two

classes: (i) those based on �rst-order statistics, for example words frequency,

Zipf and Heaps' laws; (ii) those based on metrics from Network Theory, ob-

tained by Gephi and by a Python algorithm.

Thinking about similarities and di�erences between di�erent languages, the

study and work to write this thesis was done in collaboration with Filippo

Bonora, who chose to analyse an English corpus, in the same way described

above. This could be useful in order to compare values obtained in Italian

and English measurements, and the role measurements have in these two

languages. Since the methods used to analyse texts are the same, the �rst

chapter of the thesis has been written in collaboration with Filippo Bonora,

and it is equal to the �rst chapter of his thesis, Dynamic Networks, text anal-

ysis and Gephi: the art math.

The thesis is organised as follows. In the �rst chapter we give a survey of

the basic concepts of Network Theory, with particular attention to linguistic

graphs.

The second chapter deals with Zipf and Heaps' law, the relation between them

and some important stochastic models that can explain these two important

features.

The third chapter describes the database, the di�erent versions of the novels

that we consider, and the way in which texts are transformed in networks.

In the fourth chapter we show and discuss the results we obtained, displaying

especially distributions and average values of the computed measures. We

show even that statistical laws hold, and in particular we use Zipf's law to

demonstrate the invariance of degree distribution with shu�ing.
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Chapter 1

Networks and their properties

In this Chapter we will give some de�nitions and results related to Net-

work Theory, as we will use them to represent and analyse linguistic texts.

1.1 Basic concepts about networks

Networks can be used to model many kinds of relations in physical, bio-

logical, social and information systems [19]. Many practical problems can be

represented by graphs, thus Network Theory is a common subject of research.

We can start our analysis introducing its basic de�nitions [12].

De�nition 1.1.1. A weighted directed graph G is de�ned by:

• a set N (G) of N vertices, or nodes, identi�ed by an integer value

i= 1, 2, . . . ,N ;

• a set E(G) of M edges, or links, identi�ed by a pair (i, j ) that repre-

sents a connection starting in vertex i and going to vertex j ;

• a mapping ω : E(G) −→ R, that associates to the edge (i, j ) the value

ω(i,j )=ωij called weight.
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1. Networks and their properties

De�nition 1.1.2. A weighted directed graph G can be represented using its

weight matrix W :

W = (ωij).

We can observe that W is a N × N non symmetric matrix whose ele-

ments represent the number of directed links connecting vertex i to vertex j.

In this thesis we will assume that no pair of edges (i1,j 1) and (i2, j 2) with

i1 = i2 or j 1 = j 2 exists.

We can even de�ne the matrix created by nodes relations without con-

sidering their weights:

De�nition 1.1.3. The N× N matrix A= (aij) is the adjacency matrix of

the graph G if:

∀i,j a ij =

1, if ωij 6= 0

0, if ωij = 0.

The element a ij tells us whether there is an edge from vertex i to vertex j,

independently to the link weight. If a ij = 0, such a connection does not exist.

De�nition 1.1.4. The neighbourhood of a vertex i, ν(i), is the set of

vertices adjacent to i :

ν(i) = {j ∈ N (G)|(i , j ) ∨ (j , i) ∈ E(G)}.

De�nition 1.1.5. Eventually even two not adjacent vertices i and j can be

connected, using a walk, that is a sequence of m edges:

(i , k 1), (k 1, k 2), . . . , (km−1, j )

where m is the walk length.

If all the nodes and the edges composing a walk are distinct, the walk is

called path.

6



Basic concepts about networks

De�nition 1.1.6. A shortest path between two nodes is de�ned as the

path whose sum of edge weights is minimum [3].

De�nition 1.1.7. A loop or cycle is a walk starting and ending in the same

node i, and passing only once through each vertex kn composing the walk.

Let us give a simple example showing a weighted directed network:

1

4

5

6

3

2

(1,2)

(2,4)
(3,2)

(4,4)

(3,1)

(1,5)

(5,6)

(6,1)

w=1

w=1

w=1

w=2

w=3

w=2

w=1

w=4

G

Figure 1.1: A weighted directed graph

Example 1.1.1. The �gure 1.1 shows a graph G = (N (G), E(G)) where:

N (G) = {1, 2, 3, 4, 5, 6}, N = |N (G)| = 6,

E(G) = {(1, 2), (1, 5), (2, 4), (3, 1), (3, 2), (4, 4), (5, 6), (6, 1)}, M = |E(G)| = 8.

The values called w are the weights of the edges, so for example w 56 = 4,

w 31 = 2, w 15 = 2, . . .. Using them we can construct the weight matrix W
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1. Networks and their properties

and the adjacency matrix A:

W =



0 1 0 0 2 0

0 0 0 1 0 0

3 2 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 4

1 0 0 0 0 0


A =



0 1 0 0 1 0

0 0 0 1 0 0

1 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

1 0 0 0 0 0


.

The neighbourhoods of some vertices are:

ν(1) = {2, 3, 5, 6} ν(4) = {2, 4}.

We can also see some walks connecting non adjacent vertices, for example 4

can be reached by 5 with this sequence of edges:

(5, 6), (6, 1), (1, 2), (2, 4) with length m = 4.

There is also a loop for the node 1:

(1, 5), (5, 6), (6, 1) with length m = 3.

1.2 Topological network measurements

In this Section we will describe some important measurements that will

be useful to analyse and characterize a graph.

The �rst important quantity is the number of edges connecting vertices,

that is called degree. Since we are considering directed graphs we can de�ne

two di�erent kinds of degree:

De�nition 1.2.1. The in-degree k ini of a vertex i is the number of its

predecessors, equal to the number of incoming edges.

Similarly its out-degree kouti is the number of its successors, corresponding

to the number of outcoming edges:
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Topological network measurements

k
in/out
i =

∑
j

Θ

(
ωji/ij −

1

2

)
where Θ is the Heaviside function

Θ(x) =

0, x < 0

1, x > 0
.

The average in/out degree of a network is the average of k
in/out
i ∀ i :

〈
kin/out

〉
=

1

N

∑
i

k
in/out
i .

Proposition 1.2.1. 〈
kin
〉

=
〈
kout
〉

=
1

N

∑
i

ki.

In fact:〈
kin
〉

=
1

N

∑
j

∑
i

Θ

(
ωij −

1

2

)
=

1

N

∑
i

∑
j

Θ

(
ωij −

1

2

)
=
〈
kout
〉
.

We complete the study of the simple network in Example 1.1.1. showing

vertices degree:

vertex k in kout

1 2 2

2 2 1

3 0 2

4 2 1

5 1 1

6 1 1

〈
kin
〉

=
2 + 2 + 0 + 2 + 1 + 1

6
=

4

3

〈
kout
〉

=
2 + 1 + 2 + 1 + 1 + 1

6
=

4

3
.
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1. Networks and their properties

De�nition 1.2.2. Given two vertices i and j, if dmin(i,j ) is the minimum

path length that connects them, the average path length of vertex i is:

dv(i) =
1

N

N∑
j=1

dmin(i, j).

Thus the average path length d will be

d =
1

N

N∑
i=1

dv(i).

The last quantity indicates the number of steps one needs to make on

average in the graph in order to connect two randomly selected nodes.

De�nition 1.2.3. The diameter of a graph is the longest distance between

any two nodes in the network, i.e.

max
i,j

dmin(i,j ).

Hereafter we will consider only a particular kind of networks:

De�nition 1.2.4. A multi-directed Eulerian network is a directed net-

work where exists a path that passes through all the edges of the network

once and only once.

Graphs of this kind are used to describe information networks, such as

human language or DNA chains [21] [10].

Coming back to useful network measurements, we give another important

quantity:

De�nition 1.2.5. The in-strength of a vertex i is the sum of the weights

of its incoming links:

sini =
∑
j

ωji.

Similarly the out-strength of i is the sum of the weights of its outcoming

links:

souti =
∑
j

ωij.

10



Topological network measurements

In the Example 1.1.1. sin1 = 4 and sout1 = 3, sin3 = 0 and sout3 = 5.

To analyse in a more completely way the networks that we are going to

study in the following Chapters, we introduce some signi�cant measurements

that are able to describe the relations between nodes.

De�nition 1.2.6. Let s
in/out
i be the in and out-strength for the node i, and

k
in/out
i its in and out-degree. Then the in/out-selectivity is [20]:

e
in/out
i =

s
in/out
i

k
in/out
i

.

De�nition 1.2.7. A cluster is a set of connected nodes with similar values

of complex networks measurements.

De�nition 1.2.8. The cluster coe�cient:

Ci =

∑
k>j aijaikajk∑
k>j aijaik

is the fraction of triangles involving vertex i among all possible connected

sets of three nodes having i as the central vertex. Therefore 0 ≤ Ci ≤ 1.

This quantity measures the density of connections between the neighbours

of node i, i.e. the probability that the neighbours of a given vertex are

connected.

We can compute the importance of a vertex or an edge considering the

number of paths in which it is involved. Assuming that a vertex is reached

using the shortest path, this can be measured by the betweenness centrality.

De�nition 1.2.9. The betweenness centrality of a vertex or an edge u

is de�ned as

Bu =
∑

i,j |i 6=j

σ(i, u, j)

σ(i, j)

where σ(i, u, j) is the number of shortest paths between vertices i and j that

pass through u, while σ(i, j) is the total number of shortest paths between i

and j.

11



1. Networks and their properties

Betweenness centrality and cluster coe�cient have similar meanings, but

the �rst is based on a global connectivity pattern, while the latter is a local

measurement.

De�nition 1.2.10. A potential connection is an edge that could potentially

exists between two nodes. The number of potential connections is calculated

as:

PC =
N(N − 1)

2
.

If actual connections (AC) are the edges that actually exist, network den-

sity ∆ is [36]:

∆ =
actual connections

potential connections
=
AC

PC
.

Density is an indicator for the general level of connectedness of the graph.

If every node is directly connected to every other node, we have a complete

graph. Hence it is a relative measure, with values between 0 and 1.

Example 1.2.1. Let us compute the density of two graph both with three

nodes but with di�erent edges:

Figure Nodes PC AC ∆

1.2 3 3 3 1

1.3 3 3 2 2/3

Figure 1.2: Complete graph.

12



Topological network measurements

Figure 1.3: Non complete graph.

1.2.1 Degree and strength distributions

The numbers of nodes and edges in graphs are often too high to analyse

properties of every vertex or link. For that reason it could be useful to

introduce probability distributions to explore degree, strength and selectivity

behaviour in the whole network.

We compute two di�erent degree distributions:

• The fraction of vertices in the network with degree equal to k :

P1(k) =
#{j | 1 ≤ j ≤ N, degree(j) = k}

N

• The probability to �nd a vertex with degree equal to k :

P2(k) =
∑

j | degree(j)=k

p(j)

with p(j) the probability to �nd j in the graph.

P1 can be also used to compute strength distribution:

P1(s) =
#{j | 1 ≤ j ≤ N, strength(j) = s}

N

1.2.2 Entropy

Additional informations about networks are provided by the entropy of

the degree distribution [29]:

13



1. Networks and their properties

De�nition 1.2.11. The entropy of the degree distribution is de�ned as:

H = −
N−1∑
k=1

P1(k) logP1(k)

Its maximum value

Hmax = ln(N− 1)

is obtained when P1(k) =
1

N− 1
∀k (uniform degree distribution).

The minimum value

Hmin = 0

is achieved for P1(k) = {0, . . . , 0, 1, 0, . . . , 0}, i.e. when all vertices have the

same degree.

Entropy is a very important concept in all scienti�c disciplines and it

is related to how much disorder and information are present in a system.

Dealing with networks, the entropy of the degree distribution gives an average

measure of graphs heterogeneity and it is studied because this is an excellent

measure of networks resilience to random failures [29].

1.3 Scale-Free and Small-World properties

1.3.1 Scale-Free Networks

Many graphs show the Scale-Free Property, [11]:

P1(k) ≈ k−γ, with 0 < γ < 2.

This means that some vertices, called hubs, are highly connected while others

have few connections, with an insigni�cant degree.

A scale-free graph shows a high stability against perturbations to ran-

domly chosen nodes and a fragility against perturbations to highly connected

ones.

In fact the major hubs are usually followed by smaller ones, which are linked

to other nodes with an even smaller degree and so on.

14



Scale-Free and Small-World properties

Therefore if an attack occurs at random, and there are more small-degree

nodes than hubs in the network, the probability that a hub would be af-

fected is almost negligible. Even if a hub-failure takes place, the remaining

hubs will keep network connectivity.

On the other hand, if there are several hubs, and we remove them, the net-

work becomes a set of isolated graphs.

Thus, hubs are both a strength and a weakness of scale-free networks [1].

Networks Nodes Links

Hollywood Actors Appearance in

the same movies

Research Scientists Co-authorship of

collaborations papers

Protein Proteins that help to Interactions

regulatory network regulate a cell's activities among proteins

Table 1.1: Examples of Scale-Free Networks [9].

1.3.2 Small-World Networks

Watts and Strogatz noticed that many real world networks, as road maps,

food chains, networks of brain neurons, have a small average shortest path

length, but a clustering coe�cient higher than expected by random chance

[30].

This is due to the typical richness of hubs and implies that most vertices can

be reached from the others through a small number of edges: this is called

Small-World Property, [13], [30].

This idea comes from an experiment made by Milgram in 1967: he noticed

that two randomly chosen American citizens were connected by an average

of six acquaintances.

In linguistic networks the average minimum distance between two vertices is

15



1. Networks and their properties

about three, in spite of the huge number of words existing in human language.

Small-world networks are also more robust to perturbations than other

network architectures. In fact the fraction of peripheral nodes in S-W case is

higher than the fraction of hubs and so the probability of deleting an impor-

tant node is very low. Some researchers such as Barabási hypothesized that

the prevalence of S-W structures in biological systems implies an advantage

against mutation damages or viral infections [9].

1.4 Linguistic networks

Word interactions in human language can be well represented with the

help of networks: in particular, we are most interested in written texts as

books and novels. This approach to literature has been the subject of research

in the last years [3] [4] [5] [6] [20] [23].

A text T can be thought as a sequence of tokens:

T = {v1, v2, . . . , vN}, |T | = N

where v i are words and eventually punctuation composing the text.

We call dictionary the set of distinct tokens:

D = {l1, l2, . . . , ld | li, lj ∈ T, li 6= lj ∀i 6= j}, |D| = d.

So we can build a network G= (N (G), E(G)) where:

• N (G) = D;

• E(G) = {(j1, j2) | vi = lj1 and vi+1 = lj2 with 1 ≤ i ≤ N− 1};

• ω : E(G)→ R with ωij = #{(i, j ) ∈ E(G)}.

Therefore the vertices of the network are the distinct tokens and there is

an edge from i to j if the word "j" follows the word "i", according to the

natural reading order. The weight matrix W is a square matrix of size d and

w ij represents the number of times the relation between i and j appears.
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Linguistic networks

The dictionary and the edges grow while reading the text: at each time

step a new vertex and a new edge are introduced, or the weight of an existing

edge is updated. This feature makes dynamic this kind of network, i.e. the

network has a natural dynamical property induced by the order of the reading

(i.e. not invariant by shu�ing of words).

1.4.1 Topological measurements in texts

Let now see how the properties shown in the previous Sections behave in

networks created by texts.

First of all, linguistic networks are Eulerian, that means that every newly

introduced vertex will be joined to the last connected one and that to every

new in-link corresponds a constrained out-link.

Assuming that the text is circular, this implies:

sini = souti =
si
2
∀i ∈ {1, . . . , d}

If the text is not circular it needs a restriction on i, due to the fact that this

equality is not valid for the �rst and the last word in the text: v 1 has not an

incoming link and there is not an outcoming link for vN.

For what concerns selectivity, its de�nition can be rewritten using the

last equality:

e
in/out
i =

si

2k
in/out
i

.

We can also see that

e
in/out
i ≥ 1.

A word is strongly selective if it co-occurs with the same adjacent words.

If we consider the average of the degree seen in de�nition 1.2.1, it can

be read in this way: the higher the average degree, the more elaborate the

text; a lower value of this quantity could indicates the presence of many

repetitions.

From the de�nition 1.2.7 applied to texts, most clustered words have

neighbours also connected to each other; in the same way low values of C i

17



1. Networks and their properties

imply not related neighbours.

Qualitatively the clustering coe�cient tells if words are used in speci�c con-

texts: for example "big" is an adjective that can appear in many di�erent

�elds, while the noun "bistoury" belongs to medical language. For that rea-

son this quantity could be useful in authorship attribution, since it measures

the tendency of using speci�c or generic words.

It is also interesting to see the di�erence between degree and betweenness

centrality: the former shows the variety of a word neighbours, while the latter

the variety of contexts joined with it. For example:

• low degree and high Bu indicate a term with the task to connect dif-

ferent clusters and it is not particularly related to one of them.

• high degree and low Bu characterize words that form a speci�c context

but are not very in�uential nodes within the whole text.

We can also compute the two di�erent degree distributions:

• P1(k):

P1(k) =
#{j | 1 ≤ j ≤ d, degree(lj) = k}

d
;

• P2(k):

P2(k) =
∑

j | degree(lj)=k

p(lj);

and the strength distribution P1(s):

P1(s) =
#{j | 1 ≤ j ≤ d, strength(lj) = s}

d
.

We can even observe that human language graphs follow Scale-Free prop-

erty. This is due to the fact that linguistic networks are growing graphs

following the rich get richer paradigm: most connected vertices have greater

probability to receive new vertices [12].

Let us give an example showing a weighted directed linguistic network:

18



Linguistic networks

o

romeo ,

wherefore

art

thou
?

Figure 1.4: A linguistic network.
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1. Networks and their properties

Example 1.4.1. If we consider the sentence:

�O Romeo, Romeo, wherefore art thou Romeo? �

we can �nd:

• T={v 1 = O, v 2 = Romeo, v 3 = ',', v 4 = Romeo, v 5 = ',', v 6 = wherefore,

v 7 = art, v 8 = thou, v 9 = Romeo, v 10 = '?'}, N=10;

• D={l1 = O, l2 = Romeo, l3 = ',', l4 = wherefore, l5 = art, l6 = thou,

l7= '?'}, d=7;

• E(G)={(l1,l2), (l2,l3), (l3,l2), (l2,l3), (l3,l4), (l4,l5), (l5,l6), (l6,l2), (l2,l7)};

W =



0 1 0 0 0 0 0

0 0 2 0 0 0 1

0 1 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0


.

s in2 = a12 + a22 + a32 + a42 + a52 + a62 + a72 = 1 + 0 + 1 + 0 + 0 + 1 + 0 = 3.

sout2 = a21 +a22 +a23 +a24 +a25 +a26 +a27 = 0 + 0 + 2 + 0 + 0 + 0 + 1 = 3.

s in3 = a13 + a23 + a33 + a43 + a53 + a63 + a73 = 0 + 2 + 0 + 0 + 0 + 0 + 0 = 2.

sout3 = a31 +a32 +a33 +a34 +a35 +a36 +a37 = 0 + 1 + 0 + 1 + 0 + 0 + 0 = 2.
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Chapter 2

Zipf and Heaps' Law

Since in 1940s the philologist George Zipf found a certain relation be-

tween the number of words in a text and their rank in the descending order

of occurrence frequency [34] [33], many scientists tried to uncover the uni-

versal laws that govern complex systems [31] [15].

In this Chapter we will describe two important features shared by several of

them, included text creation, and closely related to evolving networks.

2.1 Zipf's Law

The most elementary statistical pattern of human language is probably

the frequency with which every di�erent word appears in a written text or a

speech.

Its �rst formulation [34] establishes that:

N(n) ≈ n−γ(2.1)

where N(n) is the number of words occurring exactly n times.

The exponent γ varies from text to text, but it is often observed that γ ≈ 2.

Later Zipf himself gave a di�erent, but equivalent, formulation of his law

[33]. We can rank words in a text in decreasing order by the number of
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2. Zipf and Heaps' Law

their occurrences, z(r), that means r = 1 for the most frequent term,

r = 2 for the second most frequent one and so on. If more words have the

same z(r), their ordering in the ranking is arbitrary.

With this operation it can be seen that z(r) is inversely proportional to a

power of the rank r :

z(r) ≈ zmaxr
−α(2.2)

where usually α ≈ 1 and zmax is the maximum value for z(r).

Equations (2.1) and (2.2) were both shown to be valid in many texts

written in existing and extinct languages, so Zipf's law can be considered as

a universal feature of human language.

Zipf explained these inverse relations using the principle of least e�ort

[33]. He believed that the two agents involved in communication, the speaker

(or writer) and the hearer (or reader), have to balance their work in the pro-

cess.

This leads to a vocabulary where few words are used very frequently, while

most of them appear few times.

In fact the speaker tends to use few words that bring di�erent meanings,

thus reducing the vocabulary. On the contrary, the hearer would prefer a

di�erent word for each meaning to better understand the message, tending

in that way to increase lexical diversi�cation.

De�nition 2.1.1. The frequency f(r) of the word of rank r is de�ned as:

f(r) =
z(r)

text total length

If we call fmax the maximum frequency value, the relation between fre-

quency and rank is equal to the second equation given for Zipf's law:

f(r) ≈ fmaxr
−α(2.3)
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Zipf's Law

As we will see even in the Chapter dealing with our results, if we plot the

(2.2) in a loglog scale, we can observe three di�erent behaviours:

• for small r -values, z(r) varies very slowly;

• for intermediate values of r, it is clear the power-law decreasing, that

is also represented in the plot by a straight line with a slope equal to

α;

• for large r, the occurrences number tends to decrease faster, creating

ladder steps, since there are many words appearing with low frequency.

Example 2.1.1. Moby Dick, by Herman Melville, is a novel composed by

215937 words and with a dictionary of 17545 terms.

Its Zipf's plot is:

Figure 2.1: Zipf's law for Moby Dick, with N=215937 d=17545.

The black continuous line represents the experimental Zipf's law, while

the blue dotted one is the power-law (2.2). Its slope, equal to α, has value

1.149.

As we said above, for intermediate r -values, we can see that the black line

follows the power-law, while for small values it is slower and for large ones it

presents ladder steps.
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2. Zipf and Heaps' Law

Zipf's power-law frequency-rank relation implies even a power-law distri-

bution of the frequency [15]:

p(f) ≈ Af−β, with β = 1 +
1

α
, A constant.(2.4)

Proof. Let us start from Zipf's equation f(r) ≈ r−α.

We can consider words with ranks between r and r + δr, where δr is a very

small value.

The number of words in the range is δr, and it can be expressed by the

probability density function:

δr = p(f(r))δf,

where

δf ≈ r−α − (r + δr)−α ≈ r−α−1δr.

Thus, we have:

p(r−α) ≈ r−α−1 ≈ (r−α)−
α+1
α .

If we call β =
α + 1

α
we obtain the distribution of the frequency.

2.2 Heaps' Law

Another experimental law that characterizes natural language processing

is Heaps' law. It predicts the vocabulary size of a document starting from

the size of the document itself, that is the number of words it contains.

We denote:

• t an instant during the text reading;

• c(t) the number of di�erent words appeared until time t.

Since a text is composed by a �nite and discrete set of tokens, we can

think that only a word is read at each time.

That means that t is equal to the total number of words seen till the instant

t itself.
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Heaps' Law

Heaps' law of 1978, [14] is a power-law relation:

c(t) ≈ tλ, with λ < 1.(2.5)

The law expresses the dependence of the total number of distinct words

on the text total length: it can be interpreted as the way in which the former

quantity grows as increasingly long parts of the text are considered.

De�nition 2.2.1. The average rate of appearance of new words in a text,

ρ, is the probability that the word at any given place in the text occurs there

for the �rst time [31].

Using this de�nition, Heaps' law expresses the decay of ρ:

ρ(t) = ρ0t
λ−1

where ρ0 is a constant lower than one.

The rate at which new words appear is not constant, and that implies the

sub-linear growth of the vocabulary given by Heaps' law.

In a loglog plot, it is possible to identify a faster growth of the dictionary

size in the �rst part of the plot, due to the fact that at the beginning of the

reading almost every word is new and has to be added to the vocabulary.

Example 2.2.1. Coming back to the novel Moby Dick, its Heaps' plot is:

The black continuous line represents the dictionary growth, while the blue

dotted one is the power-law.

We can compute the exponent λ, that has value 0.624. This is also the slope

of the blue dotted straight line.

We can notice that the experimental line follows the power-law only for large

values of t, while for t < 5000 the growth is too fast.
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2. Zipf and Heaps' Law

Figure 2.2: Heaps' law for Moby Dick, with N=215937, d=17545.

2.3 Relation between Zipf and Heaps' Expo-

nents

The statistical features described above were discovered independently,

but later their coexistence became increasingly clear. This led to analyse

their relation, using especially stochastic models [26] [18] [32], but also di-

rectly with experimental results [31].

First of all we can consider the connection that lies between the exponents,

α and λ. A proposition that comes from analytical results, [15], states:

Proposition 2.3.1. For an evolving �nite size system with a stable Zipf's

exponent:

λ =

1/α, α > 1,

1, α < 1.

Proof. Let t and c(t) be the quantities de�ned to give Heaps' law, f(r) the

frequency of the word with rank r.

r− 1 is the number of di�erent words with frequency bigger than f(r), in

fact ranking is done in decreasing frequency order. We have:

26



Relation between Zipf and Heaps' Exponents

r − 1 =

∫ fmax

f(r)

c(t)p(f ′) df ′(2.6)

where p(f ') comes from equation (2.4).

Since p(f) is a probability distribution:∫ fmax

1

p(f) df = 1.

This implies that, if β > 1 and fmax >> 1:

A =
β − 1

1− f 1−β
max

≈ β − 1

where the last approximation comes from f 1−β
max ≈ 0.

Now we can rewrite the (2.4) as:

p(f ′) = (β − 1)f ′−β.

Substituting it in (2.6), and computing the integral we �nd:

r − 1 = c(t)[f(r)1−β − f 1−β
max ].(2.7)

Using now the Zipf's law (2.3), and the relation between Zipf's and power-

law exponents, β = 1 +
1

α
, we can write the second part of the last equation

in term of fmax and α:

f(r)1−β − f 1−β
max = f 1−β

max [r−α(1−β) − 1] =

= f−1/αmax (r − 1).

Then:

r − 1 = c(t)f−1/αmax (r − 1).

Coming back to the equality (2.7), we can now obtain the estimation of

fmax :

fmax ≈ c(t)α.
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2. Zipf and Heaps' Law

Since t is the size of the considered text part, it is equal to the sum of all

words occurrences:

t =

c(t)∑
r=1

f(r)

The sum can be approximated by the integral:

≈
∫ c(t)

1

f(r) dr =
fmax(c(t)

1−α − 1)

1− α

If we substitute here the estimation of fmax, we obtain:

t =
c(t)α(c(t)1−α − 1)

1− α
(2.8)

From this equation we demonstrate the result.

In fact if α is larger than one, c(t)1−α << 1 and:

c(t) ≈ (α− 1)1/αt1/α,

while if α << 1, we have c(t)1−α >> 1 and:

c(t) ≈ (1− α)t.

Comparing these approximations with Heaps' law in (2.5), we conclude

the proof.

We can notice that the relation (2.8) obtained in the proof, is a more com-

plex and more accurate formula for Heaps' law. It indicates that the growth

of the vocabulary is not exactly described by (2.5), even if the text obeys a

perfect Zipf's law. However Heaps' law is an asymptotic approximation of

(2.8).

The Proposition 2.3.1 does not consider the case of α = 1. The limitation

α→ 1, implies:

• c(t)α ≈ c(t),

• c(t)1−α ≈ 1 + (1− α) log c(t).
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Substituting these quantities in equation (2.8) we obtain:

c(t) log c(t) = t,

that can be used to compute numerical results for �nite systems when α = 1

[15].

By the Proposition 2.3.1 it is clear that large values of α corresponds to

small values of λ and vice versa:

• if Heaps' exponent λ is large, the number of di�erent words grows

fast, and the total number of occurrences is distributed among a great

number of distinct terms. This implies that frequency grows slowly

with rank, de�ning a small α;

• if λ is small, Heaps' law has a low value of the slope and a �atter

growth. This means that there are few di�erent terms composing the

text. High frequencies are produced because of the great number of

repetitions, and this implies large values of α.

For example, in�ected languages like Italian, present many di�erent words

with the same root: they have a richer vocabulary that implies a larger value

of λ.

On the contrary, texts written in languages where a single form is used for

di�erent persons, for example English, would exhibit smaller values of the

Heaps' exponent.

2.4 Stochastic Models

Another way to study the two statistical patterns considered in this Chap-

ter is to use stochastic models. There are several of them explaining the

process of text generation, from which is possible to derive Zipf and Heaps'

laws.
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2. Zipf and Heaps' Law

2.4.1 Simon's Model

The �rst model we present was proposed by the sociologist Herbert Simon

[26]. It simulates the dynamics of text generation as a multiplicative process,

specifying how words are added to the text while it is created.

The text generation is thought as a sequence of steps. At each step t a new

word is added to the text. It begins with one word at t = 1, so at any step

the text length is t.

We call Nt(n) the number of di�erent words that appear exactly n times till

step t.

The subsequent steps have to follow two dynamical rules:

1. A new word, that has never occurred in the �rst t steps, is added at

time t+ 1 with a constant probability ρ.

2. With probability 1− ρ, the word added at step t + 1 is chosen among

the terms which have already appeared in the previous t paces. The

probability that the (t + 1)-th word has already occurred exactly n

times, is proportional to nNt(n), that is the total number of occurrences

of all the words appeared exactly n times.

The rules above can be summarized by a recursive equation for Nt(n):

Nt+1(1)−Nt(1) = ρ− 1− ρ
t

Nt(1) for n = 1;(2.9)

and

Nt+1(n)−Nt(n) =
1− ρ
t

[(n− 1)Nt(n− 1)− nNt(n)](2.10)

for n > 1.

These equations do not present a stationary solution: there is not an

asymptotic form for Nt(n) non dependent by t. However if we assume that,

for large t-values, the relation

Nt+1(n)

Nt(n)
=

(t+ 1)

t
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holds ∀n, we can write the solution:

Nt(n) = tP (n)

where P (n) makes t-independent (2.9) and (2.10).

For small values of ρ, the solution for P (n) is approximated by a power-law:

P (n) ≈ ρ

1− ρ
Γ(γ)n−γ

where γ = 1 +
1

1− ρ
, and Γ(γ) is the Gamma function.

Substituting this approximation in Nt(n), it presents the Zipf's law form

given by (2.1), or equivalently by (2.2) with α = 1− ρ < 1.

Hence, Simon's model obtains Zipf's law for asymptotically long texts,

where r has large value, while it predicts deviations for the higher ranks, in

agreement with real texts results.

2.4.2 Mandelbrot's Model

While Simon's model gives Zipf's law an important linguistic signi�cance,

Benoit Mandelbrot considered this law as a static property shared by all

random arrays of symbols [18]. He supposed to let typewriting monkeys to

produce a random text, using an alphabet of M + 1 letters including the

blank space.

Blank space appears with probability p0, while all the others M letters

occur with probability p(w) = 1− p0.

If a word is a sequence of letters between two consecutive spaces, there

are exactly M l di�erent words composed by l letters. The probability Pl of

a word of length l decreases exponentially as l increases:

Pl = p0(1− p0)l−1
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2. Zipf and Heaps' Law

Each of the M l distinct words w of length l, occurs with the same fre-

quency:

f(w, l) =
Pl
M l

=
p0
p(w)

(
1− p0
M

)l
.

We can rewrite this quantity as:

f(w, l) =

(
p0
p(w)

)
e−l[logM−log p(w)] =

=

(
p0
p(w)

)
[el logM ]−[1−

log p(w)
logM

].

(2.11)

Since we consider an alphabet composed by M letters, there are M dif-

ferent one-letter words, M + M2 terms with length no greater than two,

M + M2 + M3 terms with length no greater than three, and so on. The

general expression for the total number of di�erent words shorter than l is:

l−1∑
i=1

M i =
M(1−M l−1)

1−M
.

Words are ranked with respect to length. This means that, considering

the quantity above, one-letter words have all ranks between 1 and M, two-

letters words between M + 1 and M(1−M2)
1−M , etc.

Thus, a word w of length l has an average rank r(w, l) given by the equation:

r(w, l) =

M(1−M l−1)

1−M
+ 1 +

M(1−M l)

1−M
2

=(2.12)

= M l

[
M + 1

2(M − 1)

]
−
[
M + 1

2(M − 1)

]
.

Deriving M from the last equality, we �nd:

el logM =

[
2(M − 1)

M + 1

] [
r(w, l) +

(M + 1)

2(M − 1)

]
.(2.13)
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Combining the equations (2.11) and (2.13), Mandelbrot obtained [16] [17]:

f(w, l) =
p0
p(w)

[
2(M − 1)

(M + 1)

(
r(w, l) +

(M + 1)

2(M − 1)

)]−1− log p(w)
logM

.

Since all the quantities used in the formula are constant, apart r(w, l), it

can be written as a relation between frequency and rank, independent from

the length l :

f(w) = C1[r(w) + C2]
−α

where C1 and C2 are constant and the exponent is equal to:

α = 1 +
log(1− p0)

logM
< 1.

We can observe that α ≈ 1 if the alphabet size M is large or p0 is small.

If we do not consider C2, we �nd the power-law relation that gives Zipf's

law:

f(w) ≈ r(w)−α.

Every language has speci�c values for M and p0. For example, modern

European languages have M ≈ 25 and p0 ≈ 0.2: thus is possible to compute

C1 and C2 [31].

This model implies that even a random text shares Zipf's law, so this

feature does not seem to be useful in discerning between a part of a real text

and a random sequence of tokens. However some of its predictions are not in

agreement with real samples, for example the exponent dependence on the

alphabet size or the fact that all letters are used with the same probability.
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2.4.3 Modi�ed Simon's Model

Simon and Mandelbrot's models represent the two most important po-

sitions about the linguistic signi�cance of Zipf's law. We present another

model, derived from Simon's one that is able to catch more language prop-

erties and to explain even the relation between Heaps and Zipf's laws.

In fact, studying Simon's model, it is clear that it does not reproduce

the faster decay at low frequencies, and explains only exponents smaller than

one. However some languages, like English and Spanish, present an exponent

bigger than one. Zanette and Montemurro, in 2002, modi�ed this model by

linguistically sensible assumptions, in order to correct its lacks [32].

First modi�cation

First of all, Zanette and Montemurro observed that in Simon's model

new words are introduced with a constant rate ρ. That would imply a linear

vocabulary growth, as c(t) = ρt. However empirical results show a sub-linear

growth that can be approximated by what we call Heaps' law:

c(t) = ρtλ 0 < λ < 1.

Thus, the rate of introduction of new words is given by ρ0t
λ−1 where

ρ0 = ρλ. This means that a new parameter λ is introduced in the model. Its

value depends on author and style, explaining some di�erences of vocabulary

growth in the same language, but it depends mostly on the degree of in�ec-

tion of each language: those with many in�exions, like Latin, have higher

values of λ.

Starting from Simon's equations (2.9) and (2.10), we can replace the

discrete variables n and t by the continuous variables y and t respectively,

and Nt(n) by N(y, t).

Now we can approximate equation (2.9) by:

∂t N +
1− ρ
t

∂y (yN) = 0,(2.14)
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and, if N(1, t) = N1(t), (2.10) by:

Ṅ1 = ρ− 1− ρ
t

N1.(2.15)

Considering the new rate, and assuming ρ << 1 ∀t, the general solution
to equation (2.14), is given by:

N(y, t) =
ρ0

λ+ 1
tλy−1−λ.(2.16)

Since N(y, t) and the number of occurrences of word at rank r, z(r), are

related by r =
∫∞
z
N dy, the Zipf's exponent resulting from equation (2.16)

is α = 1/λ, that is bigger than one.

Second modi�cation

The second rule that creates Simon's model reads that the probability

that a word is repeated is proportional to the number of its previous occur-

rences, ni. Since a newly introduced word has not a clear in�uence on the

context, the probability that it is used again has to be treated apart.

Thus, the second modi�cation made by Zanette and Montemurro is the

introduction for every word, of a threshold δi, such that the probability to

see a new occurrence of word i is proportional to max{ni, δi}.
The set of thresholds is chosen to follow an exponential distribution, so we

have to specify only one parameter, the mean δ.

The e�ect of this modi�cation is that words recently introduced, thus

with ni < δi, are favoured to appear again in the text. At the same time,

the threshold does not in�uence words with ni > δi.

Analytically the thresholds δi cannot be simply incorporated in Simon's

model, but this one has to be simpli�ed.

First of all, the thresholds δi are chosen equal to their mean δ, ∀i.
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The second simpli�cation involves the events in which a word has to be chosen

among those already present in the text. There are two possibilities:

1. with probability γ, it is chosen among those with ni < δ, with uniform

probability;

2. with probability 1− γ it belongs to the set of words with ni > δ, with

probability proportional to ni.

The evolution of Nt(n) for a constant value of ρ, becomes:

Nt+1(n) = Nt(n)+

+
(1− ρ)(1− γ)

t
[(n− 1)Nt(n− 1)− nNt(n)]+

+
(1− ρ)γ

t
[Nt(n− 1)−Nt(n)].

This new equation provides a new Zipf's law expression that shows the

relation between the number of occurrences z(r) and the rank:

z(r) =
1

1− γ

[(
r

r0

)−(1−γ)/λ
− γ

]
,

where r0(t) = ρ0t
λ/(1 + λ).

This distribution presents a cut-o� at r = r0γ
−λ/(1−γ), explaining in that

way the faster decay of Zipf's law for large ranks.

This last model seems to support the interpretation of Zipf's law as an

important language structure, it shows the connection of this one with Heaps'

law and provide new information about exponents behaviour among di�erent

languages.
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Chapter 3

Italian Texts and Networks

In this Chapter we will introduce the corpus we will analyse in Chapter

4. We will consider not only the real texts, but even three modi�cations of

them, in order to extrapolate from novels much information as possible.

Moreover, thanks to a Python algorithm, novels are transformed into net-

works that can be visualized using the software Gephi (see Appendix A),

since they are saved in GEXF format. The same algorithm, both with Gephi

commands, will provide us the measures that could describe a graph and

that we will study in the next Chapter.

3.1 Database

We analyse a set of six novels, written by Italian authors in a period that

range from 1881 to 1923. We choose these six books because of their impor-

tance in Italian Literature and because the Italian language used to write

them is quite the same we speak today.

Moreover, the fact they were published in a period of 40 years allows us to

compare them and their properties, as the grammar, the syntax and the se-

mantic would have not changed too much during this period.
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In Table 3.1, a list of the considered novels:

Title Author Year of publication

I Malavoglia Giovanni Verga 1881

Pinocchio Carlo Collodi 1881

I Pirati della Malesia Emilio Salgari 1896

Il fu Mattia Pascal Luigi Pirandello 1904

Canne al Vento Grazia Deledda 1913

La Coscienza di Zeno Italo Svevo 1923

Table 3.1: The books composing our corpus.

3.2 Modeling texts as networks

To better understand the importance of the measures we introduced in

Chapter 1, we compute and observe them not only in real texts but even in

those obtained modifying them.

3.2.1 Normal Texts

Initially we apply two pre-processing steps:

1. capital letters are transformed in their correspondent lowercase ones.

This operation, performed by the Python command

string=string.lower

avoids to consider di�erent two equal words if one of them comes after

a point.

2. punctuation, including the "text return", is removed from the novels

in order to study only words occurrences and co-occurrences;
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The steps described above produce the �rst kind of text we have studied,

that simply consider the original text without punctuation. We call it Nor-

mal.

Example 3.2.1. Let us see how a sentence extracted from one of our texts

becomes after the pre-processing steps.

From Pinocchio, by Carlo Collodi:

Real text Normal text

Cammina, cammina, cammina, cammina cammina cammina

alla �ne sul far della sera alla �ne sul far della sera

arrivarono stanchi morti arrivarono stanchi morti

all'osteria del Gambero Rosso. all osteria del gambero rosso

- Fermiamoci un po' qui, - fermiamoci un po qui

disse la Volpe, - tanto per disse la volpe tanto per

mangiare un boccone e per mangiare un boccone e per

riposarci qualche ora. riposarci qualche ora

3.2.2 No Stopwords Texts

When we read a novel, a scienti�c work or any di�erent kind of text,

we can notice that there are words appearing very often and carrying little

semantic content. These terms such as articles, prepositions and adverbs are

called stopwords.

There are pre-compiled lists of such words for some languages, including Ital-

ian. In addition to the grammar particles already mentioned, in Italian lists

we can �nd the complete conjugations of verbs "essere" (to be), "avere" (to

have), "fare" (to make), "stare" (to stay), personal pronouns, possessive ad-

jectives, etc.

Moreover we have to complete the lists adding female and plural forms of all

the terms, since they contain only male singular forms.
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3. Italian Texts and Networks

The complete list we have used in our analysis is reported in Appendix B.

We obtain the second case by removing stopwords from Normal texts:

the outputs of this action are called No Stopwords Texts. For simplicity

we will call them using the abbreviation NSW.

This step allows us to consider only words with a signi�cant semantic

content and their interrelations. In our Python algorithm, it is performed by

a function:

def no_stw(text):

count=0

inp= open('Italian_stopwordss1.txt','r')

stw=inp.read()

while count<2:

i=0

j=0

while i<len(stw):

j=i

while (stw[i]!='\n'):

i=i+1

f=stw[j:i]

text=text.replace(f,' ')

i=i+1

f=' '

count=count+1

inp.close()

return text

The function takes a text as input, and gives the text without stopwords

as output. It scans the input two times to be sure to remove all the terms

in the list: while reading the texts, if a stopword is found, it is replaced by a
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blank space, " ".

Example 3.2.2. The NSW version of the sentence from Pinocchio already

used in example 3.2.1 is:

Real text NSW text

Cammina, cammina, cammina, cammina cammina cammina

alla �ne sul far della sera far sera

arrivarono stanchi morti arrivarono stanchi morti

all'osteria del Gambero Rosso. osteria gambero rosso

- Fermiamoci un po' qui, - fermiamoci po

disse la Volpe, - tanto per volpe

mangiare un boccone e per mangiare boccone

riposarci qualche ora. riposarci qualche ora

3.2.3 Reduced Texts

Another way to simplify a novel is removing from it all terms having only

an occurrence in the whole text.

This operation is done again with the intent to extract the words which con-

vey more signi�cance. In fact if a term is present only once, probably it is

not important within the text and it could be removed without altering the

global sense of the considered book.

Applying this step after the pre-processing ones provides usReduced Texts,

that are Normal Texts without words appearing only once.

Example 3.2.3. The Reduced sentence from the extract in Example 3.2.1

is simply:

"cammina cammina cammina un per un per".

In fact those are the only three words which appear more than once.
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3. Italian Texts and Networks

3.2.4 Shu�ed Texts

A novel is not merely a collection of words. It is also a set of grammatical

and syntactic rules, expressions proper to the writer and interaction between

words, essential to create the text structure, style and sense.

If we take a novel and randomly change the order in which terms appear, we

get a new text having the same original dictionary but not presenting any

grammatical feature or any sense.

We can built this new text model, called Shu�ed, by the Python command

random.shuffle(text).

Many di�erent versions of the novel can be built using this instruction, and

we study them to catch measures and laws able to distinguish a masterpiece

from a casual words sequence.

Example 3.2.4. A shu�ed version of the extract from Pinocchio is:

Real text Shu�ed text

Cammina, cammina, cammina, tanto �ne stanchi ora

alla �ne sul far della sera riposarci un arrivarono

arrivarono stanchi morti mangiare qualche gambero

all'osteria del Gambero Rosso. osteria cammina fermiamoci

- Fermiamoci un po' qui, - alla la volpe po un

disse la Volpe, - tanto per e della del rosso cammina

mangiare un boccone e per disse cammina all sera sul qui

riposarci qualche ora. morti boccone far per per

3.2.5 Network formation

After transforming original novels in the four text models mentioned

above, we build the networks as seen in Chapter 1. It is especially important
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to remind that nodes are all the distinct words composing texts and that

links are created between adjacent vertices.

Numerically, the core of this part consists of three steps:

• to form the dictionary;

• to form the weight matrix;

• to create the Gephi �le, in GEXF format, which help to visualize the

graph.

The dictionary is built scanning the text and saving every word never

seen before. The function doing this is:

def create_diz(text):

DIZ=[]

DIZ=DIZ+[text[0]]

for Parola in text:

count=0

for k in range(len(DIZ)) :

if Parola==DIZ[k] :

count=count+1

if count==0 :

DIZ=DIZ+[Parola]

return DIZ

The matrix and the GEXF �le are built at the same time in a unique

Python function, given in Appendix C. In fact they both need to be updated

while reading the text, to catch links between nodes and the exact moments

these are created.

Since literary networks are dynamic, the GEXF �le representing the novel

not only contains nodes and edges, but it is written to show step by step what

happens to them: at every time t, if we read a new word, a vertex is created;
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3. Italian Texts and Networks

otherwise a new link is formed.

Example 3.2.5. Let us consider the �rst chapter of I Pirati della Malesia,

by Emilio Salgari. The graph of its Normal version is composed by 919 nodes

and 1844 edges, and the total number of words in the text is 2071.

At time 10, i.e. after reading 10 words, the chapter looks like Figure 3.1.

Then the network grows, and at times 30, 60, 250, 1000, 1750, 2071 we can

see what is shown in Figures 3.2, 3.3 and 3.4.

1

il

naufragio

della

young
india

mastro

billdove

siamo

Figure 3.1: First chapter of I Pirati della Malesia, t= 10.
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(a) t=30 (b) t=60

Figure 3.2: First chapter of I Pirati della Malesia, t= 30 and t= 60.

(a) t= 250 (b) t= 1000

Figure 3.3: First chapter of I Pirati della Malesia, t= 250 and t= 1000.
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(a) t= 1750 (b) t= 2071

Figure 3.4: First chapter of I Pirati della Malesia, t= 1750 and t= 2071.
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Chapter 4

Results and Discussion

In this Chapter we will explore how the topological measurements and

the statistical patterns that we studied in the previous Chapters behave in

the texts composing our corpus.

Each measure will be computed in Normal, Shu�ed, No Stopwords and Re-

duced versions of every text, and then these values and their distributions

will be analysed, in order to understand which measurements are able to

recognise the real text among the others.

Measurements, laws, average quantities and distributions that could describe

a graph are provided by the same algorithm we used in Chapter 3, and by

Gephi commands.

First of all, we can consider the reduction in text length and in dictio-

nary size obtained when novels are transformed in one of the di�erent versions

above. In Tables 4.1 and 4.2 we can read the results.

It can be noticed that Normal and Shu�ed texts share the same values.

In fact the latter are created only changing words order.

For what concerns No Stopwords and Reduced novels, they both reduce

text and dictionary lengths:
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Title Normal NSW Shu�ed Reduced

I Malavoglia 88308 40479 88308 84599

Pinocchio 40574 19170 40574 37287

I Pirati della Malesia 59183 30864 59183 54762

Il fu Mattia Pascal 76178 36086 76178 70012

Canne al Vento 60508 29594 60508 56249

La Coscienza di Zeno 145475 65767 145475 138356

Table 4.1: Text length.

Title Normal NSW Shu�ed Reduced

I Malavoglia 7631 7285 7631 3922

Pinocchio 5996 5688 5996 2709

I Pirati della Malesia 8398 8047 8398 3977

Il fu Mattia Pascal 10942 10598 10942 4776

Canne al Vento 8115 7796 8115 3856

La Coscienza di Zeno 13820 13464 13820 6701

Table 4.2: Dictionary size.

• NSW sizes are approximately the half of their relative Normal ones,

while lengths of Reduced texts decrease but not so much. This implies

that stopwords compose a great part of novels, and that words are

usually repeated more than once.

• Stopwords deletion does not vary too much the dictionaries size, while

Reduced vocabularies are smaller than the others. We can notice that,

in the case of Reduced texts, the reduction in dictionaries length is

exactly the same in texts length.
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4.1 Frequency

We can now explore the frequency of the words composing our texts. In

this Section, with word frequency we mean the number of times a word ap-

pears in the novel.

Let us start with a table that gives texts average frequency, Table 4.3.

Title Normal NSW Shu�ed Reduced

I Malavoglia 11.572 5.556 11.572 21.570

Pinocchio 6.767 3.370 6.767 13.764

I Pirati della Malesia 7.047 3.835 7.047 13.770

Il fu Mattia Pascal 6.962 3.405 6.962 14.659

Canne al Vento 7.456 3.796 7.456 14.587

La Coscienza di Zeno 10.526 4.885 10.526 20.647

Table 4.3: Average frequency.

Normal and Shu�ed texts have the same average frequency, since they

are composed exactly of the same words.

NSW novels have a lower frequency, above the half. In fact we delete stop-

words that, as shown in the following tables, are very frequent, thus the

average decreases.

Reduced values, on the contrary, are higher, quite twice of Normal values.

This is obvious, since less frequent words are deleted and then the average

increases.

It is also interesting seeing how most frequent words change as we trans-

form the texts. We computed the �ve most frequent words for every novel,

and for all the versions.

Observing Tables 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9, we can extract some

information.
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I Malavoglia 1 2 3 4 5

Normal e che la a di

NSW ntoni don casa padron mena

Shu�ed e che la a di

Reduced e che la a di

Table 4.4: Five most frequent words, I Malavoglia.

Pinocchio 1 2 3 4 5

Normal e di che a il

NSW pinocchio burattino povero sempre casa

Shu�ed e di che a il

Reduced e di che a il

Table 4.5: Five most frequent words, Pinocchio.

I Pirati della Malesia 1 2 3 4 5

Normal di e il che la

NSW yanez sandokan rajah tigre kammamuri

Shu�ed di e il che la

Reduced di e il che la

Table 4.6: Five most frequent words, I Pirati della Malesia.

Il fu Mattia Pascal 1 2 3 4 5

Normal e di che la a

NSW adriana casa via signor forse

Shu�ed e di che la a

Reduced e di che la a

Table 4.7: Five most frequent words, Il fu Mattia Pascal.
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Canne al Vento 1 2 3 4 5

Normal e di la il che

NSW e�x donna noemi don giacinto

Shu�ed e di la il che

Reduced e di la il che

Table 4.8: Five most frequent words, Canne al Vento.

La Coscienza di Zeno 1 2 3 4 5

Normal di che e non la

NSW essa guido ada augusta prima

Shu�ed di che e non la

Reduced di che e non la

Table 4.9: Five most frequent words, La Coscienza di Zeno.

• Normal, Shu�ed and Reduced texts present the same most frequent

words, and they all are stopwords. We can notice that "e", "che" and

"di" always appear in the lists. The other two words are de�nite articles

or the preposition "a".

A di�erent word is present in La Coscienza di Zeno: it is "non". This

presence can be explained by the role this word has in the novel, that

is built on denial.

• Regarding Shu�ed versions, the equality of their lists with Normal ones

can be explained by the fact that shu�ing only reorder words, so the

number of times they appear does not change.

• At the same way, since in Reduced texts stopwords are not deleted,

they maintain their frequency. Thus, the most frequent words would

be the same as in Normal texts.

• A di�erent behaviour can be notice for NSW novels. In fact, most

frequent words cannot be the ones of the other cases, since here they
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do not appear.

It is interesting to study the words we �nd in this last case: often they are

important terms for the novels. In fact they often correspond to characters'

names, for example "pinocchio", or "yanez" and "sandokan", or "noemi".

Moreover in those lists we can read words carrying with them some important

signi�cance of the novel they belong to. For example, in Il fu Mattia Pascal

the �fth most frequent word is "forse", that can symbolize the uncertainty

typical of this book. At the same way in Pinocchio we can �nd "povero"

and "casa", representing respectively the condition in which characters live

and the place from which Pinocchio gets away and at the same time wants

to come back to.

We can continue the analysis of our Italian corpus with the study of the

two statistical laws presented in Chapter 2.

4.2 Zipf's Law

Let us now consider Zipf's law, that is the relation between frequency

and rank. Since in the previous Section we called frequency the number of

occurrences, we will use the Zipf's formula 2.2.

We �nd that all the texts in our corpus share this statistical pattern.

We present the law obtained for I pirati della Malesia in Figure 4.1. The

loglog plot contains both the experimental law and the power-law that ap-

proximates it.

It is interesting to see that not only Normal texts, but even the other

versions follow the Zipf's law.

Clearly, it is valid in Shu�ed texts. In fact, as we seen in the previous

Section, frequency is not altered by shu�ing process. The result for I Pirati

della Malesia is shown in Figure 4.2.

52



Zipf's Law

Figure 4.1: Zipf's law in I Pirati della Malesia, Normal text.

Figure 4.2: Zipf's law in I Pirati della Malesia, Shu�ed text.
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Concerning NSW and Reduced I Pirati della Malesia versions, we can

see their Zipf's law in Figure 4.3 and 4.4.

Figure 4.3: Zipf's law in I Pirati della Malesia, NSW text.

Figure 4.4: Zipf's law in I Pirati della Malesia, Reduced text.
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Now we can explore the Zipf's exponents in our corpus, that are the ex-

ponents of the power-laws.

In Table 4.10 we can �nd the results, and extract by them some informa-

tion.

Title Normal NSW Shu�ed Reduced

I Malavoglia 1.216 1.044 1.216 1.196

Pinocchio 1.037 0.850 1.037 1.047

I Pirati della Malesia 1.040 0.889 1.040 1.038

Il fu Mattia Pascal 1.005 0.849 1.005 1.050

Canne al Vento 1.055 0.892 1.055 1.052

La Coscienza di Zeno 1.126 0.985 1.126 1.132

Table 4.10: Zipf's Exponents

• First of all we can notice that all the values in the table are close to

one, in agreement with what we said in Chapter 2.

• Shu�ed texts not only follow Zipf's law, but we can add that their

power-law exponents are exactly the same of Normal power-law expo-

nents, for the same reason explained above.

• NSW Zipf's exponent, on the contrary, is always lower than the oth-

ers, and that can be explained with the small values of the average

frequency.

• Reduced texts present two di�erent behaviours. The exponent value

computed in this case is always very close to the value of Normal case,

but sometimes it is lower and sometimes higher, even if Reduced aver-

age frequency is always larger than Normal one.
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Since large values of the exponent mean the presence of repetitions in the

text, NSW smaller values imply that they are less repetitive. This is obvious,

since stopwords are the most frequent words.

At the same time, when Reduced texts have an higher exponent, it means

that deleting once-appearing words we increase the repetitions, while when

the exponent is lower this operation implies a considerable presence of once-

appearing terms in the text.

4.3 Heaps' Law

The second statistical law that we have studied in Chapter 2, is Heaps'

law, described by equation 2.5. We remind that it gives the growth of the

dictionary while reading a text. As we did for Zipf's law, we plot both the

experimental results and the power-law that approximates Heaps' law in the

tail.

In Figure 4.5 we can see this law for the novel Pinocchio.

Figure 4.5: Heaps' law in Pinocchio, Normal text.
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Again we can explore what happens when we shu�e the words composing

the text. In Figure 4.6, it is presented Heaps' law in Shu�ed Pinocchio.

Figure 4.6: Heaps' law in Pinocchio, Shu�ed text.

Even in texts without stopwords and in Reduced ones Heaps' law can be

seen. In Figures 4.7 and 4.8 we show the plot obtained for Pinocchio.

In Reduced version we can notice a little shoulder at the end of the tail. It

seems that the growth in the dictionary stabilizes at the end of the reading,

while in Normal, Shu�ed and NSW texts the growth does not stop.

We can now study the Heaps' exponent, λ, in our corpus. In fact, all

the six Italian novels that we are analysing present this statistical pattern.

The exponents are the slopes of the straight lines de�ning the approximating

power-laws.

In Table 4.11 we collect the results.

First, we notice that all the exponents are lower than 1, in agreement
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Figure 4.7: Heaps' law in Pinocchio, NSW text.

Figure 4.8: Heaps' law in Pinocchio, Reduced text.
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Title Normal NSW Shu�ed Reduced

I Malavoglia 0.572 0.629 0.589 0.469

Pinocchio 0.709 0.779 0.668 0.555

I Pirati della Malesia 0.670 0.729 0.665 0.536

Il fu Mattia Pascal 0.698 0.751 0.684 0.547

Canne al Vento 0.671 0.723 0.658 0.528

La Coscienza di Zeno 0.638 0.683 0.631 0.499

Table 4.11: Heaps' exponents.

with what we said in Chapter 2.

In contrast to what happens for Zipf's law, Heaps' law changes in Shu�ed

text. In fact, while the former accounts �xed quantities, the latter studies

a dynamic process that is altered by shu�ing. This implies that Shu�ed

Heaps' exponent would be di�erent from Normal one.

Moreover, it is not possible to determine if Shu�ed exponent is larger than

Normal one or vice versa. In fact it depends on how the words are sorted: if

there are many repetitions at the beginning of the text, later the dictionary

would grow faster, causing an higher exponent. Otherwise, if many di�erent

terms appear in the �rs part of the novel, then the Heaps' exponent would

be lower.

We can observe that NSW exponent is always greater than Normal one.

This implies that the NSW dictionary increases faster. In fact stopwords are

often repeated, and appear among the other terms, lengthening the time of

appearance of new words.

On the contrary, Reduced novels present lower values than real texts. The

dictionary of that kind of text, in fact, contains stopwords and terms that

appear more than once, favouring in such a way repetitions and slowing its

own growth.
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We can now consider the topological measurements seen in Chapter 1 and

analyse their behaviour in our Italian corpus.

4.4 Degree

Concerning the degree, we study both the -in and the -out versions of

this quantity.

Let us start with Table 4.12 and Table 4.13. They give respectively the av-

erage in-degree, < kin >, and the average out-degree, < kout >.

Title Normal NSW Shu�ed Reduced

I Malavoglia 5.923 4.672 8.472 10.215

Pinocchio 4.239 3.011 5.489 7.748

I Pirati della Malesia 4.449 3.358 5.806 7.957

Il fu Mattia Pascal 4.526 3.166 5.559 8.643

Canne al Vento 4.767 3.467 5.988 8.573

La Coscienza di Zeno 5.766 4.487 7.520 10.398

Table 4.12: Average in-degree, < kin >.

Title Normal NSW Shu�ed Reduced

I Malavoglia 5.923 4.672 8.472 10.215

Pinocchio 4.239 3.011 5.489 7.748

I Pirati della Malesia 4.449 3.358 5.806 7.957

Il fu Mattia Pascal 4.526 3.166 5.559 8.643

Canne al Vento 4.767 3.467 5.988 8.573

La Coscienza di Zeno 5.766 4.487 7.520 10.398

Table 4.13: Average out-degree, < kout >.
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As we demonstrated in Proposition 1.2.1, in linguistic networks, < kout >

is equal to < kin >.

It is clear that, starting from Normal texts, degree increases in Shu�ed

and Reduced versions, while it decreases erasing stopwords.

In fact, shu�ing process deletes semantic connections, increasing the number

of di�erent neighbours for every nodes. The same e�ect is obtained with the

removal of words appearing only once.

NSW texts, on the contrary, have lower degree on average because stopwords

are neighbours of quite all other terms.

We can explore the maximum values of out and in-degree and the words

presenting them, in order to understand which terms are hubs of our net-

works. In Table 4.14 and Table 4.15 we collect those words and their degree.

Title Normal NSW Shu�ed Reduced

I Malavoglia e, 1547 don, 322 e, 1209 e, 1349

Pinocchio e, 1061 pinocchio, 287 e, 811 e, 828

I Pirati della Malesia e, 966 sandokan, 231 di, 920 e, 860

Il fu Mattia Pascal e, 1455 adriana, 136 e, 1022 e, 1193

Canne al Vento e, 1339 e�x, 402 e, 965 e, 1159

La Coscienza di Zeno di, 2045 guido, 445 di, 1742 di, 1769

Table 4.14: Maximum In-Degree Words.

We can notice that, apart in NSW case, the hubs are stopwords, "e"

and "di", that are the conjunction and the preposition most used in Italian

language. In all cases hubs belong to the list of the most frequent words,

and are the �rst or the second element of the list. It is obvious, since words

occurring many times need also many links.
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Title Normal NSW Shu�ed Reduced

I Malavoglia e, 811 ntoni, 370 e, 1189 e, 681

Pinocchio di, 646 pinocchio, 316 e, 791 di, 513

I Pirati della Malesia di, 749 yanez, 287 di, 880 di, 632

Il fu Mattia Pascal e, 816 adriana, 152 e, 1027 di, 670

Canne al Vento di, 760 e�x, 354 e, 986 di, 643

La Coscienza di Zeno di, 1517 guido, 446 di, 1721 di, 1284

Table 4.15: Maximum Out-Degree Words.

Moreover, when Normal, Shu�ed and Reduced versions share the same

maximum in- (or out-) degree word, we can notice that:

kinSh < kinRed < kinNormal

and

koutRed < koutNormal < koutSh .

It is obvious that Reduced maximum is lower than Normal maximum,

since we delete links. If we consider even NSW maximum, this is the lowest

among all: in fact removing stopwords produces a network with few connec-

tions.

4.4.1 Degree Distribution P1(k)

We can now compare the distributions of kin and kout, showing the P1(k)

graph for the novel I Malavoglia in Figure 4.9 .

We can notice that the trend of the two quantities is the same, and this

is true for every text in our corpus.

In fact:

• P1(k
out): there are many words with a low value of kout. This means

that they are followed by a small number of other tokens. Those words
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Figure 4.9: Degree distribution P1(k) in I Malavoglia, Normal text.

have low frequencies: they are a large number but they appear few

times. Then, P1(k
out) decreases: there are few words with a high value

of kout, in fact they are the most frequent ones, implying a large number

of di�erent terms following them;

• P1(k
in): at the same way there are many words with a small number of

preceding vertices. If a word appears few times, it has a low kin, while

when frequency increases, even the number of preceding terms grows.

However there are few high-frequency words.

Moreover, the degree distribution P1(k) presents a power-law decrease,

implying the Scale-Free Property for Italian literary texts. In Figures 4.10

and 4.11 we can observe the trend of in-degree and out-degree for I Malavoglia.

The exponents of the power-law approximating the degree distributions are

very close:

kin : γ = 1.086 kout : γ = 1.227.
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Figure 4.10: In-degree distribution P1(k) in I Malavoglia.

Figure 4.11: Out-degree distribution P1(k) in I Malavoglia.
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The same behaviour can be observed in NSW, Shu�ed and Reduced texts,

as shown in Figures 4.12, 4.13, 4.14, that refer again to I Malavoglia.

Figure 4.12: Degree distribution P1(k) in I Malavoglia, NSW.

Figure 4.13: Degree distribution P1(k) in I Malavoglia, Shu�ed.
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Figure 4.14: Degree distribution P1(k) in I Malavoglia, Reduced.

We can even compare the degree distribution of Normal and Shu�ed

texts.

In Figure 4.15 we can see the result obtained for the in-degree of La Co-

scienza di Zeno, but we �nd the same trend in all the other novels and even

when dealing with out-degree.

The degree distribution is not altered by the shu�ing process: even if it

redistributes the numbers that occupy the rows of the weight matrix, chang-

ing the vertices degree, it preserves the average degree distribution.

This means that degree cannot distinguish between a real novel and a random

sequence of words.

4.4.2 Conditioned Zipf's law and Degree Distribution

We can demonstrate the invariance of degree distribution in Shu�ed

texts, as we saw in Figure 4.15, using Zipf's law.

We build a particular version of this structure:
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Figure 4.15: Degree distribution P1(k) in La Coscienza di Zeno: Normal and

Shu�ed.

1. We can consider the most frequent words for every text in our corpus,

as we did in Section 4.1;

2. then, for every word in that list, we collect the terms following it in the

considered text;

3. we compute the relation between frequency and rank in those set of

words.

In such a way we can see that even the words near another term fol-

low Zipf's law, and we call the result Conditioned Zipf's law, since it is

achieved by �xing tokens.

Since in Figure 4.15 we present degree distribution for La Coscienza di

Zeno, both for Normal and Shu�ed versions, we can now see what happens
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for its �ve most frequent words.

We remind that those are:

1. di;

2. che;

3. e;

4. non;

5. la.

Let us now show Conditioned Zipf's law for those �ve terms. First of

all, in Table 4.16 we display the Zipf's exponents in Normal and Shu�ed

versions, in order to see their relation.

"di" "che" "e" "non" "la"

Normal 1.507 1.921 1.800 1.798 1.340

Shu�ed 1.661 1.650 1.698 1.689 1.723

Table 4.16: Conditioned Zipf's exponents for La Coscienza di Zeno.

The exponents seem to be very close, and that is better shown in Figure

4.16. We plot the results obtained for the Normal and the Shu�ed texts and

their respective power-laws, represented as straight lines.

We can observe that Zipf's law is respected for each word. Since the terms

following them are less than those composing the whole text, the trend is not

so clear as for classic Zipf's law.

However, the tail is again a power-law even in the Conditioned Zipf's law.

Obserivng Figure 4.16 and Table 4.16 we notice that Conditioned Zipf's

law is valid both in Normal and in Shu�ed texts, and that they have a sim-

ilar trend. Moreover Conditioned Zipf's law is valid not only for the most
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(a) Fixed Word: "di".

(b) Fixed Word: "che".
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(c) Fixed Word: "e".

(d) Fixed Word: "non".
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(e) Fixed Word: "la".

Figure 4.16: Conditioned Zipf's Law, La Coscienza di Zeno.

frequent word, but for more terms, shaping the whole text. Since frequencies

do not change with shu�ing, and, �xing a word, neither the behaviour of its

neighbours changes, then degree would have the same distribution in Normal

and Shu�ed texts.

To complete the study, in Table 4.17 we show the Conditioned Zipf's

exponents obtained for the other texts, in order to explain that the result is

valid throughout the corpus.

Table 4.17: Conditioned Zipf's exponents.

(a) Malavoglia.

"e" "che" "la" "a" "di"

Normal 1.760 1.815 1.352 1.559 1.543

Shu�ed 1.572 1.589 1.591 1.581 1.620
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(b) Pinocchio.

"e" "di" "che" "a" "il"

Normal 1.680 1.374 1.718 1.450 1.241

Shu�ed 1.515 1.559 1.570 1.582 1.605

(c) I Pirati della Malesia.

"di" "e" "il" "che" "a"

Normal 1.419 1.724 1.293 1.766 1.255

Shu�ed 1.570 1.589 1.632 1.634 1.634

(d) Canne al Vento.

"e" "di" "la" "il" "che"

Normal 1.625 1.437 1.237 1.192 1.792

Shu�ed 1.548 1.600 1.635 1.651 1.664

(e) Il fu Mattia Pascal.

"e" "di" "che" "la" "a"

Normal 1.763 1.552 1.834 1.296 1.630

Shu�ed 1.642 1.677 1.638 1.683 1.694

4.4.3 Degree Distribution P2(k)

Let us consider now the degree distribution P2(k), that describes the

probability to �nd a word with degree equal to k. Its behaviour is di�erent

from that of P1(k), as shown in Figure 4.17.

We can explain this trend studying what happens for di�erent values of

degree.

1. When we calculate the distribution for small k-values, we obtain high

P2(k)-values. In fact, there are many words with a low degree, thus
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(a) I Malavoglia, Normal text.

(b) Il fu Mattia Pascal : Normal and Shu�ed.

Figure 4.17: Degree distribution P2(k).
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their sum is high, even if they appear few times.

2. For high k-values, large P2(k)-values are due to the fact that we sum

a small number of very frequent words. In fact, to have high degree,

words need many distinct neighbours, thus they have to appear often.

This implies results similar to those obtained in the case above.

3. At last, for every intermediate k-values, the number of words with

degree equal to k is small while their frequency is intermediate. Thus,

the summation is done with a small number of words whose frequency

is not enough to reach high P2(k)-values.

As in the case of P1(k), even P2(k) has the same behaviour in Normal,

Shu�ed, NSW and Reduced texts. Thus, neither this distribution can dis-

tinguish between real texts and their alterations.

4.5 Entropy

We can now explore the entropy of degree distribution, and consider if it

can distinguish masterpieces from their modi�cations. We can give the values

of out-entropy and in-entropy, in Tables 4.18 and 4.19, and then studying

them.

Title Normal NSW Shu�ed Reduced

I Malavoglia 1.806 1.932 2.186 2.529

Pinocchio 1.566 1.577 1.855 2.367

I Pirati della Malesia 1.632 1.687 1.909 2.335

Il fu Mattia Pascal 1.561 1.595 1.775 2.341

Canne al Vento 1.657 1.718 1.928 2.363

La Coscienza di Zeno 1.782 1.874 2.020 2.503

Table 4.18: In-entropy.

74



Entropy

Title Normal NSW Shu�ed Reduced

I Malavoglia 2.009 1.939 2.190 2.755

Pinocchio 1.686 1.580 1.858 2.494

I Pirati della Malesia 1.760 1.683 1.908 2.489

Il fu Mattia Pascal 1.677 1.592 1.775 2.456

Canne al Vento 1.812 1.725 1.927 2.507

La Coscienza di Zeno 1.902 1.880 2.019 2.643

Table 4.19: Out-entropy.

First of all we can notice that in Normal texts, out-entropy is larger than

in-entropy. This can be explained with the help of degree distributions. In

fact, looking at Figure 4.9, we can see that kout has values a little higher than

kin.

Since entropy describes information and disorder of a network, we can

deduce that:

• Shu�ed texts bring less information, in fact both in-entropy and out-

entropy are higher than in Normal case. This is in agreement with the

de�nition of shu�ing, that messes the terms of real novels;

• Reduced texts have higher entropies than Normal ones. This implies

that removing once-appearing words deletes information and brings

more disorder in texts. Actually, even if a word appears only once, it

could be important to better understand a sentence, and moreover its

removing produces a lack in the text structure, explaining in such way

the disorder;

• No Stopwords texts present di�erent behaviours. In-entropy has a

NSW-value higher than Normal one, while out-entropy decreases with

stopwords deletion. This means that in-degree carries more informa-

tion in Normal texts than in NSW ones. On the contrary, out-degree
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brings more information in the latter case.

Thus, concerning in-entropy:

HNormal < HNSW < HSh < HRed,

while for out-entropy:

HNSW < HNormal < HSh < HRed.

4.6 Strength

We can now study another important measure in Network Theory: strength.

First of all we can consider the average strength in the four kinds of text that

we are analysing.

In this Section, the strength of a vertex is given by:

si = sini + souti ∀i = 1 . . . N

where sini is the vertex in-strength and souti its out-strength.

The results are in Table 4.20.

Title Normal NSW Shu�ed Reduced

I Malavoglia 23.144 11.113 23.144 43.140

Pinocchio 13.533 6.740 13.533 27.528

I Pirati della Malesia 14.094 7.671 14.094 27.539

Il fu Mattia Pascal 13.924 6.810 13.924 29.318

Canne al Vento 14.912 7.592 14.912 29.174

La Coscienza di Zeno 21.053 9.769 21.053 41.294

Table 4.20: Average Strength.

If we compare Table 4.20 with Table 4.3 that contains average frequen-

cies, we can observe that strength is always twice the frequency. In fact

76



Selectivity

frequency counts words occurrences, while strength is the number of con-

nections present in the text. Clearly, every node as an in-coming and an

out-coming link, thus for every occurrence two links are added.

Observing the results, we can also notice that shu�ing preserves strength.

In fact it is computed as the sum of the elements in W matrix, and shu�ing

only redistributes the numbers in the matrix rows, thus preserving the sum-

mation.

The NSW texts present a lower strength, about the half, since stopwords

are neighbours of many words. Deleting them, the remaining terms lose lots

of connections.

In Reduced texts, strength becomes higher. This can be explained by

the fact that, without words appearing only once, the others have an higher

probability to have di�erent adjacent terms.

4.6.1 Strength Distribution P1(s)

Not only the average strength is preserved with shu�ing, but even its

distribution, as shown in Figure 4.18 for Canne al Vento case.

Again, since this is valid for the whole corpus, it means that neither strength

is able to distinguish between a masterpiece and a casual sequence of tokens.

At the same way, the power-law trend of the distribution is maintained

even in Reduced and NSW cases, as shown in Figure 4.19.

4.7 Selectivity

Selectivity has been created to distinguish shu�ed texts from real ones.

It can capture the e�ective distribution of numbers in the weight matrix.
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Figure 4.18: Strength distribution in Canne al Vento, Normal and Shu�ed

text.

(a) NSW text.
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(b) Reduced text.

Figure 4.19: Strength distribution in Canne al Vento.

In fact, words with high values of this quantity, are very selective in the

choice of their neighbours, usually forming morphologic structures.

On the contrary, tokens with small selectivity are terms that appear just few

times in the text, or terms connecting with a di�erent token each time.

For example, in Normal Pinocchio, the most out-selective word is "c",

with eoutc = 21. In fact it is always followed by the words "è", thus creating

the structure "c' è", used very often in Italian language.

Studying minimum values of selectivity, we have:

min
i
eouti = min

i
eini = 1.

This means that:

k
in/out
j = s

in/out
j ∀ j : e

in/out
j = 1.
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This implies that, in this cases, the weight of the links involving j is al-

ways equal to one: these words connect with a di�erent term each time they

appear.

Regarding selectivity maximum value, it changes with text transforma-

tions.

In Tables 4.21 and 4.22, we can read the results concerning out-selectivity

and try to achieve some observations.

Title Normal NSW Shu�ed Reduced

I Malavoglia 83.25 83.25 2.93 83.25

Pinocchio 21.0 9.0 2.23 21.0

I Pirati della Malesia 146.0 146.0 2.09 146.0

Il fu Mattia Pascal 19.0 19.0 2.17 19.0

Canne al Vento 33.33 33.33 2.28 33.33

La Coscienza di Zeno 26.65 23.0 2.90 26.65

Table 4.21: Maximum Out-Selectivity Value.

Title Normal NSW Shu�ed Reduced

I Malavoglia padron padron umili padron

Pinocchio c mastr carlo c

I Pirati della Malesia tremal tremal ma tremal

Il fu Mattia Pascal mila mila cose mila

Canne al Vento don don tutto don

La Coscienza di Zeno ch psico di ch

Table 4.22: Maximum Out-Selectivity Words.

First of all we can notice that the range of the vertex out-selectivity is

much smaller in Shu�ed Texts than in Normal ones, and this di�erence is
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one order of magnitude. This can be explained by the fact that, in real

texts, tokens are selective in choosing their neighbours, forming specialised

local structures. The lack of those structures determines the small values of

selectivity in Shu�ed Texts.

Concerning the other two cases, sometimes they both present the same

value of Normal version, but this is not observed for all the texts. However,

we can explain this behaviour with some examples:

Example 4.7.1. In I Pirati della Malesia, the words with higher selectivity

is "tremal", eouttremal = 146.0, that composes the structure "tremal naik", the

name of one of the protagonists of the novel. Neither "tremal" or "naik"

are stopwords, and they clearly appear more than once, thus this structure

remains unchanged in NSW and Reduced texts. This implies:

max
Normal

eout = max
NSW

eout = max
Reduced

eout.

Example 4.7.2. If we now consider Pinocchio by Carlo Collodi, we can see

that:

max
Normal

eout = max
Reduced

eout 6= max
NSW

eout.

In fact, as we said above, in Normal text the most out-selective word is

"c". However this is a stopword, and it is deleted in NSW version, where the

most selective word is "mastr", that appear near "Antonio" at the beginning

of the novel.

At the same time, "c" appears more than once, becoming the most selective

word even in the Reduced Pinocchio.

Thus, we can deduce the following rules:

• if the most selective term is neither a stopword or a once-appearing

word, then the out-selectivity range is the same for Normal, NSW and

Reduced texts;

• if it is a stopword, Normal and Reduced versions share the same out-

selectivity maximum value.
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We can even consider in-selectivity, with values in Table 4.23 and words

in Table 4.24.

Title Normal NSW Shu�ed Reduced

I Malavoglia 138.0 138.0 2.88 138.0

Pinocchio 30.0 17.0 2.17 30.0

I Pirati della Malesia 146.0 146.0 2.02 146.0

Il fu Mattia Pascal 19.0 19.0 2.18 19.0

Canne al Vento 26.0 26.0 2.33 26.0

La Coscienza di Zeno 41.0 14.0 2.86 41.0

Table 4.23: Maximum In-Selectivity Value.

Title Normal NSW Shu�ed Reduced

I Malavoglia comunale comunale più comunale

Pinocchio argento grillo di argento

I Pirati della Malesia tremal tremal no tremal

Il fu Mattia Pascal don don poche don

Canne al Vento imbarcata imbarcata primo andata

La Coscienza di Zeno prima solfato dottore prima

Table 4.24: Maximum In-Selectivity Words.

Again, Shu�ed in-selectivity range is smaller than Normal one, with the

same explanation given for out-selectivity.

Observing the values in Table 4.23 and the words in Table 4.24, we can see

that Normal and Reduced in-selectivity are always equal. In Canne al Vento

case, however two di�erent words represent the maximum value. This can

be explained by the fact that many terms can share the same in-selectivity

value, and in these cases Python chooses at random the element to show.
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NSW texts share the same maximum in-selectivity value of Normal and Re-

duced texts if their most in-selective word is not a stopword.

Thus, the rules given above for out-selectivity remain valid even for in-

selectivity. However we can add a rule, observing Pinocchio's behaviour:

• if the most in-selective word is not a stopword, but always comes af-

ter a stopword, then NSW would change its most selective word and

decreases the in-selectivity range.

In fact, the word "argento" in Pinocchio is always preceded by the term

"d". Obviously, in NSW version, the latter is deleted, destroying the struc-

ture "d' argento" and reducing "argento" selectivity. This implies a new

most selective word.

At last, we can notice that only few stopwords are present in Table 4.24,

all concerning Shu�ed texts. This tells us that stopwords are more selective

in choosing their successors than in choosing their predecessors. Thus, they

create more morphologic structures if they come before other terms.

4.7.1 Selectivity Distribution

Studying the distribution of this quantity, again we can notice the same

trend in Normal and Shu�ed texts. This means that neither this quantity

is able to distinguish between the two versions. Even the behaviour of NSW

and Reduced texts is similar to that of Normal ones, implying the inability

of this measure.

The distributions are obtained using the Python command

numpy.bincount.

In Figure 4.20, we can see the results achieved for out-selectivity of La

Coscienza di Zeno.
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(a) Normal and Shu�ed

(b) No Stopwords

In Figure 4.21, are presented in-selectivity distributions for the di�erent

versions of Pinocchio.
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(c) Reduced

Figure 4.20: Out-selectivity distribution in La Coscienza di Zeno.

(a) Normal and Shu�ed
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(b) No Stopwords

(c) Reduced

Figure 4.21: In-selectivity distribution in Pinocchio.
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4.8 Gephi statistics

Importing in Gephi the GEXF �les created with the Python function

described in Appendix C, we are able to compute some of the quantities

described in Chapter 1.

4.8.1 Average Path Length

First of all we can compute measures concerning the distance between

di�erent nodes. In Table 4.25 we present the results obtained for Average

Path Length.

Title Normal NSW Shu�ed Reduced

I Malavoglia 3.463 4.446 3.263 2.895

Pinocchio 3.660 5.201 3.512 2.971

I Pirati della Malesia 3.764 5.007 3.529 3.055

Il fu Mattia Pascal 3.692 5.238 3.543 2.988

Canne al Vento 3.664 4.928 3.490 2.957

La Coscienza di Zeno 3.483 4.432 3.314 2.897

Table 4.25: Average Path Length.

Comparing NSW texts with their Normal versions, we notice that this

quantity increases. In fact the stopwords absence causes the deletion of

many edges in paths joining two di�erent tokens.

Even in Reduced texts we remove words, reducing in that way the vocab-

ulary. This implies a smaller number of edges, and thus a smaller value of

average path length.

At last, shu�ing makes texts lose their semantic connections, implying a

lower value of this measure.
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4.8.2 Diameter

Naturally the behaviour of diameter follows the average path length trend,

since it is the longest distance between two vertices.

Thus, it becomes smaller in Shu�ed and Reduced texts but higher in texts

without stopwords.

The diameters of the novels we analysed are shown in Table 4.26.

Title Normal NSW Shu�ed Reduced

I Malavoglia 9 19 9 7

Pinocchio 12 20 11 7

I Pirati della Malesia 13 17 14 7

Il fu Mattia Pascal 15 21 11 8

Canne al Vento 12 20 11 7

La Coscienza di Zeno 15 19 10 7

Table 4.26: Diameter.

4.8.3 Average Cluster Coe�cient

Stopwords, words appearing only once and randomization make higher

the probability that neighbours of a vertex are connected.

This implies:

CRed > CSh > CNorm > CNSW .

In Table 4.27 we present the results we obtain for our six texts.

Observing these values, we can say that the texts composing our corpus

are not Small-World networks.

In fact the Shu�ed cluster coe�cient is always bigger than Normal one, while

in S-W graphs the real cluster coe�cient has to be greater than random one.
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Title Normal NSW Shu�ed Reduced

I Malavoglia 0.208 0.041 0.333 0.338

Pinocchio 0.177 0.031 0.244 0.304

I Pirati della Malesia 0.158 0.033 0.236 0.259

Il fu Mattia Pascal 0.196 0.019 0.261 0.315

Canne al Vento 0.172 0.030 0.258 0.307

La Coscienza di Zeno 0.236 0.039 0.359 0.367

Table 4.27: Average Cluster Coe�cient.

4.8.4 Network Density

Analysed texts are very sparse, in fact they all present few connections

in respect to their number of nodes. Thus, ∆ is negligible, showing often a

value close to 0.001.

We can notice only a little increase of ∆ in Reduced cases, when it assumes

a value of 0.002 or 0.003, thus remaining very small.

In Table 4.28 we give the computed values.

Title Normal NSW Shu�ed Reduced

I Malavoglia 0.001 0.001 0.001 0.003

Pinocchio 0.001 0.001 0.001 0.003

I Pirati della Malesia 0.001 0 0.001 0.002

Il fu Mattia Pascal 0 0 0.001 0.002

Canne al Vento 0.001 0.001 0 0.002

La Coscienza di Zeno 0 0 0.001 0.003

Table 4.28: Network density.
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4.8.5 Betweenness Centrality

With Gephi we can also compute betweenness centrality, de�ned in Chap-

ter 1. Thanks to its internal algorithms, Gephi provides the betweenness

value of every node in the network.

We can study the words with the higher values of betweenness centrality.

In Tables 4.29, 4.30, 4.31, 4.32, 4.33, 4.34, we display for every version of our

six texts their ten most central words.

Since the values of betweenness centrality computed by Gephi are very

high, we write them using the exponential notation.

Normal Shu�ed NSW Reduced

1 e, 1.041e7 e, 7.637e6 ntoni, 5.426e6 e, 2.937e6

2 che, 6.134e6 che, 5.736e6 casa, 4.503e6 di, 1.658e6

3 di, 5.843e6 la, 4.903e6 malavoglia, 1.697e6 che, 1.623e6

4 a, 5.336e6 a, 4.434e6 mena, 1.685e6 a, 1.510e6

5 la, 5.022e6 di, 4.312 e6 andava, 1.685e6 la, 1.370e6

6 il, 3.930e6 il, 4.079e6 nulla, 1.678e6 il, 1.121e6

7 per, 3.288e6 non, 3.559e6 fatto, 1.591e6 per, 8.354e5

8 le, 3.147e6 per, 2.362e6 nonno, 1.481e6 le, 8.088e5

9 non, 2.365e6 si, 1.992e6 piedipapera, 1.440e6 non, 5.923e5

10 si, 2.333e6 le, 1.799e6 sempre, 1.415e6 come, 5.214e5

Table 4.29: Ten higher Betweenness Centrality words for I Malavoglia.
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Normal Shu�ed NSW Reduced

1 e, 8.088e6 e, 6.031e6 pinocchio, 8.963e6 e, 1.600e6

2 di, 6.362e6 di, 4.694e6 burattino, 4.049e6 di, 1.350e6

3 che, 3.760e6 che, 3.492e6 sempre, 1.407e6 a, 7.396e5

4 a, 3.458e6 a, 3.168e6 dopo, 1.284e6 che, 7.395e5

5 un, 2.557e6 il, 3.062e6 fatto, 1.233e6 un, 5.232e5

6 il, 2.115e6 un, 2.351e6 casa, 1.025e6 il, 4.867e5

7 la, 1.959e6 la, 2.221e6 povero, 1.003e6 la, 4.511e5

8 per, 1.689e6 non, 1.641e6 ragazzi, 9.946e5 per, 3.350e5

9 una, 1.469e6 per, 1.516e6 fata, 9.879e5 in, 2.842e5

10 si, 1.463e6 in, 1.467e6 mai, 9.056e5 si, 2.758e5

Table 4.30: Ten higher Betweenness Centrality words for Pinocchio.

Normal Shu�ed NSW Reduced

1 di, 1.108e7 di, 6.155e6 sandokan, 7.905e6 di, 2.658e6

2 e, 1.016e7 e, 5.442e6 yanez, 7.701e6 e, 2.416e6

3 che, 7.387e6 il, 4.665e6 rajah, 4.662e6 che, 1.607e6

4 a, 5.289e6 che, 4.327e6 kammamuri, 3.773e6 la, 1.215e6

5 la, 5.242e6 la, 3.824e6 pirati, 3.040e6 a, 1.209e6

6 un, 4.839e6 un, 3.288e6 tigre, 2.820e6 il, 1.137e6

7 il, 4.721e6 a, 2.757e6 verso, 2.717e6 un, 1.118e6

8 una, 3.548e6 si, 2.275e6 capitano, 2.601e6 si, 7.186e5

9 non, 3.337e6 non, 2.238e6 uomo, 2.299e6 una, 6.902e5

10 si, 3.179e6 le 1.894e6 uomini, 2.179e6 non, 6.692e5

Table 4.31: Ten higher Betweenness Centrality words for I Pirati della Male-

sia.
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4. Results and Discussion

Normal Shu�ed NSW Reduced

1 e, 1.857e7 e, 1.306e7 adriana, 6.038e6 e, 3.626e6

2 di, 1.551e7 di, 1.184e7 forse, 5.541e6 di, 3.163e6

3 che, 1.213e7 che, 1.110e7 casa, 4.978e6 che, 2.212e6

4 a, 1.020e7 la, 9.116e6 via, 4.553e6 a, 1.988e6

5 la, 9.004e6 a, 8.696e6 occhi, 4.371e6 la, 1.854e6

6 non, 6.798e6 non, 7.963e6 vita, 4.370e6 il, 1.206e6

7 per, 6.431e6 il, 6.782e6 prima, 4.255e6 un, 1.202e6

8 il, 6.246e6 per, 6.662e6 giá, 4.192e6 per, 1.181e6

9 un, 6.189e6 un, 6.408e6 qualche, 3.642e6 non, 1.160e6

10 mi, 5.282e6 mi, 5.607e6 fatto, 3.480e6 mi, 1.117e6

Table 4.32: Ten higher Betweenness Centrality words for Il fu Mattia Pascal.

Normal Shu�ed NSW Reduced

1 e, 1.215e7 e, 9.102e6 e�x, 1.332e7 e, 2.920e6

2 di, 9.764e6 di, 7.365e6 noemi, 4.182e6 di, 2.411e6

3 che, 4.684e6 la, 5.185e6 giacinto, 3.849e6 la, 1.098e6

4 la, 4.482e6 il, 5.122e6 occhi, 3.419e6 il, 1.064e6

5 il, 4.428e6 che, 4.270e6 casa, 2.758e6 che, 1.056e6

6 a, 4.188e6 a, 3.595e6 donna, 2.480e6 a, 9.507e5

7 le, 3.901e6 le, 3.367e6 bene, 1.800e6 le, 8.837e5

8 un, 3.714e6 non, 3.362e6 pareva, 1.771e6 un, 7.660e5

9 come, 3.426e6 un, 3.259e6 viso, 1.760e6 come, 6.931e5

10 non, 2.917e6 si, 2.613e6 sempre, 1.667e6 si, 6.786e5

Table 4.33: Ten higher Betweenness Centrality words for Canne al Vento.
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Gephi statistics

Normal Shu�ed NSW Reduced

1 di, 2.788e7 di, 2.140e7 guido, 1.553e7 di, 7.433e6

2 e, 2.299e7 che, 1.759e7 ada, 1.376e7 e, 5.602e6

3 che, 1.809e7 e, 1.492e7 essa, 1.354e7 che, 4.153e6

4 la, 1.239e7 non, 1.279e7 augusta, 9.021e6 la, 3.132e6

5 non, 1.191e7 la, 1.224e7 prima, 7.955e6 per, 2.616e6

6 a, 1.097e7 il, 9.492e6 sempre, 6.671e6 a, 2.544e6

7 per, 1.091e7 per, 8.750e6 carla, 6.007e6 non, 2.539e6

8 il, 8.761e6 a, 8.558e6 qualche, 5.277e6 il, 2.116e6

9 un, 8.704e6 un, 7.857e6 grande, 5.218e6 un, 2.038e6

10 mi, 7.197e6 mi, 7.200e6 giorno, 5.036e6 mi, 1.772e6

Table 4.34: Ten higher Betweenness Centrality words for La Coscienza di

Zeno.

We can notice that, in Normal, NSW and Reduced texts, the words with

higher values of betweenness centrality are quite the same, apart few cases.

Moreover, they are all stopwords.

In fact, these are the most in�uential nodes in the texts, since they are junc-

tions for meaning circulation within the novels. Moreover, they can appear

in all the contexts present in the books. For these reasons they do not change

too much with shu�ing and neither in Reduced texts.

In NSW case, the most central words appear often even in the NSW-list

of the most frequent words. In fact, the most frequent words are often name

of characters or terms that appear throughout the whole text, thus it is pos-

sible that they belong to di�erent contexts and connect them, having in such

a way high betweenness centrality.

We can even observe that in this case, the words with higher betweenness

represent important terms for the novels, and not only if we think to char-

acters' names.

For example, in I Malavoglia at the second place of the list we can �nd the
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word "casa", that is the core of Verga's poetic, representing the theme of

family. In Pinocchio, the second most central word is "burattino", that is

Pinocchio condition; while in the list of Il fu Mattia Pascal we can see the

words "forse" and "vita", that represent respectively the uncertainty present

in the book and its central topic.

Since NSW and Reduced texts have less edges than Normal ones, we can

notice that their values of betweenness centrality are lower than Normal and

shu�ed values. Often the di�erence between NSW values and Normal ones

is one order magnitude, especially at the top of the lists, while with Reduced

texts the di�erence is not so large.

At last, we can notice that Normal and Shu�ed values are similar, in fact

they are composed by the same words. However shu�ing changes links and

their weights: sometimes Shu�ed between centrality is higher than Normal

one, sometimes it is lower.

4.9 A di�erent approach to texts

In our study, we consider texts as networks. However this is not the only

method to analyse sequences of words. For example a literary text can be

considered as the output of a stationary and ergodic source, that takes val-

ues in a �nite alphabet. This is the method used by our colleague Tommaso

Pola, in his thesis Statistical Analysis of written languages, where he searches

information about the source through a statistical analysis of texts.

In particular he focused on two measures, burstiness and long-range

correlations [2].

Let us see how to construct and use these quantities.

If s is a sequence of symbols, we denote by sk the symbol in the kth

position and, if m ≥ n, we denote by smn the subsequence (sn, sn+1, . . . , sm).
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A di�erent approach to texts

De�nition 4.9.1. An observable is a function f that maps a symbolic

sequence s into a number sequence x.

In particular, we can focus in local mappings, where:

xk = f(sk+rk ) ∀ k, r ≥ 0.

The observable that we will use is de�ned as:

xk = fα(sk) =

1, if condition α is veri�ed;

0, if condition α is not veri�ed.

Thus, x will be a binary sequence associated to the chosen condition, α.

If we study a novel, s represents the whole text, while α could represents a

letter or a word.

In that way, x shows when α appears in the text: we can call τ the sequence of

the inter-event times τi, that are the number of zeros between two consecutive

ones.

De�nition 4.9.2. We de�ne the average of a sequence x obtained from a

text of length N , for each �xed t, as:

〈x〉 =
1

N − t

N−t∑
j=1

xj.

De�nition 4.9.3. Now we can de�ne the long-range correlation of the

sequence x as:

Cx(t) = 〈xjxj+t〉 − 〈xj〉 〈xj+t〉 .

This long-range correlation can be easily studied as:

σ2
X(t) =

〈
X(t)2

〉
− 〈X(t)〉2 ∝ tγ,

where

X(t) =
t∑

j=0

xj and1 < γ < 2.

De�nition 4.9.4. We de�ne the burstiness of a condition α as:

bα =
στ
〈τ〉

.
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4. Results and Discussion

4.9.1 Comparison of results

We can compare the words found with our Betweenness Centrality in

NSW texts and the words found by Tommaso Pola with his statistical ap-

proach.

It is important to underline that the preprocessing steps to prepare texts for

studying them are the same. However, during the analysis we consider the

whole texts every time we want to extract a measure, while Tommaso chooses

the words to study: he takes the seven most frequent terms, the seven most

frequent nouns and the seven words with frequency similar to frequency of

the seven nouns.

In spite of these di�erences in the approach to novels, we can notice some

similarities in the results. In Table 4.35 we can see the keywords obtained

with the statistical method.

Title Keywords

I Malavoglia don, zio, ntoni, padron, compare

Pinocchio geppetto, babbo, fata, ragazzi, casa

I Pirati della Malesia sandokan, yanez, rajah, tigre,

kammamuri, malesia, pirati

Il fu Mattia Pascal signor, papiano, adriana, vita

Canne al vento noemi, predu, giacinto, donna, don, é, e�x

La Coscienza di Zeno carla, guido, ada, augusta

Table 4.35: Keywords found with the statistical approach.

We can see analogies with our lists of most central words for I Pirati della

Malesia, Canne al vento and La Coscienza di Zeno.

The maximum analogy is obtained for the longest novel, La Coscienza di

Zeno: every keyword appears in Table 4.34. This is in according with the

fact that the statistical analysis studies asymptotic behaviours, however this

aspect has to be deepened.

96



Conclusions

In this thesis we presented the most important topological measures from

Network Theory and the most important statistical patterns shared by lin-

guistic networks.

We applied them to a corpus composed by six Italian novels, each of

them studied in four di�erent versions: Normal, Shu�ed, No Stopwords and

Reduced.

The comparison of such versions led to analyse every measurement (de-

scribed often by average values and probability distributions) in order to

understand which are able to distinguish the real novel by the other texts.

We noticed that the distributions of the most common measures, as de-

gree and strength are not able in doing this, but neither selectivity is useful.

Moreover, we demonstrated the invariance of degree distribution with shuf-

�ing, using Conditioned Zipf's law.

Average and maximum values sometimes change in di�erent versions, giv-

ing in such a way information about speci�c characteristics of texts. For ex-

ample, we noticed that deleting stopwords provides words, representing some

maximum values (frequency, degree, betweenness centrality), related to the

themes of the novels.

The results we obtained could be useful in searching methods for distin-

guish masterpieces from random sequences of words and also in individual-

ising measures that can extract information by texts.

In addition to this, the same methods described in this thesis has been
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used by Filippo Bonora on an English corpus composed of �ve books. He

found similar results, in particular the validity of Conditioned Zipf's law, and

the general trends of measurements.

This can lead to a deeper study of the di�erences and similarity between

languages.
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Appendix A

Gephi

Gephi is an open-source software for visualizing and analysing large graphs,

available for Linux, Mac and Windows.

Using this software, it is possible to view and manipulate networks in accord-

ing with our needs. It is also possible to compute some of the measurements

we study in this thesis [35].

A.1 Dynamic Networks

Gephi is able to read some di�erent �le formats, but we decide to save

our literary networks in .gexf format since it allows to create dynamic graphs

with edges weight and values of vertices changing in time. When Gephi loads

this kind of format, it creates a timeline useful to visualize how texts grow

while reading them.

Example A.1.1. We can give an example of a simple .gexf �le.

It describes the sentence:

O Romeo, Romeo, wherefore art thou Romeo?

The �le is composed by four parts. The �rst and the last ones respectively

open and close the network. The second part is the list of nodes, while the
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A. Gephi

third contains the edges, their weights and evolution.

Thus, the �le is written as:

<gexf version="0.8.2 beta">

<meta lastmodifieddate="2013-09-20">

<graph mode="dynamic" defaultedgetype="directed" timeformat="double">

<node id="0" label="o" start="1.0"/>

<node id="1" label="romeo" start="2.0"/>

<node id="2" label="," start="3.0"/>

<node id="3" label="wherefore" start="6.0"/>

<node id="4" label="art" start="7.0"/>

<node id="5" label="thou" start="8.0"/>

<node id="6" label="?" start="10.0"/>

<edge id="0" source="0" target="1" start="2.0" end="11.0">

<attvalue for="weight" value="1.0" start="2.0" end="11.0">

<edge id="1" source="1" target="2" start="3.0" end="11.0">

<attvalue for="weight" value="1.0" start="3.0" end="5.0">

<attvalue for="weight" value="2.0" start="5.0" end="11.0">

<edge id="2" source="1" target="6" start="10.0" end="11.0">

<attvalue for="weight" value="1.0" start="10.0" end="11.0">

<edge id="3" source="2" target="1" start="4.0" end="11.0">

<attvalue for="weight" value="1.0" start="4.0" end="11.0">

<edge id="4" source="2" target="3" start="6.0" end="11.0">

<attvalue for="weight" value="1.0" start="6.0" end="11.0">

<edge id="5" source="3" target="4" start="7.0" end="11.0">

<attvalue for="weight" value="1.0" start="7.0" end="11.0">

<edge id="6" source="4" target="5" start="8.0" end="11.0">

<attvalue for="weight" value="1.0" start="8.0" end="11.0">

<edge id="7" source="5" target="1" start="9.0" end="11.0">
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<attvalue for="weight" value="1.0" start="9.0" end="11.0">

</graph>

</gexf>

A.2 Layout

With Gephi we can modify graphs in di�erent ways, thanks to some in-

ternal algorithms. Applying these ones we obtain di�erent layouts, each of

them with speci�c properties.

For example, Force Atlas is a layout often used to visualize graphs with a

high number of nodes connected together and Small World networks. How-

ever it is a very slow algorithm, O(n2). Yifan Hu Multilevel is a very fast

algorithm, O(n ∗ log(n)), and organizes the graph in clusters.

In Figure A.1 and A.2 we can see the di�erence between the two layouts

described above, applied to the song "Romeo and Juliet", by Dire Straits.

Figure A.1: Romeo and Juliet, with Force Atlas
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Figure A.2: Romeo and Juliet, with Yifan Hu Multilevel

A.3 Statistics

Gephi is useful not only in graph visualization, but also in computing

networks measures and statistical quantities, such as:

• Average path length;

• Network diameter ;

• Average Cluster Coe�cient ;

• Network Density ;

• Node Betweenness Centrality.

This is done using again Gephi internal algorithms that produce values and

graphics.
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Appendix B

Italian Stopwords List

The list of stopwords used in studying Italian texts:

1, 2, 3, 4, 5, 6, 7, 8, 9, 0, a, abbiamo, abbia, abbiate, abbiano, ad,

adesso, agli, ai, al, alla, alle, allo, agli, agl, all, allora, altra, altre, altri,

altro, anche, ancora, avere, avevo, avevi, avete, aveva, avevamo, avevate,

avevano, avesti, avemmo, aveste, avessi, avesse, avessimo, avessero, avendo,

avuto, avuti, avute, avuta, avrò, avrai, avrà, avremo, avrete, avranno, avrei,

avresti, avrebbe, avremmo, avreste, avrebbero, ben, buono, c, ch, che, chi,

ci, cinque, come, comprare, con, contro, col, colla, coi, consecutivi, consec-

utivo, cosa, così, cui, d, da, dal, dallo, dalla, dalle, dagli, dall, dagl, dai,

dei, del, dell, degl, della, delle, dello, degli, dentro, deve, devo, di, disse,

diceva, dice, doppio, dov, dove, due, e, è, ebbe, ebbero, ebbi, egli, ed, ecco,

ero, eri, era, eravamo, eravate, erano, essendo, facevo, facevi, faceva, face-

vamo, facevate, facevano, feci, facesti, fece, facemmo, faceste, fecero, facessi,

facesse, facessimo, facessero, facendo, faccio, fai, fanno, facciamo, faccia, fac-

ciate, facciano, farò, farai, farà, faremo, farete, faranno, farei, faresti, farebbe,

faremmo, fareste, farebbero, fare, �ne, �no, fra, fui, fosti, fu, fummo, foste,

furono, fossi, fosse, fossimo, fossero, gente, gli, giù, ha, hai, hanno, ho, i, il,

in, indietro, invece, io, l, lí, là, la, lavoro, le, lei, li, lo, loro, lui, lungo, m,

ma, me, meglio, mi, mio, mia, miei, mie, molta, molti, molto, n, ne, nei,
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nel, nello, nelle, nella, nell, negl, negli, no, noi, nome, nostro, nostra, nos-

tre, nostri, nove, nuovi, nuovo, non, o, oltre, ora, otto, peggio, per, perché,

però, persone, più, poco, poi, primo, promesso, qua, quale, qual, quando,

quanto, quanti, quanta, quante, quarto, quasi, quattro, quel, quello, quella,

quelle, quegli, quelli, quei, questo, questa, queste, questi, qui, quindi, quinto,

rispetto, s, saró, sarai, sará, saremo, sarete, saranno, sarei, saresti, sarebbe,

saremmo, sareste, sarebbero, se, secondo, sei, sembra, sembrava, senza, sette,

si, sì, sia, siamo, siete, siate, siano, solo, sono, sopra, soprattutto, sotto, sto,

stai, sta, stiamo, state, stanno, stati, stato, starò, starai, starà, staremo,

starete, staranno, starei, staresti, starebbe, staremmo, stareste, starebbero,

stavo, stavi, stava, stavamo, stavate, stavano, stando, stesso, stetti, stesti,

stette, stemmo, steste, stettero, stessi, stesse, stessimo, stessero, stia, stiate,

stiano, su, suo, sua, suoi, sue, subito, sui, sul, sull, sulla, sullo, sugl, sugli,

sulle, tanto, t, te, tempo, terzo, ti, tra, tre, triplo, tu, tuo, tua, tuoi, tue,

tutto, tutti, tutte, tutta, ultimo, un, una, uno, v, va, vai, vi, voi, volte,

vostra, vostri, vostre, vostro.
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Appendix C

Python function to create the

weight matrix and the GEXF �le

The core of the Python algorithm created to study literary networks is

the function that build their weight matrices. It also creates the GEXF �le

that imported in Gephi allows us to visualize the networks and to compute

some measurements.

In this Appendix we display the function we created.

def matrice_gephi(name,text,diz):

output=open(name+'.gexf','w')

output.write('<?xml version="1.0" encoding="UFT-8"?>\n')

output.write('<gexf xmlns="http://www.gexf.net/1.2draft" version="1.2">\n')

output.write('<meta lastmodifieddate="2009-03-20">\n')

output.write('<creator>Giulia</creator>\n')

output.write('<description>A hello world! file</description>\n')

output.write('</meta>\n')

output.write('<graph mode="dynamic" defaultedgetype="directed"

timeformat="double">\n')

output.write('<attributes class="node" mode="dynamic">\n')

output.write('</attributes>\n')
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C. Python function to create the weight matrix and the GEXF �le

output.write('<attributes class="edge" mode="dynamic">\n')

output.write('<attribute id="weight" title="weight" type="float">\n')

output.write('</attribute>\n')

output.write('</attributes>\n')

output.write('<nodes>\n')

ii=0

p=len(diz)

while ii<p:

output.write('<node id="')

output.write(str(ii))

output.write('" label="')

output.write(diz[ii])

output.write('" start="')

i=0

while i<len(text):

if diz[ii]==text[i]:

output.write(str(float(i+1)))

i=len(text)+1

i=i+1

output.write('" />\n')

ii=ii+1

output.write('</nodes>\n')

output.write('<edges>\n')

A=scipy.sparse.dok_matrix((p,p))

i=0

j=0

k=0

while i<len(diz):

j=diz[i]
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D=scipy.sparse.dok_matrix((p,p))

a=0

while a<len(text)-1:

if j==text[a]:

b=0

jj=text[a+1]

while b<len(diz):

if jj==diz[b]:

A[i,b]=A.get((i,b),0)+1

c=0

while D.get((b,c),0)!=0:

c=c+1

D[b,c]=D.get((b,c),0)+a+1

b=len(diz)

else:

b=b+1

a=a+1

else:

a=a+1

sa=0

while sa<len(diz):

if A.get((i,sa),0)!=0:

output.write('<edge id="')

output.write(str(k))

k=k+1

output.write('" source="')

output.write(str(i))

output.write('" target="')

output.write(str(sa))

output.write('" start="')

output.write(str(float(D[sa,0]+1)))
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C. Python function to create the weight matrix and the GEXF �le

output.write('" end="')

output.write(str(float(len(text)+1)))

output.write('" >\n')

output.write('<attvalues>\n')

sd=0

while D.get((sa,sd),0)!=0:

output.write('<attvalue for="weight" value="')

output.write(str(float(sd+1)))

output.write('" start="')

output.write(str(float(D[sa,sd]+1)))

output.write('" end="')

if D.get((sa,sd+1))!=0:

output.write(str(float(D[sa,sd+1]+1)))

else:

output.write(str(float(len(l)+1)))

output.write('" >\n')

output.write('</attvalue>\n')

sd=sd+1

output.write('</attvalues>\n')

output.write('</edge>\n')

sa=sa+1

else:

sa=sa+1

i=i+1

output.write('</edges>\n')

output.write('</graph>\n')

output.write('</gexf>')

output.close()

return A
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