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Abstract

Il flusso di Rayleigh-Bénard, costituito da un fluido racchiuso fra due pareti a

diversa temperatura, rappresenta il paradigma della convezione termica. In natura

e nelle applicazioni industriali, il moto convettivo avviene principalmente in regime

turbolento, rivelando un fenomeno estremamente complesso. L’obiettivo principale

di questo elaborato di tesi consiste nell’isolare e descrivere gli aspetti salienti di un

flusso turbolento di Rayleigh-Bénard. L’analisi è applicata a dati ottenuti da tre

simulazioni numeriche dirette effettuate allo stesso numero di Rayleigh (Ra ≈ 105)

e a numeri di Prandtl differenti (Pr = 0.7, 2, 7). Sulla base di alcune statistiche a

singolo punto, vengono definite nel flusso tre regioni caratteritiche: il bulk al centro

della cella, lo strato limite termico e quello viscoso in prossimità delle pareti. Grazie

all’analisi dei campi istantanei e delle correlazioni spaziali a due punti, sono state

poi individuate due strutture fondamentali della convezione turbolenta: le piume

termiche e la circolazione a grande scala. L’equazione generalizzata di Kolmogorov,

introdotta nell’ultima parte della trattazione, permette di approcciare il problema

nella sua complessità, visualizzando come l’energia cinetica viene immessa, si distri-

buisce e viene dissipata sia nello spazio fisico, sia in quello delle scale turbolente.

L’immagine che emerge dall’analisi complessiva è quella di un flusso del tutto simile

a una macchina termica. L’energia cinetica viene prodotta nel bulk, considerato il

motore del flusso, e da qui fluisce verso le pareti, dove viene infine dissipata.



A mio padre, Agostino.
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Chapter 1

Introductory concepts

Thermally driven turbulence plays a major role in several natural and industrial

processes. It occurs in Earth’s outer core, atmosphere and oceans. A clear example

is seen in stratocumulus clouds over the oceans, where a dominant feature is a

polygonal pattern of light areas surrounded by darker boundaries (see Figure 1.1(a)).

Covering vast areas of the ocean at any given time, such cloud systems play a

significant role in regulating the amount of sunlight that reaches the planet [12]. In

the astrophysical context turbulent convection is seen in the outer layer of the Sun

(see Figure 1.1(b)) and in the atmosphere of giant planets. Furthermore thermally

driven turbulence is of utmost importance in industrial applications ranging from

miniaturized heat exchangers for cooling of electronic components to large scale

power plants. Convective motion is also important in metal-production processes

controlling the growth of crystals from the melt.

The processes mentioned in the previous paragraph are extremely complex. Even

though the fluid motion is simply triggered by buoyancy due to density variations,

occurring in the presence of a gravitational field, turbulent convection is coupled with

other physical processes such as Coriolis force, electromagnetic fields and chemical

reactions. Moreover every system has distinct and complex boundary conditions.

1.1 Turbulent Rayleigh-Bénard convection

Rayleigh-Bénard convection is the idealized system to study properties of thermal

convection (see Figure 1.2). It consists of a fluid layer heated from below and cooled

from above in a vertically bounded domain. The horizontal plates at the top and at

1
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(a) (b)

Figure 1.1: (a) Convective cells in a cloud system over the Pacific Ocean. Satellite
image courtesy of NASA. (b) Granules and a sunspot observed in the Sun’s photo-
sphere on 8 August 2003 by Göran Scharmer and Kai Langhans with the Swedish
1-m Solar Telescope operated by the Royal Swedish Academy of Sciences. (Illustra-
tion: RSAS)

the bottom are kept at constant temperatures, Ttop and Tbottom, respectively, such

that ∆T = Tbottom − Ttop is positive. The fluid motion starts when buoyancy force

overcomes viscous drag and thermal diffusion. These dynamics can be summarized in

two non-dimensional parameters, the Rayleigh number Ra and the Prandtl number

Pr, respectively defined as

Ra =
gα∆TH3

νκ
, Pr =

ν

κ
, (1.1)

with g the gravity acceleration, α the thermal expansion coefficient, H the height

of the fluid layer, ν the kinematic viscosity and κ the thermal diffusivity of the

fluid. The Rayleigh number quantifies the relative importance of the driving effect

due to buoyancy to the dampening effect due to kinematic viscosity and thermal

diffusivity. The Prandtl number compares the momentum transport to thermal

energy transport. A third flow parameter is the aspect-ratio of the cell Γ, defined as

Γ =
L

H
, (1.2)

where L is a characteristic horizontal scale such as the diameter of a cylindrical cell

or the lateral size of a rectangular cell.

Rayleigh-Bénard convection develops in response to parameters Ra, Pr e Γ just
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(a) (b)

Figure 1.2: The typical Rayleigh-Bénard convection setups as a rectangular cell (a)
or a cylindrical cell (b).

defined. The resultant flow is characterized by a transport of momentum and ther-

mal energy which can be quantified, respectively, by the ReynoldsRe and the Nusselt

number Nu, defined as

Re =
UH

ν
, Nu =

φ

κ(∆T/H)
, (1.3)

where U is a characteristic velocity and φ is the heat flux through the top and the

bottom walls. The Reynolds number quantifies the relative importance of inertial

and viscous forces whereas the Nusselt number measures the competition of convec-

tive thermal transport in comparison with conduction. Using the free-fall velocity

Uf =
√
gα∆TH as a characteristic velocity, Re can be rewritten as

Re =

√
Ra

Pr
. (1.4)

therefore for a fixed Γ, the flow regime depends on the ratio of Ra to Pr.

For a given fluid in a given cell i.e. fixed Pr and Γ, the Rayleigh-Bénard con-

vection is driven by Ra only, assuming that the fluid properties do not change with

temperature. When Ra is small enough there is no fluid motion and thermal flux

is purely conductive. Laminar convection arises only when Ra is greater than some

critical value Rac, which for a lateral unbounded Rayleigh-Bérnard is about 1708

[1]. At the bifurcation from the state of rest, a steady pattern of parallel roll cells

occurs. However when Ra is sufficiently high, the flow first becomes chaotic in time,

then for Ra > Rat the spatial periodicity is lost and fully developed turbulence

arises.
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Turbulent Rayleigh-Bénard convection is a fascinating example of self-organized

system. The flow behaves like a “machine”, meaning that it presents different wor-

king parts, each serving a different function [15]. Two thermal boundary layers

of thickness much less than H adhere to the horizontal walls, as the local Ray-

leigh number does not exceed the critical value. Far enough from the wall, parts

of the thermal boundary layer detach permanently and move into the bulk of the

cell, driven by buoyancy forces. These coherent structures, called thermal plumes,

group together and give life to a large-scale circulation which, in turn, generates two

viscous boundary layers, as shown in Figure 1.3.

Figure 1.3: Sketch of turbulent Rayleigh-Bénard convection: hot (red) and cold
(blue) plumes detach from the thermal boundary layers, move into the bulk and
give life to a large scale circulation. The dashed line indicates the edge of a viscous
boundary layer.

In this thesis, two strategies to isolate features of turbulent Rayleigh-Bénard con-

vection are adopted. The first classical approach consists of analyzing single-point

statistics and two-point correlations. The simplest single-point statistics (mean and

variance) allow the identification of different regions in the flow, such as the before-

mentioned thermal and viscous boundary layers, whereas to display mechanisms of

energy production, transport and dissipation occurring in the space domain, a more

powerful single-point statistic, the turbulent kinetic energy budget, is required. Fur-

thermore, two-point correlations are introduced to measure the characteristic lengths

of plumes. Turbulence is a multi-scale phenomenon, which means that in a generic

point of the space domain, flow structures (i.e. eddies) of various sizes coexist. The

turbulent kinetic energy equation gives a picture of turbulence only at the largest

scale, therefore it is insufficient to describe completely the dynamics of the pheno-

menon. The analysis of a scale-by-scale budget for the turbulent fluctuations is the

core of the second approach. This equation describes how the energy associated with
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a specific scale of motion is transferred through the spectrum of scales and, simul-

taneously, how the same scale of motion exchanges energy with a properly defined

spatial flux.

Both approaches are applied to the results provided by direct numerical simula-

tions (DNS) of a rectangular Γ = 8 domain at Ra ≈ 105 and Pr = {0.7, 2, 7}, with

periodic boundary conditions in the horizontal directions x and y. Direct numerical

simulation refers to solving the Navier-Stokes equations numerically by resolving

all the scales of turbulence down to the smallest one. Each DNS presented here

is obtained by solving the governing equations in a non-dimensional form, hence it

corresponds to a family of experimental realizations performed at the same Ra, Pr

and Γ.

In Table 1.1 three experimental realizations, one for each DNS, are reported. By

imposing the fluid type and the operating mean temperature (in this case, 293 K),

the thermal expansion coefficient α, the kinematic viscosity ν, the thermal diffusivity

κ and, therefore, the Prandtl number, are defined. Furthermore, the temperature

difference across the top and bottom plates ∆T and the height of the cell H are

chosen to univocally define the Rayleigh number.

Fluid α K−1 ν m2·s−1 κ m2·s−1 ∆T K H mm

Air 3.4 · 10−3 1.52 · 10−6 2.12 · 10−7 10 54
Liquid ammonia 1.5 · 10−3 3.62 · 10−7 1.82 · 10−7 10 4
Water 2.1 · 10−4 1.00 · 10−6 1.44 · 10−7 10 11

Table 1.1: Three different experimental setups. The first, the second and the third
lines correspond to the Pr = 0.7, Pr = 2, Pr = 7 simulations, respectively. The
fluid properties are evaluated at 293 K.

1.2 State of the art

Convective turbulence remains the subject of many studies, as it is very commonly

found in nature as well as in industry. Two topics in particular have received a

lot of attention in the last years. The first one concerns the scaling properties of

thermal transport, that is how the Nusselt number depends on Rayleigh and Prandtl

numbers. The second topic of interest is represented by the effect of buoyancy forces

on statistical properties of turbulent fluctuations.
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It has already been noticed that the Nusselt number is the ratio of convective to

conductive heat transfer. Despite an extensive investigation in the past due to the

importance of heat transfer and mixing in engineering problems, the dependence

of Nu on Ra and Pr is still not clear and a unifying theory for Nu = f(Ra, Pr)

presents some discrepancies with experimental results [11].

One of the oldest models for predicting the Nusselt number as a function of the

Rayleigh number goes back to Malkus’ marginal-stability theory of 1954. It assumed

that the thermal boundary layer thickness adjusts itself so as the local Rayleigh

number, based on the thermal boundary layer thickness, reaches the critical value

Rac = O(103). This gives the power law

Nu ∼ Ra1/3 (1.5)

The later investigations by Castaing et al. in 1989 [5] with higher accuracy in

helium (Pr = 1 and Ra ≥ 106) and by Ciliberto in 1993 [7] (Ra < 106), show

another scaling

Nu ∼ Ra2/7 (1.6)

Several theoretical interpretations have been offered for this power law but the one

that seems most consistent with its occurrence is by Shraiman and Siggia in 1990

[27]. This theory is based on the relevant dynamical role played by the large-scale

circulation in turbulent Rayleigh-Bénard convection. The onset of a mean flow is

due to plumes rising from the unstable boundary layer. On the other hand, the mean

flow generates a viscous boundary layer which, in turn, controls the thickness of the

thermal boundary layer. Without providing a rigorous demonstration of the power

law, it is enough to consider that the most important assumption in the Shraiman

and Siggia theory is that all kinetic energy dissipation is constrained inside the

viscous boundary layers [4].

In the last few years, given the increasing precision of experimental and numerical

data, it became clear that none of the theories for Nu(Ra, Pr) developed in the

past could offer a unifying view, accounting for all data. Therefore in a series of

papers, Grossmann and Lohse tried to develop a unifying theory to account for both

Nu = (Ra, Pr) and Re = (Ra, Pr) over wide parameter ranges, assuming thermal

and kinetic dissipation in the boundary layers and the bulk [3]. They composed a
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Figure 1.4: Phase diagram in Ra − Pr plane indicating the different turbulent
regimes in Grossmann and Lohse theory. The data points indicate where Nu has
been measured or numerically calculated. This figure is adapted from [2], where
more details can be found.

Figure 1.5: Heat transport as a function of Rayleigh number. The red solid line
represents the curve obtained from the Grossman and Lohse theory. The data
points indicate several experimental results. This figure is adapted from [6], where
more details can be found.

phase diagram with different power laws for the different regions of Ra and Pr. As

an instance, for Ra = 105 and Pr = 7 the Nusselt number is located in the area
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Il as can be seen in Figure 1.4. Moreover, the scaling proposed for this particular

regime is Nu ∼ Ra1/4Pr1/8 [13].

In Figure 1.5 the results of several experiments in cylindrical cells are summarized

in a compensated plot NuRa−1/3 versus Ra. The first impression is that the data

scatter, however, it should be considered that these results have been obtained

for different experimental conditions (different materials for the walls), different

aspect-ratios (0.23 ≤ Γ ≤ 20) and different systems of thermal insulation. Taking

into account all these factors, we can reasonably conclude that the Grossmann and

Lohse theory fits quite well the results. Nevertheless, it is yet an open point if further

effects exists that may influence the flow and thus the heat transfer measurements

[6].

Investigating the effect of buoyancy forces on the statistical properties of turbu-

lent fluctuations represents another major challenge nowadays. Turbulent fluctua-

tions can be quantified by introducing velocity and temperature differences measu-

red at the same time t and at two positions separated by a displacement vector ri,

defined respectively as

δui(xi, ri) = ui(xi + ri/2, t)− ui(xi − ri/2, t), (1.7a)

δθ(xi, ri) = θ(xi + ri/2, t)− θ(xi − ri/2, t), (1.7b)

where i = x, y, z, xi is the position vector in the geometric domain, ui(x, y, z, t) and

θ(x, y, z, t) are respectively the fluctuating velocity and temperature fields. Now, we

can introduce a fundamental statistic for the fluctuating increments of velocity and

temperature (for more details see Section 3.2), defined respectively as

〈
δu2
〉

(xi, ri) = 〈δui(xi, ri)δui(xi, ri)〉 (1.8a)〈
δθ2
〉

(xi, ri) = 〈δθ(xi, ri)δθ(xi, ri)〉 (1.8b)

where 〈·〉 denotes the ensemble average, 〈δu2〉 and 〈δθ2〉 are respectively the second-

order structure functions for velocity and temperature and quantifies the amount

of kinetic and thermal energy of a turbulent structure or eddy of scale r =
√
riri

located at the point xi of the space domain.

Under certain conditions, turbulence can be assumed homogeneous and isotro-

pic, consequently 〈δβ2〉 (xi, ri) = 〈δβ2〉 (r), where β is a generic variable. In the

case of Rayleigh-Bénard convection only the horizontal planes form a statistical ho-
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mogeneous and isotropic space while the presence of the walls induces anisotropy

and inhomogeneity in the vertical direction. Hence, 〈δβ2〉 = 〈δβ2〉 (r, z), where r is

an increment lying in the horizontal planes. In turbulent convection, temperature

variations result in a buoyancy force that drives the fluid motion, and tempera-

ture is an active scalar. Nevertheless, at small scales r, temperature behaves like a

passive scalar and buoyancy is negligible; in this case, it can be demonstrated by

dimensional analysis, that the following scaling laws exist

〈
δu2
〉

(r) ∼ 〈ε〉2/3 r2/3, (1.9a)〈
δθ2
〉

(r) ∼ 〈χ〉 〈ε〉−1/3 r2/3, (1.9b)

where 〈ε〉 and 〈χ〉 are respectively the average rate of dissipation of turbulent energy

and temperature. The scaling laws (1.9) are called Kolmogorov-Obukhov-Corrsin

scalings (K41-OC) and, as stated before, are expected for r sufficiently small. By

considering a scale sufficiently small to make sure the homogeneous and isotropic

hypothesis is still valid, but sufficiently large to make the buoyancy effect no more

negligible, the following scaling laws can be obtained, called Bolgiano-Obukhov sca-

lings (BO59)

〈
δu2
〉

(r) ∼ 〈χ〉2/5 (αg)4/5 r6/5, (1.10a)〈
δθ2
〉

(r) ∼ 〈χ〉4/5 (αg)−2/5 r2/5. (1.10b)

Here, αg is the additional parameter that describes the strength of buoyancy [8]. As

stated before, when buoyancy is significant the BO59 scalings would hold, whereas

when buoyancy is negligible, temperature behaves as a passive scalar and K41-OC

scalings would hold. The buoyant term, estimated by αgδθ(r)δu(r), increases with

r; thus one expects a crossover from the K41-OC scalings to the BO59 scalings [8].

When comparing (1.9a) with (1.10a), or (1.9b) with (1.10b), it can be derived a

cross-over scale between the two scalings, the so-called Bolgiano length LB

LB = 〈ε〉5/4 〈χ〉−3/4 (αg)−3/2 . (1.11)

For LB � r � H, one expects BO59 scalings, whereas for η � r � LB

one expects K41-OC scalings, where η is the smallest length scale of turbulent

motion, called Kolmogorov scale. This prediction, obtained by dimensional analysis,
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is sketched in Figure 1.6. Despite the huge number of researches on the subject,

evidences of the validity of the Bolgiano-Obuckhov scenario and the recovery of

Kolmogorov-Obukhov-Corrsin scalings at small scale, as sketched in Figure 1.6, are

still missing. There are many difficulties, both practical and as a matter of principle,

in identifying this scenario, nevertheless future attempts will shed more light on this

problem, allowing us a better understanding of turbulent dynamics for the modelling

of Rayleigh-Bénard convection.

Figure 1.6: Sketch of the second-order velocity (blue curve) and temperature (purple
curve), as they follow from dimensional analysis. This figure is adapted from [19],
where more details can be found.



Chapter 2

Equations and numerical approach

2.1 The Oberbeck-Boussinesq equations

The Oberbeck-Boussinesq equations are widely used as a physical-mathematical mo-

del in the analysis of convection phenomena such as the Rayleigh-Bénard convection

problem. The starting point for this model is to take the full set of compressible flow

equations. By supposing that the gravitational force is the only body force present

and that the fluid is a newtonian one with constant coefficient of viscosity µ, the

equations of compressible flow can be rewritten as

Dρ

Dt
+ ρ

∂Ui
∂xi

= 0, (2.1a)

ρ

(
∂Ui
∂t

+ Uj
∂Ui
∂xj

)
= − ∂p

∂xi
+ 2µ

∂Sij
∂xj
− ρgδiz, (2.1b)

ρT
Ds

Dt
= 2µSijSij −

∂qi
∂xi

+ ρQ, (2.1c)

where i,j=x, y, z and δij is the Kronecker delta. Here, ρ(x, y, z, t), Ui(x, y, z, t) and

p(x, y, z, t) are respectively the density, the velocity and the pressure fields. The

tensor Sij(x, y, z, t), defined as

Sij =
1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
, (2.2)

is the rate of strain. Quantity g is the gravitational acceleration, T (x, y, z, t) is the

temperature field, s(x, y, z, t) is the entropy per unit mass, qi(x, y, z, t) is the rate of

11
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heat flow per unit area and Q(x, y, z, t) is the rate of internal heat generation per

unit mass.

When there are variations in the temperature field T , the density of fluid changes.

Anyway, when the temperature difference is small, the following approximation is

feasible

ρ = ρ0 + δρ ≈ ρ0[1− α(T − T0)], (2.3)

where α is the coefficient of thermal expansion of the fluid, T0 = 〈T 〉V,t is the mean

temperature of the system, ρ0 is the density at T0 and δρ is the change in density

due to temperature variation. We use 〈·〉V and 〈·〉t to denote an average over the

whole physical domain and an average over time, respectively. In the Oberbeck-

Boussinesq approximation, δρ is taken to be small such that it is neglected in the

continuity equation (2.1a), in the entropy equation (2.1c) and in the Navier-Stokes

equations (2.1b) except in the buoyancy term ρgδiz [8]. Hence, equations (2.1a) and

(2.1b) can be rewritten as

∂Ui
∂xi

= 0, (2.4a)

ρ0

(
∂Ui
∂t

+ Uj
∂Ui
∂xj

)
= − ∂p

∂xi
+ µ

∂2Ui
∂xj∂xj

− ρ0g [1− α (T − T0)] δiz. (2.4b)

As regards the entropy equation (2.1c), we assume s(T, p) to be constant respect

to the pressure, thus we have

ds =

(
∂s

∂p

)
T

dp+

(
∂s

∂T

)
p

dT =

(
∂s

∂T

)
p

dT. (2.5)

By recalling the state equation for the enthalpy and by supposing negligible the

differential of the pressure, we obtain

dh = Tds+
dp

ρ
≈ Tds. (2.6)

Finally, the exact differential of the entropy can be written as

ds =

(
∂h

∂T

)
p

dT

T
= cp

dT

T
, (2.7)
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where cp is the specific heat at constant pressure. We take 2µSijSij, which is the

rate of internal heat generation per unit mass due to the mechanical dissipation,

and Q to be small such that they are neglected, hence we can recast the entropy

equation into

ρcp
DT

Dt
= k

∂2T

∂xi∂xi
, (2.8)

which is the equation for the temperature. Here, k is the thermal conductivity.

We group together equation (2.4a), (2.4b) and (2.8), then, by introducing some

auxiliary variables, we obtain the set of the Oberbeck-Boussinesq equations

∂Ui
∂xi

= 0, (2.9a)

∂Ui
∂t

+ Uj
∂Ui
∂xj

= − 1

ρ0

∂p∗

∂xi
+ ν

∂2Ui
∂xj∂xj

+ αgΘδiz, (2.9b)

∂Θ

∂t
+ Uj

∂Θ

∂xj
= κ

∂2Θ

∂xi∂xi
. (2.9c)

Here, p∗(x, y, z, t) = p(x, y, z, t) + ρ0Ψ(x, y, z, t) is the modified pressure, where Ψ is

the gravitational potential. Quantity ν = µ/ρ is the kinematic viscosity, κ = k/(cpρ)

is thermal diffusivity and finally the variable Θ(x, y, z, t) = T (x, y, z, t) − T0 is the

temperature deviation from the mean. The Oberbeck-Boussinesq equations are one

vector and two scalar equations for the one vector and two scalar variables Ui, p
∗

and Θ. It is useful to have names for some terms. The last term on the right-hand

side of (2.9b), αgΘδiz, is known as the buoyancy force (even when Θ is negative

and the term represents the tendency for heavy fluid to sink). The term on the

right-hand side of (2.9c) is the conduction term, which represents the conductive

transport of heat [29].

The range of validity of the Oberbeck-Boussinesq approximation is usually esti-

mated by [6]

α∆T < 0.1÷ 0.2, (2.10)

Furthermore, the height of the physical domain, H, must be small enough so that the

hydrostatic pressure gradient along the direction of gravity acceleration is negligible.

Using H as a characteristic length scale, H/Uf as a characteristic time scale
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and ∆T as characteristic temperature scale, where Uf =
√
gα∆TH is the free-fall

velocity, we can rewrite the equations (2.9) in a dimensionless form

∂Ui
∂xi

= 0, (2.11a)

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −∂p
∗

∂xi
+

√
Pr

Ra

∂2Ui
∂xj∂xj

+ Θδiz, (2.11b)

∂Θ

∂t
+ Uj

∂Θ

∂xj
=

1√
PrRa

∂2Θ

∂xi∂xi
. (2.11c)

We use the same symbols for the dimensionless quantities to streamline the nota-

tions. In the following dissertation, only dimensionless quantities are used. The

dimensional ones, when used, are explicitly specified.

To complete the model, we need to specify the spatial domain and the boun-

dary conditions for Ui and Θ. We select a rectangular cell as the spatial domain

(see Figure 1.2(a)). The Cartesian coordinate system is cell-centered, with the

xy-plane parallel to the horizontal plates and the z-axis pointing in the direction

opposite to that of gravity acceleration. Periodic boundary conditions are imposed

in the horizontal directions x and y, in order to maintain homogeneity and isotropy

on horizontal planes. Isothermal and no-slip boundary conditions are used on the

top/bottom plates for the temperature and velocity fields respectively

Θ (x, y, z = −1/2, t) = −Θ (x, y, z = 1/2, t) = 1/2 (2.12a)

Ui (x, y, z = −1/2, t) = Ui (x, y, z = 1/2, t) = 0. (2.12b)

Using the temperature equations and the boundary conditions just defined, a new

expression for the Nusselt number, previously introduced in (1.3), can be obtained.

First we take the horizontal plane average, 〈·〉A, of the dimensional temperature

equation (2.9c)

∂ 〈Θ〉A
∂t

+
∂ 〈WΘ〉A

∂z
= κ

∂2 〈Θ〉A
∂z2

, (2.13)

where Uz = W . The relation ∂ 〈UjΘ〉A /∂xj = Uj∂ 〈Θ〉A /∂xj ensues from the

equation of continuity (2.9a). Supposing steady-state flow i.e. ∂ <>A /∂t = 0, we
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integrate equation (2.13) from z = −H/2 to a generic z

〈WΘ〉A − 〈WΘ〉A |z=−H/2 = κ
d 〈Θ〉A
dz

− κd 〈Θ〉A
dz

∣∣∣∣
z=−H/2

. (2.14)

where 〈WΘ〉A and−κ(d 〈Θ〉A /dz) are respectively the convective and the conductive

contributions to the heat flux across the horizontal plane at height z. Accounting for

the no-slip boundary conditions, it follows that 〈WΘ〉A |z=−H/2 = 0. Since the heat

flux through the horizontal walls φ is equal to −κ(d〈Θ〉A/dz)|z=−H/2, the Nusselt

number can be rewritten as

Nu = − H

∆T

d 〈Θ〉A
dz

∣∣∣∣
z=−H/2

= H
〈WΘ〉A − κ

d〈Θ〉A
dz

κ∆T
. (2.15)

Hence, the conductive heat flux at the walls, which defines the Nusselt number,

is controlled by the convective contributions to the heat flux away from the walls,

highlighting how the core flow influences the near-wall heat exchange.

2.2 Simulation details

The Oberbeck-Boussinesq equations describe all features of the turbulent Rayleigh-

Bernard convection, from the largest to the smallest length and time scales. Ho-

wever, analytical solutions do not exist even for the simplest turbulent flows and

numerical solutions are required.

The explosive growth of computational power in the last three decades, has gene-

rated huge interest in the area of numerical simulation of turbulence. Computational

studies have also gained momentum with the advent of efficient and accurate nume-

rical schemes for solving coupled and highly nonlinear partial differential equations

that are used to describe turbulent flows.

Simulation methodologies can again be classified, based on the level of represen-

tation of the physics and accuracy, into Reynolds-Averaged Navier-Stokes (RANS),

Large-Eddy Simulation (LES) and Direct Numerical Simulation (DNS) approaches

[25]. The RANS approach involves the solution of the Reynolds equations to de-

termine the mean fields. The Reynolds stresses, which appear as unknowns in the

Reynolds equations, are determined by a turbulence model, named Reynolds-stress

model. In LES, the larger turbulent motions are directly resolved, whereas the ef-
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fects of the smaller-scale motions are modelled [22]. Direct numerical simulations

discretize the governing equations on a spatio-temporal grid and solve them with

initial and boundary conditions appropriate to the flow considered. Unlike RANS

and LES, no model for turbulent fluctuations is used, hence the fundamental requi-

rement for conducting DNS is to resolve all the smallest scales of turbulence i.e. the

Kolmogorov scales or the Batchelor scales.

The characteristic scales of the smallest turbulent motion are the Kolmogorov

length (η), time (τη) and velocity (uη) scales, formed from the mean dissipation rate

〈ε〉 and the kinematic viscosity ν as follows

η =

(
ν3

〈ε〉

)1/4

, τη =

(
ν

〈ε〉

)1/2

, uη = (ν〈ε〉)1/4 . (2.16)

On the other hand, Bachelor scales characterize the very smallest structures of a

turbulent scalar field, which is the temperature one in this case. Similarly, the

Bachelor length (λ), time (τλ) and velocity (uλ) scales are defined by using 〈ε〉 and

κ, thus they can be written as

λ =

(
κ3

〈ε〉

)1/4

, τλ =

(
κ

〈ε〉

)1/2

, uλ = (κ〈ε〉)1/4 . (2.17)

By recalling the definition of the Prandtl number, the ratio of the Kolmogorov scales

to the equivalent Bachelor scales can be written as

η

λ
= Pr3/4,

τη
τλ

= Pr1/2 uη
uλ

= Pr1/4, (2.18)

hence, for Pr < 1 the Kolmogorov scales are the smallest ones to be resolved by

the DNS whereas, for Pr > 1, the resolution requirement is given by the Bachelor

scales. Using an exact relation for 〈ε〉 (see Appendix A), we can rewrite η and λ as

η = H

(
Pr2

RaNu

)1/4

, λ = H

(
1

RaPrNu

)
. (2.19)

Similar relations can be obtained for the time and velocity scales. Since Nu is an

output parameter, the smallest scales of motion are unknown a priori. Nevertheless,

many simulation in literature provide verified resolutions which possibly represent

a good starting point for a trial-and-error approach.
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The direct numerical simulations presented in this thesis are performed using a

spectral method which discretizes space with Nz Chebychev polynomials in the z

direction and with Nx and Ny Fourier modes in the x and y directions respectively.

Time integration is performed with a fourth order Runge-Kutta scheme for the non-

linear terms and a second order accurate Crank-Nicholson scheme for the linear

ones.

Specifically, the numerical method resolves the velocity-vorticity formulation of

the Oberbeck-Boussinesq equations. This formulation is an alternative form of the

governing equation, which does not include pressure [23]. The unknown field func-

tions are the the normal velocity W , the normal vorticity ω and the temperature

Θ. Once the the normal velocity and the normal vorticity have been calculated, the

other velocity components can be found form the incompressibility constraint and

the definition of the normal vorticity. The vorticity-velocity methods present some

advantages compared with the classical formulation on primitive variables or with

the vorticity-stream function methods. The main advantage is that the resulting

algorithm for the resolution of the Oberbeck-Boussinesq equations is quite simple

compared with the other formulations. Moreover, the physic of the problem does

not change from a formulation to another one, therefore the strong point of the

vorticity-velocity methods is only numerical.

Finite difference methods for the direct numerical solution of the governing equa-

tions, like finite element methods, are based on local representations of functions,

usually by low order polynomials. In contrast spectral methods make use of global

representations usually by high-order polynomials, such as Chebychev polynomials,

or Fourier series. Under many circumstances the result is a degree of accuracy

that local methods cannot match. For large-scale computations, especially in three-

dimensional space domains, this higher accuracy may be decisive to allow a coarser

mesh, hence a smaller number of data values to store and operate upon [28].

At any given instant in time, the spectral representation of the numerical solution

consists of Nx×Ny×Nz wavenumbers for both the velocity Ui and the temperature

Θ fields. This spectral representation is equivalent to representing Ui and Θ in the

physical space on a Nx×Ny×Nz grid. Along the x and y directions there are nodes

with uniform spacings ∆x = Lx/Nx and ∆y = Ly/Ny, where the rectangular box

with dimensions Lx × Ly × H is the solution domain. In the z direction, the grid

spacing is non-uniform with, conveniently, a finer grid spacing near the boundaries.
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Anyway, we define ∆z = Lz/Nz as the average grid width along z.

The maximum wavenumber i.e. the maximum frequency of turbulent eddies

which the grid is capable to resolve, is kmax = π/h, where h = max(∆x,∆y,∆z)

is the maximum grid width. Moreover, to fulfill the resolution requirement, the

wavenumber kmax must be greater than π/η for Pr ≤ 1, and greater than π/λ for

Pr ≥ 1. All the simulations are conducted in a rectangular cell of aspect-ratio Γ = 8

i.e. Lx = Ly = 8 · H (see Figure 2.1). By discretizing all directions with the same

number of spectral modes, then ∆x = Lx/Nx = Ly/Ny and ∆x > ∆z. For this

reason, the maximum grid width h is equal to ∆x or ∆y and the upper bounds to

the grid width can be written as

1

π

∆x

η
≤ 1, P r ≤ 1;

1

π

∆x

λ
≤ 1, P r ≥ 1. (2.20a)

Figure 2.1: The Rayleigh-Bénard convection setup selected for the DNS. Two iso-
surface of temperature are visualized: hot at the bottom (Θ = 0.4) in red, cold at
the top (Θ = −0.4) in blue. DNS result for Ra = 1.7 · 105 and Pr = 0.7.

Concerning the temporal resolution, it is necessary that a fluid particle move

only a fraction of the maximum grid spacing h in a time step ∆t. As a conse-

quence, the time step employed must satisfy the CFL-condition (Courant-Levy-

Friedrichs), otherwise the simulation will produce incorrect results. In practice, the

CFL-condition imposed is found to be approximately [22]

C =
〈k〉1/2∆t

h
=

1

20
(2.21)

where C is the Courant number and 〈k〉 is the turbulent kinetic energy.

In order to accumulate reliable statistics, velocity and temperature fields are
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saved after the initial transient has suppressed and with a time step large enough to

guarantee temporally uncorrelated configurations. Let t∗ be the characteristic time

of the large-scale circulation, defined as

t∗ = 2
H√

gα∆TH
, (2.22)

and let ∆ts be the time interval between two storages, then ∆ts/t
∗ > 1 is a necessary

and sufficient condition to obtain temporally uncorrelated fields.

The parameters and resolution settings of the simulations are given in Table 2.1.

DNS are performed at the same Ra and at different Pr to investigate the effects of

the last parameter on the flow. With the available computational resources, only

low Ra flows were reachable. Indeed, the resolution requirements increase with Ra

and so does the computational load, as can be seen from the relations (2.19).

It should be noted that a 128×128×129 grid is suitable for all the simulations (as

stated previously, a posteriori validation is applied to the resolution). The time step

is not reported because it is adaptive, which means that it is periodically updated to

fulfill the minimum CFL condition. Finally, the time interval between two successive

storages fully satisfies the requirement.

Ra Pr Re ∆ts/t
∗ ∆x/πηK ∆x/πηT Nx ×Ny ×Nz

1.7× 105 0.7 493 10 0.72 0.56 128× 128× 129
1.7× 105 2.0 292 10 0.43 0.73 128× 128× 129
2.1× 105 7.0 172 10 0.25 1.05 128× 128× 129

Table 2.1: Simulation parameters.
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Chapter 3

Numerical results

3.1 Instantaneous fields

In order to identify specific flow regions and characteristic structures, a preliminary

approach to the study of turbulent Rayleigh-Bénard convection consists of analy-

zing the temperature and velocity fields obtained by DNS. Figures 3.1, 3.2 and 3.3

show instantaneous velocity field (arrows) superimposed on the instantaneous sur-

face temperature field (colored area) for different Pr. As can be seen in the vertical

slices xz plotted in Figure 3.1(c), 3.2(c) and 3.3(c), a recurrent coherent structure

is present, consisting of a localized portion of fluid having a temperature contrast

with the background. This structure, named thermal plume, plays a fundamental

role in turbulent convection as it carries a large fraction of the heat into the core of

the flow.

Hot and cold plumes detach respectively from the bottom and the upper plate,

moving toward the core of the cell driven by buoyancy forces, which are triggered

by a density contrast with the ambient. As heated fluid rises, it pushes aside the

cooler fluid above it. As can be clearly seen in the vertical slices, the rising fluid

produces a stalk, while the deflected fluid produces a cap on top. As the pushing and

deflection continue, the edge of the cap may further fold over, creating a mushroom-

like structure [15]. The same behaviour affects cooled descending plumes.

Many studies [16][26][31] have shown two different morphologies for the plume:

the sheet-like plume, which is observable close to the walls, and the mushroom-like

plume, which is observable in the core. Figure 3.1(a), 3.2(a) and 3.3(a) show a

horizontal xy slice of an instantaneous temperature field close to the wall for each

21
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(a) (b)

(c)

Figure 3.1: Cross-sections of the temperature Θ with superimposed velocity vectors
for the Pr = 0.7 DNS. The slices shown are (a) a horizontal slice at the edge of the
thermal boundary layer, (b) a horizontal slice through the centre, (c) a vertical slice
through the centre. The colour scales range from blue (negative values) through
green (zero) to red (positive values).

Prandtl number considered. A fine network of thin plumes is visible. The sheet-

like structures are formed by impingement of cold plumes onto the bottom plate,

as the hot fluid in the boundary layer is pushed away. As expected, sheet-like

plumes become thinner as the Prandtl number increases due to the smaller thermal

diffusivity, in comparison with the kinematic viscosity.

The horizontal xy slices through the centre of the cell are plotted in Figure

3.1(b), 3.2(b) and 3.3(b). The pattern of sheet-like plumes is almost lost in the

middle cross-section and horizontal vortical structures are visible. Therefore, the

slices through the centre of the cell likely to be horizontal cuts of mushroom-like

plumes. By comparing the middle cross-sections at different Pr, we observe larger

mushroom-like plume sections at higher Pr. It seems like sheet-like plumes, which

are very thin due to high Pr, cluster together creating a set of massive mushroom-

like structures.
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(a) (b)

(c)

Figure 3.2: Cross-sections, as in Figure 3.1, of the temperature Θ for the Pr = 2
DNS.

The transition from sheet-like plumes to mushroom-like ones is clearly shown

in the vertical xz slices. The tendency of the plume to broaden with distance

from its source, getting swept and tilted, is a statement of its tendency to become

turbulent and entrain ambient fluid. As the laminar, sheet-like plumes move away

from the walls, a free shear layer will develop at its boundaries with the ambient

fluid. This shear layer will be subjected to the same type of shear flows instabilities

experienced by mixing layers and as a result it will “roll up” under the influence

of coherent structures or large eddies [21], represented in Figure 3.4 by red surfaces

(see Appendix B for further details about the plotted quantity). As in the free shear

layers, these eddies initiate the transition to fully developed turbulent flow, in this

case a turbulent, mushroom-like plume.

Hot and cold plumes do not collide, but group together to create a set of circula-

ting cells, having a characteristic length comparable with the height of the cell. The

formation of these structures of the velocity field, named large-scale circulations, is

inevitable due to the positive feedback resulting from the interaction between the
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(a) (b)

(c)

Figure 3.3: Cross-sections, as in Figure 3.1, of the temperature Θ for the Pr = 7
DNS.

Figure 3.4: Snapshot of turbulent Rayleigh-Bénard convection at Pr = 7. Plumes
are clearly visible through the orange isosurface of temperature (Θ = 0.2), whereas
the red surfaces reveal the vortical structures.
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temperature field and the circulation itself. Qualitatively, the plumes impingement

generates horizontal pressure gradients at the top and bottom walls that drive a

mean flow which transports a relatively large amount of thermal energy through the

bottom layers. The net transport of thermal energy toward the region with ascen-

ding flow causes spatial temperature gradients. Finally, these spatial temperature

differences induce spatial gradients in the buoyancy which completes the feedback

loop [30].

3.2 Mean and root mean square

A first statistical approach to the study of turbulent Rayleigh-Bénard convection

is the analysis of one-point statistics. The simplest statistical properties are the

mean, or first moment, and the variance, or second moment, which allow a rough

characterization of the flow. We start by introducing the decomposition of the

velocity Ui(x, y, z, t) and the temperature Θ(x, y, z, t) fields into mean, 〈Ui(x, y, z, t)〉
and 〈Θ(x, y, z, t)〉 respectively, and fluctuation

ui(x, y, z, t) = U(x, y, z, t)− 〈Ui(x, y, z, t)〉 , (3.1)

θ(x, y, z, t) = Θ(x, y, z, t)− 〈Θ(x, y, z, t)〉 . (3.2)

This decomposition is referred to as the Reynolds decomposition, i.e. [22]

Ui(x, y, z, t) = ui(x, y, z, t) + 〈Ui(x, y, z, t)〉 (3.3)

Θ(x, y, z, t) = θ(x, y, z, t) + 〈Θ(x, y, z, t)〉 . (3.4)

Thermal gradients are the driving factor of Rayleigh-Bénard convection, there-

fore a good starting point for providing a topological characterization of the flow

is to analyze one-point statistics of the temperature field. Figure 3.5(a) plots the

mean temperature as a function of z and for different Prandtl numbers. Two well

separated regions are clearly observable: a gradient-dominated layer next to the

horizontal plates and a nearly isothermal region in the center.

By recalling the Nusselt number defined in (2.15), we can state that the heat

transport is mostly conductive close to the walls and is mostly convective in the

central region. The conductive layer, made of quiescent fluid, it is called thermal

boundary layer. On the other hand, the central, nearly isothermal region, is called
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bulk. Now we focus on the thermal boundary layer; this region is defined in terms

of its thickness δt as

δt =
H

2Nu
= −∆T

2

d 〈Θ〉
dz

∣∣∣∣
z=−H/2

, (3.5)

which is the distance from the horizontal walls supporting a temperature difference

roughly equal to ∆T/2. The peak distance of the root mean square (r.m.s.) tem-

perature
√
〈θ2〉 from the plates is another definition of the thermal boundary layer

thickness, hereafter referred to as δrmst .

By measuring d 〈Θ〉 /dz at the walls, we can obtain the Nusselt number for all

the DNS. As can be seen in Table 3.1, Nu increases with Pr and, therefore, δt

Pr=0.7 Pr=2 Pr=7

Nu 5.0 5.1 5.2

Table 3.1: Nusselt numbers at different Pr

decreases by definition. Anyway, the variation in thickness is so small that in Figure

3.5(a) only an average value of δt is plotted. A comparison between Figure 3.5(a)

and (b) clearly indicates that both methods for extracting the thermal boundary

layer lead to the same result, which means that the average δrmst is nearly equal

to the average δt. We have separated the thermal boundary layer from the rest of

the flow by defining its thickness, nevertheless it is still not clear what mechanism

regulates the characteristic dimension of this layer. To that end, we introduce a

local Rayleigh number

Raδ =
gα∆Tδ3

t

νκ
, (3.6)

where δt is the characteristic length. The thickness δt is regulated by the local

Rayleigh number in the sense that Raδ must be approximately equal to the critical

Rayleigh number Rac, as a sign of the thermal boundary layer marginal stability.

Indeed, when Raδ exceeds Rac in a specific location, the boundary layer detaches

permanently from there, as the buoyancy forces prevail on dampening effects, and

a thickness is restored so that Raδ ≈ Rac.

The presence of large-scale structures of the velocity field, which develop both
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(a) (b)

Figure 3.5: (a) The mean temperature 〈Θ〉 and (b) the r.m.s. temperature
√
〈θ2〉

as a function of z, for Pr = 0.7 (solid line), Pr = 2 (dashed line) and Pr = 7
(long dashed line). The average of δt/H and δrmst /H over the three simulations are
plotted respectively in (a) and (b) with dotted lines.

for confined and unconfined domains i.e. periodic boundary conditions on sidewalls

[30], generate two viscous boundary layer just below the top and just above the

bottom plate. The viscous boundary layer thickness δν is commonly defined as the

peak position of
√
〈u2〉 or

√
〈v2〉, the r.m.s. horizontal velocities. As can be seen in

Figure 3.6(a), δν shows clear dependence on the Prandtl number and in particular δν

increases with Pr. Since the thermal boundary layer thickness is almost constant,

the ratio δν to δt also increases with Pr. This result agrees with the Grossmann-

Lohse theory [13], in which a viscous, Blasius-type boundary layer is assumed, with

a thickness

δν ∼
H√
Re

, (3.7)

where the characteristic velocity of the Reynolds number is the r.m.s. horizontal

velocity, probing the large-scale turbulence and thus the large-scale circulations. By

recalling equation (3.5), we obtain the ratio of δν to δt predicted by the Grossmann-

Lohse theory

δν
δt
∼ Nu

2
√
Re

. (3.8)
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(a) (b)

Figure 3.6: (a) The r.m.s. velocity
√
〈u2〉 and (b) the r.m.s. velocity

√
〈w2〉 as a

function of z, for Pr = 0.7 (solid line), Pr = 2 (dashed line) and Pr = 7 (long
dashed line). The viscous boundary layer thickness δν/H is shown in (a) for the
three simulations.

Furthermore, it becomes clear from Table 3.1 and Figure 3.6 that at higher Pr

the Nu is almost constant whereas Re is smaller, as the r.m.s. horizontal velocity is

smaller. Consequently, the theoretically-based ratio (3.8) increases with the Prandtl

number according to the DNS single-point statistics. This result confirms the pre-

sence of laminar boundary layers next to the walls, as can be expected from the low

Rayleigh number at which DNS are conducted.

The characteristic size of the bulk is much greater than δt or δν , and it is com-

parable with the height of the cell H. Along this zone, fragments of the thermal

boundary layers are transported by buoyancy forces, which are accompanied by a

broadening of these structures due to diffusion and mixing by turbulent fluid [6].

Since the temperature derivative is almost zero, the heat flux across the bulk is

mainly convective and it originates from the interaction of the mean temperature

field and the vertical velocity fluctuations, measured by
√
〈w2〉 and plotted in Figure

3.6b.

As can be seen from these single-point statistics, turbulent Rayleigh-Bénard

convection is thermodynamically a heat engine, made of different working parts [29].

Heat enters the fluid at hot boundaries, is transported through the bulk mainly

by convection, and leaves it at colder boundaries. Inside the flow, the thermal

energy is converted into kinetic energy by buoyancy forces, then it is distributed
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and dissipated within the fluid. To display all these mechanisms, the analysis of the

turbulent kinetic energy budget is performed in the next section.

3.3 Turbulent kinetic energy equation

The evaluation of the turbulent kinetic energy budget is mandatory to obtain a

clearer picture of the turbulent convection, therefore a detailed examination of one-

point statistics such production, dissipation and spatial redistribution of turbulent

kinetic energy is carried on. The intensity of turbulence at a certain point in the

geometric domain is related to the so-called instantaneous turbulent kinetic energy

density, defined as

k =
1

2
uiui (3.9)

Using the Oberbek-Boussinesq equations (2.11), one can derive an evolution equa-

tion for k. By subtracting the average of (2.11) from (2.11), we obtain a set of

equations for the fluctuations. Horizontal isotropy and homogeneity, together with

the no-slip condition at the top and bottom plates, yield 〈Ui〉 = 0. Therefore the

equations for the fluctuations can be written as

∂ui
∂xi

= 0, (3.10a)

∂ui
∂t

+ uj
∂ui
∂xj

=
∂ 〈uiuj〉
∂xj

− ∂p
′

∂xi
+

√
Pr

Ra

∂2ui
∂xj∂xj

+ θδiz, (3.10b)

∂θ

∂t
+
∂ 〈ujθ〉
∂xj

=
1√
PrRa

∂2θ

∂xj∂xj
, (3.10c)

where p
′
= p∗−〈p∗〉 is the pressure fluctuation. Taking the scalar product of equation

(3.10b) with ui and then taking the ensemble average, yield

∂ 〈k〉
∂t

+
∂ 〈kuj〉
∂xj

= −
∂
〈
uip

′〉
∂xi

+

√
Pr

Ra

〈
ui

∂2ui
∂xj∂xj

〉
+ 〈uiθ〉 δiz (3.11)

When the flow is in the stationary state, ∂ <> /∂t vanishes. After some manipula-

tion, we get

− ∂ 〈kuj〉
∂xj

−
∂
〈
uip

′〉
∂xi

+

√
Pr

Ra

∂2 〈k〉
∂xj∂xj

+ 〈wθ〉 − 〈ε̃〉 = 0. (3.12)
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Here, w = W − 〈W 〉 is the vertical velocity component fluctuation and 〈ε̃〉 is the

average rate of pseudo-dissipation, defined as

〈ε̃〉 =

√
Pr

Ra

〈
∂ui
∂xj

∂ui
∂xj

〉
= 〈ε〉 −

√
Pr

Ra

∂2 〈uiuj〉
∂xi∂xj

, (3.13)

where 〈ε〉 is the average rate of “real” dissipation. In virtually all circumstances

the final term in (3.13) is small and consequently the distinction between 〈ε〉 and

〈ε̃〉 is seldom important [22]. Because of the horizontal isotropy and homogeneity,

∂ <> /∂x = ∂ <> /∂y = 0, hence we can rewrite (3.12) as

− d 〈kw〉
dz

−
d
〈
wp

′〉
dz

+

√
Pr

Ra

d2 〈k〉
dz2

+ 〈wθ〉 − 〈ε̃〉 = 0, (3.14)

which is the so-called turbulent kinetic energy equation. The first three terms are,

respectively, the inertial, the pressure-velocity and the viscous contribution to the

turbulent kinetic energy transport (per unit mass) across the horizontal planes of

the cell. The last two terms are, respectively, a source and a sink of energy in the k

equation and are called production and dissipation.

The different terms in the turbulent kinetic energy equation (3.14), are repor-

ted in Figure 3.7 for the Pr = 0.7 simulation. Two distinct regions are clearly

recognizable in the flow: a core homogeneous region in which the terms are almost

constant, and a inhomogeneous layer close to the wall. By inspecting Figure 3.6(a),

it is possible to identify the homogeneous and the inhomogeneous layer with the

bulk and the viscous boundary layer respectively.

The production term is dominant in the bulk, where it exceeds dissipation by a

factor of around 1.8. The excess energy produced is carried away by the transport

terms and sent toward the wall, where energy dissipation dominates. The negative

value of the transport indicates the extraction and the positive values indicates the

supply of energy to the corresponding region. Figure 3.7(b) displays the different

contributions to the transport. The viscous and inertial components are nearly zero

in the bulk and the pressure transport is the only effective contribution.

Approaching the wall, the production decreases and the dissipation grows, there-

fore the transport term becomes positive to balance the equation. The pressure and

inertial components reach a maximum value within the boundary layer and become

zero at the wall as the velocity fluctuations vanish at the boundary. The energy
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(a) (b)

Figure 3.7: (a) Turbulent kinetic energy budget vs. distance from the wall (0.5−|z|)
for Pr = 0.7: production (solid line), total transport (dashed line) and dissipation
(long-dashed line). (b) Different contributions to the transport vs. distance from
the wall (0.5−|z|): inertial transport (dashed line), pressure transport (long-dashed
line) and viscous transport (solid line).

supplied by them is distributed within the boundary layer by the viscous transport,

which is negative in the outer part of the boundary layer and positive in the inner

part. Finally, the peak dissipation occurs at the wall, where the production is zero

and the energy supply is provided only by the viscous transport.

Introducing the definition of the overall flux of turbulent kinetic energy,

φ(z) = 〈kw〉+
〈
wp

′
〉
−
√
Pr

Ra

d 〈k〉
dz

, (3.15)

we can rewrite equation (3.14) as

dφ

dz
= 〈wθ〉 − 〈ε̃〉 (3.16)

Figure 3.8 displays the different contributions to φ as a function of the distance

from the wall and for Pr = 0.7. Where it is negative, the flux transfers energy

toward the wall; where it is positive, the flux transfers energy toward the bulk.

The peak flux occurs in the external part of the viscous boundary layer, where the

overall transport of turbulent kinetic energy is equal to zero. For 0.5 − |z| < 0.1

there is a sudden decrease of φ, which means that the energy coming from the bulk
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Figure 3.8: Different contributions to the flux φ as a function of the distance from
the wall (0.5 − |z|) for Pr = 0.7: inertial component (dots), pressure transport
(dashed line), viscous transport (dashed-dotted line) and the total flux (solid line).

is intensely released inside the viscous boundary layer to balance the production

decrease and the dissipation increase. As expected, the pressure contribution to the

flux is dominant inside the bulk whereas it is negligible very close to wall. On the

other hand, the inertial contribution is almost negligible everywhere and the viscous

contribution is the most important one only very close to wall.

This picture of the flow confirms that the bulk plays the role of engine in turbulent

Rayleigh-Bénard convection. Furthermore, the energy produced in the core region

is sent toward the walls mainly by the pressure transport and finally it is dissipated

close to the walls, where the viscous effects are dominant.

For the purpose of topological characterization, the others DNS do not add

any relevant information, anyway it is important to study the dependence of the

energy balance on the Prandtl number. In Figure 3.9 production and dissipation are

plotted for the three values of Pr. It is concluded that production and the absolute

value of dissipation decrease as Pr increases. This behaviour is strictly related to

the Reynolds number characteristic of each simulation. Hence, as can be seen in

Table 2.1, higher Pr corresponds to lower Re and, therefore, turbulence intensity

decreases as Pr increases. Loosely speaking, velocity fluctuations are dampened

efficaciously by high values of the kinematic viscosity, thus an higher Pr implies a

lower production term 〈wθ〉. Furthermore, the less energy is introduced in the flow,
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the less energy is transported away from the bulk and dissipated close to the walls.

(a) (b)

Figure 3.9: Turbulent production (a) and dissipation (b) vs. distance from the wall
(0.5−|z|) for Pr = 0.7 (solid line), Pr = 2 (dashed line), Pr = 7 (long-dashed line).

3.4 Two-point correlations

In Section 3.1, a qualitative analysis of the coherent structures of the flow was

attempted. Nevertheless, to draw conclusions about the characteristic length of

the plumes, two-point statistics are needed. The simplest statistic containing some

information on the spatial structure of the velocity and temperature fields is the two

point, one-time autocovariance which is often referred to as the two-point correlation

[22]. A correlation coefficient Rij can be defined as

Rij(~π, z, ~r, t) =
〈ui(~π, z, t)uj(~π + ~r, z, t)〉√
〈ui(~π, z, t)〉2 〈uj(~π + ~r, z, t)〉2

, (3.17)

where i, j = x, y, z, ~π = (x, y) and ~r = (rx, ry) are respectively the position vector

and the separation vector in the xy-plane at height z. Moreover, ui(x, y, z, t) is

a generic vector field. Taking into account the statistical stationarity, the planar

homogeneity and isotropy, the dependence of Rij on both the position vector ~π and

the direction of ~r vanishes, hence

Rij(~π, z, ~r)→ Rij(z, r), (3.18)
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where r = |~r|. When r = 0, the correlation coefficient Rij is, by definition, equal to

one. At large r the fluctuations of ui(x, y, z, t) become independent of one another,

therefore

lim
r→∞
〈ui(~π, z, t)uj(~π + ~r, z, t)〉 = 0 (3.19)

and Rij asymptotically approaches zero. A correlation curve Rij(r) indicates the

distance over which the motion at one point significantly affects that at another. It

may be used to assign a length scale to the turbulence; a length can be defined for

example as
∫∞

0
Rijdr, or as the distance in which Rij falls to 1/e, or the value of r

at which Rij becomes zero [29].

Thermal plumes are coherent structures of the temperature field, which can be

extracted from the flow using a threshold on both the temperature and the vertical

velocity component. Hence, to evaluate the characteristic diameter of the plumes,

the vertical velocity correlation coefficient R22 and the temperature correlation coef-

ficient R are plotted as a function of the separation r (see Figures 3.10). Values

(a) (b)

Figure 3.10: (a) Vertical velocity correlation coefficient R22 and (b) temperature
correlation coefficient R vs. the separation r for Pr = 0.7 (solid line), Pr = 2
(dashed-line) and Pr = 7 (dotted line).

above zero express a positive correlation, which means that as a variable increases

in one point, the same variable in the other point increases too. That implies a link

between the two points and, therefore, the presence of a coherent structure. Values

equal to zero indicate a lack of correlation and the corresponding separation r could
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represent the boundary of the coherent structure i.e. the diameter of the plume.

As can be seen from Figure 3.10(a), the characteristic velocity-based diameter dv is

nearly equal to one in the center of the cell, independent of the Prandtl number.

Furthermore, R22 reaches a positive peak at r = 4, which probably suggests that the

coherent structures are separated by a distance r ≈ 4. In relation to Figure 3.10(b),

the following observation can be made. As Pr increases, both the temperature-based

diameter dt and the distance between two successive peaks, increase. The simulation

at Pr = 0.7 is the only one that shows two distinct, positive correlated structures

i.e. plumes having the same direction. In the horizontal slices through the centre,

at Pr = 2 and Pr = 7, the mushroom-like plumes are wide and massive, and the

domain seems not to be large enough to contain two positive correlated structures.

3.5 The generalized Kolmogorov equation

Turbulence is a multi-scale phenomenon, which means that in a generic point of

the geometric domain, flow structures or eddies of various sizes coexists. Moreover,

eddies range in size from the characteristic width of the flow, H, to much smaller

scales, which become progressively smaller as the Reynolds number increases. An

“eddy” eludes precise definition, but it is conceived to be a turbulent motion that

is at least moderately coherent over a certain region [22].

The multi-scale feature poses a challenge in understanding turbulence because

processes such as energy production, transport and dissipation depend both on

the position in the geometric space xi and on the turbulent scale considered ri.

For this reason the turbulent kinetic energy equation, introduced in Section 3.3,

is insufficient to describe completely the turbulent dynamics because the balanced

terms are single-point observable i.e. they depend on space coordinates but not on

turbulent scales.

In this scenario, it is, therefore, necessary to provide a global approach. Appro-

priate candidates to consider for a simultaneous description of turbulent dynamics

in physical and scale space are the two-points statistical observables, such as the

second-order structure function for the velocity 〈δu2〉 (xi, ri) and the temperature

〈δθ2〉 (xi, ri) [10], introduced in Section 1.2. As previously mentioned, these quan-

tities can be thought as measures of the amount of kinetic and thermal energy,

respectively, at scale r =
√
riri and depend both on separation vector ri and the
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spatial location of the mid-point xi, as sketched in Figure 3.11.

Figure 3.11: Sketch of the velocity difference between two points ~x and ~x′′: ~r is the
separation vector, ~x is the midpoint of ~r, ~u′ = ~u(~x′), ~u′′ = ~u(~x′′) and δ~u = ~u′′ − ~u′.
The picture is partially based on a sketch in [20].

Using the equations for an incompressible flow, a balance for the second-order

structure function 〈δu2〉, hereafter referred to as scale energy, can be derived. In the

simplest case of stationary homogeneous isotropic turbulence i.e ∂ 〈·〉 /∂xi = 0 and

∂ 〈·〉 /∂rx = ∂ 〈·〉 /∂ry = ∂ 〈·〉 /∂rz, the following balance for the scale energy was

proposed a long time ago by Kolmogorov in his famous 1941 papers [18] [17]

∂ 〈δu2δui〉
∂ri

= −4 〈ε〉+
2

Re

∂ 〈δu2〉
∂ri∂ri

+ 2 〈δfiδui〉 , (3.20)

where i = x, y, z and δfi(x,ri) = fi(xi + ri/2) − fi(xi − ri/2). Here, fi(xi) is an

external, statistically stationary and homogeneous forcing which effects only the

largest scale of the system and supplies the kinetic energy lost by viscous dissipation.

The term on the left hand side and the second term on the right hand side of equation

(3.20) are respectively the inertial and the viscous contributions to the transport of

scale energy in the space of scales, whereas the first and the last terms on the right

hand side are, respectively, a sink and a source of scale energy, called dissipation

and production. As can be noted, in homogeneous settings transport occurs only in

the space of scales. There is no transport in the geometric domain, which is induced

by inhomogeneity.

On the basis of equation (3.20), Kolmogorov developed in 1941 a phenomenolo-

gical theory (K41) for the second-order velocity structure function. There are three

hypotheses in the K41 theory. The first one, called the local isotropy hypothesis, is
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an assumption of statistical homogeneity and isotropy of the small-scale turbulent

motion (r � H) when the Reynolds number is sufficiently high and far from the

boundaries. The second assumption, called the first similarity hypothesis, states

that a range of scales r � re exists, in which the statistics of δui are uniquely deter-

mined by the mean dissipation rate 〈ε〉, the kinematic viscosity ν and the scale r,

under the same conditions of the first assumption. The scale re is much less than H

and represents the boundary between the isotropic and the anisotropic regimes of

turbulence. Furthermore, the range r � re is generally called universal equilibrium

range. The last assumption, called the second similarity hypothesis, states that a

range of intermediate scales η � r � H exists in which the statistics of δui are

uniquely and universally determined by the mean dissipation rate 〈ε〉 and r, under

the same conditions of the first assumption. This range of intermediate length scales

is known as the inertial range.

In agreement with the Kolmogorov hypotheses, both the viscous contribution to

the transport of scale energy and the production are negligible inside the inertial

range, therefore equation (3.20) can be rewritten as

∂ 〈δu2δui〉
∂ri

= −4 〈ε〉 . (3.21)

Considering the integration of equation (3.21) over a sphere B of radius |~r| centered

at ~r = 0, equation (3.21) leads to∫
∂B

〈
δu2δui

〉
· ~nrdS = −4

3
〈ε〉 r, (3.22)

where ~nr is the outer normal to the sphere and the divergence theorem is used on

the resulting volume integrals and it is divided by 2πr2. Since the flow considered

here is isotropic, the integration over the sphere is redundant and relation (3.22)

reduces to

〈δu2δui〉 ri
r

= −4

3
〈ε〉 r, (3.23)

that gives the well-known K41 scaling, which predicts the statistical behaviour of

inertial range turbulent velocity fluctuations

δu(r) ∼ 〈ε〉1/3 r1/3. (3.24)
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Homogeneous and isotropic turbulence is quite uncommon in applications be-

cause it implies the absence of any solid boundary and any inhomogeneity in the

mean velocity field, nevertheless it is a simple model for studying the dynamic of the

chaotic fluid motion from a physical point of view. When dealing with wall-bounded

turbulent flows, such as Rayleigh-Bénard convection, the statistical inhomogeneous

condition and anisotropy has to be considered. Inhomogeneity increases the com-

plexity of turbulent physics by introducing a spatial redistribution of energy and to

a strong position-dependence of the turbulence dynamics. To deal with these more

general conditions, the generalization of the Kolmogorov’s approach to turbulence

in the form of a balance equation for the second-order structure function, 〈δu2〉, can

be used [10]. Following the procedure described for the first time by Hill [14] in

2002, it is possible to obtain from the Navier-Stokes equations the generalized form

of the Kolmogorov equation for globally anisotropic and inhomogeneous conditions

[20]

∂ 〈δu2〉
∂t

+
∂ 〈δu2δui〉

∂ri
+
∂ 〈δu2δUi〉

∂ri
+ 2 〈δuiδuj〉

∂ 〈δUj〉
∂ri

+
∂ 〈u∗i δu2〉
∂xi

+

∂ 〈δu2U∗i 〉
∂xi

+ 2 〈u∗i δuj〉
∂ 〈δUj〉
∂xi

= −4 〈ε̃∗〉+
2

Re

∂ 〈δu2〉
∂ri∂ri

− 2
∂ 〈δpδui〉
∂xi

+

1

2Re

∂2 〈δu2〉
∂xi∂xi

,

(3.25)

where the asterisk denotes the mid-point average

β∗ =
β (x′′i ) + β (x′i)

2
, (3.26)

for a generic variable β, where x′i = xi − ri/2 and xi
′′ = xi + ri/2. This evolution

equation allows to identify all the processes which characterize the dynamics of

inhomogeneous anisotropic flows both in the space of scales and in the physical space.

In particular, the terms with r-derivatives describe physical processes which transfer

energy through scales while those with x-derivatives arise due to inhomogeneities

and describe physical processes which transfer energy through different regions of the

flow [10]. When homogeneous and isotropic conditions are reached, the generalized

Kolmogorov equation reduces to the classical Kolmogorov equation (3.20) with the

exception of 2 〈δfiδuj〉, which is “artificially” added to the Kolmogorov equation to
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supply energy and preserve the temporal invariance of the system.

Next, we show how to specialize equation (3.25) to the turbulent Rayleigh-Bénard

convection. Horizontal isotropy and homogeneity yield ∂ 〈·〉 /∂x = ∂ 〈·〉 /∂y = 0 and,

together with the no-slip conditions at the top and bottom plates, 〈Ui〉 = 0. When

the flow is in the stationary state, ∂ 〈·〉 /∂t vanishes. Finally, the term 2〈δθδw〉 is

included to take into account the production of scale energy due to buoyancy forces.

Thus we get

∂ 〈δu2δui〉
∂ri

+
∂ 〈w∗δu2〉

∂z
= −4 〈ε̃∗〉+ 2

√
Pr

Ra

∂2 〈δu2〉
∂rj∂rj

−2
∂ 〈δpδw〉

∂z
+

1

2

√
Pr

Ra

∂2
〈
δu2
〉

∂z2
+ 2〈δθδw〉,

(3.27)

where Re =
√
Ra/Pr.

Equation (3.27) manifests a well-defined asymptotic behaviour as larger and

larger scales are approached. For r � l, where l is the relevant correlation length,

quantities evaluated at x′i and xi
′′ are uncorrelated and equation (3.27) reduces,

within a factor four, to the mid-point average of the single-point energy budget

(3.14) [20]. For example, the large scale limit of the inertial transport in the space

of scales is

lim
r→∞

∂ 〈δu2δui〉
∂ri

=
1

2

(
∂
〈
u

′2u
′
i

〉
∂x

′
i

+
∂
〈
u

′′2u
′′
i

〉
∂x

′′
i

)
=
∂ 〈u2ui〉∗

∂xi
=
∂ 〈u2w〉∗

∂z
, (3.28)

where u
′
i = ui(x

′
i) and u

′′
i = ui(x

′′
i ) as sketched in Figure 3.11. The following rules

for the transformation of the derivatives have been used

∂

∂ri
=

1

2

(
∂

∂x
′′
i

− ∂

∂x
′
i

)
,

∂

∂xi
=

1

2

(
∂

∂x
′′
i

+
∂

∂x
′′
i

)
. (3.29)

It can be demonstrated that the large scale limit of the inertial transport in the

geometric space is

lim
r→∞

∂ 〈w∗δu2〉
∂z

=
∂ 〈u2w〉∗

∂z
. (3.30)

Relation (3.28) and (3.30) reveal that both the contributions, in the space of scales

and physical space, to the transport of turbulent kinetic energy are present with
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the same value in the turbulent kinetic energy equation. Therefore, the single-point

transport of turbulent kinetic energy represents the large scale boundary condition

for the corresponding terms in the generalized Kolmogorov equation [10].

Rearranging equation (3.27) in order to group all the terms together on the left

hand side and, then, averaging over a circle C of radius r belonging to xy parallel

planes since we are homogeneous and isotropic in the xy-plane, we obtain the so

called r-averaged form of equation (3.27)

Tc(r, z) + P (r, z) +Dc(r, z) + Tr(r, z) +Dr(r, z) + Π(r, z) + E(r, z) = 0, (3.31)

where

Tc = − 1

πr2

∫
C(r)

∂ 〈w∗δu2〉
∂z

dxdy, P = − 2

πr2

∫
C(r)

∂ 〈δpδw〉
∂z

dxdy

Dc =
1

2πr2

√
Pr

Ra

∫
C(r)

∂2
〈
δu2
〉

∂z2
dxdy.

(3.32)

are respectively the inertial, the pressure-velocity and the viscous contributions to

the transport of scale-energy in geometric space, which arises from the inhomoge-

neous condition. Furthermore

Tr = − 1

πr2

∫
C(r)

∂ 〈δu2δui〉
∂ri

dxdy, Dr =
2

πr2

√
Pr

Ra

∫
C(r)

∂2 〈δu2〉
∂rj∂rj

dxdy, (3.33)

are, in order, the inertial and the viscous contributions to the transport of scale

energy in the space of scales, and finally

Π =
2

πr2

∫
C(r)

〈δθδw〉dxdy, E = − 4

πr2

∫
C(r)

〈ε̃∗〉 dxdy, (3.34)

are the production and dissipation of scale energy, respectively.

The generalized Kolmogorov equation directs the attention to the energy content

of a given scale r of turbulent motion as a function of the z-coordinate, allowing us

to display the processes occurring simultaneously in the space of turbulent scales

and in the physical space. To streamline the notation, the overall transport in the
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geometric space and in the space of the scales, respectively T̃c and T̃r, are introduced

T̃c(r, z) = Tc(r, z) + P (r, z) +Dc(r, z), T̃r(r, z) = Tr(r, z) +Dr(r, z), (3.35)

thus we can rewrite equation (3.31) as

T̃c(r, z) + T̃r(r, z) + Π(r, z) + E(r, z) = 0. (3.36)

We start by giving a physical interpretation of this balance. Let us consider the

eddies of different sizes filling an horizontal plane at height z of the convection cell

(see Figure 3.12 (left)). This picture agrees with the Richardson’s view of turbulence

[24], in which turbulent flows are composed by eddies of different size r and these

eddies are superimposed i.e. large structures contain smaller structures. Statistically,

these eddies can be organized into a set of concentric circles of radius r, as sketched

in Figure 3.12 (right). The largest and the smallest eddies correspond respectively

to the outmost and the innermost circle whereas the intermediate structures are

represented by in-between circles.

Figure 3.12: Left: sketch of multi-scale eddies in a horizontal plane of the cell.
Right: conceptual representation of the eddy-hierarchy.

Now, we consider the energy budget (3.36) at the largest scale of turbulent

motion. For r much greater than the relevant correlation length, the generalized

Kolmogorov equation reduces, within a factor four, to the turbulent kinetic energy

equation, therefore, at the largest scale, the energy balance to be considered is simply

the turbulent kinetic energy equation (3.14), which is represented in the first sketch

from left of Figure 3.13. As can be seen, the more energy enters the largest scale of
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turbulence (red arrow) by production and spatial transport mechanisms, the more

it is dissipated within it (purple arrow).

To specify the generalized Kolmogorov equation for smaller scales, the outer

shells of our stratified model must be “peeled away” and substituted by a term

accounting for the larger scales just removed, which are represented by dashed lines

in Figure 3.13. This term, indicated by yellow arrows in Figure 3.13, is the overall

transport in the space of scales T̃r. If T̃r is positive, the outer scales supply energy

to the inner one and the so-called direct cascade of energy takes place. On the other

hand, if T̃r is negative, the outer scales subtracts energy from the inner one, meaning

that a reverse cascade process occurs.

Figure 3.13: Sketch of the energy balance at different scales. The colored arrows
represent the sum Π + T̃c (red arrows), the dissipation −E (purple arrows) and the
overall transport in the r-space T̃r (yellow arrows).

The idea of the direct energy cascade was theorised for the first time by Richard-

son in 1922 [24]. According to Richardson’s intuition, the kinetic energy enters tur-

bulence at the largest structures of turbulent motion, where the effects of viscosity

are negligible. These eddies are unstable and break down, transferring their energy

by nonlinear interaction toward smaller eddies. This process continues until the

length scales involved are associated with velocity gradients sufficiently large to give

an appreciable viscous dissipation of kinetic energy into heat. On the other hand,

the transfer of scale energy from small to large scales is called inverse energy cascade.

This phenomenon occurs when the kinetic energy is injected into the turbulence at

small scales, which cluster and merge together into larger ones. This means that

energy is gradually transferred from small to large scales by consecutive coalescent

events [10].



3.5. THE GENERALIZED KOLMOGOROV EQUATION 43

3.5.1 Spatial redistribution of energy

We are now ready to analyse the DNS results. In this section, we consider the

generalized Kolmogorv equation at fixed scales to understand how the scale energy

redistributes in the geometric domain for different values of r. Figure 3.14(a) displays

the production term Π(r, z) as a function of the distance from the wall 0.5 − |z|
for different values of the scale r, at Pr = 0.7. In the same figure, the solid line

corresponds to four times the production of turbulent kinetic energy (4 〈wθ〉), plotted

as a function of the distance from the wall. As can be seen, the production of scale-

energy is concentrated at high r and Π(r, z)→ 4 〈wθ〉 when r →∞, supporting the

theoretical prediction made in the previous section.

The overall transport of scale energy in the geometric space T̃c is plotted in

Figure 3.14(b). As r increases, T̃c increases inside the viscous boundary layer and

decreases in the bulk. Similarly to the single point-energy budget, the negative

value of the transport indicates the extraction and the positive values indicates

the supply of energy to the respective region. At small scale (r = 0.25), T̃c is

positive inside the viscous boundary layer, negative in the internal portion of the bulk

(0.1 < 0.5− |z| < 0.3) and equal to zero in the external one (0.3 < 0.5− |z| < 0.5).

At larger scales, T̃c remains positive inside the viscous boundary layer and becomes

entirely negative in the bulk. This means that the spatial transfer of scale energy

from the bulk toward the near-wall region affects particularly the larger scales. This

behaviour is in accordance with the Kolmogorov first hypothesis, in the sense that

the local isotropy should be recovered at sufficiently small scales and, therefore, only

large eddies should be anisotropic and thus responsible for the spatial transfer of

scale energy [20].

The fundamental term introduced in the generalized Kolmogorov equation is the

transport of scale energy in the r-space, T̃r. As it can be seen from Figure 3.14(c),

at large scales, T̃r is zero in the bulk, then it becomes negative in the external part

of the viscous boundary layer and, finally, positive at the wall. Furthermore, as

r decreases, the T̃r profiles move up and become positive. In confirmation of the

asymptotic behaviour of the generalized Kolmogorov equation, it can be seen in

Figure 3.14(b) that, in the large scale limit, the sum T̃c + T̃r converges to four times

the overall transport of turbulent kinetic energy, which is represented by solid line

in Figure 3.14(b).

The others DNS do not add any relevant information in the sense that the same
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characteristic behaviour at different scales is seen, therefore they are not reported.

(a) (b)

(c) (d)

Figure 3.14: Terms of the generalized Kolmogorov equation vs. distance from the
wall (0.5 − |z|) for r = 0.25 (long-dashed line), r = 0.5 (dashed line), r = 0.9
(dashed-dot line), r = 1.25 (dotted line): (a) production Π, (b) overall transport in

the geometric space T̃c, (c) overall transport in the r-space T̃r, (d) dissipation −E.
In (a) and (b), the solid line represents, respectively, four times the production and
transport of turbulent kinetic energy.
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3.5.2 Scale-by-scale budget

We analyze now the dependence on r of the generalized Kolmogorov balance at fixed

z. To that end, equation 3.31 can be recast in a simple form

T̃r(r, z) + Π̃(r, z) + E(r, z) = 0, (3.37)

to be read as: effective production plus transfer across scales equals dissipation.

The term Π̃ = Tc + P + Dc + Π is the effective production, that is the amount of

scale energy which is effectively available at a given geometric location z. The single

contributions to the effective production are not positive definite, while their sum

must be positive since it represents the only production mechanism of the flow.

The simulations results are organized as follows: Figure 3.15 and 3.16 show the

terms of balance (3.37) at several locations in the near-wall region for the Pr = 0.7

and the Pr = 7 simulations respectively, whereas Figure 3.17 focuses on the center

for both the Pr = 0.7 and the Pr = 7 simulations. The scale-by-scale budget for the

Pr = 2 simulation do not add any relevant information, therefore it is not reported.

We start by analyzing the balance at Pr = 0.7. As can be seen in Figure 3.15(a),

next to the wall (0.5−|z| = 0.02), the dissipation exceeds the effective production at

every scale, hence a positive transfer across scales develops to balance the equation

and a direct energy cascade is observable. The scenario changes radically at a

distance from the wall slightly above 0.02.

Figure 3.15 (b) shows the scale-by-scale budget at 0.5 − |z| = 0.04: as can be

seen, for r < 1.3 the effective production is less than the dissipation, whereas for

r > 1.3 the effective production exceeds the dissipation. This energy excess leads to

both a reverse and a direct cascade; indeed the transfer term T̃r shows both positive

and negative values. As sketched in Figure 3.18, the effective amount of energy

which is available at large scales can not be entirely transferred toward smaller

scales since Π̃ > −E and the smallest scales are demanded to dissipate an amount

of energy equals to E. This means that the direct cascade of energy has reached

its maximum drain capability and the energy excess, Π̃ +E, can only move towards

larger scales, entailing a reverse energy cascade. The amount of energy that reaches

large scales due to the reverse cascade cannot be entirely dissipated because viscous

effects are negligible for r � 1. Hence, a spatial flux of energy is developed, so

that the scale energy can be transported away through the spatial domain (T̃c < 0),
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(a) (b)

(c) (d)

Figure 3.15: Effective production Π̃ (solid line), transport of scale energy in the

r-space T̃r (dashed line) and dissipation E plotted as function of r in the near-
wall region at 0.5 − |z| = 0.02 (a), 0.5 − |z| = 0.04 (b), 0.5 − |z| = 0.08 (c) and
0.5− |z| = 0.14 (d). Results from the Pr = 0.7 DNS.

keeping the statistical stationarity of the flow. The scenario changes at small scales,

where effective production alone is not sufficient to sustain the direct cascade which

leads to dissipation, therefore larger scales must feed the smaller scales with energy,

entailing a direct cascade.

The double cascade is still observable in Figure 3.15(c) and (d): in regards to this

behaviour, it is important to notice that between 0.5−|z| = 0.04 and 0.5−|z| = 0.08,

the range of scales in which the reverse cascade takes place becomes larger and

reaches a maximum. Furthermore, as the distance from the wall increases, the

direct cascade tends to re-establish as can be seen by comparing Figure 3.15(c) with



3.5. THE GENERALIZED KOLMOGOROV EQUATION 47

(a) (b)

(c) (d)

Figure 3.16: As Figure 3.15 but for the Pr = 7 simulation.

Figure 3.15 (d) and 3.17 (a).

By comparing the balance at Pr = 0.7 with the one at Pr = 7, two observations

can be made. First of all, the effective production, the dissipation and, consequently,

the transport of scale energy in the r-space, all evaluated at Pr = 7, are one order

of magnitude less than their equivalents at Pr = 0.7. The fact that, as Pr increases,

the intensity of turbulence decreases, is is strictly related to the Reynolds number

characteristic of each simulation. Hence, as can be seen in Table 2.1, higher Pr cor-

responds to lower Re and, therefore, turbulence intensity decreases as Pr increases.

The second and most import observation is that, for Pr = 7, the maximum range

of scales assigned to the reverse cascade is observable at a distance from the wall

which is much larger as compared with the case at Pr = 0.7. Indeed for Pr = 7, the

range of scales in which the reverse cascade takes place has not a maximum between
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(a) (b)

Figure 3.17: As Figure 3.15 but at (0.5 − |z|) = 0.5, for Pr = 0.7 (a) and Pr = 7
(b).

Figure 3.18: Sketch of the energy balance represented in Figure 3.15 (b), (c) and (d)
and Figure 3.16 (c) and (d). The colored arrows represent the effective production
(red arrows), the dissipation −E (purple arrows) and the overall transport in the
r-space (yellow arrows).

0.5− |z| = 0.04 and 0.5− |z| = 0.08 like Pr = 0.7 simulation, but at distance from

the wall greater than 0.5− |z| = 0.08.

It remains to be understood how the inverse cascade can be explained in terms of

coherent structures. The main clue is the location of the phenomenon as function of

the Prandtl number. By recalling Figure 3.6, which displays the viscous boundary

layer thickness at different Pr, we can claim that the inverse cascade is very strong in

the external part of the viscous boundary layer. The effect of plume impingement is

dominant in this particular region, as can be seen in the instantaneous temperature

and velocity fields displayed in Figure 3.1, 3.2 and 3.3. Hot and cold plumes detach
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from their respective thermal boundary layers, move into the bulk of the cell and

finally impinge on the opposite viscous boundary layer. Following on from the

impact, thermal plumes spread out and organise into larger structures, therefore,

the scale energy localized into plumes flows upwards and a reverse cascade develops.



50 CHAPTER 3. NUMERICAL RESULTS



Chapter 4

Concluding remarks

A numerical study of turbulent Rayleigh-Bénard convection is the main purpose

of this thesis. By analyzing the results from three direct numerical simulations at

Ra ≈ 105 and Pr = {0.7, 2, 7} with many statistical tools, a detailed picture of

convective turbulence is shown. Similarly to other wall-bounded flows, turbulent

Rayleigh-Bénard convection presents anisotropies and coherent structures forma-

tions close to the walls and nearly isotropic turbulence in the bulk. The temperature

field plays a fundamental role in the near-wall region, where large thermal gradients

trigger the detachment of fluid portions from the boundary layers, called plumes,

which move toward the center carrying a large amount of thermal energy. Through

the bulk, the thermal plumes are accelerated by buoyancy forces and a large amount

of turbulent kinetic energy is produced within the flow. Furthermore, the turbu-

lent kinetic energy is transported toward the near-wall region by the plumes and

is finally dissipated inside the viscous boundary layer, induced by the large-scale

circulation. This picture emerges by analyzing the simulation results with both

one-point statistics (mean, variance and one-point energy budget) and two-point

statistics (correlations and Kolmogorov equation). Moreover, a relation between

two fundamental coherent structures of turbulent Rayleigh-Bénard convection, the

thermal plume and the large-scale circulation, can be reasonably seen by analyzing

the generalized Kolmogorov equation. In particular, it has been proposed that the

impingement of thermal plumes leads to the formation of larger structures, such as

the large-scale circulation. The main evidence supporting this phenomenological ex-

planation is the presence of a reverse cascade of energy only in the near-wall region,

where the effect of plume impingement is dominant. To conclude, the fact that a

51



52 CHAPTER 4. CONCLUDING REMARKS

reverse cascade has been identified has a direct effect on future attempts to model

the effects of small-scale motions in turbulent Rayleigh-Bénard convection.



Appendix A

Exact relations

Using the dimensional Oberbeck-Boussinesq equations (2.9) and the boundary con-

ditions (2.12), two exact relations for the mean dissipation rate of turbulent kinetic

energy 〈ε〉 and temperature 〈χ〉, can be derived [8]. Taking the scalar product of

equation (2.9b) for Ui and taking the scalar product of equation (2.9c) for Θ, and

then, averaging over the volume of the cell and time, 〈·〉V,t, we obtain

1

2

d

dt
〈UiUi〉V,t +

1

2

〈
Uj
∂ (UiUi)

∂xj

〉
V,t

= − 1

ρ0

〈
Ui
∂p∗

∂xi

〉
V,t

+ ν

〈
Ui

∂2Ui
∂xj∂xj

〉
V,t

+ αg 〈UiΘ〉V,t δiz, (A.1)
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∂Θ
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∂Θ

∂xj

〉
V,t

. (A.2)

The flow is assumed statistically stationary i.e. d 〈·〉V,t = 0. Using the continuity

equation (2.9a) and the no-slip boundary condition at the walls, we can rewrite

equation (A.1) and (A.2) in the following way

ν

〈
∂Ui
∂xj

∂Ui
∂xj

+
∂Uj
∂xi

∂Ui
∂xj

〉
V,t

= −α 〈UifiΘ〉V,t , (A.3a)

κ
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〉
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κ

2

〈
∂2(Θ2)
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〉
V,t

, (A.3b)
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where the two terms on the left hand side are, in order, 〈ε〉V,t and 〈χ〉V,t. Applying

the divergence theorem gives

κ

2

〈
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= κ
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−
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where 〈
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〉
z=H/2,t

= −
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〉
z=−H/2,t

=
φ

2κ
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Nu

H

∆T

2
. (A.5)

Here, φ is the heat flux through the top and the bottom walls. Finally, the following

exact relations for 〈ε〉V,t and 〈χ〉V,t can be written

〈ε〉V,t = αgκ
∆T

H
(Nu− 1) =

νκ2

H4
Ra(Nu− 1), (A.6a)

〈χ〉V,t =
κ∆T 2

H2
Nu. (A.6b)



Appendix B

Eduction of coherent structures

In the previous chapters, the dynamics of the “coherent structures” has been consi-

dered. An open problem remains in the identification of these structures that is not

always univocal. In fact, a first step towards a better understanding of the physics

of turbulent motions should pass by an unambiguous way to identify the flow struc-

tures.

As far as thermal plumes are concerned the solution is quite simple, since they can

be easily identified using the isocontours of temperature or vertical velocity compo-

nent.

For the identification of the vortices the matter is more complex and is still under

discussion. The method used in this work is the one introduced by Cantwell [9], ba-

sed on the signs of the eigenvalues of the velocity gradient. In this approach vortices

are defined as regions where the rotation prevails over the local strain, allowing for

a spiralling motion of the particles. The existence of a vortical structure is related

to the local kinematic field. Hence, in order to characterise the relative motion in a

given part of the field, the velocity gradient tensor is studied. In fact the equation

for the relative motion vector (r = x− x0) is the following

dri
dt

=
∂ui
∂xj

ri = Aij rj. (B.1)

At each point a linearised problem can be considered and hence the trajectory of

the relative motion is determined by the eigenvalues λ1, λ2 and λ3 of the velocity
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gradient which are the solution of the characteristic equation

λ3 + Pλ2 + Qλ + R = 0. (B.2)

The coefficients of this polynomial equation are the invariants of the velocity gradient

which are equal to

P = −Aii Q = −1

2
Aij Aji R = −1

3
Aij Ajk Aki (B.3)

where the first invariant P is identically equal to zero for incompressible flows. It can

be shown that the nature of the roots is determined by the sign of the discriminant

D =
27

4
R2 + Q3. (B.4)

D = 27/4 R +Q = 02       3      

R

Q

Figure B.1: Summary of the possible topologies.
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If the discriminant is positive the tensor Aij admits two complex conjugate eigenva-

lues and a real one, whereas if D < 0 there are three real eigenvalues. This means

that since there is spiralling motion when there are complex conjugate eigenvalues

the condition for the existence of vortices is D > 0. Because of incompressibility

the sum of the three eigenvalues must be equal to zero, hence there is at least an

eigenvalue of each sign. The division between positive and negative is determined

by the sign of R = −λ1λ2λ3, so if R > 0 there is one direction of contraction and two

of expansion, if R < 0 there is one direction of expansion and two of contraction. A

summary of the possible situations is shown in Figure B.1.

The second invariant can be split is two terms

Q = −1

2
(Sij Sji + Ωij Ωji) (B.5)

this expression underlines the fact that the local flow pattern depends on the ba-

lancing between vorticity and strain. Hence regions where the vorticity prevails on

the strain component of the velocity gradient, positive values of Q, correspond to

positive values of the discriminant. Zones characterised by a high vorticity present

spiralling motion. In this view, we will identify as vortices regions of the turbulent

boundary layer where the discriminant is positive. An important feature of this me-

thod is that both Q and R, and consequently the discriminant, are invariant under

non-uniform translations and are independent of the orientation of the coordinate

transformation.
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