Scuola di Scienze Corso di Laurea in Fisica

Studio delle interazioni dei neutroni nell'esperimento XENON1T

Relatore:

Prof.ssa Gabriella Sartorelli

Presentata da: Monica Rossi

Correlatore: Dott. Marco Selvi

> Sessione II Anno Accademico 2012/2013

Indice

In	trod	uzione	iii
1	La 1 1.1 1.2 1.3 1.4 1.5	nateria oscura nell'universoEvidenze gravitazionaliCostituenti della materia oscuraRivelazione delle WIMPsMetodi sperimentali per la rivelazione direttaIl progetto Xenon1.5.1Rivelatori a doppia fase1.5.2Il rumore di fondo1.5.3Fondo dovuto ai neutroni	1 2 6 7 8 9 10 11 12
2	Inte 2.1 2.2 2.3 2.4 2.5 2.6	razioni dei neutroni con lo Xenon liquidoROOT e Geant4La simulazioneScattering elasticoScattering inelasticoCattura neutronicaAnalisi dei risultati della simulazione	 13 13 14 15 16 17
3	Neu 3.1 3.2	Atroni emessi dai PMTEvent display3.1.1Scattering elastico singolo e multiplo3.1.2Scattering inelastico3.1.3Cattura neutronica3.1.4Evento mistoInterazioni simili a quelle delle WIMPs	 25 26 29 29 32 33
Co	onclu	sioni	37
Α	Tab A.1 A.2	elle Scattering elastico singolo	41 42 42

ibliografia 59									
A.5	Evento misto								
A.4	Cattura neutronica								
A.3	Scattering inelastico								

Bibliografia

Introduzione

La presenza di materia oscura nell'universo venne ipotizzata negli anni '30 a seguito di alcune anomalie nei risultati sperimentali ottenuti in astrofisica e cosmologia. La distribuzione di materia ottenuta non concordava infatti con i dati provenienti dalle osservazioni astronomiche e gli scienziati ipotizzarono l'esistenza di un tipo di materia, denominata appunto materia oscura, che interagisse debolmente con la radiazione elettromagnetica e fosse quindi interamente invisibile ai telescopi, sia che fossero a radiofrequenze che operanti nel campo del visibile o con raggi gamma e X, ma che producesse effetti gravitazionali.

Nel corso degli anni si sono aggiunte ulteriori evidenze a sostegno dell'esistenza di materia oscura, provenienti anche dallo studio della cosmologia, e numerosi esperimenti (tra cui XENON, IGEX, DAMA/LIBRA) sono stati condotti per cercare di determinare tipo e massa delle particelle o la loro abbondanza (PLANCK).

Il lavoro di questa tesi consiste in uno studio delle interazioni dei neutroni con lo xenon per l'esperimento XENON1T. I neutroni costituiscono un fondo particolarmente pericoloso per l'esperimento, in quanto producono uno scattering direttamente sul nucleo allo stesso modo delle particelle di materia oscura. Nel lavoro svolto sono state dapprima analizzate le caratteristiche delle singole interazioni con lo xenon contenuto nella camera, per poi passare ad uno studio più specifico sul comportamento dei neutroni prodotti dai fotomoltiplicatori del rivelatore.

In seguito alle analisi svolte è stato possibile caratterizzare il fondo di neutroni in modo più preciso, permettendo di determinare alcuni criteri di selezione per il loro riconoscimento.

Capitolo 1 La materia oscura nell'universo

La materia oscura è argomento delle moderne teorie sviluppate nell'ambito dell'astronomia, della cosmologia e della fisica delle particelle. Essa si definisce come materia non interagente con la radiazione elettromagnetica, la quale include ovviamente la luce visibile, e per rivelarla si rende necessario escludere tutti gli effetti dovuti all'interazione elettromagnetica, mentre evidenti sono quelli gravitazionali. Le ipotesi riguardanti l'esistenza della materia oscura e le sue caratteristiche nacquero in seguito a risultati sperimentali inattesi in vari ambiti della fisica e della cosmologia:

- la velocità di rotazione delle stelle alla periferia delle galassie a spirale in funzione della distanza dal centro;
- il moto delle galassie nei grandi ammassi;
- la presenza di ammassi di gas nei cluster di galassie;
- Bullet cluster;
- lensing gravitazionale;
- anisotropie della radiazione cosmica di fondo;
- fit ai parametri cosmologici.

Un'alternativa alla presenza di materia oscura è la MOdified Newtonian Dynamics (MOND) [1], proposta da Milgrom, secondo la quale su distanze astrofisiche la gravità potrebbe comportarsi in modo non Newtoniano e non ci sarebbe bisogno di introdurre materia oscura per spiegare i risultati sperimentali. Questa teoria è però in conflitto con la teoria di Einstein della relatività generale.

1.1 Evidenze gravitazionali

Le prime evidenze della presenza di aloni di materia oscura vennero dall'analisi di comportamenti anomali osservati nelle misure astronomiche. Questi non erano riconducibili alla presenza di oggetti luminosi e portarono perciò alle prime ipotesi sulla DM.

Moto delle stelle nelle galassie Dal punto di vista astronomico è possibile ottenere una stima della distribuzione di materia nell'universo attraverso l'analisi della velocità di stelle e galassie.

Considerando, ad esempio, il caso di una galassia a spirale la maggior parte della massa visibile è concentrata nel nucleo centrale (bulge) e questo comporterebbe un andamento della velocità di rotazione decrescente all'aumentare del raggio per il teorema del viriale

$$\langle v_r^2 \rangle = \frac{G_N M(r)}{\langle r \rangle} \quad \Rightarrow \quad \langle v_r \rangle = \sqrt{\frac{G_N M(r)}{\langle r \rangle}}$$
(1.1)

dove

$$M(r) = 4\pi \int_0^r \rho(r) r^2 dr$$
 (1.2)

Il contributo dell'alone di materia oscura riuscirebbe quindi a spiegare i risultati sperimentali, come si può vedere in Figura 1.1 per la galassia NGC 3198 [2]. La curva di rotazione a grandi distanze dal centro indica che $M(r) \propto r$, che si può spiegare solo considerando un alone di materia non visibile con densità $\rho(r) \propto r^2$ oltre al disco di materia visibile.

Moto delle galassie nei cluster I cluster sono ammassi di galassie gravitazionalmente legati, in cui la velocità di rotazione delle galassie attorno al centro del cluster è inferiore rispetto alla velocità di fuga; questo permette che le galassie restino legate e che si possa parlare di ammassi.

Già negli anni '30 Zwicky [3] scoprì un'anomalia nella velocità delle galassie all'interno della Chioma di Berenice: queste si muovono infatti molto più velocemente di quanto atteso per un sistema gravitazionalmente legato con una massa totale pari a quella visibile e l'interpretazione dei dati portò ad assumere la presenza di massa invisibile nei cluster.

Presenza di nubi di gas nelle galassie e nei cluster Foto da satellite mostrano la presenza di nubi di gas caldo confinato da una forte attrazione gravitazionale nei cluster di galassie. La sola massa delle galassie visibili non sarebbe sufficiente a causare questo effetto e il paradosso viene superato introducendo l'ipotesi della materia oscura, che funge da sorgente gravitazionale e riscalda il gas.

DISTRIBUTION OF DARK MATTER IN NGC 3198

Figura 1.1: Curva di rotazione della galassia NGC 3198.

Bullet cluster Il Bullet cluster consiste di due ammassi di galassie in collisione. Gli ammassi contengono una componente di materia ordinaria, costituita da stelle e gas caldo, ed una di materia oscura. In Figura 1.2 si possono osservare chiaramente le due componenti dopo la collisione: la componente stellare e il gas caldo, rappresentati in rosa, durante l'urto interagiscono l'una gravitazionalmente e l'altro elettricamente comportando un rallentamento e una deformazione degli ammassi, mentre la materia oscura prosegue indisturbata generando la separazione tra i due tipi di nubi.

Lensing gravitazionale Il lensing gravitazionale consiste nella deviazione della luce proveniente dalle galassie più lontane ad opera di ammassi frapposti. Si osserva quindi un'immagine multipla della galassia e tramite la distorsione osservata è possibile misurare la massa del cluster deflettore e confrontarla con la sua massa luminosa. Nella Figura 1.3 è mostrato il lensing prodotto dal cluster Abell 383 con gli archi caratteristici.

Anisotropie della radiazione cosmica di fondo In seguito allo studio della radiazione cosmica di fondo (CMB, Cosmic Microwave Background) [4] è possibile ricostruire la distribuzione di massa dell'universo primordiale, da cui emerge sempre più chiaramente la presenza di materia oscura nello spazio. Le fluttuazioni della

Figura 1.2: Cluster di galassie 1E0657-56, conosciuto come bullet cluster. L'immagine mostra in rosa il gas caldo che contiene la maggior parte di materia normale, o barionica, e in blu le regioni dove si trova la materia oscura, dove è concentrata la maggior parte della massa del cluster.

distribuzione sono riconducibili alla presenza di corpi particolarmente massivi, ma questi non possono essere composti da materia ordinaria, che schermerebbe la radiazione. L'esistenza della materia oscura spiega invece in modo eccellente questa distribuzione, in quanto motiva la presenza di zone più dense ma non interagendo elettromagneticamente permette il passaggio della radiazione.

Fit ai parametri cosmologici La dinamica dell'universo è descritta dall'equazione della relatività generale di Einstein [5]

$$R_{\mu\nu} = 8\pi \left(GT_{\mu\nu} - \frac{1}{2}g_{\mu\nu}T \right) \tag{1.3}$$

dove G è la costante gravitazionale, $T_{\mu\nu}$ il tensore energia-impulso, $g_{\mu\nu}$ la metrica dello spazio-tempo e T la traccia del tensore energia-impulso, con la metrica di Friedmann-Robertson-Walker

$$ds^{2} = -dt^{2} + a(t)^{2} \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} \left(d\theta^{2} + \sin^{2} \theta d\phi^{2} \right) \right]$$
(1.4)

Figura 1.3: Abell 383.

in coordinate (t, r, θ, ϕ) , dove a(t) indica il fattore di scala dipendente dal tempo e il parametro k è una costante.

Se definiamo la densità critica ρ_c e il parametro di densità Ω come [6]

$$\rho_c = \frac{3H_0^2}{8\pi G} = 8 \cdot 10^{-30} g/cm^3 \qquad \Omega = \frac{\rho}{\rho_c}$$
(1.5)

dalle equazioni di Einstein e Friedmann si ricavano tre possibili tipi di universo:

- $\Omega > 1$ k > 0 un universo con curvatura positiva;
- $\Omega = 1$ k = 0 un universo piatto;
- $\Omega < 1$ k < 0 un universo con curvatura negativa.

Dagli ultimi risultati riguardanti la misura delle anisotropie nella CMB l'ipotesi più probabile risulta essere quella di un universo piatto, con $\Omega = 1$, ma i risultati ottenuti dal satellite PLANCK [7] mostrano una ripartizione della densità dell'universo leggermente diversa da quella prevista da WMAP [4], con

$$\Omega = \Omega_B + \Omega_{DM} + \Omega_\Lambda \tag{1.6}$$

del

 $\Omega_B = 4.9\%$ materia barionica normale;

 $\Omega_{DM} = 26.8\%$ materia oscura;

 $\Omega_{\Lambda} = 68.3\%$ energia oscura.

L'energia oscura ha caratteristiche tuttora ignote, ma si ipotizza che abbia come effetto quello di accelerare l'universo e di renderlo piatto.

1.2 Costituenti della materia oscura

La materia oscura si può distinguere in barionica e non barionica.

La parte barionica, ossia costituita da materia ordinaria, fatta di protoni e neutroni, è rappresentata dai cosiddetti MACHOs (Massive Compact Halo Objects):

- nane brune o pianeti tipo Giove;
- resti di stelle fredde (buchi neri, stelle di neutroni, nane bianche);
- buchi neri primordiali, rimasti dopo il Big Bang.

Esperimenti come MACHO in Australia o EROS (Expérience pour la Recherche d'Objets Sombres) in Cile sfruttano il fenomeno del microlensing gravitazionale per determinare la massa di questi oggetti. Quando un corpo si interpone tra la Terra e una stella questo può causare un apparente aumento della luminosità della stella di breve durata ed è possibile determinare la massa del MACHO. Poiché numerosi corpi celesti hanno variazioni più o meno periodiche della luminosità è necessario però non confonderli con gli effetti di microlensing.

Dai risultati di entrambi gli esperimenti si deduce che i MACHOs con massa compresa tra 10^{-7} e 0.1 M_{Θ} contribuiscono alla massa dell'alone meno del 20%, mentre quelli con massa di circa 0.5 M_{Θ} per circa il 20%. La sola massa dei MACHOs non è quindi sufficiente a spiegare la velocità di rotazione della nostra galassia e occorre considerare anche altri costituenti [6].

La parte non barionica si può invece suddividere in materia oscura calda e fredda, generatasi poco dopo il Big Bang quando l'universo era caldo. La materia oscura calda si ipotizza sia formata da neutrini relativistici che costituiscono la parte di materia oscura tra le galassie nei clusters, mentre quella fredda da particelle che si muovono a velocità molto inferiori a quella della luce, WIMPs (Weakly Interacting Massive Particles) e assioni a, che possono raggrupparsi in strutture partendo da piccoli ammassi di stelle.

Per quanto riguarda la densità di neutrini fossili nell'universo ci si aspetta che questa sia di 300 neutrini/cm³, di conseguenza considerazioni sulla struttura a larga scala dell'universo portano ad un limite per il loro contributo alla densità di materia oscura pari a $\Omega_{\nu} < 1.5\%$.

La materia oscura fredda gioca perciò un ruolo preponderante nel determinare la densità dell'universo.

Gli assioni sono particelle pseudoscalari neutre e stabili, introdotte teoricamente nella QCD e in teorie di superstringhe, che è previsto possano dare un contributo rilevante alla materia oscura solo se hanno massa compresa tra 10^{-3} e 10^{-5} eV. La teoria prevede inoltre che gli assioni possano convertirsi in fotoni e viceversa in presenza di campo elettromagnetico (effetto Primakoff), effetto sfruttato dagli esperimenti ADMX (Axion Dark Matter eXperiment), CAST (Cern Axion Solar Telescope) e PVLAS (Polarizzazione del Vuoto con LASer) che cercano di rivelarli. Le WIMPs sono invece particelle supersimmetriche con masse da pochi GeV a 1 TeV il cui candidato più naturale è la più leggera particella supersimmetrica, il neutralino χ .

Di seguito sarà trattato solo questo tipo di materia oscura, le WIMPs.

1.3 Rivelazione delle WIMPs

Le WIMPs si trovano nell'alone galattico e si stima che la loro densità sia di circa $\rho_{WIMP} = 0,3 \text{ GeV/cm}^3$, con una velocità media di circa 270 km/s ed una velocità massima pari alla velocità di fuga dalla galassia, 650 km/s [6].

Essendo le WIMPs particelle che interagiscono soltanto debolmente, possono essere rivelate o indirettamente osservando i prodotti della loro annichilazione, o direttamente facendole incidere su di un bersaglio ed esaminando il rinculo dei nuclei.

Metodi indiretti Poiché la sezione d'urto delle WIMPs è molto bassa alcuni esperimenti come AMANDA, ANTARES, ICECUBE sfruttano il fatto che queste possano rimanere intrappolate gravitazionalmente nel Sole o nella Terra e che di conseguenza la probabilità di interazione possa aumentare. Le reazioni di annichilazione sono $\chi\chi \to WW$, $ff \in Wf \to \nu\chi$ (con f leptone o quark), per cui lo scopo di questi progetti è rivelare neutrini ad alta energia (E~10-100 GeV). Gli esperimenti come PAMELA [8], AMS o ATIC vogliono invece rivelare i prodotti dell'annichilazione nell'alone galattico $\chi\chi \to Z\gamma, \gamma\gamma$ e si propongono di rivelare eccessi di e⁺, anti-protoni e γ nei raggi cosmici.

Metodi diretti La Terra si muove in una regione dell'universo in cui è presente un flusso di WIMPs ($J \approx 10^5 \text{cm}^{-2} \text{sec}^{-1}$), per cui si sfruttano rivelatori a terra che misurano il rinculo dei nuclei bersaglio colpiti. L'energia di rinculo è, per le masse di WIMPs ipotizzate, tipicamente di alcune decine di keV e considerata la sezione d'urto piccolissima ($\sigma = 10^{-48} - 10^{-41} \text{ cm}^2$ a seconda del modello), il flusso e la velocità delle WIMPs ci si aspetta un rate di interazione tra 1 e 10^{-5} eventi/kg/giorno. Date le energie in gioco occorre quindi schermare il rivelatore dalle fonti di disturbo esterne ed eliminare il più possibile il rumore causato da fonti interne al rivelatore stesso.

Una possibile segnatura del fatto che le particelle abbiano origine cosmica e non terrestre potrebbe essere data dalla direzione di rinculo dei nuclei o dalla modulazione annuale e diurna del flusso di WIMPs, causate rispettivamente dal moto della Terra intorno al Sole e dalla rotazione della Terra attorno al proprio asse e da una conseguente variazione della loro velocità relativa.

Un'altra caratteristica della sezione d'urto delle WIMPs è la sua dipendenza dal quadrato del numero di massa A e che, per interazioni dipendenti dallo spin, i nuclei dispari sono favoriti rispetto a quelli pari.

Problemi sperimentali nella rivelazione di WIMPs Gli scattering in esame sono molto rari e con energie piccolissime di rinculo, per cui occorrono rivelatori molto grandi e ad alta risoluzione energetica, laboratori sotterranei e sistemi di schermaggio, oltre a strategie che garantiscano la maggior radiopurezza possibile dei materiali. Un'ulteriore difficoltà è data dal fatto che l'effettiva sezione d'urto e il flusso delle WIMPs non sono noti precisamente, il che comporta una notevole incertezza sui rate attesi.

1.4 Metodi sperimentali per la rivelazione diretta

I rivelatori sfruttano diverse tecniche per discriminare il segnale dal fondo residuo: si osserva la diversa forma temporale dell'impulso di luce, oppure si usano rivelatori ibridi in cui il rapporto tra l'energia di ionizzazione e l'energia totale della particella varia a seconda del fatto che la particella sia altamente o debolmente ionizzante.

I rivelatori utilizzati sono principalmente di quattro tipi:

- rivelatori a stato solido, tipicamente al germanio (GERDA, IGEX);
- rivelatori a scintillazione, che utilizzano scintillatori inorganici (DAMA/LIBRA, ANAIS);
- rivelatori criogenici (bolometri), solitamente ibridi (EDELWEISS, CDMSII, ROSEBUD, CRESST) e che permettono di rivelare tutta l'energia del nucleo;
- gas nobili a doppia fase (XENON, WARP, DRIFT, ZEPLIN).

Storicamente i primi ad essere utilizzati furono negli anni '80 i rivelatori di ionizzazione, che sfruttavano germanio e silicio altamente puri, seguiti negli anni '90 da tecniche che permettevano di distinguere il rinculo degli elettroni da quello dei nuclei. Negli ultimi anni i rivelatori criogenici a fase singola o a doppia fase hanno ottenuto una maggiore capacità di discriminazione del rumore di fondo e forniscono una maggiore sensibilità per la rivelazione della materia oscura.

Si possono anche utilizzare diversi tipi di nuclei bersaglio, i cui spettri energetici sono il riflesso della particella incidente che deve essere rivelata. Cambiare la natura del bersaglio permette di avere una conferma dell'esistenza delle WIMP, sebbene solo alcuni nuclei si prestino bene per questo scopo.

In seguito tratteremo soltanto i rivelatori a gas nobili a doppia fase, tipologia sulla quale è basato il progetto XENON.

1.5 Il progetto Xenon

Il progetto XENON per la materia oscura cerca rinculi nucleari prodotti dallo scattering di WIMPs contro nuclei. Lo spettro di rinculo diminuisce esponenzialmente con l'energia della particella incidente, si estende solo per alcune decine di keV e la sezione d'urto è piccolissima; è stato perciò necessario costruire un rivelatore in grado di minimizzare il rumore di fondo e identificare e rigettare i segnali dovuti a quest'ultimo. A partire dal 2005 sono stati realizzati ai Laboratori Nazionali del Gran Sasso (LNGS) esperimenti con masse di Xe crescenti (XENON10, XENON100 e XENON1T), per aumentare le probabilità di interazione, schermare ulteriormente la zona attiva del rivelatore e permettere di studiare con precisione crescente le sezioni d'urto di scattering previste dai più favoriti modelli supersimmetrici.

Lo xenon nel rivelatore funge sia da bersaglio che da mezzo di rivelazione: la Time Projection Chamber (TPC) permette di osservare simultaneamente al livello del keV sia la luce di scintillazione del LXe (S1) che la ionizzazione proveniente dallo Xe gassoso (S2) e permette una localizzazione degli eventi con una risoluzione al millimetro. Queste caratteristiche, unite alla capacità autoschermante dello xenon, permettono di ridurre ulteriormente il fondo selezionando un volume fiduciale: lo xenon liquido è molto denso, ciò significa che selezionando solo gli eventi che avvengono nella regione più interna del rivelatore si riduce significativamente la presenza di fondo esterno. La TPC oggi in funzione ai LNGS contiene 170 kg di LXe ultrapuro, con un volume fiduciale di 70 kg.

L'esperimento XENON1T prevede invece la costruzione di una camera contenente 2.2 tonnellate di LXe, con un volume fiduciale di 1.1 tonnellate in un cilindro di circa 1 m di diametro per 1 m di altezza.

I rivelatori così realizzati hanno permesso ad oggi di esplorare zone con sezioni d'urto dell'ordine di 10^{-45} cm^2 , con sensibilità per sezioni d'urto WIMP-nucleo indipendenti dallo spin di 8.8×10^{-44} cm^2 . Si progetta, con XENON1T, di poter arrivare a rivelare in 2 anni circa 100 eventi, considerando $\sigma_{SI} \sim 10^{-45}$ cm^2 e per una massa delle WIMPs di 100 GeV/ c^2 . Sarebbe possibile in questo modo ridurre significativamente l'incertezza sulla sezione d'urto e la massa delle WIMPs. In assenza di un

segnale positivo, l'esperimento punta ad escludere sezioni d'urto sopra $\sigma_{SI} \sim 10^{-47}$ cm^2 al 90% per masse di 50 GeV/ c^2 (Fig. 1.4).

Figura 1.4: Limiti ottenuti e previsti per σ_{SI} per gli esperimenti XE-NON100 e XENON1T [9]. In grigio sono mostrate le previsioni dei modelli supersimmetrici.

1.5.1 Rivelatori a doppia fase

Il rivelatore XENON è un rivelatore a gas nobile a doppia fase. La scelta dell'utilizzo dei gas nobili è dovuta al fatto che questi sono innanzitutto relativamente economici per la realizzazione di rivelatori a larga scala, possono essere facilmente portati alle temperature di condensazione necessarie agli esperimenti (170 K per LXe o 87 K per LAr), sono auto-schermanti dalla radiazione di fondo esterna (in particolare LXe), hanno una bassa energia di soglia per la scintillazione ed è possibile distinguere il rinculo elettronico da quello nucleare. Per quanto riguarda lo Xe liquido l'elevato numero di massa fa sì che la sezione d'urto sia maggiore rispetto ad esempio a LAr, è privo di isotopi radioattivi ed è facile rimuovere le impurità di Kr85.

Funzionamento L'idea per il funzionamento del rivelatore è la seguente: il gas nobile allo stato liquido è usato come bersaglio per l'interazione e il rinculo del

Figura 1.5: Principio difunzionamento della time projection chamber nei rivelatori a doppia fase e differenza tra i segnali prodotti da γ e da WIMPs.

nucleo causa una piccola traccia di atomi ionizzati. Parte di queste coppie ioneelettrone si ricombina velocemente rilasciando fotoni (segnale S1), mentre la restante parte viene fatta migrare da un campo elettrico fino a raggiungere la fase gassosa dove, dopo un tempo τ , sono prodotti altri fotoni per scintillazione (segnale S2). τ dipende dal punto in cui è avvenuta l'interazione della WIMP, per cui viene utilizzato insieme al baricentro della luce secondaria S2 raccolta per determinare la posizione dell'interazione primaria.

Il rapporto tra l'intensità del segnale S2 e S1 permette di distinguere il tipo di particella interagente: mentre una particella β o γ produce una densità di coppie ione-elettrone più bassa e quindi un segnale S1 di minore intensità (la probabilità di ricombinazione è minore), il segnale dovuto a WIMP ha S1>S2 perché il rinculo nucleare genera una densità di coppie ione-elettrone elevata e soltanto pochi elettroni rimangono liberi di muoversi e di produrre la luce S2. Questa diversa capacità di ionizzare la materia è denominata quenching factor.

Con questa tecnica è possibile distinguere gli scattering di WIMPs da quelli di fotoni, ma il segnale prodotto dall'urto di un neutrone è identico a quello generato dall'arrivo di una WIMP.

1.5.2 Il rumore di fondo

Le sorgenti del rumore di fondo sono di diversa natura:

• raggi cosmici (p, n, π , e, μ ...): questo tipo di segnale sovrasterebbe total-

mente quello derivante dall'interazione delle WIMPs, per questo motivo gli esperimenti sono situati in laboratori sotterranei;

- radioattività ambientale in prossimità del rivelatore (α , β , γ , n): è data dalla radioattività della roccia per cui è necessario schermare il rivelatore. Le particelle α e β vengono schermate facilmente, mentre per i γ e i neutroni, più difficili da bloccare, si usano rispettivamente strati di materiale denso e con alto numero atomico Z (ad esempio il piombo) e materiali idrogenati come acqua o paraffina. Per il rivelatore XENON1T è usato uno spessore d'acqua di circa 4 m, che riduce il flusso di γ di un fattore 10⁵ e quello di neutroni di energie dell'ordine del MeV prodotti nella roccia di un fattore 10¹⁰;
- radioattività del rivelatore stesso (α , β , γ , n): il problema si attenua con l'utilizzo di materiale molto puro ma si attua principalmente una discriminazione dei segnali sfruttando le diverse modalità di perdita di energia.

1.5.3 Fondo dovuto ai neutroni

La radioattività ambientale e del rivelatore origina anche neutroni, prodotti da

- reazioni di fissione spontanea di ²³⁸U presente nei materiali;
- reazioni (α-n) in cui una radiazione α interagisce con un nucleo originando un neutrone;
- interazioni dei muoni cosmici con la roccia e il materiale circostante l'apparato.

I neutroni sono particolarmente pericolosi in quanto producono uno scattering direttamente sul nucleo, allo stesso modo delle WIMPs. Queste due interazioni sono per questo motivo pressoché indistinguibili e l'unica differenza sta nel fatto che, mentre le WIMPs producono un solo scattering elastico, i neutroni possono compiere più interazioni all'interno della camera.

Per questo motivo nel prossimo capitolo sono state studiate le interazioni dei neutroni con lo xenon.

Capitolo 2

Interazioni dei neutroni con lo Xenon liquido

2.1 ROOT e Geant4

I dati analizzati nei seguenti capitoli sono stati generati tramite Geant4 (abbreviazione di GEometry ANd Tracking) [13], una piattaforma per la simulazione del passaggio di particelle attraverso la materia che include anche strumenti per la definizione e il trattamento della geometria, tracciamento e risposta dei rivelatori. Lo studio degli eventi è stato invece effettuato tramite l'utilizzo di ROOT [14], un software orientato ad oggetti appositamente creato per l'analisi e la gestione di grandi quantità di dati.

2.2 La simulazione

Prima di effettuare un'analisi sui neutroni emessi dai PMT è stato necessario verificare che i modelli della simulazione fossero corretti. È stato quindi prodotto nel centro di un volume di xenon pressoché infinito un set di 100000 neutroni di energia compresa tra 0 e 10 MeV con spettro uniforme, in modo che le interazioni potessero avvenire a qualsiasi distanza dal punto in cui il neutrone era stato generato e questo non fuoriuscisse dal volume contenente lo xenon. Sono state salvate solo le informazioni riguardanti la prima interazione, poi usate per l'analisi delle sezioni d'urto e dei cammini delle particelle. I dati ottenuti, confrontati con le librerie fornite dall'ENDF (Evaluated Nuclear Data File) [15], hanno confermato la corrispondenza tra la simulazione e i valori registrati.

Dall'analisi del numero di interazioni totali si nota innanzitutto che le percentuali dei vari isotopi interagenti sono in accordo con quelle relative allo xenon naturale [16].

Isotopo	Eventi	Percentuale	Abbondanza isotopica
$^{129}\mathrm{Xe}$	22871	22.9%	26.44%
$^{131}\mathrm{Xe}$	18621	18.6%	21.18%
$^{132}\mathrm{Xe}$	25070	25.1%	26.89%
134 Xe	9836	9.8%	10.44%
$^{136}\mathrm{Xe}$	8445	8.5%	8.87%
Altri isotopi	7263	7.9%	6.18%
Totale	92106	100%	100%

Tabella 2.1: Percentuali dei vari isotopi interagenti.

Nei paragrafi successivi verranno analizzate le caratteristiche di ogni singola interazione e i risultati ottenuti dalla simulazione.

2.3 Scattering elastico

Lo scattering elastico consiste nello scontro di due o più particelle senza perdita di energia, ciò significa che mentre le direzioni delle particelle possono cambiare, l'energia cinetica e la quantità di moto del sistema si conservano.

Considerando lo scattering di una particella n su di un nucleo N dalla soluzione del problema dei due corpi [17] si ottiene l'energia di rinculo del nucleo stesso

$$E_R = \frac{\mu_N^2 v_n^2 \left(1 - \cos \theta'\right)}{m_N},$$
 (2.1)

con μ_N la massa ridotta del sistema nucleo-particella

$$\mu_N = \frac{m_N \cdot m_n}{m_N + m_n}.\tag{2.2}$$

L'angolo θ' è l'angolo di diffusione nel sistema del centro di massa, ossia l'angolo tra la direzione della particella incidente e quella dopo l'urto del nucleo colpito.

Siccome il nucleo prima dell'urto può essere con buona approssimazione considerato a riposo, l'unico contributo alla velocità del centro di massa è dato dalla velocità vdella particella incidente. Il centro di massa si muove sulla congiungente particellanucleo e la sua velocità v_{CM} è data dalla media pesata delle velocità dei due corpi, usando come peso la massa.

$$v_{CM} = \frac{m_n}{m_n + m_N} v \tag{2.3}$$

Nel lavoro compiuto in questa tesi le particelle considerate sono neutroni di energia compresa tra 0 e 10 MeV per cui, non essendo relativistici, le velocità nel centro di massa sono calcolabili applicando semplicemente le trasformazioni di Galileo.

$$w_n = v - v_{CM} = \frac{m_N}{m_n + m_N} v$$
(2.4)

Le quantità di moto delle particelle prima e dopo l'urto nel sistema del centro di massa si conservano poiché l'urto in esame è di tipo elastico, per cui se

$$p_n^{CM} + p_N^{CM} = 0 (2.5)$$

anche le velocità dei corpi si conserveranno e la velocità del nucleo nel sistema del centro di massa sarà

$$w_N = -\frac{m_n}{m_N} w_n \tag{2.6}$$

dove w_n è la velocità del neutrone nel sistema del centro di massa. Dopo l'urto le velocità del neutrone lungo gli assi del sistema del laboratorio sono

$$v_{Nx} = w'_{Nx} + v_{CMx} = w_N \cos \theta' + v_{CM} = \frac{\mu_N}{m_N} v \left(1 - \cos \theta'\right)$$
(2.7)

$$v_{Ny} = w'_N y + v_{CMy} = w_N \sin \theta' = \frac{\mu_N}{m_N} v \sin \theta'$$
(2.8)

da cui, usando la formula classica per l'energia cinetica, si ottiene l'energia di rinculo del nucleo

$$E_R = \frac{1}{2}m_N \left(v_{Nx}^2 + v_{Ny}^2 \right) = \frac{1}{2}\frac{\mu_N^2 v^2}{m_N} \left(\left(1 - \cos\theta' \right)^2 + \sin^2\theta' \right) = \frac{\mu_N^2 v^2}{m_N} \left(1 - \cos\theta' \right)$$
(2.9)

Lo spettro delle energie dei rinculi nucleari ottenuto dallo studio della simulazione è mostrato in Figura 2.1. Come si può notare, l'energia di rinculo può arrivare ad un valore di circa 300 keV, che corrisponde alla massima energia trasferita durante l'urto.

La sezione d'urto per interazione elastica (Fig.2.2) è la più elevata rispetto a quella per scattering inelastico e cattura e costituisce la componente principale della sezione d'urto totale.

2.4 Scattering inelastico

Lo scattering inelastico consiste in un'interazione in cui l'energia cinetica non è conservata, ma è ceduta a qualche grado di libertà interno al sistema e non è più disponibile per le particelle uscenti. Durante l'urto il nucleo passerà quindi ad uno

Figura 2.1: Spettro energetico dei rinculi nucleari per scattering elastici.

stato eccitato e avverrà la produzione di uno sciame di raggi gamma, che rappresentano parte dell'energia persa durante l'interazione. In Figura 2.3 è mostrato lo spettro dell'energia depositata dalle interazioni inelastiche della simulazione, ossia la somma delle energie dei raggi γ emessi durante il processo.

La sezione d'urto per interazione inelastica (Fig.2.4) acquista rilevanza all'aumentare dell'energia e già per neutroni con energia cinetica pari a 2 MeV il suo peso è praticamente uguale a quello delle interazioni elastiche.

2.5 Cattura neutronica

La cattura neutronica è una reazione nucleare per cui un neutrone colpisce un nucleo e viene catturato. Solitamente questo processo avviene dopo una serie di interazioni elastiche in cui il neutrone perde progressivamente energia (termalizzazione), ma ci sono casi in cui, per effetti di risonanza, anche neutroni non termici con energie tra 1 eV e 10 keV possono essere catturati. I neutroni, non possedendo carica elettrica, penetrano all'interno del nucleo più facilmente rispetto a particelle cariche come protoni o elettroni e danno origine all'isotopo con N+1 neutroni (N rappresenta il numero iniziale di neutroni nell'atomo). Il nucleo in questione si trova quindi in uno stato eccitato, da cui decade rapidamente fino al livello fondamentale tramite l'emissione di gamma o, in alcuni casi, decadendo β^- o per cattura elettronica. In Figura 2.5 è mostrato lo spettro energetico dei raggi gamma rilasciati in seguito alla cattura, ricavato a partire dalla simulazione.

La sezione d'urto per cattura neutronica (Fig.2.6) è molto minore in confronto a quel-

Figura 2.2: Sezione d'urto per interazione elastica. Il grafico è stato ottenuto calcolando la media pesata tra le sezioni d'urto degli isotopi 129 Xe, 131 Xe, 132 Xe, 134 Xe e 136 Xe, usando come peso l'abbondanza isotopica.

la delle interazioni elastiche ed inelastiche, ma riveste comunque un ruolo importante nella fisica dell'esperimento.

2.6 Analisi dei risultati della simulazione

La simulazione analizzata presenta un set di 100000 neutroni di energia compresa tra 0 e 10 MeV, generati con spettro uniforme al centro di un volume di xenon pressoché infinito. Queste caratteristiche permettono di effettuare un'analisi sulle prime interazioni compiute dai neutroni, permettendo di dimostrare che i modelli utilizzati per produrre le particelle siano corretti.

Inizialmente è stato verificato che la distribuzione di eventi tra elastici, inelastici e cattura fosse compatibile con le frazioni attese a partire dal rapporto tra le sezioni d'urto medie. Queste ultime sono state calcolate a partire dai grafici mostrati in Figura 2.2, 2.4 e 2.6, mediando i valori di σ per le varie energie del neutrone. I risultati riportati nella Tabella 2.2 mostrano come ci sia perfetto accordo tra la simulazione studiata e i valori emersi dal calcolo teorico.

Libero cammino medio

Nei grafici in Figura 2.7 sono mostrate le distanze della prima interazione del neutrone per gli scattering elastici, inelastici e la cattura neutronica in funzione

Figura 2.3: Spettro dell'energia depositata dall'interazione inelastica.

Interazione	$\langle \sigma \rangle$ (barns)	Frazione di eventi attesi $\langle \sigma \rangle / \langle \sigma_{tot} \rangle$	Numero di eventi osservati	Frazione di eventi osservati
Scattering elastico Scattering inelastico Cattura neutronica	$3.178 \\ 2.101 \\ 0.0104$	$\begin{array}{c} 0.601 \\ 0.397 \\ 1.967 {\cdot} 10^{-3} \end{array}$	$59789 \\ 39869 \\ 191$	$\begin{array}{c} 0.60 \\ 0.40 \\ 1.9 \cdot 10^{-3} \end{array}$

Tabella 2.2: Frazione di eventi attesi e osservati per le diverse interazioni. $\langle \sigma_{tot} \rangle$ è calcolata come somma delle tre sezioni d'urto medie.

dell'energia, calcolate registrando di volta in volta la distanza tra l'origine e il punto in cui è avvenuta la prima interazione.

Il calcolo del libero cammino medio teorico, ricavato dalla sezione d'urto, avviene invece tramite la formula

$$\lambda = \frac{1}{\sigma N} \tag{2.10}$$

dove λ è il cammino medio, σ la sezione d'urto totale e N il numero di bersagli per unità di volume all'interno del mezzo, pari a $N = 1,31 \cdot 10^{22} \frac{nuclei}{cm^3}$.

Sommando i grafici relativi ai cammini medi di Figura 2.7 è possibile calcolare il libero cammino medio riferito alla sezione d'urto totale (Fig.2.8) del neutrone.

Figura 2.4: Sezione d'urto per interazione inelastica. Il grafico è stato ottenuto calcolando la media pesata tra le sezioni d'urto degli isotopi 129 Xe, 131 Xe, 132 Xe, 134 Xe e 136 Xe, usando come peso l'abbondanza isotopica.

Questo, confrontato con il valore teorico calcolato tramite la formula (2.10), si è rivelato perfettamente compatibile con i valori attesi come mostrato in Figura 2.9.

Figura 2.5: Spettro dell'energia rilasciata durante le reazioni di cattura neutronica.

Figura 2.6: Sezione d'urto per cattura neutronica. Il grafico è stato ottenuto calcolando la media pesata tra le sezioni d'urto degli isotopi 129 Xe, 131 Xe, 132 Xe, 134 Xe e 136 Xe, usando come peso l'abbondanza isotopica.

(a) Scattering elastico.

(b) Scattering inelastico.

(c) Cattura neutronica.

Figura 2.7: Libero cammino medio ottenuto a partire dai dati della Figura 2.7: Libero canna-simulazione per le singole interazioni. 21

Figura 2.8: Sezione d'urto totale. Il grafico è stato ottenuto calcolando la media pesata tra le sezioni d'urto degli isotopi ¹²⁹Xe, ¹³¹Xe, ¹³²Xe, ¹³⁴Xe e ¹³⁶Xe, usando come peso l'abbondanza isotopica. Si può notare come il contributo della sezione d'urto per la cattura neutronica sia trascurabile rispetto a quello delle interazioni elastiche e inelastiche per il calcolo della sezione d'urto totale.

(a) Distribuzione delle distanze percorse dal neutrone prima di interagire in funzione dell'energia, considerando tutti i tipi di interazione (elastica, inelastica e di cattura). I punti in blu rappresentano il valore medio dell'ordinata.

(b) Confronto tra il libero cammino medio teorico e quello ottenuto dalla simulazione (vedi Figura (a)).

Figura 2.9

Capitolo 3

Neutroni emessi dai PMT

3.1 Event display

In questo capitolo verrà analizzata una seconda simulazione realizzata tramite Geant4, relativa ad un set di neutroni generati per radioattività all'interno dei fotomoltiplicatori del rivelatore. La TPC dell'esperimento XENON1T (Fig.3.1), descritta nel Capitolo 1, presenta due serie di fotomoltiplicatori poste sopra e sotto la camera contenente lo xenon liquido. I PMT presentano una piccola radioattività con emissione di neutroni ed è interessante esaminare questo fondo per poter migliorare la precisione delle misure sperimentali.

Il set di 100000 neutroni della simulazione è stato generato a partire da entrambe le serie di fotomoltiplicatori ed è stato fatto interagire con lo xenon contenuto nella TPC, un cilindro di raggio 485 mm e altezza 954 mm. Sono state poi memorizzate le informazioni riguardanti tutti gli 83004 neutroni che hanno compiuto interazioni all'interno della camera, fino all'uscita di questi dalla TPC stessa o fino alla loro cattura da parte dei nuclei presenti.

Uno degli scopi di questa tesi è stata la realizzazione di uno strumento per la visualizzazione schematica degli eventi dovuti all'interazione del neutrone: l'event display.

In questo capitolo saranno visualizzati alcuni esempi di interazioni compiute dai neutroni emessi dai fotomoltiplicatori nella simulazione analizzata. Sono mostrati dapprima alcuni eventi più semplici, dove avvengono soltanto scattering elastici (Fig.3.2 e 3.3), poi alcuni più complessi in cui compaiono anche interazioni inelastiche (Fig.3.4) o catture (Fig.3.5). È infine visualizzato un evento in cui compaiono tutti i tipi di interazioni possibili (Fig.3.6).

Le immagini riportate sono state realizzate tramite l'utilizzo del programma ROOT, mentre gli steps dei vari eventi sono raccolti per comodità in Appendice A.

In Tabella 3.1 è contenuto un elenco dei simboli utilizzati per identificare le interazioni e le particelle coinvolte nei processi. Le traiettorie sono dello stesso colore del marker della particella.

Figura 3.1: Struttura della TPC dell'esperimento XENON1T.

3.1.1 Scattering elastico singolo e multiplo

Lo scattering elastico è l'interazione più frequente che i neutroni possono compiere. Ai fini dell'analisi del fondo gli scattering multipli non sono preoccupanti in quanto facilmente riconoscibili come neutroni, mentre quelli singoli possono essere scambiati per WIMPs ed è quindi necessario l'utilizzo di strumenti in grado di misurare l'energia di rinculo del nucleo colpito per poter operare un'ulteriore selezione. Nelle figure seguenti gli scattering elastici sono rappresentati come un cerchio nero vuoto, mentre i nuclei di xenon colpiti come un rombo rosso. Gli eventi dove questi ultimi non sono visualizzati sono quelli in cui l'energia di rinculo del nucleo di xenon colpito è inferiore ad 1 keV, per cui il programma di simulazione non genera il nucleo colpito ma considera l'energia come persa direttamente nell'interazione, non visualizzando il nucleo a cui è stata ceduta.

In Figura 3.2 è mostrato un esempio di scattering elastico singolo, mentre in Figura 3.3 un esempio di scattering elastico multiplo.

Figura 3.2: Scattering elastico singolo.

Figura 3.3: Scattering elastico multiplo.

Simbolo	Descrizione
0	Scattering elastico
	Scattering inelastico
	Cattura neutronica
•	neutrone primario
	neutrone
•	neutroni usciti dalla camera
*	gamma γ
+	positrone e^+
\bigtriangleup	neutrino elettronico ν_e
×	elettrone e^-
\bigtriangledown	anti-neutrino elettronico $\bar{\nu_e}$
A	protone
•	Xe, Cs, Ba, I, Te

Tabella 3.1: Simboli usati nell'event display.

3.1.2 Scattering inelastico

In Figura 3.4 è mostrato un esempio di evento contenente uno scattering inelastico, rappresentato come un quadrato nero. Questa interazione, pur essendo molto frequente, è facilmente distinguibile dal segnale prodotto dall'interazione elastica di una WIMP in quanto produce uno sciame di gamma (in verde nella figura) che, per scattering Compton, cedono energia agli elettroni (mostrati in blu).

Sia i gamma che gli elettroni sono facilmente riconoscibili tramite la TPC, per cui è possibile discriminare il segnale da quello di eventuali neutroni interagenti elasticamente. Anche lo spettro energetico dei rinculi nucleari è molto diverso da quello dei γ prodotti negli scattering: mentre nel primo le energie in gioco non superano i 300 keV (Fig. 2.1), nel secondo caso queste sono solitamente dell'ordine dei 2 MeV, fino a raggiungere eventi in cui sono rilasciati raggi gamma con energia complessiva di 6 o 7 MeV (Fig. 2.3).

3.1.3 Cattura neutronica

Nell'evento di Figura 3.5 si può osservare come il neutrone di energia cinetica iniziale 5830.32 keV dopo aver subito diversi scattering elastici e aver raggiunto un'energia di circa 11 keV venga catturato, originando un atomo di ¹³⁰Xe e la tipica cascata di gamma.

Questo evento è perciò facilmente eliminabile e riconoscibile come fondo sfruttando la capacità della TPC di riconoscere il segnale proveniente da un fotone da quello di una particella che interagisce con gli atomi della camera. Anche in questo caso un

Figura 3.4: Scattering inelastico.

aspetto importante per la discriminazione del segnale è costituito dalle energie in gioco: queste sono molto diverse e per le interazioni di cattura neutronica possono essere generati γ con energia totale di circa 9 MeV (Fig. 2.5), mentre i rinculi nucleari presentano uno spettro di quasi due ordini di grandezza più piccolo (Fig. 2.1).

Figura 3.5: Cattura neutronica.

3.1.4Evento misto

In Figura 3.6 è visualizzato un evento misto, in cui il neutrone prodotto dai fotomoltiplicatori perde progressivamente energia tramite scattering inelastici (caratterizzati dall'emissione di raggi gamma) ed elastici per venire infine catturato da un atomo di $^{129}\mathrm{Xe.}$

(b) Proiezioni.

Figura 3.6: Evento misto.

3.2 Interazioni simili a quelle delle WIMPs

Tra le varie interazioni compiute dai neutroni gli scattering elastici singoli sono i più pericolosi per quanto riguarda la precisione dei dati sperimentali. Così come accade per le WIMPs, che hanno sezione d'urto bassissima ed è inverosimile che compiano scattering multipli, avviene un'unica interazione elastica direttamente sul nucleo ed è praticamente impossibile distinguere se questa sia stata compiuta da un neutrone o da una particella di materia oscura.

Il primo criterio di discriminazione dei neutroni dalle interazioni di WIMPs è la richiesta che vi sia una sola interazione nel volume attivo. Infatti vista la loro sezione d'urto estremamente bassa, ci si aspetta che le WIMPs compiano un singolo scattering con i nuclei di xenon, mentre i neutroni possono avere anche più interazioni (elastiche o inelastiche) all'interno del rivelatore. Inoltre richiediamo che lo scattering sia elastico. Un altro criterio di distinzione è che lo scattering singolo sia avvenuto nel volume fiduciale, un ellissoide contenente 1 t di xenon liquido al centro della camera. Se la particella incidente è un neutrone è infatti più probabile che questo interagisca all'esterno del volume fiduciale, avendo una sezione d'urto molto più grande di quella delle WIMPs.

Un secondo criterio è l'energia di rinculo del nucleo: le WIMPs danno rinculi nucleari con energie comprese tra 8 e 45 MeV, mentre i neutroni presentano uno spettro che si estende da 0 a circa 300 keV.

Dai dati della simulazione emerge come dopo aver applicato i criteri di selezione soltanto 41 eventi sull'intero set di 100000 neutroni generati soddisfino le caratteristiche elencate. Un esempio di interazione "pericolosa" è dato dall'evento numero 22081 della simulazione, mostrato in Figura 3.7. Come si può vedere lo scattering singolo avviene nel volume attivo e in particolare nella zona in cui è definito il volume fiduciale. In Tabella 3.2 è riportato invece il listato degli step dell'evento, in cui si può osservare l'energia di rinculo del nucleo di xenon colpito.

	Tabona oter stops and etente mestrate in Figura ott (etenta 2001).									
step	trackid	type	ekin (keV)	edproc	$^{\rm ed}_{\rm (keV)}$	creaproc	parentid	parenttype		
0	1	neutron	7398.25	Transportation	0	Null	0	none		
1	1	neutron	7398.25	Transportation	0	Null	0	none		
2	1	neutron	7398.25	Transportation	0	Null	0	none		
3	1	neutron	7367.22	hadElastic	0	Null	0	none		
4	1	neutron	7367.22	Transportation	0	Null	0	none		
5	1	neutron	7367.22	Transportation	0	Null	0	none		
6	1	neutron	7367.22	Transportation	0	Null	0	none		
7	2	Xe134[0.0]	0	ionIoni	31.0375	hadElastic	1	neutron		
8	2	Xe134[0.0]	0	Scintillation	0	hadElastic	1	neutron		

Tabella 3.2. Steps dell'evento mostrato in Figura 3.7 (eventid 22081).

Figura 3.7: Evento simile allo scattering di una WIMP.

Se si assume che i neutroni siano prodotti dal decadimento dell'²³⁸U presente nell'acciaio della struttura dei PMT, che ha una contaminazione misurata di 0.254 mBq per PMT, e considerando un totale di 248 fotomoltiplicatori il numero di eventi di background attesi per questa componente è pari a $9 \cdot 10^{-4}$ eventi/ton/year, trascurabile ai fini dell'analisi dei dati acquisiti durante l'esperimento.

Conclusioni

Lo studio effettuato per questa tesi si inserisce nell'ambito della ricerca della materia oscura, un tipo di materia di cui si ipotizzò l'esistenza negli anni '30 a seguito di alcune anomalie nei risultati sperimentali ottenuti in astrofisica e cosmologia. La materia oscura interagisce debolmente con la radiazione elettromagnetica e risulta per questo invisibile ai telescopi, sia che essi operino nel campo del visibile, che in quello dei raggi X o degli infrarossi.

Il lavoro svolto ha riguardato in particolare lo studio delle interazioni dei neutroni con lo xenon che è l'elemento sensibile di cui è fatto il rivelatore XENON1T. L'esperimento, situato nei Laboratori sotterranei del Gran Sasso, si propone di rivelare le WIMPs (Weakly Interacting Massive Particles) attraverso lo scattering elastico sui nuclei di LXe contenuti nella TPC. I neutroni costituiscono un fondo particolarmente pericoloso per l'esperimento, in quanto fanno scattering direttamente sul nucleo di xenon allo stesso modo delle particelle di materia oscura. In particolare è stato studiato il fondo dovuto all'emissione di neutroni da parte dell'acciaio che costituisce la struttura dei fotomoltiplicatori, e che presenta una piccola contaminazione di ²³⁸U.

La prima parte del lavoro svolto, riguardante l'analisi del comportamento di un set di 100000 neutroni generati al centro di un volume di xenon pressoché infinito, ha permesso di verificare che la simulazione realizzata con il software Geant4 riproducesse le previsioni teoriche. In particolare è stato confrontato il libero cammino medio dei neutroni calcolato a partire dalla sezione d'urto totale mediata sui vari isotopi, con quello risultante dalla simulazione ed è stato riscontrato un perfetto accordo (Fig. 2.9).

Nella seconda parte è stata analizzata una simulazione relativa ad un set di 100000 neutroni dovuti alla radioattività dei fotomoltiplicatori della TPC nell'esperimento XENON1T.

Un altro scopo della mia tesi è stata la realizzazione di uno strumento per la visualizzazione schematica degli eventi dovuti all'interazione del neutrone, l'*event display*, realizzato tramite il software ROOT.

Successivamente ci si è focalizzati sulla ricerca degli eventi che nell'esperimento possono essere scambiati per WIMPs, ossia neutroni che compiono un solo scattering elastico singolo nel volume attivo della camera, con energia di rinculo del nucleo compresa tra 8 e 45 keV. In particolare lo scattering deve avvenire nel volume fiduciale della camera, un ellissoide contenente circa 1 t di xenon.

I risultati ottenuti hanno mostrato come il fondo dovuto a questa componente risulti essere di $9\cdot 10^{-4}$ eventi/ton/year, trascurabile ai fini dell'esperimento.

Appendici

Appendice A

Tabelle

Le seguenti tabelle costituiscono l'output degli steps degli eventi mostrati nel Capitolo 3. Di seguito è riportata una breve spiegazione del significato delle variabili visualizzate e delle interazioni compiute dalle particelle.

Tabella A.a: Descrizione delle variabili.

step trackid	numero dello step all'interno dell'evento numero che identifica una particella coinvolta nel
type	processo tipo della particella
ekin	energia della particella dopo il processo avvenuto nello step (keV)
edproc ed	energia depositata nello step (keV)
parentid	trackid della particella genitore
parentitype	upo dena particena gennore

Transportation	processo in cui la particella esce dal volume in cui			
	si trova			
hadElastic	scattering elastico del neutrone su di un nucleo			
NeutronInelastic	scattering inelastico del neutrone su di un nucleo			
nCapture	processo di cattura neutronica			
ionIoni	perdita di energia da parte di uno ione positivo			
Scintillation	"morte" della particella			
compt	scattering Compton			
phot	effetto fotoelettrico			
eIoni	perdita di energia di un elettrone a seguito di			
	ionizzazione nel materiale			
Rayl	scattering Rayleigh			
msc	scattering multiplo			
eBrem	perdita di energia di un elettrone in seguito a			
	bremsstrahlung			

Tabella A.b: Descrizione dei processi compiuti dalle particelle.

A.1 Scattering elastico singolo

Iac	rabena 11.1. Steps den evento mostrato in Figura 5.2 (eventid 116).											
step	trackid	type	$_{ m (keV)}^{ m ekin}$	edproc	$^{\rm ed}_{\rm (keV)}$	creaproc	parentid	parenttype				
$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	1 1 1	neutron neutron	4637.09 4561.79 4561.79	Transportation hadElastic Transportation	0 0 0	Null Null Null	0 0 0	none none				
$\begin{array}{c} 2\\ 3\\ 4\\ 5\end{array}$	1 1 2 2	neutron Xe129[0.0] Xe129[0.0]	4561.79 0 0	Transportation ionIoni Scintillation	$0 \\ 75.3184 \\ 0$	Null hadElastic hadElastic	0 1 1	none neutron neutron				

Tabella A.1. Steps dell'evento mostrato in Figura 3.2 (eventid 778).

A.2 Scattering elastico multiplo

Tabella A.2. Steps dell'evento mostrato in Figura 3.3 (eventid 99758).

step	trackid	type	m ekin m (keV)	edproc	$^{\rm ed}_{\rm (keV)}$	creaproc	parentid	parenttype
0	1	neutron	83.0878	Transportation	0	Null	0	none
1	1	neutron	82.793	Transportation	0	Null	0	none
2	1	neutron	82.793	Transportation	0	Null	0	none
3	1	neutron	82.793	Transportation	0	Null	0	none

step	trackid	type	$_{\rm (keV)}^{\rm ekin}$	edproc	$^{\rm ed}_{\rm (keV)}$	creaproc	parentid	parenttype
4	1	neutron	82.793	Transportation	0	Null	0	none
5	1	neutron	81.6182	hadElastic	0	Null	0	none
6	1	neutron	81.1696	hadElastic	0.448748	Null	0	none
7	1	neutron	81.159	hadElastic	0.0106209	Null	0	none
8	1	neutron	80.5073	hadElastic	0.651851	Null	0	none
9	1	neutron	79.8988	hadElastic	0.608666	Null	0	none
10	1	neutron	78.8139	hadElastic	0	Null	0	none
11	1	neutron	78.6912	hadElastic	0.122748	Null	0	none
12	1	neutron	78.1982	hadElastic	0.493104	Null	0	none
13	1	neutron	78.1403	hadElastic	0.0580051	Null	0	none
14	1	neutron	77.8198	hadElastic	0.320532	Null	0	none
15	1	neutron	76.2997	hadElastic	0	Null	0	none
16	1	neutron	75.6036	hadElastic	0.696235	Null	0	none
17	1	neutron	74.1125	hadElastic	0	Null	0	none
18	1	neutron	73.6853	hadElastic	0.427295	Null	0	none
19	1	neutron	72.8728	hadElastic	0.812644	Null	0	none
20	1	neutron	72.0309	hadElastic	0.842117	Null	0	none
21	1	neutron	72.0309	Transportation	0	Null	0	none
22	1	neutron	72.0309	Transportation	0	Null	0	none
23	5	Xe132[0.0]	0	ionIoni	1.49146	hadElastic	1	neutron
24	5	Xe132[0.0]	0	Scintillation	0	hadElastic	1	neutron
25	4	Xe134[0.0]	0	ionIoni	1.52055	hadElastic	1	neutron
26	4	Xe134[0.0]	0	Scintillation	0	hadElastic	1	neutron
27	3	Xe136[0.0]	0	ionIoni	1.08519	hadElastic	1	neutron
28	3	Xe136[0.0]	0	Scintillation	0	hadElastic	1	neutron
29	2	Xe132[0.0]	0	ionIoni	1.17509	hadElastic	1	neutron
30	2	Xe132[0.0]	0	Scintillation	0	hadElastic	1	neutron

Tabella A.2. (Continua)

A.3 Scattering inelastico

Tabella A.3. Steps dell'evento mostrato in Figura 3.4 (eventid 679).

step	trackid	type	ekin (keV)	edproc	$^{\rm ed}_{\rm (keV)}$	creaproc	parentid	parenttype
0	1	neutron	3370.06	Transportation	0	Null	0	none
1	1	neutron	3369.44	hadElastic	0.624511	Null	0	none
2	1	neutron	0	NeutronInelastic	0	Null	0	none
3	9	gamma	363.925	compt	0.02361	NeutronInelastic	1	neutron
4	9	gamma	0	phot	0.9895	NeutronInelastic	1	neutron
5	12	gamma	0	phot	4.7747	phot	9	gamma
6	13	e-	0	eIoni	28.7918	phot	12	gamma
7	13	e-	0	Scintillation	0	phot	12	gamma
8	11	e-	202.583	eIoni	126.786	phot	9	gamma
9	11	e-	85.2591	eIoni	117.324	phot	9	gamma
10	11	e-	0	eIoni	85.2591	phot	9	gamma
11	11	e-	0	Scintillation	0	phot	9	gamma
12	10	e-	26.6228	eIoni	97.4286	compt	9	gamma
13	10	e-	0	eIoni	26.6228	compt	9	gamma
14	10	e-	0	Scintillation	0	compt	9	gamma
15	8	gamma	275.957	compt	0.01096	NeutronInelastic	1	neutron
16	8	gamma	181.975	compt	0.67752	NeutronInelastic	1	neutron
17	8	gamma	160.666	compt	0.06984	NeutronInelastic	1	neutron

step	trackid	type	${ m ekin} { m (keV)}$	edproc	$^{\rm ed}_{ m (keV)}$	creaproc	parentid	parenttype
18	8	gamma	0	phot	4.7747	NeutronInelastic	1	neutron
19	18	gamma	0 0	phot	5.1039	phot	8	gamma
20	19	e-	0	eIoni	24.6774	phot	18	gamma
21	19	e-	0	Scintillation	0	phot	18	gamma
22	17	e-	22.9229	eIoni	103.187	phot	8	gamma
23	17	e-	0	eIoni	22.9229	phot	8	gamma
24	17	e-	0	Scintillation	0	phot	8	gamma
25	16	e-	0	eIoni	21.2395	compt	8	gamma
26	16	e-	0	Scintillation	0	compt	8	gamma
27	15	e-	0	eIoni	93.3042	compt	8	gamma
28	15	e-	0	Scintillation	0	compt	8	gamma
29	14	e-	182.133	eIoni	89.0987	compt	8	gamma
30	14	e-	99.0204	eIoni	83.1127	compt	8	gamma
31	14	e-	0	eIoni	99.0204	compt	8	gamma
32	14	e-	0	Scintillation	0	compt	8	gamma
33	7	gamma	287.668	compt	0.92656	NeutronInelastic	1	neutron
34	7	gamma	159.498	compt	0.67752	NeutronInelastic	1	neutron
35	2	gamma	131.862	compt	5.1039	NeutronInelastic	1	neutron
36	7	gamma	84.3848	compt	0.69091	NeutronInelastic	1	neutron
37	7	gamma	0	phot	34.556	NeutronInelastic	1	neutron
38	24	e-	0	eloni Caintillation	49.8288	phot	1	gamma
39	24	e-	0	Scintillation	46 7964	pnot	1	gamma
40	23	e-	0	eloni Scintillation	46.7864	compt	17	gamma
41	23	e-	0	Scintillation	00 5205	compt	1	gamma
42	22	e-	0	Scintillation	22.0520	compt	17	gamma
45	22	e-	56 2255	Joni	71.957	compt	7	gamma
44	21	e-	0.2555	eloni	71.207 56 9355	compt	7	gamma
40	21 91	e-	0	Scintillation	0.2555	compt	7	gamma
40	21	e-	0	eloni	747448	compt	7	gamma
48	20	e-	0	Scintillation	0	compt	7	gamma
40	20 6	gamma	489 511	compt	0.67752	NeutronInelastic	1	neutron
50	6	gamma	245.739	compt	4.7747	NeutronInelastic	1	neutron
51	6	gamma	0	phot	4.7747	NeutronInelastic	- 1	neutron
52	29	gamma	0	phot	4.7747	phot	6	gamma
53	30	e-	0	eIoni	25.0066	phot	29	gamma
54	30	e-	0	Scintillation	0	phot	29	gamma
55	28	e-	122.919	eIoni	88.2638	phot	6	gamma
56	28	e-	7.54025	eIoni	115.379	phot	6	gamma
57	28	e-	0	eIoni	7.54025	phot	6	gamma
58	28	e-	0	Scintillation	0	phot	6	gamma
59	27	gamma	0	phot	4.7747	compt	6	gamma
60	31	e-	0	eIoni	25.0066	phot	27	gamma
61	31	e-	0	Scintillation	0	$_{\rm phot}$	27	gamma
62	26	e-	138.689	eIoni	70.528	compt	6	gamma
63	26	e-	0.0935456	eIoni	138.595	compt	6	gamma
64	26	e-	0	eIoni	0.0935456	compt	6	gamma
65	26	e-	0	Scintillation	0	compt	6	gamma
66	25	e-	125.335	eloni	110.048	compt	6	gamma
67	25	e-	37.0912	eloni	88.2443	compt	6	gamma
68	25	e-	0	eloni	37.0912	compt	6	gamma
69 70	25	e-	0	Scintillation	4 77 47	compt	6	gamma
70 71	5	gamma	007.021 200.160	compt	4.7747	NeutronInelastic	1	neutron
(1	5	gamma	322.100	compt	0.01090	NeutronInelastic	1	neutron
(Z 79	0 5	gamma	309.034	compt phot	4 7747	NeutronInelastic	1	neutron
13 74	G AS	gamma	0	phot	4.7747	phot	۲ ۲	gamma
14	30	gamma	0	puor	0.1099	phot	0 U	gamma

Tabella A.3. (Continua)

step	trackid	type	$_{\rm (keV)}^{\rm ekin}$	edproc	$^{\rm ed}_{\rm (keV)}$	creaproc	parentid	parenttype
75	37	e-	0	eIoni	24~6774	phot	36	gamma
76	37	e-	õ	Scintillation	0	phot	36	gamma
77	35	e-	173.446	eIoni	101.632	phot	5	gamma
78	35	e-	63.9494	eIoni	109.497	phot	5	gamma
79	35	e-	0	eIoni	63.9494	phot	5	gamma
80	35	e-	0	Scintillation	0	phot	5	gamma
81	34	e-	0	eIoni	12.5206	compt	5	gamma
82	34	e-	0	Scintillation	0	compt	5	gamma
83	33	e-	89.0436	eIoni	96.3003	compt	5	gamma
84	33	e-	0	eIoni	89.0436	compt	5	gamma
85	33	e-	0	Scintillation	0	compt	5	gamma
86	32	e-	60.8034	eIoni	94.6192	compt	5	gamma
87	32	e-	0	eIoni	60.8034	compt	5	gamma
88	32	e-	0	Scintillation	0	compt	5	gamma
89	4	Xe132[0.0]	0	ionIoni	46.116	NeutronInelastic	1	neutron
90	4	Xe132[0.0]	0	Scintillation	0	NeutronInelastic	1	neutron
91	3	neutron	527.043	hadElastic	0	NeutronInelastic	1	neutron
92	3	neutron	523.918	hadElastic	0	NeutronInelastic	1	neutron
93	3	neutron	514.511	hadElastic	0	NeutronInelastic	1	neutron
94	<u>ა</u>	neutron	513.63	hadElastic	0.881359	NeutronInelastic	1	neutron
95 06	ა ე	neutron	509.833	hadElastic	0 497950	NeutronInelastic	1	neutron
90	ა ე	neutron	009.400 400 785	hadElastic	0.427859	NeutronInelastic	1	neutron
97	ა ე	neutron	499.785	hadElastic	0	NeutronInelastic	1	neutron
98	ა ვ	neutron	490.712	hadElastic	0 837654	NeutronInelastic	1	neutron
99 100	ა ვ	neutron	493.874	hadElastic	0.837034	NeutronInelastic	1	neutron
100	3 3	neutron	493.033	hadElastic	0 786968	NeutronInelastic	1	neutron
101	3 3	neutron	492.200	hadElastic	0.780908	NeutronInelastic	1	neutron
102	3	neutron	491 664	hadElastic	0.250504 0.351517	NeutronInelastic	1	neutron
104	3	neutron	483 19	hadElastic	0.001011	NeutronInelastic	1	neutron
105	3	neutron	482.455	hadElastic	0.735972	NeutronInelastic	1	neutron
106	3	neutron	482.109	hadElastic	0.345781	NeutronInelastic	1	neutron
107	3	neutron	479.223	hadElastic	0	NeutronInelastic	1	neutron
108	3	neutron	472.807	hadElastic	0	NeutronInelastic	1	neutron
109	3	neutron	462.557	hadElastic	0	NeutronInelastic	1	neutron
110	3	neutron	461.323	hadElastic	0	NeutronInelastic	1	neutron
111	3	neutron	460.781	hadElastic	0.541863	NeutronInelastic	1	neutron
112	3	neutron	459.862	hadElastic	0.919539	NeutronInelastic	1	neutron
113	3	neutron	459.862	Transportation	0	NeutronInelastic	1	neutron
114	3	neutron	311.179	hadElastic	0.977494	NeutronInelastic	1	neutron
115	3	neutron	311.179	Transportation	0	NeutronInelastic	1	neutron
116	49	Xe129[0.0]	0	ionIoni	1.23467	hadElastic	3	neutron
117	49	Xe129[0.0]	0	Scintillation	0	hadElastic	3	neutron
118	48	Xe131[0.0]	0	ionIoni	10.252	hadElastic	3	neutron
119	48	Xe131[0.0]	0	Scintillation	0	hadElastic	3	neutron
120	47	Xe132[0.0]	0	ionIoni	6.41766	hadElastic	3	neutron
121	47	Xe132[0.0]	0	Scintillation	0	hadElastic	3	neutron
122	46	Xe134[0.0]	0	ionloni	2.88629	hadElastic	3	neutron
123	46	Xe134[0.0]	0	Scintillation	0	hadElastic	3	neutron
124	45	Xe129[0.0]	0	ionloni	8.47576	hadElastic	3	neutron
125	45	Ae129[0.0]	U	Scintillation	0	nadElastic	3	neutron
120	44	Ae132[0.0]	U	ionioni Sointilletter	2.82208	hadElastic	చ	neutron
127	44	$\Lambda e_{132}[0.0]$	0	Scintillation	0 2 07400	hadElastic	ა ე	neutron
128	43	ACI31[0.0]	U	Sointilletion	3.07409	hadElastic	ა ი	neutron
129	43	ACI31[0.0]	0	jonIoni	0.62244	hadElastic	ა ე	neutron
121	42 49	Xe134[0.0]	0	Scintillation	9.02244 N	hadElastic	ა კ	neutron
101	44	776104[0.0]	0	Semination	0	maurnastic	J	neutron

Tabella A.3. (Continua)

step	trackid	type	ekin (keV)	edproc	$^{\rm ed}_{\rm (keV)}$	creaproc	parentid	parenttype
132	41	Xe129[0.0]	0	ionIoni	3.79788	hadElastic	3	neutron
133	41	Xe129[0.0]	0	Scintillation	0	hadElastic	3	neutron
134	40	Xe132[0.0]	0	ionIoni	9.40889	hadElastic	3	neutron
135	40	Xe132[0.0]	0	Scintillation	0	hadElastic	3	neutron
136	39	Xe129[0.0]	0	ionIoni	3.12651	hadElastic	3	neutron
137	39	Xe129[0.0]	0	Scintillation	0	hadElastic	3	neutron
138	38	Xe129[0.0]	0	ionIoni	3.86039	hadElastic	3	neutron
139	38	Xe129[0.0]	0	Scintillation	0	hadElastic	3	neutron

Tabella A.3. (Continua)

A.4 Cattura neutronica

Tabella A.4.	Steps dell'evente	o mostrato in	Figura 3.5 (eventid 165).
--------------	-------------------	---------------	--------------	-------------	----

step	trackid	type	$\frac{\text{ekin}}{(\text{keV})}$	edproc	$^{\rm ed}_{\rm (keV)}$	creaproc	parentid	parenttype
0	1	neutron	5830.32	Transportation	0	Null	0	none
1	1	neutron	5830.32	Transportation	0	Null	0	none
2	1	neutron	5830.32	Transportation	0	Null	0	none
3	1	neutron	5830.32	Transportation	0	Null	0	none
4	1	neutron	11.7194	Transportation	0	Null	0	none
5	1	neutron	11.7194	Transportation	0	Null	0	none
6	1	neutron	11.65	hadElastic	0.069428	Null	0	none
7	1	neutron	11.5248	hadElastic	0.125234	Null	0	none
8	1	neutron	11.4461	hadElastic	0.0787288	Null	0	none
9	1	neutron	11.1488	hadElastic	0.297417	Null	0	none
10	1	neutron	11.1285	hadElastic	0.0202794	Null	0	none
11	1	neutron	11.0782	hadElastic	0.050333	Null	0	none
12	1	neutron	0	nCapture	0	Null	0	none
13	19	Xe130[0.0]	0	ionIoni	0.0481092	nCapture	1	neutron
14	19	Xe130[0.0]	0	Scintillation	0	nCapture	1	neutron
15	18	gamma	255.783	compt	0.67752	nCapture	1	neutron
16	18	gamma	252.36	compt	0.02361	nCapture	1	neutron
17	18	gamma	0	phot	4.7747	nCapture	1	neutron
18	23	gamma	0	phot	4.7747	$_{\rm phot}$	18	gamma
19	24	e-	0	eIoni	25.0066	$_{\rm phot}$	23	gamma
20	24	e-	0	Scintillation	0	$_{\rm phot}$	23	gamma
21	22	e-	89.1155	eIoni	128.688	phot	18	gamma
22	22	e-	0	eIoni	89.1155	$_{\rm phot}$	18	gamma
23	22	e-	0	Scintillation	0	$_{\rm phot}$	18	gamma
24	21	e-	0	eIoni	3.39904	compt	18	gamma
25	21	e-	0	Scintillation	0	compt	18	gamma
26	20	e-	145.819	eIoni	133.784	compt	18	gamma
27	20	e-	0	eIoni	145.819	compt	18	gamma
28	20	e-	0	Scintillation	0	compt	18	gamma
29	17	gamma	160.325	compt	0.67752	nCapture	1	neutron
30	17	gamma	0	phot	5.1039	nCapture	1	neutron
31	27	gamma	0	phot	0.98947	$_{\rm phot}$	17	gamma
32	28	e-	0	eIoni	28.4626	phot	27	gamma
33	28	e-	0	Scintillation	0	phot	27	gamma
34	26	e-	6.44435	eIoni	119.325	phot	17	gamma
35	26	e-	0	eIoni	6.44435	phot	17	gamma

step	trackid	type	ekin (keV)	edproc	$^{\rm ed}_{\rm (keV)}$	creaproc	parentid	parenttype
36	26	e-	0	Scintillation	0	phot	17	gamma
37	25	e-	61.3171	eIoni	446.234	compt	17	gamma
38	25	e-	0	eIoni	61.3171	compt	17	gamma
39	25	e-	0	Scintillation	0	compt	17	gamma
40	16	gamma	220.066	compt	0.98947	nCapture	1	neutron
41	16	gamma	220.066	Rayl	0	nCapture	1	neutron
42	16	gamma	220.066	Rayl	0	nCapture	1	neutron
43	16	gamma	220.066	Rayl	0	nCapture	1	neutron
44	16	gamma	0	phot	5.1039	nCapture	1	neutron
45	31	gamma	29.4521	Rayl	0	$_{\rm phot}$	16	gamma
46	31	gamma	0	phot	5.1039	phot	16	gamma
47	32	e-	0	eIoni	24.3482	$_{\rm phot}$	31	gamma
48	32	e-	0	Scintillation	0	$_{\rm phot}$	31	gamma
49	30	e-	90.8801	eIoni	94.63	$_{\rm phot}$	16	gamma
50	30	e-	0	eIoni	90.8801	$_{\rm phot}$	16	gamma
51	30	e-	0	Scintillation	0	$_{\rm phot}$	16	gamma
52	29	e-	367.453	eIoni	151.019	compt	16	gamma
53	29	e-	282.131	eIoni	85.3218	compt	16	gamma
54	29	e-	194.397	eIoni	87.7348	compt	16	gamma
55	29	e-	99.8761	eIoni	94.5205	compt	16	gamma
56	29	e-	0	eloni	99.8761	compt	16	gamma
57	29	e-	0	Scintillation	0	compt	16	gamma
58	15	gamma	478.675	compt	0.67752	nCapture	1	neutron
59	15	gamma	341.408	compt	0.06778	nCapture	1	neutron
60	15	gamma	0	phot	5.4169	nCapture	1	neutron
61	35	e-	230.942	eloni	105.05	phot	15	gamma
62	35	e-	128.358	eloni	102.584	phot	15	gamma
63	35	e-	43.6647	eloni	84.6934	phot	15	gamma
04 65	30 25	e-	0	eioni Seintilletien	43.0047	phot	15	gamma
05	30 24	e-	54.0070	Scintillation	0 20.0007	phot	15	gamma
67	34 24	e-	54.9079	eloni	62.2903 54.0070	compt	10	gamma
69	04 94	e-	0	Scintillation	04.9079	compt	15	gamma
60	04 22	e-	162.77	oloni	110 608	compt	15	gamma
70	33	e-	52 5085	oloni	110.030	compt	15	gamma
70	22	e-	02.0080	eloni	52 5085	compt	15	gamma
72	33	e-	0	Scintillation	02.0000	compt	15	gamma
73	14	gamma	0	phot	4 7747	nCapture	10	neutron
74	37	gamma	Ő	phot	0 92656	nbot	14	gamma
75	38	e-	Ő	eIoni	28.8547	phot	37	gamma
76	38	e-	Ő	Scintillation	0	phot	37	gamma
77	36	e-	83.538	eIoni	157.366	phot	14	gamma
78	36	e-	0	eIoni	83.538	phot	14	gamma
79	36	e-	Ő	Scintillation	0	phot	14	gamma
80	13	gamma	381.188	compt	0.92656	nCapture	1	neutron
81	13	gamma	0	phot	5.4169	nCapture	1	neutron
82	40	e-	372.089	msc	3.68225	phot	13	gamma
83	40	e-	366.428	msc	5.66137	phot	13	gamma
84	40	e-	361.172	msc	5.25559	phot	13	gamma
85	40	e-	351.211	msc	9.96107	phot	13	gamma
86	40	e-	343.462	msc	7.7492	phot	13	gamma
87	40	e-	326.076	msc	17.3855	phot	13	gamma
88	40	e-	323.077	msc	2.9997	phot	13	gamma
89	40	e-	315.037	msc	8.04023	phot	13	gamma
90	40	e-	311.119	msc	3.91752	phot	13	gamma
91	40	e-	306.169	msc	4.94982	phot	13	gamma
92	40	e-	294.642	msc	11.5275	phot	13	gamma

Tabella A.4. (Continua)

step	trackid	type	${ m ekin} { m (keV)}$	edproc	$^{\rm ed}_{\rm (keV)}$	creaproc	parentid	parenttype
93	40	e-	282.584	msc	12.0575	phot	13	gamma
94	40	e-	265.817	msc	16.767	phot	13	gamma
95	40	e-	157.95	eIoni	107.867	phot	13	gamma
96	40	e-	39.2676	eIoni	118.682	phot	13	gamma
97	40	e-	0	eIoni	39.2676	phot	13	gamma
98	40	e-	0	Scintillation	0	phot	13	gamma
99	39	e-	325.607	msc	13.1238	compt	13	gamma
100	39	e-	312.326	msc	13.2806	compt	13	gamma
101	39	e-	255.949	eBrem	11.7746	compt	13	gamma
102	39	e-	141.026	eIoni	114.923	compt	13	gamma
103	39	e-	66.9353	eIoni	74.0909	compt	13	gamma
104	39	e-	0	eIoni	66.9353	compt	13	gamma
105	39	e-	0	Scintillation	0	compt	13	gamma
106	41	gamma	0	phot	4.7747	eBrem	39	ē-
107	43	gamma	0	phot	4.7747	phot	41	gamma
108	44	ē-	0	eIoni	25.0066	phot	43	gamma
109	44	e-	0	Scintillation	0	phot	43	gamma
110	42	e-	0	eIoni	10.0462	phot	41	gamma
111	42	e-	0	Scintillation	0	phot	41	gamma
112	12	gamma	0	phot	0.9895	nCapture	1	neutron
113	46	gamma	0	phot	5.1039	phot	12	gamma
114	47	e-	0	eIoni	28.4626	phot	46	gamma
115	47	e-	0	Scintillation	0	phot	46	gamma
116	45	e-	792.578	msc	19.7319	phot	12	gamma
117	45	e-	773.685	msc	18.8935	phot	12	gamma
118	45	e-	704.091	msc	69.5938	phot	12	gamma
119	45	e-	685.06	msc	19.031	phot	12	gamma
120	45	e-	625.606	msc	59.454	phot	12	gamma
121	45	e-	503.34	eIoni	122.266	phot	12	gamma
122	45	e-	372.87	eIoni	130.47	$_{\rm phot}$	12	gamma
123	45	e-	292.033	eIoni	80.8372	phot	12	gamma
124	45	e-	215.756	eIoni	76.2773	$_{\rm phot}$	12	gamma
125	45	e-	109.524	eIoni	106.232	$_{\rm phot}$	12	gamma
126	45	e-	9.68406	eIoni	99.84	phot	12	gamma
127	45	e-	0	eIoni	9.68406	phot	12	gamma
128	45	e-	0	Scintillation	0	phot	12	gamma
129	11	gamma	0	phot	34.556	nCapture	1	neutron
130	48	e-	187.794	eIoni	209.127	$_{\rm phot}$	11	gamma
131	48	e-	113.271	eIoni	74.5225	$_{\rm phot}$	11	gamma
132	48	e-	0	eIoni	113.271	$_{\rm phot}$	11	gamma
133	48	e-	0	Scintillation	0	$_{\rm phot}$	11	gamma
134	10	gamma	726.023	compt	4.7747	nCapture	1	neutron
135	10	gamma	415.447	compt	4.7747	nCapture	1	neutron
136	10	gamma	162.13	compt	0.01096	nCapture	1	neutron
137	10	gamma	162.13	Rayl	0	nCapture	1	neutron
138	10	gamma	0	$_{\rm phot}$	5.1039	nCapture	1	neutron
139	53	e-	12.7053	eIoni	144.321	$_{\mathrm{phot}}$	10	gamma
140	53	e-	0	eIoni	12.7053	$_{\rm phot}$	10	gamma
141	53	e-	0	Scintillation	0	$_{\rm phot}$	10	gamma
142	52	e-	158.066	eIoni	95.2397	compt	10	gamma
143	52	e-	64.0405	eIoni	94.0259	compt	10	gamma
144	52	e-	0	eIoni	64.0405	compt	10	gamma
145	52	e-	0	Scintillation	0	compt	10	gamma
146	51	gamma	0	phot	5.4169	compt	10	gamma
147	54	e-	0	eIoni	24.3644	phot	51	gamma
148	54	e-	0	Scintillation	0	phot	51	gamma
149	50	e-	202.703	eIoni	73.3166	compt	10	gamma

Tabella A.4. (Continua)

step	trackid	type	$_{\rm (keV)}^{\rm ekin}$	edproc	$^{\rm ed}_{\rm (keV)}$	creaproc	parentid	parenttype
150	50	e-	109.945	eIoni	92.7586	compt	10	gamma
151	50	e-	32.4245	eIoni	77.5201	compt	10	gamma
152	50	e-	0	eIoni	32.4245	compt	10	gamma
153	50	e-	0	Scintillation	0	compt	10	gamma
154	49	e-	153.265	eIoni	97.4253	compt	10	gamma
155	49	e-	28.5321	eIoni	124.733	compt	10	gamma
156	49	e-	0	eIoni	28.5321	compt	10	gamma
157	49	e-	0	Scintillation	0	compt	10	gamma
158	9	gamma	200.749	compt	0.92656	nCapture	1	neutron
160	9	gamma	105.021	compt phot	0.07752	nCapture	1	neutron
161	9 58	gamma	0	phot	1 1 1 9 9	nCapture	9	gamma
162	59	e-	0	eIoni	286593	phot	58	gamma
163	59	e-	Ő	Scintillation	0	phot	58	gamma
164	57	e-	59.1056	eIoni	71.3594	phot	9	gamma
165	57	e-	0	eIoni	59.1056	phot	9	gamma
166	57	e-	0	Scintillation	0	phot	9	gamma
167	56	e-	0	eIoni	35.0503	compt	9	gamma
168	56	e-	0	Scintillation	0	compt	9	gamma
169	55	e-	622.101	eIoni	194.416	compt	9	gamma
170	55	e-	504.615	eIoni	117.486	compt	9	gamma
171	55	e-	397.808	eIoni	106.807	compt	9	gamma
172	55	e-	255.876	eloni	141.932	compt	9	gamma
173	55	e-	166.953	eloni	88.9226	compt	9	gamma
174	00 55	e-	48.8098	eloni	118.084	compt	9	gamma
175	00 55	e-	0	Scintillation	40.0090	compt	9	gamma
170	55	e- camma	028 886	compt	0 69091	nCapture	9	gamma
178	8	gamma	928.886 928.886	Bayl	0.03031	nCapture	1	neutron
179	8	gamma	928.886	Transportation	0	nCapture	1	neutron
180	8	gamma	864.182	compt	5.4169	nCapture	1	neutron
181	8	gamma	507.702	compt	1.122	nCapture	1	neutron
182	8	gamma	0	phot	4.7747	nCapture	1	neutron
183	64	gamma	0	phot	5.4169	phot	8	gamma
184	65	e-	0	eIoni	24.3644	$_{\rm phot}$	64	gamma
185	65	e-	0	Scintillation	0	phot	64	gamma
186	63	e-	370.823	eIoni	102.323	phot	8	gamma
187	63	e-	268.195	eIoni	102.628	phot	8	gamma
188	63	e-	162.051	eloni	106.144	phot	8	gamma
189	63	e-	63.4893	eloni	98.5615	phot	8	gamma
190	63	e-	0	eloni	63.4893	phot	8	gamma
191	60	e-	0 252 466	oloni	102 802	compt	8	gamma
192	62	e-	153,756	eloni	98 7101	compt	8	gamma
194	62	e-	88 4399	eIoni	65 3157	compt	8	gamma
195	62	e-	0	eIoni	88.4399	compt	8	gamma
196	62	e-	0	Scintillation	0	compt	8	gamma
197	61	e-	0	eIoni	59.2868	compt	8	gamma
198	61	e-	0	Scintillation	0	compt	8	gamma
199	60	e-	1128.23	eIoni	237.593	compt	8	gamma
200	60	e-	951.392	eIoni	176.833	compt	8	gamma
201	60	e-	821.701	eIoni	129.692	compt	8	gamma
202	60	e-	617.956	eIoni	203.744	compt	8	gamma
203	60	e-	486.104	eloni	131.852	compt	8	gamma
204	60	e-	385.614	eloni	100.49	compt	8	gamma
205	60	e-	282.664	eloni	102.951	compt	8	gamma
206	60	e-	186.504	eioni	96.1597	compt	8	gamma

Tabella A.4. (Continua)

Tabella A.4. (Continua)

		(
step	trackid	type	ekin (keV)	edproc	$^{\rm ed}_{\rm (keV)}$	creaproc	parentid	parenttype
$207 \\ 208 \\ 209$	60 60 60	e- e- e-	$9.0484 \\ 0 \\ 0$	eIoni eIoni Scintillation	$177.455 \\ 9.0484 \\ 0$	$\begin{array}{c} \operatorname{compt} \\ \operatorname{compt} \\ \operatorname{compt} \end{array}$	8 8 8	gamma gamma gamma

A.5 Evento misto

Tabella A.5. Steps dell'evento mostrato in Figura 3.6 (eventid 359).

step	trackid	type	$_{\rm (keV)}^{\rm ekin}$	edproc	$^{\rm ed}_{\rm (keV)}$	creaproc	parentid	parenttype
0	1	neutron	8853.54	Transportation	0	Null	0	none
1	1	neutron	0	NeutronInelastic	0	Null	0	none
2	7	gamma	662.295	compt	0.06984	NeutronInelastic	1	neutron
3	7	gamma	535.203	compt	5.4169	NeutronInelastic	1	neutron
4	7	gamma	363.233	compt	0.01235	NeutronInelastic	1	neutron
5	7	gamma	307.069	compt	0.01096	NeutronInelastic	1	neutron
6	7	gamma	0	phot	5.1039	NeutronInelastic	1	neutron
7	13	gamma	0	phot	4.7747	phot	7	gamma
8	14	e-	0	eIoni	24.6774	phot	13	gamma
9	14	e-	0	Scintillation	0	phot	13	gamma
10	12	e-	180.096	eIoni	92.4165	phot	7	gamma
11	12	e-	88.9393	eIoni	91.157	phot	7	gamma
12	12	e-	0	eIoni	88.9393	phot	7	gamma
13	12	e-	0	Scintillation	0	phot	7	gamma
14	11	e-	0	eIoni	56.1536	compt	7	gamma
15	11	e-	0	Scintillation	0	compt	7	gamma
16	10	e-	84.1756	eIoni	87.7815	compt	7	gamma
17	10	e-	0	eIoni	84.1756	compt	7	gamma
18	10	e-	0	Scintillation	0	compt	7	gamma
19	9	e-	0	eIoni	121.676	compt	7	gamma
20	9	e-	0	Scintillation	0	compt	7	gamma
21	8	e-	806.168	eIoni	202.113	compt	7	gamma
22	8	e-	614.583	eIoni	191.584	compt	7	gamma
23	8	e-	470.261	eIoni	144.323	compt	7	gamma
24	8	e-	380.384	eIoni	89.8768	compt	7	gamma
25	8	e-	282.948	eIoni	97.4362	compt	7	gamma
26	8	e-	155.434	eIoni	127.513	compt	7	gamma
27	8	e-	53.623	eIoni	101.811	compt	7	gamma
28	8	e-	0	eIoni	53.623	compt	7	gamma
29	8	e-	0	Scintillation	0	compt	7	gamma
30	6	gamma	436.814	compt	0.01096	NeutronInelastic	1	neutron
31	6	gamma	425.913	compt	0.02361	NeutronInelastic	1	neutron
32	6	gamma	148.169	compt	0.92656	NeutronInelastic	1	neutron
33	6	gamma	0	phot	4.7747	NeutronInelastic	1	neutron
34	19	gamma	0	phot	0.92656	phot	6	gamma
35	20	e-	0	eIoni	28.8547	phot	19	gamma
36	20	e-	0	Scintillation	0	phot	19	gamma
37	18	e-	0	eIoni	113.613	phot	6	gamma
38	18	e-	0	Scintillation	0	phot	6	gamma
39	17	e-	161.954	eIoni	114.863	compt	6	gamma

step	trackid	type	ekin (keV)	edproc	$^{\rm ed}_{\rm (keV)}$	creaproc	parentid	parenttype
40	17	e-	42.2009	eIoni	119.754	compt	6	gamma
41	17	e-	0	eIoni	42.2009	compt	6	gamma
42	17	e-	0	Scintillation	0	compt	6	gamma
43	16	e-	0	eIoni	10.8776	compt	6	gamma
44	16	e-	0	Scintillation	0	compt	6	gamma
45	15	e-	1010.36	eIoni	272.517	compt	6	gamma
46	15	e-	756.558	eIoni	253.8	compt	6	gamma
47	15	e-	579.208	eloni	177.349	compt	6	gamma
48	15	e-	370.85	eloni	208.358	compt	6	gamma
49	15	e-	293.341	eloni	71.3094	compt	6	gamma
51	15	e-	217.007	eloni	144783	compt	6	gamma
52	15	e-	12.9042	eloni	$72 \ 9042$	compt	6	gamma
53	15	e-	0	Scintillation	0	compt	6	gamma
54	5	gamma	1319.34	compt	0.06984	NeutronInelastic	1	neutron
55	5	gamma	518.955	compt	5.4169	NeutronInelastic	1	neutron
56	5	gamma	463.501	compt	0.20837	NeutronInelastic	1	neutron
57	5	gamma	0	phot	5.1039	NeutronInelastic	1	neutron
58	25	gamma	0	phot	4.7747	phot	5	gamma
59	26	e-	0	eIoni	24.6774	phot	25	gamma
60	26	e-	0	Scintillation	0	phot	25	gamma
61	24	e-	315.503	eIoni	113.442	phot	5	gamma
62	24	e-	223.738	eIoni	91.765	$_{\mathrm{phot}}$	5	gamma
63	24	e-	115.458	eIoni	108.28	phot	5	gamma
64	24	e-	23.0287	eloni	92.429	phot	5	gamma
65	24	e-	0	eloni	23.0287	phot	5	gamma
60 67	24	e-	0	Scintillation		phot	5	gamma
68	∠ə 23	e-	0	Scintillation	00.2400	compt	5 5	gamma
60 60	20 99	e-	648 444	eloni	146 523	compt	5	gamma
70	22	e-	454 477	eIoni	193 967	compt	5	gamma
71	22	e-	316.19	eIoni	138.287	compt	5	gamma
72	22	e-	238.622	eIoni	77.568	compt	5	gamma
73	22	e-	144.863	eIoni	93.7583	compt	5	gamma
74	22	e-	38.4987	eIoni	106.365	compt	5	gamma
75	22	e-	0	eIoni	38.4987	compt	5	gamma
76	22	e-	0	Scintillation	0	compt	5	gamma
77	21	e-	474.926	msc	6.7645	compt	5	gamma
78	21	e-	467.184	msc	7.74173	compt	5	gamma
79	21	e-	455.422	msc	11.7623	compt	5	gamma
80	21	e-	444.111	msc	11.3107	compt	5	gamma
81	21	e-	432.388	msc	11.7232	compt	5	gamma
82	21	e-	419.594	msc	12.7942	compt	5	gamma
83	21	e-	410.679	msc	8.91458	compt	5	gamma
04 85	21 21	e-	402.148 385.000	msc	161480	compt	5 5	gamma
86 86	21 91	e-	360.999 377.145	msc	8 85422	compt	5	gamma
87	21	e-	366 365	msc	10 7804	compt	5	gamma
88	21	e-	$358\ 602$	msc	776214	compt	5	gamma
89	21	e-	342.559	msc	16.0432	compt	5	gamma
90	21	e-	202.788	eIoni	139.771	compt	5	gamma
91	21	e-	20.4484	eIoni	182.34	compt	5	gamma
92	21	e-	0	eIoni	20.4484	compt	5	gamma
93	21	e-	0	Scintillation	0	compt	5	gamma
94	4	gamma	377.9	compt	0.06778	NeutronInelastic	1	neutron
95	4	gamma	154.168	compt	0.06778	NeutronInelastic	1	neutron
96	4	gamma	0	phot	0.9895	NeutronInelastic	1	neutron

Tabella A.5. (Continua)

step	trackid	type	ekin (keV)	edproc	ed (keV)	creaproc	parentid	parenttype
07	20			mbat	E 4160	mhat		
97 98	31	e-	0	eloni	281496	phot	30	gamma
99	31	e-	0	Scintillation	20.1100	phot	30	gamma
100	29	e-	5.66678	eIoni	113.945	phot	4	gamma
101	29	e-	0	eIoni	5.66678	phot	4	gamma
102	29	e-	0	Scintillation	0	phot	4	gamma
103	28	e-	123.327	eIoni	100.337	compt	4	gamma
104	28	e-	0	eIoni	123.327	compt	4	gamma
105	28	e-	0	Scintillation	0	compt	4	gamma
106	27	e-	153.18	eIoni	136.571	compt	4	gamma
107	27	e-	67.4088	eIoni	85.7709	compt	4	gamma
108	27	e-	0	eIoni	67.4088	compt	4	gamma
109	27	e-	0	Scintillation	0	compt	4	gamma
110	3	Xe132[0.0]	0	ionIoni	136.532	NeutronInelastic	1	neutron
111	3	Xe132[0.0]	0	Scintillation	0	NeutronInelastic	1	neutron
112	2	neutron	2856.96	hadElastic	0.559216	NeutronInelastic	1	neutron
113	2	neutron	2850.77	hadElastic	0	NeutronInelastic	1	neutron
114	2	neutron	0	NeutronInelastic	0	NeutronInelastic	1	neutron
115	39	gamma	0	$_{\rm phot}$	0.9266	NeutronInelastic	2	neutron
116	41	gamma	0	phot	5.4169	phot	39	gamma
117	42	e-	0	eIoni	28.2125	$_{\rm phot}$	41	gamma
118	42	e-	0	Scintillation	0	$_{\rm phot}$	41	gamma
119	40	e-	455.051	eIoni	124.393	$_{\rm phot}$	39	gamma
120	40	e-	336.638	eIoni	118.412	$_{\mathrm{phot}}$	39	gamma
121	40	e-	248.015	eIoni	88.6236	phot	39	gamma
122	40	e-	154.096	eIoni	93.9192	phot	39	gamma
123	40	e-	35.3142	eIoni	118.781	phot	39	gamma
124	40	e-	0	eloni	35.3142	phot	39	gamma
125	40	e-	0	Scintillation	0	phot	39	gamma
126	38	gamma	0	phot	4.7747	NeutronInelastic	2	neutron
127	44	gamma	0	phot	0.92656	phot	38	gamma
128	45	e-	0	eloni	28.8547	phot	44	gamma
129	45	e-	0	Scintillation	00.7125	phot	44	gamma
130	43	e-	40.4300	eloni	92.7135	pnot	38	gamma
131	43	e-	0	eioni Caintillation	40.4300	pnot	38	gamma
132	40	e-	202.26	Scintillation	0 08047	pnot Neutron Inclustic	აი ე	gamma
194	37	gamma	282.20	phot	0.98947	NeutronInelastic	2	neutron
104	10	gamma	0	phot	4.7747	phot	2	neutron
135	40	gamma	0	oloni	0.14790	phot		gamma
130	49	e-	0	Scintillation	29.0555	phot	48	gamma
138	43	e-	111.087	eloni	136 617	phot	37	gamma
130	47	0-	111.001	eloni	111 087	phot	37	gamma
140	47	e-	0	Scintillation	111.001	phot	37	gamma
141	46	e-	305 231	msc	11 6196	compt	37	gamma
142	46	e-	290.183	msc	15.0471	compt	37	gamma
143	46	e-	285 553	msc	4 6309	compt	37	gamma
144	46	e-	268.143	msc	17.4096	compt	37	gamma
145	46	e-	199.425	msc	68.7179	compt	37	gamma
146	46	e-	191.435	msc	7.99041	compt	37	gamma
147	46	e-	185.638	msc	5.79689	compt	37	gamma
148	46	e-	177.796	msc	7.84174	compt	37	gamma
149	46	e-	165.668	msc	12.1276	compt	37	gamma
150	46	e-	70.4826	eIoni	95.1859	compt	37	gamma
151	46	e-	0	eIoni	70.4826	compt	37	gamma
152	46	e-	0	Scintillation	0	compt	37	gamma
153	36	gamma	0	phot	5.4169	NeutronInelastic	2	neutron

Tabella A.5. (Continua)

step	trackid	type	ekin (keV)	edproc	$^{\rm ed}_{ m (keV)}$	creaproc	parentid	parenttype
154	50	e-	700.164	msc	14.5856	phot	36	gamma
155	50	e-	639.236	eBrem	4.2225	phot	36	gamma
156	50	e-	619.591	msc	19.6444	phot	36	gamma
157	50	e-	601.961	msc	17.631	phot	36	gamma
158	50	e-	572.666	msc	29.2945	phot	36	gamma
159	50	e-	553.597	msc	19.0685	phot	36	gamma
160	50	e-	543.002	msc	10.5954	phot	36	gamma
161	50	e-	517.527	msc	25.4749	$_{\rm phot}$	36	gamma
162	50	e-	500.495	msc	17.0316	phot	36	gamma
163	50	e-	482.985	msc	17.5108	phot	36	gamma
164	50	e-	467.8	msc	15.1851	phot	36	gamma
165	50	e-	450.631	msc	17.1683	phot	36	gamma
167	50 50	e-	434.930	msc	10.0902	phot	30 26	gamma
168	50	e-	411.303 387 315	msc	23.031	phot	36	gamma
160	50	e-	360 048	msc	173672	phot	36	gamma
$103 \\ 170$	50	e-	$353\ 153$	msc	16 7949	phot	36	gamma
171	50	e-	337.351	msc	15.802	phot	36	gamma
172	50	e-	311.476	msc	25.8753	phot	36	gamma
173	50	e-	294.976	msc	16.5001	phot	36	gamma
174	50	e-	273.174	msc	21.8018	phot	36	gamma
175	50	e-	247.283	msc	25.8908	phot	36	gamma
176	50	e-	180.383	eIoni	66.9001	phot	36	gamma
177	50	e-	90.9114	eIoni	89.4716	phot	36	gamma
178	50	e-	0	eIoni	90.9114	phot	36	gamma
179	50	e-	0	Scintillation	0	phot	36	gamma
180	51	gamma	0	phot	34.556	eBrem	50	e-
181	52	e-	0	eIoni	22.1491	phot	51	gamma
182	52	e-	0	Scintillation	0	phot	51	gamma
183	35	gamma	667.718	Rayl	0	NeutronInelastic	2	neutron
184	35	gamma	240.795	compt	0.06778	NeutronInelastic	2	neutron
185	35	gamma	0	phot	4.7747	NeutronInelastic	2	neutron
186	55	gamma	0	phot	1.122	phot	35	gamma
187	56	e-	0	eIoni	28.6593	phot	55	gamma
188	56	e-	0	Scintillation	0	phot	55	gamma
189	54	e-	121.245	eloni	84.9943	phot	35	gamma
190	54	e-	44.3774	eloni	76.8674	phot	35	gamma
191	54	e-	0	eloni	44.3774	phot	35	gamma
192	54	e-	0	Scintillation	106 79	phot	35	gamma
193	03 E9	e-	320.070	eloni	100.78	compt	30	gamma
194 105	00 53	e-	227.202	eloni	92.014 112/18	compt		gamma
195	53	e-	114.045	eloni	112.410 110.345	compt	35	gamma
190	53	e-	4.49800	eloni	1 4 4 9 8 0 6	compt	35	gamma
198	53	e-	0	Scintillation	4.43000	compt	35	gamma
199	34	Xe132[0.0]	0	ionIoni	16.146	NeutronInelastic	2	neutron
200	34	Xe132[0.0]	Ő	Scintillation	0	NeutronInelastic	2	neutron
201	33	neutron	58.5759	hadElastic	0.0936476	NeutronInelastic	2	neutron
202	33	neutron	56.9736	hadElastic	0	NeutronInelastic	2	neutron
203	33	neutron	55.7022	hadElastic	0	NeutronInelastic	2	neutron
204	33	neutron	54.7165	hadElastic	0.985956	NeutronInelastic	2	neutron
205	33	neutron	53.5396	hadElastic	0	NeutronInelastic	2	neutron
206	33	neutron	53.3859	hadElastic	0.153828	NeutronInelastic	2	neutron
207	33	neutron	52.0818	hadElastic	0	NeutronInelastic	2	neutron
208	33	neutron	51.1355	hadElastic	0.946514	NeutronInelastic	2	neutron
209	33	neutron	51.1355	Transportation	0	NeutronInelastic	2	neutron
210	33	neutron	50.1033	hadElastic	0	NeutronInelastic	2	neutron

Tabella A.5. (Continua)

step	trackid	type	ekin (keV)	edproc	ed (keV)	creaproc	parentid	parenttype
	1 1		40.4101	hadElectio	0.684499	NeutronInclastic		noutnon
211 212	33 33	neutron	49.4191 49.4191	Transportation	0.084425	NeutronInelastic	2	neutron
212	33	neutron	44.2772	hadElastic	0.853627	NeutronInelastic	2	neutron
210	33	neutron	44.2772	Transportation	0.000021	NeutronInelastic	2	neutron
215	33	neutron	37.39	hadElastic	0.574698	NeutronInelastic	2	neutron
216	33	neutron	37.39	Transportation	0	NeutronInelastic	2	neutron
217	33	neutron	30.4991	hadElastic	0.732855	NeutronInelastic	2	neutron
218	33	neutron	29.8209	hadElastic	0.67835	NeutronInelastic	2	neutron
219	33	neutron	29.7348	hadElastic	0.0860647	NeutronInelastic	2	neutron
220	33	neutron	29.1386	hadElastic	0.596383	NeutronInelastic	2	neutron
221	33	neutron	0	nCapture	0	NeutronInelastic	2	neutron
222	77	Xe130[0.0]	0	ionIoni	0.12497	nCapture	33	neutron
223	77	Xe130[0.0]	0	Scintillation	0	nCapture	33	neutron
224	76	gamma	536.059	Rayl	0	nCapture	33	neutron
225	76	gamma	374.69	compt	0.67752	nCapture	33	neutron
226	76	gamma	331.305	compt	0.67752	nCapture	33	neutron
227	76	gamma	0	phot	4.7747	nCapture	33	neutron
228	81	gamma	0	phot	5.1039	phot	76	gamma
229	82	e-	0	eIoni	24.6774	phot	81	gamma
230	82	e-	0	Scintillation	0	phot	81	gamma
231	80	e-	205.386	eIoni	91.3629	phot	76	gamma
232	80	e-	108.417	eIoni	96.9681	phot	76	gamma
233	80	e-	28.7917	eIoni	79.6258	phot	76	gamma
234	80	e-	0	eIoni	28.7917	phot	76	gamma
235	80	e-	0	Scintillation	0	phot	76	gamma
236	79	e-	0	eIoni	42.7081	compt	76	gamma
237	79	e-	0	Scintillation	0	compt	76	gamma
238	78	e-	86.6907	eIoni	74.0006	compt	76	gamma
239	78	e-	0	eIoni	86.6907	compt	76	gamma
240	78	e-	0	Scintillation	0	compt	76	gamma
241	75	gamma	395.394	compt	5.1039	nCapture	33	neutron
242	75	gamma	201.017	compt	0.98947	nCapture	33	neutron
243	75	gamma	0	phot	4.7747	nCapture	33	neutron
244	86	gamma	0	phot	1.122	phot	75	gamma
245	87	e-	0	eIoni	28.6593	phot	86	gamma
246	87	e-	0	Scintillation	0	phot	86	gamma
247	85	e-	91.3142	eIoni	75.1464	phot	75	gamma
248	85	e-	0	eIoni	91.3142	phot	75	gamma
249	85	e-	0	Scintillation	0	phot	75	gamma
250	84	e-	96.4806	eIoni	96.9072	compt	75	gamma
251	84	e-	0	eIoni	96.4806	compt	75	gamma
252	84	e-	0	Scintillation	0	compt	75	gamma
253	83	e-	184.525	eIoni	83.5288	compt	75	gamma
254	83	e-	84.144	eIoni	100.381	compt	75	gamma
255	83	e-	0	eIoni	84.144	compt	75	gamma
256	83	e-	0	Scintillation	0	compt	75	gamma
257	74	gamma	218.066	compt	4.7747	nCapture	33	neutron
258	74	gamma	218.066	Rayl	0	nCapture	33	neutron
259	74	gamma	0	phot	5.1039	nCapture	33	neutron
260	90	gamma	0	phot	5.1039	phot	74	gamma
261	91	e-	0	eIoni	24.3482	phot	90	gamma
262	91	e-	0	Scintillation	0	phot	90	gamma
263	89	e-	36.9743	eIoni	146.536	phot	74	gamma
264	89	e-	0	eloni	36.9743	phot	74	gamma
265	89	e-	0	Scintillation	0	phot	74	gamma
266	88	e-	390.546	eIoni	241.569	compt	74	gamma
267	88	e-	294.43	eloni	96.1154	compt	74	gamma

Tabella A.5. (Continua)

step	trackid	type	ekin (keV)	edproc	$^{\rm ed}_{\rm (keV)}$	creaproc	parentid	parenttype
268	88	e-	220.627	eIoni	73.8036	compt	74	gamma
269	88	e-	130.427	eIoni	90.1996	compt	74	gamma
270	88	e-	55.4411	eIoni	74.9858	compt	74	gamma
271	88	e-	0	eIoni	55.4411	compt	74	gamma
272	88	e-	0	Scintillation	0	compt	74	gamma
273	73	gamma	0	phot	4.7747	nCapture	33	neutron
274	93	gamma	0	phot	4.7747	$_{\rm phot}$	73	gamma
275	94	e-	0	eIoni	25.0066	phot	93	gamma
276	94	e-	0	Scintillation	0	$_{\rm phot}$	93	gamma
277	92	e-	173.34	eIoni	107.719	$_{\rm phot}$	73	gamma
278	92	e-	90.405	eIoni	82.9346	$_{\rm phot}$	73	gamma
279	92	e-	0	eIoni	90.405	$_{\rm phot}$	73	gamma
280	92	e-	0	Scintillation	0	$_{\rm phot}$	73	gamma
281	72	gamma	196.517	compt	0.06778	nCapture	33	neutron
282	72	gamma	0	phot	5.1039	nCapture	33	neutron
283	97	gamma	0	phot	5.4169	phot	72	gamma
284	98	e-	0	eIoni	24.0352	phot	97	gamma
285	98	e-	0	Scintillation	0	phot	97	gamma
286	96	e-	5.75151	eIoni	156.21	phot	72	gamma
287	96	e-	0	eloni	5.75151	phot	72	gamma
288	96	e-	0	Scintillation	0	phot	72	gamma
289	95	e-	189.824	eloni	79.9444	compt	72	gamma
290	95	e-	108.831	eloni	80.9925	compt	72	gamma
291	95	e-	0	eloni	108.831	compt	72	gamma
292	95 71	e-	0	Scintillation	0 00084	compt	72	gamma
293	71	gamma	689.279	compt	0.06984	nCapture	33	neutron
294	71	gamma	181.899	compt	0.67752	nCapture	33	neutron
290	/ 1 101	gamma	C4 4447	pnot	34.000	nCapture	33 71	neutron
290	101	e-	04.4447	eloni	64 4447	phot	71	gamma
291	101	e-	0	Scintillation	04.4447	phot	71	gamma
290	101	e-	340.033	oloni	165 77	compt	71	gamma
299	100	e-	$178\ 205$	eloni	162 727	compt	71	gamma
301	100	e- e-	90 4345	eloni	87 7706	compt	71	gamma
302	100	e-	0.1010	eloni	90 4345	compt	71	gamma
303	100	e-	0	Scintillation	0.4040	compt	71	gamma
304	99	e-	Ő	eIoni	11 2522	compt	71	gamma
305	99	e-	Ő	Scintillation	0	compt	71	gamma
306	70	gamma	351.186	Bavl	Ő	nCapture	33	neutron
307	70	gamma	181.625	compt	0.92656	nCapture	33	neutron
308	70	gamma	0	phot	4.7747	nCapture	33	neutron
309	104	gamma	0	phot	5.4169	phot	70	gamma
310	105	e-	0	eIoni	24.3644	phot	104	gamma
311	105	e-	0	Scintillation	0	phot	104	gamma
312	103	e-	78.4448	eIoni	68.6247	phot	70	gamma
313	103	e-	0	eIoni	78.4448	phot	70	gamma
314	103	e-	0	Scintillation	0	phot	70	gamma
315	102	e-	62.2743	eIoni	106.359	compt	70	gamma
316	102	e-	0	eIoni	62.2743	compt	70	gamma
317	102	e-	0	Scintillation	0	compt	70	gamma
318	69	gamma	491.978	compt	0.67752	nCapture	33	neutron
319	69	gamma	476.232	compt	0.20837	nCapture	33	neutron
320	69	gamma	452.271	compt	0.67752	nCapture	33	neutron
321	69	gamma	379.36	compt	0.06778	nCapture	33	neutron
322	69	gamma	0	phot	5.1039	nCapture	33	neutron
323	111	gamma	0	phot	5.4169	phot	69	gamma
324	112	e-	0	eIoni	24.0352	phot	111	gamma

Tabella A.5. (Continua)

step	trackid	type	$_{\rm (keV)}^{\rm ekin}$	edproc	$^{\rm ed}_{\rm (keV)}$	creaproc	parentid	parenttype
325	112	e-	0	Scintillation	0	phot	111	gamma
326	110	e-	267.549	eIoni	77.2549	phot	69	gamma
327	110	e-	169.636	eIoni	97.9124	phot	69	gamma
328	110	e-	95.4477	eIoni	74.1886	phot	69	gamma
329	110	e-	0	eIoni	95.4477	phot	69	gamma
330	110	e-	0	Scintillation	0	phot	69	gamma
331	109	e-	0	eIoni	72.8439	compt	69	gamma
332	109	e-	0	Scintillation	0	compt	69	gamma
333	108	e-	0	eIoni	23.2836	compt	69	gamma
334	108	e-	0	Scintillation	0	compt	69	gamma
335	107	e-	0	eIoni	15.5373	compt	69	gamma
336	107	e-	0	Scintillation	0	compt	69	gamma
337	106	e-	58.3614	eIoni	95.786	compt	69	gamma
338	106	e-	0	eIoni	58.3614	compt	69	gamma
339	106	e-	0	Scintillation	0	compt	69	gamma
340	68	gamma	0	$_{\rm phot}$	4.7747	nCapture	33	neutron
341	114	gamma	0	phot	5.1039	phot	68	gamma
342	115	e-	0	eIoni	24.6774	phot	114	gamma
343	115	e-	0	Scintillation	0	phot	114	gamma
344	113	e-	383.8	msc	13.114	phot	68	gamma
345	113	e-	377.372	msc	6.42813	phot	68	gamma
346	113	e-	365.648	msc	11.7235	phot	68	gamma
347	113	e-	361.327	msc	4.3213	phot	68	gamma
348	113	e-	352.285	msc	9.04238	phot	68	gamma
349	113	e-	339.065	msc	13.2202	phot	68	gamma
350	113	e-	325.478	msc	13.5866	phot	68	gamma
351	113	e-	313.407	msc	12.0708	phot	68	gamma
352	113	e-	300.739	msc	12.6686	phot	68	gamma
353	113	e-	285.398	msc	15.3404	phot	68	gamma
354	113	e-	275.21	msc	10.1878	phot	68	gamma
355	113	e-	269.628	msc	5.5826	phot	68	gamma
350	113	e-	260.656	msc	8.97139	phot	68	gamma
307 950	113	e-	170.003	eloni	84.0030	phot	08	gamma
300	110	e-	00.0322	eloni	01.4100	phot	00	gamma
260	110 119	e-	0	Scintillation	00.0322	phot	68	gamma
361	67	e-	838 789	compt	4 7747	nCapturo	33	gaiiiiia
362	67	gamma	214510	compt	4.1141	nCapture	33	neutron
363	67	gamma	214.019	phot	0.00118	nCapture	33	neutron
364	119	gamma	0	phot	5.4169	neapture	67	gamma
365	120	e-	0	eIoni	28 2125	phot	119	gamma
366	120	e-	Ő	Scintillation	20.2120	phot	119	gamma
367	118	e-	77 9392	eloni	102 024	phot	67	gamma
368	118	e-	11.0002	eIoni	77 9392	phot	67	gamma
369	118	e-	Ő	Scintillation	0	phot	67	gamma
370	117	e-	501.638	eIoni	122.557	compt	67	gamma
371	117	e-	220.125	eIoni	281.513	compt	67	gamma
372	117	e-	106.547	eIoni	113.577	compt	67	gamma
373	117	e-	0	eIoni	106.547	compt	67	gamma
374	117	e-	Ő	Scintillation	0	compt	67	gamma
375	116	e-	58.2054	eIoni	79.7103	compt	67	gamma
376	116	e-	0	eIoni	58.2054	compt	67	gamma
377	116	e-	0	Scintillation	0	compt	67	gamma
378	66	gamma	220.751	compt	0.14798	nCapture	33	neutron
379	66	gamma	207.02	compt	0.06778	nCapture	33	neutron
380	66	gamma	0	phot	4.7747	nCapture	33	neutron
381	124	gamma	0	phot	5.1039	phot	66	gamma

Tabella A.5. (Continua)

step	trackid	type	$_{\rm (keV)}^{\rm ekin}$	edproc	$^{\rm ed}_{\rm (keV)}$	creaproc	parentid	parenttype
382	125	e-	0	eIoni	24.6774	phot	124	gamma
383	125	e-	0	Scintillation	0	phot	124	gamma
384	123	e-	75.821	eIoni	96.643	phot	66	gamma
385	123	e-	0	eIoni	75.821	phot	66	gamma
386	123	e-	0	Scintillation	0	$_{\rm phot}$	66	gamma
387	122	e-	0	eIoni	13.6635	compt	66	gamma
388	122	e-	0	Scintillation	0	compt	66	gamma
389	121	e-	631.804	eIoni	165.526	compt	66	gamma
390	121	e-	512.337	eIoni	119.467	compt	66	gamma
391	121	e-	394.392	eIoni	117.945	compt	66	gamma
392	121	e-	263.554	eIoni	130.838	compt	66	gamma
393	121	e-	177.656	eIoni	85.8979	compt	66	gamma
394	121	e-	63.2009	eBrem	57.0323	compt	66	gamma
395	121	e-	0	eIoni	63.2009	compt	66	gamma
396	121	e-	0	Scintillation	0	compt	66	gamma
397	126	gamma	0	phot	4.7747	eBrem	121	e-
398	128	gamma	0	phot	5.1039	phot	126	gamma
399	129	e-	0	eloni	24.6774	phot	128	gamma
400	129	e-	0	Scintillation	0	phot	128	gamma
401	127	e-	0	eloni	22.8666	phot	126	gamma
402	127	e-	0	Scintillation	0	phot	126	gamma
403	65	gamma	301.756	compt	0.06778	nCapture	33	neutron
404	65	gamma	224.918	compt	5.1039	nCapture	33	neutron
405	100	gamma	120 615	phot	4.7747	nCapture	33	neutron
406	132	e-	139.615	eloni	80.5284	phot	65	gamma
407	132	e-	25.0895	eloni	114.526	phot	65	gamma
408	132	e-	0	eloni Caintillation	25.0895	phot	65	gamma
409	132	e-	0	Scintillation	U 71 7997	pnot	00 65	gamma
410	101	e-	0	Scintillation	(1.(55)	compt	00 65	gamma
411 419	101	e-	1056.0	Scintillation	54 6465	compt	65	gamma
412	130	e-	1826 56	msc	120 228	compt	05 65	gamma
415	130	e-	1320.30 1774.77	msc	51 7033	compt	65 65	gamma
415	130	e-	1716.45	msc	58 3241	compt	65	gamma
416	130	e-	1650.36	msc	66 0832	compt	65	gamma
417	130	e-	1585.53	msc	64 8386	compt	65	gamma
418	130	e-	1533.68	msc	51 8408	compt	65	gamma
419	130	e-	1452.48	msc	81.2056	compt	65	gamma
420	130	e-	1122.25	eBrem	76.2816	compt	65	gamma
421	130	e-	1063.8	msc	58.4473	compt	65	gamma
422	130	e-	877.727	msc	186.076	compt	65	gamma
423	130	e-	660.208	eIoni	217.519	compt	65	gamma
424	130	e-	451.243	eBrem	147.488	compt	65	gamma
425	130	e-	319.721	eIoni	131.523	compt	65	gamma
426	130	e-	258.373	eBrem	20.4201	compt	65	gamma
427	130	e-	143.325	eIoni	115.048	compt	65	gamma
428	130	e-	58.7485	eIoni	84.5764	compt	65	gamma
429	130	e-	0	eIoni	58.7485	compt	65	gamma
430	130	e-	0	Scintillation	0	compt	65	gamma
431	135	gamma	0	phot	4.7747	eBrem	130	e-
432	137	gamma	0	phot	1.122	phot	135	gamma
433	138	e-	0	eIoni	28.6593	phot	137	gamma
434	138	e-	0	Scintillation	0	phot	137	gamma
435	136	e-	0	eIoni	6.37137	phot	135	gamma
436	136	e-	0	Scintillation	0	phot	135	gamma
437	134	gamma	0	phot	4.7747	eBrem	130	e-
438	140	gamma	0	phot	5.4169	phot	134	gamma

Tabella A.5. (Continua)

step	trackid	type	ekin	edproc	ed	creaproc	parentid	parenttype
			(keV)		(keV)			
439	141	e-	0	eIoni	24.3644	phot	140	gamma
440	141	e-	0	Scintillation	0	phot	140	gamma
441	139	e-	0	eIoni	26.9202	phot	134	gamma
442	139	e-	0	Scintillation	0	$_{\rm phot}$	134	gamma
443	133	gamma	0	phot	0.9266	eBrem	130	e-
444	143	gamma	0	phot	1.122	phot	133	gamma
445	144	e-	0	eIoni	32.5074	$_{\rm phot}$	143	gamma
446	144	e-	0	Scintillation	0	$_{\rm phot}$	143	gamma
447	142	e-	129.989	eIoni	89.4029	phot	133	gamma
448	142	e-	0	eIoni	129.989	phot	133	gamma
449	142	e-	0	Scintillation	0	$_{\rm phot}$	133	gamma
450	61	Xe132[0.0]	0	ionIoni	1.03248	hadElastic	33	neutron
451	61	Xe132[0.0]	0	Scintillation	0	hadElastic	33	neutron
452	60	Xe134[0.0]	0	ionIoni	1.30441	hadElastic	33	neutron
453	60	Xe134[0.0]	0	Scintillation	0	hadElastic	33	neutron
454	59	Xe129[0.0]	0	ionIoni	1.17714	hadElastic	33	neutron
455	59	Xe129[0.0]	0	Scintillation	0	hadElastic	33	neutron
456	58	Xe129[0.0]	0	ionIoni	1.27174	hadElastic	33	neutron
457	58	Xe129[0.0]	0	Scintillation	0	hadElastic	33	neutron
458	57	Xe130[0.0]	0	ionIoni	1.60265	hadElastic	33	neutron
459	57	Xe130[0.0]	0	Scintillation	0	hadElastic	33	neutron
460	32	Xe131[0.0]	0	ionIoni	6.19973	hadElastic	2	neutron
461	32	Xe131[0.0]	0	Scintillation	0	hadElastic	2	neutron

Tabella A.5. (Continua)

Bibliografia

- [1] M. Milgrom, 1983, Ap.J. 270, 365.
- [2] Bottema, R., Pestaña, J., Rothberg, B., & Sanders, R. 2002, A&A, 393, 453.
- [3] F. Zwicky, 1933, Die Rotverschiebung von extragalaktischen Nebeln, Helvetica Physica Acta 6, 110.
- [4] C. L. Bennett et al., 2003, Ap. J. Suppl. 148, 175.
- [5] R. D'Inverno, 2001, Introduzione alla relatività di Einstein, Clueb, Bologna.
- [6] B. Caccianiga, 2009, La Materia Oscura, Corso di Introduzione all'Astrofisica.
- [7] C. Elias, 2013, Planck space mission sheds light on the universe's age, evolution and composition, www.artsci.utoronto.ca/main/newsitems/planck-space-mission.
- [8] Kyu Jung Bae Bumseok Kyae, 2009, PAMELA/ATIC anomaly from exotic mediated dark matter decay, iopscience.iop.org/1126-6708/2009/05/102/pdf/1126-6708_2009_05_102.pdf.
- [9] E. Aprile, XENON collaboration, arXiv:1206.6288.
- [10] W.R.Leo, 1994, Techniques for nuclear and particle physics experiments, Springer.
- [11] E. Aprile, 2009, Direct Dark Matter Searches, nijmegen09.hef.ru.nl/lectures/Aprile/index.html.
- [12] E. Aprile et al. (XENON Collaboration), 2010, XENON1T at LNGS, Proposal and Technical Design Report.
- [13] Geant4, geant4.cern.ch/.
- [14] ROOT, root.cern.ch/drupal/.
- [15] Evaluated Nuclear Data File (ENDF), www-nds.iaea.org/exfor/endf.htm.
- [16] Exact Masses and Isotopic Abundances of Elements, Numeric List, www.sisweb.com/referenc/source/exactmas.htm.
- [17] G. Turchetti, 1998, Dinamica classica dei sistemi fisici, Bologna, Zanichelli.