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ABSTRACT 

 

La problematica della sicurezza di ponti e viadotti esistenti nei Paesi Bassi ha portato il Ministero 

dei Lavori Pubblici a finanziare una specifica campagna di studi mirata allo valutazione della 

risposta degli elementi che compongono queste infrastrutture. Pertanto, lo scopo della presente 

attività è quello di analizzare, mediante modellazione con Elementi Finiti ed il continuo confronto 

con risultati sperimentali, la risposta in esercizio di lastre in calcestruzzo armato sollecitate da 

carichi concentrati. 

Tali elementi sono caratterizzati da un comportamento ed una crisi per taglio, la cui modellazione è, 

da un punto di vista computazionale, una sfida piuttosto ardua, a causa del comportamento fragile 

combinato ad effetti tridimensionali. 

 

La modellazione numerica delle modalità di crisi è studiata attraverso la Sequentially Linear 

Analysis (SLA), metodo di soluzione agli Elementi Finiti alternativo ai classici approcci 

incrementali e iterativi. Il confronto tra le due differenti tecniche numeriche rappresenta uno dei 

primi sviluppi e raffronti in ambito tridimensionale ed è inoltre eseguito adottando come riferimento 

una delle numerose prove di laboratorio su lastre in calcestruzzo armato.   

Il vantaggio della SLA è quello di evitare i ben noti problemi di convergenza tipici delle analisi non 

lineari, specificando direttamente l'incremento di danno sul singolo corpo della mesh attraverso la 

riduzione di rigidezze e resistenze nel particolare elemento finito, anziché imporre un incremento di 

carico o di spostamento sull'intera struttura. 

 

Per la prima volta particolare attenzione è stata prestata ad alcuni aspetti specifici degli elementi 

lastra, quali modellazione delle condizioni di vincolo reali e sensitività della soluzione rispetto alla 

finezza della mesh. 

Questa approfondita analisi di sensitività nei confronti dei più importanti parametri ha infatti 

evidenziato la forte incidenza dell'energia di frattura, della densità della mesh e del modello scelto 

sulla soluzione in termini di diagramma forza-spostamento, distribuzione dei quadri fessurativi e 

meccanismi di crisi per taglio. 

Pur mostrando grande versatilità e potenziale, si è mostrato come il codice SLA necessiti di ulteriori 

sviluppi in merito alla modellazione di differenti condizioni di carico simultanee (costanti e 

proporzionali) e del comportamento softening di materiali fragili (come il calcestruzzo) in ambito 

tridimensionale, al fine di ampliare i propri orizzonti a questi nuovi contesti di studio. 

 

 

 

 

 

 

 

 

Parole chiave: Sequentially Linear Analysis, shear behaviour, reinforced concrete slabs, 3D 

modeling. 
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ABSTRACT 

 

The assessment of safety in existing bridges and viaducts led the Ministry of Public Works of the 

Netherlands to finance a specific campaing aimed at the study of the response of the elements of 

these infrastructures. Therefore, this activity is focused on the investigation of the behaviour of 

reinforced concrete slabs under concentrated loads, adopting finite element modeling and 

comparison with experimental results. 

These elements are characterized by shear behaviour and crisi, whose modeling is, from a 

computational point of view, a hard challeng, due to the brittle behavior combined with three-

dimensional effects. 

 

The numerical modeling of the failure is studied through Sequentially Linear Analysis (SLA), an 

alternative Finite Element method, with respect to traditional incremental and iterative approaches. 

The comparison between the two different numerical techniques represents one of the first works 

and comparisons in a three-dimensional environment. It's carried out adopting one of the 

experimental test executed on reinforced concrete slabs as well. 

The advantage of the SLA is to avoid the well known problems of convergence of typical non-linear 

analysis, by directly specifying a damage increment, in terms of reduction of stiffness and resistance 

in particular finite element, instead of load or displacement increasing on the whole structure 

. 

For the first time, particular attention has been paid to specific aspects of the slabs, like an accurate 

constraints modeling and sensitivity of the solution with respect to the mesh density. This detailed 

analysis with respect to the main parameters proofed a strong influence of the tensile fracture 

energy, mesh density and chosen model on the solution in terms of force-displacement diagram, 

distribution of the crack patterns and shear failure mode. 

The SLA showed a great potential, but it requires a further developments for what regards two 

aspects of modeling: load conditions (constant and proportional loads) and softening behaviour of 

brittle materials (like concrete) in the three-dimensional field, in order to widen its horizons in these 

new contexts of study. 
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1. INTRODUCTION 
 

 

The present Master Thesis has been developed from September 2012 until March 2013, in the 

Technische Universiteit of Delft, working under the supervision of Dr.Ir.M.A.N Hendriks and Ir. 

A.Slobbe of the Computational Mechanics group. 

The work is mainly focused on the development of the Finite Element software TNO Diana®, in 

particular on the implementation and improving of the Sequentially Linear Analysis in three-

dimension. On the other hand, it makes part of a wide research activity carried out by the TU Delft, 

collaborating with the Dutch Ministry of Public Works, regarding the project “Assessing of the 

bearing capacity of existing bridges in the Netherlands”. 

This Master Thesis regards the numerical investigation about the "Shear Capacity and Behaviour of 

Reinforced Concrete Slabs subjected to a Concentrated Load Close to the Support", executed using 

Diana, Nonlinear Finite Element (NLFE) and Sequentially Linear (SL) Analysis. 

 

 
Shear crack in a reinforced concrete slab under concentrated load 

 

The whole work has been carried out in different parts, that correspond to the sections of the current 

report. 

The first part consists in a review of the theoretical background of the Sequentially Linear Analysis 

for solid elements. A description of the models used in the implementation of this method is 

reported, in order to represent the constitutive relationships of the materials, their response during 

and after the cracking process and their Poisson and shear behaviour. This review is fundamental to 

understand the procedure of the definition of the so called saw-tooth curve, essential element for the 

SLA. 

The second part contains a general overview about shear behavior of real structures in reinforced 

concrete and reports the two possible main alternative responses and crisis mechanisms: One-Way 

(or Wide Beam) action and Two- Way (or Punching) action. In this section results of experimental 

tests are reported, in order to better explain the expected development of cracking pattern,  estimate 

the shear bearing capacity and the failure mechanism of concrete slabs. Every consideration will be 

related to the indications that the main Building Codes provide for design and verification of 

reinforced concrete slabs. 
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The third and the forth part contain an extensive description of procedures and results of the 

experimental survey on the reinforced concrete slab S25T1, executed in StevinLab-II (TU Delft) 

and the relative study through numerical solutor adopting the Nonlinear and Sequentially Linear 

Analysis. Then, analytical and experimental results will be compared, in order to verify the 

reliability of both Finite Element Method in predicting the real response of the real specimen. 

Exactly through this comparison is possible to evaluate the reliability of the classical Non-Linear 

Newton-Raphson and to check the sensitivity of the SLA method.  

Furthermore, an investigation above all the aspects of the methods will be presented: difficulty in 

pre-processing, accuracy of the solutions and computational cost, i.e. the time needed to get to 

satisfactory conclusions of the analyses. 

Particularly, it will focus attention regard to the variation of all the most important parameters used 

in the Finite Element model. 

 

The last part contains the main considerations regarding to the problems encountered during the 

entire work, the advantages and the limits of SLA in respect with the other more developed FE 

methods and an evaluation of the present potentialities of the SLA for structural problems. 
 

1.1 General context of study 

 

The last century has witnessed a quick development of the industrial and commercial activities in 

the Netherlands and the problem of mobility of people, goods and resources weighs on the 

infrastructures all over the country. 

Bridges assure the continuity of highways, roads, railways and other important infrastructures, so 

they result strategic components of the transport network of the Netherlands. 

 

 
(a)                                                                                 (b) 

Distribution of highways (a) and railways (b) all over the territory of the Netherlands 

 

A great part of the Dutch bridges is characterized by structures made, designed and realized with 

reinforced concrete many decades ago. Either for an underestimation in the prevision of the increase 

of the traffic loads, either for unavoidable decay of the structural and material quality, an 

assessment of the present condition of the bridge structures seems to be necessary. 

To have an immediate idea of the importance of this problem, the following table contains an 

estimation of the number of the Dutch bridges that causes concern about their actual bearing 

capacity and the next figures represent three of the most strategic bridges of the Netherlands, 

subjected to the same safety problem: 
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Number and categories of Dutch bridges 

whose actual bearing capacity should be precisely evaluated 

 

 
The Zeeland Bridge (Zeelandbrug) is the longest bridge in the Netherlands. With a structure made mainly 

of reinforced concrete and a total length of 5022 m, it connects the islands of Schouwen-Duiveland and 

Noord-Beveland in the province of Zeeland. The Zeeland Bridge was built between 1963 and 1965. 

 

 
The Waalbrug is an arch bridge, with a full length of 604 m, over the Waal River in Nijmegen, Netherlands. 

The bridge was opened in 1936 and in the last years it is affected by large traffic jams during the rush 

hours. Because of its crucial aspect in regional traffic it has been difficult to renovate the bridge. 

 

 
 

The John S. Thompson-Brug is a bridge over the Maas River, in the province of North Brabant 

in the Netherlands. The bridge was built in 1929 as part of the main road between 

's-Hertogenbosch and Nijmegen. It still carries that road, now signed provincial route N324. 

 

Structures Number

Bridges in Highway 1515

Bridges in main roads 930

Other bridges 711

Tunnels 544

Acqueducts 8

Ecoducts 7

All toghether 3715
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The national program of “Assessing the bearing capacity of existing bridges in the Netherlands” [1] 

has been promoted mainly on the basis of this concern about the safety of the Dutch bridges by the 

Dutch Ministry of Public Works, involving several private and public organizations, like the 

Technische Universiteit of Delft. 

This study classifies the existing concrete bridges in the Netherlands in six different categories, 

whose prototypes are: 

 

1. Bridges composed by reinforced solid slabs with 
 

 
 

 

  
 built before 1950 and with 

 

 
 

 

  
 

built before 1975; 

2. Bridges composed by box girders; 

3. Bridges made of precast pre-stressed I-beams with thin webs; 

4. Bridges made of T-beams with very thin webs; 

5. Crossing bridges; 

6. Tunnel roofs. 

 

Stresses on the structures and the residual bearing capacities have to be evaluated as main 

parameters to determine the level of safety about the various typologies of existing bridge. 

Analysis regarding the development of traffic intensity and the increase of the traffic load and the 

axial load on the bridge structure are a crucial point in order to estimate the entity of stress on the 

bridges. They are focused on the increase of the traffic, that in the last decades changed first in 

quality, and secondly in quantity. 

On the other side, the research is focalized on the evaluation of the bearing capacity of the existing 

bridges, through surveys on the following aspects: 

 

 Behavior of higher concrete strength after decades of hydration; 

 Evaluation of the sustainability of the loading shear effect on a structural element; 

 Estimation of the more favorable shear effect (wide beam shear or punching behavior by 

virtue of redistribution or dome effect); 

 Assessment of the reliability of the prediction of the behavior of structural elements by FEM 

calculation; 

 Utility of proofs loading on real structures. 

 

The present activity is interested in the first class of existing bridges, therefore structures composed 

by reinforced concrete slabs with  
 

 
 

 

  
 built before 1950 and with 

 

 
 

 

  
 built before 1975) and 

in the third and fourth aspects of the survey. 

In fact this Master Thesis aims to get a global sight on the capacity of Finite Elements Methods 

(fourth point), in predicting the most important features of the shear capacity and behavior in 

reinforced concrete slabs (third point), through a comparison with observation made by laboratory 

tests on similar elements. 

An experimental campaigns performed in StevinLab-II regards the behavior of reinforced concrete 

slabs without shear reinforcements under concentrated loads. 

The layout and the dimensions of the reinforced concrete slabs are representative of the most 

common elements used in a bridge structure; instead the applied concentrated load is limited on an 
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area of            and           . Punching shear with these loads is usually treated in 

manner similar to punching by a column. It has to be noted that punching shear test performed with 

a concentrated load simulating a vehicle wheel with pneumatic pressure showed a strong difference. 

Indeed, it appears that the punching shear with a wheel with pneumatic pressure is less critical: the 

curvatures tend to be distributed over the surface of applied load rather than concentrated near the 

edge of the column [2]. 

Finally, the position of the loading area is varied on various specimens, to model all the possible 

loading conditions that a slab can bear. 

 

 
Approximated scheme of the concentrated axial forces applied by a motor vehicle on the road surface 

 

  
 

Layout of the loading laboratory tests on reinforced concrete slabs subjected to concentrated loads 

(the violet squares represent the possible alternative positions of the loading plate) 

 

Under concentrated loads, the response of the reinforced concrete element is characterized by the 

prevailing features of the shear behavior. 

After collecting the experimental data in terms of load-displacement diagrams, distribution of 

cracking pattern on the surfaces, occurred failure mechanism, the FEM modeling of the slab will be 

executed. 

Then, the results of the computational analyses will be also used as an evaluation of the reliability 

of the classical Nonlinear approach and of the new Sequentially Linear method implemented in the 

software Diana. 
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1.2 Purposes and objectives 

 

The present work follows a series of numerical analysis focused on the prediction of the behaviour 

of bi-dimensional reinforced concrete slabs without shear reinforcement (specimens), in terms of 

structural response and failure mode: load-displacement diagram and cracking behaviour. 

The present work aims to: 

 

 investigate a new experimental test carried on a reinforced concrete slab; 

 study the mesh sensitivity on the solution; 

 provide two different models; 

 adopt and compare two numerical methods: Non-Linear and Sequentially Linear Analysis; 

 evaluate the sensitivity of the model respect with the Tensile Fracture Energy and other 

parameters. 

 

For the present activity, specimen       is chosen among a large amount of experimental tests 

carried on in the StevinLab-II. It does not present line load. 

The mesh sensitivity will be studied by increasing the amount of elements on the thickness of the 

model; while the work on the two different models will be carried on in order to study the effects 

and the consequences on the solution due to a structural compromise in terms of modeling the slab 

constraints: "continuous support line" with Dywidag bars and full clamped side. Finally, the 

sensitivity of the models on the main unknown parameters will be studied. 

 

 
Experimental tests performed in StevinLab-II and selected case of study (red arrow) 
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2. SEQUENTUALLY LINEAR ANALYSIS FOR 

SOLID ELEMENTS 
 

 

2.1 Review of Finite Element Method 

 

Computational methods, like Finite Element Methods, have become useful and indispensable tools 

for studies, design and verifications of structures in the field of Civil and Structural Engineering. 

Currently the most commonly method for Finite Elements is certainly the Nonlinear Analysis 

(NLFEA).  

Techniques for nonlinear analysis have been enhanced significantly via improved solution 

procedures, extended finite element techniques and increased robustness of constitutive models [3].  

When analyzing three-dimensional problems with nonlinear finite element analysis (NLFEA) often 

problems like bifurcation, multiple equilibrium paths and divergence of the solution occur. In 

particular, cases subjected to tension softening, cracking (like the fracture for brittle material or 

concrete) and crushing tend to cause these problems. 

Indeed, the load-displacement diagram of reinforced concrete structure, such as beams, plates, 

shells and spatial structures often shows a number of local peaks and snap-backs or valleys 

associated with the brittle cracking and subsequent stress-redistribution. By adopting softening 

models, negative tangent stiffness is used and numerical instability, singularity and divergence of 

the incremental-iterative procedure could occur. 

In order to overcome these problems the promising alternative Sequentially Linear Analysis (SLA) 

method has been developed for three-dimensional cases [4] [5]. 

In fact, the NLFEA are based on incremental-iterative procedures, i.e. the behavior of one element 

is evaluated step-by-step through subsequent increments of the loads applied on the element and, for 

each loading step several iterations can be executed, until the satisfaction of certain convergence 

criteria, fixed in order to reduce the difference between the obtained and the expected results. 

In presence of negative stiffness, the nature of the procedure itself produces the just mentioned 

numerical problems. 

To try to solve such problems, users have to resort to arc-length or indirect control schemes: for 

practicing engineers this is often impracticable, especially when the bifurcations are multiple, the 

peaks irregular or the snap-backs sharp. 

It has been demonstrated that Sequentially Linear Analysis is an alternative to Non-Linear Finite 

Element Analysis of structures when these kinds of problems arise, like two-dimensional fracture 

problems [6]. 

Here, incremental-iterative procedure is replaced by a series of linear analyses used to model the 

nonlinear behavior of the structure. By directly specifying a damage increment in each linear 

analysis, e.g. decreasing Young’s modulus and tensile strength at the integration point of elements, 

extensive iterations within the load or displacement increment can be avoided. 

To demonstrate its attractiveness, Sequential Linear Analyses are performed, first on tested shear 

critical reinforced beam without shear reinforcement inside a 2D environment, and then on three-

dimensional reinforced concrete slabs without shear reinforcement. These structures are generally 
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known to behave extremely brittle e therefore difficult to analyze with standard finite element 

analysis. 

At the moment, although the SLA approach has proven its robustness and promising potential 

already for two-dimensional cases, it has not yet been developed for three-dimensional problems. 

This innovative study is therefore focused on the extension and implementation of new features of 

the Sequentially Linear Analysis method to 3D as an alternative to address difficulty of nonlinear 

fracture behavior. Here, it has to be focused attention on the derivation of orthotropic stress-strain 

relation for 3D and the discretization of the constitutive relation by saw-tooth. 

 

2.2 Saw-tooth laws for concrete in tension: overall event-by event procedure 
 

The locally brittle snap-type response of many reinforced concrete structures inspired the idea to 

capture brittle events directly rather than trying to iterate around them in a Newton-Raphson scheme. 

So, a critical event is traced by directly capturing fracture damage at micro-scale, while modeling 

the structural response at macro-scale. Subsequently a secant restart is made from the origin for 

tracing the next critical event. By capturing these fracture "event" directly through damage 

increments, there is no need to iterate around them like in the classic Newton-Raphson solution 

procedure. 

Hence, the procedure is sequential rather than incremental. 

Moreover, this new method can be interpreted as setting the tolerance at local constitutive level, 

rather than setting the convergence at global level for nonlinear analysis. 

Another interesting feature of the SLA is that it circumvents bifurcation problems [5]. Indeed, the 

Newton-Raphson method allows multiple integration points to crack simultaneously within the load 

increment, while in the SLA approach only one integration is allowed to crack at time, i.e., 

movement from elastic to softening branch. 

So, the sequence of critical "events" govern the load-displacement response. To this aim, the 

softening diagram is replaced by a saw-tooth curve and linear analyses are carried out sequentially. 

 

In fact the Sequentially Linear approach approximates the constitutive stress–strain relationship 

using a series of saw-teeth which maintain a positive tangent stiffness, as one can see in the 

following figures. Linear analyses are repeated, each with a reduced positive stiffness, until the 

global analysis is complete [4]. Thus, the negative tangent stiffness which is characteristic of 

concrete and masonry softening curves, and can be detrimental to convergence, is evaded entirely.  

A further advantage is that the structure can be discretized using standard elastic continuum 

elements. 

Specifically, the modeling procedure is implemented as follows: 

 

 apply a reference proportional load  ; 

 calculate the principal stresses,    , through a linear-elastic static analysis; 

 determine the critical integration point. This is the point for which the stress level divided by 

its current strength   
  

 is the largest in the whole structure; 

 determine the critical load multiplier       
    
  

, belonging to the critical integration point, 

i.e. the current strength divide by the stress level; 
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 scale the reference load proportionally using the critical load multiplier         and 

determine the stress-strain state again; 

 increase the damage in the critical integration point by reducing the stiffness and strength 

according to the saw-tooth tensile based constitutive relation; 

 repeat this cycle of step continuously by updating the material properties of a single 

integration point after each cycle, until the damage has spread sufficiently into the structure; 

 the nonlinear response is extracted by linking consecutively the result of each cycle. 

 

 

 
(a)                                                                                           (b) 

The stress-strain curve for nonlinear -softening (a) and the consistent saw-tooth diagram (b) 

 

The tensile softening stress-strain curve (a) is defined by Young's modulus  , the tensile strength   , 

the shape of the diagram, and the area under the diagram. The area under the diagram represents the 

tensile fracture energy    divided by the numerical crack bandwidth  , i.e. the anticipated width of 

the zone where cracking occurs it is a discretization parameter associated with the size, orientation 

and integration scheme of the finite element. 

Thanks to new developments, the consistent saw-tooth diagram can be optimized also for generic 

nonlinear tension softening curve. The formulation applies to any shape of any stress-strain 

constitutive laws, so it permit to model all material components of a structure in a  consistent way 

[7]. 

Indeed, this generalized method can be applied not only to a nonlinear tension softening curve, but 

also to others, e.g. hardening curves for concrete in compression and/or steel plasticity curves in 

tension and in compression. 

As shown in the upper image, a strength range             is defined, as a percentage of the 

maximum tensile strength. A band or "strip" is introduced into the softening diagram, delimited by 

two curves parallel and equidistant to the original diagram. The number of required teeth (   and 

the values of the Young's modulus (  ) and the tensile strength (     at the current stage   in the 

saw-tooth diagram are automatically obtained as values depending on this strength range:   is an 

input variable chosen by the user which modulates the fineness of the saw-tooth approximation. 

This is interpreted as a pre-set "ripple curve": the upper curve of the band contains the tensile 

strength   
 

 of each saw-tooth and the lower curve contains the corresponding   
 

. These   
 

 

values are only used to determine the secant lines or reduced stiffness             , where the 

subscript   indicates a pre-set number of saw-teeth. The   
 

 values can be found by the 

determination of the point of intersection between the secant lines and the upper curve of the band. 
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So, once the strength percentages    and    are known, the values   
 

,   
 

 and the reduced stiffness 

can be calculated successively for each saw-tooth. 

For the generation of a proper saw-tooth approximation three condition have to be satisfied: (1) the 

area underneath the saw-tooth curve       
   

 and (2) the ultimate strain of the saw-tooth curve 

              should be identical to the corresponding area      and ultimate strain          of the 

adopted stress-strain base curve respectively. The dissipated energy is conserved, as over- and 

under-estimation of the area underneath the graph are canceled out by consecutive teeth. This is 

displayed in figure (b), where the pairs of black triangles, above and below the softening curve, are 

of equal area. 

 

Furthermore,   
 

 of the last saw-tooth should be equal to zero (3) in order to avoid a contribution of 

"negative" areas to the calculation of       
   

. Combining these three conditions in one objective 

function leads to: 

 

           
      

   

    
   

 

    
             
        

   

 

  
    

 

  
 
 

    

 

in which       
   

 and              are function of    and   . 

Actually, the saw-tooth curve generation can be considered as a two-dimensional minimization 

problem. To solve the problem an iterative procedure is adopted in which the steering parameters 

   and    are the unknown. They need not to be equal and user defined. The algorithm used for this 

function minimization is the Downhill Simplex method. 

It has to be noted that with the "ripple" saw-tooth approximation a certain overshoot of    occured, 

as can be seen in the previous picture. This arises from the requirement that the dissipated energy 

has to be kept invariant to the fracture energy     . With this "ripple" approach and the fact that 

the area underneath the saw-tooth curve and the ultimate strain          are adjusted to the crack 

bandwidth  , mesh-size regularization is achieved. 

Now, one can be better contextualized how the "ripple" approach can be interpreted as setting the 

tolerance at local constitutive level for SLA, rather than setting the convergence tolerance at global 

level for NLFEA, just using the strength percentages    and    [6]. 

 

2.3 Crack model 

2.3.1 Total Strain smeared crack 

 

Extending SLA to three-dimensional cases requires to model the fracturing behavior of quasi-brittle 

materials like reinforced concrete, a large number of different approaches were developed: crack 

models can be subdivided into continuum, discontinuum (discrete) and mixed models. The 

continuum based models can be further subdivided into decomposed and total strain based smeared 

crack models, plasticity based crack models and other continuum approaches [8]. 
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SLA is currently based upon a continuum fracture model, namely the total strain smeared crack 

concept [9] and the three-dimensional extension of this  model is based on the theory proposed by 

Selby & Vecchio [10]. 

In a smeared crack model a crack is not represented by just a single crack, but it occurs over the 

element area. In this way, the topology of the original finite element is conserved. Especially in 

analyses of adequately reinforced structures, the smeared crack concept makes sense, because the 

resulting cracks are well distributed and they can occur everywhere in the manufactures. 

Moreover, the total strain model, as used in SLA, describes stress as a function of the total strain: 

 

               

 

it is composed by a first part of elastic strain, relatively to the portion of material that has still an 

elastic behavior, and a second part of crack strain. 

After cracking the stress-strain relationships are evaluated in a coordinate system which is fixed 

upon the crack direction, resulting very appealing to the physical nature of the problem.  

 

The stress-total strain relation of the material can be described in two different coordinate system: 

fixed (or global) and rotating (or local) system. The first crack that has origin in the finite element 

individuates the reference system nts and these directions are constant in all the process of 

deformation of the element. The current SLA-program adopts a fixed crack model (with orthogonal 

secondary cracking) that preserves a fixed orientation of the crack during the entire process: after a 

crack formation the transformation matrix   is kept constant. 

 

During the deformation, the strain vector      in the element coordinate system xyz is updated with 

the strain increment       according to: 

 

       
          

           
     

 

which is transformed to the strain vector in the crack directions with the strain transformation 

matrix  , 

 

           
            

     

 

In a fixed model the strain transformation matrix   is fixed upon the cracking, so it will be kept 

constant. 

The strain transformation matrix is determined by calculating the eigenvectors of the strain tensor, 

e.g. with the Jacobi method [11]. 

 

In case of non-proportional loading, like self-weight and pre-stress load, the same procedure can be 

applied, but the identification of the critical multiplier       becomes more complex. The subject is 

still under development. 

The aforementioned SLA-procedure that uses a scaled loading procedure allows only one 

integration point to change its status from elastic to softening at a time. Contrary to regular 

nonlinear finite element analysis this new approach circumvents bifurcation problems, as is shown 
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in [6]. In NLFEA, the use of load increments implies that multiple integration points may crack 

simultaneously, through which the local stiffnesses at the these points switches from positive to 

negative, following softening constitutive laws for quasi-brittle materials. As a consequence of 

multiple softening points, the system of equation can have more than one solution and so alternative 

equilibrium states of bifurcations of the equilibrium path. At a bifurcation point a loss of uniqueness 

of the incremental-iterative solution procedure occurs, and  although this incremental-iterative 

procedure can converge to one of possible equilibrium states, it will not automatically pick up the 

most critical or the lowest equilibrium path. SLA avoids this problem and via the sequence of 

events always a unique solution is achieved. 

 

The strain tensor results: 

 

    

         
         
         

  

 

The eigenvectors are stored in the rotation matrix R which reads: 

 

            

         
         
         

   

 

with            the cosine between the i axis and the j axis. 

The strain transformation matrix    is then calculated by substituting the appropriate values: 

 

   

 
 
 
 
 
 
 

   
    

    
 

   
    

    
 

   
    

    
 

                  
                  
                  

                           
                           
                           

 

                                       
                                       
                                         

 
 
 
 
 
 

 

 

in a general three-dimensional stress situation. Different stress situations need an appropriate sub-

matrix. Then the constitutive model is formulated in the crack coordinate system as will be 

explained in the next section. 

 

2.3.2 Constitutive stress-strain relation 

 

The constitutive relationship used in the Sequentially Linear Analysis, is linear-elastic for every 

step of the analysis, i.e. before and after every event of damage in any generic integration point in 

the mesh. 

Therefore the constitutive model of the generalized Hooke’s laws is used. 

In case of a generic material, anisotropic and asymmetric, the compact expression of the Hooke’s 

law in compliance form is: 



13 
 

 

                or                            

 

where                    for 3-dimensional elements. 

In this expression the number of independent variables is 81, which can be reduced by assigning 

some properties to the material, like homogeneity and isotropy. 

In the case study it is assumed that the material acts isotropic before any damage will occur, i.e. in 

the uncracked stage, and orthotropic after the first crack is occurred. In fact, on the basis of the 

Sequentially Linear Analysis concepts, as soon as a crack forms the generic i-direction, the elastic 

properties of the material change only in this direction, independently from the other directions. 

Successively crack can occur in the other two orthogonal directions, leading at the end to an 

orthotropic behavior of the material. 

On the basis of the theory of the mechanics of continuum, the Hooke’s laws, in compliance form, 

for an isotropic material are: 

 

 
 
 
 
 
 
   
   
   
   
   
    

 
 
 
 
 

 

 
 
 
 
 
 
     
     
     

 

 

        
        
         

 
 
 
 
 

 
 
 
 
 
 
   
   
   
   
   
    

 
 
 
 
 

 

 

 

Where   is the Young’s modulus,   is the Poisson’s ratio and the tangential stiffness modulus is 

dependent from the two and can be calculated as: 

 

  
 

      
 

 

For rotational equilibrium is possible to determine the relations between stresses with same    

indices: 

 

                        

 

It is noted that for isotropic material the independent variables are only the Young's modulus and 

the Poisson's ratio (  and  ). 

The constitutive relationship for an orthotropic behavior of the material are determined starting 

from the general relationship and assigning further properties. It is remembered that, by definition, a 

3-dimenisional orthotropic material has 3 orthogonal planes of symmetry, where material properties 

are independent of direction within each plane. This model well performs the correspondent 

behaviour of the reinforced concrete when cracking occurs. 

The constitutive stress-strain relationship, in compliance form, for an orthotropic material is: 
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where, due to the aforementioned equilibrium considerations, the stress-strain tensor is symmetric, 

therefore: 

 
   

  
 
   

  
 
   

  
 
   

  
 
   
  

 
   
  

 

 

For an orthotropic material, the constitutive relationship is completely defined by 9 independent 

variables, i.e. 3 Young’s modules   , 3 Poisson’s ratios     and 3 shear modules    . 

While the Young’s modules and the shear modules are representative of normal and transversal 

stiffness, the Poisson’s ratios relative to the generic i- , j- and k-directions represent a different 

effect of the stresses on the material. 

The normal stress    , on the plane normal to the i-direction, acting in the same i-direction, produces 

an axial strain on its own direction and also 2 other axial strains in the 2 orthogonal directions (j and 

k): 

 

    
   
  
         

   
  
         

   
  

 

 

It is noted that a tensile (positive) stress     produces an extension (positive strain) only on the same 

direction, while in the other two orthogonal direction contractions (negative strains) occur. This 

phenomena is called "Poisson's effect". 

These considerations are valid also for stresses applied in j and k. 

In order to obtain a formulation of the constitutive model that can be used in the implementation of 

a Finite Element Method, the constitutive relationships are inverted, passing from the Compatibility 

form to the Stiffness form, more handy for the purpose of the study. 

In compact notation results: 

 

  Congruency form                                                                     Stiffness form 

                              

 

where       is the stiffness matrix and, for an orthotropic material, is expressed as: 
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in which   is defined as: 

 

  
      

                                                      
 

 

During the deformation process, as soon as the tension in the most stressed integration point (called 

critical point) reaches the tensile strength of the material, a crack starts to propagate perpendicular 

to the most stressed direction (that is the principal direction 1, whose stress in   ): a damage 

increment is assigned in this direction on the critical point. 

After the formation of the first crack, the crack direction is fixed and the isotropic formulation is not 

valid anymore. At this point, the evaluation of the behaviour of the cracked element is carried out in 

the new global reference system defined by the crack direction. 

In fact the first crack individuates the direction n of the crack plane, that is perpendicular the 

direction of the first principal stress, i.e. the greatest tensile stress in the element,   . By 

consequences, through the evaluation of the other two principal stresses    and   , for which is 

valid the relation         , and of their mutually orthogonal directions, a right handed 

coordinate system is defined. It is noted that the second and the third crack in the element have as 

pre-fixed directions the second and the third principal directions. 

The nst axes now represent the global reference system in which SLA method can be applied. 

 

 
(a) The principal stress directions in the critical integration point before cracking 

(b) The three planes of orthotropy, fixed after the beginning of cracking, and the 

relative 3-dimensional strains in nst-coordinate system 
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The expression of the constitutive model in stiffness form for an orthotropic material in the global  

nst system, is formally identical to the one in the local xyz system: 

 

 
 
 
 
 
 
   
   
   
   
   
    

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
     

 
  
  
                 

  
  
               

  
  
   

            
  
  
       

 
  
  

                 
  
  
   

            
  
  
               

  

  
       

 
  
  

     

 

 

   
 

  

 
   
 

 

  
   
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
   
   
   
   
   
    

 
 
 
 
 

 

 

in which   is defined as:  

 

  
      

                     
   

       
                       

 

 

It is very important to note that, although the formal expression of the stiffness matrix is totally  

analogous to the precedent xyz formulation, now the values of the mechanical parameters  ,   and 

 , have been reduced to simulate the cracking behavior, according to the SLA theory and to the 

saw-tooth curve. 

Nevertheless, all the stress and strains have to be evaluated in the local reference system xyz. In 

order to d this, the already mentioned standard strain transformation matrix    can be used. 

It is remembered the relation between strains in xyz and nst system: 

 

            

 

and the analogous relation between stresses: 

 

            

 

where    is the standard stress transformation matrix. 

Through the substitution of these two relations in the nst constitutive model: 

 

           

 

the relation results: 
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Using the property of the transformation matrix, for which the inverse of the stress transformation 

matrix is equal to the transpose of the strain transformation matrix [12], the definitive expression is 

determined as: 

 

       
         

 

in which all the quantities are already known. 

This equation is the constitutive stress-strain relation that accounts for material orthotropy and has  

been used for implementation in finite element program DIANA. 

The behaviour in compression in case of a fixed concept is also evaluated in the fixed coordinate 

system determined, in the same way just described, by the crack directions. 

 

2.3.3 Poisson and shear behavior 

 

In the assignment of the damage increments, the Young’s modules and the tensile strength are 

reduced in n, s and t directions, according to the predefined saw-tooth curve. However, they are not 

the only quantities in the constitutive relationships that have to be reduced to model the crack 

behavior of the element in the most accurate way. In fact also the Poisson’s ratios and the shear 

modules are interested by decrements during the cracking process. 

After the first crack set, only the Young’s modulus normal to the crack plane,   , and the relative 

tensile strength,     , are reduced, following the predefined saw-tooth curve. The changing of the 

Poisson behaviour starts as soon as the second and the third sets of cracks begins to propagate in the 

orthogonal planes respectively normal to s and t directions. In fact the reduction of the Young’s 

modules   ,    and   , caused by the three sets of cracks, implies the decreasing of all the 

Poisson’s ratios as well. 

Due to the orthotropic relations between the various   and  , the Poisson’s ratios are assumed to be 

reduced at an equal rate as the corresponding Young’s modules [13]: 

 

          
  
  

           
  
  
           

  
  

 

 

in which    and    are the initial elastic properties of the material or, more generally, the properties 

of the material in the previous step of the analysis, before the application of the last damage 

increment. 

It is remembered that     is the Poisson’s ratio due to a contraction in direction i when an extension 

is applied in direction j. Thus, when a crack is completely opened in the n-direction (    ), 

increasing the crack strain in n-direction does not cause a Poisson's effect in s-direction and vice 

versa [5]. 

Analogously, the three shear modules    ,     and     are affected as well by the damage 

increment. The modeling of the shear behavior is only necessary in the fixed crack concept where 

the shear stiffness is usually reduced after cracking. The correct estimation of this reduction is 

usually very important, since shear forces can have a strong influence on the total bear capacity on 
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the whole structures. In fact in many structures, important redistribution effects might take place 

and large shear stresses can occur. 

In most of the cases, the opening of the crack means a reduction of the shear stiffness and capacity 

of the element, that can be taken into account by two different models: Constant Shear Retention 

and Variable Shear Retention. 

In the constant shear retention model the three shear modules after the relative damage increment 

are reduced at a constant rate  : 

 

                

 

where the shear retention factor is       and    is the initial shear modulus of the uncracked 

material, or, more generally, the modulus of the material in the previous step of the analysis, before 

the application of the last damage increment. 

In this model, care should be taken in the choice of the factor  , regarding the dimensions of the 

shear planes and all the shear bearing mechanism that occurs in the structure. 

For this reason a Variable shear retention model seems to be more accurate in providing a 

representation of the real shear bearing mechanism. In fact in this model the reduction of the shear 

modulus is calculated directly in relation with the opening width of the cracks. In this way, 

completely opened cracks cannot transfer shear forces anymore. Note that this is not the case when 

constant shear retention is considered, where the structure always possesses some residual capacity. 

The variable shear retention is assumed to reduce the shear modules at a rate equal to the minimum 

of the corresponding Young’s modules: 

 

     
           

      
          

  
 
      

           

      
          

  
 
      

           

      
          

  
 
 

 

Consequently, the amount of variables in the constitutive stress-strain relation is now reduced to 

only 3, namely the three Young’s modules:   ,    and   . 
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3. SHEAR IN REINFORCED CONCRETE SLABS 
 

 

The failure modes of reinforced concrete slabs can categorized as: flexural, punching shear and 

wide beam failure. The first one interests mainly slabs supported by beams or walls; they present a 

dominant bending behavior and the shear stresses are not generally critical when the loads are 

distributed on surface or lines. Tangential actions result well distributed along the slab and the shear 

component will not govern the design. The structures can freely undergo plastic strains without a 

limitation of their capacity. 

However, in the proximity with the local introduction of concentrated supports or action the 

maximum shear force per unit of length of slab increases, up to become critical and it should be 

considered in order to prevent shear failure.  

Concentrated loads transfer to the slabs through: (1) column in flat plate, (2) from column to 

footings, (3) from piles to pile caps and (4) from concentrated action such the wheel contact 

pressure. In this case shear action are often more critical than bending stresses: the slab thickness 

may be mainly designed in order to avoid shear failure [4]. 

 

 
Sample of connection between slab and column capitals  

 

The mechanism of shear failure of the slab in the vicinity of concentrated loads results rather 

complex (especially without shear reinforcement or stirrups) and less predictable, because unlike 

flexural failures, shear failures in reinforced  concrete structures are brittle and sudden. When they 

occur, they typically do so with  little or no warning [14]. 

A shear or punching failure may occur either before or after the yielding of flexural reinforcement 

and hybrid situations between the main mode are commonly found in practical cases [2]. 

In this kind of structures a proper transverse reinforcement cannot be placed, as The absence of 

shear reinforcements as the position of the point load due to the vehicle wheels cannot be localized. 

The solution of placing stirrups along all the structures cannot be considered due to the significant 

increment of the construction and practical difficulties [15]. 
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Slabs without shear reinforcement 

 

For slabs without stirrups, shear failure is the most plausible and inclined crack forms before or 

after flexural cracks are initiated nearby. The subsequent and progressive opening of the cracks 

changes significantly the force transfer and the condition of static equilibrium [5]. 

The shear failure can combine two phenomena, either one-way (wide beam action) or two-way 

(punching shear). 

 

 
(a)                                                                                        (b) 

Reinforced concrete slab supported on columns (a) and Shear failure models in slabs (b) 

 

One-way and two-way shear can be better understood by considering the flow of shear forces. 

Zones in which the principal shear lines run parallel to each other are subjected to potential wide 

beam failure: this is mostly associated with line loads and linear supports. Instead, zones in which 

principal shear lines are not running in parallel, as for instance around the point of introduction of a 

concentrated load, are interested by two-way failure [2]. 

 

 
Shear flow in a slab: zones of one-way and two-way shear 
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3.1 One-way shear (or wide beam action) 

 

One-way shear failures are generally associated with distributed or line loads and linear supports 

such as walls and beams. So the line load applied is carried by shear forces from the application 

area to the support along lines running perpendicular to the supported edge [2].  

 

 
Schematic representation of one-way shear failure 

 

In this kind of action the slab fails for shear crack who extends along a section in a plane across the 

entire width of the slab. The critical shear crack is often located on a distance   from the 

concentrated load or constrain reaction. The value   is defined as effective depth, i.e. the distance 

between the axis of longitudinal reinforcement and the most external compressed fibers [16]. 

The critical section often follows a 45 degree inclined direction, but the critical section is taken 

vertical through the critical diagonal shear crack. Then, the slab should be treated as a wide beam 

and the shear strength equation of the Codes have to be considered. 

A slab without shear reinforcement should be checked against one-way shear failure who is 

generally brittle and can occur without any indication of an impending collapse. 

One-way shear failure models are used to predict the shear failure load of reinforced concrete slabs 

and beams without shear reinforcement. The actual formulations take a great amount of 

contributions based on the theory of plasticity, fracture mechanics, empirical considerations and 

numerical simulations (see CEB Bulletin as example). 

To better understand the one-way shear failure mechanism inside a reinforced concrete structure, it 

useful to refer to one of the test performed on beam without stirrups. The actual literature presents a 

very large amount of data regarding this topic. 

The following sample refers to a simple support beam without stirrups, under two concentrated load 

symmetrically placed with respect to the midspan, so called four points bending test (see [17] for 

more details). 

The beam is reinforced with longitudinal bars only on the bottom face, on the tension side. 

 

 
Typical experimental setup for shear tests on beam without stirrups 
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During the loading process of the reinforced concrete beam three stage can be distinguished: the un-

cracked, the cracked and the failure stage. 

Initially the beam carries only its own dead weight. Both concrete and steel of rebars are 

cinematically compatible and the entire concrete section bear the actual low tension field. The 

materials behavior can be easily schematized with a linear model. 

Increasing the load, both the tensile tension on the top fibers and the compression tension on the 

bottom surface rise. Until the first discrete cracking is not reached, the reinforced concrete can be 

studied through the an elastic-linear analysis with a butterfly distribution of the normal tension and 

a parabolic diagram for the tangential stress. The whole concrete section is effective. 

When the tensile stress reaches the ultimate tensile edge of the concrete a flexural cracks develops 

from the bottom side of the midspan forward the compressive tension field of this section. The 

neutral axis shifts upward and the rebars start to work effectively to resist to the entire tensile 

stresses in order to provide balance. Locally, concrete and steel are no more cinematically 

compatible. The discrete nature of this phenomenon affects only the nearby of the crack; both the 

upper compressed concrete and steel present a linear-elastic behavior. The same happens in the 

other sections of the beam. 

The cracking pattern and its development is defined by the spacing and maximum width of cracks. 

They depend of many factors, such as level of stress in the rebars, distribution of the longitudinal 

reinforcement in the section, concrete cover and grade of steel used [4]. 

Due to the reduction of the moment of inertia of the cracked section, the deflection of the beam is 

clearly increased. 

In the transition from the un-cracked- to the cracked-stage the way of load transmission in the beam 

will change. This change of internal force flow depends on the configuration of the reinforcement. 

In casa of beam without stirrups, like in the present sample,  the simple strut and tie representation 

is an unsafe approach. 

Further increasing of the load produces formation of new cracks, extending toward the support. 

However, it's more important to investigate only the wide central cracks than considered the large 

amount of other small cracks. 

The beam is still working mainly with a flexural behaviour. 

For a higher load, shear stresses increase as well due to the combination of bending moment and 

shear force. Diagonal cracks at approximately 45 degree from horizontal sudden arise in the 

direction of the principal tensile stress. After the formation over a large distance of the beam, the 

compression zone crushes and the cracks continue at the bottom side as a large horizontal crack 

along the longitudinal reinforcement bars to the end of the beam [6]. 

 

 
Shear crack in reinforced concrete beam at failure 

 

In the failure stage no internal equilibrium in the beam can be obtained anymore: it leads to the 

complete loss of bearing capacity of the structure, and the beam collapse suddenly. Beam that fail 



23 
 

due to a shear failure mechanism are called shear critical beam. Different shear failure mechanisms 

are possible, depending on several parameters [6]. 

 

3.2 Two-way shear (or punching behavior) 

 

A mechanical explanation of the phenomenon of punching shear in slab without shear 

reinforcement is related to the opening of critical shear crack and it is generally associated with the 

introduction of concentrated loads or punctual supports such as columns. 

The failure occurs as the column penetrates across the concrete slab, creating a roughly truncated 

cone, defining a "critical perimeter" in the extrados of the element, i.e. the surface placed in the 

opposite side with respect to the load [15].  

It is to be noted that the once-held concept of the column (or applied load) being pushed through the 

slab is incorrect. 

 

 
Schematic representation of symmetrical punching shear failure and associated force flow 

 

 
Punching shear failure 

 

This failure mode has a nature similar to that of one-way shear in terms of brittle failure, i.e. it 

occurs without signs that the collapse of the slab is impending. Punching shear failures have in fact 

always been a major concern in the design of reinforced concrete flat slabs supported by columns. 

The complexity of the problem brings to adopt empiric approaches or formulas based on the shear 

theory for beam, simply extended to a failure surface. 

Punching shear has been the object of an intense experimental effort since the 1950s. One of the 

first mechanical models was proposed by Kinnunen and Nylander in the 1960, varying amongst 

other parameters the amount of flexural reinforcement in the slab. 
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Plots of load-rotation curves for tests by Kinnunen and Nylander 

 

It proposed a model based on the fracture mechanism, on the basis of 61 tests on circular flat slab 

elements connected on circular [18]. It brings to a rational theory based on the assumption that the 

punching shear strength is reached for a given critical rotation  . This rotation was calculated by 

simplifying the kinematics of the slab and assuming a bilinear moment-curvature relationship. 

The following observations can be made from the load-rotation relationship on the tests: 

 

 for low reinforcement ratio (test with        ) the behavior is ductile, with yielding of 

the entire flexural reinforcement, as illustrated by the horizontal asymptote of the load-

rotation curve. In this case, the strength of the slab is limited by its flexural capacity and 

punching occurs only after large plastic deformations. The punching failure at the end of the 

plastic plateau remains brittle and leads to a sudden drop in strength; 

 for intermediate reinforcement ratios (tests with               and     ), some 

yielding of the reinforcement is observed in the immediate vicinity of the column, but 

punching occurs before yielding of the entire slab reinforcement. In this case, the strength of 

the slab is lower than its flexural capacity; 

 For large reinforcement ratios (test with              ), punching occurs before any 

yielding of the reinforcement takes place, in a very brittle manner. In this case, the strength 

of the slab is significantly lower than its flexural capacity; 

 Increasing the reinforcement ratio increases the punching capacity, but strongly decreases 

the deformation capacity of the slab; 

 The ACI design equation is also plotted in the figure. It predicts a constant strength 

independent from the reinforcement ratio [17]. 

 

As shown by the previous figure, the punching strength decreases with increasing the rotation of the 

slab. This has been explained by Muttoni and Schwartz [20]. The shear strength is reduced by the 

presence of a critical shear crack that propagates through the slab into the inclined compression 

strut carrying the shear force to the column. 
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(a) cracking pattern of slab after failure; (b) theoretical strut developing across the critical shear crack; 

(c) elbow- shaped strut 

 

According to Muttoni and Schwartz [20], the width of the critical crack can be assumed to be 

proportional to the product   , leading to a semi-empirical failure criterion. 

The amount of shear that can be transferred across the critical shear crack depends on the roughness 

of the crack, which in its turn is a function of the maximum aggregate size. 

According to Walraven [21] and Vecchio and Collins [22], the roughness of the critical crack and its 

capacity to carry the shear forces can be accounted by the maximum aggregate size and a reference 

size equal to       [17]. 

The new criterion was so compared to the results of    punching test from the literature, resumed in 

the next table, taking into account the effects of the slab thickness and aggregate size: 

 

 
(a)                                                                           (b) 

Failure criterion: punching shear strength as function of width of critical shear crack compared with 99 experimental 

results and ACI 318-056 design equation (a), refer to details of test series in table (b). 
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In 2005 Guandalini gave an overview of some of the most important contributions on this subject. 

An understanding of the mechanics of punching shear can be gained from the systematic 

observation of cracking and of the evolution of deformations in punching shear tests. A major 

limitation of such observations is that the inner cracks across the slab are invisible. On the contrary, 

tests on slab strips under one-way shear allow observing the formation of cracks and the 

development of web deformations up to the shear failure. 

 

 
Evolution of crack pattern at the top surface (adapted from Guandalini 2005) 

 

When the slab is supported on four sides and the ratio of the long side to the short side is less than 2, 

the slab will deflect in double curvature in both directions. In two-way action the slab fails in a local 

area around the concentrated load. The critical section extends around the concentrated load or 

column. A punching shear failure occurs along a truncated cone or pyramid caused by the critical 

diagonal tension crack around the concentrated load or column. In this case conventional theory for 

beam shear does not apply. 

 

3.3 Shear behaviour of slabs without shear reinforcement: 

 

After this introduction to one- and two-way shear failure for concrete slabs, it has to be noted that 

these two phenomena occur differently and in mutual combination the most of the times during the 

failure of the loaded structures. Indeed, the behavior of bridge deck slabs under concentrated loads 

is more complex. Several load-carrying mechanisms can develop and coexist, depending on the 

loading and the geometry of the structure. Two-way shear can become prevalent over one-way 

shear, but with a flow of inner forces quite different from that of symmetric punching shear 

analyzed and explained since now. 

Depending on the loading conditions and the geometry of the structure, yielding of flexural 

reinforcement can occur before shear or punching shear failure [2]. An interesting sample is found 

in the literature: the following experimental work is related to the shear strength of bridge decks 

under concentrated loads. 

Miller et al. (1994) performed a destructive test on a 38-year-old decommissioned concrete slab 

bridge under two concentrated loads (see figures below). The skew bridge had a total length of 

      . The abutments and pier line were skewed at 30° to the roadway. The slab was loaded with 

two                 loading blocks simulating the front tandem axle load of a         truck 

(the front tandem has a        axle load). The bridge failed in shear at            , which 

corresponds to the action of              trucks. The theoretical flexural failure load was not 

reached. Yield was reached only just before failure. 
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         (a)                                                                              (b) 

Load-deflection diagram (a); dimensions, loading patterns and HS20-44 truck 

 

 
   (c)                                                                           (d) 
View of bridge slab (c); focus on the failure pattern (d) 

 

3.4 Normative indications for critical section in one- and two-way shear failure 

 

The theoretical punching shear strength for reinforced concrete slab can be predicted adopting 

different codes. 

The ACI 318-05 [23] proposes an expression for square or circular columns of moderate 

dimensions relative to the thickness of the slab: 

 

   
 

 
                          

 

where   is the average flexural depth of the slab,    is the perimeter of the critical section located to 

    from the face of the column, and     is the specified concrete compressive strength. 
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Critical perimeter according to ACI 318-2010 

 

The current version of the EuroCode2 [24] also includes a formulation for estimating the punching 

shear strength of slabs: 

 

                  
 
 
 
 
                    

 

where    is the control perimeter located to    from the face of the column,    accounts for the 

bending reinforcement ratio (with a maximum value of 0.02) and   is a factor accounting for size 

effect defined by the following expression: 

 

     
      

 
     

 

 
Critical perimeter according to Eurocode 2 

 

The CEB model [25] describes the punching shear resistance as: 

 

         
   
  

               

 

where    is the critical perimeter located to     from the loaded area, while    depends on the 

rotation of the slab around the support region: 
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Correlation between opening of critical shear crack, thickness of slab, and rotation   

 

    
 

               
      

 

     
  
 
 
  

  
 

 

   indicates the position where the radial bending moment is zero, with respect to the column axis,  

and can be assumed, in agreement with the code equal to       (  side of the slab),   the effective 

depth,    and    the yielding stress and Young modulus of the steel and: 

 

     
  

     
      

 

where    is the maximum aggregate size. 

 

3.5 Shear strength in elements without shear reinforcement for one- and two-way 

failure 

 

Nowadays, the research community has not reached consensus on the exact mechanisms of shear 

transfer in reinforced concrete, since it is related to many parameters. This has slowed the 

replacement of empirically-based methods with rational methods based on modern theories of the 

shear behaviour of reinforced concrete. Indeed, flexural design provisions are based on the rational 

assumption that plane sections remain plane, and this assumption has proven to be accurate over a 

wide range of reinforced concrete flexural elements. However, the search continues for equally 

accurate shear design provisions, based on equally rational assumptions, but it is critical for the 

shear design methods for reinforced concrete be accurate, rational and theoretically sound. 

Up to now, most of the experiments are related on heavily reinforced slender beams (       ) 

under concentrated load. 
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Sixty years of Shear Research on members without shear reinforcement 

 

For this reason, this section aims to understand the behaviour of large, lightly reinforced concrete 

beams and one-way slabs subjected to shear. Empirically-based shear design methods are largely 

used, particularly those in the widely-used American Concrete Institute design code for concrete 

structures (ACI-318). However, they do not accurately predict the behaviour of these important 

structural elements, and may produce unsafe designs in certain situations [14]. 

 

3.5.1 One-way shear strength 

 

As already explained, the behavior of a reinforced slab who fails with a one-way mechanism is 

comparable with the behavior of a beam and all the considerations made can be used. 

The typical brittle failure mode of shear beam evidences four mechanism of shear transfer are [26]: 

 

 shear in the uncracked zone of the beam   ; 

 interface shear transfer due to aggregate interlock of surface roughness of the crack   ; 

 residual tensile stresses across the crack   ; 

 dowel action of the longitudinal reinforcement bar   . 

 

as shown in the following figure: 

 

 
Schematic representation of shear transfer mechanisms 
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These four factors are the sum of the so called beam action. In addition to beam action, arch action 

also contributes to the shear strength. 

Despite the complex nature of the shear transfer, those basic mechanism are generally accepted, 

though different levels of relative importance are imposed by different researches. 

 

Moreover, the shear behavior depends on many parameters: (a) maximum aggregate size, (b) tensile 

strength of the concrete, (c) shear span-to-depth ratio, (d) reinforcement ratio, (e) size effect, (f) 

axial forces and (f) effective width [14]. 

The ACI Code [23] provides a formula for the evaluation of the one-way strength. Here, the shear 

strength    (called       inside the Model Code) is equal to the resistance of a beam without stirrups 

and it's taken equal to the load at which inclined cracking occurs: 

 

               
     

  
                                  

 

where     is the concrete compressive strength,    is the longitudinal reinforcement ratio,    is the 

web width (or effective width),    is the factored moment at section and 
   

  
 expresses the shear 

span to depth ratio 
 

 
. 

A simplified version is also allowed by the ACI Code: 

 

   
    
 

                    

 

3.5.2 Important parameters 

 

The most important parameters responsible for the shear resistance are described. 

 

Coarse aggregate size 

 

A particular aspect of the shear behaviour of reinforced concrete that is deserving of additional 

attention is the effect of the maximum aggregate size on the shear response of reinforced concrete 

sections. This is particularly true for reinforced concrete beams and slabs constructed without 

stirrups, since aggregate interlock is generally believed to be a dominant mechanism of shear 

transfer in these element types. Indeed, increasing the size of the coarse aggregate produces rougher 

cracks that are likely better able to transfer shear stresses. Likewise, reducing the maximum 

aggregate size decreases the shear strength of a concrete section. In concrete elements constructed 

with high-strength concrete, poor quality aggregate or light-weight aggregate, the aggregate 

interlock capacity may be greatly reduced because coarse aggregate particles will tend to fracture at 

cracks, resulting in smooth crack surfaces with a greatly reduced aggregate interlock capacity [14]. 
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(a)                                                             (b)                                                  (c)  

Shear transfer across crack due to the aggregate interlock (a); experimental evidence of crack kinematics at the 

concrete surface (b); crack width u and slip v at the concrete surface (c) 

 

Tensile strength of the concrete 

 

As said before, the concrete strength influences the roughness of the crack surface. In addition to 

this, another feature of the concrete could influence the shear capacity of beam without stirrups: the 

tensile strength of the concrete    , which is in turn related to the compressive capacity    .  Indeed, 

the inclined cracking load is a function of the tensile strength of the concrete. The stress state in the 

web of the beam involves the biaxial principal tension and the compression stresses. The flexural 

cracking that precedes the inclined cracking disrupts the elastic-stress field to such an extent that 

inclined cracking occurs at a principal tensile stress roughly half of     for the un-cracked section. 

 

 

 
Trend of tensile and compressive isostatics 

for un-cracked beam (up) and cracked beam 

 

Longitudinal reinforcement ratio 

 

The shear capacity of reinforced concrete slabs increases if the longitudinal reinforcement ratio    

increases, according to [27]. 

A small longitudinal reinforcement ratio    involves higher reinforcement strain, accordingly 

flexural cracks extend higher into the beam, producing open wider cracks. An increase in crack 

width cause a reduction of the aggregate interlock action, so regarding to the maximum values of 

the component of shear transferred across the inclined cracks. On the other hand, the higher amount 

of longitudinal reinforcement influences the depth of the compressive zone and the axial force 

strains, but it increases the dowel action. 
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Effect of reinforcement    ratio  on shear capacity of beams 

constructed with normal-weight concrete and without stirrups 

 

Shear span-to-depth ratio 

 

Shear span-to-depth ratio describes the relation between the span   and the effective depth  , in 

which the former is the distance between the load and the support. If the shear span decreases, the 

shear strength capacity will increase: in other words, increasing the span-to-depth ratio the shear 

capacity of the member will decrease. 

Based on the results related to the investigations made by Leonhardt and Walther (1962) as well as 

Kani (1966) [28], four regimes governing shear failures are discovered: 

 

         , the capacity of the member is obtained by the yielding strength of the 

longitudinal reinforcement; 

                   , the arch action governs the mechanism; 

                        , the strength depends on the localization of the strains in a 

shear crack (aggregate interlock); 

             , the strength is related to the flexural capacity, or better to the yielding 

strength of the longitudinal reinforcement. 

 

 
Influence of      on shear strength: Tests B2, B4, B6 and B10 by Leonhardt and Walther (a), cracking pattern and 

theoretical strut position and (b) Kani's valley. 
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So, the shear span-to-depth ratio     affects the inclined cracking shears and capacity of shear span 

with             , as shown in the previous figure. Such shear spans are “deep” shear spans. A 

rate of shear is transferred on the support section through inclined compression (strut element). 

Indeed, in regions of members within about a member depth   from a discontinuity, load is 

transferred primarily by "arch action". Indeed, in discussing one-way shear in reinforced concrete, a 

distinction must be made between behaviour in B-regions (Bernoulli-regions) and D-region 

(Discontinuity-regions). In regions of members away from discontinuities, load is transferred by 

beam action, in which the assumption that plane-sections-remain-plane is accurate. 

As strut-and-tie action is geometrically incompatible with beam action and since un-cracked 

concrete obeys the plane sections rule, beam action precedes strut-and-tie action, and it must break 

down before strut action can control shear strengths. 

Hence for longer shear spans the arch action has no more effect due to the stress spreading to the 

support and the     ratio has a little influence on the inclined cracking shear and can be neglected. 

 

Size effect 

 

The size effect in shear is a phenomenon exhibited by slender reinforced concrete members 

constructed without shear reinforcement in which the failure shear stress decreases as the effective 

depth increases. However, the severity of the size effect is neither universally known nor 

understood: the so called "size-effect" was subject of a large experimental campaign carried out by 

Leonhardt and Walther (1962), Kani (1967) and Shioya et. al. (1989).  

An increase in the overall depth of beams results in a decrease on the shear at failure for a given    , 

  and    . The width of an inclined crack depends on the product of the strain in the 

reinforcement crossing the crack and the spacing of the cracks. With increasing beam depth, the 

crack spacing and the crack widths tend to increase: so, larger crack widths occur in larger member, 

with the consequent reduction of the aggregate interlock [14]. 

In beams with at least the minimum required web reinforcements, the web reinforcements holds the 

crack faces together so that the shear transfer across the cracks by aggregate interlock is kept. As a 

result, the reduction in shear strength due to the size is not observed in beams with web 

reinforcements. 

  
Size-effect idealization (left-hand) and effect of beam depth   on failure shear 

for beams of various sizes(right-hand) from experimental tests 
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Using fracture mechanics it has been explained the size effect on the basis of energy released on 

cracking [29]. 

The amount of energy released increases with an increase in size, particularly in depth. Although a 

portion of the size effect results from energy release, the authors believe crack-width explanation of 

size effect fits the test data trends more closely. 

 

Axial forces 

 

Pre-stressed member or subjected to axial compression will be able to resist higher loads before 

cracking of the concrete occurs. Axial tensile forces tend to decrease the inclined cracking load, 

while axial compressive forces tend to increase it. As the axial compressive force is increased, the 

onset of flexural cracking is delayed, and the flexural cracks do not penetrate as far into the beam. 

Instead, axial tension forces directly increase the tensile stress overall the beam section, hence the 

strain becomes higher in the longitudinal reinforcement. This causes an increase in the inclined 

crack width, which, in turn, results in a decrease the aforementioned aggregate interlock. 

Accordingly the shear failure load decreases. The opposite occurs for axial compressive forces. 

 

 
Effect of axial loads on inclined cracking shear 

 

Effective width 

 

The effective width depends on few parameters as: size of the loading plate, size of the supporting 

plates, slab width and shear span [30]. An other main parameter is the spreading angle of the load: 

when the concentrated loads are close to the support, the width will reduce to the effective width. It 

has influences on determining the shear capacity of deep beam and slabs. Although Furuuchi 

developed a formula to calculate the effective width most national and international standards have 

currently no rules for this parameter [29]. 
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Effective width: 45° load spreading (left-hand) and 45° load spreading – French practice (right-hand) 

 

 
(a)                                                                                            (b) 

(a) Beam shear (or one-way) failure and (b) Punching shear (or two-way) failure 
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4. DESCRIPTION OF EXPERIMENTAL TEST 

S25T1 
 

 

4.1 Material properties 

 

4.1.1 Concrete 

 

The cast was executed on 03-08-2011 [30]. The mix was composed of blast furnace B cement,  fly 

ash and gravel aggregates with a particle size between      and      , as specified in the 

following table and in the relative particle size curve. 
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Sieve analysis and mix composition of cast 16, used in S25T1 

 

The air content and the slump of the mix were not measured. The concrete was delivered by a truck 

mixer and       
 of concrete was used for casting the slab, in 5 layers. During casting poker 

vibrators were used to compact the concrete of the slabs, while cubes were vibrated on the vibration 

table at 140Hz during 15 seconds. 

For standard tests 36 cubes were cast; a concrete block was cast along with the slabs and stored in 

the same conditions as the slabs for drilling cores. 

After casting the slabs and cubes were covered with plastic sheets. The cubes were demoulded after 

one day and  the slabs after 3 months. 

All cubes were stored in the fog room (99% RH and 20°C) and tested at an age of 7, 28, 170 and 

184 days. The slabs were stored in the laboratory (65% RH and 15-20°C). S25 was tested at 170, 

184, 191 and 194 days. 

The results of the standard tests on the cubes are given in the following table, in which     is the 

concrete compressive strength of the cube and       the concrete tensile splitting strength of the 

cube.  
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Results of compressive and tensile tests on the concrete for cast 16 

 

The development of the concrete compression strength and of the concrete splitting tensile strength 

are given in the following figure. 

 

  
                                            (a)                                                                                         (b) 

Time development of compressive strength (a) and tensile strength (b) on cast 16, used fot S25T1 
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A focus about the adopted data is reported in the following table: 

 

Cube  Age (days)         ] 

13 170 59,27 

14 170 59,82 

15 170 60,20 

Specimen Age (days)             

16 170 4,50 

17 170 4,72 

18 170 4,62 

Specimens compressive and splitting values 

 

The adopted values refers to the data observed after 170 days, or rather the S25T1 experimental test 

time after the concrete cast. In accordance with  the following values are used in the model: 

 Compressive strength of concrete:                      ; 

 Tensile strength of concrete:                        . 

 

CEB-FIP Model Codes values for concrete: 

 

To obtain elastic and ultimate strain for concrete, elastic modulus for concrete has to be estimated. 

In accordance with the CEB-FIB Model Code 2010 relationship the Young’s modulus is estimated 

from the mean compressive strength: 

 

           
   
  

 
   

      

 

where: 

     is the modulus of elasticity in [MPa] at concrete age of 28 days; 

                 ; 

    is assumed to 1.0 for quarzite aggregate; 

     is the compressive strength of concrete at 28 days. 

 

Taking the average compressive strength value,     is known: 

 

              

 

            
     

  
 

 
 
              

 

Now, the values of the elastic and ultimate strain can be estimated as well. In this specific case the 

characteristic tensile strains are: 
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Where the     is obtained inverting the CEB-FIP relationship: 

 

                                                      

 

Fracture energy of concrete: 

 

The fracture energy of concrete         , defined as the energy required  to propagate a tensile 

crack of unit area. The used concrete belongs to the category of high-strength concretes, thus the 

equation : 

         
     

 

provided by the recent CEB-FIP Model Code 2010 can  lead to not completely reliable results. 

However, using this relation, the estimated tensile fracture energy is: 

 

         
   

   
 

 

Approximately, the 2010 Model Code version gives a      than the older one (1990 version). 

Moreover, the CEB-FIP Model Code 2010 doesn’t link   value to the maximum aggregate size and 

it gives an higher magnitude for this significant parameter. 
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4.1.2 Interface layer 

 

Felt interface 

 

On the supports a layer of felt with      of total thickness was interposed between the slab and a 

bottom steel bearings of steel                         , that is in contact with the wider steel 

strips with a width of       . 

 

 
Detail of the interface layer interposed between the slab and the support 

 

To evaluate the stiffness of      of N100 Navima felt, several tests have been performed, with 

different cycles of loading. The results of these tests are shown in the following stress-strain 

diagram. They refer to the third part (Test III) of the test and refer to the 25-26-27 specimens. 

An important annotation has to be done regarding the felt behaviour: first it was assumed that the 

load from the self‐weight of the slab was too small to influence the felt properties. The results from 

Test I were used in several FEM models for the S4 series but the behaviour of the structure in the 

FEM analysis was not satisfactory. Especially in the beginning of the loading, the FEM analysis 

showed a very soft response. Therefore, Test II was carried out and a large difference in the initial 

stiffness of the felt was found (see [31] for more information). 

Also Test III was the same as Test II. The stress‐strain diagram of this specimen was almost 

identical to the results from Test II. Therefore no more specimens were tested and Test II was 

considered as sufficient for the determination of the actual felt properties. 
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Test I-II-III stress-strain diagram for felt specimens 

 

The following graphs show the result from three felt specimens under load control. 

The felt specimens are loaded (1
st
 cycle) and then unloaded; after they are loaded with additional 

cycles (2
nd

 cycle): as visible, a stiffer and stable response occurs. So, the felt strips are all loaded 

and reloaded, in order to deal the material. 

 

 
Stress-strain laboratory response for felt specimens 

 

So, for the numerical modeling the second trait is adopted, since the felt is reloaded. A series of 

main points is defined and the global behavior is taken up. 
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Main points and linear traits interpolation on stress-strain diagram 

 

The present table shows the obtained values for normal stress   and strain  : 

 
Main points values 

 

In order to insert the felt behaviour inside the iDiana environment is necessary to describe a      

diagram for the felt, where    is the relative displacement between the two faces of the interface 

(for this consult [34]): 

 
Non-linear iDiana interface properties 

 

Taking into account the high stiffness of the steel        beams, we can simplify the    

definition just doing a negligible approximation: 
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So,    is defined as the displacement imposed by the slab reactions. 

Thus, taking into account the small thickness of the felt interface we can obtain the corrisponding 

   from a given  . 

Every   is known thanks to the experimental test on many specimens and the      function is given 

too. 

It reads so: 

      
  

 
 

 

So, we can get: 

 

           

 

It’s easy to get the required       function for the iDiana envirnoment. 

The tensile inertia is molded by a flat trait; instead the higher compressive behavior is extrapolated: 

 

 
Main points for the numerical model 

 

 
Numerical model for felt (      ) 

 

iDiana requires a linear definition both for the normal and tangential behaviour for the felt interface. 

It's defined by DSTIF strings; for numerical reasons the elastic value has to match with the first trait 

stiffness.  
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The ratio stress/strain is the average Young’s modulus for the first range and it can be obtained by 

the following relationship: 

 

   
  

  
 

    

      
               

 

The finite variations    and    can be read in the upper stress-strain table. 

Since the layer of interface is      thick, one can calculate the linear normal stiffness of the 

interface layer: 

 

   
  

 
 
         

    
       

 

   
 

 

As linear tangential stiffness a lower value is taken: 

 

   
  
   

      
 

   
 

 

In this case the felt interface is molded as the Winkler spring soil, with a nonlinear normal 

behaviour and a tangential linear behaviour. 

 

4.1.3 Teflon interface 

 

On the loading surface, a Teflon layer is interposed between concrete and steel plate. The material 

properties were no investigated, so the mechanical properties for the teflon interface are taken from 

DuPont's Teflon tables. 

 

 
DuPont Teflon mechanical properties 
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To fix the stress range the compressive strength is checked up on: 

 

   
 

 
  

       

           
                           

 

So, the stiffness values take reference from the following graph: 

 

 
DuPont Teflon mechanical properties: compressive modulus at room temperature 

 

Due to the ultimate compressive stress, the Young's modulus range is between         and 

        . 

A linear behavior is assumed. 

As seen before, adopting an interface with a      thickness, the linear normal stiffness varies from 

          and          . Instead, the tangential linear stiffness is kept even to           . 

 

4.1.4 Steel 

 

In this experiment steel has been used for different elements that are reinforcement bars, loading 

plate, HEM supports, contrasting beam and pre-stressing bars. 

 

Reinforcement bars 

 

The two topologies of ribbed reinforcements (    and    ) have been subjected to several traction 

tests [31]. 

For each diameter has got three tested specimens. 

In the two following diagrams the stress-strain response of the bars are reported and one can 

observe by the multiline simplification that their behavior is elastic in the first part, with a 

           stiffness, while the plastic part is characterized by different hardening behavior. 

Every stress-strain model results from the average traction test data. 
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Average     data for     specimens 

 

 
Average     data for     specimens 

 

Average

Stress [MPa] Strain [-]

0 0

460 0.0024 εpl,diagr [-]

471 0.0025 0.00012

481 0.0026 0.00024

490 0.0028 0.00043

500 0.0030 0.00067

510 0.0033 0.00095

521 0.0037 0.00136

531 0.0042 0.00187

540 0.0049 0.00252

550 0.0057 0.00336

560 0.0068 0.00445

570 0.0083 0.00589

580 0.01029 0.007920

590 0.01309 0.010720

600 0.01695 0.014573

610 0.02243 0.020053

620 0.03136 0.028987

627 0.05113 0.048760

Φ10 ribbed bars σ-ε model

Average

Stress [MPa] Strain [-]

0 0

540 0.0032 εpl,diagr [-]

541 0.0149 0.01168

550 0.0175 0.01424

560 0.0212 0.01798

570 0.0240 0.02078

580 0.0272 0.02396

590 0.0306 0.02736

600 0.0346 0.03136

610 0.0392 0.03600

620 0.0446 0.04140

630 0.0512 0.04796

640 0.0602 0.05692

650 0.0739 0.07062

658 0.1269 0.12368

Φ20 ribbed bars σ-ε model
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Stress-strain relation for ϕ10 (left-hand) and ϕ20 (right-hand) ribbed bar 

 

For     reinforcements the mechanical properties that can be calculated are: 

 

 Young's modulus:                  ; 

 Poison's Ratio:        ; 

 Tensile Yielding stress:               ; 

 Tensile ultimate stress:               . 

 

Instead, for     reinforcements the mechanical properties they are: 

 Young's modulus:                  ; 

 Poison's Ratio:        ; 

 Tensile Yielding stress:               ; 

 Tensile ultimate stress:               . 

 

Pre-stressing bars 
 

For the pre-stressing trusses     Dywidag bars are used. Dywidag Prestressing Steel Threadbar is 

a high tensile alloy steel bar which features a coarse right-hand thread over its full length. 

No tests are made and properties refer to the product declaration, which are reported in table below 

(for more information see [33]). 

 

 
Technical Data for Prestressing Steel Threadbar 

 

So, the main features are: 
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 Young's modulus:                         ; 

 Tensile Yielding stress:            ; 

 Tensile Ultimate stress:            ; 

 Tensile Yielding strain:        ; 

 Tensile Ultimate strain:       ; 

 Cross area:           . 

 

 
Stress-strain relation for ϕ36 Dywidag bars 

 

Loading plate and HEM beams 

 

For what regards to the loading plate and the supports, no tests on these steel have been performed, 

but the mechanical properties has been provided by the producer. Since the response of these 

elements will not be object of the present study, is sufficient to consider only the stiffness of the 

steel, that is            for the loading plate and            for the HEM supports and the 

value of the Poison’s ratio that is    . 

 

Contrasting system 

 

The contrasting system (or "nut beam") is a steel box profile reinforced by metallic ribs, so it's 

material properties are the same:            as Young's modulus and     for the Poison's ratio. 

 

4.2 Experimental test on the slab 

 

4.2.1 Specimen 

 

The slab S25T1 presents a rectangular shape with dimensions of 5000 mm length, 2500 mm wide 

and thickness of 300 mm. 
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(a)                                                                               (b) 

Layout of the tested slab (a) and reinforcement bars (b) 

 

The layout of reinforcements is presented in the previous figure and is composed by 5 groups of 

bars: 

 

1) longitudinal principal on the top face     – 125 mm (a total of 21 bars), with length of 3000 

mm measuring from the east frontal face; 

2) longitudinal principal on the bottom face     – 125 mm (a total of 21 bars), on the entire 

length of the slab; 

3) longitudinal secondary on the top face     – 250 mm (a total of 11 bars), with a length of 

2200 mm measuring from the west frontal face; 

4) transversal on the top face     – 125 mm (a total of 41 bars), on the entire length of the 

slab; 

5) transversal on the bottom face      – 125 mm (a total of 41 bars), on the entire length of the 

slab. 

 

It has to be observed that the values of the length can be slightly different, to ensure that the 

external cover of concrete on reinforcement is 25 mm in all the points of the slab. 

To use more general and synthetic values the mechanical percentages of reinforcements are 

calculated: 

 

 Mechanical percentage of longitudinal reinforcements:          ; 

 Mechanical percentage of transversal reinforcements:          . 
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4.2.2 Loading and measuring schemes 

 

The scheme of loading and the layout of the constraints are presented in the following figures. 

     

 
Loading device and layout of the experimental test 

 

Continuous supports are placed along short edges of the slab: the North edge is simply supported, 

while the South edge is clamped by pre-stressed bars in order to avoid rotations. 

Steel profiles realize the continuous boundary condition. Continuous felt layers avoid concentration 

of stresses at supports and minimize the in-plain restraints. 

       Dywidag bars, having a total length of 3.00 m and a used length of 2.58 m, prevent rotation, 

a pretension equal to            has been applied before test. 

The load is applied in correspondence at midspan of transversal axis; the load is symmetric with 

respect to the longitudinal axis. A detail of support and loading conditions is reported in the 

following figure. 

 

 
Detail of loading device 
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The load is applied by a hydraulic jack, by a square-shaped loading plate of 300 mm x 300 mm was 

used, in contact with the tested slab through a Teflon layer and by controlling the deformation at a 

constant rate. The load is kept constant while marking the cracks. The loading sequence is 

illustrated in the following figure. 

 

 
Time-Applied Force diagram relative to slab S25T1 

 

 

4.2.3 The observations made during the test 

 

Date: 20-01-2012 

Load position concentrated load:         ,           , at simple support. 

In this experiment, only a concentrated load was applied (no line load) to check the support 

conditions. 

The position of the load cells is mirrored as compared to all previous experiments. Failure occurred 

at        . After failure, the maximum measured crack widths were as follows: 

 

 on the bottom face:        for a north-south crack in the middle from the support towards 

the span, passing the center of the load;         for a crack in the east west direction close 

to the support;      for punching damage at the west side of the bottom face and        

for a north south crack at the west side at       from the free edge;  

 on the front face:         for a through crack in the middle;         for cracks towards 

the east side, not fully through and starting from the bottom; 

 on the side faces, no cracks were visible, not even flexural cracks. 
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Cracking pattern at the bottom face for S25T1 slab 

 

 
Cracking pattern at front face for S25T1 slab 

 

One of the most important and meaningful results of the experimental test is the Load-Displacement 

diagram. To build it a series of laser measurements are used, in particular the diagram above shows 

an average displacement among the four lasers located in the X and Y directions, 37 mm from the 

edge of the loading plate, in order to avoid the affection of local effects in the evaluation of the 

displacements. In fact the Load-Displacement diagram measured from the load cell into the 

hydraulic jack shows a more deformable behavior. It's due to many phenomena occurred during the 

experimental test: steel frame deformation and adjustments into the whole experimental setup (felt 

layers, Teflon, slab, steel frame, supports device, etc). 

Indeed, it's important to report what happens during the first experimental test to better understand 

the following considerations and model assumptions. 

During the first load operations, until the first      displacement, an hardening trend is easily 

visible in the hydraulic jack force-displacement diagram. 

This phenomena is common in adjustment occurrences. 
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In the present experiment the slab was not perfect horizontality of the front side slab: the transversal 

section was deformed. It was warped in the longitudinal axes too. 

So, the concrete surfaces are not in perfect contact with the felt interfaces and in the middle on the 

external sections a gap (    is present. This one could measure even         maximum in the 

section middle. 

 

 
Deformed shape for the transversal section for S25T1 slab 

 

So, with the loading operation, the curve surface, supported on the         beams, has started to 

bend up to come into contact to the straight surface of the felt interface on the steel frames. 

As one can imagine, this event is characterized by a lower stiffness. 

This adjustment phenomena, really common in mono-axial compressive tests on rock specimens for 

example,  can explain the first slab hardening behavior. 

 

 
Mono-axial test diagram 

 

When all the lower side of the slab at the simple support is into contact with the horizontal surface 

the real slab stiffness occurs. 
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Force- displacement diagram concentrated load S25T1 from the hydraulic jack 

 

 
Force - displacement diagram concentrated load S25T1from the 4 lasers 

 

In the following image the different behavior detected by lasers and hydraulic jack is well visible. 

Moreover, the lasers device shows a snap-back phenomenon after the peak load, besides a stiffer 

trend. However, the whole shape are alike. 
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Comparison between 4 lasers and hydraulic jack measurements 

 

The following figure shows the four points of the loading plate in which the total displacements are 

measured (green circles). 

 

 
Representation of the 4 measuring points on the edge of the loading plate 
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5. APPLICATION ON NON-LINEAR ANALYSIS  
 

 

5.1 Three-dimensional model of the reinforced concrete slab 

 

5.1.1 Finite element model 

 

During the present activity two different models were created: a first Partial model and a second 

Total model (the partial model will be discussed for SL-analysis). 

The differences between the aforementioned models consist in the way of modelling the clamped 

support. In the first model a perfect clamped constraint was adopted on the South vertical section 

above the support beam. Instead, in the second model this assumption wasn't used and the full 

constraint system is defined as the experimental setup. So, the pre-stressing system and the 

contrasting profile are inserted into the model. In this way, the experimental setup is exactly 

modeled. Not only, the experimental procedure is applied to: it needs the application of a phase 

analysis sequence. 

The three-dimensional complete slab model is composed by different solid parts, each of them is 

modeled by one or more three-dimensional geometrical elements (bodies) and one-dimensional 

geometrical elements (truss/cable). 

The various bodies composing the different parts are: 

 

 slab; 

        supports; 

 loading plate; 

 interface felt layer (between slab and supports and slab and contrasting profile); 

 interface Teflon layer (between load plate and slab); 

 contrasting profile. 

 

Truss/cable elements are used to model Dywidag bars only. 

 

 
Geometrical model S25T1 slab (total version) 
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The reinforcements bars are modeled as single embedded reinforcements into the slab volume. In 

order to avoid numerical error and keep the symmetry of the model, the bars on the symmetry axes 

are divided in two. 

SI units are adopted (for instance some mean values are: mm for length and displacements and N for 

force and load). 

 

5.1.2 Meshing 

 

To execute an analysis with Diana, the structure has to be discretized through several three-

dimensional finite elements. 

Due to the different nature and behavior of the various solid parts composing the model, to create 

the FEM discretization three types of finite element are used: 
 

 the CHX60 element is a twenty-node isoparametric solid brick element; 

 the CQ48I element is an interface element between two planes in a three-dimensional 

configuration, 

 the L6TRU element is a a two-node directly integrated (1-point) truss element. 

 

 
CHX60 brick element for 3D model 

 

The CHX60 element is a twenty-node isoparametric solid brick element [34]. It is based on 

quadratic interpolation and Gauss integration. The polynomials for the translations      can be 

expressed as: 

 

                                             
     

     
        

     
       

       
         

       
      

        
       

   

      
         

   

 

Typically, a rectangular brick element approximates the following strain and stress distribution over 

the element volume. The strain     and stress     vary linearly in x direction and quadratically in y 

and z direction. The strain     and stress     vary linearly in y direction and quadratically in x and 

z direction. The strain      and stress     vary linearly in z direction and quadratically in x and y 

direction. By default 
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Diana applies a 3 x 3 x 3 integration scheme. A suitable option in a patch of more than one element 

is 2 x 2 x 2 which yields optimal stress points. Schemes lower than 2 x 2 x 2 or higher than 3 x 3 x 3 

are unsuitable. 

This type of element is used to discretize all the structural parts that have a regular behavior, i.e. 

those parts that can be subjects to all the kinds of tensions or strains, regardless to the spatial 

direction of these. 

Finite elements CHX60 are used to build the model of the slab, of the supports, of the contrasting 

beam and of the loading plate. 

Regarding to the interface elements other elements are considered: 

 

 
CQ48I plane element for 3D model 

 

The CQ48I element is an interface element between two planes in a three-dimensional 

configuration. The local xyz axes for the displacements are evaluated in the first node with x from 

node 1 to node 2 and z perpendicular to the plane. Variables are oriented in the local xyz axes. The 

element is based on quadratic interpolation. By default DIANA applies a 4 x 4 Newton-Cotes 

integration scheme. Suitable options are 3 x 3 and 5 x 5 Newton-Cotes, 3 x 3 and 4 x 4 Gauss, 3 x 3, 

4 x 4 and 5 x 5 Lobatto, and a nodal lumping. These elements are used for the felt layers, that are in 

the interface between the slab and the supports and between slab and contrasting beam, and they are 

used for the Teflon layer between slab and loading plate. 

 

 
L6TRU element for 3D model 

 

The L6TRU element is a two-node directly integrated (1-point) truss element. Due to the 

displacements    and    perpendicular to the bar axis, this element can be used in three-
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dimensional dynamic and geometrically nonlinear analysis. The interpolation polynomial for the 

displacements   ,   and    can be expressed as: 

 

               

 

This polynomial yields a strain    which is constant along the bar axis. Initially there is no stiffness 

for the displacements    and   , stiffness will arise in case of geometric nonlinearities.  

Diana determines the element axes for an L6TRU element as follows: first the x axis from the first 

to the second node, then the y axis perpendicular the Zx plane and finally the z axis perpendicular 

the xy plane. If the x axis coincides with the Z axis then y perpendicular Zx cannot be done and the y 

axis is chosen in Y direction. 

It has to be observed how, using the types of element CHX60 together with CQ48I, both the 

compatibilities in terms of the correspondence of the position of the nodes (3 nodes on each side 

and 8 nodes in each face) and in terms of the quadratic order distribution of strains, in order to build 

an uniform mesh on all the structure. 

Compatibility is automatically respected too, using       elements with extreme node as 

geometrical points. 

 

 
L6TRU matching inside the mesh 

 

Moreover, in order to avoid singular matrix definition, we have to mesh each Dywidag bar with one 

element only. Being a truss elements, an higher amount of mesh pieces brings to rigid body motions, 

since the model is developed in a 3D environment. 

So, regarding to the meshing procedure, we have to subdivide the whole model without Dywidag 

bars adopting the MESHING DIVISION ELSIZE NODIWY <average element size> and only then 

meshing the pres-stress reinforcements adopting the element size (about      mm). So a unique 

mesh element is got. 

The   numerical crack bandwidth parameter is evaluated manually. Indeed, the average volume of 

solid element is calculated by counting the amount of elements on each side. Average dimensions 

are calculated for every mesh model. This parameter, how it will be explained in the next section, is 

very important in order to evaluate the ultimate strain for concrete. 
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The present mesh is composed by      finite solid elements and      nodes. It's simply called 

"2x2", as the amount of number on the height. The same criteria is adopted for the following 

meshes. 
 

 
2 elements on height mesh adopted for  S25T1 slab 

 

The dimension of the various finite elements are almost regular and their average volume is around 

             . 

 

    elements on the longitudinal side                    ; 

    elements on the transversal side                    ; 

   elements on the height                  . 

 

The present mesh is composed by      finite solid elements and     6 nodes. It's called "3x3". 

The average volume is around             . 

 

    elements on the longitudinal side                   ; 

    elements on the transversal side                   ; 

   elements on the height                  . 
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3 elements on height mesh adopted for  S25T1 slab 

 

The present mesh is composed by      finite solid elements and       nodes. It's called "4x4". 

The average volume is around             . 

 

    elements on the longitudinal side                   ; 

    elements on the transversal side                   ; 

   elements on the height                 . 

 

For this last mesh the average dimension is really close to each other on every dimension. 

 

 
4 elements on height mesh adopted for  S25T1 slab 
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(a)                                                                                     (b) 

Amount of nodes (a ) and elements (b) for each mesh adopted 

 

Viewing to the previous table, one can see how a finer mesh involves a higher amount of nodes and 

solid elements with a marked nonlinear sequence: this means a greater non-proportional 

computational effort. 

 

The dimensions of the various finite elements are almost regular for every kind of mesh, as one can 

see in the following image. 

Materials and particulars are shown for the "2x2" mesh: 

 

 
Material label for the model 
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Particular of the mesh relative to the loading plate and Teflon interface 

 

 
Particular of the mesh relative to the felt interface between slab and support 

 

 
Particular: felt layer between contrasting beam and concrete slab for 4x4 mesh 
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Dywidag bars particular in the mesh 

 

 
Dywidag anchors inside contrasting beam in the mesh 

 

All the geometrical dimensions of the model are respected, with only one exception on the supports, 

that in the real test are composed by        steel profiles, while in the FEM model they are 

represented by two solid brick elements,        high and with a width of        (instead of 

      ), to have a direct matching with the upper interface layer. 

  

5.1.3  Model of supports and constraints 

 

The real slab is bounded by a total of two supports, one SIMPLE SUPPORT and one 

CONTINUOUS SUPPORT, defined by      Dywidag bars with pretensioning.  

The North support models the simple support. It's applied to the finite element model inserting 

constraints on the bottom surface of the support beam: in this way no translation in X, Y and Z 

direction are not allowed in the global reference system. 

Instead, the complex South constraint system is completely modeled with      pre-stressed 

Dywidag bars (      elements) and contrasting beam. Moreover, on the bottom of the South 

support beam  no translation X, Y and Z direction are not allowed, as done for the other support, to 

modeled the role of the        element during the experiment test. In this way we can model the 
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whole constraint system on the South side: it's a non-perfect clamped constraint with a proper 

deformability. 

The Dywidag bars bottoms are fixed to the ground, as in the experimental environment, in all the 

three principal directions for translation degree of freedom. The other ends are connected to the 

geometrical nodes of the contrasting beam, so kinematical compatibility is automatically satisfied. 

 

 
Model of the constraints assigned to the slab (1

st
 mesh) 

 

5.1.4 Loading conditions 

 

Following the same criterion used for the laboratory test, the FEM analysis on the model is 

performed using a displacement control method. 

Two different load cases are used for this model: 

 

                   ; 

                  . 

 

The first load case contains the Dywidag bars pre-stressing. Using the PRESTRES option inside the 

load command it's possible to add a pre-stress to elements, surfaces, bodies, etc. 

In the present case, pre-stress is given to whole three Dywidag elements, just adopting only one 

load case. 

The second load case contains the displacement control command on the loading plate. 

Using the DISPLA option for load command a           displacement in the Z direction is 

applied to the specified surfaces. 
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Model of the loads assigned to the slab (1

st
 mesh) 

 

5.2 Material and physical properties 

 

Regarding to the physical properties for total model, the elements for which is necessary to define 

directly them are the reinforcement bars and truss/cable elements, modeled through one-

dimensional elements (bar/line) that need a definition of transversal area. 

An ideal symmetric model prescribes a longitudinal bar on the symmetry plane long the span 

direction of the slab. 

On the same direction the middle Dywidag bar is defined at the contrasting beam. 

So, longitudinal reinforcement bar and Dywidag crosses each other: it causes a numerical error 

which involves cancellation of  a Dywidag portion. 

So, it's necessary to define a new distribution than the "ideal" one. 

In order to keep a symmetric model the longitudinal bars on the middle of the section are split in 

two bars with half area. 

A similar problem could arise for the transversal bars at the same abscissa; luckily it doesn't happen. 

Five different families of bars are used in the real slab, so five bar groups are adopted as well. 

Observing the real reinforcement disposition two bar groups are used on the bottom surface of the 

slab for the whole area: 

 

 the lower one for the     longitudinal bars; 

 the upper one for the     transversal bars; 

 

Instead, for the top surface three bar groups are used: 

 

 the two upper ones for the     and     longitudinal bars; 

 the lower one for the     transversal bars on the whole area. 

 

Every bar group is named according to: 

 

 the longitudinal axe position inside the slab; 

 the value of the absorbed bending moment; 
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 the position on the Z axis. 

 

Following this definition, these grid names are given as: 

 

 LONG.NEG.TOP grid for the upper longitudinal     bars (1); 

 LONG.POS.TOP grid for the upper transversal     bars (2); 

 LONG.BOT grid for the lower longitudinal     bars (3); 

 TRAN.TOP grid for the upper transversal     bars (4); 

 TRAN.BOT grid for the lower transversal     bars (5). 

 

This particular definition allows to take into account the different behaviour of every layer inside 

the model, as described later. 

In the real slab the concrete cover is equal to      . This is defined as the concrete width between 

the more external point of the bar and the slab surface. 

Using the bar definition option is necessary to take into account of the effective bar diameter. 

For the     bars, the longitudinal axis has a relative Z-quota of       from the external slab 

surface. 

Using the bar definition, an linear element with a numerical cross-area is adopted; so the concrete 

cover is defined as the distance between the external surface and the line axis. 

 

               

 

However, to take into account of the different real disposition on the Z axis of the reinforcements 

layers, the longitudinal and transversal grids are placed on different quota: 

 

              for LONG.NEG.TOP (1); 

              for LONG.POS.TOP (2); 

             for LONG.BOT (3); 

              for TRAN.TOP (4); 

             for TRAN.BOT (5). 

 

The            can be justified considering that overlapped points are merged during the 

merge operations by iDiana. Giving this gap the problem is avoided. 
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Reinforcement bars plot 

 

In order to assign the physical properties, the cross area is given for each bar diameter: 

 

                 

                  

              . 

 

The bar steps are modified than the real ones, in order to respect the bars amount inside the slab. 

The values are: 

 

           for LONG.NEG.TOP/LONG.BOT; 

        for LONG.POS.TOP; 

           for TRAN.BOT/TOP; 

 

As said before, in order to avoid a numerical cancellation for the middle longitudinal bars, on the 

top and bottom face, in correspondence of the central Dywidag bar it's necessary to split the single 

bar in other two with a half cross-area. 

The present bars have got a       offset from the longitudinal axis. 

All the other components of the structure are modeled through solid elements, therefore is not 

necessary to define their spatial dimensions. 

Moreover, where it’s possible the material properties of the components of the structure, are 

evaluated from standard experimental tests executed on specimens (for instance compression tests 

on cores drilled from the same concrete of the slab and traction test on reinforcement bars), on 

relations contained on the building codes (              version) or on other analytic 

considerations. 
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The used materials are: 

 

CONCRETE 

 

MACONC [1]: 

Linear Elasticity – Isotropic 

Young’s Modulus:           (from the         relation) 

Poisson’s Ratio:      

Static non linearity – Concrete and brittle materials – Total strain fixed crack – Hordijk softening 

in tension – Fracture energy based - Elastic in compression – Damage based shear retention – 

Poison Reduction in cracking 

 

Tensile strength:          

Mode-I tensile fracture energy:               

Crack bandwidth:        

 

A nonlinear tension softening behavior is chosen for the tensile stress-strain concrete relationship. 

The proposed one is by               . 

This nonlinear tension softening diagram results in a crack stress equal to zero at a crack strain 

          . 

 

 
Exponential nonlinear tension softening for concrete (Hordijk et al.) 

 

The    and    parameters are equal to      and      respectively. 

 

               
  

 

   
 

 

                   
  
 

 

 

Particularly, regarding this concrete features in the iDiana environment, inside the .dat file presents 

the same test strings, but the nonlinear         tension softening model is chosen: 
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Tension softening behavior definition 

 

'MATERIALS' 

   1 YOUNG     3.901600E+04 

     POISON    1.500000E-01 

     POIRED    DAMAGE 

     TOTCRK FIXED 

     TENCRV HORDYK 

     TENSTR      4.620000E+00 

     GF1              1.5000000E-01 

     CRACKB    1.650000E+02 

     COMCRV ELASTI 

     SHRCRV DAMAGE 

 

REINFORCEMENT STEEL 

 

MABAR10 [2]: 

Linear elasticity – Reinforcement – Reinforcement bonded 

Young’s Modulus:            

 

Static non linearity – Reinforcement – Von Mises plasticity – Work Hardening diagram 

Tensile yield stress:        

Tensile ultimate stress:         

 

 
Stress-strain model for ϕ10 bars 
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MABAR20 [3]: 

Linear elasticity – Reinforcement – Reinforcement bonded 

Young’s Modulus:            

 

Static non linearity – Reinforcement – Von Mises plasticity – Work Hardening diagram 

Tensile yield stress:        

Tensile ultimate stress:         

 

 
Stress-strain model for ϕ20 bars 

 

Regarding to the reinforcement hardening behaviour, the work hardening diagram is chosen: 

 

 
Work hardening definition for reinforcement bar 

 

As required by iDiana, it's necessary to introduce the     values. These are obtained following the 

formula: 

 

                   

 

Below, the hardia file (.dat extension) for     and     are shown respectively: 
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'MATERIALS' 

   4 HARDIA  

 

460.0 0.00 471.0 0.00012 481.0 0.000240 490.0 0.000427 500.0 0.000667 510.0 0.000947 521.0 

0.00136 531.0 0.001867 540.0 0.00252 550.0 0.00336 560.0 0.004453 570.0 0.005893 580.0 

0.007920 590.0 0.01072 600.0 0.014573 610.0 0.020053 620.0 0.028987 627.0 0.04876 

 

'MATERIALS' 

   1 HARDIA 

540.0 0.00 541.0 0.01168 550.0 0.01424 560.0 0.01798 570.0 0.02078 580.0 0.02396 590.0 

0.02736 600.0 0.03136 610.0 0.03600 620.0 0.04140 630.0 0.04796 640.0 0.05692 650.0 0.07062 

658.0 0.12368 

 

Then these properties are so assigned: 

 

 LONG.NEG.TOP     → MABAR20/HARDIA_2; 

 LONG.POS.TOP     → MABAR10/HARDIA_1; 

 LONG.BOT     → MABAR20/ HARDIA_2; 

 TRAN.TOP     → MABAR10/ HARDIA_1; 

 TRAN.BOT     → MABAR10/ HARDIA_1; 

 

STEEL for supports HEM300 

 

In order to restore the bending stiffness of the HEM profiles one can calculate the equivalent 

Young’s modulus to add to the beam support. 

For the        profile the inertia around the horizontal axis equal to                    , 

while for the rectangular beam support the value is: 

 

     
   

  
 
                

  
               

 

Then it’s necessary to match the bending stiffness: 

 

                                      
 

   
 

MABEAM [4]: 

Linear elasticity - Isotropic 

Young’s Modulus:            

Poisson’s Ratio:    0 

 

However, it’s necessary specify that in the real test the steel that composes the supports has an 

Elastic Modulus of            like all the classical building steel, nevertheless, since in the FEM 

model the width of the support is reduced from        to       , it’s used an incremented 

value of            to match the beam’s original flexural stiffness EI. 
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STEEL for loading plate 

 

MAPLATE [5]: 

Linear elasticity - Isotropic 

Young’s Modulus:            

Poisson’s Ratio =    0 

 

INTERFACE TEFLON between loading plate and slab 

 

MATEFLON [6]: 

Linear elasticity – Interface 

Linear normal stiffening:           

Linear tangential stiffening:            

 

For the Teflon interface only linear elastic behavior is prescribed. 

The tangential stiffness is limited: in this way it’s possible to separate concrete and loading plate 

steel and allows tangential sliding on the contact plane, as happens during the experimental test. 

Otherwise the kinematical compatibility will occur on the horizontal plane producing a tensile stress 

field on the slab's top surface.  

 

INTERFACE FELT between supports and slab 

 

MAFELT [7]: 

Linear elasticity – Interface 

Linear normal stiffening             

Linear tangential stiffening:           

 

Interfaces – Static Non Linear Elasticity 

Normal Stiffening File:       

Tangential Stiffening file:       

 

So proceeding we assume the felt interface work as an elastic Winkler’s spring soil: since the 

distance between nodes on the support-slab contacts that hypothesis results reasonable. 

Without the        file specification inside the Diana environment it will assume a full reagent 

tensile behaviour for the felt interface. 

The following text strings reports the possibility to avoid this phenomena for the     model, just 

using the non-linear stiffening files format to prescribe a pre-defined behaviour, linear or non-

linear, for example: 

 

'MATERIALS' 

   9  DSTIF  15.20 0.15 

      SIGDIS 

-0.0190 -50.000 -0.0152 -0.01 0.0 0.0 1.43 0.094 3.00 0.153 5.00 0.197 8.00 0.237 210.73 3.00 
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A small tangential stiffness      is chosen to avoid membrane action. 

 

BED INTERFACE between supports and “world” 

 

MABED [8]: 

Linear elasticity – Interface 

Linear normal stiffening:            

Linear tangential stiffening:             

 

DYWIDAG BARS 

 

MADYWI [9]: 

Linear elasticity – Truss/Cable 

Young’s Modulus:            

Static non linearity – Metals – Von Mises plasticity – Work Hardening diagram 

Tensile yield stress:        

Tensile ultimate stress:          

 

 
Stress-strain relation for ϕ36 Dywidag bars 

 

A simply bi-linear hardening model is assumed. The following hardia file is: 

 

'MATERIALS' 

   10 HARDIA 950.0 0.00 1050.0 0.09 

 

NUT BEAM or contrasting beam 

 

MANUT [10]: 

Linear elasticity - Isotropic 

Young’s Modulus:            

Poisson’s Ratio =    0 
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5.3 Performing analysis on the Total model 

 

5.3.1 Preliminar linear static analysis 
 

In order to check the model, we run a linear analysis. By default the nonlinearities are not 

considered at first. Through Diana batch format (.dat extension) we can run the analysis using the 

following command file (.dcf extension): 

 

*FILOS 

 INITIA 

*INPUT 

*LINSTA 

 

  BEGIN OUTPUT TABULA 

    TEXT "Force load plate" 

     BEGIN SELECT 

      NODES 1860-1871 3852-3858 

     END SELECT 

     LINPAG=10000 

     COLLIN=10000 

     LAYOUT COMBIN 

     FORCE REACTI TRANSL GLOBAL Z 

     DISPLA TOTAL TRANSL GLOBAL Z 

  END OUTPUT 

 

  BEGIN OUTPUT 

     DISPLA TOTAL TRANSL GLOBAL 

     FORCE REACTI TRANSL GLOBAL 

  END OUTPUT 

 

*END 

 
Whit the OUTPUT TABULA text string Diana will store data about     (reacting force in the Z-

direction) and      (total displacement in the Z-direction) in an output file (.tb extension) for each 

definited load step and for the selected nodes. By the sum of each contribution, the load applied to 

the slab is defined and the     diagram is got. 

 

5.3.2 Non-linear static analysis: 

 

In order to obatin satisfactory results is necessary to study carefully every feature of non-linear 

solutor and model. 

Regarding to the model feature, one of the most significant is certainly the meshing division: 2, 3 

and 4-elements on the highness mesh, as mentioned above. 
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Instead, regarding to the solution procedure, it’s necessary definy a step division. Useful 

information about the amount of iteration and convergence behavior can be found in the output file 

(.out extension) given by default by Diana solutor. 

For the following non-linear analysis                         method is adopted. 

In order to not stop the analysis if a non convergence occurs the CONTIN options is turned on and a 

maximum number of iteration equal to 100. 

The LINESE option is activated as well. This algorithm helps in the prediction of the iterative 

displacement increment    by scaling this vector by a value to minimize the energy potential  . 

Infact for all the methods described so far, the iterion process converges to the “exact” numerical 

solution. If the prediction is too far from equilibrium the iteration process will not converge. This 

easily takes place in structures with strong nonlinearities as cracking. Line Search Algorithm can 

increase the convergence rate and are especially useful in the ordinary iteration process fails. 

Regarding to the convergence criteria is valid the CONTIN options as said before. 

The first trials was force and displacement based, but is known that the displacement converge will 

occur faster that force convergence, so this association with the CONTIN option is complitely 

useless. 

The same happens with a displacement-energy comniation convergence criteria: since the energy 

criterion is a quadratic function of the vector   is obvious that the convergence will occur before for 

the displacement, unless very strict tolerances. 

So for all these reasons, as convergence criteria only the relative displacement control is used. 

However, few trials with force and energy criteria was used before. For the force criteria is quite 

difficult to reach the fixed limit in every steps and, morevoer, that takes a large number of iterations 

to converge in each dispalcement step. 

The same happens for the energy criteria. 

Particularly, for the displacement criteria is used         as convergence limit and         as 

divergence limit.  

Then the text strings for the .dcf file appear as: 

 

    BEGIN ITERAT 

     CONTIN ON 

     MAXITE 100 

      BEGIN METHOD 

        NEWTON  MODIFI 

      END METHOD 

      LINESE 

      BEGIN CONVER 

        FORCE OFF 

         DISPLA NEWREF CONTIN TOLCON=1.0E-4 TOLABT=1.0E+4 

      END CONVER 

    END ITERAT 

  END EXECUTE 
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It’s usefull to remember that methods like Newton-Rhapson and Secant are not able to describe 

softening behavior like Arc-length method because of their iterative procedures. The iterative 

increments are evaluated by the relationship: 

 

      
     

 

Where    indicates the iteration number,     is the iterative displacement incremental,    is the 

stiffness matrix that represents some kind of linearized form of the relation between the force vector 

and displacement vector, while    is the out-of-balance force vector at the start of the iteration i. 

This kind of procedure fails in presence of flat force-displacement diagram, to describe a plane trait 

a large number of iteration is required, so the method can’t reach the applied incremental 

displacement. It doesn’t matter how short that step could be. 

 

For the output files the present features are selected in order to study them in the iDiana 

envirnoment during the post-processing: 

 

     DISPLA TOTAL TRANSL GLOBAL 

     FORCE REACTI TRANSL GLOBAL 

     STRAIN PLASTI GREEN PRINCI INTPNT 

     STRAIN CRACK GREEN INTPNT 

     STRAIN TOTAL GREEN GLOBAL 

     STRAIN ELASTI GREEN GLOBAL 

     STRAIN TOTAL GREEN PRINCI 

     STRESS TOTAL CAUCHY PRINCI 

     STRAIN TOTAL TRACTI GLOBAL INTPNT 

     STRESS TOTAL TRACTI GLOBAL INTPNT 

 

5.3.3 Non-linear static analysis via Phase Analysis: 

 

Phased analysis enables modeling of phased construction. It determines the effects of construction 

history and shows the critical construction stages. A phased analysis comprises several calculation 

phases. Between each phase the finite element model changes by addition or removal of elements 

and constraints. 

In each phase a separate analysis is performed, in which the results from previous phases are 

automatically used as initial values. These results are typically stresses, deformations, potentials, 

velocities etc. 

The start of each phase can include input of the model part which is changed compared to previous 

input or added. At the start of each phase, we must select the active part of the model and specify 

the superposition of the nodal results (displacements or potentials) from previous phases. After the 

start we perform a common analysis using regular Diana analysis modules. 

Diana can perform phased analysis for linear, nonlinear and dynamic structural analysis. 
For the present model, in order to start a phase analysis we have to produce two .dat file for the total  

model version. 
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Inside the first one the full geometrical, physical and loads model is described, instead inside the 

second only the loads and constraints tables change. So, it's possible to update the new slab 

configuration: after the pre-stressing, we need to constraint the loading plate nodes in order to apply 

displacements. Constraints and loads are updated. 

 

 
Phase analysis sequence: first and second constraints 

 

The first phase performs a nonlinear static analysis: 

 

*FILOS 

INITIA 

*INPUT 

READ FILE="S25T1_C_BARSPLIT1.dat"  

*PHASE 

*NONLIN 

 

  BEGIN EXECUT 

   BEGIN START  

      INITIA  STRESS  INPUT  LOAD 1 

     STEPS  EXPLIC SIZES 0.1 (10)  

   END START 

   BEGIN ITERAT  

    CONTIN ON 

     BEGIN CONVER  

       FORCE  OFF  

       DISPLA NEWREF CONTIN TOLCON=1.0E-4 TOLABT=1.0E+4 

     END CONVER 

     LINESE  

     MAXITE 100 

     METHOD  NEWTON  MODIFI 

Z-constraint added on Phase 2 
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   END ITERAT 

   TEXT "Loadcase 1" 

 

As one can see, Diana has to read the specified .dat model file. 

After the analysis, a output file is required: 

 

BEGIN OUTPUT 

FILE Phase_1 

TEXT "FEMVIEW" 

     SELECT STEPS 1-850(1) 

     DISPLA TOTAL TRANSL GLOBAL 

     FORCE REACTI TRANSL GLOBAL 

  END OUTPUT 

 

Two tables with loading plate nodes displacements and nut forces are requested: 

 

BEGIN OUTPUT 

TABULA  

   FILE "Pret_NutForce" 

   BEGIN LAYOUT  

     COLLIN 150 

     LINPAG 10000 

   END LAYOUT 

   SELECT  NODES 4 2 6 

   TEXT "Pretension: Reaction Forces East, Mid, West Dywidag" 

FORCE REACTI TRANSL  GLOBAL Z  

 END OUTPUT 

 

BEGIN OUTPUT 

TABULA 

   FILE "Pret_PlateDisp" 

   BEGIN LAYOUT  

     COLLIN 150 

     LINPAG 10000 

   END LAYOUT 

   SELECT  NODES 3036-3048 5830-5837 

   TEXT "Pretension: Loade plate displacements" 

DISPLA TOTAL TRANSL GLOBAL Z  

 END OUTPUT 

 

For each mesh, we must update the node selection. 

This phase equals to the only pre-stressing procedure: the only applied load is on the Dywidag bars; 

no constraints are applied on the loading plate. 

The second phase includes a new nonlinear static analysis: 
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*INPUT 

 BEGIN READ  

   FILE "S25T1_C_BARSPLIT_xy2.dat" 

   BEGIN TABLE  

     LOADS 

     SUPPORT   

   END TABLE 

 END READ 

*PHASE 

BEGIN ACTIVE 

ELEMENT 

REINFO 

END ACTIVE 

*NONLIN 

 

BEGIN EXECUT  

BEGIN START 

INITIA STRESS INPUT LOAD 2 

LOAD LOADNR 2 

END START 

   BEGIN ITERAT 

    CONTIN ON 

     BEGIN CONVER 

       FORCE OFF 

       DISPLA NEWREF CONTIN TOLCON=1.0E-4 TOLABT=1.0E+4 

     END CONVER 

     LINESE  

     MAXITE 100 

     METHOD  NEWTON  MODIFI 

   END ITERAT 

   TEXT "Loadcase 2" 

 END EXECUT 

 

Inside the second .dat file loads and constraints are updated, as said before. 

The "real" nonlinear static analysis can start: 

 

BEGIN EXECUT  

BEGIN LOAD 

LOADNR 3 

     STEPS  EXPLIC  SIZES 0.0012 (850) 

END LOAD 

   BEGIN ITERAT 

    CONTIN ON 
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     BEGIN CONVER 

       FORCE OFF 

       DISPLA NEWREF CONTIN TOLCON=1.0E-4 TOLABT=1.0E+4 

     END CONVER 

     LINESE  

     MAXITE 100 

     METHOD  NEWTON  MODIFI 

   END ITERAT 

   TEXT "Loadcase 3" 

 END EXECUT 

 

Perfoming this part, same output and tables are required. 

This part includes the displacement control procedure on the loading plate. 

For the nonlinear static analysis Modified Newton Rhapson method is chosen. 

 

5.3.4 Step sequence 

 

For the present model of the       slab, following the Esposito'svalue, a width of         for 

each step is choosen: 

 

      
       

     
        

 

So, for the .dcf file the value of        is adopted; this will be kept constant during all the 

displacement control procedure. 

 

5.4 Important parameters of the model 

 

The model already described is characterized by a series of parameters, whose values can be either  

unknown or determined by experimental tests; however, in this specific case, without the possibility 

to be sure about their effective reliability performing the analysis. For this reason in the present 

work a series of different analysis will be performed, applying each time the variation of one 

parameter, with the double purpose of evaluating the dependence of the results from every single 

parameter and to find at the end the values that provide the best agreement with the experimental 

results. 

 

The most important parameters that affect the solution of the FEM analysis are: 

 

 tensile fracture energy    and numerical crack bandwidth   for the concrete material; 

 normal stiffness for the felt interface between slab and supports,        ; 

 normal stiffness for the Teflon interface between slab and loading plate,          ; 

 

Hardening steel reinforcements behaviour could be important as well and it could have an influence 

role in the numerical solution. 
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Moreover, it has to be noticed that, for a constant mesh, also the average volume of the elements 

and thus the crack bandwidth are constant.  

For each adopted mesh this value is obtained by the formula: 

    
 

 

where   is the average volume for solid elements of the mesh. 

It has to be observed that standard integration scheme will be used in all the analysis, that is: 

 

 3×3×3 integration scheme for CHX60 elements; 

 4×4 Newton–Cotes integration scheme for CQ48I interface elements; 

 direct integration (1-point) for L6TRU truss elements. 

 

5.5 Comparison between NL-analysis and experimental results 

 

In order to verify the reliability and the goodness of the SL-analysis, NL-analysis are run on the 

model described previously. The results obtained from this FEM analysis are compared with the 

Lab-Test evidences. 

Since SL-analysis method employs long computational time and effort for each elaboration, 

previous NL-analysis has the double purpose to fix unknown parameters and to save time. 

Accordingly, NL-analysis are run on different mesh to define: 

 

 felt behavior sensitivity; 

 influence of normal stiffness of the Teflon layer on the global and local behavior of the slab; 

 tensile fracture energy value for each mesh. 

 

Moreover, this step allows to discover and understand the mesh sensitivity on the output, like force-

displacement diagram fitting, tensile principal strain distribution, yielding of the reinforcement bars 

and cracking behavior of the reinforced concrete slab. 

 

5.5.1 Teflon Sensitivity 

 

The mechanical features of Teflon layer are no investigated for the present experimental test, so a 

defined value for compressive normal stiffness is not available. In order to verify the sensitivity up 

to this model and select the most reasonable value, a set of four is adopted inside the total model of 

the slab. 

The present string is manually modified inside the .dat file: 

 

   3 DSTIF     500.00000000    0.250000000000 

 

following this pattern: 
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Interface's stiffness definition inside iDiana environment 

 

DSTIF    and     are linear stiffness modules D11 and D22. D11 sets the relation between the 

normal traction tn and the normal relative displacement    . D22 sets the relation between the 

shear traction tt and the shear relative displacement    . The dimension of the stiffness moduli is 

force per area per length, i.e., stress per length, for instance      . 

The present analysis adopt a Newton-Raphson modified method for the iterative procedure, with a 

        displacement control step, with relative displacement criteria of      (option CONTIN 

on). The fracture energy    and numerical crack bandwidth   parameters are            and 

       respectively. The felt has got a non-linear behavior. The pre-stress value is set to 

         . 

As aforementioned four values are adopted inside the                     range; they are 

here shown: 

 

               ; 

               ; 

               ; 

               . 

 

For the tangential stiffness a fixed value of              is selected, since it has no influence 

on the final result. Moreover, in this way the kinematic decoupling between concrete and steel plate 

is more effective. 

The following image shows the load-displacement graphs obtained: 

 

 
Load-displacement diagram for four normal stiffness values of the Teflon interface 
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By viewing to this plot, one can see a more regular behavior for the highest value for the normal 

stiffness interface "Teflon". Indeed, a peak and a post-peak behavior are distinguishable; instead for 

the lowest values a more flat trend starts to arise until the analysis diverges, so no clear peak is 

recognizable. 

Regarding to the linear field, a higher Teflon stiffness seems to involve a slightly stiffer trend for 

the whole system, but the cracking point seems to remain the same as shape and force and 

displacement  range. 

So, individuated the Peak Load, or better the highest force magnitude occurred, the Peak 

Displacement can be detected. In the following graphs the Peak values - Teflon stiffness trend are 

shown: 

 

 
Peak Load - Teflon stiffness trend and Peak Displacement - Teflon stiffness trend for the total model 

 

 

 

 

The Peak Load seems to be no influenced by the Teflon normal stiffness: the value remains inside a 

      wide range. Unlike the Peak Displacement: here a linear correlation between Peak 

Displacement and normal stiffness is well visible. 

The following table summarizes the peak values: 

 

 
Peak Load and Peak Displacement with the normal stiffness 

 

To better understand the sensitivity of the model, effects on the principal tensile strain (E1.1 

attribute) distribution is studied on the top and bottom surface. 

Two output files are selected for post-processing: 

 

kn,teflon [N/mm3] Fmax [kN] δmax [mm]

120 -932 -4.05

250 -888 -3.78

500 -974 -3.51

850 -914 -2.67
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               ; 

               . 

 

Peak and post-peak points are studied and the main points are reported on the force-displacement 

diagrams, as the following image shows. 

 

 
Peak and post-peak points for 250 and 850 normal stiffness 

 

Having the same fracture energy and crack bandwidth values, four strain points are selected on the 

softening diagram for the concrete. 

 

 
                                                              (a)                                                  (b) 

Hordijk softening diagram and relative strain values 

 

For the lowest selected value (              ) the peak coincides with the post peak point, so 

only one plot is shown: 

 

εel,ult. [-] 0.000118 1.184E-04

0,5*εcr,ult [-] 0.000555 5.545E-04

εcr,ult [-] 0.001109 1.109E-03

5*εcr,ult [-] 0.005545 5.545E-03
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Principal tensile strain for top surface at peak point 

 
Principal tensile strain for bottom surface at peak point 

 

Instead, for the highest value (              ) the peak coincides with the post peak point, so 

only one plot is shown: 

 

 
Principal tensile strain for top surface and for bottom surface at peak point 
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Principal tensile strain for top surface and for the bottom surface at post-peak point 

 

Qualitatively, the distributions seem similar, with a "butterfly" shape spreading below the loading 

plate to the later free edges on the bottom surface, though the red area is more extended for the 

highest value of the Teflon stiffness. 

Moreover, it has to be noted that the distributions have a different orientation. 

No other big differences are detected, so to mediate, the average value is chosen from the       

           range: for all the following analysis           will be the reference value for the 

normal stiffness of the Teflon interface. 

It can  involve a smoother trend for the global load-displacement diagram. 

 

5.5.2 Felt behavior and adjustment phenomena: 

 

As exposed above, a felt layer is interposed between concrete surface and the top face of the support 

beam with the double purpose of avoid an initial concentration of stresses due to the unevenness 

and roughness of the surface concrete and reduce the contact area of the slab with supports. 

Accordingly, during the experimental test a marked settling phenomenon occurred during the first 

millimeters of load on the slab. 

The global settling event is logically made of various components: adjustment of the loading plate 

on the top concrete surface, of the Teflon layer between steel and conglomerate, of the supports, of 

the whole steel frame under load and, finally,  settling of the felt layers. 

By extending the linear trait of the slab (visible before        of displacement) a "shift" of about 

        can be detected on the abscissa. 

It was tried to fit this initial phenomenon, by modifying the felt model: inserting a gap who can 

simulate the void between slab surface and felt. 

 

 
Felt behavior with initial gap 
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A non null slope is modeled, in order to avoid numerical instability. 

However, this trick does not generate any influence on the numerical results, as shown by the 

following figure: 

 

 
Load-displacement diagram for gap and no-gap felt 

 

No differences are detected on the load-displacement s diagram for this solution. 

So, a new analysis is performed by inserting a continuous "bed" interface was interposed: first on 

the support beam's bottom, and then between slab and felt interface. In this way it was tried to 

model the phenomenon. The analysis are performed until divergence occurred. 

 

 
Force-displacement diagram for bed between slab and felt 

 

The upper image shows how the bed's stiffness can provide a smaller initial stiffness, a better 

prevision of the experimental slope can be provided. However, it involves a different behavior of 

the slab for higher values of displacement. 

Moreover, NL-analysis show a stiffer initial slope, though the total model describes the whole 

experimental setup. 

It can be provided by few factors: 
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 adopted felt model and felt behavior; 

 overestimation of the Young's modulus for the concrete; 

 settling phenomenon due to the warped configuration of the slab, both in the longitudinal 

and transversal direction, in the experimental test. 

 

First, it has been discovered a strong influence of the felt behavior on the whole slab's behavior, as 

seen on previous analysis with felt and plywood interface [4]. 

Moreover, the felt reaction was tested until       of load, but many analysis show how this value 

is exceeded; so a linear behavior is assumed by adopting the same stiffness. This assumption can 

influence the whole future output: the felt model influences the slab's response and the slab's 

response influence the felt reaction as well. 

Secondly, the Young's modulus for the concrete   is estimated by using the CEB-FIP Model Code 

2010 [37]. Its value depends on the origin of aggregate used for the conglomerate; so the value hold 

to the                   range. For the present slab glacial river aggregates were used and 

        is adopted. 

 

 
Young's modulus evaluation for concrete from Model Code 2010 

 

It has to notice that the same consideration is found in previous works [7] [6]. 

Thirdly, the experimental slab showed a warped shape: no full contact was provided on the supports 

due to the curved shape in both directions (X and Y). 

 

In order to avoid other manipulation on the model and to introduce more unknown parameters, we 

choice to don't insert any "bed" interface. 

 

5.5.3 Fracture energy 

 

The main parameter of the model, able to influence deeply the global behavior of the model, is 

certainly the tensile fracture energy   . 

As said before, this parameter represents the energy required to propagate a tensile fracture on a 

unitary area and it acts on the tensile behavior of the concrete. 
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5.6 Presentation of the main results: 

 

In order to evaluate the reliability of the adopted method, both NLF-analysis and SL-analysis, the 

results obtained from these FEM analysis are compared with the Stevin Lab-Test results. 
First of all, to have an immediate idea about the accuracy of the analysis load-displacement diagram 

is shown for each attempt. 

For each analysis, few aspects and output of the model will be discussed. All the consideration will 

be made using vector and contour plots, relatively to pre-fixed main points on the load-

displacement diagram. 

So, in the following sections will be discussed: 

 

 redistribution capacity: The redistribution capacity of the slab is a very important feature, 

since during the loading procedure and the subsequent deformation and cracking of the slab, 

the real bearing capacity of the slab can reduce, due to an inferior value of the effective 

width of the support that actually contributes to bear the load. This reduction of the active 

area of the support is relative to the spreading angle of the load inside the slab, measured 

from the loading point, toward the North support. Most of the European Building Codes sets 

this default spreading with a value of    . To evaluate the accuracy of this angle in this real 

case, it’s very useful to analyze the reaction forces in the interface layer over the simple 

supports. In this way one can detect easily how large is the portion of the supports that 

effectively contributes to bear the load. So, it has been used the vector plot of the interface 

tractions on the felt interface above the supports. Most of the attention will be given to the 

North support. 

 cracking behavior of the slab: this important aspect of the behavior of the slab regards the 

development of the cracks under an increasing load. First, a contour plot of the principal 

tensile strains is shown, taking into account four main strains points on the softening 

diagram, by adopting the fracture energy and crack bandwidth value. In this way the contour 

plot shows immediately the areas of the slab in which the concrete is still in an elastic or in a 

plastic state: this means that in these areas fractures can be present. To have a clearer 

representation of the direction and of the entity of the fractures, it’s useful to have also a 

vector plot of the same principal tensile strain. A comparison between the experimental 

observations and the results of NLFA and SLA will be made. Through a plot of the bottom, 

of the West lateral and of the frontal faces of the slab, for each of the three points indicated 

in the load-displacement diagram, one can see the spreading of the zone interested in the 

cracking. 

 behavior of the reinforcement bars: in order to verify that the failure in the slab is not due to 

a limited flexural capacity (in accordance with the experimental results in which the failure 

follows a shear mechanism), it has been observed the distribution of the principal tensile 

strains in the reinforcements. Moreover, in the present element the reinforcement ratio of the 

longitudinal bars is          . According to Kinnunen and Nylander [18], the present 

slab is characterized by an intermediate amount of longitudinal reinforcements and can be 

expected some yielding of the reinforcements in the immediate vicinity of the loaded 

column, but the crisis occurs before yielding of the entire slab reinforcement. In this case the 

predicted strength of the slab is lower than its flexural capacity. To have an immediate 
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evaluation of the distribution of the stress and of the behavior of the steel bars, contour plots 

of the principal tensile stresses are presented afterward, referring to the characteristic 

deformation previously calculated. 

 compressive behavior of the concrete: on the present analysis the compressive nonlinearity 

of the concrete has been ignored. Only the tensile cracking is included, as done in previous 

works (see [7]). So, in order to verify the goodness of this assumption, contour plot of the 

principal compressive stress of the concrete will be shown, adopting the average 

compressive strength of the laboratory specimens as reference value. 

 failure mechanism of the slab: with the overview of the distribution of the principal tensile 

strains in the slab and of the principal tensile stresses in the reinforcement, it is possible 

make hypothesis about which is the dominant failure mechanism. From the observation of 

the distribution of strains and stresses, relatively to the peak load and after the peak load, the 

main cracks and the critical sections can be individuated. 
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6. APPLICATION OF THE NON LINEAR 

ANALYSIS ON THE TOTAL MODEL 
 

The present NLFE-analysis adopt a Newton-Raphson modified method as iterative procedure, with a 

        displacement control step, with relative displacement criteria of      (option CONTIN 

ON). The fracture energy    and numerical crack bandwidth   parameters depend on the mesh 

discretization; it will be described later for each one. The Teflon layer has got               , 

as discovered on the previous numerical tests. The felt has got nonlinear behavior, according to the 

experimental test on specimens. 

In order to match the initial pre-stressing force on the Dywidag bars, a uniform axial stress     

depending on the mesh is applied to each truss element. 

At first, a NLF-analysis is run on total model with two elements on the height, so called 2x2 model, 

then 3x3 and finally 4x4. 

 

6.1 Coarse mesh: 2x2 total model 

 

Few analysis were run to fit experimental results in terms of load-displacement diagram and 

numerical output, by adopting different values for the tensile fracture energy    parameter. The 

following image shows the output for                            : 

 

 
Force-displacement graph for 2x2 total model for different value of Gf parameter 

 

The best agreement is reached adopting the following features: 

 

 tensile fracture energy:              ; 

 numerical crack bandwidth:         ; 

 normal Teflon interface stiffness:             ; 

 integration scheme: default for all the finite elements (see previous paragraphs); 

 maximum number of iteration equal to   . 

 pre-stress on the Dywidag bars:              . 
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The load-displacement graphs is here proposed: 

 

 
Force-displacement graph for 2x2 total model 

 

A good agreement can be reached only in terms of experimental peak-load; the response remains 

still stiffer, though the post-linear slope seems to be well caught. After the peak (at          of 

displacement) a sudden decay of the bearing capacity of the slab is detected and a flat plateau arises. 

Divergence occurs after about         . 

The numerical peak values are: 

 

 peak load:           ; 

 peak displacement:        . 

 

instead of: 

 

 experimental peak load:            for a variation of     ; 

 experimental peak displacement:         for a variation of      . 

 

Analysis does not converge on step   ,   ,   ,    and few steps don't reach convergence around 

between    and     and     and    . In terms of displacement it means from      to         

and from      to          respectively. Around the 150
th

 step (       ) no convergence is 

reached. 

The analysis uses about       for all the process. 

Three main points are selected on the load-displacement diagram: 

 

 point 1:                            ; 

 point 2:                            ; 

 point 3:                        ; 

 point 4:                             . 

 

They are shown in previous plot; the main output will be exposed in the next paragraphs. 
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6.1.1 Redistribution capacity: 

 

On the following image, four pictures of the felt reactions are shown by adopting a vector plot. 

They prove the redistribution of the load from the slab to the support, since the action on the felt is 

equal to the one on the support beam for vertical balance. 

The pictures show the plot about first step and three main points. 

 

 
Vector plot of felt reaction [MPa] for the main points 

 

By observing the previous vector plot of the interface traction, the trend of the reaction forces can 

be discovered. From the outset the tractions present a triangular shape and all the width of the 

support contributes to the bearing capacity. The first and the second plot show a linear development 

of the stresses: the shape remains the same, while the magnitude increases. Until the 2
nd

 main point 

(       ) the slab generally presents a linear behavior; increasing the load a clear redistribution of 

the tractions takes place: a progressive concentration of load on the middle of the interface is visible 

with increasing of the load, on the Y-direction. The same happens on the X-direction until the post-

peak point, where a strong concentration occurs on a little area on the symmetry axis. 

In other words, they become bigger in the central part of the North support, while they decrease in 

proximity of the right and left edges. Then they reach a tensile value: on the peak point a tensile 

reaction is already present. It has got a not negligible value (        ) and it start to arise from the 

lateral wings of the felt layer. It proofs the slab bending and the reduction of the contact area on the 

North support. So, theoretically we can say the outer parts don't contribute anymore to the bearing 

capacity of the slab. The present value doesn't agree with the supposed tensile felt behavior inside 

the Diana environment and further checks should be done. 

The high felt reaction on the South support, on the first step, is due to the pre-stressing procedure on 

phase one, where the slab bends and pushes on the South felt layer. In the subsequent steps, its 

reaction reduces, since it reaches negligible values. 

By plotting the part of interface in a compressive state, they are shown with red color (values higher 

than       - compression). It can be observed that the loading angle assumes a value from     (1st
 

main point) and     (4th
 main point), therefore the effective width of the active zone of the support 

changes from              to             . 
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Effective width due to the load spreading on the felt layer 

 

6.1.2 Cracking behavior of the slab 

 

In order to investiga the development of the cracking under an increasing load, contour and vector 

plot of the pricinpal tensile strain are used. Taking into account four points on the softening diagram 

calculated for a fracture energy               and        . 

 

     
(a)                                                        (b) 

Main values for principal tensile strain (a) and Hordijk softening diagram (b) 

 

For the three main points selected before, each plot shows the plots of top, bottom, front and lateral 

surface respectively. 

 

 
Contour plot of principal tensile strain for 460 kN 

εel,ult. [-] 0.000118 1.184E-04

0,5*εcr,ult [-] 0.001512 1.512E-03

εcr,ult [-] 0.003024 3.024E-03

5*εcr,ult [-] 0.015118 1.512E-02



98 
 

 

 
Contour plot of principal tensile strain for 785 kN 

 

 
Contour plot of principal tensile strain for 1480 kN (peak) 

 

 
Contour plot of principal tensile strain for 1428 kN (post-peak) 
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The previous contour plots show that the cracks have origin from the bottom side of the slab, 

directly below the loading plate, then for higher loads they propagate forward the simple support 

and transversally, assuming inclined direction as well. After they increase their width under the 

loading plate. 

This particular shape is so called butterfly shape for the characteristic form assumed. 

For a load of        , on the top face, the ultimate elastic strain         is exceeded around the 

loading plate and a longitudinal crack runs forwards the simple support. Flexural cracks don't 

appear on the South support, as seen on the partial model. Then a cracked zone spread under the 

loading plate, while flexural cracks don't appear neither during the post-peak trait  (as proofed by 

the West side plot). 

A vertical central crack is visible on the frontal side only on the peak point. It run over the whole 

thickness of the slab, while one other crack spreads from the bottom surface until the half height. 

The same pattern is visible on the post-peak point more clearly. 

On the West side a little cracked area is visible from the first main point, then cracks spread from 

the loading plate toward the simple support principally, investing more than half thickness of the 

slab. 

Now, to have a clearer representation of the direction and of the entity of the fractures, it's useful to 

have also a vector plot of the same principal tensile strain. 

The same surfaces are plotted: 

 

 
Vector plot of principal tensile strain for 460 kN 
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Vector plot of principal tensile strain for 785kN 

 

 
Vector plot of principal tensile strain for 1480 kN (peak) 

 

 
Vector plot of principal tensile strain for 1428 kN (post-peak) 
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For the load        the ultimate elastic strain is exceeded only on the bottom face, below the 

loading plate. So, a main transversal crack arises from the load position  and runs toward the lateral 

free edges. A second family of cracks is visible: they run in the Y-direction, so a longitudinal crack 

will arise later. These two main systems are related to the flexural behaviour of the slab. 

For a load of        it can be observed a concentration of strains that superior than         below 

the loading plate, on the bottom face, both in the North-South and in East-West direction. These 

two families of strain represent the flexural cracks in the two direction of flexion. In the laboratory 

experiment a crack of        width in the North-South direction in the middle from the support 

towards the span, passing the center of the load is discovered (crack 1) and a         wide crack 

on the East-West direction is observed (crack 2), close to the simple support. 

On the frontal face a concentration of strains superior than         are well visible on the middle. 

Other strains spread following an arc shape above the bottom surface of the slab. 

The other interesting zones are located in the lateral West face below the loading plate. Here, strain 

vectors are visible and they represent the flexural cracks. During the experiment no flexural cracks 

are detected. Above the South support strain vectors are present on the top layer, but with lower 

magnitude than        , so flexural cracks are not detected, as in the experimental test. 

The same pattern is better visible on the top surface plot, at the South support, both in Y and X 

direction. 

For this load, no strain vectors exceed the ultimate crack strain        , so no full opened cracks are 

detected. 

For a load of        , who represents the peak load, the ultimate crack strain         is exceed on 

the top face, along the North edge about        from the middle of the support. So, it proofs the 

formation a longitudinal cracks from the simple supports towards the loading plate. This fracture is 

also visible on the front side of the model, where the strain value is higher, while a vertical crack 

fracture is present left side of the frontal face. This is in good agreement with the experimental 

evidence, where a         for a through crack in the middle (crack 5) and         for cracks 

towards the East side, not fully through and starting from the bottom (crack 6), are evidenced. 

Indeed, the numerical cracks seem to follow a vertical direction, from the bottom surface to the 

upper one. It has to be noted that the numerical crack tend to spread on the edge of elements. 

On the bottom surface, various high deformations start to propagate in inclined directions (see 

figure below), suggesting an interaction between the transversal flexural cracking pattern and the 

formation of the shear cracking pattern below the loading plate. Indeed, they show a        

              of strain, two order higher than the ultimate crack strain        . 

So, a full opened crack system arises. This matches with the experiment, in which      for 

punching damage at the west side of the bottom face. Through this behavior it can be deduced the 

development of the shear cracking, since the new fractures grows faster than the previous flexural 

cracks and their disposition starts to individuate radial paths originating from the loading area. 
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Particular of vector plot of principal tensile strain for 1418 kN (peak) on the bottom surface 

 

On the lateral face the principal strain directions start to be inclined and this can be the beginning of 

the formation of a strut-and-tie bearing mechanism. 

On the centre of the frontal face one can notice a concentration a crack, with a value that is 

comparable to the others in the bottom side, but it doesn't agree with the experiment test: its width is 

        against        . 

However, the most important deformation is the one that takes place on the bottom face, right below 

the loading plate, increasing the trend observed in the previous step and showing the typical shear 

behavior that occurs near a peak point. In fact cracks keep on propagating in the bottom face in 

radial direction, while other different fractures appear directly below the loading plate, very close to 

the perimeter of the loading plate and mostly in transversal direction, but also in longitudinal 

direction. 

 

For a load of         (post-peak point), on the frontal face the previous vectors pattern does not 

show visible changing. This is in partial agreement with the lab test in which a crack arises from the 

top surface forward the bottom surface, without reaching the bottom surface; instead, lateral cracks 

start from the bottom and run until the half of the height of the slab. Although their width is quite 

well estimated (        instead        ), the middle crack width is about         wide.  

Again, on the top and bottom surface, the inclined vectors have one order higher strain than the 

flexural cracks, who spreads from the loading plate towards the North edge. The disposition of the 

strain vectors below the load evidences a clear truss-tie mechanism starting from the loading plate 

on the top surface and finishing close to the North support on the bottom surface. 

On the lateral side a new vector arises in inclined direction, below the load. The flexural vertical 

cracks don't appear, as during the experimental test. 

The presence of the strut-and-tie bearing mechanism and its evolution can be proved through a 

vector plot of the principal compressive strains   , showing clear inclined struts of concrete. 

 

 
Vector plot of principal compressive strain for peak (left-hand) and post-peak (right-hand) 
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On the basis of the previous observations about the cracking behavior of the total model of the slab, 

performed using the NLFEA, it can be stated that a quite good prediction, better than the partial 

model, of the general crack behavior can be obtained. The width of the cracks is well estimated 

generally, but the best result is the accordance with experiment about the starting point of the 

fractures and the propagation of the cracking pattern, for what it concerns the directions of flexural 

and shear cracks. Moreover, in  proximity of the peak load, it’s also possible to individuate features 

of shear cracks, like the direction and the rapidity of growing. This can be used as another data to 

individuate critical sections and to predict the failure mechanism. 

 

6.1.3 Behavior of the reinforcement bars 

 

In order to be sure that the slab does not fail due to its limited flexural capacity, the amount of 

yielded reinforcement bars is checked. The reinforcement ratio in longitudinal direction is    

      . According to Kinnunen and Nylanderthis would mean that some yielding of the 

reinforcements could be present in the direct vicinity of the load [5]. 

To have an immediate evaluation of the distribution of the stress and of the behavior of the steel 

bars, contour plots of the principal tensile stresses are presented afterward, referring to a unique 

yielding tension equal to        . 

Three main points are taken into account and for each one, four plots are shown:     and     for the 

top rebars, respectively on the upper and on the bottom plot (left hand);     and     for the bottom 

rebars, respectively on the upper and on the bottom plot (right hand). 

Through these contour plots it can be proved the hypothesis of Kinnunen and Nylander, since the 

reinforcement steel of the bars has an elastic behavior in most part of the slab and the only area in 

which one can notice a yielding is the one close to the loading point. In particular for an applied 

load of around        , the only bars who yields has a very limited length, below the loading 

point (red color). The yielding invests only the transversal bars. At the load of        , one of the 

transversal bar yields close to the North edge, testifying the opening of the flexural crack at the 

front face toward the simple support. 

No yielding occurs on the other bars. 
 

 
    and     contour plot for top and bottom reinforcement bars for 463 kN 
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    and     contour plot for top and bottom reinforcement bars for 785 kN 

 

 
    and     contour plot for top and bottom reinforcement bars for 1480 kN (peak) 

 

 
    and     contour plot for top and bottom reinforcement bars for 1428 kN (post-peak) 
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Adopting the principal tensile stress plots, we can observe the progressive redistribution of the 

stress inside the reinforcement bars. 

For the present plots four points are selected: the first point on the load-displacement graph and the 

aforementioned three main point. 

The first points allows us to discover the tensile stress distribution inside the rebars when the slab 

works in a ideal linear elastic state. Then, the following plots can show a gradually changing in 

value, position of the most loaded bars and distribution of the global stresses. 

Since we ask for principal tensile stress, only positive values will be shown. 

 

Observing the bottom rebars, the first point confirms the bending moment distribution on the slab: 

the highest values are located below the loading plate, then they spread both in X (forwards the free 

edges) and in Y direction (mainly forwards about the midspan). 

The 1
st
 main point (       ) agrees with the initial crack formation: the most stressed bars are 

below the loading plate, on the Y-direction, so longitudinal flexural crack could be arisen; on the X 

direction a lower stress is detected, but it's still visible around the loading plate and transversal 

cracks could be formed. After, on the peak point (        ) a clear concentration of tensile 

stresses can be found below the loading plate with higher value than the yielding stress. Also here, 

the tensile stress distribution confirms the cracking patterns: a red stress is visible close to the North 

free edge, on the Y-direction, matching with crack 5 and crack 6 formation. The highest stresses run 

in the Y-direction, from the loading plate forwards the lateral free edge, assuming the so called 

butterfly shape, like the cracking patterns do. 

On the post-peak point (        ) the butterfly distribution is more defined than the previous plot, 

however the tensile stress seems to reduce globally. It could proof the loss of bearing capacity of the 

whole slab after the peak. However, a yielded length for the transversal bar close to the North edge 

is detected. 

Observing the top rebars, the first point shows a clear concentration of tensile stress on the South 

beam, where the     distributed bending moment generated by the pre-stressing procedure is the 

highest. A similar global distribution can be seen on the 1
st
 main point, but more defined on the 

South support. Instead, during the peak point, a radical redistribution occurs: the highest stress 

involves on the transversal bars close to the North edge. This agrees with the process of formation 

of the vertical crack on the middle of the frontal face (crack 5). This trend increases on the post-

peak point, where a clear concentration of tensile stress spreads from the North support forwards the 

loading plate on the longitudinal bars. The tensile action around the loading plate seems to be 

negligible. Indeed, only short portions of X-rebars are invested by the phenomenon. 
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Principal tensile stress for the reinforcement bar on the top surface 

 

 
Principal tensile stress for the reinforcement bar on the bottom surface 

 

6.1.4 Compressive behavior of the concrete 

 

In order to verify the elastic state of the concrete for the compressive field, the principal 

compressive stress feature is investigated through a contour plot on four surfaces, for the three main 

selected before. 

Two main values are adopted: 

 

                    ; 

                    . 

 

Since, the compressive stress has conventionally a negative value, the green color shows the parts 

with a lower principal stress than                . Instead the blue color proofs the part who 

exceed this reference value. 
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Contour plot of principal compressive stress for 463 kN 

 

 
Contour plot of principal compressive stress for 785 kN 

 

 
Contour plot of principal compressive stress for 1480 kN (peak) 
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Contour plot of principal compressive stress for 1428 kN (post-peak) 

 

As shown by the previous plots, the principal compressive stress exceeds the compressive strength 

of the concrete only on a small area below the loading plate. It can mean a numerically sinking of 

the steel plate inside the concrete, as seen in some experimental tests [32]. 

So, thanks to these plots, we can demostrate that the assumption of a linear elastic concrete in 

compressione is adequate to describe the behavior of the conglomerate. This is is strengthened by 

the fact that also the 50% of     is exceeded in a limited surface of the slab. 

 

6.1.5 Cracking pattern and failure 

 

Based on the load-rotation curve for the tests performed by Kinnunen and Nylander [5], punching 

failure occurs before yielding of the entire slab reinforcement in case of intermediate reinforcement 

ratios. However, since the load is located close to the continuous support the truncated cone around 

the concentrated load cannot fully develop and the punching shear capacity is significantly 

improved. The following picture shows the distribution of the principal tensile strain at the peak 

load and after the peak load. The scale of the contour plots is held constant in order to see the 

development of the tensile strain area: 

 

 
Contour plot of the principal tensile strain on the bottom face on the peak (left-hand) and post-peak points(right-hand) 
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From the previous plots it is still hard to discover whether the slabs fails due to punching shear or 

by wide beam shear failure. No clear critical diagonal cracks have been observed around the 

concentrated load, that would suggest pure punching failure. Furthermore, no critical section across 

the entire width of the slab was visible, suggesting wide beam failure.  

However, the so called butterfly shape is well visible, with a North-South branch and an inclined 

limb from the load toward the simple support. 

A high concentration of tensile stress is detected below the loading plate and thin transversal cracks 

are visible on the Y-direction. 

 

  
                    (a)                                                                 (b) 

One-way and two-way shear failure 

 

A useful attribute to better discover cracking pattern inside the model is the principal normal crack 

strain         feature. 

It will be adopted only on the total model, since it's still implemented on SL-analysis. 

The best results can be obtained by adopting as reference two limit crack strains: 

 

                      
    

   
          ; 

                        
 

   
          . 

 

 
Contour plot of the principal normal crack strain on the bottom face on the peak 
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Contour plot of the principal normal crack strain on the bottom face on the post-peak 

 

The previous plots show a more defined cracking pattern below the loading plate. 

Here wide crack should be expected (red zone) and inclined crack spread from the load position 

forward the midspan on the bottom face. The longitudinal flexural cracks is well underlined 

together with the aforementioned front crack, on the North face of the slab. 

The real orientation of the crack is shown by the disc plots: 

 

 
Disc plot of the principal normal crack strain on the bottom face on the peak 
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Disc plot of the principal normal crack strain on the bottom face on the post-peak 

 

Thanks to this plot, some main cracks can be displayed on the bottom and frontal surface of the slab 

by following the orientation of the principal discs. 

Moreover, is has to be taken into account the previous observations about the distribution of the 

principal tensile strains and the yielding of reinforcements. So it's possible have an estimation of the 

position and the entity of the most relevant crack in the bottom, lateral and frontal faces of the slab, 

that is reported afterwards.  

 

A new way to detect cracks is here provided: 

 

  
Contour plot of the principal tensile strain on the bottom face on the post-peak (right-hand 

 and principal crack strain (left-hand) 

 

The cross-comparison between these plots helps to discover the effective cracking patterns on the 

slab. It shows a quite agreement with the experimental evidence: crack1, crack 2, crack 4, crack 5 

and crack 6 are displayed. There is no evidence related to crack 3 and crack 1 does not pass the load 

(as seen on the specimen). The following picture helps to focus the concept: 

 

crack 4 

crack 2 

crack 5 

crack 6 

crack 1 
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Cracking patterns detected during the experimental test 

 

Regarding to the crack width, crack1, crack 2 and 5 are displayed adopting the            

          range. Just applying the formula, we can get the maximum width for the cracks: 

 

                

 

we get: 

 

                                         

                                         

 

A comparison can be done looking to the following table: 

 

 
Crack width detected for slab S25T1 during the experimental test 

Specimen Fline [kN] Fpunt [kN] wmax [mm] Class. Where?

0.05 crack 5 front face - trhough crack in the middle

0.05 crack 6 front face - crack close to E side, from botton, not fully trough

0.10 crack 1 bottom face - NS crack from support into span, passing the load

0.25 crack 2 bottom face - EW close to the support

3.00 crack 4 bottom face - punching at W

0.20 crack 3 bottom face - NS crack at W-side at 48 cm from free edge

0 FailS25T1

W 

E 

S N 

crack 3 

crack 4 

crack 1 

crack 2 

crack 2 
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The obtained range is smaller than the one got for the partial 2x2 mesh and closer to the 

experimental evidences. 

The aforementioned cracks hold to a               range, regards to the width. Considering the 

present value as the maximum one, the prediction for crack 2 seems to be satisfactory, while crack 5 

and crack 6 are overestimated.  

Regarding to crack 4 (punching shear crack), it seems to hold to the                      

crack strain range. It equals to               of width. This range underestimates the crack 

width detected on the experiment. 

 

A match can be observed with the experimental evidence: 

 

 
Display for the main cracks on the bottom and frontal side 

 

As already said, the widest cracks are located in the area below the loading plate. At the bottom side, 

a longitudinal and straight fracture (crack 1) runs from the loading plate toward the frontal face and 

propagation is typical of a bending response that stresses the slab in transversal Y-direction. 

However, the entity of this fracture is much smaller than the other transversal fractures at the 

bottom side. Indeed, the biggest crack is located between the loading plate and the simple North 

support, following the Y-direction with an arc shape (crack 2). It seems to interest also the lateral 

faces of the slab, as plotted by blue discs spreading from the loading plate. Beside, the fact that this 

cracks is fast growing with the external load (see the distribution of the principal tensile strains), 

proves that it is important for the limit of the bearing capacity of the slab, since it could define a 

"critical section". Other smaller shear cracks are observed in the opposite direction with respect to 

the loading plate: they spread in a radial direction, below the load, forming the so called butterfly 

cracking pattern. The biggest one is underlined (crack 4). 

On the frontal face two main cracks are detected: the flexural crack in the middle (crack 5) and the 

inclined crack on the West side (crack 6). This one seems to continue in the bottom face following a 

radial direction. 

 

crack 1 

crack 5 

crack 6 

crack 4-2 
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So, these are clear evidences of the presence of wide cracks, that lead the slab to failure. Although 

these observation the way the slab fails in not completely defined: it seems to be a combination of 

different mechanisms of crisis. The global mechanism has for sure a relevant component in the 

crisis for reached Shear Capacity. The presence of the bending is important as well, in particular in 

transversal Y-direction, but does not represent a problem for the bearing limit of the slab, as 

established by the small amount of yielded rebars. 

 

However, also these plots are not clearly able to underline which specific failure mechanism occurs. 

The fact that neither punching shear nor wide beam shear failure occurs can be visualized by the 

deformed mesh shape. 

 

 
Deformed structure at the peak load: global overview 

 

  
(a)                                                                                              (b) 

Deformed structure at the peak load: (a) North front side and (b) West lateral side 

 

Hence, it seems most likely that a combination of both caused the concrete slab to fail. The same 

conclusion was drawn for the experiment: the three-dimensional nature of the problem and the 

combined flexural and diagonal cracks, make it incredibly difficult to determine the failure 

mechanism. However, the global cracking behavior predicted by the NLF-Analysis seemed to 

correspond well with the observations made during the experiment. 

It has to be noted that the deformed shape of the total model expresses a higher deformation for the 

slab, but a clear evidence of a truncated cone is not perfectly defined. 
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6.1.6 Dywidag bars pre-stressing  

 

Unlike the partial model, the South constraint system is made up three pre-stressed Dywidag bars 

and HEM300 support beam, that should simulate a fixed support by preventing the slabs rotation. 

During the experimental test, the pre-stressing level on the fixed end of each bar is measured. 

A further comparison between numerical results and experimental evidence can be done, by 

observing the two different trends: 

 

 
Experimental and numerical Dywidag pre-stressing 

 

A great difference can be observed, both in the force values and in the global trend. Indeed, the 

experimental results show a snap back behavior. 

The numerical model can't simulate this phenomenon and the initial adjustment phenomenon 

observed in the experimental setup seems to influence the results. Here an initial low slope of the 

experimental diagram is visible. 

Instead, the numerical output shows an initial stiffer trend, then a linear branch follows and close to 

the peak displacement of         a strong reduction of the pre-stressing is well visible. 

The pre-stressing value is around      , instead the       detected during the test. 

After that the graphs loses mean, since the NLFEA can't observe softening trends and then the pre-

stressing reduction due to the supervening crisis. Finally, due to the symmetry of the problem on the 

X-axis, East and West pre-stressing trends overlap, while the Middle bar presents slightly lower 

value (see Appendix A for more details). 

 

6.2 Finer mesh: 3x3 total model 

 

Few analysis were run to fit experimental results in terms of load-displacement diagram and 

numerical output, by adopting different values for the tensile fracture energy    parameter. The 

following image shows the output for                            : 
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Force-displacement graph for 3x3 total model for different value of Gf parameter 

 

The best agreement is reached adopting the following features: 

 

 tensile fracture energy:              ; 

 numerical crack bandwidth:        ; 

 normal Teflon interface stiffness:               ; 

 integration scheme: default for all the finite elements (see previous paragraphs); 

 maximum number of iteration equal to   ; 

 pre-stress on the Dywidag bars:              . 

 

The load-displacement graphs is here proposed: 

 

 
Main points on the load-displacement graph for 3x3 total model 

 

A good agreement can be reached both in terms of experimental peak-load and peak-displacement; 

however the response remains still stiffer, though the failure point seems to be well evaluated. It’s 
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visible a decay point, as detected also in the 3x3 partial model. After the peak (at          of 

displacement) a short post-peak behavior is detected. Divergence occurs after about         . 

The numerical peak values are: 

 

 peak load:           ; 

 peak displacement:        . 

 

instead of: 

 

 experimental peak load:            for a variation of     ; 

 experimental peak displacement:         for a variation of       . 

 

Regarding to the convergence trend the analyses doesn't satisfy the criteria from step   : a 

progressive drift occurs after      iterations (see the following plot). The analysis uses about      

for all the process. 

 

 
Convergence trend for 3x3 total model with NLFEA 

 

As said before, the 3x3 total model shows a clear decay point, as detected on the 3x3 partial model 

version. In order to study the behavior of the slab after the decay point, four main points are 

selected on the load-displacement diagram: 

 

 point 1:                            ; 

 point 2:                             ; 

 point 3:                        ; 

 point 4:                             . 

 

They are shown in previous plot; the main output will be exposed in the next paragraphs. 
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6.2.1 Redistribution capacity: 

 

On the following image, four pictures of the felt reactions are shown by adopting a vector plot. 

They prove the redistribution of the load from the slab to the support, since the action on the felt is 

equal to the one on the support beam for vertical balance. 

The pictures show the plot about four  main points: 

 

 
Vector plot of felt reaction [MPa] for the main points 

 

The usual triangular shaped felt reaction is visible on the 1
st
 main point, at       , but a strong 

redistribution of the load is detected after the decay point at        . The most of the load is 

carried by the middle part of the support, while the lateral edges show a tensile reaction of about 

        . Increasing the load, the redistribution trend seems to proceed: at         the load 

transfers on a smaller area, on the middle of the North interface. Here the maximum tension reaches 

a high value, pair to        a while the tensile stress is lower than the previous one (        ). 

At the last point the shape remains equal and the value are only a bit higher. It has to be noted that 

the tensile reaction of the felt is higher after the decay point than on the peak-load. Moreover, lower 

tensile stresses are detected inside this finer mesh. 

 

By plotting the part of interface in a compressive state, they are shown with red color (values higher 

than       - compression). It can be observed that the loading angle assumes a value from     (1st
 

main point) and     (4th
 main point), therefore the effective width of the active zone of the support 

changes from              to             . 
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Effective width due to the load spreading on the felt layer 

6.2.2 Cracking behavior of the slab 

 

In order to investiga the development of the cracking under an increasing load, contour and vector 

plot of the pricinpal tensile strain are used. Taking into account four points on the softening diagram 

calculated for a fracture energy               and       . 

 

     
(a)                                                        (b) 

Main values for principal tensile strain (a) and Hordijk softening diagram (b) 

 

For the four main points selected before, each plot shows the plots of top, bottom, front and lateral 

surface respectively. 

 

 
Contour plot of principal tensile strain for 775 kN 

εel,ult. [-] 0.000118 1.184E-04

0,5*εcr,ult [-] 0.001512 1.512E-03

εcr,ult [-] 0.003024 3.024E-03

5*εcr,ult [-] 0.015118 1.512E-02
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Contour plot of principal tensile strain for 1150 kN 

 

 
Contour plot of principal tensile strain for 1480 kN (peak) 

 

 
Contour plot of principal tensile strain for 1470 kN (post-peak) 
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The previous contour plots show that the cracks have origin from the bottom side of the slab, 

directly below the loading plate, then for higher loads they propagate forward the simple support 

and transversally, assuming inclined direction as well. After they increase their width under the 

loading plate. 

This particular shape is so called butterfly shape for the characteristic form assumed. 

The decay of the stiffness on         of load seems to be generated by a diffused cracking pattern 

spreading from the loading plate toward the free lateral edges. It spreads forward the lateral faces on 

the peak and post peak point: three main families are detected. The first one starts from the load 

position forward the North face and toward reaches the midspan. This one is well agreement with 

the experimental crack 1. The second one is underlined by the red area: here a strong concentration 

of tensile strain are detected. It could be proofed the formation of main cracks, like crack 2, crack 3 

and crack 4 who leads to the failure of the slab. The third one is made up by the radial crack system. 

On the top face the evolution of the cracking present an initial non-symmetric development: on 

        a clear longitudinal crack zone is visible on the left side of the middle axis. It starts from 

the frontal face. On the peak load the crack pattern present a symmetric shape and it is made by two 

different groups: the cracked red zone around the loading plate, and the longitudinal strips from the 

North side. The former could be related to the sinking phenomenon and the formation of a strut-

and-tie mechanism, while the latter follows the development of the vertical cracks on the frontal 

face. On the South beam it’s now visible a zone where the ultimate elastic strain is exceeded for the 

concrete. The same patterns are detected also on the post-peak. 

The evolution of the cracking patterns on the frontal side agrees with the previous description 

upward. After the decay a vertical crack appears suddenly in the middle of the support. It runs from 

the top surface towards the bottom. Only for higher load (       ) a new crack develops on the 

right side. A cracked zone is visible on the East side, starting from the bottom toward the half of the 

thickness. These cracking patterns seems to agree with the experimental evidence (crack 5 and 

crack 6), as explained by the following visual comparison: 

 

  
Prediction of the frontal cracks for the 3x3 total model with NLFEA: on the left-hand the experimental evidence, on the 

right-hand the principal tensile strain contour plot on the post-peak point. 

 

On the lateral side the flexural behavior is underlined by the vertical cracks system. It appears just 

after        from the bottom, investing only a third of the thickness. Then it runs up, reaching 

more than the half of the height of the slab on the peak load. No flexural cracks were detected 

during the experiment. 

Now, to have a clearer representation of the direction and of the entity of the fractures, it's useful to 

have also a vector plot of the same principal tensile strain. 

The same surfaces are plotted: 
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Vector plot of principal tensile strain for 775kN 

 

 
Vector plot of principal tensile strain for 1150 kN 

 

 
Vector plot of principal tensile strain for 1480 kN (peak) 
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Vector plot of principal tensile strain for 1470 kN (post-peak) 

  

Generally, as expected, the vector plots for the tensile strain are better defined for this finer mesh. 

For a load of        it can be observed a concentration of strains that superior than         below 

the loading plate, on the bottom face, both in the North-South and in East-West direction. These 

two families of strain represent the flexural cracks in the two direction of flexion. In the laboratory 

experiment a crack of        width in the North-South direction in the middle from the support 

towards the span, passing the center of the load is discovered (crack 1) and a         wide crack 

on the East-West direction is observed (crack 2), close to the simple support. 

On the frontal face a concentration of strains superior than         are well visible on the middle. 

Other strains spread following an arc shape above the bottom surface of the slab. 

The other interesting zones are located in the lateral West face below the loading plate. Here, strain 

vectors are visible and they represent the flexural cracks. During the experiment no flexural cracks 

are detected. Above the South support strain vectors are present on the top layer, but with lower 

magnitude than        , so flexural cracks are not detected, as in the experimental test. 

The same pattern is better visible on the top surface plot, at the South support, both in Y and X 

direction. 

For this load, no strain vectors exceed the ultimate crack strain        , so no full opened cracks are 

detected. 

The plots related to the decay point (       ) are really useful in order to better understand the 

development of the cracking pattern on the external surfaces of the slab. A strong increasing of the 

previous described crack systems is detected and new ones arise suddenly. 

First of all inclined vectors are visible on the bottom surface: it means that the shear bearing 

mechanism starts to govern the global behaviour, replacing the previous flexural regime. However, 

the flexural cracks develop: the longitudinal crack clearly reaches the frontal face, while the 

transversal cracks spread forward the lateral free edges following the Y- and radial direction from 

the load. This matches with the evidence of crack 1 during the experimental test. Another isolated 

radial crack spreads from the load toward the North support. 

The ultimate elastic stain is exceeded on the frontal face, instead on the lateral side             is 

reached: a vertical crack invests the thickness of the slab, as seen with crack 5. 
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For a load of        , the strut-and-tie mechanism is completely defined: on the bottom surface 

the magnitude of the inclined vectors overhang the others: they form a semi-circular crown below 

the loading plate. The            is largely exceeded with           for the maximum value. On 

the top surface, the shape of the inclined vectors has got a circular shape around the loading plate, 

as seen below, and the maximum value is      . 

On the frontal face now two main vertical cracks present a           strain of maximum 

magnitude. This matches with crack 5 and crack 6. 

Finally, close to the peak the failure arises, so the post-peak plots do not differ from the previous 

one. 

Through these plots it can be deduced the development of shear cracking, since the new fractures 

grows faster than the previous flexural cracks and their disposition starts to individuate radial paths 

originating from the loading area. 

 

 
Particular of vector plot of principal tensile strain for 1479 kN (peak) on the bottom surface 

 

The presence of the strut-and-tie bearing mechanism it's not supported by the following vector plots 

of the principal compressive strains   , since compressive struts form on the South side of the load 

position. 

 

 
Vector plot of principal compressive strain for 1480 kN (peak) and 1470 kN (post-peak) 

 

On the basis of the previous observations about the cracking behavior of the total model of the slab, 

performed using the NLFEA, it can be stated that a quite good prediction, better than the partial 

model, of the general crack behavior can be obtained. The best result is the accordance with 

experiment about the starting point of the fractures and the propagation of the cracking pattern, for 

what it concerns the directions of flexural and shear cracks. Moreover, in  proximity of the peak 

load, it’s also possible to individuate features of shear cracks, like the direction and the rapidity of 

growing. This can be used as another data to individuate critical sections and to predict the failure 

mechanism. 
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6.2.3 Behavior of the reinforcement bars 

 

To have an immediate evaluation of the distribution of the stress and of the behavior of the steel 

bars, contour plots of the principal tensile stresses are presented afterward, referring to a unique 

yielding tension equal to        . 

Three main points are taken into account and for each one, four plots are shown:     and     for the 

top rebars, respectively on the upper and on the bottom plot (left hand);     and     for the bottom 

rebars, respectively on the upper and on the bottom plot (right hand). 

Through these contour plots it can be proved the hypothesis of Kinnunen and Nylander, since the 

reinforcement steel of the bars has an elastic behavior in most part of the slab and the only area in 

which one can notice a yielding is the one close to the loading point. In particular for an applied 

load of around        , so only close to the peak, the only bars who yields has a very limited 

length, below the loading point (longitudinal bars) and close to the North edge (transversal bars). At 

the load of        , a higher length of the longitudinal bars below the load yields. 

No yielding occurs on the other bars. 
 

 
    and     contour plot for top and bottom reinforcement bars for 775 kN 

 

 
    and     contour plot for top and bottom reinforcement bars for 1304 kN (peak) 
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    and     contour plot for top and bottom reinforcement bars for 1344 kN (post-peak) 

 

Adopting the principal tensile stress plots, we can observe the progressive redistribution of the 

stress inside the reinforcement bars. 

For the present plots four points are selected again. The first points allows us to discover the tensile 

stress distribution inside the rebars when the slab works in an ideal linear elastic state. Then, the 

following plots can show a gradually changing in value, position of the most loaded bars and 

distribution of the global stresses. 

Since we ask for principal tensile stress, only positive values will be shown. 

Observing the bottom rebars, the tensile stresses invest primarily the area below the loading plate, 

then at        it spreads toward the North edge and in the Y-direction from the load position. On 

the peak load (       ) the interested area is bigger and two main radial branches run from the 

loading plate to the lateral free edge. A series of transversal bars are highly stressed toward the mid 

span. This plot allows to discover a radial crack pattern and a longitudinal crack, as crack 1. It has 

to be noted the high stresses bigger than the ultimate stresses for the reinforcements. 

On the top rebars, as seen on the bottom, the highest stress is concentrated on the load position and 

on the North edge. This trend increases with higher load, indeed the transversal bars between load 

and North support carry the most of the tension, while on the peak a huge stress is detected below 

the loading plate, in the longitudinal directions. Once again, it could be related to the kinematical 

compatibility between concrete and steel: indeed the total model allows a bigger deflection under 

the load, since the South constraint has got its own deformability. 
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Principal tensile stress for the reinforcement bar on the top surface 

 

 
Principal tensile stress for the reinforcement bar on the bottom surface 

 

6.2.4 Compressive behavior of the concrete 

 

In order to verify the elastic state of the concrete for the compressive field, the principal 

compressive stress feature is investigated through a contour plot on four surfaces, for the three main 

selected before. 

Two main values are adopted: 

 

                    ; 

                    . 

 

Since, the compressive stress has conventionally a negative value, the green color shows the parts 

with a lower principal stress than                . Instead the blue color proofs the part who 

exceed this reference value. 
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Contour plot of principal compressive stress for 755 kN 

 

 
Contour plot of principal compressive stress for 1155 kN 

 

 
Contour plot of principal compressive stress for 1304 kN (peak) 
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Contour plot of principal compressive stress for 1344 kN (post-peak) 

 

As shown by the previous plots, the principal compressive stress exceeds the compressive strength 

of the concrete only on a small area below the loading plate. It can mean a numerically sinking of 

the steel plate inside the concrete, as seen in some experimental tests (see Eva lansgoth test - cit). 

So, thanks to these plots, we can demostrate that the assumption of a linear elastic concrete in 

compressione is adequate to describe the behavior of the conglomerate. This is is strengthened by 

the fact that also the 50% of     is exceeded in a limited surface of the slab. As seen only on the 

denser meshes, on the North support a compressed area (green color) is visible: it could mean the 

strut-and-tie formation once again. Indeed, the interested area fits with the vector plot      on the 

peak point. 

 

6.2.5 Cracking pattern and failure 

 

The following picture shows the distribution of the principal tensile strain at the peak load and after 

the peak load. The scale of the contour plots is held constant (                  ) in order 

to see the development of the tensile strain area: 

 

 
Contour plot of the principal tensile strain on the bottom faceon the peak (left-hand) and post-peak points (right-hand) 
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These plots allow us to discover and underline in a better way the mode in which the slab fails. 

Indeed, with a denser mesh we are able to detected a highly strained arch shaped area between load 

and North support. Crossing this information with the well visible radial cracking pattern, it's 

possible to prefer a punching shear failure than a one-way mode: a critical region who triggers the 

crisis is detected. Moreover, the frontal cracks and the longitudinal fracture are visible as well. 

The crack behaviour is well estimated regarding to the shape. 

 

A useful attribute to better discover cracking pattern and define the crack widths inside the model is 

the principal normal crack strain         feature. 

The best results can be obtained by adopting as reference two limit crack strains (related to the 

experimental widths): 

 

                      
    

  
          ; 

                        
 

  
          . 

 

 
Contour plot of the principal normal crack strain on the bottom face on the peak 

 

 
Contour plot of the principal normal crack strain on the bottom face on the post-peak 
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These plots match with the principal tensile strain images: circular, radial and longitudinal crack 

pattern are well underlined. 

As expected,  a more defined cracking pattern below the loading plate and close to the support is 

shown. Here wide crack should be expected (red zone) and inclined crack spread from the load 

position forward the midspan on the bottom face. The longitudinal flexural cracks is well 

underlined together with the aforementioned front crack, on the North face of the slab. 

Since, no big differences are detected between peak and post-peak, only post-peak plot will be 

shown in order to display the real orientation of the cracks through disc plot: 
 

 

 
Disc plot of the principal normal crack strain on the bottom face on the post-peak 

 

 
Disc plot of the principal normal crack strain on the frontal face on the post-peak 

 

Thanks to this plot, some main cracks can be displayed on the bottom and frontal surface of the slab 

by following the orientation of the principal discs. 

Moreover, is has to be taken into account the previous observations about the distribution of the 

principal tensile strains and the yielding of reinforcements. So it's possible have an estimation of the 

position and the entity of the most relevant crack in the bottom, lateral and frontal faces of the slab, 

that is reported afterwards.  

 

A new way to detect cracks is here provided: 
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Contour plot of the principal tensile strain on the bottom face on the post-peak (right-hand 

 and principal crack strain (left-hand) 

 

The cross-comparison between these plots helps to discover the effective cracking patterns on the 

slab. It shows a good agreement with the experimental evidence: crack1, crack 2, crack 4, crack 5 

and crack 6 are displayed. There is no evidence related to crack 3, but on the principal tensile strain 

plot a red area arises on the lateral side of the load position. 

 

 
Cracking patterns detected during the experimental test 

crack 4 

W 

E 

S N 

crack 3 

crack 4 

crack 1 

crack 2 

crack 2 

crack 2 

crack 5 

crack 6 

crack 1 
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Regarding to the crack width, crack1, crack 2 and 5 are displayed adopting the            

          range. Just applying the formula, we can get the maximum width for the cracks: 

 

                

 

we get: 

 

                                        

                                        

 

A comparison can be done looking to the following table: 

 

 
Crack width detected for slab S25T1 during the experimental test 

 

The obtained range is bigger than the experimental evidences. 

The aforementioned cracks hold to a               range, regards to the width, the crack 

openings are overestimated.  

Regarding to crack 4 (punching shear crack), it seems to hold to the                      

crack strain range. It equals to               of width. This range well matches the crack width 

detected on the experiment. 

As detected, the widest cracks are located in the area below the loading plate. At the bottom side, a 

longitudinal and straight fracture (crack 1) runs from the loading plate toward the frontal face and 

propagation is typical of a bending response that stresses the slab in transversal Y-direction. 

However, the entity of this fracture is much smaller than the other transversal fractures at the 

bottom side. Indeed, the biggest crack is located between the loading plate and the simple North 

support, following the Y-direction with an arc shape (crack 4). It seems to interest also the lateral 

faces of the slab, as plotted by blue discs spreading from the loading plate. Beside, the fact that this 

cracks is fast growing with the external load (see the distribution of the principal tensile strains), 

proves that it is important for the limit of the bearing capacity of the slab, since it could define a 

"critical section". Other smaller shear cracks are observed in the opposite direction with respect to 

the loading plate: they spread in a radial direction, below the load, forming the so called butterfly 

cracking pattern. The biggest one is underlined (crack 4). 

On the frontal face two main cracks are detected: the flexural crack in the middle (crack 5) and the 

inclined crack on the West side (crack 6). This one seems to continue in the bottom face following a 

radial direction. 

 

So, these are clear evidences of the presence of wide cracks, that lead the slab to failure. Through 

these observation the way the slab fails is better defined: it causes by a punching shear mechanisms 

Specimen Fline [kN] Fpunt [kN] wmax [mm] Class. Where?

0.05 crack 5 front face - trhough crack in the middle

0.05 crack 6 front face - crack close to E side, from botton, not fully trough

0.10 crack 1 bottom face - NS crack from support into span, passing the load

0.25 crack 2 bottom face - EW close to the support

3.00 crack 4 bottom face - punching at W

0.20 crack 3 bottom face - NS crack at W-side at 48 cm from free edge

0 FailS25T1
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of crisis. So, the global mechanism has for sure a relevant component in the crisis for reached Shear 

Capacity. The presence of the bending is important as well, in particular in transversal Y-direction, 

but does not represent a problem for the bearing limit of the slab, as established by the small 

amount of yielded rebars. 

 

Moreover, also these plots better underline which specific failure mechanism occurs and it can be 

visualized by the deformed mesh shape: 

 

 
Deformed structure at the peak load: global overview 

 

   
(a)                                                                                              (b) 

Deformed structure at the peak load: (a) North front side and (b) West lateral side 

 

The denser mesh allows to better fit the strong local deformation caused by the expulsion of a 

truncated cone body from the slab under the load, as underlined by the previous plot. 
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6.2.6 Dywidag bars pre-stressing 

 

The Dywidag pre-stressing plot evidences the same trend as seen before: 

 

 
Experimental and numerical Dywidag pre-stressing 

 

6.3 The finest mesh: 4x4 total model 

 

The finest mesh is adopted on the total model as well. An analyses is with the tensile fracture 

energy    proposed by the FIP-CEB Model Code 2010, pair to              . The analyses 

adopts the same parameters of the previous ones, here reported once again: 

 

 tensile fracture energy:              ; 

 numerical crack bandwidth:        ; 

 normal Teflon interface stiffness:               ; 

 integration scheme: default for all the finite elements (see previous paragraphs); 

 maximum number of iteration equal to   ; 

 pre-stress on the Dywidag bars:              . 

 

However, for reason of computational time the analyses is stopped after one week of work. The 

following image shows the output: 
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Force-displacement graph for 4x4 total model for standard value of Gf parameter 

 

A "final" displacement of           is reached, so only    steps are analyzed. However, it's 

interesting to note a better agreement between this mesh and the experimental results for what 

regards the average slope after the elastic field. 

The following pictures shows how the finer mesh, the better prediction seems to be done in terms of 

load-displacement diagram: 

 

 
Force-displacement graph for 2x2, 3x3 and 4x4 mesh for total model 

 

For what regards the convergence behaviour the related plot is here reported: 
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Convergence trend for 4x4 mesh on the total model 

 

Despite the short range investigated, the convergence trend shows a good behaviour, with the most 

of the steps that converge. 

It has to be noted that the present analyses were run on a faster computer. A "Dell Precision T3600 

64bit" were used, instead a "Dell Precision T3400 32 bit". 

 

6.4 Tension stiffening: 

The high amount of tensile fracture energy required by the numerical analysis exceed the standard 

one proposed by the CEB-FIP Model Code 2010. It has to be noted that the amount of fracture 

energy depends on the crack spacing. If the element size is larger than the crack spacing, the 

amount of fracture energy may be increased, according to [Belletti 2010 vedi VAN Helmert)]. 

However, the required values for the numerical test is               instead           

    for the coarse mesh, so      , and it reaches      for the finer mesh 3x3, with 

             .  

This can be explained through the tension stiffening phenomenon. The usual assumption is that the 

stress carrying capacity of the reinforced concrete gradually decrease and is exhausted once the 

reinforcement starts yielding. This implies that the ultimate crack strain       of the tension-

stiffening curve equals the yield strain     of the steel rebars. [citare Jrot invernizzi e company]. 

By applying that on the Hordijk tension softening model, one can discover the required fracture 

energy for each crack bandwidth: 

 

 
Fracture energy range for tension-stiffening 

 

 
Fracture energy values for the numerical models 

Hordijk model h=150 mm h=95 h=75

Gf(1) [N/mm] 0.36 0.23 0.18

Gf(2) [N/mm] 0.43 0.27 0.22

Hordijk model h=150 mm h=95 h=75

Gf(diana) [N/mm] 0.450 0.265 /
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Fracture energy trend and tension stiffening range for total model 

 

Since two different diameters are used for the reinforcement bars, two distinct yield strains     are 

used. However, the first two adopted values seems to follow this rule, since the adopted    is really 

close to the obtained values for tension stiffening. The absence of the result related to the finest 

mesh doesn't allow us to fit the last value and then establish if the tension stiffening relation is 

always followed. 
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7. CALIBRATION OF THE PARTIAL MODEL 
 

 

NLFE-analysis are run on the partial model in order to compare the outputs with the SL-analysis 

results. As will be explained later, the combination of two different nonlinear behaviour (both in 

compression and in tension) is still not implemented in the sequentially linear code. In order to run 

the following analysis on the same model and get comparable results, it must be defined an 

equivalent linear model for the felt, taking into account the tensile reaction, on both the models 

(NLFEA and SLA). 

The following paragraph will be focused on the best definition for a common linear behaviour of 

the felt interface. 

 

7.1 Application of the Nonlinear Analysis on Partial model with Linear felt: 

 

A comparison between linear and nonlinear felt behavior is executed using the NLFE-analysis 

method. 

As proposed before, a nonlinear behavior is performed in order to: (a) trace the compressive 

behavior of the specimens, (b) model the no-tensile reaction capacity of the felt interface. Indeed, 

by adopting a linear model, we assume an elastic response both in compression and in traction. 

This model has the advantage to be very simple, but it involves a strong tensile reaction during the 

slab deformation: when the external parts bend due to the slab's deformation the linear felt interface 

starts to react. 

Although a nonlinear model for the felt interface has been already implemented inside the Diana 

environment, an investigation is necessary, since this model is not adoptable with SL-analysis yet. 

 

SL-analysis can be run only on the partial model. As said, a nonlinear compressive behavior with 

no tensile reaction is still not implemented for this kind of analysis. 

Accordingly, a linear model for felt interface must be used. 

Moreover, due to the marked nonlinearities of the whole system it involves effects difficult to 

predict and evaluate a priori. So, it results useful to better understand the effects on the whole slab's 

response adopting the clamped model with a linear interface, by running NL-analysis to fix 

unknown parameters previously to run SL-analysis. 

The Teflon interface's stiffness is assumed like the total model, so               . 

Regarding to the felt model, after many trials appear that the felt behavior involves a significant 

influence on the output of analysis. 

Three different values are assumed for the normal stiffness of the felt interface: 

 

            , which corresponds to the initial stiffness on the nonlinear felt diagram; 

            , which corresponds to the average stiffness for the nonlinear felt diagram; 

            , which corresponds to the highest stiffness on the nonlinear felt diagram. 
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As it will be shown later, since the average and maximum tensile stresses are not negligible, this 

model has to be used carefully, by analyzing the influence of this contribution on the whole slab's 

response in terms of force-displacement diagram and distribution of the felt's reactions. 

 

 
Nonlinear felt model for stress-displacement behavior 

 

This evaluation is carried out by using the partial model, like for future SL-analysis, where only a 

linear felt interface is adopted. 

The 2x2 partial model is used, adopting as features: 

 

 tensile fracture energy,              ; 

 numerical crack bandwidth,         ; 

 normal stiffness of the Teflon interface,               ; 

 full linear felt behaviour. 

 

The first comparison is made looking at the Load-displacement diagram. Indeed, by adopting 

different values of felt stiffness, it can changes first of all the slope for the post-linear trait and, after, 

the peak and post-peak behavior. Instead no big differences are detected during the linear field and 

for the last trait, as shown by the following image: 

 

 
Load-Displacement diagram for different linear stiffness for the felt interface 



141 
 

The following tables resume the peak load and peak displacement found for three different values 

of the normal felt stiffness, assuming a full linear behavior (both in traction and in compression). 

 

 
Normal stiffness and peak-load relation 

 

 
Normal stiffness and peak-displacement relation 

 

  
(a)                                                    (b) 

Peak load (a) and peak displacement (b) trend for different felt stiffness 

 

Both the peak load and the peak displacement trend belong to a relative close range, but following a 

linear relation seems to appear.  

It has to be noted that a higher linear stiffness tends to increase the Peak Load. This proofs the 

influence of the tensile reactions on the global behavior of the slab and on the bearing capacity of 

the system. The lowest stiffness tries to avoid this phenomenon, since no tensile reaction can be 

provided in reality. 

The output in terms of felt reaction are plotted in the following images, focusing our attention on 

the peak point and after this. The main points are marked on the load-displacement diagram: 

 

Kn, felt [N/mm3] Fmax [kN]

15.20 -990.36

34.00 -1025.49

75.00 -1072.03

Kn, felt [N/mm3] dmax [kN]

15.20 -3.06

34.00 -3.15

75.00 -3.60
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Selected points for peak and post-peak plots for different felt stiffness 

 

 
Felt reaction at 101

th
 (peak) and 131

th
 (post peak) step for kn=15.20 N/mm

3 
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Felt reaction at 101

th
 (peak) and 131

th
 (post peak) step for kn=34.00 N/mm

3 

 

 

Felt reaction at 121
th

 (peak) and 161
th

 (post peak) step for kn=75.00 N/mm
3 

 

As visible thought to these plots, the felt stiffness influences the whole reaction on the interface 

support. Due to the strong nonlinearities of the whole system, inserting a different linear behavior 

involves effects hard to predict and to understand a priori. 

This concept can be schematized through the present images: 

 

 
Springs in series 
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By viewing the first spring (  ) as the linear felt interface and the second one (  ) as the whole 

nonlinear slab system, the reaction on the felt layer depends on the two different mechanical 

behavior. So, each system influence each other mutually. 

The only feature that can be easily predictable is the maximum tensile reaction for the felt: 

increasing the linear stiffness, the tensile reactions increases too. So, as visible below, the maximum 

tensile reaction is lower for the smallest normal stiffness value. It's about          on the peak 

point, more than the half of the maximum compressive value during the same point (        ). 

Moreover, the following pictures help to focus few examples of the tensile reaction for different felt 

interface on the peak point marked on the previous force-displacement diagram: 

 

 
(a)                                                                        (b) 

 
(c) 

Tensile reaction for felt interface with: 15.20 N/mm
3
 (a), 34.00 N/mm

3
 (b) and 75.00 N/mm

3
 (c) as normal stiffness 

 

A different behavior is shown: higher is the normal stiffness, greater is the magnitude of the 

reaction (both in compression and in traction). Moreover, the distribution of tensile reaction and the 

global interface's behavior change, as visible looking at plot (a) and plot (c). The highest stiffness 

involves a butterfly distribution of the felt reaction over the entire length of the interface, while the 

lowest one underlines a traction limited to the external edge of the layer. 

This specific pattern takes place also in the total model. So, by viewing to these images, the lowest 

normal stiffness could be chosen for the felt interface. 

 

Then, in order to select the better value of this parameter, a comparison between the last results and 

the total model with nonlinear felt and same features is presented: 
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Total model with nonlinear felt vs. partial model with linear felt 

 

For the peak point on the total model we obtain: 

 

         for the peak load; 

          for the peak displacement. 

 

So, these values are not so different than the previous ones, obtained with a partial model and linear 

felt. The initial trend is closed to the other ones, but a different behavior is detected immediately 

after the linear trait. 

Moreover, the maximum magnitudes are quite similar, both in compression and in traction, 

respectively           and         . The global distribution of the felt reaction seems to be 

quite similar on the peak point and after it. 

 

 
Felt reaction at 120

th
 (peak) and 130

th
 (post peak) step for total model with nonlinear felt
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Once again, it seems that the better matching can be reached by choosing the lowest value for the 

linear felt stiffness. 

However, through this sample it seems possible to match the total model's diagram, by reducing the 

linear stiffness. So, another analysis is carried out adopting           .  

 

 
Load-displacement diagram for 7.00 N/mm

3
 linear felt 

 

Viewing to the figure above, a lower felt stiffness does not produce better results, rather the slab's 

response seems stiffer and higher in terms of peak load. 

So, a linear felt with             stiffness is definitively chosen. 

Now, a comparison between total model with nonlinear felt and partial model with linear felt is 

made and studied. 

The same fracture energy value is adopted, equal to           .  

 



147 
 

 
Total model with nonlinear felt vs. partial model with linear felt for Gf= 0.150 N/mm 

 

As observed before, the partial model with linear felt has a stiffer response. It could be due to the 

full tensile reaction for the interface: a not negligible area works with tensile reaction during the 

whole analysis, changing the real mechanism. 

Moreover, for the same fracture energy value, a higher peak load is reached by the partial model, 

instead the peak displacement seems to be the same for both the models. 

The linear trait, until the first millimeter of displacement, overlaps. It proofs that the constraints 

system assumed for the partial model (perfect continuous constraint) is really closed to the 

experimental setup, at least inside the elastic field. 

A first comparison can be made plotting the principal tensile strain distribution: four mean values 

are plotted. By using the same fracture energy and crack bandwidth parameters, the points on the 

softening diagram coincide for both model, so a possible different behavior will be visible through a 

different tensile strain distribution. 

Two main points are selected on the load-displacement diagram for both models: peak and post 

peak. 

The main points on the Hordijk softening model are reported in the following table: 

 

 
                                                              (a)                                                  (b) 

Hordijk softening diagram and relative strain values table 

 

For every plot the shown surfaces are: 

 

 top surface in the upper left window; 

εel,ult. [-] 0.000118 1.184E-04

0,5*εcr,ult [-] 0.000555 5.545E-04

εcr,ult [-] 0.001109 1.109E-03

5*εcr,ult [-] 0.005545 5.545E-03
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 bottom surface in the upper right window; 

 front North side in the lower left window; 

 West side in the lower right window. 

 

For the partial model with linear felt we get: 

 

 
Principal tensile strain plot at 101

th
 (peak) for partial model 

 

 
Principal tensile strain at 151

th
 (post-peak) for partial model 
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For the total model with nonlinear felt we get: 

 

 
Principal tensile strain plot at 100

th
 (peak) for total model 

 

 
Principal tensile strain plot at 150

th
 (post-peak) for total model 

 

The plots show a good matching between total modal and partial model, both for the peak and the 

post-peak distribution, regarding to the principal tensile strain. 

The most visible difference is visible on the full clamped side: here, for the partial model, vertical 

flexural cracks occur. Indeed, a yellow area is present. 

By plotting the principal crack strain another comparison is shown. Moreover, the entity of the 

flexural cracks on the clamped side is quantifiable. 
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For the partial model: 
 

 
Principal crack strain at 101

th
 (peak) for partial model 

 

 
Principal crack strain at 151

th
 (post-peak) for partial model 
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For the total model: 

 

 
Principal crack strain at 100

th
 (peak) for partial model 

 

 
Principal crack strain at 150

th
 (post-peak) for partial model 

 

As one can see, also the principal crack disc plots show a good matching for partial and total model: 

the same "butterfly cracking pattern" is present. However, it seems to be wider on the partial model. 

It has to be reported that the crack patterns present a non-symmetric distribution, both on the top 

and bottom surface, despite the models are symmetric as geometry and reinforcements. The 

Newton-Rapshon method adopted for the iteration should give symmetric outputs. Moreover, the 

distribution is mirrored than the one shown by the experimental test. 

The most visible difference occur at the South support beam: inside the partial model a cracking 

pattern is now well visible, where the continuous support is modeled.  

During the experimental test no flexural cracks are identified, but only wider cracks than         

can be discovered. 

So, in order to understand if these cracks are wider than         the following plot is shown by 

adopting a fixed contour value. 

By using the formula: 
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one can obtain the requested value. 

The following plot shows how "visible cracks" occur on the clamped side of the partial model. The 

same is found both on the top, lateral and fontal side and bottom; this is different from what 

happened during the experimental test: 

 

 
Principal crack strain plot at 151

th
 (post-peak) for partial model on the main surfaces 

 

However, flexural cracks are visible only close to the full clamped side: only the first line of 

elements present a deep cracking due to the high tensile stresses. 

Cracks are detected on the lateral West side as well, unlike the experimental evidence. 

Instead, cracked zones are well predicted close to the loading plate both on the top and the bottom 

surface and on the frontal North face. 

A manipulation of the ultimate tensile strength    was tried for some lines of elements close to 

clamped side. A not negligible length has to be modified in order to avoid flexural cracking, so the 

sophistication of the model is considered too heavy and this solution is discarded. 

Finally, by adopting a coarse mesh, as the presented now, it's acceptable to consider the following 

model quite close to experimental setup: it's hard to avoid cracking on the clamped side, where high 

tensile stresses occur due to the bending action. 

By adopting a finer mesh it will be analyzed if a better result will occur. 

 

It has to be reported the marked difference between nonlinear felt on the total model and linear felt 

on the partial model, by viewing the felt response since the 1
st
 step. 

Traction starts to arise already after one step: 
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Felt reaction at 1

st 
step for linear felt on partial model 

 

 
Felt reaction at 1

st 
step for nonlinear felt on total model 

 

Finally, a comparison between the peak values is shown in the following table: 

 

 
Peak values for total and partial model 

 

This shows a good matching regarding to the peak displacement, instead the peak load exposes a 

higher gap, however under the   . 

 

After all these consideration, we can assume the partial model as a reliable tool to run SL-analysis, 

by adopting linear felt with minimum stiffness and clamped South side, since the global behavior 

seems to be well similar with the total model adopted for the NL-analysis. 

 

Model Fmax [kN] dmax [mm]

Partial 2x2 -990.358 -3.06

Total 2x2 -928.869 -2.97
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The next step consists in increasing the fracture energy in order to compare the output with the total 

model run with NL-analysis and get useful information for the next SL-analysis. 

During the previous analysis,               is found as best value to match the load peak with 

the experimental one on the total model. 

So, the same value is inserted inside the "2x2" partial model. 

The following image shows the Load-displacement graphs for two different fracture energy 

magnitude: 

 

 
Load-displacement diagram for 2x2 partial model with Gf=0.450 N/mm 

 

A higher    fracture energy makes the concrete "more ductile" (see figure below) on the tensile side 

and it can involve higher principal crack strain; moreover a bigger peak point occurs. The different 

trend starts from the end of the linear trait. Instead the global shape and trend seem to remain 

unchanged. 

 

 
(a)                                                                                    (b) 

Hordijk costening model for Gf=0.150 N/mm (a) and Gf=0.450 N/mm (b) 
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By showing the principal crack strain disc plot the cracking patterns seem to be more symmetric 

and more extended. This is due to the higher fracture energy: a more ductile concrete involves a 

slightly stiffer structure after each step, so the damage can spread for a longer displacement and the 

cracks too. 

 

 
Principal crack strain disc plot at 161

th
 (peak) for partial model 

 

 
Principal crack strain disc plot at 291

th
 (post-peak) for partial model 
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Principal crack strain plot at 331

th
 (post-peak) for partial model 

 

Wider cracked zones than the previous fracture energy value are visible, as expected. 

Another useful comparison is shown by the 2x2 total model with the same fracture energy value of 

the previous partial model. 

The force-displacement graphs are here reported: 

 

 
Load-displacement diagram for 2x2 partial model and 2x2 total model with Gf=0.450 N/mm 

 

Until the first cracking the trends are similar: it proofs the likeness between full clamped side and 

Dywidag constraint system, at least for the first trait. 

After the total model presents a lower stiffness and a smaller peak value; instead the global shape 

seems to be similar. 

The following pictures show the principal crack disc plot for the selected points on the main 

surfaces: 
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Principal crack strain disc plot at 140

th
 (peak) for total model 

 

 
Principal crack strain disc plot at 280

th
 (post-peak) for total model 

 

On the peak point wider cracking patterns are detected on the partial model, both on the top around 

the loading plate, on the bottom surfaces below the load, on the frontal e lateral side. 

The same happens on the post-peak point, but now the crack patterns presents a non-symmetric 

scheme on the frontal side for the total model. 

It has to be remembered that both the partial and the total model has got a symmetric reinforcement 

bars scheme. 

The following pictures shows as no flexural cracks are detected close to the South support, like 

during the experimental test: 
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Principal crack strain plot at 280

th
 (post-peak) for total model 

 

So, though thanks to this comparison some conclusion can be taken:  

 

 the linear model involves some changing inside the initial setup, but the results here reported 

show good agreement with the previous ones with a total model with nonlinear felt 

behavior; 

 the partial model requires a lower fracture energy to fit the experimental load-displacement 

diagram. 

 

Further analysis both on partial and on total model will give more information about the mesh 

sensitivity of outputs between the two different way of modeling the South constraint and the felt 

behaviour. 
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8. APPLICATION OF NONLINEAR ANALYSIS ON 

THE PARTIAL MODEL 
 

 

The present analysis adopt a Newton-Raphson modified method for the iterative procedure, with a 

        displacement control step, with relative displacement criteria of      (option CONTIN 

on). The fracture energy    and numerical crack bandwidth   parameters depend on the mesh 

discretization; it will be descripted later for each one. The Teflon layer has got               , 

as discovered on the previous tests. The felt has got a linear behavior to match this features with the 

future SL-analysis. 

At first, a NLF-analysis is run on the partial model with two elements on the height, so called 2x2 

model, then 3x3 and finally 4x4. 

In order to show the progressive evolution of the bearing behavior of the slab four points are 

analyzed on the basis of load percentages. It has been noted that the better ratio are:          

    . A post-peak point will be selected where possible. 

The main features are investigated: 

 

 felt reaction     (vector and contour plot); 

 principal elastic tensile strain    (vector and contour plot); 

 elastic tensile stress of reinforcement     and     (contour plot); 

 principal tensile stress of reinforcement    (vector plot); 

 principal elastic compressive stress    for the concrete (contour plot); 

 principal crack strain    
   for the concrete (disc plot). 

 

8.1 Coarse mesh: 2x2 partial model 

 

Three values for the main parameter, i.e. tensile fracture energy    are used:               

             . The highest value of     comes from the same total version, e.g. 2x2 mesh. The 

present model has got the following features: 

 

 tensile fracture energy:                          ; 

 numerical crack bandwidth:         ; 

 normal felt interface stiffness:                 ; 

 normal Teflon interface stiffness:               ; 

 integration scheme: default for all the finite elements (see previous paragraphs); 

 maximum number of iteration equal to   . 

 

Only the felt model (linear instead nonlinear) and the maximum amount of iterations change. 

The following load-displacement graphs is here shown: 
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Comparison of partial and total model with same Gf fracture energy 

 

The shapes are quite similar, though the partial model expresses a stiffer post-elastic trend. 

However, for the partial model the peak point is much higher. Finally, the post-peak behavior shows 

a softening behavior of the slab and the analysis runs until       of displacement.  

Instead, for the total model divergence occurs. 

In order to fit the maximum load, e.g. the peak-load, on the force-displacement diagram, the main 

parameter    is reduced to           . 

Then, the comparison between NLFE-analysis and experimental test is shown in the following 

image: 

 

 
Force-displacement graph for 2x2 partial model 
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Now, only a good agreement with the experimental peak-load is reached; the response remains still 

stiffer. After the peak a sudden decay of the bearing capacity of the slab is detected and a flat 

plateau arises, the divergence occurs. 

The numerical peak values are: 

 

 peak load:           ; 

 peak displacement:        . 

 

instead of: 

 

 experimental peak load:            for a variation of     ; 

 experimental peak displacement:         for a variation of      . 

 

Analysis does not converge on step   ,    and few steps don't reach convergence around 90
th

 step 

and from 124 to 146. In terms of displacement it means     ,     ,      and from      to         

respectively. From 151
th

 step (       ) no convergence is reached. 

The analysis uses about 5000 iteration until 151
th

 step, about 10000 for all the process. 

Three main points are selected on the load-displacement diagram: 

 

 point 1:                            ; 

 point 2:                            ; 

 point 3:                        ; 

 point 4:                   . 

 

They are shown in previous plot; the main output will be exposed in the next paragraphs. 

 

8.1.1 Redistribution capacity: 

 

On the following image, four pictures of the felt reactions in the Z-direction      are shown by 

adopting a vector plot. They prove the redistribution of the load from the slab to the support, since 

the action on the felt is equal to the one on the support beam for vertical balance. 

The pictures show the plot about first step and three main points. 
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Vector plot of felt reaction [MPa] for the main points 

 

By observing the previous vector plot of the interface traction, the trend of the reaction forces can 

be discovered. From the outset the tractions present a triangular shape and all the width of the 

support contributes to the bearing capacity. A linear behavior can be detected between point 1 and 

point 2, since the shape seems to increase in the same way. Until the 2
nd

 main point (       ) the 

slab generally presents a linear behavior; increasing the load a clear redistribution of the tractions 

takes place: a progressive concentration of load on the middle of the interface is visible with 

increasing of the load, on the Y-direction. The same happens on the X-direction until the post-peak 

point, where a strong concentration occurs on a little area on the symmetry axis. 

In other words, they become bigger in the central part of the North support, while they decrease in 

proximity of the right and left edges. Then they reach a tensile value: on the peak point a tensile 

reaction is already present. It has got a not negligible value (        ) and it start to arise from the 

lateral wings of the felt layer. It proofs the slab bending and the reduction of the contact area on the 

North support. So, theoretically we can say the outer parts don't contribute anymore to the bearing 

capacity of the slab. 

By plotting the part of interface in a compressive state, they are shown with red color (values higher 

than       - compression). It can be observed that the loading angle assumes a value from     (1st
 

main point) and     (4th
 main point), therefore the effective width of the active zone of the support 

changes from              to             . 
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Effective width due to the load spreading on the felt layer 

Clearly, the effective width calculated by the Dutch Code was considerably underestimated. 

 

 
Effective width due to load spreading according to NLFEA 

and spreading width due to Dutch Code 

 

The same conclusion holds for the bearing capacity predicted by the shear equations of the Dutch 

Code, which was        while the experiment showed significant higher peak load (       ). 

This difference is due to the fact that the shear equations in the Dutch Code are mostly derived from 

tests on beams without transverse reinforcement, whereas the results obtained on slabs are 

influenced by considerable redistribution because of larger widths and the effect of transverse 

reinforcement [5]. 

 

8.1.2 Cracking behavior of the slab 

 

In order to investiga the development of the cracking under an increasing load, contour and vector 

plot of the pricinpal tensile strain are used. Taking into account four points on the softening diagram 

calculated for a fracture energy               and        . 
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(a)                                                        (b) 

Main values for principal tensile strain (a) and Hordijk softening diagram (b) 

 

For the three main points selected before, each plot shows the plots of top, bottom, front and lateral 

surface respectively. 

 

 
Contour plot of principal tensile strain for 540 kN 

 

 
Contour plot of principal tensile strain for 738 kN 

 

εel,ult. [-] 0.000118 1.184E-04

0,5*εcr,ult [-] 0.001112 1.112E-03

εcr,ult [-] 0.002224 2.224E-03

5*εcr,ult [-] 0.011118 1.112E-02
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Contour plot of principal tensile strain for 1418 kN (peak) 

 

 
Contour plot of principal tensile strain for 1241 kN (post-peak) 

 

The previous contour plots show that the cracks have origin from the bottom side of the slab, 

directly below the loading plate, then for higher loads they propagate forward the simple support 

and transversally, assuming inclined direction as well. After they increase their width under the 

loading plate. 

This particular shape is so called butterfly shape for the characteristic form assumed. 

For a load of        , on the top face, the ultimate elastic strain         is exceeded around the 

loading plate and a longitudinal crack runs forwards the simple support. Flexural cracks appear on 

the full clamped side, on the South support. Then more cracks spread forward the North support, 

while flexural cracks seem to be unchanged on the continuous support (as proofed by the West side 

plots for the same load values). 

A vertical central crack is visible on the frontal side only on the peak point. It run over the whole 

thickness of the slab, while one other crack spreads from the bottom surface until the half height. 

The same pattern is visible on the post-peak point. 
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On the West side a little cracked area is visible from the first main point, then cracks spread from 

the loading plate forward the simple support principally, investing more than half thickness of the 

slab. 

Now, to have a clearer representation of the direction and of the entity of the fractures, it's useful to 

have also a vector plot of the same principal tensile strain. 

The same surfaces are plotted: 

 

 
Vector plot of principal tensile strain for 540 kN 

 

 
Vector plot of principal tensile strain for 738 kN 
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Vector plot of principal tensile strain for 1418 kN (peak) 

 

 
Vector plot of principal tensile strain for 1241 kN (post-peak) 

  

On the first point, at       , all the strains are lower than the ultimate elastic strain        , expect 

on the bottom surface. Here longitudinal vectors are detected below the load toward the lateral faces: 

it means a Y-direction crack. Another interesting family of vectors follows the Y-direction, along 

the longitudinal axis of the slab. It runs from the load position forward the North face.  

For a load of        it can be observed a concentration of strains that superior than         below 

the loading plate, on the bottom face. It proofs a first formation of cracks in the transversal and in a 

inclined direction. These strains represent the flexural cracks in the transversal direction. In the 

laboratory experiment a crack on the East-West direction is observed (crack 2), close to the simple 

support. 

On the frontal face a concentration of strains superior than         are well visible on the middle. 

Other strains spread following an arc shape above the bottom surface of the slab. 

The other interesting zones are located in the lateral West face below the loading plate. Here, strain 

vectors are visible and they represent the flexural cracks. During the experiment no flexural cracks 

are detected. The other vectors on the top surface are due to the high tensile stresses from the 

continuous support and they take place along the South edge. 
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For this load, no strain vectors exceed the ultimate crack strain        , so no full opened cracks are 

detected. 

For a load of        , who represents the peak load, the ultimate crack strain is exceed on the top 

face, along the North edge about        from the middle of the support. So, it proofs the 

formation a longitudinal cracks from the simple supports towards the loading plate. This fracture is 

also visible on the front side of the model, where the strain value is higher, while a vertical crack 

and an inclined fracture are present, respectively on the right and left side of the frontal face. This is 

in good agreement with the experimental evidence, where a         for a through crack in the 

middle (crack 5) and         for cracks towards the east side, not fully through and starting from 

the bottom (crack 6), are evidenced. Indeed, the numerical cracks seem to follow a vertical direction, 

from the bottom surface to the upper one. It has to be noted that the numerical crack tend to spread 

on the edge of elements. 

On the bottom surface, various high deformations start to propagate in inclined directions (see 

figure below), suggesting an interaction between the transversal flexural cracking pattern and the 

formation of the shear cracking pattern below the loading plate. Indeed, they show a        

              of strain, two order higher than the ultimate crack strain        . 

So, a full opened crack system arises. This matches with the experiment, in which      for 

punching damage at the west side of the bottom face. Through this behavior it can be deduced the 

development of the shear cracking, since the new fractures grows faster than the previous flexural 

cracks and their disposition starts to individuate radial paths originating from the loading area. 

 

 
Particular of vector plot of principal tensile strain for 1418 kN (peak) on the bottom surface 

 

Finally, a crack system seems to start from the load position towards the North free edge. This is 

again in agreement with the experimental results, where        for a north-south crack in the 

middle from the support towards the span, passing the center of the load (crack 1) arises. 

On the lateral face the principal strain directions start to be inclined and this can be the beginning of 

the formation of a strut-and-tie bearing mechanism. 

On the centre of the frontal face one can notice a concentration a crack, with a value that is 

comparable to the others in the bottom side, but it doesn't agree with the experiment test: its width is 

        against        . 

However, the most important deformation is the one that takes place on the bottom face, right below 

the loading plate, increasing the trend observed in the previous step and showing the typical shear 

behavior that occurs near a peak point. In fact cracks keep on propagating in the bottom face in 

radial direction, while other different fractures appear directly below the loading plate, very close to 
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the perimeter of the loading plate and mostly in transversal direction, but also in longitudinal 

direction. 

 

For a load of         (post-peak point) the distribution and the entity of the deformations is lower 

or equal than the same of the previous observation on the top and lateral side, instead on the bottom 

and frontal surface they assume higher values. 

In specific, on the frontal face the previous vectors now run on all the height of the slab and only 

two main lateral cracks are shown. This is in partial agreement with the lab test in which a crack 

arises from the top surface forward the bottom surface, without reaching the bottom surface; instead, 

lateral cracks start from the bottom and run until the half of the height of the slab. Although their 

width is well estimated (        instead        ), the middle crack width is one order higher.  

Again, on the top and bottom surface, the inclined vectors have one order higher strain than the 

flexural cracks. Their disposition evidence a clear truss-tie mechanism starting from the loading 

plate on the top surface and finishing close to the North support on the bottom surface. 

On the lateral side the same vector pattern is well visible as before. The flexural vertical cracks are 

shown as well: this kind of cracks don't appear during the experimental test. 

The presence of the strut-and-tie bearing mechanism and its evolution can be proved through a 

vector plot of the principal compressive strains, showing clear inclined struts of concrete. 

 

 
Vector plot of principal compressive strain for peak (left-hand) and post-peak (right-hand) 

 

On the basis of the previous observations about the cracking behavior of the slab, performed using 

the NLFA, it can be stated that a quite good prediction of the general crack behavior can be 

obtained. The width of the cracks is well estimated generally, but the best result is the accordance 

with experiment about the starting point of the fractures and the propagation of the cracking pattern, 

for what it concerns the directions of flexural and shear cracks. Moreover, in  proximity of the peak 

load, it’s also possible to individuate features of shear cracks, like the direction and the rapidity of 

growing. This can be used as another data to individuate critical sections and to predict the failure 

mechanism. 

8.1.3 Behavior of the reinforcement bars 

 

In order to be sure that the slab does not fail due to its limited flexural capacity, the amount of 

yielded reinforcement bars is checked. The reinforcement ratio in longitudinal direction is    

      . According to Kinnunen and Nylanderthis would mean that some yielding of the 

reinforcements could be present in the direct vicinity of the load. 
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To have an immediate evaluation of the distribution of the stress and of the behavior of the steel 

bars, contour plots of the principal tensile stresses are presented afterward, referring to a unique 

yielding tension equal to        . 

Three main points are taken into account and for each one, four plots are shown:     and     for the 

top rebars, respectively on the upper and on the bottom plot (left hand);     and     for the bottom 

rebars, respectively on the upper and on the bottom plot (right hand). 

Through these contour plots it can be proved the hypothesis of Kinnunen and Nylander, since the 

reinforcement steel of the bars has an elastic behavior in most part of the slab and the only area in 

which one can notice a yielding is the one close to the loading point. In particular for an applied 

load of around        , the only bars who yields has a very limited length, below the loading 

point (red color). At the load of        , the transversal external bar yields, testifying the opening 

of the flexural crack at the front face toward the simple support. 

No yielding occurs on the other bars. 
 

 
    and     contour plot for top and bottom reinforcement bars for 540 kN 

 

 
    and     contour plot for top and bottom reinforcement bars for 740 kN 
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    and     contour plot for top and bottom reinforcement bars for 1420 kN (peak) 

 

 
    and     contour plot for top and bottom reinforcement bars for 1240 kN (post-peak) 

 

Adopting the principal tensile stress plots, we can observe the progressive redistribution of the 

stress inside the reinforcement bars. 

For the present plots four points are selected: the first point on the load-displacement graph and the 

aforementioned three main point. 

The first points allows us to discover the tensile stress distribution inside the rebars when the slab 

works in a ideal linear elastic state. Then, the following plots can show a gradually changing in 

value, position of the most loaded bars and distribution of the global stresses. 

Since we ask for principal tensile stress, only positive values will be shown. 

 

Observing the bottom rebars, the first and the second point confirms the average linear behavior of 

the slab: the vector plots have the same shape, but different values. Regarding to the bending 

moment distribution on the slab: the highest values are located below the loading plate, then they 

spread both in X (forwards the free edges) and in Y direction (forwards about the midspan). 

The 1
st
 main point (       ) agrees with the initial crack formation: the most stressed bars are 

below the loading plate, on the Y-direction, so transversal cracks could be arisen. After, on the peak 
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point (        ) a clear concentration of tensile stresses can be found below the loading plate 

with higher value, close to the yielding stress. Also here, the tensile stress distribution confirms the 

cracking patterns: a red stress is visible close to the North free edge, on the X direction, matching 

with crack 5 and crack 6 formation. The highest stresses run in the Y-direction, from the loading 

plate forwards the lateral free edge, assuming the so called butterfly shape, like the cracking 

patterns do. 

On the post-peak point (        ) the butterfly distribution is more defined than the previous plot, 

however the tensile stress seems to reduce globally. It could proof the loss of bearing capacity of the 

whole slab after the peak. 

Observing the top rebars, the first point shows a clear concentration of tensile stress on the South 

side, where the continuous support takes place. The same global distribution can be seen on the 1
st
 

main point, but with higher values. Instead, during the peak point, a radical redistribution occurs: 

the highest stress involves on the longitudinal bars close to the continuous support and on the 

transversal bars close to the simple support. This agrees with the process of formation of the vertical 

crack on the middle of the frontal face (crack 5). Unlike the first two plots, now the highest stresses 

are located close to the North free edge. This trend increases on the post-peak point, where a clear 

concentration of tensile stress spreads from the North support towards the loading plate. The tensile 

action around the loading plate can be provided by the "residual" kinematical compatibility between 

loading plate and concrete. Indeed, though the tangential stiffness of the Teflon layer is really low, 

for high displacement a non negligible horizontal action can be transferred, producing a plane 

tensile stress field on the top surface. 

 

 
Principal tensile stress for the reinforcement bar on the top surface 
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Principal tensile stress for the reinforcement bar on the bottom surface 

 

8.1.5 Compressive behavior of the concrete 

 

In order to verify the elastic state of the concrete for the compressive field, the principal 

compressive stress feature is investigated through a contour plot on four surfaces, for the three main 

selected before. 

Two main values are adopted: 

 

                    ; 

                    . 

 

Since, the compressive stress has conventionally a negative value, the green color shows the parts 

with a lower principal stress than                . Instead the blue color proofs the part who 

exceed this reference value. 

 

 
Contour plot of principal compressive stress for 540 kN 
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Contour plot of principal compressive stress for 738 kN 

 

 
Contour plot of principal compressive stress for 1418 kN (peak) 

 

 
Contour plot of principal compressive stress for 1241 kN (post-peak) 
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As shown by the previous plots, the principal compressive strain never exceed the compressive 

strength of the concrete, not even the half. Only below the loading plate a green presents a stress 

between                of modulus, during the post-peak point. 

So, thanks to these plots, we can demostrate that the assumption of a linear elastic concrete in 

compressione is adequate to describe the behavior of the conglomerate. This is is strengthened by 

the fact that also the 50% of     is never reached on high volume of elements inside the slab. 

 

8.1.5 Failure mechanism of the slab 

 

Based on the load-rotation curve for the tests performed by Kinnunen and Nylander, punching 

failure occurs before yielding of the entire slab reinforcement in case of intermediate reinforcement 

ratios. However, since the load is located close to the continuous support the truncated cone around 

the concentrated load cannot fully develop and the punching shear capacity is significantly 

improved. From the contour plots of the bottom face it becomes clear that the principal tensile 

strains are less developed at the side of the continuous support. The following picture shows the 

distribution of the principal tensile strain at the peak load and after the peak load. The scale of the 

contour plots is held constant in order to see the development of the tensile strain area: 

 

 
Contour plot of the principal tensile strain on the bottom face on the peak (left-hand) and post-peak points (right-hand) 

 

From this contour plot of the principal tensile strains on the bottom face of the slab it can be shown 

the evolution of the strains: after the Peak Load, a sudden discontinuity between the distribution and 

the values of the principal tensile strains is very evident and demonstrates that the slab has been 

completely subjected to failure. 
However, from the previous plots it is still hard to discover whether the slabs fails due to punching 

shear or by wide beam shear failure. No clear critical diagonal cracks have been observed around 

the concentrated load, that would suggest pure punching failure. 

Furthermore, no critical section across the entire width of the slab was visible, suggesting wide 

beam failure.  

In order to better show the cracking pattern and try to understand the relation bewteen it and the 

ultimate elastic strain, an useful tool can be adopted: the principal crack strain. It's implemented in 
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the lastest version of iDiana and allows to show the cracks througt disc plot. So, the attention is 

focused on the last main point, after the peak, and the principal crack strain will be shown using 

disc plot and it will be compared with the principal tensile strain distribution. This allows us to 

better understan the correlation between these two features, as shown in the following pictures: 

  

 
Principla crack strain disc plot (left-hand) 

and principal tensile strain contour plot (right-hand) on the post-peak point 

 

A useful attribute to better discover cracking pattern inside the model is the principal normal crack 

strain         feature. 

The best results can be obtained by adopting as reference two limit crack strains: 

 

                      
    

   
          ; 

                        
 

   
          . 

 

The range is held constant for the peak and post-failure point marked on the graph. By plotting the 

contour plot with ten levels we can discover the develpment of the cracking patterns on the slab: 

 

 
Contour plot of the principal normal crack strain on the bottom face on the peak 
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Contour plot of the principal normal crack strain on the bottom face on the post-peak 

 

Between peak load and post-failure point, a strong increasing and developing of the principal 

normal crack strain is observed between North support and load position, on the bottom surface. 

Two clear blue strips develop from the load toward the lateral free edge, following radial direction.  

 

 
Disc plot of the principal normal crack strain on the bottom face on the peak 

 

 
Disc plot of the principal normal crack strain on the bottom face on the post-peak 
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A new way to detect cracks is here provided: 

 

  
Contour plot of the principal tensile strain on the bottom face on the post-peak (right-hand 

 and principal crack strain (left-hand) 

 

The cross-comparison between these plots helps to discover the effective cracking patterns on the 

slab. It shows a quite agreement with the experimental evidence: crack1, crack 2, crack 3, crack 5 

and crack 6 are displayed. There is no evidence related to crack 3 and crack 1 does not pass the load 

(as seen on the specimen). The following picture helps to focus the concept: 

 

 
Cracking patterns detected during the experimental test 

crack 4 

W 

E 

S N 

crack 3 

crack 4 

crack 1 

crack 2 

crack 2 

crack 2 

crack 5 

crack 6 

crack 1 
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Regarding to the crack width, crack1, crack 2 and 5 are displayed adopting the            

          range. Just applying the formula, we can get the maximum width for the cracks: 

 

                

we get: 

                                         

                                         

 

A comparison can be done looking to the following table: 

 

 
Crack width detected for slab S25T1 during the experimental test 

 

The aforementioned cracks hold to a               range, regards to the width. Considering the 

present value as the maximum one, the prediction for crack 2 seems to be satisfactory, while crack 5 

and crack 6 are overestimated. Regarding to crack 4 (punching shear crack), it seems to hold to the 

                     crack strain range. It equals to               of width. It's in 

good agreement with what is seen during the test. So, a good agreement in terms of cracking 

behaviour and crack widths is detected.  

Underlining the found cracks, these plots seems to prefer a two-way failure than a one-way crisis, 

though the two events could influences mutually. 

 

Main cracks plot on the bottom surface 

Specimen Fline [kN] Fpunt [kN] wmax [mm] Class. Where?

0.05 crack 5 front face - trhough crack in the middle

0.05 crack 6 front face - crack close to E side, from botton, not fully trough

0.10 crack 1 bottom face - NS crack from support into span, passing the load

0.25 crack 2 bottom face - EW close to the support

3.00 crack 4 bottom face - punching at W

0.20 crack 3 bottom face - NS crack at W-side at 48 cm from free edge

0 FailS25T1

crack 5 

crack 1 
crack 4-2 

crack 6 
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The fact that neither punching shear nor wide beam shear failure occurs can be visualized by the 

deformed mesh shape. 

 

 
Deformed structure at the peak load: global overview 

 

 
(a)                                                                                              (b)  

Deformed structure at the peak load: (a) North front side and (b) West lateral side 

 

Hence, it seems most likely that a combination of both caused the concrete slab to fail. The same 

conclusion was drawn for the experiment: the three-dimensional nature of the problem and the 

combined flexural and diagonal cracks, make it incredibly difficult to determine the failure 

mechanism. However, the global cracking behavior predicted by the NLF-Analysis seemed to 

correspond well with the observations made during the experiment. 

 

8.2 Finer mesh: 3x3 partial model 

 

As seen before, the total model seems to require a higher fracture energy to reach the same Peak 

Load of the experimental test. So, lower values are adopted also for this test on the 3x3 partial 

model. 

By adopting a                  and               the load-displacement diagrams 

result: 
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Force-displacement graph for 3x3 partial model for different Gf values 

 

The best agreement is reached with the following features: 

 

 tensile fracture energy:              ; 

 numerical crack bandwidth:        ; 

 normal felt interface stiffness:                 ; 

 normal Teflon interface stiffness:               ; 

 integration scheme: default for all the finite elements (see previous paragraphs); 

 maximum number of iteration equal to   . 

 

Due to the high computational time, as will be shown in the following paragraphs, the number of 

iteration for each step is reduced from 50 to 25, otherwise the needed time becomes too high. 

The felt is has a linear behavior. 

The comparison between the best NLF-analyses and experimental test is shown in the following 

image: 
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Force-displacement graph for 3x3 partial model 

 

Here, the experimental peak-load is quite matched; the response remains still stiffer and the 

divergence occurs before a clear post-peak behavior could start. It is visible a strong decay and 

followed by a subsequent lower stiffness, around          of displacement. However, it seems 

the slab finds a different way to bear the load. 

Looking at the previous diagrams for a lower value of the fracture energy   , one can discover the 

great sensitivity of the analysis related to this parameter: for a variation of                  

the gap between the “final” displacement reached is around        , showing a response much 

weaker. Instead, the global trend seems to be not influenced in the same way, at least since the 

decay of strength does not occur. 

For reason of required computational time no more analysis are run after these two attempts. 

Assuming the last point as the peak point, the numerical peak values are: 

 

 peak load:           ; 

 peak displacement:        . 

 

instead of: 

 

 experimental peak load:            for a variation of     ; 

 experimental peak displacement:         for a variation of      . 

 

It has to be noted that this denser mesh produces the same approximation in terms of peak load, but 

a better prediction of the peak-displacement, while for what regards the first main point the same 

displacement is selected (       ) and the correspondent loads match each other (       ). 

 

Regarding to the convergence behavior, the analyses practically can no more satisfy the criteria 

after the 43
th

 step, as shown by the following plot: 
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Convergence trend for 3x3 partial model: points above the red line mean no reached convergence 

 

The analyses uses about 5000 iteration for all the process, the half with respect to the 2x2 model. 

The lower amount of iterations is related to the smaller number required for each step. 

Unlike the previous mesh, the three main points are selected on different positions on the load-

displacement diagram: (1) since a post-peak behavior is not shown by the analyses, (2) in order to 

better understand what happens inside the slab after the sudden decay. The points are: 

 

 point 1:                            ; 

 point 2:                            ; 

 point 3:                             ; 

 point 4:                        ; 

 

They are shown in previous plot; the main output will be exposed in the next paragraphs. 

 

8.2.1 Redistribution capacity: 

 

On the following image, four pictures of the felt reactions are shown by adopting a vector plot. 

They prove the redistribution of the load from the slab to the support, since the action on the felt is 

equal to the one on the support beam for vertical balance. 

The pictures show the plot about first step and three main points. 
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Vector plot of felt reaction [MPa] for the main points 

 

By observing the previous vector plot of the interface traction, first of all a more defined trend of 

the felt interface can be discovered with respect to the previous mesh. From the outset the tractions 

present a triangular shape and all the width of the support contributes to the bearing capacity. Until 

the 2
nd

 main point (       ) the slab generally presents a linear behavior (like in previous 2x2 

analyses), increasing the load a clear redistribution of the tractions takes place: a progressive 

concentration of load on the middle of the interface is visible with increasing of the load, on the Y-

direction. The same happens on the X-direction until the peak point, where a strong concentration 

occurs on a little area on the symmetry axis. 

In other words, they become bigger in the central part of the North support, while they decrease in 

proximity of the right and left edges. Then they reach a tensile value: on the third main point (decay 

point) a tensile reaction is already present. It has got a not negligible value (        ) and it start 

to arise from the lateral wings of the felt layer. It proofs the slab bending and the reduction of the 

contact area on the North support. So, theoretically we can say the outer parts don't contribute 

anymore to the bearing capacity of the slab. 

Comparing to the previous coarser mesh, on the North support the distribution of stresses on the felt 

seems to be stronger as phenomenon, since the compressed area of the interface layer is smaller and 

the maximum tension is           of modulus, instead          . Instead, inside the linear field 

the same values are detected for both the meshes: the maximum compression reaches          

and no tensile stress is present. So looking to these plots, we can say that the meshes work in the 

same way for this aspect until now. 

Moreover, the shape seen for the present mesh agrees with the reaction plot of the felt on the post-

peak point of the 2x2 mesh. It could proof the sudden failure of the slab (3x3 mesh) and then the 

subsequent divergence of the analyses.  

 

By plotting the part of interface in a compressive state, they are shown with red color (values higher 

than       - compression). It can be observed that the loading angle assumes the same values 

found before in terms of angles, the effective width of the active zone of the support slightly 

changes from the previous and it equal to             . However, for the denser mesh, a 

bigger surface of interface becomes inactive, i.e. it starts to react with tensile tension, on the 

external edge (see the blue tongue on the peak point). 
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Effective width due to the load spreading on the felt layer 

Once again the effective width calculated by the Dutch Code was considerably underestimated.  

 

Cracking behavior of the slab 

In order to investigate the development of the cracking under an increasing load, contour and vector 

plot of the pricinpal tensile strain are used. Taking into account four points on the softening diagram 

calculated for a fracture energy               and       . 

 

     
(a)                                                        (b) 

Main values for principal tensile strain (a) and Hordijk softening diagram (b) 

 

For the four main points selected before, each plot shows the plots of top, bottom, front and lateral 

surface respectively. 

 

εel,ult. [-] 0.000118 1.184E-04

0,5*εcr,ult [-] 0.001463 1.463E-03

εcr,ult [-] 0.002926 2.926E-03

5*εcr,ult [-] 0.014628 1.463E-02
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Contour plot of principal tensile strain for 538 kN 

 

 
Contour plot of principal tensile strain for 733 kN 

 

 
Contour plot of principal tensile strain for 1237 kN (decay) 
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Contour plot of principal tensile strain for 1501 kN (peak) 

 

The previous contour plots show that the cracks have origin from the bottom side of the slab once 

again, with the characteristic butterfly shape as seen before located below the loading plate. The 

future development follows a different pattern: for higher loads areas with a principal tensile strain 

higher than             run from the load to the lateral free edges and toward the North support, 

without reaching the frontal face. Their shape is well defined and could underline the formation of: 

(1) a radial cracking system spreading below the load and (2) longitudinal cracks due to the flexural 

component. The big difference denoted between the plots during the        of load, and the ones 

with the higher value of        , can explain the abrupt and strong decay of the structural 

response of the slab in terms of load-displacement. The sudden formation of these two crack 

patterns could sensibly reduce the stiffness and the way in which the slab bears the applied load. 

This takes a further confirmation thanks to the felt reaction plot, which shows a different footprint 

of the slab on the North interface. For the load of         (peak load) the crack patterns globally 

increase: few radial cracks and the longitudinal fractures with strain higher than         reach the 

lateral edges and the frontal North face respectively. Moreover, some transversal cracks appear, 

starting from the loading plate and running forward the East and West side. The red area, who 

means very opened cracks (           , arises between the loading plate and the North support. It 

has a bigger extension than the previous one and results more oriented on the transversal direction. 

It could mean a compressed strut formation. 

The second main point allows to show the formation of flexural vertical cracks on the continuous 

support, on the top surface. Thus, the ultimate crack strain         is exceed around the loading plate: 

a arc shaped area spreads around it for about 180 degree. Longitudinal cracks seem to appear also 

on the top face, during this step. For higher load (       ) every crack patterns increase: (1) a red 

area now surrounds the loading plate, assuming the shape of the previous one, (2) the longitudinal 

cracks run from the loading plate toward the frontal face and (3) flexural cracks in the Y-direction 

arise on the clamped side. This last pattern is more underlined on the finer mesh. 

The aforementioned fracture patterns are detected also on the frontal face. On the second main point 

a first vertical crack runs from the bottom of the slab forward the half of the thickness. It increases 

on the peak point when it occupies the whole height of the slab. Unlike the coarse mesh, here no 

other cracks arise on the frontal face. 
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Regarding to the lateral face, one can see the gradual development of vertical cracks from the 

bottom toward less of half height of the slab, starting from the load of       . Here, the radial 

cracks that reach the lateral edges are underlined on the peak point. 

Finally, we can note how the cracking patterns are better provided by the finer mesh: unlike the 

previous coarse mesh, the crack pattern remains well described without merging in one or more 

macro-cracked area. 

 

To have a clearer representation of the direction and of the entity of the fractures, it's useful to show 

also a vector plot of the same principal tensile strain   . 

The same surfaces are plotted: 

 

 
Vector plot of principal tensile strain for 538 kN 

 

 
Vector plot of principal tensile strain for 733 kN 
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Vector plot of principal tensile strain for 1237 kN (decay) 

 

 
Vector plot of principal tensile strain for 1501 kN (peak) 

  

For the first main point of        the strain vectors exceed the ultimate elastic strain only on the 

bottom surface. As detected, the highest values are related to vectors in the X-direction, below the 

load. It means a transversal crack arises. No clear longitudinal crack can be observed since now. 

For a load of        it can be observed a concentration of strains that superior than         below 

the loading plate and on the clamped side, on the top face. The former vectors are in sub-vertical 

direction and the latter are horizontal. 

On the bottom surface two families of cracks with higher magnitude than            are detected. 

The highest value is found in the longitudinal direction, below the loading plate, that means a 

transversal crack stars to arise under the load, due to the flexural behavior of the slab. The second 

family with a lower value is concentrated under the load position, along the Y-direction and testify 

the arising of a longitudinal crack. It’s due to the bending behavior as well. 

On the frontal face the ultimate elastic strain is not reached and the vectors distribution has a more 

defined arc shaped than the one seen before with a coarse mesh. 

On the lateral side the         is exceeded only on the tensile side, below the load and it proofs the  

beginning of a vertical cracking due to the dominant flexural behavior of the slab in this step. 
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Here, the entity of the strain range is bigger: the maximum strain is           against        

  . It means that the cracks have a higher width, however these values are largely lower than         

and the fractures are still not complete opened. 

On the frontal face strains have a lower value than        : the maximum presents a magnitude 

around 50% of it and arise on the middle, close to the bottom surface. Other strains spread 

following an arc shape above the bottom surface of the slab, as seen on the previous mesh. 

The other interesting zones are located in the lateral West face below the loading plate. Here, strain 

vectors are visible and they represent the flexural cracks: their modulus equals the ultimate elastic 

strain        . During the experiment no flexural cracks are detected. The other vectors on the top 

surface are due to the high tensile stresses from the continuous support and they take place along 

the South edge. For this load, no strain vectors exceed the ultimate crack strain        , so no full 

opened cracks are still well detected. 

For a load of        , who represents the decay point, a strong redistribution on the strain vectors 

occurs. The inclined vectors present the highest magnitude and they seem to grow faster than the 

other ones. It means that the shear cracking is going to govern the structural response of the slab. 

This is underlined on the top and bottom surface, where high tensile strains are detected below the 

load and close to the North support respectively. It's also proofed by the fact that tensile strains on 

the clamped side on the top surface and in the X- and Y-direction have a blue color representation. 

Also on the frontal face the strain vectors change their line-up: now them all are concentrated on the 

middle and the maximum strain appears on half thickness with a magnitude close to           , 

while littler vectors run on the right side. 

On the lateral side strain vectors higher than         start to arise from the bottom surface and 

occupy only the first third of the thickness. 

On the peak point the same trend is detected on the top and bottom surface, especially on the lower 

layer where the inclined vectors increase in number and modulus. Here the maximum strain is about 

                     who means a width of              . Since the nature and the 

disposition of these cracks (compressed concrete strut), they can be associated with the punching 

fracture found in the experimental test with         of width (crack 3). The arc disposition 

detected on the top face, around the loading plate, it's not shown on the bottom surface. 

On the frontal face the middle crack increases its width: a                      strain 

range is observed. It involves in a               wide vertical crack. Its opening is 

overestimated, since the correspondent experimental fracture (crack 5) is         wide. A better 

prediction is given for the lateral cracks:           means         instead the         

opening related to crack 6. However, the plot shows vertical cracks from the bottom, not fully 

through the height of the slab. It's in good agreement with the experimental evidence. 

On the lateral side          strain is diffused:         opened cracks should be visible, but no 

evidence has been found during the test. 

 

The strut-and-tie bearing mechanism is well shown by this plot: 
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Particular of vector plot of principal tensile strain for 1418 kN (peak) on the bottom surface 

 

The highest strains are located along an inclined direction, among the North support and the load, 

on the bottom surface. 

Their evolution can be proved through a vector plot of the principal compressive strains   , 

showing clear inclined struts of concrete with an increasing modulus (from         to       

  ). 

 

 
Vector plot of principal compressive strain for peak (left-hand) and post-peak (right-hand) 

 

On the basis of the previous observations about the cracking behavior of the slab, performed using 

the NLFA, it can be stated that a quite good prediction of the general crack behavior can be 

obtained. The width of the cracks is well estimated generally, but the best result is the accordance 

with experiment about the starting point of the fractures and the propagation of the cracking pattern, 

for what it concerns the directions of flexural and shear cracks. Moreover, in  proximity of the peak 

load, it’s also possible to individuate features of shear cracks, like the direction and the rapidity of 

growing. This can be used as another data to individuate critical sections and to predict the failure 

mechanism. 

 

8.2.3 Behavior of the reinforcement bars 

 

Contour plots of the principal tensile stresses are presented afterward, referring to a unique yielding 

tension equal to        , as adopted before. 

The previous three main points are taken into account and for each one, four plots are shown:     

and     for the top rebars, respectively on the upper and on the bottom plot (left hand);     and     

for the bottom rebars, respectively on the upper and on the bottom plot (right hand). 
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No yielding is detected for a load of       , so once again it is proved that the slab works mostly 

in an elastic field until now. Instead, the plot during the decay point (       ) shows the starting 

of the yielding inside the rebars on the bottom surface, below the load and on the North edge. So, 

the sudden formation of cracks below the loading plate brings to yield few transversal bars. This 

could mean that a important longitudinal crack takes place on the bottom surface and viewing to the 

position of them, the fracture could run along the span, from the North edge toward the midspan of 

the slab. 

At the failure (       ) yielding occurs on all the two layers, so both on the top and on the bottom 

rebars. On the top, longitudinal rebars present a very short yielded length below the loading plate, 

while bigger length are detected on the transversal bars close to the North edge. This could 

represents a double phenomenon: the increasing of the previous longitudinal crack also on the top 

surface and the opening of the inclined crack through the thickness of the slab (compressed strut 

mechanism). The same pattern is visible on the bottom rebars, interesting wider portions of rebars. 

It could mean the crack in the middle of the front face and the longitudinal fracture present a bigger 

width on this layer. So they run all over the thickness of the slab. It's interesting to note that the 

transversal bar yielded on the two surface present a spatial shift. While on the top it's close to the 

load, on the bottom it's near the simple support. The hypothesis of a wide crack through the 

thickness due to a concrete strut could be strengthened. 

 

Anyhow, these contour plots prove the hypothesis of Kinnunen and Nylander, since the 

reinforcement steel of the bars has an elastic behavior. However, most part of the yielded bars are 

located close to the North edge and only a little part of them is below the load. The displayed 

yielding presents not negligible differences with the previous one (2x2 mesh). 

 

 
    and     contour plot for top and bottom reinforcement bars for 538 kN 
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    and     contour plot for top and bottom reinforcement bars for 740 kN 

 

 
    and     contour plot for top and bottom reinforcement bars for 1237 kN (decay) 

 

 
    and     contour plot for top and bottom reinforcement bars for 1501 kN (peak) 
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For what regards to the principal tensile stress vector plot, observing the bottom rebars, the 1
st
 main 

point (       ) agrees with the results obtained for the coarse mesh. After, on the decay point 

(        ) a clear concentration of tensile stresses can be found below the loading plate with 

higher value, over to the yielding stress. This distribution evidences a longitudinal North-South 

crack from the support forward the midspan, passing through the load, as seen in the experiment 

(crack 1). Moreover, a clear strip between the North support the midspan is subjected to high level 

of tensile stress. Here, a radial direction spreading from the load seems to be preferred and it could 

mean the formation of radial cracks as well. On the peak point this pattern shows a clear high 

concentration zone: the highest one close to the North edge and forward the midspan. Then, the 

stresses focus in the X-direction, close to the lateral free edges. 

On the top surface, it's visible the modification of the pattern and the concentration of the stresses 

from the clamped side to the nearby of the load. 

At         the highest stresses below the load and the North edge could confirm: (1) the 

formation of a concrete strut under the load, (2) the opening of a vertical crack in the middle of the 

frontal face respectively, as seen looking to the principal tensile and compressive strain plots. On 

the peak, the progressive increasing of stresses in the Y-direction close between support and load 

could mean the higher opening of the longitudinal crack. 

 

 
Principal tensile stress for the reinforcement bar on the top surface 
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Principal tensile stress for the reinforcement bar on the bottom surface 

 

8.2.4 Compressive behavior of the concrete 

 

The principal compressive stress feature is investigated through a contour plot on four surfaces, for 

the three main selected before. 

Two main values are adopted: 

 

                    ; 

                    . 

 

Since, the compressive stress has conventionally a negative value, the green color shows the parts 

with a lower principal stress than                . Instead the blue color proofs the part who 

exceed this reference value. 

 

 
Contour plot of principal compressive stress for 538 kN 
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Contour plot of principal compressive stress for 733 kN 

 

 
Contour plot of principal compressive stress for 1237 kN (decay) 

 

 
Contour plot of principal compressive stress for 1501 kN (peak) 
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As shown by the previous plots, the principal compressive stress    starts to exceed the concrete 

strength     since the load of        , until it occupies an area circumscribed around the North 

edge of loading plate. Moreover, it's interesting to note how the shape of this area matches with the 

principal tensile strain plots on the top surface. On the bottom layer, think strips arise at the peak 

point: it could proof the formation of a series of compressed struts into the thickness of the slab. So 

a strut-and-tie bearing mechanism starts from the loading plate and reaches the support, spreading 

in the Y-direction. So, the apllied load is distributed on a small area, around the middle of the 

support. This is not detected on the previous mesh and it underlines a marked difference between 

the two meshes. Moreover, no blue area has been shown in 2x2 model. 

Finally, the assumption of a linear behavior of the concrete is still well satisfied. 

8.2.5 Failure mechanism of the slab 

 

The way the crack patterns developed on the bottom surface (in terms of magnitude and spatial 

distribution) and the sudden divergence of the analyses can proof a different mechanism of failure 

with respect to the experimental evidence. 

As said before, ttheoretically a punching failure should occur with the formation of a truncated cone 

around the concentrated load. However, since the load is located close to the continuous support the 

aforementioned truncated cone cannot fully develop, making harder to define the failure mechanism.  

 

In order to study this event, the following picture shows the distribution of the principal tensile 

strain on the decay point and on the peak load. The scale of the contour plots is held constant in 

order to see the development of the tensile strain area: 

 

 
Contour plot of the principal tensile strain on the bottom face on the decay (left-hand) and peak points(right-hand) 

 

 

It's easy to detect a strong development of the area invested by cracking, i.e. principal tensile stress, 

among the North support and the load position and on the frontal face of the slab. A radial crack 

system starts to arise in the left-hand plot and finally spreads forward the midspan and the free 

lateral edges, as shown in the right-hand figure. The longitudinal pattern runs from the load toward 
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the North edge and it grows, investing a wider portion of the North face. A high concentration of 

stress is underlined below the load, close to the simple support, tracing a sort of circular arc. 

It's clear that the principal tensile strains are less developed at the side of the continuous support. 

This trend can demonstrate that the slab has been completely subjected to failure, with a sudden 

reduction of the bearing capacity. 

Moreover, this finer mesh seems to better underline how the slabs fails: the cracking patterns are 

better predicted than the previous coarse mesh. 

 

A useful attribute to better discover cracking pattern inside the model is the principal normal crack 

strain         feature. 

The best results can be obtained by adopting as reference two limit crack strains: 

 

                      
    

  
          ; 

                        
 

  
          . 

 

 
Contour plot of the principal normal crack strain on decay point 

 

 
Contour plot of the principal normal crack strain on the peak 
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The related disc plot are shown below: 

 

 
Disc plot of the principal normal crack strain on decay point 

 

 
Disc plot of the principal normal crack strain on the peak 

 

A new way to detect cracks is here provided: 
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Contour plot of the principal tensile strain on the bottom face on the peak (right-hand 

 and principal crack strain (left-hand) 

 

The cross-comparison between these plots helps to discover the effective cracking patterns on the 

slab. It shows a good agreement with the experimental evidence: crack1, crack 2, crack 3 and crack 

5 are clearly displayed. There no evidence of crack 6. The following picture helps to focus the 

concept: 

 

 
Cracking patterns detected during the experimental test 

crack 4 

W 

E 

S N 

crack 3 

crack 4 

crack 1 

crack 2 

crack 2 

crack 2 

crack 5 
crack 1 



201 
 

Regarding to the crack width, crack  1, 2 and 5 are displayed adopting the lowest range, equal to 

          (maximum value of the level). Just applying the formula, we can get the maximum 

width for the cracks: 

 

                

 

we get: 

 

                                       

 

A comparison can be done looking to the following table: 

 

 
Crack width detected for slab S25T1 during the experimental test 

 

The aforementioned cracks hold to a               range, regards to the width. Considering the 

present value as the maximum one, the prediction for crack 1 and crack 2 seems to be good, while 

crack 5 is overestimated once again. 

Regarding to crack 4 (punching shear crack), it seems to hold to the                    

crack strain range. It equals to               of width. It's in good agreement with what is seen 

during the test. 

The present results allows us to affirm that a finer mesh provides better results, especially for what 

regards the prediction of the cracking behavior, both in location and in opening width. Indeed, crack 

1 is better predicted. 

Unlike the coarse mesh, the finer one shows a clearer crack behaviour of the slab. Indeed, the 

punching shear failure is well exposed here: a radial crack pattern is detected and then a circular 

critical crack arises. Of course, the slab has not failed with a clear punching shear failure: as 

exposed by [Van Rodriguiez] the crisis occurs with a combination of phenomenon. Moreover, to 

confirm as said, the deformed shape well underline a strong deformed area below the loading plate: 

it seems to be invested by the expulsion of a truncated cone volume (as occurs in punching shear). 

Here, the greater fineness of the mesh allows to show: (1) the limited area invested by the 

deformation below the load on the bottom, and (2) the sinking of the steel plate inside the concrete 

at the top surface. 

Moreover, these plots seems to prefer a two-way failure than a one-way crisis, though the two 

events could influences mutually. 

 

Specimen Fline [kN] Fpunt [kN] wmax [mm] Class. Where?

0.05 crack 5 front face - trhough crack in the middle

0.05 crack 6 front face - crack close to E side, from botton, not fully trough

0.10 crack 1 bottom face - NS crack from support into span, passing the load

0.25 crack 2 bottom face - EW close to the support

3.00 crack 4 bottom face - punching at W

0.20 crack 3 bottom face - NS crack at W-side at 48 cm from free edge

0 FailS25T1
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Deformed structure at the peak load: global overview 

 

  
(a)                                                                                              (b)  

Deformed structure at the peak load: (a) North front side and (b) West lateral side 

 

With respect to the previous mesh, here it seems that the shear failure higher governs the failure 

mechanism. 

 

8.3 The finest mesh: 4x4 partial model 

 

Finally, an analyses is run on the finest mesh. The CEB-FIP value for the tensile fracture energy    

is used:              . The same value of     is adopted for the total model on the same mesh 

as well. 

The present model has got the following features: 

 

 tensile fracture energy:                 ; 

 numerical crack bandwidth:        ; 

 normal felt interface stiffness:                 ; 

 normal Teflon interface stiffness:               ; 

 integration scheme: default for all the finite elements (see previous paragraphs); 

 maximum number of iteration equal to   . 
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Only the felt model (linear instead nonlinear) and the maximum amount of iterations change. 

The following load-displacement graphs is here shown: 

 

 
Comparison of partial and total model with same Gf fracture energy 

 

As detected on the total model, for reason of computational time the analysis has to be stopped: 

only    steps are run in five days of work. It has to be noted that the first steps hold the linear field 

and they result faster. 

The load-displacement diagram reaches only         , too less to get any conclusion about the 

shown behaviour. 

The following plot shows the convergence trend for the present analyses: 

 

 
Convergence trend for 4x4 mesh analyses on the partial model 
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9. APPLICATION OF SEQUENTIALLY LINEAR 

ANALYSIS ON THE PARTIAL MODEL 
 

 

The three-dimensional model used to run the SL-analysis is the aforementioned Partial model, who 

adopts a full continuous support on the South side. This simplification of the so called Total model 

is due to the impossibility to run the analysis with no-proportional load. Indeed, the total model 

contains two different load cases: (1) the displacement control on the loading plate (reference 

proportional load) and (2) the pre-stressing action applied on the three Dywidag bars (non-

proportional load). 

In fact, non-proportional loadings may lead to significant stress redistributions and rotations during 

the analysis. Then, it is likely that the scaling process cannot be carried out just from the origin [7]. 

Although the past implementation analysis with non-proportional load can be run in 2D, at the 

moment, the code/routine requires further extension for the 3D environment. 

So, in order to apply SL-analysis to the present slab, we require to delete the non-proportional 

loading represents by the Dywidag pre-stress. So, the constraints system given by the complex 

HEM300 and Dywidag bars is replaced by a full clamped constraint. 

 

9.1 Three-dimensional model of the reinforced concrete slab 

9.1.1 Finite element model 

 

The so called "partial model" was the first model ideated. Only after its implementation the full 

model was built and adopted for NLFA. 

Like the total model, it's composed by different solid parts, each of them modeled by one or more 

three-dimensional geometrical elements (bodies). 

By omitting only the constraint system of the total model, the various bodies composing the 

different parts are: 

 

 slab; 

 HEM300 supports; 

 loading plate; 

 felt interface between slab and supports; 

 interface Teflon layer (between load plate and slab). 
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Geometrical model S25T1 slab 

 

To execute an analysis with Diana, the structure has to be discretized through several three-

dimensional finite elements. 

As for the total model, three different meshes are used: 

 

                              ; 

                                ; 

                               . 

 

in order to discover the meshing influence on the analysis outputs. 

The same types of finite element are used: CHX60 and CQ48I; since no Dywidag bars are modeled, 

elements L6TRU are not adopted. 

 

The 2x2 mesh is composed by 4290 nodes and 708 finite solid elements. 

 

 
2 elements on height mesh adopted for S25T1 slab partial model 

 

The 3x3 mesh is composed by 18217 nodes and 3404 finite solid elements. 
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3 elements on height mesh adopted for S25T1 slab 

 

The 4x4 mesh is composed by 36546 nodes and 7344 finite solid elements. 

 

 
4 elements on height mesh adopted for S25T1 slab 

 

The dimensions of the various finite elements are almost regular, as one can see in the following 

image. The higher density of the second mesh is immediately visible. 

The following plots show the different materials and few mesh particulars: 
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Material label for the model (1

st
 mesh) 

 

 
Teflon particular in the mesh 

 

The model is defined in a 3D environment and it is composed by: 

 

      nodes and      finite solid elements for the 1
st
 mesh; 

       nodes and      finite solid elements for the 2
nd

 mesh; 

 

All the geometrical dimensions of the model are respected, with only one exception on the supports, 

that in the real test are composed by        steel profiles, while in the FEM model they are 

represented by two solid brick elements,        high and with a width of        (instead of 

      ), to have a direct matching with the upper interface layer. 

  

9.1.2 Model of supports and constraints 

 

The real slab is bound by a total of two supports, one simple support and one continuous support, 

defined by 3 Φ 36 Dywidag bars with pre-tensioning. 
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Because of the load position near the simple supported edge, we can model the slab considering 

clamped the other slab edge in order to simplify the analysis. 

So, for the simple support the vertical translation is constrained on the "bed" interface bottom face, 

instead the plane horizontal translation is bound on the        bottom face. 

For the continuous support is considered like a sort of perfect joint, realized by constraints in the 

bottom surfaces of the support, that don’t allow X, Y and Z translation on the        bottom face 

and by other constraints in the frontal side of the slab near the continuous support, that don’t allow 

the X translations. 

At the end this distribution of constraints doesn’t allow the rotations as well. 

In order to take into account the slab curved shape the interface is adopted and in order to make it 

effective, vertical constraints (Z directions) are placed only on the interface bottom surface. 

 

 
Model of the constraints assigned to the slab (1

st
 mesh) 

 

9.1.3 Loading conditions 

 

Following the same criterion used for the laboratory test, the FEM analysis on the model is 

performed using a displacements control method. Specifically a maximum displacement of        

is applied on the loading plate, since the maximum displacement applied in the laboratory tests is 

around         (hydraulic jack report). 
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Model of the load assigned to the slab (1

st
 mesh) 

 

9.1.4 Material and physical properties 

 

Regarding to the material and physical properties, the same models and values are adopted with 

respect to the pre-defined total model for what it concerns the linear behavior, nevertheless 

regarding the Sequentially Linear Analysis some variations of the non-linear properties have to be 

considered. In fact the implemented SLA code, in order to define the saw-tooth stress-strain 

diagram, doesn’t allow using some refined nonlinear and post-elastic models (for example the 

nonlinear behavior for the felt interface and the post-elastic trend for the rebars). 

 

The modified features of the used material are here reported: 

 

CONCRETE 

 

MACONC [1]: 

Linear Elasticity – Isotropic 

Young’s Modulus:           (from the         relation) 

Poisson’s Ratio:      

 

Static non linearity – Concrete and brittle materials – Total strain fixed crack – Hordijk softening 

in tension – Fracture energy based - Elastic in compression – Variable Shear Retention 

 

Tensile strength:          

Mode-I tensile fracture energy:               

Crack bandwidth:        

 

The previous pattern is so specified inside the .dat file of the model: 

 

   6 YOUNG      3.901600E+04 

      POISON      1.500000E-01 
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      TOTCRK FIXED 

      TENCRV HORDYK 

      TENSTR     4.620000E+00 

      GF1             1.500000E-01 

      CRACKB    1.650000E+02 

      TAUCRI      2 

 

REINFORCEMENT STEEL 

 

MABAR10 [2] - MABAR20 [3]: 

Linear elasticity – Reinforcement – Reinforcement bonded 

Young’s Modulus:            

 

Static non linearity – Reinforcement – Von Mises plasticity – Work Hardening diagram 

Tensile yield stress:        

Tensile ultimate stress:         

 

Starting from these mechanical properties, two saw-tooth diagrams have been defined. 

The linear softening curve of the concrete has been discretized using the automatic generator 

implemented in Diana, based on the Ripple model, with the commands reported afterwards. 
 

Regarding to the concrete material, taucri defines the shear retention behavior: by selecting 2 a 

stepwise decreasing shear retention is selected. 

To make use of the built-in saw-tooth curve generator, the following syntax should be used: 

 

'FILOS' 

/materi(6)/TSAWLW  AUTOMA 

/materi(6)/SAWMOD  RIPPLE 

/materi(6)/SAWSOL  AMOEBA 

/materi(6)/NTEETH  15 

 

The AUTOMA option for the sawlaw defines an automatic saw-tooth curve for the material 6, e.g. 

concrete. Instead, the RIPPLE selection describes which saw-tooth model we would like to use. 

The AMOEBA option selects the iterative procedure to solve the saw-law definition. AMOEBA 

proofs to be a more stable method than Newton-Rhapson. 

Finally, thanks to this syntax, the concrete softening behaviour will be described by a number of 

teeth: this will generate a saw-tooth law consisting of (nteeth+1) linear branches. 

 

For the steel reinforcement the stress-strain relation found by the experimental tests on specimens 

are simplified with an ideal-elastic plastic model. This approximation seems to don't produce 

relevant error of modelling on the considered strain range, as shown below. 
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          (a)                                                                        (b) 

 
(c) 

Stress-strain model for ϕ10 (a) and ϕ20 (b) bars for SLA and saw-tooth law (c) 

 

Regarding to the strain-stress relation in the reinforcement steel, a direct input has been adopted 

inside the .dat file, using the following table to define the saw-tooth diagram relative to the 

hardening part. 
 

MATERI(4)/TSAWLW    TABLE 

/MATERI(4)/TSAWDI     

                      3.068421E-03 5.830000E+02 

                      3.460134E-03 5.830000E+02 

                      3.901854E-03 5.830000E+02 

                      4.399963E-03 5.830000E+02 

                      4.961660E-03 5.830000E+02 

                      5.595063E-03 5.830000E+02 

                      6.309327E-03 5.830000E+02 

                      7.114773E-03 5.830000E+02 

                      8.023042E-03 5.830000E+02 

                      9.047260E-03 5.830000E+02 

                      1.020223E-02 5.830000E+02 
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MATERI(1)/TSAWLW    TABLE 

/MATERI(1)/TSAWDI      

                      3.012632E-03 5.724000E+02 

                      3.397223E-03 5.724000E+02 

                      3.830911E-03 5.724000E+02 

                      4.319963E-03 5.724000E+02 

                      4.871448E-03 5.724000E+02 

                      5.493335E-03 5.724000E+02 

                      6.194612E-03 5.724000E+02 

                      6.985413E-03 5.724000E+02 

                      7.877168E-03 5.724000E+02 

                      8.882764E-03 5.724000E+02 

                      1.001673E-02 5.724000E+02 

 

The area under the softening diagram of the concrete is depending on the ratio      between tensile 

fracture energy and crack bandwidth. In Diana in simple a priori models the crack bandwidth in 

solids is assumed to be equal to     
 

. This assumption makes sense in regular meshes where the 

cracks runs along the meshing lines. However, particularly in rectangular solid elements the cracks 

not always run parallel to the mesh line. In fact, they sometimes tend to propagate in an inclined 

direction and a more accurate estimation of the crack bandwidth seems necessary. No variation on 

the adopted crack bandwidth will be carried out. In the present  report only variation around    will 

executed: this parameter can improve the concrete "ductility" on the tensile side, increasing the 

ultimate crack strain    
  . 

For these reasons in this study the ratio      has been varied, by changing only the numerator,  and 

its influence on the solution is shown. 

 

The influence of this feature will be studied later. 

The other materials used in the model of the slab have linear behavior, since such hypothesis is 

close to the reality and is the only one that can be accepted by the implemented SLA method in 

addition to the saw-tooth law. 

Indeed, the nonlinear behavior of the felt is reduced to a linear trend and the tensile inertia can't be 

effectively modeled. So, inside the SLA environment the felt is reacting both in compression and in 

tension with the same stiffness. 

 

INTERFACE FELT between supports and slab 

 

Linear elasticity – Interface 

Linear normal stiffening:             

Linear tangential stiffening:            
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9.1.5 Important parameters of the model 

 

The model already described is characterized by a series of parameters, whose values and their 

influence on the model have been evaluated applying NLFE-analysis to each model in the previous 

chapter. 

The most important parameters that affect the solution of the FEM analysis are:  

 

 tensile fracture energy    and numerical crack bandwidth  ; 

 normal stiffness of the Teflon interface      between slab and steel plate; 

 normal stiffness of the felt interface      between slab and supports; 

 shear retention model (variable or constant shear retention). 

 

Main parameters, like tensile fracture energy    and normal stiffness of the Teflon interface      

between slab and steel plate, have been evaluated in terms of sensitivity on the model using NLFE-

analysis. So, only the fixed values of these parameters who provided the best agreement with the 

experimental results will be adopted. 

Regarding to the numerical crack bandwidth  , it is fixed for each mesh by the previous works, 

since the meshes don't change for NLFE and SL-analysis. 

As shown by previous work [citare voldemord e angelozzo vallozzo], the Shear Retention model is 

a very influent parameter on numerical output, and it's widely demonstrated that the better results 

derive choosing a Variable Shear Retention model. 

As said in the previous paragraph, the felt behavior has to be modeled with a linear relation: this 

involves a new unknown parameter who needs to be evaluated. The sensitivity of this parameter and 

of the linear model will be studied adopting NLFE-analysis, since it results faster. 

 

Finally, it has to be observed that a fixed integration scheme will be used in all the analysis: 

 

 Gaussian 2 x 2 for the interface layer (CQ48I); 

 Linear 2 x 2 x 2 for all the other elements (CHX60); 

 

9.1.6 Comparison between SLA and experimental results 

 

In order to evaluate the reliability of the SLA method, the results obtained from this FEM analysis 

are compared with the Lab-Test results. 

SLA has been performed using the finite element mesh already described and the same geometrical 

and material model and loading and boundary conditions as well. 

The result that one can observe to have an immediate idea about the accuracy of the analysis is the 

Load- Displacement diagram. 

 

The present analysis adopt a sequentially procedure of linear analysis, so no global converge criteria 

is required. The local convergence is set by choosing the fineness of the saw-tooth curve: fifteen 

teeth are selected and        steps are adopted. In order to minimize the computational size of the 

file, the output data are compressed after every     linear steps. The fracture energy   , the 
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numerical crack bandwidth   and the other main parameters are taken by the previous NLFE-

analysis on the same mesh, in order to execute a reliable comparison. 

At first, a SL-analysis is run on the partial model with 2 elements on the height, so called 2x2 model, 

then 3x3 and finally 4x4. 

 

9.2 Coarse mesh: 2x2 partial model 

 

Nonlinear analysis are carried out in order to estimate the best range for the unknown parameter. So, 

for this first SLA the same tensile fracture energy    from the same partial version, i.e. 2x2 mesh, is 

used. The present model has got the following features: 

 

 tensile fracture energy:              ; 

 numerical crack bandwidth:         ; 

 normal felt interface stiffness:                 ; 

 normal Teflon interface stiffness:               ; 

 integration scheme: Gaussian 2 x 2 for interface layer, Linear 2 x 2 x 2 for all the other FE. 

 

The felt has a linear behaviour. 

The following load-displacement graphs is here shown: 

 

 
Load-displacement diagram for SL-analyses 

 

An unexpected phenomena is detected: adopting the same fracture energy parameter, SL- and 

NLFE-analyses presents a different trend. Here, the global response of the slab in term of load-

displacement follows the same path until         . Then, instead to reduce its stiffness, the slab 

is able to carry the increasing load. As shown, only at          and under a load higher than 

       , the slab starts to develops cracks: it proofs by the large amount of local snap-backs. A 
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sort of peak is underlined, but after a decay of the slab's response, the real peak point occurs after 

          of displacement. Then a sudden and strong decay of the bearing capacity arises, but 

after that, the slabs seems to carry high load again. Finally the analyses reaches the maximum 

amount of steps after three days of computation. However, this is enough to detect the global slab's 

behaviour. 

A comparison between NLFE- and SL-analyses is here reported: 

 

 
Comparison between load-displacement diagram for SLA and NLA 

with the same Gf and experimental result 

 

The numerical peak values are: 

 

 peak load:        ; 

 peak displacement:         . 

 

instead of: 

 

 experimental peak load:            for a variation of      ; 

 experimental peak displacement:         for a variation of      . 

 

The obtained values are not reliable compared with the experimental evidence. However, a study of 

the behaviour of the structure seems to be necessary to understand if the experimental evidence is 

matched in terms of cracking patterns. 

Four main points are selected on the load-displacement diagram: 

 

 point 1:                             ; 

 point 2:                            ; 

 point 3:                           
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 point 4:                               . 

  

 
Main points on load-displacement diagram for SL-analyses 

 

9.2.1 Redistribution capacity: 

 

On the following image, four pictures of the felt reactions are shown by adopting a vector plot. 

They prove the redistribution of the load from the slab to the support, since the action on the felt is 

equal to the one on the support beam for vertical balance. 

 

 
Vector plot of felt reaction [MPa] for the main points 

 

The first point shows a full reacting support with the load most concentrated on the middle, as usual 

seen also in the NL-analysis. Also on the second point a higher concentration of the load is detected 

and the lateral edges start to show a tensile reaction. What surprise is the third and four plot: they 
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show a different behaviour of the slab on the peak and post-peak point. The compressive stress 

reaches a maximum value of           and the compression is concentrated around the middle, 

on the internal edge. It seems to underline a high deflection of the slab. 

By plotting the part of interface in a compressive state, they are shown with red color (values higher 

than       - compression). It can be observed how the compressive contour presents a different 

pattern than the one got with the nonlinear analysis. Indeed, after the second point the slab return to 

compress all the interface on the Y-direction and starts to lift on the external side. 

 

 
Effective width due to the load spreading on the felt layer 

 

9.2.2 Cracking behavior of the slab 

 

In order to investiga the development of the cracking under an increasing load, contour and vector 

plot of the pricinpal tensile strain are used. Taking into account four points on the softening diagram 

calculated for a fracture energy               and        . 

 

     
(a)                                                        (b) 

Main values for principal tensile strain (a) and Hordijk softening diagram (b) 

 

For the four main points selected before, each plot shows the plots of top, bottom, front and lateral 

surface respectively. 

 

εel,ult. [-] 0.000118 1.184E-04

0,5*εcr,ult [-] 0.001112 1.112E-03

εcr,ult [-] 0.002224 2.224E-03

5*εcr,ult [-] 0.011118 1.112E-02



218 
 

 
Contour plot of principal tensile strain for 808 kN 

 

 
Contour plot of principal tensile strain for 1460 kN 

 

 
Contour plot of principal tensile strain for 2910 kN (peak) 
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Contour plot of principal tensile strain for 2686 kN (post-peak) 

 

The previous contour plots show a well agreement with the nonlinear output, at least since the 

second point. Then, for the peak and post-peak plot a wide spreading of the cracked area can be 

observed. So, the damage seems to diffuse into the slab, producing a large cracking pattern on the 

four main surfaces. It's interesting to note how a long longitudinal crack and a radial crack system 

arise on the bottom. Moreover, on the top face an extended flexural crack system is visible. 

 

 
Vector plot of principal tensile strain for 808 kN 
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Vector plot of principal tensile strain for 1460 kN 

 

 
Vector plot of principal tensile strain for 2910 kN (peak) 

 

 
Vector plot of principal tensile strain for 2686 kN (post-peak) 
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Also here, the first two plots show good agreement with NLFEA and with the global behaviour 

expected. Indeed, a flexural behaviour is detected until the load of        : a transversal and a 

longitudinal crack are underlined by the strain vectors in a clearer way than the NLFEA. A strut 

formation can be detected on the lateral side on the peak load. Though the shear takes place as 

expected, however a weird behaviour of the slab can be detected for higher load. The strut-and-tie 

mechanism occurs in the opposite direction of the North support, close to the midspan of the slab, 

and inclined cracks arise on the lateral side. Moreover, the most important crack on the frontal face 

seems to follow a horizontal path. These observation are in contradiction with the evidences found 

on the tested specimen. 

 

 
Particular of vector plot of principal tensile strain for 2910 kN (peak) on the bottom surface 

 

 
Vector plot of principal compressive strain for 2910 kN (peak) 

 

9.2.3 Compressive behaviour of the concrete 

 

In order to verify the elastic state of the concrete for the compressive field, the principal 

compressive stress feature is investigated through a contour plot on four surfaces, for the three main 

selected before. 

Two main values are adopted: 

 

                    ; 

                    . 

 

Since, the compressive stress has conventionally a negative value, the green color shows the parts 

with a lower principal stress than                . Instead the blue color proofs the part who 

exceed this reference value. 
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Contour plot of principal compressive stress for 808 kN 

 

 
Contour plot of principal compressive stress for 1460 kN 

 

 
Contour plot of principal compressive stress for 2910 kN (peak) 
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Contour plot of principal compressive stress for 2868 kN (post-peak) 

 

The contour plots confirm what seen before: the first two plots agree with the NLFEA outputs, 

especially for what regards the slab's behaviour on the same load (       ); indeed here it's 

detected a larger area of concrete who reaches the ultimate compressive stress. It suggests, once 

again, that the slab has follown a different way to the failure. 

 

9.2.4 Failure mechanism of the slab 

 

From the contour plots of the bottom face it becomes clear that the principal tensile strains invest 

the most of the slab. Clear cracks will be visible on the continuous support, and on the all main 

surfaces. 

 

 
Contour plot of the principal tensile strain on the bottom face on the peak (2910 kN) 

 

However, from the previous plots it is still hard to discover in which way the slab fails.  

 

The plots about the deformed structure help us to confirm that the slab follows a different failure 

mode than the previous one made with NLA. 
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Deformed structure at the peak load: global overview 

 

 
(a)                                                                                              (b)  

Deformed structure at the peak load: (a) North front side and (b) West lateral side 

 

Here, a completely different deformed shape is detected. Indeed, the most deflected zone in located 

more towards the midspan respect with the NLFEA output. It could represent a sort of beam 

response of the whole slab. 

To better understand what reported, the following sample is provided: 

 

 
Deflection of a supported-clamped beam under concentrated load 

 

Schematizing the whole slab as a simple support-clamped beam, the maximum deflection is 

measured not in the load point, into the elastic field. So, it seems that this one is the actual failure 

mode for the slab. 

The model shows a high deflection on the midspan and the middle of the frontal face lifts from the 

support due to the 2D nature of the slab on the peak load. 



225 
 

 

9.3 New analysis on coarse mesh 
 

After the results exposed upward, a new analyses is performed on the same mesh. A lower values 

for the most sensitivity parameter is chosen: a fracture energy even to the     of the previous one 

is taken. 

The main features are here reported: 

 

 tensile fracture energy:                 ; 

 numerical crack bandwidth:         ; 

 normal felt interface stiffness:                 ; 

 normal Teflon interface stiffness:               ; 

 integration scheme: Gaussian 2 x 2 for interface layer, Linear 2 x 2 x 2 for all the other FE. 

 

The felt has a linear behaviour. 

It has to be noted that for the value adopted for    the ultimate normal crack strain    
  
   

 is 

smaller than minimum ultimate crack strain    
  
       

, as required by the Hordijk model. For 

SLA this doesn't involve problem, thanks to the "ripple" approach. For NLFEA it does. 

The lower value produces a response of the concrete closer to the brittle tension model, than the 

usual Hordijk tension softening trend. Indeed, the ratio between    
  
   

 and         equals to     , 

instead      . 

 
(a)                                                                               (b) 

 
(c) 

Hordijk tension softening for concrete for: (a) Gf= 0.033 N/mm,(b) Gf=0.330 N/mm and (c) brittle tension softening 

model 
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   (a)                                                        (b) 

Reference value for Hordijk tension softening for concrete for: 

(a)Gf= 0.033 N/mm and (b) Gf=0.330 N/mm 

 

 
Comparison between load-displacement diagram for SLA and NLA with the same Gf (0.033 and 0.150 N/mm 

 and experimental result 

 

The slab's response by adopting the smaller fracture energy presents good agreement with the 

experimental evidence, both in terms of peak-load and of peak-displacement. Moreover, unlike 

what is seen before, the global slope is well estimated. After the peak a sudden decay of the bearing 

capacity occurs; then a series of snap-backs arises and a gradual decay of the resistance of the slab 

is shown. 

The numerical peak values are: 

 

 peak load:           ; 

 peak displacement:         . 

 

instead of: 

 

 experimental peak load:            for a variation of     ; 

 experimental peak displacement:         for a variation of     . 

 

The obtained values and the relative percentages of approximation is satisfactory for an engineer 

application. No convergence trend has been studied, since only linear analysis are executed and the 

convergence is always reached. The analysis runs about 300000 iterations to display the post-failure 

behaviour, but the peak arises around the 200000
th

. 

 

 

εel,ult. [-] 0.000118 1.184E-04

0,5*εcr,ult [-] 0.000111 1.112E-04

εcr,ult [-] 0.000222 2.223E-04

5*εcr,ult [-] 1.11E-03 1.112E-03

εel,ult. [-] 0.000118 1.184E-04

0,5*εcr,ult [-] 0.001112 1.112E-03

εcr,ult [-] 0.002223 2.223E-03

5*εcr,ult [-] 1.11E-02 1.112E-02
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Four main points are selected on the load-displacement diagram: 

 

 point 1:                           ; 

 point 2:                            ; 

 point 3:                        ; 

 point 4:                             . 

 

They are shown in following plot; the main output will be exposed in the next paragraphs. 

 

 
Main points on the load-displacement diagram for SLA 
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9.3.1 Redistribution capacity: 

 

On the following image, four pictures of the felt reactions in the Z-direction      are shown by 

adopting a vector plot. They prove the redistribution of the load from the slab to the support, since 

the action on the felt is equal to the one on the support beam for vertical balance. 

The pictures show the plot about the four main points. 

 

 
Vector plot of felt reaction [MPa] for the main points 

 

By observing the previous vector plot of the interface traction, the trend of the reaction forces can 

be discovered. On the 1
st
 main point (      ) the usual triangular shaped distribution is detected 

and no tensile reaction stresses arise on the interface, since the 2
nd

 main point (        is reached. 

Now, the load seems to be carried by the middle part of the North support, extending toward the 

free lateral edges. For higher load the effective width reduces the area, but the most of the load is 

concentrated around the middle on the support: that is visible for load close to the peak        . 

The maximum compressive stress reaches       , while the maximum tensile stress is        . 

By plotting the part of interface in a compressive state, they are shown with red color (values higher 

than       - compression). It can be observed that the loading angle assumes a value from     (1st
 

main point) and     (4th
 main point), therefore the effective width of the active zone of the support 

changes from              to             . 
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Effective width due to the load spreading on the felt layer 

9.3.2 Cracking behavior of the slab 

 

In order to investigate the development of the cracking under an increasing load, contour and vector 

plot of the pricinpal tensile strain are used. Taking into account four points on the softening diagram 

calculated for a fracture energy               and        . 

 

     
(a)                                                        (b) 

Main values for principal tensile strain (a) and Hordijk softening diagram (b) 

 

The second value on the Hordijk softnening model has been modified in order to take a higher value 

than the ultimate elastic strain. 

For the four main points selected before, each plot shows the plots of top, bottom, front and lateral 

surface respectively. 

 

εel,ult. [-] 0.000118 1.184E-04

0,55*εcr,ult [-] 0.000122 1.223E-04

εcr,ult [-] 0.000222 2.223E-04

5*εcr,ult [-] 1.11E-03 1.112E-03
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Contour plot of principal tensile strain for 355 kN 

 

 
Contour plot of principal tensile strain for 731 kN 

 

 
Contour plot of principal tensile strain for 1304 kN (peak) 

 



231 
 

 
Contour plot of principal tensile strain for 1344 kN (post-peak) 

 

The previous plots underline a strong different respect with to the NLFEA output for the same mesh 

in terms of spreading of the cracked areas. However, it's shown that the cracks arise from the 

bottom, below the loading plate, and run first in the transversal direction and then mainly on the 

longitudinal direction. On the peak and post-peak the plots become confused, since the damage 

spreads on the main surfaces of the slab. The cracks are concentrated in the North part of the slab, 

as expected, and on the last point a longitudinal crack seems to spread toward the midspan. 

 

To have a clearer representation of the direction and of the entity of the fractures, it's useful to have 

also a vector plot of the same principal tensile strain. 

The same surfaces are plotted: 

 

 
Vector plot of principal tensile strain for 355 kN 
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Vector plot of principal tensile strain for 731 kN 

 

 
Vector plot of principal tensile strain for 1418 kN (peak) 

 

 
Vector plot of principal tensile strain for 1241 kN (post-peak) 
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On the first point, at       , the strain distributions are similar to the previous seen before on the 

other analysis. The slab shows an elastic behaviour globally, since only on the bottom the ultimate 

elastic strain         is exceeded. Here, vectors runs in the X-direction below the loading plate: this 

means that a transversal crack arises. 

Then a load of        strain vectors show a longitudinal crack running on the X-direction, from 

the loading plate on the bottom surface forward the North face. These two families of crack well 

evidence the initial flexural behaviour of the slab before the shear mechanism arises. Radial cracks 

can be detected as well and inclined vectors start to arise below the load position. On the frontal 

face a vertical crack runs from the bottom forward the half of the thickness. On the lateral side the 

main stresses zone, as below the load and on the clamped side, are interested by high strain vectors. 

 

For a load of        , who represents the peak load, a strong redistribution of the principal tensile 

strain occurs. On the bottom face only inclined vectors can be detected, then the shear mechanism 

governs the slab behaviour. It has to be noted that the inclined vectors are located below the load, 

but on the South side, unlike what is shown with the NLFEA. On the frontal face two main cracks 

are detected: they run along the vertical direction, about        from the middle. An horizontal 

crack can be underlined, on the right side. It's could be caused by the tensile felt reaction, as it's 

visible on the lateral plot. A strain concentration is visible on the North support, close to the 

interface. This cracks increases on the last point, for        . 

 

 
Particular of vector plot of principal tensile strain for 1304 kN (peak) on the bottom surface 

 

Looking at the previous plot, it seems the load prefers to be transferred toward the middle of the 

slab, since the struts converge toward the midspan. 

The presence of the strut-and-tie bearing mechanism and its evolution can be proved through a 

vector plot of the principal compressive strains, showing clear inclined struts of concrete. However, 

this is not confirmed by the principal compressive strain plots: 

 

 
Vector plot of principal compressive strain for peak (left-hand) and post-peak (right-hand) 
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On the last two points, the main compressive strains evidence a different mechanism to transfer the 

action: here the load is transmitted to the North support through inclined struts, as expected. 

 

On the basis of the previous observations about the cracking behavior of the slab, performed using 

the SLA, it can be stated that the tensile reaction of the felt has a not negligible influence on the 

local behaviour of the slab, close to the North support. Indeed, the normal stiffness is much higher 

(at least one order) than the other values adopted in the previous analysis. 

The flexural cracks are well detected and the strut-and-tie mechanism are shown. 

 

9.3.3 Behaviour of the reinforcement bars 

 

To have an immediate evaluation of the distribution of the stress and of the behavior of the steel 

bars, contour plots of the principal tensile stresses are presented afterward, referring to a unique 

yielding tension equal to        . 

Three main points are taken into account and for each one, four plots are shown:     and     for the 

top rebars, respectively on the upper and on the bottom plot (left hand);     and     for the bottom 

rebars, respectively on the upper and on the bottom plot (right hand). 

Through these contour plots it can be proved the hypothesis of Kinnunen and Nylander, since the 

reinforcement steel of the bars has an elastic behavior in most part of the slab and the only area in 

which one can notice a yielding is the one close to the loading point. In particular for an applied 

load of around        , the only bars who yields has a very limited length, below the loading 

point (red color). 

No yielding occurs on the other bars. 
 

 
    and     contour plot for top and bottom reinforcement bars for 355 kN 
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    and     contour plot for top and bottom reinforcement bars for 731kN 

 

 
    and     contour plot for top and bottom reinforcement bars for 1304 kN (peak) 

 

 
    and     contour plot for top and bottom reinforcement bars for 1344 kN (post-peak) 
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Adopting the principal tensile stress plots, we can observe the progressive redistribution of the 

stress inside the reinforcement bars. 

For the present plots four points are selected: the first point on the load-displacement graph and the 

aforementioned three main point. 

The first points allows us to discover the tensile stress distribution inside the rebars when the slab 

works in a ideal linear elastic state. Then, the following plots can show a gradually changing in 

value, position of the most loaded bars and distribution of the global stresses. 

Since we ask for principal tensile stress, only positive values will be shown. 

 

Observing the bottom rebars, the first two plots confirms the crack development: at        the 

highest stress arises on the longitudinal bars below the loading plate, while at        it invests the 

transversal bars, forward the North face. After, on the peak load of         the stress spreads 

around the load position, especially in the longitudinal direction. The most stressed zone is located 

below the loading plate and the yield stress is reached. For higher load the external transverse bars 

are the most stressed. 

The plots of the top rebars show a stress redistribution as well: the most interested zone moves from 

the clamped side to the North edge. Here, on the peak- and post-load the rebars close to the middle 

are the most stressed. 

 

 
Principal tensile stress for the reinforcement bar on the top surface 
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Principal tensile stress for the reinforcement bar on the bottom surface 

 

9.3.4 Compressive behaviour of the concrete 

 

In order to verify the elastic state of the concrete for the compressive field, the principal 

compressive stress feature is investigated through a contour plot on four surfaces, only for the last 

three main selected before. 

Two main values are adopted: 

 

                    ; 

                    . 

 

Since, the compressive stress has conventionally a negative value, the green color shows the parts 

with a lower principal stress than                . Instead the blue color proofs the part who 

exceed this reference value. 

 

 
Contour plot of principal compressive stress for 731 kN 
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Contour plot of principal compressive stress for 1304 kN (peak) 

 

 
Contour plot of principal compressive stress for 1241 kN (post-peak) 

 

As shown by the previous plots, the principal compressive strain never exceed the compressive 

strength of the concrete. Only below the loading plate the compressive strength of the concrete is 

completely exceeded. 

So, thanks to these plots, we can demostrate that the assumption of a linear elastic concrete in 

compressione is adequate to describe the behavior of the conglomerate. This is is strengthened by 

the fact that also the 50% of     is never reached on high volume of elements inside the slab. 

9.3.5 Failure mechanism of the slab 

 

From the contour plots of the bottom face it becomes clear that the principal tensile strains are less 

developed at the side of the continuous support. The following picture shows the distribution of the 

principal tensile strain at the peak load and after the peak load. The scale of the contour plots is held 

constant in order to see the development of the tensile strain area: 
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Contour plot of the principal tensile strain on the bottom face on the peak (left-hand) and post-peak points (right-hand) 

 

Unlike the previous analysis, a bigger cracked area is detected. The higher and marked brittleness of 

the concrete could involve a wider spreading of the damage. A strong concentration can be 

discovered below the loading plate (as expected) and forward the midspan. The uniformity of the 

principal tensile stresses does not allow to distinguish the occurrence of different crack systems. 

The red area could contain radial and punching shear cracks. So, a clear crack patter can't be 

detected as done before. 

Moreover, the combination of a tensile reaction provided by the felt and the low "tensile ductility" 

of the concrete involves the formation of a horizontal crack on the frontal face. 

Finally, it's not possible for us detect the exact way of failure of the slab from these plots. 

 

 
(a)                                                                                         (b) 

Contour plot of the principal tensile strain for peak (a) and post-peak load (b) 

 

A better interpretation can be discovered observing the deformed shape of the structure from 

different point of views, on the peak and post-peak status: 
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Deformed structure at the peak load: global overview 

 

 
(a)                                                                                              (b)  

Deformed structure at the peak load: (a) North front side and (b) West lateral side 

 

 
Deformed structure at the post-peak load: global overview 
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(a)                                                                                              (b)  

Deformed structure at the post-peak load: (a) North front side and (b) West lateral side 

 

A strong deformed zone is exposed under the load position. This cannot be detected on the global 

overview, but the lateral point of view shows a strong deflection of the slab under the load. Instead, 

the frontal side displays a rise of the North section on the middle of the support: it could be caused 

by the bi-dimensional nature of the slab under the concentrated load. 

However, it's hard to define the failure mode, though a punching shear seems to be preferred.  
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10. CONCLUSION 
 

 

10.1 Sinking phenomenon 

 

The experimental load-displacement graph could be affected by few phenomena, introducing errors. 

Their relative contribute to the global gap present different percentages. 

One of the most common is the sinking of the steel loading plate inside the upper concrete surface: 

it produces the typical relative displacement under the loading plate, as shown in the following 

pictures: 

 

 
Sinking of the loading plate inside the concrete on the compressed side 

 

It's not possible to measure this effect along the whole proof and even in the end it's not evaluable. 

Moreover, since the experimental setup presents four lasers around the loading plate to measure the 

objective load-displacement trend, its contribute can be calculated only in combination of the gap 

between loading plate and measure devices in terms of displacement. 

 

 
Experimental setup: lasers around the loading plate 

 17, 18, 19, 20 and geometrical features 

 

So, in order to estimate this phenomena, numerical analyses are run taking in account the laser 

positions. Two different load-displacement diagrams are presented and the gap is so obtained. 
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In order to don't modify the meshes new geometrical points are not introduced into the model. The 

laser positions are defined as follows: 

 

 linear interpolation between two nodes for 3x3 mesh; 

 closest nodes to the plate for 4x4 mesh. 

 

 
Numerical laser position: 3x3 mesh (left-hand) and 4x4 mesh (right-hand) 

 

 
Comparison between laser and plate displacement for two different meshes 

 

Logically, the lasers measure a smaller deflection of the slab, since they are located farther than the 

plate. So, the sinking+deflection gap is defined as: 
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The results are resumed in the following graphs: 

 

 
Gap: 3x3 mesh (left-hand) and 4x4 mesh (right-hand) 

 

The way this gap is calculated is conservative: in the first test is interpolated linearly, in the second 

the lasers are farther than the experimental locations. 

It can be assumed the gap, in terms of displacement, is negligible since for        of load the 

effect reaches about         , so around the    relative to the maximum reached displacement. 

 

10.2 Computational time 

 

The present work offers the possibility to compare and study the magnitude and entity of 

computational effort required by the two different method, i.e. NLFEA and SLA. Indeed, one of the 

most significant and practical problems related to nonlinear finite element method is the 

computational times. Both nonlinear and sequential linear approach relate this feature to the mesh 

properties: number of nodes and adopted integration scheme, number and typology of elements. 

Now, it's easy to understand that a finer mesh implies a high amount of elements, and so the 

consequent large number of nodes and integration points. Surely, it involves few advantages 

regarding to the pre- and post-processing environment of the analysis: a finer mesh allows to build a 

model more similar to the experimental reality, the results are more accurate. For example, a small 

average size of the finite element involves a wider range for the numerical crack bandwidth: a 

higher possibility to match the "real" one is achieved. 

Now, this object has to be contextualized in a three-dimensional environment, where the problem of 

the computational evident results much evident: the gap between different meshes is immediate.  

Indeed, the computational time is related to two quantities: (1) number of the solid elements, (2) 

number of the nodes and of the integration point. By adopting a finer mesh, they are subject to a 

faster growing and the computational time is sensibly incremented as well. 

 

The models that have been built performing the Sequentially Linear Analysis are composed by 

CHX60 (20 nodes) and CQ48I (16 nodes) solid elements, with a default integration scheme 

respectively linear 2 x 2 x 2 and Gaussian 2 x 2. Instead the models supporting the Nonlinear 

Analysis adopt a 3×3×3 integration scheme for CHX60 elements, 4×4 Newton–Cotes integration 

scheme for CQ48I interface elements and direct integration (1-point) for L6TRU truss elements. 
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Beside, the more refined is the mesh, the larger number of integration points should be damaged 

before the first crack opens or the yielding of the first reinforcement or the failure occurs [4]. 

For what regards the SLA, as explained in the previous chapters, each increment of damage 

corresponds with a step, so the number of steps to perform a complete analysis is enormous. In fact 

in the first coarse mesh (so called 2x2 mesh) composed by "only" 4290 nodes and 708 solid 

elements, to reach a satisfactory results, or better to show a clear post-peak behavior and snap-back 

phenomenon, the complete analysis should be made using not less than 300000 steps, in order to 

detect exactly the real failure point of the model. 

 

It has to be noted that the amount of steps is one order higher than previous work on the same 

model (see [4] for more details). It's probably related to the finer local discretization adopted to 

produce the "ripple" curve in the SL-analysis: 15 instead of 12. The gap is small, but one has to 

think that occurs in each integration point. Moreover, the softening behavior of the concrete is 

modeled by adopting a different curve: Hordijk instead than Linear. 

An analogous problem is present in the Non-Linear Analysis, regarding the number of the nodes 

and of the integration points. The NLA has been performed using 850 load steps, with a multiplier 

factor of 0.0012 (on a total applied displacement of 25 mm) who means 0.03 mm for each single 

step. The Modified Newton-Raphson Method with maximum 100, 50 and 25 iterations has been 

adopted and a line search algorithm has been applied. Regarding the convergence criteria, it has 

been chosen a Relative Displacement tolerance of       . 

Generally, the number of steps itself does not play a role in terms of computational time, but a low 

amount of steps requires more iterations to satisfy the convergence criteria, vice versa, a large 

number of loading steps might carry out the calculation with a smaller number of iterations. 

Regarding this aspect, few trials have been made in order to improve the convergence ratio for the 

Modified Newton-Raphson, just adopting smaller width for the loading steps. This is not always 

sufficient to satisfy the convergence criteria. It seems that when an "event" occurs, like cracking in 

the present work, it is not possible to avoid the singularity, neither iterating around it, then few steps 

can't converge. It affects by errors the present and future steps: accuracy and reliability of the NLA 

can become very weak. This does not take place in the SLA approach, because of the independence 

of the results by any kind of convergence criteria, since the method is based on a sequential and not 

on an iterative procedure. 

Since two methods are adopted to carry out the analysis (SLA and NLFEA) on two different models 

(partial and total), first a comparison between partial and total model with Nonlinear Analysis is 

shown, in order to underline the main differences in terms mesh properties and computational time. 

Finally, the comparison is focused on the two different methods, regarding to the reference model 

(partial version). 

 

The following table contains a measure of the computational time that has been necessary to 

complete the NLFEA (to reach complete divergence of the analysis) for the three different meshes 

used, both for partial and total model. 

Each analysis is carried out adopting a "Dell Precision T3400" computer. 
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Computational time for NLFEA on the partial model 

 

Regarding to the finest mesh (so called 4x4) the analysis can't be practically carried out. After five 

days of computation only 27 steps are completed. Extrapolating the average time effort for a 

predicted amount of steps even to 270 steps, we get 1200 hours. It has to be noted that this is a 

conservative prediction. Indeed, the behavior of the analysis with 3x3 mesh shows how no 

convergence is satisfied after 40
th

 step, so for the following steps the maximum amount of iteration 

is expected. So, since the first steps are linear and they need a lower amount of iterations, we must 

aspect a bigger effort for the next steps, not linearly comparable or extrapolable. It's interesting to 

note that each mesh presents at least one order difference between the upper and the lower one.  

 

 
Computational time for NLFEA on the total model 

 

A first comparison between partial and total analysis shows a lower amount of hour for the total 

model: this is due to the prosecution of the partial analysis after the peak-load. Indeed, that does not 

happen anymore with the denser meshes and a gap is detected. Of course it's due to the higher 

amount of elements, and so of nodes, that the total model presents. The same extrapolation is made 

for the total model, since no analyses is run on 4x4 mesh due to the poor results on the partial 

version. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type of 

Elements

# of 

elements

# of 

nodes

Computational times 

[hours]
# of elements over the height of the slab

Solid 708 4290 8.0 2

Solid 3404 18217 123.0 3

Solid 7344 36546 1200.0 4

Nonlinear Analysis on Partial model - Computational time

Type of 

Elements

# of 

elements

# of 

nodes

Computational times 

[hours]
# of elements over the height of the slab

Solid 1099 6474 6.0 2

Solid 4759 25176 132.0 3

Solid 9779 48202 1200.0 4

Nonlinear Analysis on Total model - Computational time



247 
 

The computational trend is shown in the following image: 

 

 
(a)                                                                                  (b) 

(a) Computational effort for partial and total model with different meshes,  

(b) extrapolated average trend of the required time 

 

The effort seems to quickly increase and the nonlinear trend is marked. A function of the second 

order is able to describe the required computational time for a number of nodes higher than 20000. 

It's so reported: 

 

               

 

Observing the tables, one can detect immediately the higher amount of elements, and then of nodes, 

that the total model has got, since that describes the whole experimental setup. It involves to an 

increasing of the computational time, but it seems not linearly related.  

 

 
Computational time for SLA on the partial model 

 

Observing the tables it is clear how for the same amount of nodes the SLA requires computational 

time that is very long, compared with the one required by the NLFEA. It also because of this 

evaluation that a more dense integration scheme can be adopted in the NLFEA. 

Since only the coarsest mesh is adopted for the SLA: a unique point is evaluated, but it's enough to 

display a big gap between the two methods in terms of computational time: one day of work (8 

hours) for the Newton-Raphson and about three days (72 hours) for the Sequentially Linear 

approach. 

 

Type of 

Elements

# of 

elements

# of 

nodes

Computational times 

[hours]
# of elements over the height of the slab

Solid 708 4290 72.0 2

Solid 3404 18217 / 3

Solid 7344 36546 / 4

Sequentially Linear Analysis on Partial model - Computational time
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Computational effort for NLFEA and SLA 

 

Moreover the difference of the computational time needed by the two methods has not a linear 

growth. The previous diagram shows the trend that the value of the computational time follows 

respect the increasing of the number of nodes for SLA and NLFEA. 

 

10.3 Comparison between Total and Partial model through Non-Linear Analysis 

 

On the present work two different models have been analyzed in order to evaluate and study the 

effects related to a structural compromise. The complete modeling of the experimental setup allows 

to reproduce the reality, but it costs a higher pre- and post-processing effort. As seen, the South 

constraint is made by a continuous line support and three pre-stressed Dywidag bars. This solution 

adds a non-proportional load case, that united with the main load case (displacement control on the 

loading plate), involves computational and numerical problems that can be solved only applying an 

other advanced numerical method: the Phase Analysis (more information in Appendix A). Since 

SL-analysis is still not implemented for non-proportional load in a three-dimensional case, it was 

necessary to provide a model without pre-stressing. That can be carried out only simplifying the 

complex South constraint by introducing a clamped side. It was purpose of this Master Thesis study 

the effects related to this simplification of the model in terms of load-displacement response, 

cracking behaviour and failure mode. 

 

 
(a) (b) 

Load-displacement diagram for (a) 2x2 meshes and (b) 3x3 meshes for partial and total model 
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Regarding to the load-displacement diagrams a good agreement is shown: despite the structural 

response is linked to the mesh fineness, the meshes display a common trend. It has to be noted that 

the partial model presents a higher stiffness than the total model. It is related to the structural 

assumption of a full clamped side: this means no deformability for the South constraint, unlike the 

experimental setup. 

The highest difference is related to the required amount of Tensile fracture energy   . The 

following graph shows the trend of the required parameter in order to fit the peak-load. Despite the 

gap between total and partial model, it seems that the average trend matches with the Tension 

Stiffening range. 

 

 
Fracture energy trend for total and partial model and Tension Stiffening  

 

In order to analyze and study how much and in which way this boundary condition can influence 

the behaviour of the model (cracking and failure mode) the previous comparisons are carried out. 

The final conclusion are reported in the following list: 

 

 felt reaction and redistribution: both the models present good agreement regarding to the 

shape of the vector plot     . The total model provide a higher maximum compressive stress 

(       instead       ). A bigger concentration of the reactions is provided by a denser 

mesh for both the models in terms of shape. The same can be reported for the redistribution 

of the reaction on the interface on the North support: the spreading angle doesn't change in 

relation with mesh and model. 

 principal tensile strain and cracking behaviour: ax expected the denser mesh, the better 

results are obtained for both the models. Indeed, the denser mesh well evidences a radial 

cracking and a circular punching fracture below the load. Due to the lower stiffness, the total 

model tends to produce wider cracks. Anyhow, the crack widths presents good agreement 

with the experimental evidence, both in terms of predicted location and opening. 

 yielding of reinforcement: the analysis confirms the hypothesis of a failure related to 

reached Shear Capacity for both the models; 
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 deformed shape: the total model presents a bigger global deflection of the structure, as seen 

on the load-displacement diagram related to the load position. However, both the models 

show a clear strong deformation below the load for a denser mesh. 

 

To better explain these comparisons, three pictures are shown: felt reaction, principal crack strain 

and deformed structure. 

 

 
Felt reaction vector plot: total model (left-hand) and partial model (right-hand) 

 

 
Normal crack strain contour plot: total model (left-hand) and partial model (right-hand) 

 

 
Deformed lateral side: total model (left-hand) and partial model (right-hand) 

 

From this point of view a good agreement subsists between total and partial model: further analysis 

can be carried out adopting the partial model and providing a significant reduction of computational 

effort, both in modeling and in post-processing. It has to be noted that the partial model is equipped 

with linear felt. 

Moreover, all these considerations allow us to affirm that a strong mesh sensitivity affects the 

model, since for a coarse mesh (two elements on the height) is not able to identify a clear failure 

mode. Indeed, we can't distinguish if the failure is due to a dominant punching shear phenomenon, 

as seen during the experiment. This can be confirmed by the results obtained with previous work 

(see [5] [4]). There, the deformed shape doesn't present an evident deformed area below the load. 

Just increasing the amount of elements (three bodies on the thickness of the slab), a decided 
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improvement is observed in terms of cracking pattern and deformed shape, against an "explosion" 

of the required computational time. 

Though the present case regards a non-symmetric load case with the concentrated action close to a 

line support, some matches are found with the ideal punching shear mechanism (Guandalini 2005): 

 

 
Comparison between numerical plots of principal tensile strain 

and cracking behaviour of a slab under point load in symmetric condition 

 

 on (1) is shown the initial flexural cracks directly on the tensile side below the load; 

 on (2) the flexural cracks increase and radial fractures spread from the load toward the free 

edge and the midspan of the slab; 

 on (3) the failure occurs after a circular shear crack due to the formation of a truncated cone 

body between load and opposite surface. 
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10.4 Comparison between Nonlinear and Sequentially Linear Analysis on Partial model 

 

The present paragraph focus on the two aforementioned methods of solution: NLFEA and SLA. 

That finalizes the study about the reliable of the sequentially linear approach regarding the study of 

the behaviour of reinforced concrete slabs subjected to concentrated load. Moreover, this study 

allows to get conclusions respect the main limits and advantages that characterized the Sequentially 

Linear Analysis and the Non-Linear Analysis. 

NLFEA provides good results of the analysis of reinforced concrete slab S25T1 and satisfactory 

agreement has been found  with experimental reality in terms of cracking pattern and failure mode. 

Instead, the prediction of the load-displacement trend needs further improvements: as seen, SLA 

provides a better prediction of the global load-displacement diagram and an investigation of the 

post-failure behaviour is made possible by this Code. The peak load and ultimate displacement 

show good agreement with the experimental evidences and the first snap-backs seem to follow the 

post-failure trend. This is not possible with NLA approach. 

A visual comparison is provided by the following images: 

 

 
(a)                                                                                   (b) 

Load-displacement diagram for (a) NLFEA and (b) SLA for 2x2 mesh 

 

However, for what regards the prediction of the local behaviour of the slab, further improvements 

should be done in order to achieve a better evaluation of the redistribution capacity, of the strain and 

stresses values and distribution and of the cracking pattern 

The final conclusion are reported in the following list: 

 

 felt reaction and redistribution: NLFEA shows a stronger redistribution of the felt reactions, 

regarding to the shape of the vector plot     , while SLA provides a more elongated 

diagram. Moreover, NLFEA and SLA provide complete different values regards to the 

maximum compressive stress (       instead        respectively). 

 principal tensile strain and cracking behaviour: for both the model the coarse mesh does not 

allow to get clear results about principal tensile strain distribution and cracking behaviour. 

As see, satisfactory results can be achieved only with denser meshes. The comparison is 

made on the coarsest mesh: however, NLFEA provides clearer plots. It could be caused by 
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the low fracture energy selected for SLA: the concrete results too brittle and the damage 

spreads inside the whole slab. 

 yielding of reinforcement: both the methods confirms the hypothesis of a failure related to 

reached Shear Capacity for both the models; 

 deformed shape: the SLA seems to present a higher shear deformation with a stronger 

displacement below the load, underlining a dominant punching shear failure mode. 

 

To better explain these comparisons, three pictures are shown: felt reaction, principal tensile strain 

and deformed structure. 

 

 
Vector plot of felt reaction for NLFEA (left-hand) and for SLA (right-hand) on the post-peak point 

 

 
Contour plot of principal tensile strain based on the Hordijk softening model for NLFEA (left-hand) and for SLA (right-

hand) on the post-peak point 

 

 
Contour plot of principal tensile strain based on the fixed scale softening model for NLFEA (left-hand) and for SLA 

(right-hand) on the peak and post-peak point 
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Lateral deformed  shape for NLFEA (left-hand) and for SLA (right-hand) on the peak point 

 

From these plots can be discovered how further improvements on the SLA model are necessary and 

tests on a denser mesh should be carried out.  

 

The choice of the physical and mechanical properties of the materials in the NLFEA model was not 

so easy: the definition of the normal stiffness for both the adopted interfaces (Teflon and felt) and 

for the Tensile fracture energy required a high amount of effort in the pre- and post- processing 

phase. A strong influence of the felt interface is detected and underlined in previous work as well. 

Satisfactory agreement is achieved only after a calibration campaign that required months. 

It has to be reported that in slab made with High Strength Concrete difficulties in the choice and 

calibration of the main parameters have been found also in previous works (see [4] for more details). 

Indeed, the research of the optimal Tensile fracture energy caused significant pre-processing effort: 

a High Strength Concrete presents a more brittle behaviour than a Normal Strength Concrete. 

The comparison between NLFEA and SLA concerns about the prevision of the load-displacement 

diagram, the cracking behaviour and the prediction of the main failure mode. It has to noted that 

with the actual version of Diana for SLA (9.2) the disc plot for normal crack strain is still not 

implemented. 

The highest difference is related to the required amount of Tensile fracture energy   . As said in the 

previous chapters, in order to fit the load peak the SLA approach required a rate even to     of the 

same parameter adopted inside the NLFEA environment:               instead           

   . This causes a very brittle concrete: SLA-Code showed few problems related to the 

investigation of Brittle Materials. 

 

It is very important to note that the results obtained through NLFEA could be influenced by not 

negligible errors, since a great amount of steps could not satisfy the strict Convergence Criteria. 

In the SLA this problem is not present because of the conceptual nature of the method, that is 

sequential and not iterative (like the NLA). 

Regarding this aspect, the setting of the Non-Linear procedure of Analysis can be problematic, in 

order to get convergence solutions step by step. To do this it is necessary to evaluate the optimal 

relation between the Step Size and the Number of maximum Iterations for each step, in accordance 

to the chosen Convergence Criteria. 

The Computational needed to perform an entire analysis is dependent from the previous relation. 

In general the SLA requires a much longer Computational Time than the NLA, considering the 

same meshing properties. 
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In conclusion the Sequentially Linear Analysis at the present status needs further improvements 

regarding some significant aspects of the model: implementation of double nonlinear behaviour for 

materials (e.g. to model the felt reaction both in compression and in tension), implementation of a 

non-proportional code on the three-dimensional environment. evaluations whose quality is totally 

comparable to the Non-Linear Analysis. However, it has to be noted that the NLA is a much older 

and studied procedure than the SLA, and its Codes usually provide a wider range of properties and 

models (for instance the Saw-Tooth law for the concrete in SLA can be built only on the basis of a 

Linear-Softening Stress-Strain relation for the felt, while in the NLA many better constitutive 

relations are available or can be supplied by the user). 

Currently, it is necessary to improve the mathematical model inside SLA Code as well. In other 

words, the possibility to add proportional loads in a 3D environment has to be add. So, it will be 

possible to model different study cases. The present work represents only one of the first step in this 

new way of modeling 3D structures with SLA Code. 

In this sense SLA could be a very potential method, and further implementations could lead it to a 

much bigger level of reliability and accuracy compared to the Non-Linear methods as well. 
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APPENDIX A - PHASE ANALYSIS VALIDATION: 
 

A.1 Introduction:  

 

In order to evaluate and confirm the output from the Diana solver environment for the phase 

analysis, two simply examples are studied below. 

The application of the phase analysis on the present model is a particular case: after a pre-stress 

load (three concentrated loads near the free edge of the slab) a displacement is given through the 

loading plate. 

iDiana imposes constraints to the mesh nodes where the displacement is given. 

Due the fact that the controlled displacement is given only after the pre-stress bars loading 

procedure, the simultaneous presence of these two loads represents a constraint condition who 

doesn't represent the reality. 

So, it's necessary to define two different models, with the same geometrical features, but different 

load cases and constraint configuration: 

 

 the first one (pre-stress only) has got a constraints free loading plate and three concentrated 

load on the south free edge of the slab; 

 the second one (under pre-stress, with displacement control on the loading plate) has got a 

constrained loading plate and a second load case.   

 

The present images helps to understand the models differences inside the .dat file: 

 

 
Support and Load table for the 1

st
 phase 

 

  
Support and Load table for the 2

nd
 phase 
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For this reasons a very simply model is adopted with elastic linear features in order to confirm the 

results thanks to a manual check. 

The first evaluates the right procedure in order to  confirm and get the superposition the results from 

the first phase on the ones from one from second. 

The second helps to understand the role of the pre-stress load on the Dywidag bars inside the whole 

model. 

As said before, a simply 2D model, made by rectangular section steel beam , is adopted. 

The static scheme is a simply supported beam with a right cantilever. 

In order to follow the complex slab model a series of example will follow the same kind of 

procedure: the geometrical model will be used in the final configuration and only new load and 

constraints will be added. 

The following material and physical properties are used: 

 

                      

                              . 

 

Working in 2D environment the physical feature is given with regular plane-stress feature. 

The central beam span is        long, instead the cantilever beam is        long. 

The left constraint (named with the “A” letter) is a cart and the left one is a hinge (named with the 

“B” letter). 

Load case 1 contains the vertical concentrated force on the cantilever free edge (named with the “D” 

letter), with a magnitude of      , instead the displacement control is carried out with           

(named with the “C” letter).  

 
Simply supported beam with right cantilever, geometrical model 

 

 
Particular: loading plate model and mesh nodes 
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Simply supported beam with right cantilever, mesh on iDiana environment 

 

The analogy between slab and simply model is due to the loading plate, positioned in the middle on 

the beam in order to make the manual resolution easier. Due to the lower longitudinal dimension 

(      ) the loading plate dimension are negligible and the displacement action over it can be 

assumed as a concentrated one. 

In fact the span plate width ratio is: 

 

 

 
  

      

       
    

 

A simplification will not bring considerable errors to the manual resolution. 

It's to be noted that the added load plate, without an interface who avoids kinematic compatibility, 

represents an inertia increase for the interested sections. In fact in these sections the effective height 

is even to        instead       . It brings a       flexural inertia increasing, but for a length 

of only    of the total beam span. 

It brings other approximation to the manual results, but the global influence is negligible as well. 

In order to control the right superposition in terms of stress and deformation inside the beam 

elements, displacements and reactions of control points are checked. 

 A.2 First test: right superposition of stress and deformation 

 

For the present instance displacements and reactions are checked on in predefined control points. 

Displacements are evaluated on the top of the loading plate part, instead the reactions are refer to 

the supports. 

Afterwards they are compared with the theoretical manually obtained results and differences will be 

discussed. 

In phase one of the analysis free edge of cantilever is loaded by a vertical concentrated force. It 

represents the pre-stress in a Dywidag bar in the simplest way. 

Due to this load the whole beam deforms: all the upper fibers are strained.  
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In the phase two, displacement control on the loading plate is added to the deformed structure: it's 

possible asking Diana to read new load and support table. 

In fact, in Diana environment displacement control analysis in possible only through tying the 

reference geometrical part, so the loading plate mesh nodes are constrained in the vertical directions 

inside the support table and a new load case is inserted (.dat file). 

Applying a vertical displacement in the beam midspan a new deformed configuration is obtained. 

Thanks to the "tabula" option inside the command file (.dcf extension), displacement and reaction 

plots can be given for any phase. 

The studied displacement is the average one from the loading plate nodes. 

Here Diana output are reported for        : 

 

   
           ; 

   
             ; 

                  

                  

 

So, the average plate displacement results equal to: 

 

     
             

 
          

 

It has to be noted that the nodes displacements are negative due to the particular structure 

deformation. Thus, the nodal reaction in B constraint is negative due to the iDiana way of force 

representation: iDiana shows us the reactive action, so for the third static principle we see the force 

that the structure transmits to the constraint. 

For the         they are: 

 

   
            ; 

   
             ; 

                 

                 

 

So, we get: 

 

             

 

For theoretical results, working with linear elastic materials and operating with linear static analysis 

few considerations can be done: 

 

 effects superposition is doable: displacements and reaction from phase one and phase two 

are overlapping, 

 through the generalized Hooke's law       , a displacement can be expressed as an 

equivalent load. 
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For         reactions and midspan vertical displacement can be obtained using cardinal laws of 

static and theorical formulas: 

 

 
      

      

   
  

      
        

      
                       

  

 

Following the same convention for reaction modulus as iDiana we get: 

 

 
  

           

   
              

  

 

In order to calculate the C point vertical displacement it’s necessary to bring the action of    on the 

interested structure (simply supported beam only). 

It brings a bending action; its effects can be calculated as: 

 

 
Qualitatively deformation for phase 1 

 

Where 

 

   
   

    
   

     
                       

    
           

 

In order to simplify the manual resolution, adopting a linear elastic material, the controlled 

displacement applied in         can be expressed as: 

 

       

 

where   represent the translation stiffness in the vertical direction for the whole structure with the 

predefined load case and   is the prescribed displacement. 

As said before, due to the negligible width of the loading plate, it can be studied as a concentrated 

displacement action. This justifies the following  assumption for the stiffness evaluation. 

Thus, when the displacement control is applied, the cantilever beam is inert, so it can be neglected. 

So, the static scheme presents like: 
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Qualitatively deformation for phase 2

(1)
 

 

The vertical translation stiffness is known, it’s equal to: 

 

    
   

    
       

         

  
 

 

So the equivalent force is easy to be calculated: 

 

                  

In order to check on this result, reaction forces on the two plate nodes are evaluated: every force is 

even to        , so they agree perfectly. 

The theoretical final results can be obtained using the effects superposition. 

Considering the only effects of    (         ) we have the above reported static scheme, due to the 

symmetry, we get: 

 

 
    

            

     
             

   

and 

     
               

 

So, adding the previous effects we get the total displacement and reactions: 

 

 
  

                                    

   
                                     

   

And 

  
                                    

 

So, a comparison between theoretical and numerical resolution can be done for each phase, either 

for displacement and reactions. 

In        : 
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The reactions are perfectly evaluated, instead the vertical displacement in C point is lightly 

underestimated: 

                             
              

        
    

 

However, the difference is acceptable. 

In        : 

 

 
     

            

      
              

       
      

           

       
              

  

 

                       
              

 

The reactions are good evaluated, instead the vertical displacement in C point is more 

underestimated than the previous step: 

 

                            
             

       
     

 

The difference is due to the first displacement evaluation, since in the         a fixed displacement 

is added to the structure. 

A better approximation can be calculated taking into account the flexural inertia brought by the 

taller sections under the plate. 

Spreading the increased inertia along the whole beam uniformly, a better displacement evaluation 

can be reached (     . 

In this case, also the reactions evaluation brings good results (    only). 

A.3 Second test: load by a pre-stressed bar 

 

In the second example the load on the cantilever free edge is substituted by a pre-stress bar using 

the PRESTRES load case inside iDiana environment. 

The adopted model is equal to the previous one for geometrical dimensions and material properties. 

Only a        long extra part is added to the right free edge in order to guarantee the right bar 

embedding. 
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Simply supported beam with right cantilever and pre-stressed bar, mesh on iDiana environment 

 

So, in         the vertical point load is substituted by a        area bar, with an initial pre-stress 

equal to          . 

 

 
Action on an elementary bar piece 

 

Then the action on the structure is even to: 

 

                                    

 

in order to guarantee the balance of every bar piece as shown in the previous picture. 

So, we aspect to find a        applied force on the D point as first load. 

However this consideration is not correct: the reasons are here explained. So, in order to better 

understand the cause we have to think about the experimental pre-stressing bar procedure. 

In fact, it's necessary remember that bars work with the reinforced concrete structure, and every part 

has got its proper stiffness, so a proper deformability. 

On the    configuration slab and bar are relaxed and no loads are applied on any structural part. 
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Starting configuration: no loads 

 

On the    configuration the bar is stretched with a        force, in order to get a           

tensile tension in every sections. 

 
Pre-stressing for Dywidag bar only 

 

Now, only the bar is under load. 

On the    configuration bar and beam become kinematical compatible thanks to the nut. 

 

 
Bolted bar on r.c. slab: loads on the whole system 

 

When the bar is released against the beam    configuration starts. 

This represents the         of your analysis. 

Due to the vertical action the beam deforms, the vertical displacement in the negative Y direction 

on the D point shortens the pre-stressed bar, due to the kinematical compatibility supplied by the 

nut. 

This shortening reduces the pre-stress inside the bar, so the force on the beam. Only when balance 

is finally reached the beam stops to deform. 
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Using the effects superposition the balance point between beam and pre-stressed bar can be found. 

Working with linear elastic materials the force-displacement in the D point graph for the beam is 

linear and it can be so described. 

 
Kinematical scheme for load in D point 

 

The stiffness of the whole beam for a vertical force in the D point is equal to: 

 

  
     

   

   
 

   
  

   
   

          
      

   
 

 

So, 

 

      
      

      
  

 
  
  

 
  

 

With the present values it results: 

              

 

So, the stiffness is equal to: 

 

    
 

  
           

 

  
            

 

In this way, the displacement   is a linear function of  :         . 

 

To respect the kinematical compatibility                . 

The vertical displacement in the D point is equal to a shortening of the pre-stressed bar, so with the 

effects superposition it can be seen as a pre-stressed bar plus a compressed by displacement bar. In 

other words, the slab deformation means as a relaxation for the pre-stressed bar. 

Instability can't happen, since the bar has a tensile tension state. 

The following picture represents what happens to pre-stresses bar in    configuration thanks to the 

effects superposition: 
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Superposition on pre-stressed bar under relaxing 

 

For a simple truss the function    is linear as well and it can be expressed as: 

 

   
 

 
  

  

  
 

 

where the negative sign means a displacement in the  

The whole length of the bar is stretched, the embedded part of bar is equal to        . 

 

   
  

 
  

                  

       
           

 

So, during the beam deformation the function who describes the    trend is: 

 

       
 

 
 

 

The function who describes the load on the bar end is: 

 

        
                               

 

Now, balance and kinematical compatibility are possible only if                 and         

       . In fact, the D section of the beam must react to the vertical pre-stress load in order to 

guarantee balance in the Y direction. 

While the D section reacts, the beam deforms, increasing   . It brings a        reaction due to a loss 

of pre-stressing. 

The process converges only when the two function cross themselves. 
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Load-displacement function for pre-stressed bar and beam in linear elastic state 

 

So, we have two functions: 

 

 
                 

 

  
   

             
 

  
   

  

 

The two lines meet in            means a force value. 

A first important observation can be made after this result: as seen previously, the bar stiffness 

depends on the length  , since the       function contains the   term equal to  
  

 
. A different 

stiffness can slight the common point. 

Accordingly, the effective pre-stress loss depends on systems stiffness (bar and beam) and not on 

the beam stiffness only. 

For instance, a      value for the bar length, so a less stiff bar, involves a      to the applied 

force in D point. 

So, we obtain that it's very important to model the effective Dywidag bars inside the 3D       

model, in order to represent in the more realistic way the relaxation phenomena.  

A last observation can be done: iDiana can read force value as reactions only in constrained points. 

In order to read the force value on the bar end this one can be evaluated on the bottom constrained, 

even if in the experimental test it is evaluated on the top load cell. 

 

 
Experimental set: load measurements on Dywidag bars (red arrow) 
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However, due to the uniform tensile pressure field inside every section of the cable, the load value 

is equal to each end. 

 
Uniform stress scheme 

 

If the A point is the bolted one and B is the constrained one,       and it doesn't matter where 

the force is measured. 

 

 
Mesh model on iDiana environment 

 

All these considerations are necessary in order to understand the following output from the Diana 

environment. 

In fact, we find an acting force of          at the start of         in Diana, completely different 

from the original stress into the bar (even to       ). 

So, due to the beam deformation, about 
 

 
 of pre-stress are lost. 

This information is useful when a more complicated model as the reinforced concrete slab is studied, 

now we know that a pre-stress amount burns due to elastic deformations. 

Numerical result is really close to the just found theoretical one: 

 

 
             
            

           

 

Running the analysis inside we get for the        : 
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1

st
 phase deformation and constraints plot 

 

The theoretical results are: 

 

 
 
 

 
      

     
 

 
             

     
     

 

 
               

             

  

 

As seen before, 

 

      
   

    
 
       

    
           

The reactions match and for the vertical displacement in midspan a difference as seen before is 

visible: 

                                
 

     
        

In order to evaluate manually the partial results from         (as said before           ), two 

different cases are studied in order to simplify manual resolution for what regards bar vertical 

translation stiffness during        : 

 weak stiffness:          

 high stiffness:          
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Extreme stiffness kinematical schemes 

For what regards the present case it means, for instance: 

                                
 

  
  

       
 

  
                    

 

  
. 

Just making one order decreasing/increase on truss length, one can easily the different behavior, or 

rather the different common point: a weaker truss "feels" a lower relaxation due to the beam 

deformation because of the minor stiffness. 

 

 
Extreme stiffness, truss behavior 

For the 1
st
 case,            presents as: 

 

Weak stiffness kinematical scheme 

The structure is isostatic; the resolution is direct and     is already known: 
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Supposing         we get: 

 

     
                          

     
                             

     
                           

  

 

For the 2
nd

 case,            presents as: 

 

High stiffness kinematical scheme 

Where     is the equivalent load necessary to involve a -15.00 mm displacement in C point for the 

present structure. Implicitly, this consideration needs the adoption of effect superposition. 

The structure is one time hyperstatic; it can be easily solved with the compatibility method, 

imposing the right condition in the D point. 

Due to the     action we get a               
   

    
  . Instead for what regards the 

hyperstatic incognita we have      
             

      

   
   and     

     
   

   
. 

So, imposing          
        

      kinematical compatibility is re-established again and the 

  value is know:  

 

          

 

So, the others reaction are now know just imposing balance: 

 

 
          
          
          

  

 

 

 

 

Adopting the Principle of Virtual Work we calculate the structure stiffness for a vertical translation 

in C point. 
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Bending moment function for high stiffness scheme 

               

                            

                

where the    local axis expresses     . 

Applying the general PVL expression, taking into account only the flexural contribute: 

 

           
    

   

          

 

We get: 

                   
  
 
          

 

Just imposing            . 

The constraints reaction are: 

 

           
            
            

  

 

So, supposing        , final results for phase 2 are: 

 

     
                          

     
                              

     
                            

  

 

For both the cases vertical displacement    equal to: 

 

         
                                        

 

Solving with Diana we get: 
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The displacement gap between theoretical and numerical remains the same, due to the prescribed 

vertical one: 

 

                    

 

 
2

nd
 phase deformation and constraints plot 

 

This high approximation is due to the fact we consider the same gap but with a lower reference 

value (in         it is         ). 

As said before, we study two extreme cases: considering the corresponding     value a 

consideration can be done. 

The nodes reaction sum for the loading plate is: 

 

                     ; 

                     ; 

 

During        , iDiana gives a value of: 

 

                                                 

 

So, the numerical module is inside the theoretical range, really close to the average one (        ). 

The same consideration is well visible looking at the previous truss stiffness diagram, where three 

different values of stiffness are used. 

Resuming all the previous values for         and         can clarify as said: 

 

                                 

        -1.88 -3.94 -3.13 

        -101.96 -71.25 -85.64 

        72.85 53.03 63.26 

Reactions values resume for different stiffness 
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Differently as displacement check, using two extreme case we can not define the exact theoretical 

reaction values, but it helps to describe a range. 

As we can see, the numerical values fit the theoretical range. However, they seem to be closer to the 

weak stiffness ones. 

In fact the right cantilever influence on the global behaviour is derisory: applying the numerical     

value on the two extreme schemes we get: 

 

     
    

 

    
                     ; 

                                     . 

 

So, the structure on         follows a behavior more similar to the simply supported beam than the 

hyperstatic one. 
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