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Introduzione

Questo lavoro di tesi é sviluppato interamente attorno allo studio di deadlock;
informalmente, un deadlock é una situazione in cui 'attore X si ritrova in-
definitamente bloccato perché in attesa di una risorsa mantenuta dall’attore
Y, il quale si ritrova a sua volta indefinitamente bloccato perché in attesa di
una risorsa mantenuta dall’attore X.

Di conseguenza, siccome entrambi gli attori sono completamente bloccati,
nessuno di essi sard mai in grado di rilasciare il controllo della risorsa di cui
I’altro attore necessita per proseguire la propria computazione.

Come al lettore potrebbe essere balenato in mente, un deadlock pué es-
sere inteso come essere analogo al famoso problema di determinare se ”é
nato prima 'uovo o la gallina”, nel senso che diviene impossibile raggiungere
I’esito desiderato - la gallina - finché una necessaria precondizione non viene
soddisfatta - I'uovo -, mentre perché si verifichi tale precondizione - I'uovo -
é obbligatorio che 'esito desiderato - la gallina - si sia gia verificato.

E importante chiarire che, in ambito informatico, un deadlock pué facil-
mente comprendere pii di due attori contemporaneamente. Infatti, un dead-
lock pué insorgere da una situazione in cui un certo numero di processi o
thread entra in uno stato di attesa indefinita, ognuno dei quali aspetta il
rilascio di una risorsa mantenuta da qualcun’altro, formando in questo modo
una pericolosa impasse.

Come metafora potenzialmente chiarificante, una situazione di deadlock che
coinvolge esattamente tre attori pud essere vista come molto simile a uno
stallo alla messicana.

I processi potenzialmente interessati da questo fenomeno sono processi
che vengono detti concorrenti, ossia in competizione tra loro in quanto og-
nuno di essi usa o potrebbe usare in futuro una o piu risorse appartenenti ad
un insieme ad essi comune.



Quando, per prendere possesso di una certa risorsa, almeno due processi
concorrenti si ritrovano ad attendere la terminazione dell’altro - e quindi nes-
suno potra mai terminare - questi processi vengono detti in stato di deadlock
o in deadlock.

Pid nello specifico, un deadlock avviene quando la terminazione di ciascun
processo é subordinata al possesso di una risorsa mantenuta da un altro.

Nei sistemi informatici, specificamente nei sistemi multiprocesso, paralleli
e distribuiti, un deadlock ¢ un problema sia subdolo - perché difficile da pre-
venire durante la scrittura del codice di sistema - sia potenzialmente molto
pericoloso: un sistema in deadlock é con facilita completamente bloccato, con
conseguenze che variano da semplici scocciature a circostanze che mettono
in pericolo vite umane, senza dimenticare la non trascurabile via di mezzo di
perdite economiche anche ingenti.

A questo punto é sicuramente sorta spontanea la domanda di come sia
possibile risolvere questo problema. Molte possibili soluzioni sono state stu-
diate, proposte e implementate. In questa tesi si concentra ’attenzione
sull’individuazione preventiva di deadlock mediante una tecnica statica di
analisi di programmi, cioé un’analisi effettuata senza mandare in esecuzione
il programma in questione.

Per cominciare, nel primo capitolo viene brevemente presentato il Mod-
ello per I’Analisi di Deadlock sviluppato a partire da coreABS™, dopodiché si
procede la trattazione dettagliando il suddetto linguaggio Class-based coreABS™~
nel capitolo 2.

Il capitolo 3 ha il fine di posare le fondamenta per ulteriori approfondi-
menti sul tema mediante un’analisi delle differenze tra coreABS™ e ASP,
un calcolo Object-based non tipato, in modo da mostrare come pud essere
possibile estendere la suddetta Analisi di Deadlock ai linguaggi Object-based
in generale.

Vengono poi esplicitate alcune ipotesi a riguardo nel capitolo 4, innanz-
itutto presentando un possibile, non dimostrato, sistema di tipi per ASP
coerente con il Modello per I’Analisi di Deadlock sviluppato per coreABS™~.
Si conclude poi la presente discussione presentando un’ipotesi pit semplice
che mantiene lo stesso fine della precedente e che si pone perd nel contempo
I’obiettivo di evitare le difficolta che inesorabilmente sorgono dalla definizione
del sistema di tipi "ad-hoc” discusso precedentemente.



Introduction

This thesis is entirely built around the notion of deadlock; informally, a sit-
uation in which the actor X is freezed forever waiting for a resource held by
actor Y, which in turn is freezed forever waiting for a resource held by actor
X.

Therefore, being both actors completely freezed, none of them will ever be
able to release the resource needed by the other in order to continue its com-
putation.

As the reader may have thought, a deadlock can be seen as being analogue
to the famous ”chicken-egg question”, in the sense that it becomes impos-
sible to reach a certain desired outcome - the chicken - because a necessary
precondition is not satisfied - the egg -, while to meet that precondition - the
egg - in turn requires that the desired outcome - the chicken - has already
been realized.

It’s worth to say that, in computing, a deadlock may easily involve more
than two actors. Infact, a deadlock may arise from a situation in which a
number of processes or threads enters a undefined waiting state, each one
waiting to possess a resource held by another, thereby forming a dangerous
impasse.

As a potentially clarificant metaphor, a deadlock situation involving exactly
three actors can be seen as being very similar to a mexican standoff.

The processes potentially interested by this phenomenon are said to be
competing, since each one of them uses or may use in the future one or more
resources belonging to a set common to all of them.

When at least two competing processes are, in order to take possession of
a certain resource, each waiting for the other to finish a computation - and
thus neither ever does - the processes are said to be in a deadlocked state or
in a deadlock.



More specifically, a deadlock occurs when each process’ computation needs a
resource held by another in order to complete its computation.

In computer systems, specifically in multithread, parallel and distributed
systems, a deadlock is both a very subtle problem - because difficult to pre-
vent during the system coding - and a very dangerous one: a deadlocked
system is easily completely stuck, with consequences ranging from simple
annoyances to life-threatening circumstances, being also in between the not
negligible scenario of economical losses.

Then, how to avoid this problem? A lot of possible solutions has been
studied, proposed and implemented. In this thesis we focus on detection
of deadlocks with a static program analysis technique, i.e. an analysis per-
formed without actually executing the program.

To begin, we briefly present the static Deadlock Analysis Model devel-
oped for coreABS™~ in chapter 1, then we proceed by detailing the Class-
based coreABS™~ language in chapter 2.

Then, in Chapter 3 we lay the foundation for further discussions by ana-
lyzing the differences between coreABS™~ and ASP, an untyped Object-based
calculi, so as to show how it can be possible to extend the Deadlock Analysis
to Object-based languages in general.

In this regard, we explicit some hypotheses in chapter 4 first by present-
ing a possible, unproven type system for ASP, modeled after the Deadlock
Analysis Model developed for coreABS™.

Then, we conclude our discussion by presenting a simpler hypothesis, which
may allow to circumvent the difficulties that arises from the definition of the
7ad-hoc” type system discussed in the aforegoing chapter.



Chapter 1

A Informal Introduction to the
Deadlock Analysis Model

We present here a brief introduction to the Deadlock Analysis Model devel-
oped for coreABS™[1]. Our goal here is to give the reader a consistent idea
of the Model, fundamental to comprehend the rest of the discussion.

The problem we are interested in is to be able to tell with absolute cer-
tainty if a given program may or may not exhibit deadlocked behaviour
during its execution.

We want to detect this potential threat before the actual program execution;
we're therefore in the field of Static Program Analysis, that is opposed to
the discipline of Dynamic Program Analysis, which aims to detect potential
threat or misbehaviours during the program execution|[2].

For deadlock detection purposes Static analysis offers more guarantees, at
the cost of producing in some cases false positives; in this regard Dynamic
analysis is more precise, but at the cost of not being exhaustive: Dynamic
analysis may "fly over” some deadlocks, thus not detecting them.

We treat programs written in object-oriented languages, where method

calls are asynchronous; this means that after a method invocation the caller
does not wait for the return value to continue its execution, but goes on with
its activity.
To realize this behaviour, it’s necessary to decouple the method invocation
and the returned value by means of futures, pointers to values that may not
be available yet. A future can be thought as a placeholder for a value that
will be available when the callee’s computation terminates.



The Deadlock Analysis Model[1] can be summarized this way:

1. Given the program source, a Type Inference system extracts from it a
number of abstract behavioral descriptions pertinent to the deadlock
analysis: the contracts[3].

2. Because the inference system is constraint-based, it produces a set of
generated constraints, which is solved by a standard semi-unification
technique.

3. The set of resolved constraints (called Contract Class Table) is given as
input to an algorithm that transforms the contracts in a finite state au-
tomata, whose states are dependencies between entities of the program
and whose transitions model how these dependencies may be activated
or discarded during the execution of the program.

A dependency aims to model the fact that a certain actor may need a
resource held by another in order to terminate its execution.

4. The automata is called lafsa. Because a potential misbehavior is sig-
naled by the presence of a circularity in some state of it, an algorithm
analyze the lafsa searching for these circularities; if none is found, the
program is certainly lock-free; otherwise, it means that the program
may reach a deadlocked configuration at run-time (as is the case of
deadlocks depending on the scheduler’s choices).

To have a more precise idea of what we intend when we talk of circular
dependencies, please observe the following simple lafsas[10]:

(Lo m1(2,9.2)) = (Lo (2:9) 1209, 2)) = (Lo, (2.9 13 2)[m3(2))

The method m1 is defined so as to call the method m2 with a dependency
between the caller x and the callee y, while m2 is defined so as to call the
method m3 with a dependency between the caller, now y, and the callee z;
the method m3, at last, it’s defined to do a certain computation on z and
only z, thus not expressing any dependency.

Therefore, we have the final:

- <Hm,y,z, (@, y)ll(y, Z)||0>

which have no circularity.



Informally speaking, the dependencies are modeled as (x,y) and (y, 2),
which means that z depends on y and y depends on z, which terminates by
itself; therefore all of them will terminate (at least for the deadlock analyzer’s
eye), and is thus assured that no deadlock will ever occur.

Instead, consider the following:

(Lo m1(@,y,2)) = (Lo (@.9) 12y, 2)) > (L (@ 0)l|(3,2)[[m3(2))

The method m1 is defined so as to call the method m2 with a dependency
between the caller x and the callee y, while m2 is in turn defined so as to
call the method m3 with a dependency between the caller y and the callee,
now z; the method m3, at last, it’s defined to do a certain computation on
the callee object z. As you can see, there’s something tricky going on.

We have infact the final:

> (Lys ()l 2)][0)

which have a circularity.

Still informally, (z,y) i.e. termination of x depends on termination of y,
which in turn, because (y, ), depends on termination of x.
This does not mean that this system will surely deadlock; instead it means
that a potential deadlock is in the game, thus it can be said with absolute
certainty that this system may deadlock itself and therefore it may never
terminate.

We focus our discussion solely on the first step of the Deadlock Analysis:
the generation of contracts, from which subsequently a lafsa like the ones
just presented will be generated, from which in turn circular dependencies -
if any - will be found.

Contracts are essentials because they are an abstract representation of the
program behavior that allow us to statically collect its name dependencies:
by being our analysis static - i.e. an analysis performed without actually
executing the code - we don’t dispose of the usual run-time information; in-
stead, by properly using names and types we’re able to identify every useful
entity (objects, threads, ..) in the program; furthermore, we can statically
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track these entities by ”auto-magically” modeling every possible evolution of
their names by means of contracts.

We're also interested in contracts because to know if it’s possible to per-

form a deadlock analysys following the aforementioned model on a new lan-
guage we must determine if they can be properly remodeled for it.
A remodel is necessary because the original contracts has been built around
coreABS™7, the language introduced in the next chapter, and different object-
oriented languages may show significant differences in the theoretical foun-
dations they are built from and in the way they behave, as will be clear after
reading the third chapter.

We now continue the dissertation by detailing coreABS™~.

11



Chapter 2

The coreABS™ ™~ language

2.1 Generalities

First of all, in coreABS™[1] the actor of concurrency is the object, not the
thread or the process.

Objects are dynamically created instances of classes; their attributes are

initialized to type-correct default values (e.g., null for object references), but
may be redefined in an optional method nit.
Class-based object-oriented programming languages take object generators
as central, while object-based languages emphasize the objects themselves|[4].
coreABS™ is a class-based language that supports inheritance and uses ex-
plicit primitives for synchronization.

A certain object may have multiple tasks associated with it, but only -
at most - one task per object is active at each point in time.
That task is called the active task, and it’s the one that is said to control the
object.

Tasks are created by method invocations. Each method invocation spawns
a new task: the caller object continue its execution, while the callee object
spawns a new task, which have within itself the code of the invocation.
In order for the caller object to be able to do that, a future variable is tem-
porarily associated to the call’s result.
By means of futures, i.e. pointers to values that may not be available yet,
coreABS™ realize the necessary decoupling between method invocation and
returned value.

12



Object a Object b

Figure 2.1: coreABS™~ Concurrency Model

The type inference system takes care of the proper tracking of names and
futures by means of contracts[3], that retains the necessary information to
detect locks.

This is possible because contracts introduce object name dependencies in the
type system, thus introducing dependencies between actors of concurrency.

A dependency (a,b) specifies that the lock on the caller object a is re-
leased as soon as the lock of the callee object b is released. This effectively
models the fact that, in order to proceed, a may be needing a result com-
puted by b.

As explained in the previous chapter, contracts are subsequently used to
create a finite state automata, from which is possible to infer circular object
name dependencies, if any. A program whose lafsa does not manifest an ob-
ject name circularity will never deadlock, thus encompassing the guarantees
introduced in chapter 2.

First of all will be presented the syntax and the operational semantics of

coreABS™7, then it’ll be presented and thoroughly analyzed its type infer-
ence system.

13



2.2 Syntax

Please take a minute to observe the syntax of coreABS™:

CL == class C extends C {T f; M}

M = Tm (T z){return e; }
e == xlef]|elm(e)|new C(e) | e;e | eget | e.await
T == C| Fut(T)

The notation C is a shorthand for Ci, ..., C,, and similarly for the other
names, while sequence of pairs C' fi, ..., C, f, are abbreviated with C'f.

A coreABS™™ program defines classes, datatypes and functions that may
take one or more arguments as input, with a main block that configures the
initial state.

Therefore, a coreABS™™ program is a collection of class definitions plus an
expression to evaluate.

After asynchronously calling a method m with x = o!m(e), the caller may
proceed with its execution without blocking on the call. Here x is a future
variable, o is an object and e are expressions.

As specified before, x is thus a future variable that refer to a return value
which has yet to be computed.

There are two operations on future variables, which explicitly control syn-
chronization in coreABS™7: get and await.
The return value is retrieved by the expression x.get, which blocks all exe-
cution in the caller object until the return value is available.

The expression x.await, instead, check if the result is available, releasing
the lock.

For completeness, it’s worth to specify that the syntax uses four disjoint
infinite sets of names: class names, field names, method names and variables.

14



2.3 Semantics

The operational semantics of coreABS™™ uses two additional disjoint infinite
sets of names: object names and task names.

Values are terms defined by the following grammar:
vi=t|alf: 0

The operational semantics of coreABS™~ is presented as a Reduction Se-
mantic. A reduction semantic uses the so-called reduction contexts[5] or, in
this case, evaluation contexrts E and S, whose syntax is:

S;s | returnE
E

S == []| | x=E | if (E) {s} else {s}
E, .,e) | E=e | v=E

|
E == [] | Em(e) | vim(v,E,e) | newC(v,

The contexts E and S include a hole [ | where a term can be plugged
in, while the shape of the contexts indicate where reduction can occur, i.e.
where a term can be plugged into.

Evaluation contexts models a state transition system, where we have
states S, S’, ... and sets of tasks t : e where t is a task’s name, a is an
object name, ¢ can be T if the task owns the control of a (thus if ¢ is the

active task, see section 2.1) or L if it doesn’t, and e is an expression.

The transition relation t :% e between states that describe the seman-

tics is defined by the rules that follows, where the following notations and
shortenings may be encountered:

— the predicate unlocked(S, a) that returns true if every t :£ s in S is
such that ¢ = 1;

— the function freshtask( ) always returns a new task name;

— in t :* s, the superscript £ is omitted when it is not relevant.

15



(THis) (FIELD-VAR)

MEf:7V M(1)=v
t,M:] S[E[this]] - t,M:] S[E[a[f : ¥]]] t,M:] S[E[1]] - t,M:] S[E[v]]
(NEW)

fields(C) =T £ b= fresh(C)
t,M:] S[E[new C(¥)]] - t,M:] S[E[b[f : ¥]|]

(UPDATE)

t,M:) S[x =v] % t,M[x : v] :] S[skip]

a

(SEQ) (SEQ-VAL)
t,M:Iskip;s#t,M:Is t,M:Iv;s—%t,M:Is

The former rules are standard and won’t therefore be discussed.

(INVK)

mbody(m, class(b)) = x.s t' = freshtask( )

t,M: ] S[E[B[F : ¥)m(¥)]] - t,M:] S[E[t]], t/,[f :9,%:¥] i} s

This rule (INVK) defines the method invocation. According to this rule,
the evaluation of b[f : v]'m(¥') produces a future reference t’ to the value
returned by m. The task evaluating the called method is created and the
evaluation of the caller can continue — the invocation is asynchronous; how-
ever, the evaluation of the called method m cannot begin until its value of ¢
becomes T.

(GET)
M(x) =t

t,M:] S[E[get x]], t/,M :, v - t,M:] S[E[v]], t',M :, v

This rule (GET) permits the retrieval of the value returned by a method.
The caller object is stuck until the value is actually retrieved.

16



(AwarrT) M(x) = t't,M:] Elawait x?], t';, v - t:] E[t/], t':, v

(AWAITF)
e#£v

t:] E[t'.await], t':;, e = t L E[t’.await], t':, e

a

Rules (AWAITT) and (AWAITF) model the await operation: if the task
t’ is terminated — it is paired to a value — then await is unblocking; other-
wise the control of the object is released by t.

(RELEASE)

t:IviWc:ﬁv

Rule (RELEASE) models task termination, which amounts to store the re-
turned value in the state and releasing the control of the object.

(LOCK) (STATE)

e £V S -4 S unlocked(S", a)

t:jeiﬂz:ze S,S”#S/?S”

According to the transition relation, a task t :* e moves provided ¢ = T,

except for rule (LOCK). This rule allows a task with a non-value expression
to get the control. The rule must be read in conjunction with rule (STATE)
that lifts transitions — to complex states and enforces the property that
there is always at most one task per object owning the control. This means
that (LOCK) cannot be used if the state has a task t':] .

17



2.4 Type System and Contracts

As explained in section 2.1, the type inference system takes care of the proper
tracking of names and futures by means of contracts, abstract behavioural
descriptions fundamental for the deadlock analysis that retains the necessary
information to detect locks.

We’ll say again that contracts introduce object name dependencies in the
type system, thus introducing dependencies between objects in order to track
eventual circularities.

The type inference system associates a contract to every method defini-
tion and every expression to evaluate.

Instead of immediately presenting the type inference rules, we start by
introducing some practical examples of contracts inference, hopefully allow-
ing the reader to form a correct idea of how contracts works and why they
are so central to the deadlock analysis.

After this informal presentation of contracts inference, we’ll analyze the

fundamental formal definitions useful for our discussion. For the complete
technical details, please refer to [1].

As a first example of contract, consider first the following coreABS™~
class:

class C extends Object {

Object f:
C m() {return new C(this.f);}
}

When the type inference system encounters the class definition, it asso-
ciates the following contract to the definition of the method m():

alf : X]0{0} b[f - X]
The contract a[f : X](){0} b[f : X] is thus the contract of the method m.

Now we’ll analyze every chunk of the contract, in order to give the reader
a practical idea of how contracts works in general; it will be therefore possible

18



for the reader to more easily understand the type inference system.

a[f : X] specifies that a is the object on which m() is called; because m()
is a method of class C, and the class C contemplates a field f, the contract

specifies that m() is called on a object named a that have the value X in its
field f.

The subsequent parenthesis () are in this case empty; this is because the
work of this chunk is to specify the argument of the call. Because m() is a
method that requires no argument, the parenthesis contains none.

The next chunk specifies eventual behaviors of the method that are rele-
vant for the deadlock analysis, which is also none in this case, thus generating
0.

At last, the contract specifies the returned object of the method. With
b[f : X] the contract embeds important information: the returned object’s
name b # a indicates that the returned object is different from the one on
which the method is called; furthermore, the contract specifies that the value
of the new object’s field is taken from the value of the original object’s field.

Now, condider:

class C extends Object {

Object f:
C m() {return new C(this.f);}
}

class E extends C {
C n(E ¢) {return c!'m().get;}
}

When the type inference system encounters the class definitions, it asso-
ciates the following contract to the definition of the method n():

alf : X]OLf : Y){ E-m 0[f : Y]().(a,0) } c[f : Y].

As you can see, n() is called on the object a, with an object b as the
argument.

Now the method has a relevant behavior; specifically, it calls the method
m() on the object passed as argument to the method n(), but instead of

19



allowing the caller object a to continue its execution, the get operation con-
strains a to wait for the termination of b in order to continue its execution.
This behaviour is specified by the object dependency (a,b).

The part between brackets is called the contract body, it embeds the con-
tract associated with the expression existent in the method’s body. Its target

is to track information about object dependencies.

If ¢ is the contract body, then

C o=
0 no relevant information
C.m O(arg) C.m invoked on object @ with parameters arg
C.m O(arg).(a,b) as above with a GET operation on the result
C.m O(arg).(a,b)* as above with an AWAIT operation on the result
(a,b) a GET operation on a field
(a,b)" an AWAIT operation on a field
c;c sequential composition of contract bodies
Future records r, s, - - - are defined by the following grammar:
ron= X | alf:1] | a~r

A record name X represents a variable that may be possibly instantiated by
substitutions.

The future record alf : T] defines the object name and the future records of
values stored in its fields.

At last, the future record a ~» 1 specifies that, in order to access to r one has
to acquire the control of the object with name a (and to release this control
once the method has been evaluated).

Future records as a ~» 1 are associated to method invocations: the object
name a represents the object of the invoked method.

20



The type inference system is specified by the following rules:

(T-FIELD)
(T-var) Thee: (Caff:r)), e
F,x:I(x), 0 fields(C) =Tf TfeTf f:ref:T

F,ef: (T,r), ¢

Rule (T-FI1ELD) defines the judgment for accessing to fields of an object
produced by e. The rule constraints e to have a class type (not a future)
and to have a future record as a'[f : T].

(T-INVK)
I'(Cm)=4dl[f:T](8) =
IF'k,e: (Co(d[f:T])), @ F't,e: (T,0(8), €
mtype(m,C) =T - T T<: T

'k, em(e) : (Fut(T'),o(ad’) ~ o(r)), cs&sCm o(d[f : T])(0(8)) — o(r)

Rule (T-INVK) defines the judgments of method invocations e'm(e).

Let a/[f : T](8) — r be the interface of C.m stored in I'. Object names and
record names in this interface are actually place-holders for actual values.
Therefore, in order to type elm(e), there must exist a substitution ¢ such
that T, e : (Co(d/[f:1])), cand ', & : (T,0(8)), €. (It is possible to
use a unique o since names in o'[f : T] and § are disjoint.) The (standard)
type of elm(e) is a future type Fut(T’), where T" is determined with stan-
dard arguments for object-oriented languages. The future record of elm(e)
is o(a’) ~» o(r) indicating that the value may be returned as soon as the
control of o(a’) is acquired.

The contractual issue of elm(e) is almost obvious: it composes in sequence
the contracts of e, @ and the method invocation.

(T-NEW)
I'k,e: (T,r), & fields(C)=T'f T<: T a fresh

I'F,newC(e) : (C,d[f:T]), €

Rule (T-NEW) types object creations that, in the type system, amounts to
using a fresh object name — called a’ in the rule — for the root of its future
record. The remaining part of the judgment is almost standard.
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(T-GET) (T-AwAIT)
['F,e: (Fut(T),d ~s), ¢ I',e: (Fut(T),d ~8), ¢

'k, eget : (T,s), ¢( (a,d) 'k, e.await : (Fut(T),d’ ~s), ¢ ( (a,ad)"

Rules (T-GET) and (T-AWAIT) define types for e.get and e.await expres-
sions. In these cases, the type of e has to be Fut(T) and, correspondingly,
the future record type has the pattern o’ ~~ . In case of (T-GET), the type
of e.get is reduced to (T,s), while, in case of e.await, it is not changed.

As regards contracts, (T-GET) and (T-AwAIT) extend the contract of e with
the pairs (a, a’) and (a, a’)", respectively, where the index a of the judgment
defines the first element of the object name dependency — a stores the the
object’s root whose method contains the expression e.get or e.await. The
element a’ of the object name dependency is the root of the future record of e.

(T-SEQ)
'koe: (T,r), ¢ Fk,e (T 1),

Fk,e; e (Th1'), cod

Rule (T-SEQ) simply explicitates the sequential composition of contracts.

The next two rules are rules for method declarations and class declara-
tions, while the already presented ones are rules for coreABS™™ expressions.

(T-METHOD)
I'(Cm)=al[f:T)(8§) > T +%x:(T,8) +this: (C,a[f:T])F,e: (T, '), ¢
T <: T C<:Dandm €D imply mtype(m,D)=T — T

' Tm(Tx){returne;}: a[f : T](8){c} r' INC

Rule (T-METHOD) defines the type and the contract of a method.

(T-CLaAsS) B
'EM:CINC
[ class C extends D {C f; M} : {mname(M) — C}

Rule (T-CrLASS) types a class definition associating to it a mapping from
method names to method contracts.
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2.5 A Deadlock Example in coreABS™~

In this section we present two simple examples of deadlock in coreABS™™;
the purpose of these is to practically illustrate how deadlock may arise in
this language.

A simple circular dependency involves only one task as in the method

Int fact(Int n){ return if (n==0) then 1 ;
else n*(this!fact(n-1).get) ; }

This method defines the factorial function (for the sake of the example we
include primitive types Int and conditional into the coreABS™~ syntax).

In the body of fact, the recursive invocation this!fact(n-1) is postfixed
by a get operation that retrieves the value returned by the invocation.

Yet, get does not releases the lock of the caller object; therefore the task
evaluating this!fact(n-1) is fated to be delayed forever because its object
is the same of the caller.

Another example involves a trickier situation[6]; consider the classes

class C {
C m() {return new CQ);%}
C r(C x) {return x!'m.get();}
}
class D extends C {
Fut(C) q( y) {
return y!r(this);
this!r(y);
+
}

Suppose we have the following expression to evaluate:
new DO !'q(new DO));

First of all, two objects - o1 and 02 - of class D are created; after a number
of method invocations, inside object o1 it’ll be spawned a new task, and the
same will happen inside object 02.
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The problem is that the task spawned inside the object ol contains the
expression 02'm() .get;, while the task spawned inside the object 02 con-
tains the expression o1!m() .get;.

If, for example, the scheduler decides that o1 executes the task o1!'m() . get;
called by 02 before executing its own call 02!'m() .get;, then no trouble will
ever arise. The get operation of 02 will be satisfied by the return value given
by o1, and subsequently the latter will execute its own call to the former
retrieving the result.

On the contrary, if both objects make the two calls as their first opera-
tion, a deadlock will arise and they’ll be forever hanged.
Infact, imagine that 02 invokes m on o1, where a new task is created, and
waits for the result returned by that task inside o1, keeping in the mean time
the lock of 02 (since it’s a get operation).
If, analogously, inside o1 gets to run the invocation of m on 02, the former
will hang waiting for a method in 02 to return, holding in the mean time its
lock because of the get operation.
In this case the new tasks created by the method m’s invocations will never
be able to execute; furthermore - and more importantly - the objects o1 and
02 are both indefinitely blocked and hence the program is stuck.

In this last example, which one of the possibilities will materialize during
the program’s execution will depend from the scheduler’s choice.
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Chapter 3
The ASP Calculus

3.1 Generalities

First of all, in ASP[7] the actors of concurrency are not objects as is the case
in coreABS™™ but activities.

ASP is an untyped object-based language that does not support inheri-
tance and does not use explicit primitives for synchronization; instead, syn-
chronization is implicit and realized by means of the so-called waits by ne-
cessity, which will be thoroughly discussed later on.

Activities are dinamically created during the program’s execution; a cer-
tain activity have within itself exactly one master object called the activity’s
active object, and zero or more passive objects contained within the activity.

We may say that the model of concurrency of coreABS™ is similar to the
one of ASP if we pose objects & activities and tasks ~ objects (compare Fig.
2.1 and Fig. 3.1). Contrarily to what happens in coreABS™~ with tasks, in
ASP the active object of an activity is always the same: a passive object can
never become the activity’s active object, and the active object can never
become a passive object.

In ASP the creation of objects is a little bit trickier than in coreABS™;
before explaining how it works, it’s necessary to introduce the difference be-
tween a deep copy and a shallow copy (see Fig. 3.2). In both cases, a object
a is read and its data is copied in a object b.

What diversifies a deep copy from a shallow copy is that the latter dupli-
cates as they are all memory references found in a, while the former copy in
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Activity a Activitv B

Object a - ACTIVE Object a - ACTIVE
Object b - PASSIVE Object b - PASSIVE

Object ¢ - PASSIVE

Figure 3.1: ASP Concurrency Model

the new object b all the data they points to. With a deep copy, a and b do
not depend on each other, while with a shallow copy if one of the aforemen-
tioned memory references is modified then the change will affect both objects.

When an activity is created, an active object must be always specified;
all the passive objects of the new activity are automatically created by deep
copying all the dependencies of the new activity’s active object: to be more
specific, if one of these dependencies encompasses other objects, those are
deep copied into the new activity as passive objects.

Activities communicate by asynchronous method calls allowing both sender
and callee to perform operations between the request sending and its treat-
ment; this decoupling of method invocation and return value is again realized
by the use of futures.

Asynchronous replies may occur in any order without observable conse-
quences, a given activity is insensitive to the moment when a result come

back.

Of course within each activity the execution is sequential, as is the case
of objects in coreABS™~.

It’s necessary to point out that, being ASP an object-based calculus,
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A {87 (A B
Shallow Copy
XIXTXTE EXIXEXL
YTV XXX
A BTOTA B
Deep Copy

Figure 3.2: Shallow Copy vs Deep Copy

classes does not exist; they are replaced by object constructors, and objects
working in the program are generated by its procedures; this means there’s
no real notion of inheritance; this can only be achieved by properly combin-
ing cloning and update operations[8].

You'll see in Section 3.4 that this brings the consequence of a language
with a very counter-intuitive syntax, at least with respect to the most com-
mon programming languages.

Now will be made a short presentation of the syntax of ASP; subsequently,
the semantics of the language will be thoroughly analyzed.
Being ASP untyped, no type inference system for contracts exist. In chapter
4 will be explicitated a not proven type system hypothesis that aims to
fill this gap, in order to show how may be possible to extend the deadlock
analysis system developed on coreABS™ to ASP and object-based languages
in general.
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3.2 Syntax

Please take a minute to observe the syntax of ASP:

tu=
x variable
i€l.n
fi = bi; m; = (x5, yj)aj] object definition
jEL.m
a.l; field access
al; ==b field update
a.m;(b) method call
CLONE(a) shallow copy
ACTIV E(a,m;) activity creation
SERV E(my...m,)"" method serve
LET z = eIN ¢ sequential composition

where ¢ is a term.

The syntax of ASP is strongly inspired from the impg-calculus[8]; rela-
tively to impg, the only characteristics that have been changed in ASP are
the following:

e Because arguments passed to active objects methods plays a particular
role, a parameter to every method have been added. Therefore, in
addition to the self argument of methods, noted x; and representing the
object on which the method is invoked, it has been added an argument
representing a parameter object to be sent to the method, noted y;.

e Method update it’s not included in the calculus but - indirectly - it is
still possible to express updatable methods in it[7].

e [t’s been made a distinction between user syntax - i.e. the terms ap-
pearing in the programs code - and runtime syntax - i.e. terms gener-
ated internally during the programs’ evaluation -. For example, during
the reduction, locations (reference to objects in a store) can be part
of terms. Locations do not appear in user syntax, but will appear on
section 3.3 in the reduction rules.

Except for the just made punctualizations, the syntax of variables, object
definition, field access, field update and method call is quite standard and
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won’t therefore be discussed.
CLONE(a) do a shallow copy of the object a passed as parameter.
ACTIVE(a,m;) creates a new activity with a as its active object. a is
copied with all its dependencies - deep copy - into the new activity. m; is the
name of a method which will be called as soon as the object is activated.
SERVE(my...m,,)"" stops the activity until a request on one of the
method specified as parameter is found in the pending requests list; then,

after its execution, the activity proceeds from where it stopped.

LET z = e IN € may be seen as being equivalent to e; €, i.e. the usual
sequential composition of expressions.

3.3 Semantics

Before going deep into the semantic rules, it’s necessary to introduce some
concepts being used.

A store o is a finite map from locations to reduced objects o ::= {¢; — 0;},
while a reduced object is an object with all field reduced to a location, i.e.
i€l.n
o= |l; = t;;m; = ((zj,y5)a;|
JjEL.Mm

The domain of o, DOM (o), is the set of locations defined by o.

The operation o :: o (store append) append two stores with disjoint loca-
tions. When the domains are not disjoint, the operation o+ ¢’ (store update)
updates the values defined in ¢’ by those defined in o.

The operational semantics of ASP is divided into sequential semantics
(inside each activity) and parallel semantics (between different activities).

As is the case for coreABS™ ™, also for ASP the operational semantics is

presented as a Reduction Semantic[5]. We therefore have reduction contexts
R, whose syntax is:
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Rou=e | R | Rom,;(b) | em(R) | R :=0b]wl:=R| CLONE(R) |
i€l..k—1,k'ek+1..n

li = l;; lk = 9%, lk’ = bk’;mj = C(l’ﬁyj)aj el
jel.m

The context R include a hole e where a term can be plugged in, while
the shape of the contexts indicate where reduction can occur, i.e. where a
term can be plugged into.

Reduction contexts model a state transition system; in ASP states are
the so-called configurations, while the transition relation between states that
describe the semantics is defined by the set of rules that follows.

To allow a better understanding of ASP’s semantics, configurations are
differentiates between sequential configurations and parallel configurations.

The form of a sequential configuration is: (a, o). It can be thought as a
state where a is an expression and ¢ is a store.
To evaluate a user term a, an initial configuration (a, @) is created; it con-
tains the user term a and the empty store.

We define as —, the transition relation from a state s to a state s’.
Note that s; —¢ so A sy — s3 = $o = s3, this is a property that assures
determinism, and for the sake of clarity we can roughly say that, for what
regards static analysis, locations names may be a-converted[9)].

First, we analyze the sequential reduction rules.

STOREALLOC

L ¢ DOM (o)
(R(0),0) =5 (R[], {t = o} :: 0)

This rule simply describes the allocation of a new object in the store with
the store append operation. As you can see, the location just associated to
the object is given back as return value.
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FIELD

i€l.n
] kel.n

o(t) = |li = 1i; my = ((xj,v5)a;|
J€l

(Rltlg],0) —s (Rlek], 0)

This rule is self-explanatory. It describes how locations behave when a field’s
value is requested.

INVOKE

i€l.n
O'(L) = lz = L, mj = C(xj,yj)aj - k I~ 1.m
Jel.m

(Rle.mp()],0) = (Rlag{{zr < ¢, yp < V'}}], 0)

This rule specifies the location references in the case of a sequential method
invocation, i.e. a method invocation on an object of the same activity of the
caller.

UPDATE

i€l..n

()= [lz:Li; mj=C(xj,yj)aj] kel.n
JEL.Mm
i€l..k—1 A k'€k+1..n
7= [li:b“ b=t L=ty my=C (x5, yj)ai]
jEL.M

(Rlely, =], 0) =5 (R[], {t = o'} + o)

The field update rule specifies that - in the store - the object is modified ac-
cording to the new value associated to the relative field; this is accomplished
with the store update operation.

CLONE

/' ¢ DOM (o)
(RICLONE()],0) —s (RI/], {t' = (1)} = 0)

With a clone operation - i.e. a shallow copy of the object passed as parameter
- a new location is added to the store with the store appending operation.
This new location is associated with - i.e. points to - the object passed as
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parameter; in this way, the cloned object is - as intended - copied by means
of a shallow copy; infact, only a new location is created, not a new object.

Except for the store mechanism, which may seem a little farraginous, the
sequential reduction rules are quite straightforward.
On the other hand, in order to understand the parallel reduction rules, it’s
necessary to introduce other concepts in advance.

First of all, every activity « has its own store o, which contains one ac-
tive and many passive objects. It also contain a pending request queue which
stores the pending method calls and a future list which stores the results of
finished requests.

As already anticipated, activities run in parallel and interact only through
asynchronous method calls. Every remote method call sent to an activity is
actually sent to its active object.

Any object in any activity can reference active objects and futures, while
passive objects are only referenced by objects belonging to the same activity.
It’s important to specify that a field access on an active object reference is
irreversibly stuck.

Therefore, in a parallel configuration an object name may be associated
to:

i€l.n

o |l =1;;m; =((x,y;)a, an actual object

jel.m
e AO(w) an active object reference
o fut(fo") a future reference

Note that every reference to a future can be replaced by the calculated
value at any time. In the mean time, a future is a placeholder for the result
of a not-yet-performed method invocation. As a consequence, the calling
thread can go on with executing its code, as long as it doesn’t need to invoke
methods on the returned object.

If this need arises, the caller is automatically blocked; such blocking states

are called wait-by-necessity.
More specifically, a wait-by-necessity happens when is performed a so-called
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strict operation on a future. If the method relative to the future finishes its
computation and the result is returned, and if an execution was blocked by
a call-by-necessity, that execution can now continue.

The strict operations are: field access, field update, method access and
object cloning.

An asynchronous method call on an active object consists in atomically
adding an entry to the pending requests of the callee, and associating a fu-
ture to the response. Arguments of requests and values of futures are deeply
copied when they are transmitted between activities.

The runtime syntax a f} f,b is used to save the state of the computation
of the request currently served by an activity when the SERVE primitive is
encountered, i.e. when another request - a - have to be immediately served.
To be able to continue the old request when the execution of the new is
finished and thus the corresponding future is associated with the calculated
value, the term b and its future f are saved in the runtime syntax.

The operational semantics of ASP uses - in addition to the name sets
for fields, methods and variables identifiers which appear in the user terms -
three disjoint name sets: one for activities (a, 3, ...), one for locations (¢, ¢/, ...)
and one for futures (f, f;, ...).

Activities have unique names, and locations are local to an activity.

A future is characterized by its identifier f;, the source activity a and the
destination activity 3 of the corresponding request, thus we’ll have futures
of this form: f*7”. Future identifiers must be chosen so as to be unique.

A parallel configuration is a set of activities:

5]

where o € P denotes the fact that an activity named « belongs to the
configuration P, in which its terms may be defined as follows:

P,Q:::a[a;a;e;F;R;f]

e The first term a is the active object of the activity.

e The second term o is the store containing all the objects of the activity
to which it belongs.
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e The third term ¢ is the active object location. The active object of the
activity itself -a- may be denoted also by o(¢).

e The fourth term F' is a function mapping for each served request a
location ¢ to its future f; : ' = f; — . Infact, the value of the future
fi is the part of the store that has ¢ for root. F :: {f; — ¢} adds a new
future association to the set of future values.

e The fifth term R is a list of pending requests R = {[m;;¢; f7~"|}. Each
request consists of the name of the target method m;, the location ¢ of
the argument passed to the request and the future identifier which will
be associated to the result: f] .

R :: r adds a request r at the end of the request queue R, while R’ ::
r :: R matches a queue containing the request r.

e The sixth and last term of a configuration f is the current future, i.e.
the future associated with the request currently served; more precisely,
if the current term is a f} f; %, b then f will be the future associated
with the value computed by a.

An initial configuration consists of a single activity - we could call it
the "main” activity - with the user program a as current term, thus giving
ala; @; @; F; @; F). This activity never receives any request, it communicates
by sending requests, creating activities or receiving replies.

In order to understand the parallel reduction rules, some additional op-
erators must be explained first:

e The operator copy(t, o) creates a store containing the deep copy of ().

e The operator Merge(t,0,0") merges two stores. It creates a new store,
merging independently o and o’ except for + which is taken from o’.

e The operator Copy&Merge(o,t;0',1') adds the part of o reachable
from the location ¢ at the location ¢’ of o avoiding collision of locations[7].
Said another way, first it’s made a deep copy of the parts of o that are
reachable from ¢, then this copy is added to the location ¢’ of ¢’. There-
fore, Copy&Merge(o,v;0',1') = Merge(!, o', copy(t,a){{1 < '}})

Now that all the necessary instruments have been introduced, the reduc-
tion rules can be analyzed.
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Keep in mind that in each rule the terms that are grey coloured are terms
not relevant for the relative reduction, and thus they can be safely ignored.

LOCAL

(a,0) —s (d,0")

« a;a;//:F:H:f} P — a[a’;a’;/;F:R:f] P

This rule is for local reductions, i.e. reductions that happens inside a certain
activity. It somehow comprises all the sequential reduction rules already ex-
plained.

NEWACT

v fresh activity J/¢DOM(o) o' ={/—AO(y)}:0
0y=COPY (12,0)

a [R[Active(Lz,mj)];a;/,;b':b’,:v/'] P—«a [R[L’];a’;z:l-‘:h’;l/']

This rule describes the creation of a new activity, possible by means of the
operator ACTIV E(a,m).

A new activity v containing the deep copy of the object o(1) is created, with
empty future values and pending requests list. A reference to the created
activity AO() is created in the activity « of the caller.

Keep in mind that other references to ¢ in « are still pointing to the passive
object.

m; specifies the method run initially by the active object of the new activity.

v [u-mj();av;bz;z;@;@]

REQUEST

oa(L)=A0(B) J'¢DOM(op) fia_)ﬂ new future ;g DOM (0a)
03=COPY&MERGE(0a,; 0g,") Ug:{Lfout(f?%ﬁ)}::oa

P —

« |:R[L.mj (Nsoasta;FasRa :v/'“:| B |:(1‘;;0'ﬁ;/,‘;:ﬂ;:R@;,/' ,]:|

a|:'R[Lf];0(’1;/“:F,\:R“;f“i| B[(z‘,:aé;/,g:F‘,:Rﬂ::[m]—;L”;fﬁ_}ﬁ];f%} P

This rule describes an asynchronous method call between activities. A new
request is sent from activity « to activity 8 and a new future ff‘_}ﬁ is created

35



to represent the result of the request. « stores a reference to this future
and can continue its execution, while a request containing the name of the
method, the location of a deep copy of the argument stored in o3 and the
associated future is added to the end of the pending requests of the callee
with Ry : [my; "5 f277).

7

SERVE
m; e M  VYmeMm¢R

P—

a [R[SETUG(M)];(TZL;F:R!Z[?TL]';Lr;f/]::R/;f]

o [L.mj (er)Mf R [[]} ;(T:L;I-':R::R’;f’]

To serve a new request the reduction of the current term is stopped and
stored as a continuation. The activity is stuck until a matching request is
found in the pending request queue.

Note that this means that if the method associated to the new request is not
present in the pending request queue, the activity will be stuck forever!

ENDSERVICE
o' =COPY&MERGE(o,t;0,U)

a[Uﬂf’,a;a;//:F; I?;f} P — a[a;d’;/;F ’ {fHL’};R;f’} P

This rule describes what happens when a treated request terminates its com-
putation: the result of the request is associated to the current future f. The
result is deep copied to prevent post-service modification of the value.

REPLY
oo(t) = fut(f77%)  Fs(f77%° =15) o, = COPY&MERGE(0g,15;0a,L)

[ |:(1“ Oasta;FoiRa :f“i| B |:uj:0'5;/ 5;F5;11’,5:f{| P —

« |:u,\10'(/1;1“:H\:R,\:,/‘,\i| B |:u,;:06;zsz3;R,g:/"g] P

When to the current future is associated the result of the request, the future
reference is replaced by the part of the store associated with the result, i.e.
by the deep copy of the location associated to f;' G
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It is deliberately only required that an activity contains a reference to a
future, and another one has calculated the corresponding result. Therefore,
the moment in which this rule should be applied is purposely not specified.
However, please consider that a wait-by-necessity can only be resolved by
the update of the future value, which constraints the moment when this rule
can be applied.

3.4 A Deadlock Example in ASP

In this section we present an example of deadlock in a ASP program; the
example’s purpose is both to practically illustrate how deadlocks may arise
in ASP and at the same time to give the reader an example of a program
written in this language.

To somehow connect to what already said in section 2.5, the presented
program calculate the factorial function of a number given as input; for the
sake of the example we include primitive types int and conditional into the
ABS syntax; furthermore, to keep things as readable as possible, we suppose
that the term Active(a,m) returns the value computed by m.

The program is defined as follows:

let WHAT = [w = 0; what = C(t,b)let w = b.read() in return w] in
let FACT = [p = 1;
fact = C(t,x)
if (x==0)

then let p = Active(WHAT,what(t)) in return p
else let p = Active(FACT,fact(x-1)) in return x.p;
read = C(t,-)return t.p] in
Active (FACT,fact (input))

where C is the binder (.

The program consists mainly in a recursive invocation of the function
fact; for each of these invocations, a new activity is created, with an object
FACT as the active one.

If n is the current value for which to calculate the factorial fucntion, each
fact invocation represents the computation of the factorial value of n — 1.
The return value, i.e. the return value of the function fact(n — 1), is subse-
quently used to calculate the actual factorial value, i.e. n x fact(n — 1).
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However, because to the yet-not-calculated return value of the function fact(n—
1) is actually associated a future, the calculus of the actual factorial value is
a strict operation on a future, thus a wait-by-necessity comes into play.

The program is actually fated to be delayed forever, because when n
reaches 0 the relative activity instead of simply returning the value 1 as its
factorial it creates, with the same pattern as before, another activity to which
it depends by making a strict operation on a future; this activity, in turn,
depends on the caller activity to be able to terminate, but the latter will
never reply because it’s already in a wait-by-necessity state.

Therefore, the program is irremediably stuck in a deadlocked state.
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Chapter 4

Different ways to approach the
analysis

In this chapter we briefly present some ideas about how may be possible
to extend the deadlock analysis to object-oriented languages and to ASP in
particular.

The first hypothesis is to develop from scratch a type system for ASP that
includes some sort of contracts, i.e. a type inference system able to generate
- if the need arises - dependencies between activities.

In this case a complete subject-reduction proof will be needed to confirm the
correctness of the type inference system and to be able to assert that it’s
consistent with the deadlock analysis.

The second hypothesis, instead, aims to modify coreABS™~ so as to model
the concurrency as it is in ASP.
To do so it’s necessary to extend the subject-reduction proof[1] already de-
veloped for coreABS™™ in a way so as to assert that if the proof is valid for
a modified coreABS™™, then it’s also valid for ASP.

4.1 A Type System for ASP

Here we describe a - not proven - type inference system for ASP that includes
the generation of dependencies, when needed.

Being activities the ASP’s actors of concurrency, the dependencies will be
between them, in opposition to what happens in coreABS™, where depen-
dencies are between objects.

39



The fundamental purpose of a type system is to prevent the occurrence
of execution errors during the running of a program[11].
We start by saying that the description of a type system starts with the
description of a collection of formal utterances called judgments, where a
typical judgment has the form:

=g

where I' is an environment, i.e. a function that associates names to types,
for example:

:T1

O w o 2

T2

and & is an assertion where the free variables of & are declared in I
We say that I' entails 5.

A typical typing judgement asserts that a term a has type T in the envi-
ronment ' and it has the form:

'Fa:T

On the other hand, when we encounter the judgement I' - 7" it means that
the type T is well-formed in the environment I', i.e. it’s a valid type with
respect to the environment.

An often encountered judgement is also I' = ¢, which means that the
environment I' is well-formed, i.e. it has been properly constructed.
This is significant because any given judgement can be regarded as valid or
invalid.

The first type rule we introduce is

EMPTY

gEo
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This rule simply states that every empty environment is a well-formed envi-
ronment.

VAR-1

'kFaz:(x)

This rule simply states that there’s no need of premises in order for the en-
vironment to express a valid judgement on one of its variables.

VAR-2
I'tT x¢ DOM(T)

z:Tko

This rule models the addition of a type relation to the environment.

FUN
rry Ie=M

TF(Y — M)

This rule express the logic on which the type function is based.

The four rules just presented represents a basic set of rules on which to
build the subsequent ones.

OBJ-1 -
jel.m
i€l.n
FI_{ZZB“TI’L]Y;—)MJ} ETObj7_
jel.m

The first type rule for the object type states that the object is well-typed
in the environment if all the types of its fields and methods are well-typed.
What happens in the same time is that we assert how the type object is
composed.

Note that we use To; as a shortening for the type object.

41



OBJ-2
' B T xj: (T, 7),y; 0 Y Fa; : M;  This_Activity = 7
'+ [li = b;;m; = C($j7yj>aj] : Topjs T

In this rule we assert that an object has type object and we associate to
every type object the activity to which it belongs.

This last information is crucial to ensure our ability in tracking dependencies
between activities.

ACT
I'Fa:Tej,— 7 fresh

I' = Active(a,m) : Topj, T

The type of Active describes the fact that when a new activity is created its
name becomes associated to the type of the active object that is deep copied
within the activity itself.

We need to track the fact that we've created a new activity, and more specif-
ically we've created a new activity name.

Furthermore, to every object we associate the activity to which it belongs
to.

AMC
I'ka:Tw;,m T'Fy;:Y; This Activity =a AO(1)=a
I'Fam;(y;) : Fut(M;),oc = 1

It’s here first introduced the type Future, which is associated to a result of
a not-yet-computed return value of an asynchronous method call between
activities.

To the future is also associated a relation between the caller and the callee
activities’ names, coherently to what is defined in the ASP semantics in sec-
tion 3.3.

We associate here a relation, not a dependency, because we don’t describe
here the typing of a strict operation on a future; instead, we’ll use this infor-
mation to model further dependencies.
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FA-0
I'Fa: Tobja -

'+ Cl.lz' : BZ
This rule about the typing of a simple field access is self explanatory.

FA-1
I'F f: Fut(Tej),a = 7 This_Activity = «

I'F fil;: Bi.(a,7)

This rule models the typing of a strict field access on a future.

If the activity that have called the asynchronous method call accesses the
future variable with a strict operation, then a dependency is added and its
information is took from the relation between activities associated to the
Future type.

FA-2
I'E f: Fut(Te;), — 7 This_Activity =

IC'F fil: Bi.(B,a).(cr, T)
This rule also models the typing of a strict field access on a future, but it
does so in the case that the activity that accesses the future it’s different
from the activity that have called the asynchronous method call.
This is possible in ASP because futures, like active object references, may be
referenced from any object, thus from any activity.

In this case and in any other similar case that follows, before the depen-
dency inferred from the information already associated to the type Future we
add a further dependency between the activity that do the strict operation
and the activity that have created the Future. This because, for a generic
activity § # «, [ is in a wait-by-necessity state waiting for « to retrieve its
value from 7.

Note that we intentionally chosen to not accept a direct dependency be-
tween [ and 7 because in the ASP semantics defined in section 3.3 a computed
value is replied only to the activity that made the request.

Now, a general consideration: a future may be referenced by any activity,
but the same is not true when the future becomes a value; infact, the future
may even refer to a field of a passive object, absolutely unaccessible by an
external activity.
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FU-0
THb:B, Tha:Ty,—

'k a.li =b: Tobja -

This is the basic rule for the typing of a field update operation.

FU-1

'k f:Fut(Te;),a =7 TI'Fb:B; This Activity = «
I'E fil;:=b: Top.(a,7)

This rule models the typing of a strict field update operation on a future
made by the activity that performed the asynchronous method call.

FU-2

't f:Fut(Tej),a =7 TI'Fb:B; This_Activity = §
I'Efili :=b:Tuw. (B, a).(a,T)

This rule models the typing of a strict field update operation on a future
made by an activity different by the one that performed the asynchronous
method call.

MC-0
'Fa:Tyj,— I'Fy;:Y;

I'Fam;(y;): M,

This is the basic rule for the typing of a method call operation.

MC-1

'k f:Fut(Tej),a =7 T'lFy;:Y; This Activity =
I fomy(y;) : M (o, 7)

This rule models the typing of a strict method call operation on a future
made by the activity that performed the asynchronous method call.
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MC-2

I'Ef:Fut(Tyj),a -7 I'Fy;:Y; This Activity = 3
' fomi(y;) « M;.(B, a) (o, 7)

This rule models the typing of a strict method call operation on a future
made by an activity different by the one that performed the asynchronous
method call.

CLO-0
I'~a: Tobja -

I'F Clone(a) : Topj, —

This is the basic rule for the typing of a CLONE operation.

CLO-1
'k f: Fut(Tej),« — 7 This_Activity = a

I' = Clone(f) : Topj.(ax, T)

This rule models the typing of a strict CLONE operation on a future made
by the activity that performed the asynchronous method call.

CLO-2
I'F f: Fut(Te;),a =17  This_Activity = 3

I' = Clone(f) : Top;. (5, ). (ar, T)

This rule models the typing of a strict CLONE operation on a future made
by an activity different by the one that performed the asynchronous method
call.

ACF
I'a: Fut(Te;),a — 7 fresh

I' = Active(a,m) : Topj.(a, B), T

This rule is necessary in order to type an Active operation with a future
passed as its active object.
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LET-0
'Fa:A T,2:AFb:B a¢ FV(b)

I'tFletz=ainb: B

This is the basic rule for the typing of a LET concatenation.

LET-1

F'kFa:Fut(A),a—-p T,x:AFb:B x¢ FV(b)
'Fletz=ainb: B.(a,p)

If a is a type Future, then a dependency will be added to the type of the
sequential composition because b will use a.

LET-2

'Fa:A T,2:AFb: Fut(B),a—p x¢ FV(b)
'Fletz=ainb: B.(a,p)

On the contrary, if b is a type Future, then a dependency will be added to
the type of the sequential composition because b it’s evaluated.

LET-3

I'Fa:Fut(A),a—p T,x:AFb: Fut(B), 71—~ x¢&FV(b)
F'tletz=ainb: B.(a,B).(1,7)

From the two former rules it follows that if both @ and b have type Future,
then two different dependencies must be added.

LET-4

F'Fa:A T,x:Fut(A)Fb:B x¢ FV(b)
I'kFletz=ainb: B

Note that the case in which z is a type Future is not relevant; infact, x will
be substituted by a, and only the type of the latter will matter for the se-
quential composition type.
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SRV

mEp=Q(a) kel.n  amp(y):Ye—=Fut(My),a—=p a:Top;
This_Activity=/

['F Serve(my...m,)"=1 : M,

This rule simply states the resulting type of a SERVE operation, with no
dependencies ever necessary.

4.2 A Different coreABS——

The type system just presented has the not negligible inconvenience that, be-
cause for the type system to be sound, the absence of execution errors must
hold for all of the program runs that can be expressed within the language;
therefore, a new proof should be completely built from scratch.

Here we briefly ilustrate a simpler alternative, that may bring to the same
conclusions, i.e. the deadlock analysis can be performed on ASP.

In coreABS™~ is already present a subject-reduction proof[1] that demon-
strates the type soundness of the relative type system. The idea is to modify
coreABS™™ so as to make it behave - at the concurrent level - as ASP, thus
without explicit synchronizations but with implicit synchronization by means
of waits-by-necessity.

We show here only the principles that may allow to completely prove the
hypothesis and the differences between coreABS™™ and its modified coun-
terpart, so as to not bore the reader with pages of repeated rules that are
substantially the same of those of coreABS™ .

The syntax of coreABS™~ becomes:

CL = class C extends C {T f; M}
M = T m (T z){return e; }
e == z|ef]|elm(e)|new C(e)|e;e
= C| Fut(T)

As the reader may have noticed, the syntax is exactly the same of the one of
coreABS™™, except for the get and await operations, which are eliminated.
Infact, because we want to model a implicit synchronization pattern, the two
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explicit synchronization primitives must be erased from the language.

For what semantics is concerned, by eliminating get and await it auto-
matically arises the need to differentiate tasks in all the strict operations, i.e.
Field Access and Method Invocation.

For illustrating purposes, we simplify the transition relation t :* e from

section 2.3 with t : e and we merge the two environment contexts E and S
in a unique environment context E.

Thus, we may re-write the rule

(FIELD-VAR)

M(1)=v
t,M:) S[E[1]] - t,M:] S[E[v]]

as (FIELD)

The logic to follow in order to modify the semantics rules according to the
behavior we want to specify is:

t:E[t,t' v — t: E[v]

where t and ¢ are tasks, E is the environment and v is a value.

Therefore, it may be written the following rule that models a strict Field
Access,

(FIELD-MOD)

fvef:o
t:E[t’.f],t’:E[b[f:vi]] st ER

As you can see now there are two tasks in the bottom left part of the rule,
where the task ¢ depends on the evaluation computed by the task ¢'.
The rule models the fact that the evaluation may proceed as long as to the
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task t’ is associated a computed value; this implies that if ¢’ is still something
else - a future for example - no transition will ever occur.

The other strict operation rules, i.e. strict Method Invocation, may be
written following the same logic.

In the new type system, the (T-GET) rule described in section 2.4 is now
applied to the case in which a strict operation occurs on a type future, thus
generating the associated contract via an implicit synchronization mecha-
nism.

By modifying in this way syntax, semantics and type system it’s pos-
sible to prove the adaptability to ASP of the deadlock analysis developed
for coreABS™™ just by slightly modifying the subject-reduction rule[l] of
the latter, therefore avoiding the construction from scratch of a proof for a
completely new type system as the one previously discussed.
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Conclusions

In this dissertation we confronted two concurrent, object-oriented languages
focusing our study on a static program analysys’ theory for deadlock detec-
tion.

In order to favor the reader’s understanding, deadlock examples for both
languages have been presented and explained.

The deadlock analysis’ theory has been presented in concomitance with
the class-based language it has been originally developed for, and the first
step of the analysis has been thoroughly explored so as to present the reader
with the necessary information for the subsequent discussion.

Then a purely object-based language has been studied in detail and con-
fronted with the aforementioned one, so as to show - explicitly - how sub-
tle differences in the theoretical foundations languages are built from may
evolve in significant differences in their behavior and how this may entail even
greater hassles when the goal is to build a unique, comprehensive theory for
them.

On the other hand, in order to show how it can be possible to extend the
already existing deadlock analysis’ theory to languages it has not been orig-
inally thought for, two significantly different hypotheses has been presented,
pointing out at the same time the distinct ways that are necessary to prove
them right.
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