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“Con il simulatore di volo non si va in vacanza”
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Introduzione

Già nel 1965 Gordon Moore (co-fondatore di Intel) teorizzò che il crescente

numero di transistor presenti in un microprocessore e la loro sempre più pic-

cola dimensione, avrebbero portato nei primi anni 2000 ad un’attenuazione

nella crescita di tali dispositivi. Per andare incontro a questo fatto, la co-

munità scientifica ha cominciato già da diversi anni ad indagare il calcolo

parallelo: se non è più possibile aumentare la potenza dei processori, è pos-

sibile introdurre più unità di calcolo in un unico computer, delineando i due

modelli di calcolo parallelo multi-core e many-core. Il primo è attualmente

disponibile nella maggior parte dei PC acquistabili nella grande distribuzione,

tali architetture mettono a disposizione un numero di unità di calcolo normal-

mente compreso tra 2 e 10. I processori della seconda categoria dispongono

comunemente di centinaia o migliaia di unità di calcolo, sono normalmente

adibiti ad usi specifici ed hanno costi decisamente più proibitivi rispetto a

quelli di un laptop.

Tuttavia, la mera duplicazione della capacità computazionale di un cal-

colatore non è sufficiente per aumentarne le prestazioni: architetture par-

allele richiedono programmi paralleli e i vecchi programmi sequenziali non

sono più adatti per sfruttare le potenzialità offerte dai modelli multi-core e

many-core, le applicazioni necessitano infatti di essere riscritte secondo ap-

posti paradigmi di calcolo parallelo. Tali paradigmi vengono insegnati già da

tempo all’interno dei corsi di laurea di informatica e ingegneria informatica:

gli studenti imparano i fondamenti della programmazione parallela e hanno

la possibilità di testare quanto studiato sui libri attraverso i loro PC equipag-
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ii INTRODUZIONE

giati di processori multi-core. La situazione cambia nel momento in cui viene

approfondito il funzionamento di architetture complesse come ad esempio i

processori many-core.

La presente tesi rientra in questo contesto: essa si pone l’obiettivo di

fornire agli studenti uno strumento efficiente per realizzare e testare appli-

cazioni parallele per architetture many-core. Per questo motivo è stata inda-

gata la tecnica dell’emulazione: essa consiste nella duplicazione delle funzion-

alità di un sistema guest, al fine di renderle disponibili in un altro sistema,

chiamato host. Cos̀ı facendo il sistema guest può essere testato utilizzando

una sua versione software (un suo emulatore). Tuttavia, la realizzazione di

un emulatore per architetture parallele many-core, consisterebbe in un con-

siderevole numero di thread concorrenti, ciascuno dei quali emulerebbe una

singola unità di calcolo; a prescindere dalla potenza di calcolo del sistema

host, le prestazioni di un emulatore di questo tipo sarebbero troppo basse a

causa dell’elevato numero di context switch tra i thread.

L’apporto di questa tesi consiste nel fornire supporto a questo tipo di elab-

orazione tramite l’utilizzo delle schede video, le quali offrono una notevole ca-

pacità computazionale normalmente adibita al rendering grafico. Parleremo

infatti di processori grafici, o GPU (per Graphics Processing Unit), che sono

generalmente composti da alcune centinaia di unità di calcolo denominate

core e che da alcuni anni sono di fatto programmabili e di conseguenza uti-

lizzabili per la comune elaborazione e non più esclusivamente per operazioni

grafiche. Implementando all’interno di ciascun core della scheda grafica un

thread, sarebbe possibile realizzare un emulatore per architetture many-core

senza dover ricorrere ad hardware aggiuntivo (le GPU sono normalmente

incluse nella maggior parte degli odierni PC o laptop).

Il problema è che le GPU offrono una grande potenza di calcolo at-

traverso processori SIMD (Single Instruction, Multiple Data), i quali es-

eguono la stessa istruzione in maniera sincrona utilizzando dati differenti;

ciò pone un limite non da poco visto che l’applicazione parallela eseguita

dall’emulatore potebbe prevedere flussi di esecuzione differenti. Per ovviare
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a questo problema una nuova tecnica di emulazione è stata introdotta: essa

descrive l’esecuzione di un algoritmo in termini di dati, i quali vengono rice-

vuti in input da un singolo programma che “adatta” la sua esecuzione in base

al dato (all’algoritmo) ricevuto. Tuttavia il programma è sempre uguale, il

che lo rende adatto ad essere eseguito sui core di una GPU.

È bene precisare che le librerie per la programmazione di GPU organiz-

zano l’esecuzione dei thread sui core in modo da minimizzare la divergenza

(ovvvero il tentativo da parte di più processi di eseguire differenti istruzioni

all’interno dello stesso ciclo di clock); per questo motivo l’approccio clas-

sico di emulazione è stato implementato per essere confrontato con quello

nuovo da noi sviluppato, al fine di delineare la possibilità e le modalità di un

possibile approccio ibrido.
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Chapter 1

Aims of this Thesis

Microprocessors based on a single processing unit dominated the market

for more than two decades, increasing their clock frequency and reducing

their die area [2]; this trend reached its limit around 2003 due to the high

power consumption and the heat dissipation. Hence, processor manufacturers

begin to switch their designs to models with more than a single computation

unit (core), leading to the multi-core and the many-core architectures [12].

These two models differ in the number of cores, between two and ten for the

former and several hundreds for the latter.

As the computational architecture moves from a single-core to a multiple-

core model, sequential programs are no longer able to exploit the performance

offered by processors. Indeed, they have to be explicitly rewritten in a multi

threaded fashion and this require new specific programming paradigms.

Nowadays, common off-the-shelf PCs and laptops expose multi-core pro-

cessors, making them an adequate testbed for parallel application developing

(with the aid of high level libraries such as OpenMP [13] and MPI [15]). How-

ever, this is not true when considering the many-core architecture: writing

applications specific for this kind of processor forces you to use hardware

with high costs and that is usually not available in common markets. To

overcome these limitations two different concepts are introduced:

Emulation Given a guest system SG and a host system SH , the emulation

3
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consists in the implementation of the SG functionalities on SH . Using

this approach, a parallel many-core architecture can be emulated us-

ing a laptop and parallel many-core applications can be executed (i.e.,

their execution can be emulated) on the laptop multi-core processor.

However, this approach presents very low performances, due to the

many-to-multi core mapping and the resulting high number of context

switches.

Graphic Cards Graphics Devices (even those present in commodity PCs or

laptops) are real many-core processing units, normally targeted to ren-

dering, shading and texturing. They provide a big instruction through-

put and a very high memory bandwidth. Thus, the Graphics Hardware

is considered Graphics Processing Units (a.k.a. GPU). Starting from

the early 2000s, GPUs have became programmable [2], allowing gen-

eral purpose applications to be written using a high level language and

executed on the top of a GPU.

These two concepts lead to the develop of a GPU-based many-core archi-

tecture emulator, such that real many-core applications can be written, tested

and debugged on the emulator, while the required computational power is

offloaded to the GPU cores. However, the graphics hardware does not direct

support the execution of different flows. According to the Flynn taxonomy

[22], the most suitable parallel model for our purpose should be the MIMD

one (for Multiple Instruction, Multiple Data), this model allows multiple ex-

ecution flows to be executed on different cores, working on different memory

portions.

GPUs are many-core platforms that typically expose a Single Instruction,

Multiple Data-like paradigm (SIMD), hundreds of cores are organized into

several groups, each of which has a specific roles in the rendering pipeline.

Cores from different groups are autonomous, but inside the same group they

expose a SIMD behavior, where a single control unit fetches and broad-

casts the same instruction to all processing elements [1], forcing them to
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execute the same operation (Single Instruction) using different memory por-

tions (Multiple Data).

GPU programming environment (like CUDA [21] and OpenCL [20]) usu-

ally implement a Single Program, Multiple Data (SPMD) programming paradigm,

that is a paradigm for MIMD architectures. Each core runs an instance of

the same program, using its own Program Counter following a specific path

through the program [18].

The mapping from the SPMD paradigm exposed by GPU programming

environments and the SIMD-like architecture exposed by GPU hardware is

not trivial and it is not fully manageable by the programmer. Hence, some

kind of task parallelism can fit GPUs, but some others cannot.

To investigate this topic, the classical emulation approach is compared

with a new one. Typically, emulators work at the Instruction Set Architecture

(ISA) level, providing a routine for each ISA instruction that is on-demand

invoked every time the emulated processor fetches the corresponding opcode.

Implementing such an emulator in each GPU core would cause different cores

to emulate different execution paths, leading to the divergence phenomena

(i.e., different instructions that should be executed in parallel during the

same temporal step, are sequentially performed).

The new approach here proposed tries to answer the question “is it possi-

ble to express different computation using different data, handled by a unique

algorithm?”

At a first sight, the answer could be a clearly “yes”, the λ-calculus it-

self is a mathematical formalism for express computation where there is no

distinction between programs and data.

But how this concept can be (efficiently) translate in practice? This thesis

describes the emulation of a simple processor, where instructions are coded

in terms of data that will be handled by a unique program. This approach

become particularly interesting when considering GPUs as the host platform

for the emulation. Now, each core can execute the same program, discarding

all divergence issues.
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For this purpose, processors are investigated at the Micro Architecture

level, just a step above the rough hardware. Here, the hardware always

performs the same execution path and different bits (the data) tune that

execution to express different instructions behaviors.

Clearly, this approach has a cost: simple instructions that previously

would have been emulated by few lines of code, now require one or more

cycles that are executed by a software, and not directly by hardware. This

thesis takes the classic approach (that is not well suitable for GPUs) and the

new one (that has a high computational cost) and compares them, looking

into the chance (and corresponding modalities) for a hybrid solution.



Chapter 2

Virtual Machines & Emulation

The majority of the computer science related topics are not concrete, the

software is not a physical entity, but a virtual concept. However, within

the computer science world the term virtual receives a specific meaning that

express the ability to play the same role of another entity, offering the same

interface to the outside world [16].

In computer science there are two main concepts: the abstraction and the

interface, the former defines the operations an entity can perform, while the

latter is the way by which these operations can be requested. For example,

a software library defines new operations abstracting from the underlying

levels (whether hardware or software) and it defines an API through which

other entities can invoke the defined operations. The virtualization technique

provides software entities that expose the same interface of another system,

such that they can substitute it in every context.

This thesis investigates the virtualization concept through the emulation

technique. Despite these two concepts are slightly different, they share the

ability to implement a target system functionalities on a different one. The

Virtual Square taxonomy [16] categorizes virtual machines according to their

consistency to the lower layer interface. Virtual machines can be either ho-

mogeneous or heterogeneous depending on whether or not they provide the

same interface of the system where they run. Processor virtualizers can oc-

7
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cur in both modalities, on one hand homogeneous virtual machines allow the

creation of a virtual environment with the same features of the system where

the VM runs. On the other hand, a heterogeneous virtual processor permits

a program compiled for a different architecture to be executed on the host

system. Emulators are included in this latter category.

The emulation is a computer technique that duplicates the functionalities

of a computer system (the guest) in another system (the host), this allows

the host system to behave as a real instance of the guest system.

Let X be an either hardware of software entity, the entity E(X) (that can

be either hardware or software too) is said to be an emulator of X if it allows

another entity Y to be interfaced to E(X) as it would be interfaced to X.

Thus, a processor emulator allows to take a program compiled for an

arbitrary architecture (e.g., i386, arm, mips, ppc, etc) and to observe its

execution on the emulated processor, running on a different platform.

A video game console emulator is a program that run on either a computer

or a video game console, it allows the execution of some games that were

originally designed for a different console. For example, an emulator for

a legacy video game console permits to use games for which the dedicate

hardware is no longer sold.

“Emulation” is a black box term, that can be addressed by multiple points

of view, this thesis focuses on the processor emulation, in particular on the

many-core processor emulation. This kind of architecture exposes a high

number (i.e., several hundreds) of processing elements, that differs from the

multi-core architecture that nowadays offers between two and ten computa-

tional units, [2]. Following sections will explain some key concepts of the

emulation technique.

2.1 Emulation vs Simulation

As a first step, it is important to distinguish between these two terms,

that concern techniques with similar aims but with different effects.
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The emulation technique allows the creation of entities that implement

all functionalities of a guest (i.e., emulated) system. Emulators expose the

same interface of the guest, so that other entities can interact with them in

an unmodified manner.

On the other hand, the simulation technique produces environments that

mimics the simulated system behavior. Hence, simulators expose interfaces

that are different from the one exposed by real instances of the guest (simu-

lated) system. Entities that can be interfaced with a specific system have to

be rewritten when interfaced with a simulator of that system.

Consider for example a network simulator where packets are exchanged

between simulated nodes occurring in some delays that are (hopefully) similar

to real world network delays. In such a context, new protocols can be tested,

observing how applications behave. But a network simulator is an unreal

environment where nodes are not real ethernet-linked nodes, no packet is

really exchanged and all delays are generated by the simulator. Real network

applications cannot run on (i.e., they are not able to be interfaced with) the

simulator. On the other hand, a network emulator forces applications to

open sockets, to sends and to receive data packets as they would normally

do [16].

Thus, the difference between emulation and simulation lies in the inter-

face: while the simulation just mimics the target system behavior (it defines

new interfaces, it requires new application), the emulation maintains inter-

faces unchanged, so that real unmodified applications can interact with the

emulated system.

These two techniques have different use-cases, both of them present ben-

efits and drawbacks and sometimes they compare coupled in a hybrid form.

However, the emulation presents two main benefits:

� applications written (and tested) on the emulator can be executed on

a real instance of the target processor, and vice versa (applications

written for the target system can be tested using the emulator)

� specific hardware can be tested (i.e., applications for these architectures
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can be developed) without really owning it

The latter point has a great importance in the education field, where

students study from the books how to use specific hardware platforms but

they cannot test them due to their high cost or their unavailability. In par-

ticular, this thesis deals with many-core processor emulation, giving students

the chance to develop an application suited for a 100+ cores processor, using

their own PCs or laptops.

2.2 Full system and User mode emulation

As said before, the term “Emulation” is a special case of the more general

concept of virtuality, or virtual entity [16].

An entity XV is a virtualization of X if it can efficiently replace (i.e., it

can be used instead of) X itself. In this sense, emulation could be treated as

a form of virtualization, it creates a virtual version of a either hardware or

software component and this virtual component can be used instead of the

real one (other entities can interact with it as they would do with the real

one).

Thus, the term “emulation” no longer refers to a rigid hardware-by-

software implementation, but whatever entity can be virtualized, in order

to create its virtual version, that can replace the real one in every context.

The expression “whatever entity” means that each system (from a small chip

to a big and complex computer architecture) can be replicated by software

via emulation/virtualization. This leads to multiple emulation approaches,

depending on the complexity of the emulated system.

Firstly, a full system emulation duplicates the functionalities of a com-

plete computer architecture, including instruction execution, memory man-

agement, I/O devices, etc. This mode permits to run a complete O.S. stack,

testing all its functionalities.

Clearly, a full system emulator requires a considerable coding effort that

sometimes could be useless: most of the emulated components could be al-
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ready available in the host system. This leads to another approach, where

only some parts of a complex system are emulated and coupled with the rest

of the host system, which occurs in its real (not emulated) version.

This second modality includes the user mode emulation approach, which

takes into account only the processor virtualization, discarding all other hard-

ware components with which it is connected to. Hence, an unmodified pro-

gram compiled for the target architecture can be “executed” on (i.e., its

execution can be emulated by) a virtual processor.

Qemu is an example of a software that allows both presented modalities

(see the next section for more details).

Pushing forward the concept of partial emulation (where only specific

components are emulated), it is possible to emulate just a small part of a

big entity. This thesis, for example, emulates only the execution path of the

Java Virtual Machine. As discussed in chapter 1, the main goal of this work

is the development of an emulator that can execute multiple execution flows

in parallel, running on GPUs.

For this reason, the execution path will be the only focus of this thesis

and components like interrupts handler and memory management unit are

discarded. Furthermore, the choice of the target processor is not crucial (as

discussed in chapter 4), the implemented ISA is a subset of Java Bytecode,

that is much less powerful then the real Java language (no object oriented

expressiveness, no input/output and integer only operations).

2.3 Available Virtual Machines and Emula-

tors

As said in the beginning of the chapter, virtual machines and emulators

are similar concept but they do not coincide; not all emulators are also virtual

machines and vice versa. To clarify the differences between these two con-

cepts, both virtual machines and emulators will be presented, highlighting

the membership of each tools.
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Qemu Qemu (short for Quick EMUlator, [17]) is a software that can be

considered both an emulator and a virtual machine; it currently emu-

lates different architectures such as i386, arm, mips and ppc. It allows

the complete emulation of the target system in order to execute an

unmodified O.S. in a virtual environment.

To achieve high performances, it implements a technique called dy-

namic binary translation, the first time a target instruction is reached

Qemu translates it to a host system code fragment and stores it, so that

it can be reused the next time the emulator reaches that instruction.

Due to its performance, Qemu can be used as a virtual machine instead

of the real architecture in order to test, debug and run Operating Sys-

tems; moreover, it allows (only under Linux) the execution of programs

compiled for a different architecture without having to start a complete

OS stack (User mode Emulation).

According to the Virtual Square taxonomy [16] it can be considered a

Heterogeneous virtual machine, since it expose to programs a different

interface from the one exposed by the host system,

KVM, Virtual Box These two tools are virtual machines, but they are

not emulators. Indeed they allow the complete virtualization of an

architecture but they force the guest and the host systems to be the

same. They are Homogeneous virtual machines.

To achieve near native performances, these tools make use of hardware-

assisted virtualization, that permits a direct and fast instruction map-

ping from the target to the host (that clearly force these two architec-

ture to be the same).

Java Virtual Machine As the name suggests, the JVM is a virtual ma-

chine that allows the Java Bytecode to be executed on an arbitrary

architecture. However it is not considered an emulator in the strict

sense; the guest system (the emulated one) is just an abstract specifi-

cation and it does not appear in any real implementation, thus the JVM
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is not considered an emulator since it implements the functionalities of

a non-existing entity.

uMPS Finally, this is the case of an emulator that is not a virtual machine.

µMPS is an educational computer architecture emulator developed at

the University of Bologna, that implements the MIPS I Instruction

Set [29]. Due to its educational goal it cannot be considered a virtual

machine since it is not a good substitute for the real MIPS processor. It

allows students to design an Operating System from scratch on the top

of a simple hardware, controlling its execution step-by-step. However,

using it in a real context implies unacceptable performances because

the emulator goal is the correct execution of a program and not the

time require for this execution.
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Chapter 3

General Purpose Computing on

GPU

The Graphic Processor (sometimes called Graphics Processing Unit, or

GPU ) is the engine element of the Graphic Hardware, the computer device

responsible for the graphics elements management. Nowadays, GPUs are

included in most of the off-the-shelf PCs or laptops, providing a dedicated

hardware for the rendering process. To achieve high performances, this pro-

cess makes use of several hardware components, each of which exposes a huge

number of synchronous Processing Elements (PEs).

GPUs currently represent one of the most powerful computational hard-

ware per dollar, moreover they expose a high memory bandwidth, making

them an interesting device for non-graphic tasks too, through the processing

elements exploitation, in order to achieve General-Purpose computation [4].

3.1 The Graphics Hardware

Graphics devices are today included in all commodity PCs, their task is

the creation of a 2D image (i.e., a two dimensional array of pixel) starting

from a scene description, provided in terms of an either 2D or 3D geometry,

color, light and texture informations, [23, 24].
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To achieve high performances, all GPUs manufacturers design their de-

vices according to a well defined structure call Graphics Pipeline (or Render-

ing Pipeline). This pipeline includes five stages, each of which has a role in

the rendering process that is performed by a dedicated hardware component.

These steps are:

� Vertex Operations

� Primitive Assembly

� Rasterization

� Fragment Operations

� Texturing

Due to the parallel nature of the problem, Rendering Pipeline steps are

usually executed by several Single Instruction Multiple Data (SIMD) pro-

cessing elements working in parallel on multiple memory portions.

For example, Figure 3.1 shows the Radeon RV710 structure [3] (the

testbed GPU for this thesis); it exposes 4 Rasterizers, 16 Fragment Pro-

cessor and 8 Texture Units. Although the RV170 architecture is a low-end

solution (it contains few processing elements), it is able to provide a big

amounts of computational power.

In the following sections we will give an overview of the GPGPU concept,

specifying capabilities and use-cases. As a preamble, it is important to note

that one of its main aims is the ability to provide a high computational

power without forcing developers to know low-level hardware details (though

a minimal knowledge of the device behavior is clearly required). For this

reason this thesis will not deal with the Graphics Pipeline process, leaving

interested readers to [5].
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Figure 3.1: A schematic vision of the RV710 GPU architecture, taken from

[3]

3.2 The GPGPU

The General Purpose Computation on Graphics Processing Units, from

now GPGPU, is the exploitation of the Graphic Hardware (that is usually

used for pixel management) for non-graphics tasks [6], this is a non trivial

goal due to the Special-Purpose nature of this kind of devices. The next

parts of this section discusses some GPGPU aspects.

3.2.1 An overview: when, what, why and how

In 1999 the NVIDIA company released the first programmable Graphics

card: it can be consider the GPGPU birth. Before this date all rendering

stages were hardwired; starting from the Vertex and the Fragment stages, all

pipeline components were gradually transformed from fixed-function stages

to developer-manageable programs. This capability, coupled with the in-

troduction of an assembly language for stages programming, had enabled

the General-Purpose Computation for Graphics Hardware, or GPGPU, term

coined in the early 2000 by the NVIDIA itself. In 2002 another important

result was achieved by the ATI Radeon company (now AMD) which has
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introduced the floating point computation inside the Fragments Operators.

Beside these important results, a GPGPU community raised during these

years [25], developing interesting solutions for the developers, some of which

are described in the following sections.

Graphics devices offer some interesting features like big computational

power, high memory bandwidth and a quick performance growth; despite

this they are Special-Purpose devices. Thus, using them for General-Purpose

computations presents some challenges. Firstly, the high computation power

is offered through several Single Instruction Multiple Data (SIMD) elements,

where a single control unit fetches and broadcasts the same instruction to

multiple processing elements [1], that are forced to synchronously execute

the same instruction using different memory portions.

While writing software for a single-core CPU is relative sample, the ex-

ploitation of a parallel architecture requires to write explicit parallel code;

and since GPU processing elements are organized in a SIMD-like fashion, par-

allel code must be tuned for a SIMD architecture. Due to this fact GPGPU

is recommended for computing intensive tasks while interactive programs are

not well suitable for Graphics Hardware.

Moreover, GPUs provide high memory bandwidth for inner operations,

like load and store, but the exchange of data between the Main Memory (the

CPU) and the device memory is very expensive; so interactive programs are

still not suitable for Graphic Hardware.

Fortunately, not all programs require an interaction with a human user

or with some other device, there is a big class of GPU-suitable tasks like

mathematical and physical computation (FFT [7], Matrix Multiplication) or

graphics tasks itself (like Ray Tracing).

Beside these specific classes of tasks, there is another trend in the GPGPU

that aims to treat the GPUs power in an even more general an flexible way,

using it for any kind of computation, like it is a real coprocessor. Within

this approach, it is possible to operate at different levels: [10] and [9] are ex-

ample of GPU exploiting at the O.S. level, where GPU processing elements
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are treated as any other O.S. managed resource over which processes can be

scheduled. On the other hand, [8] and [11] use GPU computation power to

speedup the virtualization and the simulation techniques, so that unmodi-

fied programs (compiled for a specific target platform) can be executed in a

different context. This field has a special impact in this thesis, whose goal is

the design of a many-core architecture emulator; however this is not a trivial

task (as pointed out in [11]) due the SIMD-like architecture of the Graphics

devices; this issue will be addressed in the second part of this thesis.

In recent years, GPGPU development tools have evolved providing high

level solutions for GPU parallel applications developing; today these tools

usually include a compiler from a C-like syntax to the GPU assembly lan-

guage. Such assembly languages have evolved too, thus Graphics Instruction

Sets does not only allow geometric primitives management, but some clas-

sical operations like mathematical, bitwise, memory and jump instructions

are now included (memory and jumps operations will be deeper discussed in

following sections).

3.2.2 Branches and Divergence

There is an important issues to address while studying GPGPU : since

processing elements are clustered in a SIMD fashion, they are forced to syn-

chronously execute the same instructions stream; but what happen if several

Processing Elements evaluate the branch condition of an if -like statement

to different boolean values? Conditional jump instructions have a key role

in an assembly language since they are mandatory for loops description, in

a full-fledged programming language conditions and loops must be available,

otherwise the language capabilities would be very limited.

This issue can be addressed in several ways, the first one takes into ac-

count the GPU architectural design [23], branching can be direct imple-

mented in hardware according to three modalities:

Predication This is not a strictly data-dependent branching, when the ex-

ecution reaches a branch, both paths are evaluated and then, within
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each PE, one path is discarded according to the boolean branch con-

dition. It is the simplest method for branching support in GPUs and

thus it exposes very low performances.

MIMD branching The Multiple Instructions, Multiple Data (MIMD) ex-

ecution model would be the ideal hardware for branching support since

each processing element is autonomous during the execution (i.e., it has

a dedicated fetch/decode unit). To achieve this result, MIMD branch-

ing usually requires additional hardware components, that make the

GPUs design more complicated. Apart from some NVIDIA cards, the

MIMD branching support is not included in the majority of the GPUs

[23].

SIMD branching This is the most widely adopted model: processing ele-

ments are organized in SIMD groups and when the execution encoun-

ters a branch instruction all boolean conditions are evaluated; if all

these values are identical only one path will be executed. On the other

hand, if one or more values differ from the others, both paths are exe-

cuted and then each PE discards the result of the undesired path. (as

in the Predication model)

The execution of both branch paths, discarding one of them according to

the branch condition flag implies a great performance downgrade since a lot

of cycles are wasted for a useless computation. The extreme case consists in

multiple synchronously Processing Elements (PEs), each of which attempts

to execute its own path; the available parallel power will be lost since all PEs

would execute all possible branches, leading to a sequential-like execution.

This phenomena is called divergence.

In addition to these, there are some further techniques to address the

branching issue, which work at a higher level [26]; they try to establish if a

branch path is useful or not, so its execution could be discarded in advance.

This could be done either statically (with some Branch resolvers) or during

the execution.
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3.3 Available Tools

Any successful programming framework requires at least three additional

components: a high level language, a debugger and a profiler [23]. Though

profilers are very hardware specific (and their number is very limited), a lot

of high level languages and debuggers are today available for GPU program-

ming; this section focuses on popular languages, they can be organized in

two main categories, Shading languages and General Purpose languages.

Languages from the first group share the common idea that the GPU main

aim is the pictures creation, thus all the computation must be expressed in

terms of graphics objects management. Languages belonging to this cate-

gory are Cg (for C for Graphics, developed by NVIDIA), HLSL (for High

Level Shading Language, a proprietary Microsoft language) and GLSL (for

OpenGL Shading Language, from the OpenGL Architecture Review Board

consortium).

Although it is quite simple to map these languages to a Graphics pro-

cessor, they force developers to think a parallel application in terms of ge-

ometric primitives, vertices, fragments and textures, while General-Purpose

algorithms are well described as memory and mathematical operators, that

are concept much more familiar to classical CPU programmers.

For this reason, a second category of programming languages has been

developed, in order to allow programmers to write GPGPU applications in

a more familiar environment.

3.3.1 Brook

The Brook programming language is an ANSI C extension, developed

at the Stanford University [27]. It allows applications to be designed in

terms of streams, that are similar to arrays except from the fact that streams

components can be accessed in parallel by a kernel.

A kernel is a routine that runs on the Graphics processor; due to the

parallel nature of the GPU, multiple kernel instances will be executed using
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the stream components as input.

In a Brook source, a kernel is a function, within its arguments it is possible

to specify several input streams and one output stream. The source is pre-

compiled by the brcc compiler, which transforms it in a C++ file, that can be

in turn compiled using the standard GNU C Compiler tools. Within the so

generated C++ file, the kernel function is transformed into a target specific

assembly code that can be executed on various platform, including GPU and

CPU itself.

3.3.2 CUDA and OpenCL

After Brook emerged, many similar solutions were born, in 2006 NVIDIA

released the first Computing Unified Device Architecture (CUDA) SDK, a

programming environment for parallel application developing. CUDA has

quickly became the standard de-facto for NVIDIA GPUs programming.

In 2008, some industries defined the Open Computing Language (OpenCL)

standard, that try to mimic the CUDA environment using a different aim:

while CUDA works only with NVIDIA GPUs, OpenCL is a Heterogeneous

Computing standard, it assumes multiple devices to be used for generic com-

putations. Today, a lot of micro-processor manufactures provide a OpenCL

implementation for their hardware. Despite the difference in the initial aim,

these two programming tools are very similar, that is the reason why they

are treated together. They expose a very similar programming and memory

model, both described below.

OpenCL was developed in order to design a more flexible version of the

CUDA environment, that does not force developers to use an NVIDIA device,

but it allows the usage of any processing devices (like, for example, GPU,

CPU and DSP). There is a strict correspondence between these two program-

ming tools that allows to use terms from the two contexts interchangeably.

Table 3.1 correlates terms from these two programming environments, more-

over it shows a further column that contains other terms frequently used in

literature for address the same concept.
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Table 3.1: GPGPU programming nomenclature

OpenCL CUDA Common literature

Work-Item Thread execution elements

Work-Group Thread Block cluster

Compute Unit Stream Multiprocessor SIMD processor

Compute Device - GPU

Global/Constant memory Global/Constant memory -

Local memory Shared memory -

Private memory Local memory -

Finally, it is important to claim that even if they inherit the majority of

the design from the Brook language, they cannot be considered streaming

languages. On the contrary, both CUDA and OpenCL support the Single

Program Multiple Data (SPMD) paradigm, where multiple processing ele-

ments execute different portions of a unique program, the kernel.

The programming model

The design of a GPGPU parallel application requires two parts: a host

and a kernel, the former is a classical sequential application that runs on a

common CPU with an Operating System like Linux, Windows or MacOS. A

kernel is a routine that runs on the Graphic Processor, exploiting the device

high parallelism.

One of the host job is the creation of the environment for the kernel

launch, it consists in several phases:

(i) the establishment of the target device for the computation (there could

be many devices in a system and the CPU itself could be used as a

target device)

(ii) the compilation of the kernel code

(iii) the copy of data from the CPU memory to the GPU buffers
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(iv) the choice of how many execution elements has to be parallel executed

After that, the parallel phase could start, at the end of which, the host

application could copy back the results from the GPU buffers to the Main

Memory.

To abstract from the different GPU architectures, kernel programmers

could assume that the underlying hardware is organized according to a well-

defined hierarchy; since each GPGPU library uses its own names to de-

note the same set of concepts, terms from the same line of Table 3.1 will

be used in this thesis interchangeably, however since the main focus is on

the OpenCL programming environment, terms from this framework will be

mainly adopted.

The Figure 3.2 depicts the developer point of view, here the host ap-

plication can interact with several Compute Devices, each of which consists

of multiple Compute Units (CUs), within a CU the computation occurs

through Processing Elements (PEs) that are clustered in some groups.

Figure 3.2: The OpenCL execution model, taken from [28]

A work-item (WI ) is the software entity that logically correspond to an

execution flow, the OpenCL runtime system maps each WI to a PE during

the kernel execution and all WIs run the same code.

According to the input data, a kernel can organize its WIs in an N

dimensional structure, with N ∈ {1, 2, 3}; WIs are clustered in group, called
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work-groups (WG), each of which must contain the same number of WIs.

OpenCL specification ensures that all WIs within a WG run in parallel on

the same CU.

Once the kernel has been compiled, it must receive both the global num-

ber of WIs to execute and the size of a WG, the number of groups can be

retrieved dividing these two values. Clearly, the WG size must divide the

global number of WIs. As example, the Figure 3.3 shows a two dimensional

kernel structure with Gx × Gy WIs clustered in groups with size Sx × Sy.

Each work-item can retrieve its position within both the work-group and the

whole structure though the built-in functions

int get_local_id(int dimension);

int get_global_id(int dimension);

Both functions have an integer parameter that indicates the dimension

over which the position must be retrieved. Figure 3.3 assumes that the num-

bering starts from the top left of the grid, counting from zero; the WG with

index (1, 1) is zoomed showing all WIs inside of it. Within a WI there are

the sx and sy variables that hold the WI indices inside the WG (local in-

dices). These indices could be retrieved using the first of the above functions

(get local id), with arguments 0 and 1 respectively.

Once the kernel has launched, this model is mapped to the device archi-

tecture; this mapping could be more or less efficient depending of the device

capabilities; since all WIs within a WG runs in parallel on the same CU,

the maximum number of WI in a group is limited by the physical number of

processing elements of a CU (regardless of the number of dimension). If an

application requirement (i.e., the number of WIs to be parallel executed) is

bigger then a CU capacity, multiple WG must be defined. It is possible to

concurrently execute as many WGs as the number of the device CUs ; work-

items can coordinate themselves only within a work-group, thus if a device

is equipped with multiple CUs, several WGs can be concurrently executed

but WIs from different groups are not able to synchronize them.
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Figure 3.3: A 2D Work-Group example, taken from [28]

The memory model

GPUs usually expose a high memory bandwidth such that various Pro-

cessing Elements (vertices, fragments, rasterizers) can access the device mem-

ory with a high rate. However, this high performance is due to the parallel

nature of the graphics operations, there is a strict correspondence between a

processing element and the memory portion on which it operates.

When developing a General-Purpose application, programmers should be

very careful since a wrong memory usage could cause a big performance

downgrade, if all processing elements randomly access the whole memory

area, a lot of time is wasted for the PEs synchronization in the bus usage.

For this reason GPGPU programming environments usually expose a mem-

ory hierarchy, where different memory areas can be accessed with different

capabilities.

As depicted in Figure 3.4, there are four different memory areas:

Global Memory It is the largest and the slowest area, both all work-items

and the host can access it in both read and write modes.

Constant Memory Like the Global Memory, this area can be accessed both

by all work-items and by the host, the difference is that WIs cannot
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modify its content. Constant Memory can be viewed as a read-only

portion of the Global Memory. These two areas consist in the only

communication channel between the host and the kernel.

Local Memory A memory region local to a single work-group, used for

sharing variables between WIs belonging to the same WG. Since the

limited number of processing elements competing for the bus usage,

Local Memory has better performances w.r.t. both the Global and

the Constant memory area. For this reason, it usually has a limited

capacity.

Private Memory Data stored in this region is private to a single work-item,

it is very fast and it is usually adopted for inner computations.

Figure 3.4: The OpenCL memory model, taken from [28]

The CUDA programming environment exposes a memory hierarchy very

similar to the one described, except from the areas names, as show in Table

3.1.
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The OpenCL programming environment uses a relaxed memory consis-

tency model [28], this means that during a kernel execution, a memory con-

sistent view from all WIs is not guaranteed. In particular,

� Private Memry is consistent within a work-item

� Local Memory is consistent across WIs inside a WG

� Global Memory is consistent across WIs inside a WG, but there are

no guarantees of Global Memory consistency between different WGs

executing a kernel

This model has a big impact for this thesis, a many-core architecture

emulator should scale to a huge number of virtual processing elements, but

this number is limited by the physical number of the available PEs of a

GPU. To overcome this fact, multiple work-groups could be defined, in order

to emulate a larger architecture. However, as pointed out above, between

different WGs Global Memory consistency is not guaranteed, this issue will

be addressed in the second part of this thesis.
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A double level approach for

Emulation
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Chapter 4

The Emulated Architecture

“To emulate” means to provide an either software or hardware entity

which expose the same functionalities of a target platform; this technique

usually requires a good knowledge of the target system in order to allow

other entities to be interfaced with the emulated system as they should do

with the real one. For example, a processor emulator implements the target

processor functionalities (the instruction set, the memory management unit,

the interrupts handler, etc) in order to execute programs compiled for the

target processor with no modifications.

However, the emulation does not always require the implementation of all

components of the target system; taking into account only a small portion of

a complex system permits to reduce the coding effort, exploiting the presence

of components that do not have to be emulated.

That is the case of this thesis, it presents a JVM (Java Virtual Machine)-

like emulator that limits its functionalities to the instruction set emulation,

discarding the management of both memory and interrupts, since they do not

concern this thesis goals. Indeed, this work investigates processors emulation

in a parallel context using GPUs (Graphics Processing Units) to provide

computational power support. Thus the choice of the target platform has

not a big impact for the defined purpose, but whether parallel architecture

can be implemented in order to evaluate the emulator performances.
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We will refer to this platform as the IJVM, for Integer Java Virtual Ma-

chine; this name comes from the fact that the emulator mimics the JVM

behavior but it limits its functionalities on those instructions operating only

on integer values. Thus, the target language (the one that follows from this

reduced set of instructions) loses all its object-oriented expressiveness because

instructions working on object references are not implemented, making this

Java-derived language a classic imperative language. The choice of the IJVM

as the target processor comes from two main factors:

(i) Java is a high level language, that can be compiled to Bytecode, an

Instruction Set whose instructions are easier to decode then those of

a binary for a real hardware processor (e.g. i386/powerpc/arm/mips).

This makes the Java language a good candidate for tests.

(ii) The processor execution path (in terms of hardware structure) is widely

explained in the well known Tanenbaum book “Structured Computer

Organization” [14]. Although the proposed model has not led to any

real implementation, it offers a simple and accurate model for the exe-

cution path of the Java Bytecode.

In [14], Tanenbaum proposes a multilevel abstraction stack shown in Fig-

ure 4.1, where at the lowest position there is the rough hardware (Level

0, the Digital Logic Level) and growing towards the top, there are Micro

Architecture and Instruction Set Architecture levels, respectively 1 and 2.

Usually, processor emulation techniques place themselves at level 2 (ISA

level) of this model, implementing a specific routine for each instruction of

the target processor. This thesis investigates a different approach, due to the

fact that host platforms (the ones on which the emulated software runs) are

GPUs. This detail has a great importance when the target architecture has

a parallel design, indeed GPUs usually expose a lot of computation elements

organized in a SIMD (Single Instruction Multiple Data)-like fashion, making

the emulation of different execution flows not trivial.
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Figure 4.1: The multilevel structure of Computer defined in [14]

If several SIMD cores attempt to execute different instructions during

the same temporal step, these instructions are sequentially performed during

distinct clock cycles (i.e., the divergence phenomena). Hence, GPUs compu-

tational power cannot be fully exploited using the classic approach.

This thesis proposes a new approach that moves one step down in the ab-

straction stack, taking into account the Micro Architecture level, the Level 1.

Here instructions are no long treated as routines, but they describe different

behaviors in terms of different memory words, which enable/disable different

parts of the processor. This way, the emulation software no longer consists

in a switch-like statement that invoke a specific routine depending on the

fetched opcode (that is the common technique), but it iterates the following

tasks:

(i) it selects an instruction

(ii) it splits the selected instruction into several fields (that are blocks of

bits)

(iii) it composes these fields in a bit-wise fashion with the processor com-
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ponents

(iv) it schedules the next instruction, restarting from point (i)

Thus, different computations (task parallelism) can be expressed in terms

of different values stored in memory (data parallelism), making this approach

suitable for GPUs usage.

Since GPU programming environments usually allow some form of task

parallelism, the classic emulation technique is not completely discarded and

both techniques are implemented and compared. The implementation details

of both approaches are described in a more detailed form in chapters 5 and 6

respectively, the present chapter gives an overview of the target architecture,

presenting its capabilities.

4.1 The Integer Java Virtual Machine

The IJVM is the architecture chosen as target for the emulation. As

explained above, this choice has been influenced by two main reasons: Java

Bytecode is both simple to write and easy to decode and its Micro Architec-

ture level is fully described in [14]. However, this model has been partially

modified in order to:

(i) be more efficient

(ii) support parallel execution

(iii) support array dynamic allocation

Except from these factors, the emulated architecture is the one described

in [14], it uses an Instruction Set Architecture (ISA) that limits its possible

instructions on those working on integer values and integer arrays.

In a parallel scenario, there are two possible memory models: the former

is the Shared Memory paradigm, it expose a unique memory address space

and parallel processes communicate reading and writing shared variables.
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The latter is the Distributed Memory model, each process has its own mem-

ory address space and the communication occurs via message passing, [18].

Clearly, these are general models, real world applications actually implements

a hybrid form of these two paradigms.

The IJVM version emulated in this thesis implements a form of the Shared

Memory paradigm. Since the implemented language is Java, parallel appli-

cations are designed from classes. The shared memory is realized using class

fields, while processes are defined using methods. Each method has its own

local variables that are not visible by other methods. Thus, each process

will have a dedicated Local Variable area, a dedicated Stack area (for local

computation) and a Global Variable are, shared with other processes.

The parallel execution mimics the Fork/Join model, several parallel pro-

cesses are dynamically created (forked) during the execution and there is a

point within the program where the execution stops until each forked pro-

cess reaches that point (the joining phase) [18]. The IJVM execution starts

from the constructor method and each GPU core executes the code of the

constructor. Every time a method invocation occurs, only one core forks

and begins the called method execution, while other cores continue with the

constructor code, waiting for further methods invocation. The joining phase

is implicit with the method termination, thus when a process reaches its re-

turn opcode, the control does not return to the constructor but the return

statement is repeated until all processors reach their corresponding return

instruction.

Clearly, when the number of method invocation reaches the number of

available core, no more method will be called.

Object management is not allowed, except from array (that are treated

as object in Java). For this reason, there is a further memory area, called

Heap for dynamic arrays allocation.
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4.1.1 Registers

In the IJVM model all the computation takes place within the Stack,

ALU operands are pushed into the stack and replaced by the ALU result.

To support this kink of computation, there some Special-Purpose registers:

� MAR, MDR, PC, MBR: for memory operations. Micro Architecture

level provide two different memory access modes and these four reg-

isters behave respectively as source and destination for these modes.

At the ISA level these register will not be considered since memory

operations are explicit. On the contrary, they have a key role at the

Micro Architecture level

� SP: the Stack Pointer, it is the address of the last value pushed into

the Stack

� LV, CPP: Local Variable and Constant Pool Portion, these registers

store pointers to the beginning of the LV and CPP areas in the memory

respectively (see next section for more details)

� TOS: Top Of Stack, the value stored in the memory position pointed

to by the SP register

� OPC: Old Program Counter, when invoking a new method this register

will hold the value of the caller PC

� H: Holding, the only general-purpose register. It is usually used as

intermediate storage for complex computations

4.1.2 The memory structure

In [14], the proposed model exposes a 4 GB large memory, organized in

32 bits words.

There are four areas:
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CPP The Constant Pool Portion is a read-only byte-oriented area that con-

tains some informations about methods (the starting address, the num-

ber of arguments) and fields

LV The Local Variable area stores variables local to a method, indexed ac-

cording to the order by which they are declared in the source

Stack It is the memory area where the computation takes place

Text It contains the program: opcodes and operands are stored in this area.

Like CPP, it is read-only and bye-oriented

This model has been partially modified according to the parallel execution

support and the dynamic array allocation. The LV and the Stack areas are

replicated for each process. Furthermore, a Global Variable area and a Heap

area are added, in order to allow a shared memory communication channel

between processes and a way for the dynamic array allocation respectively.

The dynamic memory allocation is very coarse, every time a new instruc-

tion is fetched, the current Heap Pointer is increased by the required size

and the older value is returned. Thus, there is no memory deallocation and

no garbage collection.

This refined memory model requires the introduction of the Heap Pointer

(HP) and the Global Variable (GV ) registers; they will act as pointers to the

new memory areas (like CPP and LV point to the base of Constant Pool Por-

tion and Local Variable areas respectively). In addition, sine ither registers

are introduced within the model in order to simplify the computation: the

Stream Identifier (SID) register, for the identification of the current process,

and the Invocation Counter (IC ) register, that stores the number of invoked

methods.

The implemented memory architecture is depicted in Figure 4.2, the right

side of the picture shows some registers pointing to specific memory areas,

while the CPP, the GV and the HP registers are common to all processors,

each core has its own SP, LV and PC registers that define the computation

status.



38 4. The Emulated Architecture

Figure 4.2: The memory model
The addressing occurs via 32-bit

words, thus the memory could be the-

oretically 4 GB large. However, the

GPU must store some further informa-

tion in addition to the memory array

and, as explained in chapter 3, graphic

devices usually expose a memory hierar-

chy where different memory areas can be

accessed by different cores with different

performances. The higher the number

of core sharing a memory area is, the

higher the resulting access time will be,

GPUs expose both little and fast private

memory areas and large but slow global

memory areas.

Hence, the IJVM memory capacity

must deal with the GPU memory ar-

chitecture, that can varies between de-

vices.

4.2 The emulation of the IJVM model

Previous sections have described the IJVM model, highlighting the fact

that host systems are GPUs. This fact creates some restrictions in the de-

velop of a many-core processor emulator. Since GPU cores usually implement

a SIMD-like paradigm, the classic emulation approach that invokes a specific

routine for each instruction is not well suitable. The parallel emulation of

different instruction flows would cause GPU cores to diverge, losing parallel



4.2 The emulation of the IJVM model 39

power (see chapter 3 for more details).

GPGPU programming environments (like Brook, CUDA or OpenCL) ex-

pose a SPMD (Single Program Multiple Data) paradigm [2], that makes each

GPU core to execute the same program using its own Program Counter, thus

each execution is independent from the others. However, this programming

paradigm has to deal with the SIMD-like organization of the hardware. GPU

cores are clustered into some groups, cores within the same group execute

in a pure SIMD manner, but cores that belong to different groups can be

considered autonomous. This “cluster organization” can be partially man-

aged by programmer, but is always under the control of the adopted library,

which arranges the execution flows according to some internal rules.

As a consequence, GPUs expose a massively parallel architecture that can

partially support a MIMD-like execution. This thesis investigates how this

MIMD-like execution can be exploited, comparing two different emulation

approaches: the former emulates at the ISA level, implementing a specific

routine for each ISA instruction (that is the classic approach). The latter

moves one step lower in the abstraction stack (see Figure 4.1), implementing

the Micro Architecture level where the computation is no longer expressed

in terms of routine, but different memory words enable/disable specific com-

ponents of the (emulated) processor. At this level, the emulation consists

in the implementation of the processor components (registers selection, ALU

computation, memory operations, ...) and the execution is always the same,

regardless of which instruction has to be performed. Unlike ISA level emu-

lation, this approach is suitable for GPU hardware, because SIMD-arranged

cores can emulate the execution of different tasks implementing the same

code.

Both approaches are implemented and compared, the latter (the Micro

Architecture one) is improved exploiting the parallel computation power ex-

posed by GPUs, leading to three distinct models:

ISA the classic emulation mode: every ISA instruction is implemented by

an ad-hoc routine. Although it could be the more intuitive approach,
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it presents a non trivial scalability issue: the more tasks are paral-

lel emulated, the more they will diverge, leading to a sequential-like

execution

MIC A precise emulation of the Micro Architecture model described in [14]:

each task is emulated by the execution of the same code, making the

ISA instructions implementation effort much more expensive, with a

corresponding performance downgrade

PMIC (that stands for Parallel MIC ) it is an improved version of the MIC

model. This refined architecture provides three distinct processing ele-

ments for each instruction flow (that can perform up to three distinct

operations in parallel)

These models are compared, in order to discover if and how GPUs are

good device for an the emulation hosting; ISA emulation could obtain higher

performance in terms of execution time, but it scales worse than MIC ap-

proach.

Starting from these observations, it could be possible to develop a hybrid

solution that mixes the GPU-suitability of the MIC model and the flexibility

of the ISA model.

4.2.1 Evaluation

The two proposed approaches are compared and evaluated according to

some measurements. The first one considers the number of processes concur-

rently emulated as the variable factor and two different performance mea-

sures: the average execution time per instruction and the global memory

usage. Given N The former measures the time required for the execution of

a single instruction. If an emulation run requires t seconds to be completed

and the N processes are composed of n0, n1, .., nN−1 instructions respectively,

the execution time per instruction T (N) is:
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T (N) =
t

N−1∑
i=0

ni

(4.1)

The global execution time measurement depends on both the number of

parallel processes and the amount of processes instructions. Since the latter

factor does not affect the scalability of an emulation approach the execution

time has been normalized according to the number of processes instructions,

obtaining the execution time per instruction measurement.

The second evaluation is the global memory usage, it consists in the

memory capacity required by an emulator, i.e. the Mega Bytes that have

to be copied to the GPU buffers. Different approaches have different mem-

ory requirements, typically Micro Architecture level emulation require more

memory than the ISA level emulation, sinc the code has been translated into

data. Hence, an execution time improvements can corresponds to a mem-

ory occupation increase, that sometimes could be intractable (as explained

above).
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Chapter 5

ISA level emulation

This chapter presents the classic processor emulation approach, that per-

mits an unmodified program compiled for a specific architecture to be exe-

cuted on a different platform.

As discussed in chapter 2, “to emulate” means to provide an either hard-

ware or software system that exposes the same functionalities of the emu-

lated system. The more intuitive approach for the development of a processor

emulator considers the processor instructions as the primary entities to be

emulated, for this reason this approach will be referred to as the Instruction

Set Architecture (ISA) level emulation.

At this level the emulator provides an ad-hoc routine for each opcode

belonging to the Instruction Set of the emulated processor, the processor

image is described through specific data structures for the Registers block,

the Main Memory and the Interrupt Vector.

5.1 The Fetch-Decode-Execute cycle

Given a target architecture (e.g. i386, arm, mips, ..) an emulator takes a

program compiled for that platform as input and it mimics the Fetch-Decode-

Execute (FDE ) cycle in this way:

Fetch it fetches a byte from the binary file
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Decode it selects the right routine through a switch-like statement accord-

ing to the fetched opcode

Execute it invokes the chosen routine, providing the processor image as

input

If the adopted language permits the use of function pointers, the Decode

and the Execute steps can be merged in a unique phase. Opcode routines

can be referenced by a function pointers array opcode[], where the generic

element opcode[i] points to the routine corresponding the opcode i.

These steps are repeated until there are no more opcodes to be fetched

or a return-like statement is reached.

5.2 A parallel architecture emulator

The aim of this thesis is the development of a many-core architecture em-

ulator such that multiple binary files can be taken as input and concurrently

emulated. Thus, there will be several virtual Execution Units each of which

emulates its own FDE loop.

In a single-core scenario, these Execution Units are treated as concurrent

processes (or threads) that are interleaved on the processor core. Due to the

high number of context switches, this approach leads to a big performance

downgrade, that can be reduced using an either multi-core or many-core

platform as the host system for the emulation. The emulator performs a

many-to-many mapping from the virtual Execution Units to the real proces-

sor cores.

This thesis investigates this approach, it implements a many-core emu-

lator on the top of a Graphics Processor, the mapping is very simple since

once an Execution Unit is scheduled on a GPU core, it performs all its com-

putation on that core, reducing the mapping time.

As discussed in previous chapters, GPU cores are arranged in SIMD

groups, within which they are forced to simultaneously execute the same
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instructions sequence using different memory portions. Thus, the parallel

emulation of multiple execution flows is not trivial, indeed given N input pro-

grams to emulate, for each of them there will be a dedicated Execution Unit,

which iterates the Fetch, the Decode and the Execute phases. Though the

first two steps (Fetch and Decode) could be easily emulated on N SIMD cores

(all cores would perform the same instructions sequence for these steps), the

Execute phase always requires different instructions to be performed, leading

to a divergent execution.

To address this issue, this thesis proposes a new emulation technique, that

will be detailed described in the next chapter; this new approach consists in

a unique routine R where each opcode is treated as a processor configuration

that allow R to behave differently depending on the opcode. It is important

to claim that GPGPU libraries usually apply some policies when scheduling

parallel threads on GPU cores, in order to reduce the divergent phenomena

as much as possible.

For this reason, both emulation techniques are implemented and com-

pared.

5.2.1 Improvements for the ISA emulation

The ISA level emulation is based on a mature technology, with a lot of

innovations proposed during recent years (see chapter 2). For example, the

Qemu machine emulator implements a combination of static compilation and

dynamic translation to achieve high performance [17].

However, this technique cannot be direct implemented on the top of a

GPU since this kind of device does not allow all programming techniques

that are commonly available in the classic CPU programming (e.g., function

pointers); moreover some new techniques need to be introduced in order to

address the divergence phenomena; in [11], a many-core emulator is developed

on the top of a GPU, introducing a further compilation step where the input

program is compiled to a new ISA with a very limited number of instructions,

in order to reduce the divergence probability.



46 5. ISA level emulation

The ISA level emulator developed for this thesis adopted a similar tech-

nique, instead of writing a dedicated routine for each opcode, instructions are

grouped by type and each type corresponds to a single parametric routine,

that is invoked with correct parameters every time an opcode of the corre-

sponding type is fetched. For example, the add and the sub instructions have

the same behavior except from the sign of the second operand:

a− b ≡ a+ (−b) (5.1)

Thus, there will be only a single routine, e.g.

void add(cpu_conf_t *conf, int sign);

that will be invoked with sign = 1 for the add instruction and with sign = −1

for the sub instruction.

As a more significant example, consider that within the Integer Java Byte-

code Instruction Set there are 12 jump instructions, 7 constant instructions,

8 load instructions and 8 store instructions. For each of these groups there

will be a unique routine.



Chapter 6

Micro Architecture level

emulation

This chapter wants to answer the question “is it possible to express dif-

ferent computation flows, using a unique algorithm?”. Let P be a problem,

an algorithm A solves P if starting from an input dataset (even empty) it

produces a solution for P (the output).

The goal of this thesis is the design of an algorithm able to mimics the

behavior of a generic algorithm A, taking both the description of A and the

dataset on which A operates as input. Hence, the steps for solving P are no

longer expressed as “algorithm steps” but as part of the “input dataset”.

At low levels computers act in a very similar manner, programs consist of

instructions streams that are stored inside memory as binary files. The hard-

ware always performs the same execution path and instructions opcodes are

just numeric values that represent a specific hardware configuration. The

hardware can “behave” in different ways, according to different configura-

tions, i.e. different instructions.

This is the idea exploited in this thesis, the book “Structured Computer

Organization” by A. S. Tanenbaum [14] describes in a very detailed man-

ner the Micro Architecture level of a processor able to execute simple Java

programs. Here, the micro-instruction is the basic computation unit, it
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is composed of several bits, each of which manages a specific part of the

hardware configuration, an instruction is an index within an array of micro-

instructions.

6.1 The execution model

The model described in [14] does not correspond to a real processor de-

scription. Since the book has an educational purpose, it takes the Java

Virtual Machine just as a case-of-study to explain processors design rules

and technologies.

As a consequence, the proposed architecture is quite simple to understand

but it has very low performances.

However, the simple and easy-to-understand example (called Mic-1 ) is

made more complicated and more efficient in several ways, leading to other

three abstract models, called Mic-2, Mic-3 and Mic-4. These improved mod-

els highlight some key points in the processors design and they are studied

as possible features for our GPU-based parallel emulator.

In the Mic-1, the primary entity is the micro-instruction, a set of bits

that describe how various processor components should behave. These com-

ponents are depicted in Figure 6.1:

Control Memory a Read-Only memory that contain the Micro Program,

i.e. the micro-instruction set. The term “program” is quite misleading

because it is not a program in the strict sense, but a set of micro-

instructions. However, the term will be kept as it is presented in the

book. Within the Control Memory micro-instructions are usually hard-

ware coded

ALU an Arithmetic-Logic Unit. It is able to perform some basic operation

like sum, difference, increment and logical conjunction, disjunction and

negation. It receives two values from two input buses and it sends

another value on an output bus. Both input and output buses are

connected to the registers
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SP Registers Special-Purpose registers, they have specific roles in the com-

putation. They are the only input/output for the ALU, thus the data

stored in the Main Memory has to be copied into some register (with

a Read operation) and then, the ALU can use it. See section 4.1.1 for

more details.

Main Memory memory area for code, methods, variables and stacks; this

component is not showed in Figure 6.1), for more details see sections

4.1.2 and 6.1.3

Figure 6.1: The Mic-1 execution Path, taken from [14]

In addition to those listed in section 4.1.1, there is a specific register,

called MicroProgram Counter (MPC ) that acts as an index inside the Control

Memory, it selects the micro-instruction whose signals are broadcast to the

ALU, the registers and the Main Memory, These signals define the hardware

configuration that produce the desired computation.
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6.1.1 The micro-instruction

If the ISA level is instruction-oriented, at Micro Architecture level the

primary entity is the micro-instruction. This entity is nothing more that a

set of bits, grouped in fields that express how processor components should

behave, in order to perform the desired computation.

In particular, the Mic-1 micro-instruction is a 36 bits long word with 6

fields, as shown in Figure 6.2:

Figure 6.2: The Micro-instruction structure, taken from [14]

B Bus 4 bits that express which register (only one at a time) can put its

value on the right bus of the ALU (the IJMV model does not give the

chance to control the left bus, called A, that always receive data from

one specific register)

Mem 3 bits that denotes which memory operation the micro-instruction

should perform. The available operations are Fetch, Read and Write;

differences between these operations will become clear in section 6.1.3.

C Bus 9 bits that define which registers will store the computed value. Un-

like the input bus (the B Bus) that can receive a value only from one

register, this output bus can bring data to multiple registers; for this

reason this field needs 9 bits instead of B Bus field that needs only 4

bits
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Alu 8 bits that control the ALU behavior, the first six bits refer to the ALU

itself, while the last two to the Shifter

Jam this field is close related to the subsequent Next Address field, that

specifies the index of the micro-instruction to be performed after the

current one. The bits from the Jam field allow to modify this “next

micro-instruction” field: first two bits invert the more significant bit

of the Next Address field according to a Null or a Negative result of

the Alu respectively. The activation of the third bit forces to use the

value stored in a specific register (the PC register) as index for the next

micro-instruction

Next Address these 9 bits act as index for the subsequent micro-instruction.

At the Micro Architecture level, micro-instructions are a well defined

number of building blocks that can be composed together in order to

perform a more complex computation. They are usually hardware-

coded and stored in the Control Memory (see Section 6.1); so the order

by which they are stored usually is not the order by which they are

executed. For this reason, the flow of instruction has to be explicitly

coded in this field.

6.1.2 The ALU

The ALU (for Arithmetic Logic Unit) is the processor component that

performs mathematical and logic operation. In addition, it is responsible for

some decision operation (e.g., conditional jumps depends on the ALU result).

It is connected with several Special-Purpose registers, which have specific

roles in the computation, as explained in section 4.1.1. The ALU has two

input buses and one output bus, each of which is connected to registers.

It is important to note that only one input bus (the right one, called

B) can receive a value from an arbitrary register, while the other one (the

left one, called A) always receives data from one specific register (called H,

for holding). Furthermore, not all registers can neither provide values for
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the input bus nor receive values from the output bus: the micro-instruction

provides two specific fields (B Bus and C Bus) that specify which regis-

ter/registers has/have to be considered.

6.1.3 The memory model

As described in section 4.1.2, the Main Memory has four areas: Constant

Pool Portion (CPP), Local Variable (LV ), Stack (Stack) and Method Area

(Text). These areas store informations about methods, variables local to a

specific method, the stack on which computation takes place and the meth-

ods’ opcodes, respectively. This organization is similar to the Linux-IA32

model with .TEXT, .DATA, .STACK and .HEAP segments.

Registers are the only input/output for the ALU. Hence, when input data

is not available in registers (it is stored in the Main Memory), there are three

distinct steps to be performed:

(i) read the operands from the Main Memory to some registers (one at a

time)

(ii) perform the desired operation

(iii) store the result back to the Main Memory

Te data exchange between the Main Memory and the registers takes place

with two different modalities: word-oriented and byte-oriented ; the former

permits to read and write 32 bits words from the memory to the registers

and vice versa. The latter allows only to read one byte from the memory,

storing it in a register.

The presence of two distinct memory access modes is due to the fact that

data stored inside the Main Memory can be used in two different ways: since

the ALU performs operations on 32-bit words, operands for computations

require a word-oriented mode. However, the Java Bytecode stored in the Text

area and the methods informations stored in the CPP area are expressed in
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byte. Hence, methods informations and opcodes require byte-oriented access

mode.

Thus, there are three distinct memory operations:

Fetch It extracts one byte from the memory location pointed to by the PC

register, storing it in the less significant 8 bits of the MBR register

Read It copies a 32 bits word from the memory location pointed to by the

MAR register to the MDR register

Write It copies a 32 bits word from the MDR register to the memory loca-

tion pointed to by the MAR register

Furthermore, the fetch operation has two versions: unsigned and signed.

The first one treats the retrieved byte as an unsigned, 8-bits long, integer,

with value range [0, 255]. The second version uses the more significant bit as

the sign, leaving other 7 bits for the value itself, with a possible value range

of [-128, 127].

Registers names reflect their usage: MAR stands for Memory Address

Register, MDR for Memory Data Register, MBR for Memory Byte Register

and PC for Program Counter, which holds the index of the current opcode

within the Text Area of the Main Memory.

An important aspect of the memory management is the timing, the model

described in [14] mimics a real hardware implementation, hence the author

discusses all signals propagation related issues. For example, to perform a

read operation the MAR register has to be set with the appropriate address

(the Main Memory location to be read) and the micro-instruction must have

turning on the specific bit in the Mem field on. If this happen at the cycle i,

the value inside the memory is read during the cycle i+1, and it is available

inside the MDR register from the cycle i+2.

Fetch and Write operations behave exactly in the same way.

However, these hardware details could be ignored when developing an

emulator. Since the data coming from the Main Memory and from the reg-

isters is available with the same delays, it is possible to complete a memory
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operation in the same cycle when it has been launched. In this way, the

number of emulated cycles should reduce, because each memory operation

requires one less cycle to be completed.

6.1.4 The execution path

The Execution Path, is the operations sequence that permits the Mic-

1 model to perform a computation. At the Micro Architecture level, “to

execute a program” consists in:

(i) select from the Control Memory the micro-instruction pointed to by

the MPC register

(ii) propagate bits from the micro-instruction fields to various processor

components, in particular:

� Bus B and Bus C fields select input and output registers for the

ALU, masking other registers

� Alu bits define the ALU operation

� Mem field bits enable/disable memory exchange between memory

and registers, as specified in section 4.1.2

� Jam and Next Address fields establish the following micro-instruction

to be performed (i.e., they store the following micro-instruction in-

dex inside the MPC register), according to the ALU outcome and

the value stored in the PC register

(iii) restart this cycle from its beginning, executing the next micro-instruction

which is the one pointed to by the newly value of the MPC register

6.1.5 An example

At this level, micro-instructions are coupled in order to provide ISA

instructions implementation. For this purpose, micro-instructions are ex-

pressed with a high-level notation to improve readability.
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This notation defines the ALU operation (with corresponding input and

output registers), the possible memory operation(s) and the next micro-

instruction to be performed. Here there are some examples:

main1: pc=pc+1; fetch; goto(MBR)

iadd1: mar=sp=sp-1 ; read ; goto iadd2

iadd2: h=tos ; ; goto iadd3

iadd3: mdr=tos=mdr+h; write ; goto main1

swap1: mar=sp=sp-1 ; read ; goto swap2

swap2: mar=sp ; ; goto swap3

swap3: h=mdr ; write ; goto swap4

swap4: mdr=tos ; ; goto swap5

swap5: mar=sp-1; write ; goto swap6

swap6: tos=h ; ; goto main1

The adopted notation provides several lines, each starting with the corre-

sponding micro-instruction name, after that there are three parts, separated

by a semi-colon. The first one, the ALU computation, defines the operation

and the involved registers, not all registers are good candidates for either

the L-value or the R-value of the computation, indeed, some registers are

ready-only and some others are write-only. Regarding the ALU operations,

there is a strict set of available operations.

The second part refers to the memory operations (fetch, read or write):

read and write are mutual exclusive, but each of them can be performed

together with fetch.

The last part specifies the name of the next micro-instruction to execute.

In the example, the Java instructions iadd and swap are implemented

with several micro-instructions, that are executed with the ordering in which

they are wrote (each micro-instruction “call” the next one). Both micro-

instruction sequence end by calling the main1 micro-instruction. Although

main1 does not refer to any instruction from the Java Bytecode ISA, its
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presence is required: its only task is the increment of the Program Counter

register and the fetching of a new opcode, in order to start a new operation.

Since a fetch operation copies one byte from the memory location pointed

to by the PC register to the less significant part of the MBR register, the

main1 micro-instruction ends with the goto(MBR) statement.

6.2 Improved models

The Mic-1 is an easy-to-understand example of Micro Architecture de-

sign, it is able to execute sample Java programs. However due to its educa-

tional purpose, it is not very efficient: the absence of a pipeline, of a branch

predictor, of a cache memory and a long execution path make a Micro Ar-

chitecture design like this not even comparable to modern CPU design (like

for example the Intel Core Micro Architecture).

Tanenbaum book starts from the Mic-1 model and improves it, leading

to other three models, called Mic-2, Mic-3 and Mic-4 respectively. Now

it follows a briefly description of the novelties introduced by these models,

discarding a precise description of the models themselves and the benefits in-

troduced w.r.t. previous versions. Instead, these improvements are discussed

taking into account that the emulator host platforms are GPUs since some of

these techniques can be either not suitable or hard-to-implement in a GPU

application.

Prefetching Some instructions require a defined number of arguments (or

operands) and Mic-1 model must perform a fetch operation for each

of them, increasing the number of cycle and, consequently, the global

time. The Mic-2 model introduces a sort of prefetching, that treats the

memory as a byte stream. Every time a byte is fetched, the subsequent

byte is fetched too, thus, if a micro-instruction requires an operand,

it is already available. Moreover, the Mic-2 model introduces a new

register MBR2, that has a similar role to MBR except from the fact that
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it holds two bytes instead of one. It is typically used for instructions

that need more that one operands.

Applying this concept to a GPU-based emulator is not too difficult:

the emulator proposed in this thesis exploits the dual memory access

mode: word-oriented and byte-oriented. Each operation is treated as a

word-oriented one and when a fetch operation is requested, four bytes

are fetched (instead of one) splitting them up in four different registers

(MBR0 to MBR3). Thus, all memory operations are similar (they can

be performed in parallel) and when an opcode is fetched, the following

three bytes (possible operands) are fetched too.

Pipeline and Branch Predictor The pipeline has a leading role in nowa-

days CPU performance: the basic idea is to divide a process (in this

case the execution path) in multiple steps, each of which is performed

by a specific hardware component; these components are arrange in a

pipeline manner (the output of component i corresponds to the input of

component i+1 ). Thus, when a component has delivered its output to

the following one, it can start working on the next micro-instruction:

though the global execution time for a micro-instruction fulfillment

does not change, the instruction throughput grows significantly.

Pipelines are very important in Micro Architecture design (the Mic-3

and Mic-4 models proposed in [14] expose a three steps and a seven

steps pipeline respectively). Unfortunately, the key concept of pipelines

is the presence of different hardware components, that perform different

tasks, making this approach not suitable for GPUs. Indeed, Micro

Architecture level emulation is taken into account due to the chance of

express task parallelism in terms of data parallelism, using the same

program to perform different instructions. Thus, the introduction of

different components (that must be concurrently executed) represents a

backward step, that does not completely exploit the GPU parallelism.

This is a great limitation: it prevents GPU-based emulators to exploit
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one of the greatest innovation of the corresponding targets processors.

As a consequence, branch predictors too become useless. In a pipelined

processor it is necessary to start fetching the new instruction when

the current one has not finished yet, and if the current instruction is

an either conditional or unconditional jump, it could be difficult to

determinate the next instruction: a Branch Predictor is a further CPU

component that tries to evaluate the branch that could be undertaken

from a jump instruction, avoiding a CPU stall (i.e. the CPU waits

until the current instruction is completed). Since GPU-based emulators

cannot support pipeline, branch predictors become useless too.

Cache memory The use of cache memory is a great improvement in mod-

ern CPUs design: memory latency is too big if compared with registers

access time, that cause the memory delays to be a bottleneck for pro-

cessors’ performance (several processor cycles are wasted while waiting

for memory operations to be completed). The cache memory is a small

and fast memory that contains frequently requested memory words.

Thus, when a processor wants to read a word from the Main Memory,

it firstly checks if the required word is stored in the Cache Memory

and, in case of cache-miss, it forwards its request to the Main Memory.

Due to the very small latency of cache memory, the less the number of

cache-miss is, the higher performance the processor will reach.

Now the question is “how the improvements gave by the presence of the

Cache Memory can be exploited in the development of a GPU-based em-

ulator?” First of all, it is important to point out that GPU program-

ming usually does not allow the rough hardware management, thus

every memory operations must be performed using the Main Memory

locations; secondly, one of the main GPUs feature is the high mem-

ory performance, in terms of low latency and high bandwidth; thirdly,

GPUs memory exposes a hierarchical organization with multiple mem-

ory area with different sharing features and performance. Clearly, the

more the number of cores sharing a memory area is, the lower the ap-
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plication performances will be (due to the high number of cores that

compete for the bus usage).

Thus, even if Cache Memory technique is not direct implementable in

a GPU-based emulators, it is possible to achieve better performance

exploiting different memory areas, using techniques similar to those

relative to Cache Memory.

Reduction of execution path An ISA instruction is implemented by a

number of micro-instructions that can vary from one to more that

a dozen and for each of which the whole execution path has to be

executed (with no pipeline). Furthermore, Mic-1 forces every micro-

instruction sequence to end with main1, whose only job is the increase

of the PC register and the fetch of a new opcode. Mic-2 model in-

troduces a new hardware component called IFU (for Instruction Fetch

Unit) that automatically increments the program counter at the end

of each micro-instruction sequence, reducing the number of required

micro-instruction for an ISA instruction execution. This approach is

not direct implementable in GPU-based emulator, indeed, IFU is a sep-

arate component (i.e., it performs a different task), working in parallel

with the rest of the processor and GPU cores cannot execute different

tasks.

However it could be possible to increase the PC register during the

execution path. This way, the emulation time required for a single

micro-instruction become a little longer, but all ISA instructions are

implemented with one less micro-instruction, reducing global execution

time.

Another important point is the propagation delays for memory opera-

tions: as described in section 4.1.2, a memory operation issued in cycle

i is performed during cycle i+1, making data read or written from cycle

i+2 ; hence, a big number of cycle are wasted waiting for the memory

operations fulfillment. In the best case, these cycle are used for other
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purposes, but sometimes the complete execution path remains unused

for a cycle.

Since a GPU based emulator mimics both the Main Memory and the

registers with a fast Main Memory residing on the Graphic device,

these hardware delays can be discarded, in order to make an opera-

tion completed at the end of the cycle that launched it. Moreover,

Mic-* models allow fetch, read and write operations, that always use

MAR, MDR, MBR and PC registers as source and destination. It

should be possible to implements memory operations that performs

data exchange between the memory and arbitrary registers or between

arbitrary memory locations; these operations are possible in current

models, but require several cycles.

It is highly important to note that this section has described what can

and cannot be implemented in GPUs with a pure SIMD design, chapter 3

describes the GPU programming and relative tools that usually implements

a form of the Single Program Multiple Data paradigm (SPMD), that permits

GPU cores to execute a limited number of different flows. This thesis inves-

tigates exactly this topic, the ISA level emulation (explained in chapter 5)

forces each GPU core to perform a different process, while using the Micro

Architecture level approach GPU cores run the same code. Hence, these two

approaches could be coupled together, especially with regards to Pipelines,

that are probably the best improvements in the Micro Architecture field.

Although a many steps pipeline cannot be directed implemented in GPUs,

it could be possible to design a limited-step pipeline, as long as GPU cores

can execute different code.

Concluding, Micro Architecture designs have been widely improved dur-

ing years with a lot of features, however not all of these features can be cor-

rectly replicated in a GPU-based emulator, forcing you to develop a legacy

processor emulator with low performances. Beside this, GPUs offer some

new interesting chances, that are not available in classic CPU hardware.

The most important is the massively parallel computation power, that allow
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to express the execution path in terms of multiple flows that operate on the

same registers. Moreover, GPUs usually implement floating point operation

in hardware, giving the chance to improve some ISA instructions implemen-

tation that have otherwise required multiple simpler micro-instructions.

6.3 The MIC model

The first Micro Architecture level emulator is a precise implementation

of the Mic-1 model described in [14].

As explained in chapter 3, a GPGPU application consists in two parts: a

host program (a classical C/C++/Java application that runs on the CPU)

and a kernel, the routine executed on the Graphic hardware. The host job

is to compile the kernel code, to provide kernel arguments and to start the

kernel execution. At run-time, no kernel-host communication is allowed so

everything the kernel needs has to be provided before it starts.

In particular, there are three class of arguments:

Execution Environment It consists in Registers, Main Memory and Con-

trol Memory. In a parallel context with several parallel processes, there

will be a Registers array for each process, a unique Main Memory array

(with several LV +Stack+Heap areas, as described in section 4.1.2) and

a unique read-only Control Memory array

Field selection Micro-instructions are composed of several bits grouped in

fields, these fields have to be isolated for specific usages. Since fields

are part of a 36 bits word (the micro-instruction), they can be isolated

using a combination of left-shift and mask operations. Let mi be the

micro-instruction, within kernel arguments there are two arrays, called

offset and mask, such that the i -th field is obtained with:

field[i] = (mi >> offset[i]) ∧mask[i] (6.1)
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Furthermore, some of these fields are used as they are coded in the

micro-instruction (e.g. the ALU operation), while others act as a

boolean flag (a single bit that can be either 0 or 1, like the read oper-

ation bit). Fields belonging to this second category require to be ex-

tended to a 32 bit word, as explained in section 6.3.1. Thus, there will

be a further array within the kernel arguments, called extension. Its

elements can be either 1 or 0xFFFFFFFF and each of them multiplies

the corresponding field value, such that some fields remain unchanged,

while single bit fields are extended to a 32 bits word. The resulting

formulation will be:

field[i] = ((mi >> offset[i]) ∧mask[i])× extension[i] (6.2)

Registers selection An ALU operation is defined by the operation itself

and by the registers involved in it, a micro-instruction contains indices

that express references to registers. However, not all registers can be

involved in an ALU operation, some registers are read-only and some

other write-only. Micro-instruction fields express an index that may not

match the real register index. Within the kernel arguments there are

two arrays, readable and writable that act as a second level indexing.

For example, readable[i] holds the index of the i -th readable register,

that could be different from the i -th register. Let C be the micro-

instruction field for the C Bus, and R the result of an ALU operation,

the code will be:

regs[writable[C]] = R (6.3)

6.3.1 A branch-free code

One of the constraints of this work is the need for each GPU core to exe-

cute the same code. Indeed, Micro Architecture level is investigated exactly
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for this purpose, it allows the emulator to execute the same program avoid-

ing the use of a switch-like statement that call a different routine depending

on the fetched opcode. However, though all GPU cores perform the same

program, they can still attempt to execute conditional statements that could

cause different code to be executed.

Hence, the emulator code must be completely branch-free, in order to

avoid divergent executions. For this purpose, the emulator code mimics the

hardware behavior.

A hardware circuit does not perform any branch, the basic component

is the bit and bits are composed using logical operations like conjunction,

disjunction and negation.

So, how to express different behaviors from bits and logical operators?

At the hardware level, “behaviors” are just signals propagations, thus, a

“branch” is a bits word that can be composed with a conditional words, that

acts as a boolean value. Therefore, the computation must be expressed in

terms of values.

Using this approach, the conditional statement

if(C) B1 else B2

has the form

X = (C ∧B1) ∨ (¬C ∧B2) (6.4)

Since the branches B1 and B2 are just values, they can be composed

using operators ∧, ∨ and ¬, obtaining the value X, that corresponds to an

intermediate step of the computation.

Clearly, the expression of the whole emulator code in terms of values

would require a big coding effort, thus this technique is used only to avoid

branches.

For example, a read operation copies a value from the memory location

pointed to by the mar register to the mdr register. When this operation is

requested, the second bit of the Mem field is turned on and the code
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if(readBitIsOn)

mdr = mem[mar]

is translated in its branch-free version

mdr = (readBitIsOn ∧mem[mar]) ∨ (¬readBitIsOn ∧mdr) (6.5)

Clearly, using 32 bits words, conditional guards (the readBitIsOn in the

example) must be 32 bits long too, otherwise the bit-wise composition would

fails. For this reason, fields extracted from the micro-instruction that consists

of a single bit (e.g. memory operation bits), have to be extended to 32 bits

words. This is achieved using the extension array, whose elements multiplies

micro-instruction fields either by 1 or 0xFFFFFFFF, depending on the field

usage.

Although this technique allows the complete removal of all branches from

a program, there is an important drawback: a value is always written in a

memory location, while this is not true using an if -statement.

This is particular important when considering several processes running

in parallel, sharing a memory area. Parallel processes are designed in order to

avoid unconsistent memory views, so if for example a process writes a value

in a memory location, another process will neither write to nor read from the

same location. However, in a branch-free code “do not write” means “write

the same value that was previously stored”. Thus, it could be possible that

a process A writes a value in a memory location and another process B do

some other computation. When B execution reaches the “write” code, it

performs a useless write operation. The problem arises when the registers of

both processes A and B point to the same memory location, regardless the

fact that from the B point of view, its write operation has no effects on the

environment.

Thus, it is highly important to ensure that a idle process registers do not

refer to any shared memory location, in order to avoid processes interferences.
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Considerations

The complete removal of branches allows to execute the code on a pure

SIMD multiprocessor avoiding the divergent execution. However, it produces

a performance downgrade.

Since any conditional statement implies the computation of two values,

one of which will be always discarded. Consider for example the branch-free

version of the read operation, expressed in equation 6.5, at any cycle two

conjunctions, one negation an one disjunction are performed, regardless the

fact that read operation could or could not be required.

As a more significant example, consider the ALU emulation. Starting

from two input A and B, it perform four distinct results:

� A ∧B

� A ∨B

� A+B

� ¬B

but only one of these will be selected and stored in a register. Although

the wasted computation is not too big, this fact poses a limitation for future

ALU capabilities. An improved version of this work could include a mod-

ern ALU, able to perform difficult operation in a single cycle (e.g. integer

multiplication, division and reminder).

6.3.2 An exactly mapping

The MIC emulator mimics the behavior of the Mic-1 model described in

[14], it consists in a loop that iterates the following steps:

1. it selects the micro-instruction pointed to by the MPC register within

the Control Memory

2. it selects the input register that writes on the B bus (the A bus always

receives data from the H register)



66 6. Micro Architecture level emulation

3. it selects the output registers that receive the ALU results

4. it performs the ALU operation (keeping note of an either null or neg-

ative result)

5. it stores the result

6. it performs a fetch operation

7. it performs a read operation

8. it performs a write operation

9. it computes the next micro-instruction to be performed, according to

the PC register and the null/negative flags computed in step 4

Memory operations issue

Steps 6, 7 and 8 refer to the memory operations, the proposed design

is very inefficient, since it mimics the exactly hardware behavior, causing a

performance downgrade, for example:

� These steps are executed one after the other, while a real hardware

implementation would perform them in parallel

� Since read and write are mutually exclusive, at most one of them can

be requested

� The delayed execution of Mic-1 is kept, if a memory operation is re-

quired in cycle i, it is performed during cycle i+1 and completed from

the beginning of cycle i+2 (see section 6.1.3)

An efficient implementation of the Mic-1 model should abstract from

hardware details making a memory operation completed at the end of the

cycle that has requested it. Moreover, since each step consists in a value

copy between two memory locations, it could be possible to use the same

code varying source and destination value
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However, the MIC emulator is a precise mapping of the Mic-1 model,

so this details have been kept. The improved version PMIC address these

issues.

6.4 The PMIC model

The improved models described in section 6.2 are taken into account,

leading to the development of the PMIC emulator.

6.4.1 A parallel architecture

The first feature that has been considered for Micro Architecture level

emulation is the Pipeline, a CPU cycle is divided into several steps that are

performed by specific hardware components, arranged in a pipelined manner

(i.e., the output of the component i matches the input of the component

i+1 ). Since components are autonomous, after one component has executed

its task it can immediately start working on the next cycle, without having

to wait the whole cycle conclusion. Hence, although the required time for one

cycle execution remains unchanged, the instructions throughput increases.

The pipeline emulation is not a trivial task, since it requires that several

parallel processing elements mimic the various hardware components behav-

ior and the SIMD-like architecture of Graphic devices forces its processing

elements to execute the same instructions stream simultaneously.

Nevertheless, although it is not possible to split the emulation of a micro-

instruction into several steps, the parallel power of graphic hardware can

be exploited emulating the execution of multiple instructions in parallel.

Thus, the emulation environment will be composed of several Compute Units

(CUs), which work on the same registers set. For sake of consistency, several

CUs can process data coming from the same register, but the output data

must be delivered to different registers.

Micro-instructions are composed in order to implement an ISA instruction

(see section 6.1.5), now this implementation can be expressed with multiple
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parallel flows. It is highly important to note that while an N steps pipeline

could improve the instructions throughput by N times, an emulator with N

parallel flows does not reach the same improvement. Micro-instructions are

often related by a causal relationship, thus some of them must be executed

in different steps. For example, the code

pc=pc+1; fetch;

h=mbr << 8; ;

pc=pc+1; fetch;

h=h | mbr; ;

pc=cpp+h; fetch;

performs a very common task, it reads a two-bytes operand from the Text

area and uses it as an offset inside the Constant Pool Portion, whose base

position is pointed to by the CPP register (a fetch operation copies the byte

pointed to by the PC register into the MBR register, since only one byte at

a time is fetched, a two bytes operand requires the first one to be fetched

and left-shifted and then it is possible to fetch the second one).

Since each micro-instruction depends on the result produced by the pre-

vious one, they cannot be executed in parallel.

Despite this example, the presence of several parallel Compute Units usu-

ally produces a good performance improvement when coupled with some

additional features:

General-Purpose and Constant registers Special-Purpose registers are

designed in order to support a single execution flow. Sometimes two in-

dependent (i.e., not related by a casual relationship) micro-instructions

must be serializes because there are not enough available registers to

support both computations. Thus, the presence of some General-

Purpose register permits to better exploit the parallel architecture.

Furthermore, some constant registers are introduced, they hold the

constant values 2, 3, 4, 5 in order to avoid the computation of these

values every time they are required (constant values 0 and 1 are im-
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plicitly provided by the ALU ).

No main micro-instruction The implementation proposed in [14] con-

cludes each micro-instructions sequence with a jump to the main micro-

instruction, whose only job is the Program Counter increment, so that

a new opcode can be fetched and a new instruction can start. Now,

this job can be executed in parallel with the rest of the sequence (us-

ing a dedicated Compute Units). Hence, each sequence of the model

proposed in [14] is now reduced by one.

Prefetching Some ISA instructions require one or more operands to fulfill

the execution and the need for an explicit fetch for each of them in-

creases the average number of required micro-instruction. To overcome

this problem, operands must be available in some registers without

having to be explicitly fetched. The fetch operation has been changed

in order to copy a whole 32 bits word instead of a single byte. The

opcode and the possible operands can be accessed through the virtual

registers MBR0, MBR1, MBR2, MBR3 respectively, that correspond

to the various bytes within the MBR register. If an instruction requires

more than three operands, they have to be explicitly fetched.

Memory operations immediately performed The need for two cycles

for a memory operation fulfillment is due to the signals propagation

time and the Main Memory latency. Since an emulator can avoid to

deal with these hardware details, memory operations can be concluded

in the same cycle when they have started, reducing the global number

of cycles.

The PMIC emulator uses three parallel Compute Units and it theoreti-

cally reduces the average number of cycles by 2.56 times w.r.t. the sequential

implementation proposed in [14]. In the practice this value become 1.9.

A Computation Unit can be considered exploited if its usage reduces the

number of cycles. Hence, in the example above, five micro-instructions are
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related by a causal relationship and no additional CU can be exploited, since

the number of cycle still remain five.

The number of three has been chosen as the number of Computation Units

for the PMIC model because a lot of micro-instruction sequences exploit

the presence of three CU, however a further one would not produce better

performances.

Moreover, the presence of three Compute Units allows to map each mem-

ory operation to a dedicated CU. In this way all fetch operations will be

performed by the first CU, all read operations by the second one and all

write operations by the third one, regardless of the order by which opera-

tions are requested. Therefore, the emulation time per cycle can be reduced

since at each cycle only one operation will be performed instead of three.

6.4.2 A new micro-instruction structure

A micro-instruction is a set of bits that defines a particular hardware

configuration. Thus, the more complex the hardware is, the more expressive

the micro-instruction must be and the one described in section 6.1.1 is no

longer expressive enough for the PMIC computation model.

A micro-instruction is composed of three parts: the ALU Computation,

the Memory Operation and the Next Address Computation. Since the PMIC

model exposes three Computation Units, the first and the second micro-

instruction parts must be replicated three times. The third part consists in

the computation of the address of the next micro-instruction to perform and

all Computation Units must agree on that address. Therefore, the third part

of the micro-instruction is the same for all CUs.

The ALU Computation part has to be refined since the PMIC model has

some additional register, the new versions of the B Bus and the C Bus fields

must be 5 and 11 bits long respectively, since there are 25 readable registers

and 11 writable registers. Furthermore, the PMIC model makes the ALU left

input bus to be programmable while the previous micro-instruction structure

does not allows to control it. Thus, an exact copy of the B Bus field must
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be added to the structure for the A Bus.

In the old version of the micro-instruction structure the Memory Opera-

tion part is a three bits block such that each bit denotes a memory operation.

Since each CU performs a specific memory operation, the corresponding part

of the new structure should be a single bit. Both the ALU part described

above and this Memory bit are replicated for each CU.

Figure 6.3: The PMIC micro-instruction structure

Finally, the Next Address Computation part remains unchanged. The

PMIC micro-instruction structure is depicted in Figure 6.3, it is a 102 bits

word while the simple MIC model described in [14] requires only 36 bits.

The PMIC emulator implements it using four distinct 32 bits words, the

first three have the same structure, each of them denotes the ALU and the

Memory parts of a single Compute Unit. The last word corresponds to the

Next Address Computation part. Since this last part is composed of 12 bits,

a 16 bits variable should be enough for holing it, however almost all GPU

programming libraries do not allow to write in variable smaller than 32 bits.

Thus, the GPU implementation of the micro-instruction requires 128 bits

(four 32 bits words).

6.4.3 A language for PMIC microcode

Since micro-instructions are just blocks of bits, it could be possible to

write them using constant values, shifted by a correct offset. For example,

the micro-instruction

mar=sp+1 ; read ; goto main
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can be written as

micro_instr = REGISTER_SP << BUS_A_OFFSET

| REGISTER_NULL << BUS_B_OFFSET

| A_PLUS_ONE << ALU_OFFSET

| REGISTER_MAR << BUS_C_OFFSET

| READ_OPERATION << MEM_OFFSET

| main_index << NEXT_ADDR_OFFSET;

This technique has been adopted for the MIC version of the emulator

and it has proved to be very tedious and error-prone. For this reason a high

level language for the PMIC model and a corresponding compiler have been

developed in order to facilitate micro-instructions writing and maintenance.

This language allows to define ISA instructions implementation given

the mnemonic opcode name (add, swap, goto, ...). Each ISA instruction

contains one or more micro-instructions, each of which is composed of three

parts as described in the previous section, ALU, Memory Operation and

Next Address ; first two parts support up to three parallel flows while the

third one is common for all Compute Units. The following grammar defines

the language.

〈isa-instr〉 ::= 〈opcode-name〉 ‘{’ 〈microcode〉 ‘}’

〈microcode〉 ::= 〈micro instr〉
| 〈microcode〉 ‘;’ 〈micro-instr〉

〈micro-instr〉 ::= 〈alu〉
| 〈alu〉 ‘:’ 〈mem〉
| 〈alu〉 ‘:’ 〈addr〉
| 〈alu〉 ‘:’ 〈mem〉 ‘:’ 〈addr〉

〈alu〉 ::= 〈one-alu〉
| 〈alu〉 ‘//’ 〈one-alu〉
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〈mem〉 ::= 〈one-mem〉
| 〈mem〉 ‘//’ 〈one-mem〉

Since registers access mode can be either read-only, write-only or read-

write, there are two distinct syntactic categories, the 〈regR〉 one and the

〈regW 〉 one, for readable and writable registers respectively. Moreover, read-

able registers can be composed using a defined set of ALU operations, defin-

ing the 〈R − value〉 category and the result of an ALU computation can

be delivered to multiple comma-separated writable registers, that define the

〈L− value〉 category.

ALU operations are provided via mnemonic names, each of which has a

corresponding constant value. The language grammar will be:

〈one-alu〉 ::= 〈L-value〉 ‘=’ 〈R-value〉

〈L-value〉 ::= 〈regW 〉
| 〈L-value〉 ‘,’ 〈regW 〉

〈R-value〉 ::= ‘zero’ | ‘one’ | ‘minus-one’

| 〈regR〉 ‘‘<< 8’’

| 〈regR〉 ‘‘>> 8’’

| ‘not’ 〈regR〉
| 〈regR〉 ‘and’ 〈regR〉
| 〈regR〉 ‘or’ 〈regR〉
| 〈regR〉 ‘+ one’

| 〈regR〉 ‘+’ 〈regR〉
| 〈regR〉 ‘+’ 〈regR〉 ‘+ one’

| ‘-’ 〈regR〉
| 〈regR〉 ‘minus one’

Memory operations are declared through the corresponding mnemonic

names fetch, read and write. This part is optional, if it is not specified, no

operation will be performed.
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〈one-mem〉 ::= ‘fetch’

| ‘read’

| ‘write’

Finally, the Next Address Computation part defines which micro-instruction

will be performed after the current one. In most cases, within a micro-

instructions sequence, each one “invokes” the next one and the last one “in-

vokes” the micro-instruction whose index is stored in the PC register. This

is the common behavior, that is performed when Next Address Computation

part is omitted. Different behaviors raise in presence of conditional and un-

conditional jumps, the first one depends on the either null or negative result

of an ALU computation, while the second one fetch an new operands from

an arbitrary part of the memory.

It is important to note that a conditional jump is defined by two micro-

instructions (one for each branch) whose opcodes must differ only for the

9th bit. When a micro-instruction has the either null or negative jump bit

on, the 9th bit of the NEXT ADDR field is reversed according to a null or

a negative ALU result respectively. Thus, the definition of a conditional

jump does not allow to specify two arbitrary micro-instructions for the two

branches (like an if-then-else statement). Within the language grammar, the

syntactic category 〈flag〉 define the condition (n for Negative and z for Zero)

and the 〈opcode − name〉 specifies the micro-instruction to be performed if

the condition is true. If the condition is false, the 〈opcode− name〉 index is

XOR-ed with the value 0x100 in order to reverse the 9th bit.

〈addr〉 ::= ‘next’ 〈opcode-name〉
| ‘next (’ 〈flag〉 ‘)’ 〈opcode-name〉

〈flag〉 ::= ‘n’ | ‘z’

A language compiler has been developed using the Flex lexical analyzer

and the Bison parser generator tools [19], which are both part of the GNU

project. Micro-instructions are encoded with the format used by the emulator
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and written to the disk as a file. Thus, the emulator does not have to rebuild

all micro-instructions at every run (as the previous emulator version do), but

it just read the file the compiler has built, coping the Control Memory (the

set of all micro-instruction) to the GPU buffer.

An example

This example is extracted from the PMIC implementation used in this

thesis, the ISA instructions add and if cmpeq are implemented using two and

three micro-instructions respectively (the original sequential implementation

proposed in [14] requires four and seven respectively).

The if cmpeq sequence ends with a conditional jump, for this purpose

the two micro-instructions true and false are introduced. The former fetches

a 2 bytes operand ad uses it as an offset for the PC register, while the latter

just skips to the following opcode. Clearly the opcodes for true and false

are equal except from the 9th bit, thus the conditional jump “next(Z)true”

means that a null result forces to jump to the true micro-instruction, while

a non null result makes the control to move to (true⊕ 0x100), that is false

(the ⊕ operator is the bitwise XOR).

add {

mar,sp = sp-one

: read;

mdr,tos = mdr+tos // pc = pc+opl

: write // fetch

}

if_cmpeq {

mar = sp-const2 // h = tos

: read;

tos = mdr // mar = sp-one
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: read;

z = h-mdr // sp = sp-const2

: next(Z) true

}

true {

h = mbr1<<8 | mbr2;

pc = pc+h

: fetch

}

false {

pc = pc+opl

: fetch

}



Chapter 7

Conclusions and Future Works

Previous chapters described two different approaches for the emulation

of a parallel environment using a GPU as the host platform. Since the ISA

level emulation technique (the classic one) presents a non trivial divergence

issue, a new emulation approach has been introduced in order to overcome

the limitation of the classic mode. Besides this, the General-Purpose Com-

putation on Graphics Devices (GPGPU ) has been studied in order to under-

stand how GPU programming can be achieved, which programming libraries

are currently available and how these libraries behave. Indeed, GPGPU li-

braries usually spread the execution units among GPU cores according to

some internal policies in order to limit the divergence phenomena as much

as possible.

Our experiments evaluate the emulator performances with N different

parallel processes; the classic emulation approach would theoretically result

in a linear growth of the execution time with higher values of N (due to

the divergence phenomena). However, the OpenCL library arranges the ex-

ecution so that the time growth is very small. For this reason the classic

emulation approach is not completely discarded and it has been compared

with our new technique that produces better timing performances at the cost

of a more complicated emulator design.

This new emulation approach has been implemented in two distinct ver-

77
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sions, called MIC and PMIC respectively; while the first one emulates one

instruction at time the latter provides three distinct Processing Elements for

each execution flow. Clearly the PMIC model is faster (in a single cycle, it

can perform more work) but it is able to support a limited number of parallel

process.

This is due to the fact that the OpenCL library establishes the maximum

number of parallel execution flows according to both the device capability

and the complexity of the kernel routine. Let N be the number of available

Processing Elements exposed by the Graphics Device, the MIC emulator

has a rather simple design and so it supports up to N parallel threads. On

the contrary, the PMIC emulator is more complicated and it can exploit few

processing elements. Moreover, since the PMIC model exposes three distinct

Processing Elements for each emulated process, the reduced power has to be

partitioned among processes.

For example, the Radeon RV710 GPU (the testbed device used in this the-

sis) exposes 128 Processing Elements but the PMIC kernel can be launched

only on 32 parallel threads (due to its complexity); the number of 32 has to

be in turn partitioned among emulated processes. Thus the PMIC emulator

cannot launch more then 10 parallel execution flows, while the MIC emulator

can scale up to 128 threads.

For sake of clarity, the OpenCL library would be able to support an

arbitrary number of parallel execution units (Work Items in the OpenCL

nomenclature); to achieve this, Work Items are clustered in several Work

Groups that are interleaved on the device Processing Elements. The problem

is that Work Items from different groups do not have a consistent memory

view (see section 3.3.2). Thus, this thesis limits the emulation scalability to

the number of available processing elements of the adopted device (i.e., it

will be created only one group).

The introduction of three parallel Processing Elements for each process

emulation makes the PMIC model to reduce the required number of micro-

instruction to be performed for an ISA instruction fulfillment. Consequently,
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Figure 7.1: Execution Time

(a) (b)

the global execution time decreases too. The theoretical speedup obtained

by the PMIC emulator is 2.56 but in the practice this value become 1.88; this

is due to the fact that the ISA instructions with a high improvement factor

are more rare, while the most frequently used instructions expose a limited

improvement factor. Figure 7.1(a) depicts the number of emulated clock

cycles with an increasing number of emulated processes. In the rightmost

plot of the Figure the blue line represents the ratio of cycles amount obtained

by both emulators at a given number of processes; these values average is

1.88 and it is compare with the theoretical speedup of 2.56 (the purple line).

These three emulation approaches (“ISA”, “MIC ” and “PMIC ”) are eval-

uated according to two measurements:

� Execution time

� Graphics Device memory usage

Following sections expose some results of both evaluations, after which

the thesis will conclude with a suggestion for a hybrid solution, in order to

improve the performance of both approaches. The evaluations come from

two distinct executions, that emulate the same process and several distinct

processes respectively. It is important to claim that the former experiment
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does not make GPU cores to proceed the same instruction sequence syn-

chronously; since the same process is launched at different temporal steps,

the GPU Processing Elements execute the same instruction sequence but not

the same instruction at the same time.

7.1 GPU execution time

Section 4.2.1 describes this type of evaluation: different processes could

be parallel emulated and the resulting time would be a function of both the

number and the complexity of the processes. This thesis wants to investigate

only the emulation scalability, thus in addition to the Execution Time, the

Time per Instruction has been measured.

Figure 7.2: Execution Time

(a) (b)

Figures 7.2 and 7.3 show the Execution Time and the Time per Instruc-

tion plots respectively; in both pictures the leftmost graph refers to the em-

ulation with the multiple instances of the same process, while the rightmost

one shows the results of different processes concurrently emulated.

All graphs show three lines, the blue one is the trend of the classic emu-

lation approach, called “ISA” while the red and the green represent the two

versions of our new emulation technique called “MIC ” and “PMIC ” respec-

tively. As said before the PMIC model cannot scale up to 10 execution flows,
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Figure 7.3: Time per Instruction

(a) (b)

that is the reason because the green line stop soon.

These graphs show that both approaches scale well as the number of

emulated processes grows; Figure 7.2 (a) depicts that the MIC approach

requires less time to be executed but has a bigger growth rate then the ISA

approach; this observation suggests that with a bigger number of parallel

processes both techniques will require the same time.

The rightmost plots (in both Figures 7.2 and 7.3) show a similar trends

except from the irregular trend due to the difference between the emulated

processes.

7.2 Memory usage

GPGPU programming largely depends on the Memory utilization, a cor-

rect usage of the GPU memory hierarchy can increase the application per-

formances; for this thesis purposes different memory approaches have been

tested, in particular the emulators have been developed using both the Local

memory, the Global memory and a combination of them. The best perfor-

mance has been achieved using the Global memory; although it is the slowest

memory area, it is the easiest way for processes synchronization.

All the adopted models assume a theoretical memory capacity of 4 GB,
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this is not true in practice since this value must deal with the Graphics device

memory capacity; the Radeon RV710 GPU [3] (the testbed for this thesis

experiments) exposes 1 GB of memory, that stores the emulator memory

and some additional data structures required by the emulation.

Due to the limited memory capacity of a low-end GPU and the big im-

pact that the memory usage has in a GPGPU application, the required data

structures amount for each emulation approach has been measured in order

to evaluate the memory requirement of an emulation technique.

Figure 7.4: Memory Usage

(a) (b)

Both experiments show the same trend: the classic emulation approach

(the blue line) is the cheapest solution for memory usage; indeed the Micro

Architecture level emulation is possible because the code is translated into

data.

7.3 Future Works

The plot of Figure 7.2(a) highlights three facts:

� The execution time of the ISA emulator does not linear grows as the

number of emulated process grows
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� The MIC emulator produces better time performances then whose of

the ISA emulator

� The MIC emulator exposes a growth rate bigger then the one of the

ISA emulator

Thus we can conclude that the Micro Architecture level emulation intro-

duces some important features, but its capabilities are very limited since the

emulated processor is rather legacy; on the other hand an ISA level emulator

can exploit some of the modern processors features.

The ISA emulator performances highlight that different execution flows

can be correctly managed by the OpenCL library, thus it could be possible to

implement in a MIC -like emulator some of the Micro Architecture improve-

ments described in section 6.2. The pipeline is one of the great improvement

in the processor design field and the use of a pure SIMD architecture does

not allow to implement a pipeline. The ISA emulator results contradict this

strict requirement, thus the pipeline components can be emulated via several

GPU Processing Elements.

This pipelined version of the MIC emulator must take into account that

the complexity of the kernel has a big impact in the maximum number of

parallel execution units the GPU can run, as the PMIC model highlights the

scalability of an approach can be highly reduced by the kernel complexity,

so a pipelined emulator cannot support a huge number of steps.
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MPS hardware emulator, In ACM SIGCSE Bulletin, vol. 37, no. 3, pp.

49-53. ACM, 2005.


