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Introduction

The Heisenberg group Hn and its Lie algebra h originally arose in the
mathematical formalizations of quantum mechanics (see [3]). Today they
appear in many research �elds such as several complex variables, Fourier
analysis and partial di�erential equations of subelliptic type.

This thesis presents a characterization of hypoellipticity for homogeneous
left-invariant di�erential operators on Hn, which was proved by C. Rockland
in [9].

By de�niton, a di�erential operator P on a Lie group G is called hypoel-
liptic if for any distribution u ∈ D′(G) and any open set Ω ⊂ G, the condition
Pu ∈ C∞(Ω) implies that u ∈ C∞(Ω).

This characterization is given in terms of the unitary irreducible repre-
sentations of the group.

In particular, the main result is the following.

Theorem 0.0.1. Let P be a left-invariant homogeneous di�erential operator
on the Heisenberg group Hn. Then the following are equivalent:

1. P and P t are both hypoelliptic;

2. for every unitary irreducible representation π of Hn (except the 1-
dimensional identity representation), π(P ) has a bounded two-sided
inverse;

3. for every unitary irreducible representation π of Hn (except the 1-
dimensional identity representation), π(P )v 6= 0 and π(P )∗v 6= 0 for
every nonzero C∞-vector v of π.

This is the analogue for Hn of the following result for (Rn,+) with dila-
tions x 7→ rx: a di�erential operator with constant coe�cients is hypoelliptic
if and only if it is elliptic.

We now show that the Theorem holds for a particular operator.
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Example 0.1. As we will see, the standard basis of h is given, for i =
1, . . . , n, by

Xi := ∂xi −
1

2
yi∂z, Yi := ∂yi +

1

2
xi∂z, Z := ∂z.

The only non-trivial commutation relations are [Xj, Yj] = Z, for j = 1, . . . , n.
We now consider the sub-Laplacian on Hn, which is given by

P =
n∑
j=1

(X2
j + Y 2

j ).

This is a left-invariant di�erential operator homogeneous of order 2.
Since

rank(Lie{X1, . . . , Xn, Y1, . . . , Yn, Z}) = 2n+ 1

at any point of R2n+1, it follows by Hörmander's Theorem (see [1]) that P is
hypoelliptic. Since P t = P , the �rst condition of the Theorem is satis�ed.

The two families of unitary irreducible representations of Hn are given by

π(ξ,η)(Xj) = i ξj, π(ξ,η)(Yj) = i ηj, π(ξ,η)(Z) = 0,

for (ξ, η) ∈ R2n and

π̃λ(Xj) = |λ|
1
2
d

dtj
, π̃λ(Yj) = i(sgn λ)|λ|

1
2 tj, π̃λ(Z) = iλ,

for λ ∈ R \ {0}. Since if P is homogeneous of order m, then

π̃λ(P ) = |λ|
m
2 π̃1(P ), λ > 0,

π̃λ(P ) = |λ|
m
2 π̃−1(P ), λ < 0,

we can consider only π̃1(P ) and π̃−1(P ). We have:

π(ξ,η)(P ) = −
n∑
j=1

(ξ2
j + η2

j ) 6= 0, (ξ, η) 6= (0, 0),

hence π(ξ,η)(P ) is invertible if π(ξ,η) is not trivial. Moreover

π̃1(P ) = π̃−1(P ) =
n∑
j=1

(
d2

dt2j
− t2j

)
= −

n∑
j=1

(D2
tj

+ t2j),
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whereDtj = 1
i
d
dtj
. Since L2(R) has a complete orthonormal basis consisting of

eigenfunctions {vj}∞j=0 for the harmonic oscillator D2
t + t2, we �nd a bounded

two-sided inverse T of π̃1(P ), which is given by:

Tvk =
1∑n

j=1(2kj + 1)
vk.

Hence, also the second condition of the Theorem is satis�ed.
Given now v ∈ S(Rn), if we consider for (ξ, η) 6= (0, 0)

π(ξ,η)(P )v = −
n∑
j=1

(ξ2
j + η2

j )v = 0,

this implies v = 0. Similarly, the equation π̃1(P )v = 0 implies

n∑
j=1

∫
R
(|Dtjv|2 + t2j |v|2)dtj = 0.

Hence, for any j = 1, . . . , n∫
|Dtjv|2dtj = 0,

∫
t2j |v|2dtj = 0,

so that v = 0.
Thus, the third condition is satis�ed, so the Theorem holds in case P is

the sub-Laplacian.

The proof of the Theorem relies on representation theory and in particular
on Plancherel Theorem, that gives a parametrization of unitary irreducible
representations of a simply connected nilpotent Lie group through a Zarisky-
open subset of Rq (for a certain q). The version we present is a compilation of
its L2 formulation (see [2]) and a geometrical exposition of the distributional
version provided by Kirillov in [6].

Plancherel Theorem is used in the construction of a parametrix for the
operator P . In Plancherel Theorem, however, only the generic representa-
tions of Hn occur and if we try to �nd a fundamental solution for P using
them, a convergence problem arises. It is the hypothesis that π(P ) is in-
vertible for degenerate π (i.e. π maps the vertical �eld to 0, see π(ξ,η) in
the previous example) that allows us to solve the problem, �nding W in the
center of the enveloping algebra such that P +W is elliptic and constructing
a distribution u such that P (δ+u) = (P +W )δ. Taking the convolution of u
with a compactly supported parametrix for P + W , we �nd the parametrix
for P .
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The methods that are used are quite general, in the sense that they are
not crucially tied to Hn, so they could be extended to simply-connected
nilpotent Lie groups with dilations, as Rockland suggests in his paper [9]
(for a generalization see [4]).

We proceed to an outline of the thesis.
In Chapter 1 we present basic notions on Lie groups and algebras, left-

invariant and hypoelliptic di�erential operators. We recall some basic pro-
perties of special classes of operators on Hilbert spaces (unitary, trace-class
and Hilbert-Schmidt operators) and the polar decomposition of a bounded
operator.

Chapter 2 contains some results on unitary irreducible representations of
nilpotent Lie groups. We introduce the concepts of C∞-vectors and weak
C∞-vectors and representation of di�erential operators and distributions.
The main result is Plancherel Theorem, which we present along with some
consequences.

In Chapter 3 we consider the special case of (Rn,+). In particular, we
prove the result for a homogeneous operator because a similar approach will
be used to prove a necessary condition for hypoellipticity on Hn.

In Chapter 4 we present the proof of the main Theorem. After some
preliminaries on Heisenberg group, we classify the two families of unitary
irreducible representations ofHn, according to Stone-von Neumann Theorem.

Under the hypothesis that condition 2 of the Theorem holds, we then
construct a parametrix for P and show that it is C∞ away from the origin,
which implies that P t is hypoelliptic.

Using a similar approach as the one used in chapter 3 for Rn, we show
that if P and P t are both hypoelliptic then for every unitary irreducible
representation π of Hn (except the 1-dimensional identity representation),
π(P )v 6= 0 and π(P )∗v 6= 0 for every nonzero C∞-vector v of π.

Thus the Theorem is proved (modulo the proof of the fact that condition
3 implies 1, which is not shown).



Introduzione

Il gruppo di Heisenberg Hn e la sua algebra di Lie h comparvero inizial-
mente nella formalizzazione matematica della meccanica quantistica (si veda
[3]). Ora sono utilizzati in molti campi di ricerca, come funzioni di più va-
riabili complesse, analisi di Fourier ed equazioni alle derivate parziali di tipo
subellittico.

La tesi presenta un risultato di caratterizzazione dell'ipoellitticità di ope-
ratori di�erenziali omogenei invarianti a sinistra su Hn, che è stato provato
da Rockland ([9]).

Per de�nizione un operatore di�erenziale P su un gruppo di Lie G è detto
ipoellittico se per ogni distribuzione u ∈ D′(G) e per ogni aperto Ω ⊂ G, la
condizione Pu ∈ C∞(Ω) implica u ∈ C∞(Ω).

Questa caratterizzazione dell'ipoellitticità è data in termini delle rappre-
sentazioni unitarie irriducibili del gruppo. In particolare viene provato il
seguente teorema.

Theorem 0.0.2. Sia P un operatore di�erenziale omogeneo invariante a
sinistra sul gruppo di Heisenberg Hn. Le proprietà seguenti sono equivalenti:

i) sia P che P t, il trasposto formale di P , sono ipoellittici;

ii) per ogni rappresentazione unitaria irriducibile π di Hn (a parte quella
banale), π(P ) ha un'inversa limitata;

iii) per ogni rappresentazione unitaria irriducibile π di Hn (a parte quella
banale), π(P )v 6= 0, π(P )∗v 6= 0 per ogni vettore C∞ v 6= 0 della
rappresentazione π.

Questo è l'analogo per Hn del seguente risultato valido su (Rn,+) con
le dilatazioni x 7→ rx: un operatore di�erenziale a coe�cienti costanti è
ipoellittico se e solo se è ellittico.

Vediamo ora con un esempio che il Teorema precedente vale nel caso di
un particolare operatore.

v
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Example 0.2. Come vedremo, la base standard di h è data, per i = 1, . . . , n,
da

Xi := ∂xi −
1

2
yi∂z, Yi := ∂yi +

1

2
xi∂z, Z := ∂z.

Le uniche relazioni non nulle sono [Xj, Yj] = Z, for j = 1, . . . , n.
Ora consideriamo il sub-Laplaciano su Hn, che è dato da

P =
n∑
j=1

(X2
j + Y 2

j ).

Esso è un operatore invariante a sinistra omogeneo di ordine 2.
Dato che

rank(Lie{X1, . . . , Xn, Y1, . . . , Yn, Z}) = 2n+ 1

in ogni punto di R2n+1, segue dal teorema di Hörmander (si veda [1]) che P è
ipoellittico. Dato che P t = P , la prima condizione del Teorema è soddisfatta.

Le due famiglie di rappresentazioni unitarie irriducibili di Hn sono date
da

π(ξ,η)(Xj) = i ξj, π(ξ,η)(Yj) = i ηj, π(ξ,η)(Z) = 0,

per (ξ, η) ∈ R2n e

π̃λ(Xj) = |λ|
1
2
d

dtj
, π̃λ(Yj) = i(sgn λ)|λ|

1
2 tj, π̃λ(Z) = iλ,

per λ ∈ R \ {0}. Dato che se P è omogeneo di ordine m, allora

π̃λ(P ) = |λ|
m
2 π̃1(P ), λ > 0,

π̃λ(P ) = |λ|
m
2 π̃−1(P ), λ < 0,

possiamo considerare solo π̃1(P ) and π̃−1(P ). Si ha:

π(ξ,η)(P ) = −
n∑
j=1

(ξ2
j + η2

j ) 6= 0, (ξ, η) 6= (0, 0),

quindi π(ξ,η)(P ) è invertibile se π(ξ,η) non è banale. Inoltre

π̃1(P ) = π̃−1(P ) =
n∑
j=1

(
d2

dt2j
− t2j

)
= −

n∑
j=1

(D2
tj

+ t2j),
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dove Dtj = 1
i
d
dtj
. Siccome L2(R) ha una base ortonormale completa di auto-

funzioni {vj}∞j=0 dell'oscillatore armonico D2
t + t2, si può trovare un'inversa

limitata T di π̃1(P ), che è data da:

Tvk =
1∑n

j=1(2kj + 1)
vk.

Dunque anche la seconda condizione del Teorema è soddisfatta.
Sia ora v ∈ S(Rn). Se consideriamo, per (ξ, η) 6= (0, 0)

π(ξ,η)(P )v = −
n∑
j=1

(ξ2
j + η2

j )v = 0,

questo implica v = 0. Analogamente, l'equazione π̃1(P )v = 0 implica

n∑
j=1

∫
R
(|Dtjv|2 + t2j |v|2)dtj = 0.

Quindi, per ogni j = 1, . . . , n∫
|Dtjv|2dtj = 0,

∫
t2j |v|2dtj = 0,

cioè v = 0.
In conclusione vale anche la terza condizione, cioè il Teorema è valido nel

caso in cui P sia il sub-Laplaciano.

La prova del Teorema 0.0.2 si basa sulla teoria delle rappresentazioni ed
in particolare sul Teorema di Plancherel, che permette di parametrizzare me-
diante un aperto di Rq (per q opportuno) nella topologia di Zarisky le rappre-
sentazioni unitarie irriducibili di un gruppo di Lie nilpotente semplicemente
connesso. La versione presentata riunisce la formulazione L2 del teorema (si
veda [2]) e un'esposizione geometrica della versione distribuzionale proposta
da Kirillov ([6]).

Il Teorema di Plancherel viene utilizzato nella costruzione di una parame-
trice per l'operatore P . Tuttavia, nel teorema compaiono solo le rappresen-
tazioni generiche di Hn e se si cerca di scrivere una soluzione fondamentale
utilizzandole si incorre in un problema di convergenza. L'ipotesi che π(P )
sia invertibile anche per π degenere (cioè π manda il campo verticale in 0)
permette risolvere il problema, trovando un campo W nel centro dell'algebra
inviluppante tale che P + W sia ellittico e costruendo una distribuzione u
tale che P (δ + u) = (P + W )δ. Prendendo la convoluzione di u con una
parametrice a supporto compatto di P +W , si ottiene la parametrice per P .



viii

I metodi utilizzati sono piuttosto generali, nel senso che non sono essen-
zialmente legati a Hn, quindi possono essere estesi a gruppi di Lie nilpotenti
semplicemente connessi, come suggerisce Rockland nel suo lavoro [9] (per una
generalizzazione si veda [4]).

Vediamo ora come è strutturata la tesi.
Nel Capitolo 1 vengono introdotte le nozioni di base su gruppi e algebre

di Lie, operatori invarianti a sinistra ed ipoellittici. Inoltre sono richiamate
alcune proprietà fondamentali di alcune classi di operatori su spazi di Hil-
bert (unitari, di traccia e di Hilbert-Schmidt) e la decomposizione polare di
operatori limitati.

Il Capitolo 2 contiene alcuni risultati sulle rappresentazioni unitarie irri-
ducibili di gruppi di Lie nilpotenti. Si introducono i concetti di vettori C∞ e
C∞ deboli e la rappresentazione di operatori di�erenziali e distribuzioni. Il
risultato fondamentale è il Teorema di Plancherel, di cui vengono presentate
anche alcune conseguenze.

Nel Capitolo 3 viene trattato il caso particolare di (Rn,+). In particolare,
si prova il risultato nel caso di un operatore omogeneo poiché un approccio
simile viene utilizzato nel seguito per provare una condizione necessaria per
l'ipoellitticità sul gruppo Hn.

Il Capitolo 4 presenta la dimostrazione del Teorema 0.0.2. Dopo un'intro-
duzione sul gruppo di Heisenberg, vengono classi�cate, in base al teorema di
Stone-von Neumann, le due famiglie di rappresentazioni unitarie irriducibili
dell'algebra di Heisenberg h.

Per provare che la condizione ii) del Teorema 0.0.2 implica l'ipoellitticità
si costruisce una parametrice per l'operatore P e successivamente si prova
che essa è C∞ fuori dall'origine.

In�ne si dimostra, utilizzando un procedimento simile a quello del capitolo
3 nel caso di Rn, che se sia P che P t sono ipoellittici allora per ogni rappre-
sentazione unitaria irriducibile π di Hn (a parte quella banale), π(P )v 6= 0,
π(P )∗v 6= 0 per ogni vettore C∞ v 6= 0 della rappresentazione π.

Questo conclude la prova del Teorema (a meno della dimostrazione che
iii) implica i), che non viene presentata).
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Chapter 1

Preliminaries on Lie groups and

operators in Hilbert spaces

1.1 Lie groups and Lie algebras

De�nition 1.1. A Lie group G is a smooth manifold G which is also a
group and such that the map

G×G→ G
(x, y) 7→ xy−1

is smooth.

Proposition 1.1.1. The following transformations on a Lie group G are
smooth:

• the inversion x 7→ x−1;

• the left translations la(x) = ax and the right translations ra(x) = xa−1,
with a ∈ G.

Consequently, the following operators transform smooth functions into smooth
functions:

• the "check" operation f 7→ f̌ , where f̌(x) = f(x−1).

• the left and right translation operators Laf(x) = f(a−1x), Raf(x) =
f(xa).

De�nition 1.2. A (real) Lie algebra is a real vector space g with a bilinear
operation [·, ·] : g×g→ g (called Lie bracket) such that for every X, Y, Z ∈ g
we have:

1



2 1.#1

1. anti-commutativity: [X, Y ] = −[Y,X];

2. Jacobi identity: [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

Given any Lie group, there exists a certain Lie algebra such that the
group properties are re�ected into properties of the algebra. We will now see
how to �nd it.

De�nition 1.3. Let G be a Lie group. A smooth vector �eld X on G is
called left-invariant if for every a ∈ G and every smooth function f

La(Xf) = XLa(f).

The commutator of two left-invariant vector �elds is also left-invariant.

De�nition 1.4. Let G be a Lie group. Then the Lie algebra of G is the
set of the smooth left-invariant vector �elds on G and it will be denoted by
g.

There is an identi�cation between left-invariant vector �elds and tangent
vectors at the identity element e of G, given by the following proposition.

Proposition 1.1.2. Given any tangent vector v at e in G, there exists a
unique left-invariant vector �eld X such that Xe = v. It is given by

Xf(x) = v(Lx−1f). (1.1)

Proof. Since Xf(x) = Lx−1(Xf)(e), in order X be left-invariant, it must be
Xf(x) = X(Lx−1f)(e), so the identity (1.1) is forced. We now have to prove
that (1.1) actually de�nes a left-invariant vector �eld. Given a ∈ G, we have

La(Xf)(x) = Xf(a−1x) = v(Lx−1af) = v(Lx−1Laf) = X(Laf)(x).

Thus we have: dim g = dimG and we can take TeG as the underlying
vector space for g.

1.2 Vector �elds, �ows, exponential

Let G be a Lie group and X a real smooth vector �eld on G. Then X
can be expressed in local coordinates (x,Ω) as:

X =
n∑
j=1

aj(x)∂xj . (1.2)
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We set
Xx = (a1(x), . . . , an(x)).

An integral curve of X is a curve γ : (−ε, ε)→ Ω such that γ′(t) = Xγ(t).
Given a point x0 ∈ Ω, we consider the Cauchy problem{

γ′(t) = Xγ(t)

γ(0) = x0.
(1.3)

Theorem 1.2.1. Let X be a smooth vector �eld on G and let (x,Ω) be a
chart of G. Then:

i) for every x0 ∈ Ω the problem (1.3) has a unique solution γx0(t) de�ned
on a maximal open interval Ix0 containing 0;

ii) given K ⊂ Ω compact, there is εK > 0 such that γx is de�ned for
|t| < εK for every x ∈ K;

iii) the map (x, t) 7→ γx(t) is smooth on its domain;

iv) more generally, if

Xy =
n∑
j=1

aj(x, y)∂xj

is a family of vector �elds with coe�cients depending smoothly on x
and y, and γy,x0(t) is the solution of the Cauchy problem (1.3) relative
to Xy, then the map (x, y, t) 7→ γy,x(t) is smooth.

For �xed t, let Ωt ⊂ Ω consist of the elements x such that γx(t) is de�ned
and let ϕX,t : Ωt → Ω be given by:

ϕX,t(x) = γx(t).

Then Ωt is open and ϕX,t is smooth. Moreover, ϕX,0 = Id and ϕX,t ◦
ϕX,t′ = ϕX,t+t′ , when de�ned. The maps ϕX,t form the �ow of the vector
�eld X on Ω.

A vector �eld X is called complete when the map (x, t) 7→ ϕX,t(x) is
de�ned for every x and every t.

Remark 1. When analyzing the �ow of a vector �eld X locally, that is on a
compact subset K of Ω, it is sometimes convenient to replace X by X ′ = ηX,
with η ∈ C∞0 (Ω) and identically equal to 1 on a neighborhood of K. Then
the �ow of X ′ coincides with that of X on K but has the advantage that X ′

is complete.
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Proposition 1.2.2. For each t ∈ (−δ, δ), let ϕt : Ωt → Ω be a smooth map,
with Ωt ⊂ Ω, and assume that

i) for each compact subset K of Ω there is a δ(K) > 0 such that K ⊂ Ωt

for |t| < δ(K);

ii) ϕ0 = Id and ϕt ◦ ϕs = ϕt+s whenever the composition makes sense;

iii) the map (x, t) 7→ ϕt(x) is smooth on its domain.

If

Xf =
d

dt |t=0

f ◦ ϕt,

then X is a smooth vector �eld on Ω and ϕt coincides with the �ow of X
restricted to Ωt.

Proof. See Proposition 1.2 in [8].

De�nition 1.5. We call exponential of tX the operator exp(tX) acting on
a function f on a subdomain of Ω as

exp(tX)f(x) = f(ϕX,t(x)).

Observe that exp(tX)f is de�ned only on the domain Ωt of ϕX,t.
Since the solution γsX,x0(t) of (1.3), with X replaced by its scalar multiple

sX, equals γX,x0(st), it follows that

exp((ts)X) = exp(t(sX)).

Lemma 1.2.3. Given K compact in Ω, there is δK > 0 such that exp(tX)f
is de�ned for |t| < δK and f ∈ C∞0 (K). The exponential of X satis�es the
following properties:

i) exp(0X)f = f ;

ii) exp(−tX) = exp(tX)−1;

iii) exp((t+ s)X) = exp(tX) exp(sX);

iv) if f is C1 then d
dt

exp(tX)f = X exp(tX)f = exp(tX)Xf ;

v) if f ∈ C∞0 (K) and k ∈ N then

exp(tX)f(x) =
k∑
j=0

tj

j!
Xjf(x) +O(tk+1),

where the remainder term depends continuously on f and X.
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Proof. By Remark 1 we can assume that X is complete.
Then statements i) and iii) follow directly from the corresponding iden-

tities for ϕX.t and ii) is a direct consequence.
We now prove iv). If X is in local coordinates as in (1.2) then for every

smooth function f

Xf(x) =
n∑
j=1

aj(x)
∂f

∂xj

and for every x in the domain of ϕX,t

d

ds |s=0

f(ϕX,s(x)) =
df

dx
(x) ·Xγ(0) =

n∑
j=1

aj(x)
∂f

∂xj
.

Thus

Xf(x) =
d

ds |s=0

f(ϕX,s(x)).

Hence

d

dt
exp(tX)f(x) =

d

ds |s=0

exp((s+ t)X)f(x) =
d

ds |s=0

exp(sX) exp(tX)f(x) =

=
d

ds |s=0

(exp(tX)f)(ϕX,s(x)) = X(exp(tX)f)(x)

but also

d

dt
exp(tX)f(x) =

d

ds |s=0

exp(tX) exp(sX)f(x) = exp(tX)Xf(x).

Finally v) follows from iv).

1.3 The exponential map on a Lie group

Let G be a Lie group.

De�nition 1.6. A one-parameter group in G is a smooth map γ : R → G
such that γ(s+ t) = γ(s)γ(t) for every s, t ∈ R.

Theorem 1.3.1. Let {ϕt} be the �ow on G generated by a left-invariant
vector �eld X. Then ϕt is de�ned on all G for every t ∈ R. Moreover γ(t) =
ϕt(e) is a one-parameter group and

ϕt(x) = xγ(t) (1.4)

for every x ∈ G and t ∈ R.
Conversely, given any one-parameter group γ(t) in G, there is a left-

invariant vector �eld X whose �ow is given by (1.4).
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Proof. By Theorem 1.2.1, γ(t) is de�ned at least on some interval (−δ, δ).
For x ∈ G, we have since X is left-invariant:

d

dt
f(xγ(t)) =

d

dt
(Lx−1f)(γ(t)) = X(Lx−1f)(γ(t)) =

= Lx−1(Xf)(γ(t)) = Xf(xγ(t)).

Thus it follows:

d

dt
(exp(−tX)f(xγ(t))) =

= − exp(−tX)(Xf)(xγ(t)) + exp(−tX)(Xf)(xγ(t)) = 0,

which implies that exp(−tX)f(xγ(t)) is constant. Since at t = 0, it equals
f(x), it follows that exp(−tX)f(xγ(t)) = f(x), hence:

exp(tX)f(x) = f(xγ(t)).

This proves (1.4) for |t| < δ. In particular, for |t| < δ, ϕt is de�ned on
the whole G.

The de�nition of ϕt can be extended uniquely to t ∈ R in order to preserve
the property: ϕs+t = ϕs ◦ ϕt. It follows from Proposition 1.2.2 that this
extension is the �ow generated by X. Moreover,

γ(s+ t) = ϕs+t(e) = ϕs(ϕt(e)) = ϕs(γ(t)) = γ(t)γ(s),

i.e. γ is a one-parameter group.
Conversely, let γ be a one-parameter group. Then the maps ϕt(x) = xγ(t)

satisfy the assumptions of Proposition 1.2.2. Therefore they give the �ow
generated by a vector �eld X. We have to show that X is left-invariant.
This is true because for every a ∈ G:

X(Laf)(x) =
d

dt |t=0

Laf(xγ(t)) =
d

dt |t=0

f(a−1xγ(t)) =

= Xf(a−1x) = La(Xf)(x).

Corollary 1.3.2. There is a one-to-one correspondence between left-invariant
vector �elds on G and one-parameter groups in G. It assigns to every one-
parameter group γ(t) the vector �eld X generating the �ow ϕt(x) = xγ(t).

De�nition 1.7. Let v ∈ TeG, let X be the left-invariant vector �eld such
that Xe = v and γv(t) the corresponding one-parameter group, according to
Corollary 1.3.2. The exponential map expG : g→ G is given by

expG(v) = γv(1).
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The following identities hold (for a smooth function f on G):

exp(tX)f(x) = f(x expG(tv)),

Xf(x) =
d

dt |t=0

f(x expG(tv)).

Since expG is de�ned on the "abstract" Lie algebra, it is correct to write
expG(X) instead of expG(Xe). Moreover, we will use the notation exp(X)
instead of expG(X).

Proposition 1.3.3. The exponential map is smooth and it is a di�eomor-
phism from a neighborhood of 0 in g onto a neighborhood of e in G.

Proof. If we consider the map

(x, v, t) 7→ γv,x(t) = x expG(tv)

it follows by Theorem 1.2.1 iv) that it is smooth because the left-invariant
vector �elds Xv depend linearly on v. When we restrict the map to x = e
and t = 1, we obtain that the exponential map expG is smooth.

Let d expG(0) : g → TeG ∼ g be the di�erential of expG at 0. Then for
u ∈ g and f smooth on G, we have

(d expG(0)u)(f) =
d

ds |s=0

f(expG(su)) = u(f).

Hence d expG(0) = Id, which implies by the inverse mapping theorem that
expG is a di�eomorphism from a neighborhood of 0 in g onto a neighborhood
of e in G.

It can be proven that every (abstract) �nite dimensional real Lie algebra
is isomorphic to the Lie algebra of a Lie group.

1.4 Nilpotent Lie algebras and groups

De�nition 1.8. A Lie algebra g is called nilpotent if there is a k such that
every iterated Lie bracket of order k:

[. . . [[x1, x2], x3] . . . , xk]

is zero.
In this case it is called step k if k is the smallest integer for which all Lie

brackets of order k + 1 are zero.
A Lie group G is called nilpotent if its Lie algebra is nilpotent.

De�nition 1.9. The center of a Lie algebra g consists of all elements x ∈ g
such that [x, y] = 0 for every y ∈ g.
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1.5 Homogeneous Lie groups

Let G1, G2 be Lie groups and ψ : G1 → G2 be a smooth group homomor-
phism. If v is in the Lie algebra g1 ofG1, then ψ(expG1

(tv)) is a one-parameter
group in G2. By Corollary 1.3.2 there is a unique v′ = ψ∗(v) ∈ g2 such that
ψ(expG1

(tv)) = expG2
(tv′).

Lemma 1.5.1. The map ψ∗ : g1 → g2 is a Lie algebra homomorphism, i.e.
it is linear and

ψ∗([u, v]) = [ψ∗(u), ψ∗(v)]

for every u, v ∈ g1. If G1 is connected then ψ∗ uniquely determines ψ.

Proof. See proof of Theorem 2.1.50 in [1].

Remark 2. We say that the Lie algebra homomorphism ψ∗ is induced by the
group homomorphism ψ. Observe that ψ∗ is nothing but the di�erential of
ψ at the identity of G1.

Let V be a real vector space. A family {δt}t>0 of linear maps of V to
itself is called a set of dilations on V if there are real numbers λj > 0 and
subspaces Wλj of V such that V is the direct sum of the Wλj and

(δt)|Wλj
= tλjId

for every j.

De�nition 1.10. Let g be a Lie algebra and {δt}t>0 be a set of dilations on
its underlying vector space. If each δt is an automorphism of g, then the pair
(g, {δt}) is called a homogeneous Lie algebra.

A homogeneous Lie group is a connected Lie group G endowed with a
family {Dt}t>0 of automorphisms such that its Lie algebra g is homogeneous
under the δt = (Dt)∗.

The same Lie algebra can have di�erent homogeneous structures.

Lemma 1.5.2. A homogeneous Lie group is nilpotent and simply connected.

Proof. For a proof of nilpotence of homogeneous Lie groups on RN see Propo-
sition 1.3.12 in [1].
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1.6 Graded and strati�ed Lie algebras

De�nition 1.11. A gradation on a Lie algebra g is a decomposition of g as
the direct sum of linear subspaces {Wj}1≤j≤m such that [Wj,Wk] ⊂ Wj+k

(or [Wj,Wk] = {0} if j + k > m). A Lie algebra endowed with a grada-
tion is called a graded Lie algebra and the associated connected and simply
connected Lie group a graded Lie group.

If {Wj} is a gradation of g, the dilations

δt(x) = tjx,

with x ∈ Wj are automorphism, so that g canonically inherits a homogeneous
structure.

Conversely, if the dilations δt on a homogeneous Lie algebra have eigen-
values tj (i.e. with integer exponents), the eigenspaces Wj relative to the
eigenvalues tj form a gradation of g.

De�nition 1.12. A strati�ed Lie algebra is a graded Lie algebra g such that
W1 generates g. W1 is called the horizontal subspace.

1.7 Universal enveloping algebra

De�nition 1.13. Let g be a Lie algebra and let T be the tensor algebra of
g, that is:

T = T 0 ⊕ T 1 ⊕ · · · ⊕ T n ⊕ . . . ,

where T n = g⊗ g⊗ · · · ⊗ g (n times).
Let J be the two-sided ideal of T generated by the tensors

x⊗ y − y ⊗ x− [x, y],

with x, y ∈ g.
The associative algebra T/J is called the universal enveloping algebra of

g and is denoted by U(g).
The composite mapping σ of the canonical mappings g → T → U(g) is

called the canonical mapping of g into U(g); for every x, y ∈ g we have:

σ(x)σ(y)− σ(y)σ(x) = σ([x, y]).

The center of U(g) is denoted by Z(g).
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1.8 Integration and convolution on Nilpotent

groups

Every locally compact group (in particular any Lie group) admits a pos-
itive, regular Borel measure that is invariant under left translations, called
the left Haar measure, which is unique up to scalar multiples; similarly such
a group admits a unique, up to scalar multiples, right Haar measure. In
general they do not coincide.

The existence of a Haar measure on G which is both left- and right-
invariant is expressed by saying that G is unimodular.

Let G be a nilpotent simply connected Lie group and let g be its Lie
algebra. It can be proven (see Theorem 6.1 in [8]) that the Lebesgue measure
on g is invariant under both left and right translations of G.

Theorem 1.8.1. The Lebesgue measure dx on g satis�es the following prop-
erty: if f is an integrable function on G and a ∈ G, then∫

G
f(xa)dx =

∫
G
f(ax)dx =

∫
G
f(x)dx.

Let L1(G) be the space of summable functions on G. We can de�ne the
convolution by

(f ∗ g)(x) =

∫
G
f(xy−1)g(y)dy =

∫
G
f(y)g(y−1x)dy

with dy that denotes the Haar measure. Then L1(G) with the convolution is
an algebra.

In general, if G is non-commutative, f ∗ g 6= g ∗ f .

We denote by Dk(G) the space of Ck functions compactly supported on
G, with the Ck norm, and by

D(G) =
⋂
k∈N

Dk(G)

the space on C∞ functions compactly supported on G.
We denote by D′(G) the space of distributions on G and by S ′(G) the

space of tempered distributions. The space of Ck distributions is denoted by
D′k(G).

For u ∈ D′(G) and f ∈ D(G), we can de�ne:

u ∗ f(x) = (u, Lxf̌),
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f ∗ u(x) = (u,Rx−1 f̌),

where f̌(x) = f(x−1).
The same de�nition makes sense for u ∈ S ′(G) and f ∈ S(G).

Theorem 1.8.2. If u ∈ D′(G) and f ∈ D(G), then u ∗ f and f ∗ u are C∞

functions on G.

The rule
supp(f ∗ g) ⊂ (supp f)(supp g)

is respected also by convolution between a function and a distribution.
Note that:

δa ∗ f = Laf (1.5)

and
f ∗ δa = Ra−1f, (1.6)

where δa is the Dirac delta distribution supported on a, i.e. (δa, f) = f(a).
In fact:

δa ∗ f(x) = (δa, Lxf̌) = Lxf̌(a) = f(a−1x) = Laf(x)

and similarly for the other identity.
Moreover, if k ∈ g(= T0G) and Xk is the corresponding left-invariant

vector �eld, then:
f ∗ (∂kδ0) = Xkf. (1.7)

In fact:

f ∗ (∂kδ0)(x) = (∂kδ0, Rx−1f̌ = −∂k(Rx−1f̌ )(0) =

= −∂k(Lx−1f )̌(0) = ∂k(Lx−1f)(0) = Xkf(x).

The convolution of two distributions is not always de�ned. However, if
u, v ∈ D′(G) and one of them, say u, has compact support, then we can set
for f ∈ D(G),

(u ∗ v, f) = (v, ǔ ∗ f),

(v ∗ u, f) = (v, f ∗ ǔ),

where ǔ is the distribution such that

(ǔ, f) = (u, f̌).

Then u ∗ v and v ∗ u are in D′(G). If v ∈ S ′(G) then they are also in
S ′(G).
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If any two of the distributions u, v, w have compact support, then the
associative property

(u ∗ v) ∗ w = u ∗ (v ∗ w)

holds.
For u ∈ D′(G) we de�ne Lau, Rau by

(Lau, f) = (u, La−1f), (Rau, f) = (u,Ra−1f).

This de�nition is motivated by the fact that, by invariance properties of
the Lebesgue measure, for any test functions f, g we have:

(Laf, g) =

∫
G
f(a−1x)g(x)dx =

∫
G
f(x)g(ax)dx = (f, La−1g),

and similarly for right translations.
We have that: Lau = δa ∗ u and Rau = u ∗ δa−1 . Indeed by (1.5):

(Lau, f) = (u, La−1f) = (u, δa−1 ∗ f) = (u, δ̌a ∗ f) = (δa ∗ u, f).

Proposition 1.8.3. If X is a left-invariant vector �eld and k = X0 then
Xu = u ∗ (∂kδ0) and the following identities hold:

(Xu, f) = −(u,Xf), (1.8)

X(u ∗ v) = u ∗ (Xv) (1.9)

whenever the convolution is de�ned.

Proof. By invariance of the Lebesgue measure, if f, g ∈ D(G), the integral∫
G
f(xa)g(xa)dx

does not depend on a. Taking a = expG(tk) and di�erentiating at t = 0, we
obtain that ∫

G
(Xf(x)g(x) + f(x)Xg(x))dx = 0,

so that
〈Xf, g〉 = −〈f,Xg〉,

i.e.
X t = −X. (1.10)

By de�nition,
(Xu, f) = (u,X tf) = −(u,Xf).

Hence by (1.7) and the de�nition of convolution:

(Xu, f) = −(u, f ∗ (∂kδ0)) = −(u ∗ (∂kδ0)ˇ, f) = (u ∗ (∂kδ0), f).

Then (1.9) follows.
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1.9 Left-invariant di�erential operators

Let G be a simply connected nilpotent Lie group.
IfX1, . . . , Xk are left-invariant vector �elds onG, then P = X1X2 · · ·Xk is

a left-invariant di�erential operator on G, and such is any linear combination
of compositions of this kind.

We can identify the set of left-invariant di�erential operators on G with
the enveloping algebra U(g).

We �x a basis (e1, . . . , en) of g and denote by Xj the left invariant vector
�eld such that (Xj)0 = ∂ej .

If α = (α1, . . . , αn) ∈ Nn, we set:

Xα = Xα1
1 · · ·Xαn

n .

Theorem 1.9.1. (Poincaré-Birkho�-Witt) Let P be a left-invariant dif-
ferential operator on G. Then P can be written in one and only one way
as

P =
∑
|α|≤m

cαX
α =

∑
|α|≤m

cαX
α1
1 · · ·Xαn

n (1.11)

where cα ∈ C and |α| = α1 + . . . αn.

Proof. Let (x1, . . . , xn) be the coordinates on g induced by the �xed basis.
Then

Pf(0) =
∑
|α|≤m

aα∂
αf(0)

for some coe�cients aα ∈ C.
The proof goes by induction on m. If m = 0, then Pf(0) = af(0) (thus

a is determined) and

Pf(x) = Lx−1(Pf)(0) = P (Lx−1f)(0) = aLx−1f(0) = af(x).

If m = 1 then

Pf(0) =
n∑
j=1

aj∂xjf(0) + a0f(0).

If P ′ = P −
∑n

j=1 ajXj, then P
′f(0) = a0f(0). Since P ′ is also left-invariant,

it follows that

P =
n∑
j=1

ajXj + a0.

Assume now that the statement is true for m − 1 and for P of order m
set

P ′ = P −
∑
|α|=m

aαX
α.
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Observe that for each j,

Xj = ∂xj +
n∑
k=1

bj,k(x)∂xk

where every bj,k vanishes at the origin. Therefore

Xαf(x) = ∂αf(x) + . . .

where the other terms either vanish at 0 or are lower-order terms. Hence
Xαf(0) = ∂αf(0)+ lower-order derivatives of f at 0.

It follows that P ′f(0) is a combination of derivatives of f at 0 of order
not exceeding m− 1, so we can use the inductive assumption.

The proof shows that the coe�cients cα in (1.11) coincide with aα if
|α| = m. By induction, the representation (1.11) is unique.

The uniqueness part depends heavily on the fact that the vector �elds Xj

have been ordered and that this ordering is respected when composing the
monomials Xα. If this restriction is removed then the same operator P can
have more than one representation as in (1.11). If, for instance, X3 = [X1, X2]
and P = X2X1, its correct expression according to (1.11) is P = X1X2−X3.

If P is a di�erential operator on G, we denote by P t its formal transpose
with respect to Haar measure, i.e. for every pair of test functions f, g:∫

G
Pf(x)g(x)dx =

∫
G
f(x)P tg(x)dx

and by P ∗ its formal adjoint:∫
G
Pf(x)g(x)dx =

∫
G
f(x)P ∗g(x)dx.

It follows that P ∗ = (P̄ )t = P t, where P̄ is de�ned by P̄ (f) = P (f̄).
If P is the left-invariant di�erential operator given by (1.11), then:

P̄ =
∑
|α|≤m

c̄αX
α. (1.12)

Moreover, it follows by (1.10) that:

P t =
∑
|α|≤m

cα(−Xn)αn · · · (−X1)α1 (1.13)

and
P ∗ =

∑
|α|≤m

c̄α(−Xn)αn · · · (−X1)α1 . (1.14)
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De�nition 1.14. If G is a homogeneous Lie group with dilations {Dt} and
P is a left-invariant di�erential operator on G, we say that P is homogeneous
of order k if:

P (f ◦Dt) = tk(Pf) ◦Dt

for every f ∈ C∞(G).

Let {X1, . . . , Xn} be a basis of g consisting of homogeneous vector �elds
with orders λ1, . . . , λn.

Then the operator
Xα = Xα1

1 · · ·Xαn
n

is homogeneous of order

d(α) =
n∑
j=1

αjλj.

The following theorem is a consequence of the Poincaré-Birkho�-Witt
theorem.

Theorem 1.9.2. A left-invariant di�erential operator P is homogeneous of
degree k if and only if

P =
∑
d(α)=k

cαX
α.

1.10 Hypoelliptic operators

De�nition 1.15. Let P be a di�erential operator on a Lie group G. Then
P is called hypoelliptic if for any distribution u ∈ D′(G) and any open set
Ω ⊂ G, the condition Pu ∈ C∞(Ω) implies that u ∈ C∞(Ω).

This condition is equivalent to

sing supp u ⊂ sing supp(Pu),

where sing supp u is the complement of the largest open set where u is C∞.

De�nition 1.16. Let P be a di�erential operator on G. We say that P is
locally solvable at x ∈ G if, for every k, x has a neighborhood Vk such that
for every distribution ψ ∈ D′k(G) there is a distribution u ∈ D′(G) such that
Pu = ψ on Vk.

Theorem 1.10.1. Let P be hypoelliptic on G. Then P t is locally solvable at
every point of G.
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Proof. See Theorem 1.5 in [8].

De�nition 1.17. Let P be a di�erential operator on G. A parametrix for
P is a distribution u ∈ D′(G) such that:

Pu = δ + f, (1.15)

where f ∈ C∞0 (G).

Theorem 1.10.2. If P has a parametrix which is C∞ away from the origin,
then P t is hypoelliptic.

Proof. See Theorem 52.1 in [10].

1.11 Unitary, trace-class and Hilbert-Schmidt

operators

When studying the representations of Lie groups, we will need some def-
initions about operators on a Hilbert space.

De�nition 1.18. A bounded linear operator T on a Hilbert space H into H
is called unitary if it is surjective and isometric, that is:

〈Tx, Ty〉 = 〈x, y〉

for every x, y ∈ H.

Proposition 1.11.1. A bounded linear operator T on a Hilbert space H into
H is unitary if and only if T ∗ = T−1.

We denote by U(H) the group of unitary operators on H.
We will now introduce trace-class and Hilbert-Schmidt operators (see

chapter VI.6 in [7] for details and proofs of the statements).

Theorem 1.11.2. Let H be a separable Hilbert space and {ek}k be an or-
thonormal basis of H.Then for any positive bounded operator A on H we
de�ne:

trA =
∑
k

〈Aek, ek〉.

The number trA is called the trace of A and it is independent of the choice
of the orthonormal basis.

The trace has the following properties:
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i)
tr(A+B) = tr(A) + tr(B).

ii) For all λ ≥ 0,
tr(λA) = λ trA.

iii) For any unitary operator U ,

tr(UAU−1) = trA.

iv) If 0 ≤ A ≤ B then
trA ≤ trB.

De�nition 1.19. A bounded operator A on H is called trace-class if and
only if

tr|A| <∞.

Theorem 1.11.3. The family of trace-class operators is an ideal, that is:

i) it is a vector space;

ii) if A is trace-class and B is bounded, then both AB and BA are trace-
class;

ii) if A is trace-class, then so is A∗.

Theorem 1.11.4. Let || · ||1 be de�ned on trace-class operators by ||A||1 =
tr|A|. Then the family of trace-class operators is a Banach space with this
norm and ||A|| ≤ ||A||1.

Theorem 1.11.5. A trace-class operator is compact. A compact operator A
is trace-class if and only if:

∞∑
k=1

λk <∞, (1.16)

where {λk}∞k=1 are the singular values of A.

Theorem 1.11.6. If A is trace-class and {en}∞n=1 is any orthonormal basis,
then: ∑

n

〈Aen, en〉

converges absolutely and the limit is independent of the choice of the basis.
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Theorem 1.11.7. The trace satis�es the following properties on trace-class
operators:

i) tr is linear;

ii) trA∗ = trA;

iii) trAB = trBA if A is trace-class and B is bounded.

De�nition 1.20. Let H be a Hilbert space. A bounded operator T on H is
called Hilbert-Schmidt if and only if

tr(T ∗T ) <∞.

Theorem 1.11.8. The following properties hold:

a) The family of Hilbert-Schmidt operators is an ideal.

b) If A,B are Hilbert-Schmidt then for any orthonormal basis {en},∑
n

〈A∗Ben, en〉

is absolutely summable and its limit, denoted by 〈A,B〉2, is independent
of the orthonormal basis chosen.

c) The family of Hilbert-Schmidt operators with inner product 〈·, ·〉2 is a
Hilbert space.

d) If ||A||2 =
√
〈A,A〉2 = (tr(A∗A))

1
2 , then:

||A|| ≤ ||A||2 ≤ ||A||1, ||A||2 = ||A∗||2.

e) Every Hilbert-Schmidt operator is compact and a compact operator is
Hilbert-Schmidt if and only if

∑∞
k=1 λ

2
k <∞, where {λk}∞k=1 are its the

singular values.

f) A is trace-class if and only if A = BC, with B,C Hilbert-Schmidt
operators.

Remark 3. By Cauchy-Schwartz inequality, if S, T are Hilbert-Schmidt op-
erators, then:

|〈S, T 〉2| ≤ ||S||2||T ||2,

which means:
|tr(S∗T )| ≤ (tr(S∗S))

1
2 (tr(T ∗T ))

1
2 . (1.17)
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1.12 Polar decomposition

De�nition 1.21. Let U be an operator on a Hilbert space H with domain
D(U) = H and let R(U) = {Uf : f ∈ D(U)} be its range. We say that U is
a partial isometry if there exists a closed subspace M of H such that U is an
isometry on M and Uf = 0 for every f ∈M⊥. M is called initial domain of
U and R(U) �nal domain.

The following theorem gives the polar decomposition of a bounded oper-
ator (see Theorem 7.20 in [11] for a more general statement and a proof).

In the same Theorem 7.20 in [11] is de�ned the nth root A1/n of a non-
negative self-adjoint operator A, using the spectral family of A. If A is
compact, then A1/n is also compact.

Theorem 1.12.1. Let A be a bounded operator on a Hilbert space H. Then
A can be uniquely represented in the form A = UT , where U is a partial
isometry with initial domain R(T ) and �nal domain R(A) and T = (A∗A)1/2.
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Chapter 2

Unitary irreducible

representations of nilpotent Lie

groups

2.1 Unitary irreducible representations and C∞-

vectors

Let G be a simply-connected nilpotent Lie group with Lie algebra g and
(complexi�ed) universal enveloping algebra U(g).

De�nition 2.1. A unitary representation of G on a Hilbert space H is
a group homomorphism G → U (H), where U (H) is the group of unitary
operators on H.

De�nition 2.2. Let π be a unitary representation of G on H. A vector
v ∈ H is called a C∞ − vector for π if the map x 7→ π(x)v from G to H is
C∞.
The space of C∞-vectors from a vector subspace of H, which we denote by
H∞.

Given a unitary representation π of G on H, this determines a Lie algebra
representation π of g as linear maps H∞ → H∞ de�ned by

π(X)v =
d

dt

∣∣∣∣
t=0

π(exp tX)v, X ∈ g, v ∈ H∞. (2.1)

This extends uniquely to a representation of the enveloping algebra U(g)
as linear maps H∞ → H∞. Indeed if P ∈ U(g) is given by (1.11) then

π(P ) =
∑
|α|≤m

cαπ(X1)α1 · · · π(Xn)αn .

21
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Moreover π determines a representation of the algebra L1(G).
For any function f ∈ L1(G) we de�ne π(f) as the bounded linear operator

on H given by

π(f)v =

∫
G
f(y)π(y)vdy, v ∈ H. (2.2)

This is actually a representation because:

π(f ∗ g) = π(f)π(g). (2.3)

Indeed:

π(f ∗ g) =

∫
G

(f ∗ g)(y)π(y)dy =

=

∫
G

(∫
G

f(yz−1)g(z)dz

)
π(y)dy =

=

∫
G

(∫
G
f(yz−1)π(y)dy

)
g(z)dz =

=

∫
G

(∫
G
f(w)π(wz)dw

)
g(z)dz =

=

∫
G

(∫
G
f(w)π(w)π(z)dw

)
g(z)dz =

=

∫
G

(∫
G
f(w)π(w)dw

)
g(z)π(z)dz =

= π(f)π(g).

From (2.2) follows an estimate of the bounded operator norm ||·|| of π(f):

||π(f)|| = sup
||v||=1

|π(f)v| =

= sup
||v||=1

∣∣∣∣∫
G
f(y)π(y)vdy

∣∣∣∣ ≤
≤ sup
||v||=1

∫
G
|f(y)||π(y)v|dy ≤

≤
∫
G
|f(y)|dy = ||f ||L1(G).

Thus:
||π(f)|| ≤ ||f ||L1(G). (2.4)

De�nition 2.3. A representation of G is called irreducible if it has no
nontrivial invariant subspaces.

We recall that given a representation π of G on H a subspace H ′ ⊂ H is
invariant if π(g)H ′ ⊂ H ′ for any g ∈ G.
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De�nition 2.4. Given two representations π1, π2 of G on Hilbert spaces H1,
H2, they are called unitarily-equivalent if there exists a unitary operator
U : H1 → H2 such that Uπ1(x) = π2(x)U for any x ∈ G.

If π is an irreducible representation of G on H, then there is a unitary
equivalence taking H to L2(Rn) for some n and H∞ to S(Rn).

Kirillov has shown in [6] that if π is irreducible then:

• π(f) is a compact operator for f ∈ L1(G);

• π(φ) is of trace-class for φ ∈ C∞0 (G).

For a unitary representation π, we also have that π(φ) maps H into H∞
for φ ∈ C∞0 (G).

The Gårding subspace {π(φ)v|φ ∈ C∞0 (G), v ∈ H} is dense in H, and
hence so is H∞.

Lemma 2.1.1. Let φ ∈ C∞0 (G) and X ∈ g. Then for any unitary represen-
tation π of G and any v ∈ H∞,

π(Xφ)v = π(φ)π(−X)v. (2.5)

Proof.

π(Xφ)v =

∫
G

(Xφ)(x)π(x)vdx =

=

∫
G

d

dt

∣∣∣∣
t=0

φ(x exp tX)π(x)vdx =

=
d

dt

∣∣∣∣
t=0

∫
G
φ(x exp tX)π(x)vdx =

=
d

dt

∣∣∣∣
t=0

∫
G
φ(x)π(x exp(−tX))vdx =

=
d

dt

∣∣∣∣
t=0

∫
G
φ(x)π(x)π(exp(−tX))vdx =

=

∫
G
φ(x)π(x)

(
d

dt

∣∣∣∣
t=0

π(exp(−tX))v

)
dx =

=

∫
G
φ(x)π(x)π(−X)vdx = π(φ)π(−X)v.

Lemma 2.1.2. For any unitary representation π of G and for any X ∈ g,

π(−X) = π(X)∗

that is 〈π(X)v, w〉 = 〈v, π(−X)w〉 for every v, w ∈ H∞.
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Proof. π is a unitary representation of G so it's skew-adjoint on g. Thus:
π(X)∗ = −π(X) = π(−X).

Since X ∈ g is real, it follows that X∗ = X t = −X. Thus by Lemma
2.1.2:

π(X∗) = π(X)∗. (2.6)

Then it follows that for any P ∈ U(g):

π(P ∗) = π

∑
|α|≤m

c̄α(−Xn)αn · · · (−X1)α1

 =

=
∑
|α|≤m

c̄απ(−Xn)αn · · · π(−X1)α1 =

=
∑
|α|≤m

c̄α(π(Xn)∗)αn · · · (π(X1)∗)α1 = π(P )∗.

(2.7)

An argument based on Lemma 2.1.1 shows that for any P ∈ U(g), for
any φ ∈ C∞0 (G) and for any v ∈ H∞:

π(Pφ)v = π(φ)π(P t)v. (2.8)

From this follows immediately:

π(P tφ)v = π(φ)π(P )v, (2.9)

π(P ∗φ)v = π(φ)π(P̄ )v, (2.10)

π(P̄ φ)v = π(φ)π(P )∗v. (2.11)

We now de�ne for any φ ∈ C∞(G):

φ̌(x) = φ(x−1); φ#(x) = φ(x−1). (2.12)

Lemma 2.1.3. For any φ ∈ C∞0 (G) and any unitary representation π of G:

π(φ#) = π(φ)∗.

Proof.

π(φ#) =

∫
G
φ(x−1)π(x)dx =

=

∫
G
φ(x)π(x−1)dx =

=

∫
G
φ(x)π(x)∗dx =

=

(∫
G
φ(x)π(x)dx

)∗
= π(φ)∗.
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From this Lemma and (2.3) it follows that for any φ ∈ C∞0 (G):

π(φ ∗ (φ#)) = π(φ)π(φ)∗. (2.13)

Lemma 2.1.4. For any φ ∈ C∞0 (G) and for any unitary representation π of
G:

φ ∗ φ#(e) = ||φ||2L2(G) = ||φ#||2L2(G),

where e denotes the identity element of G.

Proof. From the de�nition of convolution we have that:

φ ∗ φ#(e) =

∫
G
φ(y)φ#(y−1)dy =

∫
G
φ(y)φ(y)dy = ||φ||2L2(G).

But since G is unimodular, we also have:∫
G
φ(y)φ(y)dy =

∫
G
φ(y−1)φ(y−1)dy =

∫
G
φ#(y)φ#(y)dy = ||φ#||2L2(G).

2.2 Representation of distributions

We now want to apply unitary representations ofG to compactly-supported
distributions on G, E ′(G). We thus need to introduce the notion of weak C∞-
vectors.

De�nition 2.5. Let π be a unitary representation of G on H. A weak C∞−
vector for π is a vector v ∈ H such that:

• For every w ∈ H the map

φv,w :G→ C
x 7→ 〈π(x)v, w〉

is C∞.

• The map

H → C∞(G)

w 7→ φv,w

is continuous (with respect to the norm topology onH and the topology
of uniform convergence on compact subsets of all partial derivatives on
C∞(G)).
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The weak C∞-vectors form a linear subspace, Hw
∞, of H, such that H∞ ⊆

Hw
∞. We will see that when π is irreducible the two spaces coincide.

De�nition 2.6. Let π be a unitary representation of G on H and let u ∈
E ′(G). We de�ne π(u) as a possibly unbounded linear operator on H with
domain Hw

∞ as follows. For any v ∈ Hw
∞, π(u)v is the unique vector in H

satisfying

〈π(u)v, w〉 = (u, φv,w) (2.14)

for every w ∈ H.

Remark 4. This de�nition makes sense because:

• φv,w ∈ C∞(G) so (u, φv,w) is a well de�ned complex number;

• For �xed u ∈ E ′(G) and v ∈ Hw
∞ the map w 7→ (u, φv,w) from H

to C is conjugate-linear and continuous (by de�nition 2.5) and hence
(by Riesz theorem) there exists a unique vector π(u)v ∈ H such that
〈π(u)v, w〉 = (u, φv,w).

We will now see that many of the results valid for π(φ), φ ∈ C∞0 (G),
continue to hold for π(u).

We de�ne ǔ, u# ∈ E ′(G) as follows:

(ǔ, φ) = (u, φ̌), (u#, φ) = (u, φ#)

for every φ ∈ C∞(G).

Remark 5. If u ∈ C∞0 (G) then this de�nition agrees with (2.12). Indeed:

(ǔ, φ) = (u, φ̌) =

∫
G
u(x)φ(x−1)dx =

∫
G
u(x−1)φ(x)dx

so ǔ(x) = u(x−1). And similarly:

(u#, φ) = (u, φ#) =

∫
G
u(x)φ(x−1)dx =

∫
G
u(x)φ(x−1)dx =

∫
G
u(x−1)φ(x)dx

so that u#(x) = u(x−1).

Lemma 2.2.1. For every u1, u2 ∈ E ′(G) we have:

(u1 ∗ u2)# = u#
2 ∗ u

#
1 . (2.15)
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Proof. For every φ ∈ C∞(G) we have by de�nition of convolution:

((u1 ∗ u2)#, φ) = (u1 ∗ u2, φ#) = (u2, ǔ1 ∗ φ#)

and

(u#
2 ∗ u

#
1 , φ) = (u#

2 , φ ∗ ǔ
#
1 ) = (u2, (φ ∗ ǔ#

1 )#)

so in order to prove (2.15) it su�ces to show:

ǔ1 ∗ φ# = (φ ∗ ǔ#
1 )#.

But again by de�nition of convolution:

ǔ1 ∗ φ#(x) = (ǔ1, Lxφ̌
#)

and

(φ ∗ ǔ#
1 )#(x) = (φ ∗ ǔ#

1 )(x−1) = (ǔ#
1 , Rxφ̌) = (ǔ1, Rxφ̌

#)

so the equality holds.

Proposition 2.2.2. Let π be a unitary representation of G on H.

1. If f ∈ L1(G) ∩ E ′(G) then π(f), de�ned on the dense subspace Hw
∞

of H, extends uniquely to a bounded operator on H which equals the
original π(f).

2. For any u ∈ E ′(G) we have:

π(u#) = π(u)∗. (2.16)

More precisely, for any v, w ∈ Hw
∞, 〈π(u)v, w〉 = 〈v, π(u#)w〉.

3. For any u ∈ E ′(G), π(u)v ∈ Hw
∞ for any v ∈ Hw

∞.

4. If u ∈ E ′(G) and φ ∈ C∞0 (G) then:

π(u ∗ φ) = π(u)π(φ), (2.17)

where both sides are viewed as bounded operators on H.

5. For any u1, u2 ∈ E ′(G) we have:

π(u1 ∗ u2) = π(u1)π(u2), (2.18)

where both sides are viewed as (unbounded) operators de�ned on Hw
∞.
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6. For any P ∈ U(g) and any u ∈ E ′(G) we have:

π(Pu) = π(u)π(P t), (2.19)

viewed as (unbounded) operators on H∞.

7. π(δ) = I, where δ is the Dirac delta function supported at the identity
element and I is the identity operator on H.

Remark 6. • We have u ∗ φ ∈ C∞0 (G) and hence π(u ∗ φ) is a bounded
operator onH. Thus π(u∗φ) mapsH intoH∞. But by (2.17), π(u∗φ) =
π(u)π(φ) so π(u)π(φ) is de�ned on all H and π(u)π(φ)v ∈ H∞ for any
v ∈ H. It follows that π(u) maps the Gårding subspace into itself.

• Since by (3) π(u)v ∈ Hw
∞ for any v ∈ Hw

∞, the right-hand side of (2.18)
makes sense.

• From (2.19) and (7) follows that:

π(P ) = π(P tδ). (2.20)

• If π is irreducible then Hw
∞ = H∞. Indeed:

It su�ces to prove this for any unitarily equivalent representation.
Since π is irreducible we can assume without loss of generality that
H = L2(Rn) for some n, H∞ = S(Rn) and {π(P )|P ∈ U(g)} = An(C),
the algebra of all di�erential operators on Rn with polynomial coe�-
cients (the Weyl algebra).
We want to show that Hw

∞ ⊂ H∞ = S(Rn). For every P ∈ U(g),
v ∈ Hw

∞, w ∈ H∞ we have by (2.20) that 〈π(P )v, w〉 = 〈π(P tδ)v, w〉 =
〈v, π(P tδ)∗w〉, which by (2.16) equals 〈v, π((P tδ)#)w〉. Since for w ∈
H∞ we have π((P tδ)#)w = π(P )∗w = π(P ∗)w, it follows that : 〈π(P )v, w〉 =
〈v, π(P ∗)w〉 for any v ∈ Hw

∞, v ∈ H∞.
This equation says that π(P )v ∈ L2(Rn), de�ned by (2.14), coincides
with the tempered distribution obtained by applying the di�erential
operator with polynomial coe�cients π(P ) to v ∈ L2(Rn) viewed as
an element of S ′(Rn). Thus, in particular, Qv ∈ L2(Rn) for every
Q ∈ An(C), which implies by Sobolev lemma: Qv ∈ Ck(Rn) for every
Q ∈ An(C) and every positive integer k. It follows that v ∈ S(Rn).

Proof. (of Proposition 2.2.2)
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1. π(f) is the operator on Hw
∞ de�ned by (2.14). Since Hw

∞ is dense in
H, by Hahn-Banach theorem this extends (uniquely) to an operator
on H, which has the same norm of the original one (in particular it's
bounded).

2. Generalization of proof of Lemma 2.1.3.

3. We have to prove that for every v ∈ Hw
∞:

∀w ∈ H the map φπ(u)v,w : G→ C is C∞; (2.21)

the map H → C∞(G) is continuous.

w 7→ φπ(u)v,w

(2.22)

But

φπ(u)v,w(x) = 〈π(x)π(u)v, w〉 = 〈π(u)v, π(x)∗w〉 = (u, φv,π(x)∗w)

and

φv,π(x)∗w(y) = 〈π(y)v, π(x)∗w〉 = 〈π(x)π(y)v, w〉 = 〈π(xy)v, w〉 = φv,w(xy).

Thus
φπ(u)v,w(x) = (uy, φv,w(xy)) = u ∗ φ̌v,w(x−1)

which is C∞. So (2.21) holds.
Moreover, for any u ∈ E ′(G) the map φ 7→ u ∗ φ from C∞(G) to
C∞(G) is continuous as well as the map φ 7→ φ̌. But also the map
w 7→ φv,w from H to C∞(G) is continuous because v ∈ Hw

∞. Since
φπ(u)v,w = (u ∗ φ̌v,w)ˇ, it follows that (2.22) holds.

4. We have to prove that for any v, w ∈ H:

〈π(u ∗ φ)v, w〉 = 〈π(u)π(φ)v, w〉.

We know that for v, w ∈ H the function φv,w(x) = 〈π(x)v, w〉 is con-
tinuous, so in particular it's a distribution. Since

〈π(u ∗ φ)v, w〉 =

∫
G

(u ∗ φ)(x)φv,w(x)dx = (u ∗ φ) ∗ φ̌v,w(e) =

= u ∗ (φ ∗ φ̌v,w)(e) = (u, (φ ∗ φ̌v,w)ˇ)

and by de�nition

〈π(u)π(φ)v, w〉 = (u, φπ(φ)v,w),
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it su�ces to prove that for any v, w ∈ H

φπ(φ)v,w = (φ ∗ φ̌v,w)ˇ.

But we showed this in the previous point so the proof is completed.

5. Let u1, u2 ∈ E ′(G), φ ∈ C∞0 (G). Then we have (u1∗u2)∗φ = u1∗(u2∗φ)
so that

π((u1 ∗ u2) ∗ φ) = π(u1 ∗ (u2 ∗ φ)).

But, since u2 ∗ φ ∈ C∞0 (G), from the previous point we have that this
is equivalent to:

π(u1 ∗ u2)π(φ) = π(u1)π(u2 ∗ φ),

where the right-hand side is (again by the previous point) equal to
π(u1)π(u2)π(φ).
In particular, for every v ∈ H,w ∈ Hw

∞:

〈π(u1 ∗ u2)π(φ)v, w〉 = 〈π(u1)π(u2)π(φ)v, w〉

which by (2.16) is equivalent to:

〈π(φ)v, π((u1 ∗ u2)#)w〉 = 〈π(φ)v, π(u#
2 )π(u#

1 )w〉.

But by (2.15), (u1 ∗ u2)# = u#
2 ∗ u

#
1 so for every v ∈ H,w ∈ Hw

∞:

〈π(φ)v, π(u#
2 ∗ u

#
1 )w〉 = 〈π(φ)v, π(u#

2 )π(u#
1 )w〉.

Since {π(φ)v|φ ∈ C∞0 (G), v ∈ H} is dense in H, it follows that for
every w ∈ Hw

∞:
π(u#

2 ∗ u
#
1 )w = π(u#

2 )π(u#
1 )w.

Replacing u#
1 , u

#
2 by u1, u2 we complete the proof.

6. Let u ∈ E ′(G), P ∈ U(g). We have:

Pu = P (u ∗ δ) = u ∗ Pδ,

where the second equality follows from (1.9).
Thus by (2.18) it follows:

π(Pu) = π(u)π(Pδ).

Let v ∈ H∞, w ∈ H. Then:

〈π(Pδ)v, w〉 = (Pδ, φv,w) = (δ, P tφv,w) = P t(〈π(x)v, w〉)|x=e,

which equals 〈π(P t)v, w〉. It follows that for any v ∈ H∞ π(Pδ)v =
π(P t)v, so we have proved that π(Pu) = π(u)π(P t).
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7. For any v ∈ H∞, w ∈ H:

〈π(δ)v, w〉 = (δ, φv,w) = φv,w(e) = 〈π(e)v, w〉 = 〈v, w〉.

Thus π(δ) = I.

2.3 Plancherel Theorem and consequences

We will now give a parametrization of unitary irreducible representations
of a simply connected nilpotent Lie group through Plancherel Theorem, with-
out proving it (see [6] and [2] for details). We �rst need a de�nition.

De�nition 2.7. Given a Lie group G with Lie algebra g, we de�ne the
coadjoint orbit of x ∈ g∗ as the orbit {gx−1, g ∈ G} inside g∗.

It can be shown that every coadjoint orbit is a symplectic manifold.
Moreover, we recall that the closed sets in the Zarisky topology on Rn

are the algebraic sets, which are the zeros of polynomials.
The Weyl algebra An(C) is the algebra of all di�erential operators on Rn

with polynomial coe�cients.

Theorem 2.3.1. (Plancherel Theorem)
Let G be a simply connected nilpotent Lie group of dimension N. Let g be its
Lie algebra, g∗ the dual of the Lie algebra, U(g) the complexi�ed enveloping
algebra and Z(g) the center of the enveloping algebra. Every coadjoint orbit
in g∗ is even dimensional. Let 2n be the maximal dimension which occurs
and let q = N − 2n. Let W1, . . . ,Wq be selfadjoint, algebraically independent
elements of Z(g) which generate the �eld of fractions of Z(g). Then there
exists a nonempty Zarisky-open subset Γ of Rq and for any λ = (λ1, . . . , λq) ∈
Γ a unitary irreducible representation πλ of G in H = L2(Rn) so that the
following properties hold:

1. For every λ ∈ Γ and any i = 1, . . . , q, πλ(Wi) = λiI.
Moreover any unitary irreducible representation of G satisfying this
property is unitarily equivalent to πλ.

2. For every λ ∈ Γ, the space of C∞-vectors for πλ is S(Rn).

3. For every λ ∈ Γ the algebra of operators πλ(Q), Q ∈ U(g), is the Weyl
algebra An(C).
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4. For every �xed Q ∈ U(g), πλ(Q) is a �nite linear combination of ele-
ments in An(C), independent of λ, whose coe�cients are rational func-
tions of λ, regular on Γ.

5. For every f ∈ L1(G) and every v ∈ H, the map

Γ→ H

λ 7→ πλ(f)v

is continuous. Moreover the function λ 7→ ||πλ(f)|| tends to 0 as λ
tends to ∞.

6. For every f ∈ L1(G) the nonnegative function

Γ→ [0,∞)

λ 7→ tr(πλ(f)πλ(f)∗),

where tr is the trace, is lower semicontinuous.
There exists a real-valued rational function R, regular on Γ, and unique
up to multiplication by −1, such that for every f ∈ L1(G) ∩ L2(G)∫

G
|f(x)|2dx =

∫
Γ

tr(πλ(f)πλ(f)∗)dµ(λ) (2.23)

where dµ(λ) = |R(λ1, . . . , λq)|dλ1 . . . dλq.
In particular this implies that πλ(f) is a Hilbert-Schmidt operator dµ-
almost everywhere.

7. Let K be the space of Hilbert-Schmidt operators on H and let L2(Γ;K)
denote the L2-functions on Γ with values in K, with respect to the mea-
sure dµ. Then there exists a unique bijective isometry Φ : L2(G) →
L2(Γ;K) such that for every f ∈ L1(G) ∩ L2(G), Φ(f) is the function
λ 7→ πλ(f).

8. For every φ ∈ C∞0 (G) and every λ ∈ Γ, πλ(φ) is of trace-class and the
function λ 7→ trπλ(φ) is in L1(Γ; dµ). Moreover:

(δ, φ) = φ(e) =

∫
Γ

trπλ(φ)dµ(λ). (2.24)

We will now discuss some consequences of Plancherel Theorem.

Lemma 2.3.2. Let G be a simply connected nilpotent Lie group. Then for
any u ∈ E ′(G) and any φ ∈ C∞0 (G):

(u, φ̄) =

∫
Γ

tr(πλ(u)πλ(φ)∗)dµ(λ). (2.25)
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Proof. Since for any ψ ∈ C∞0 (G) holds: (u, ψ) = (u ∗ ψ̌)(e), we have in this
case:

(u, φ̄) = (u ∗ ˇ̄φ)(e) = (u ∗ φ#)(e)

and u ∗ φ# ∈ C∞0 (G). Thus by (2.24):

(u ∗ φ#)(e) =

∫
Γ

tr(πλ(u ∗ φ#))dµ(λ).

But by (2.17): πλ(u ∗ φ#) = πλ(u)πλ(φ
#) and by Lemma 2.1.3 πλ(φ

#) =
πλ(φ)∗, so we have the claim.

Lemma 2.3.3. Let G be a simply connected nilpotent Lie group. Then for
any f, g ∈ L2(G): ∫

G
f(x)g(x)dx = 〈Φ(f),Φ(g)〉 (2.26)

where 〈·, ·〉 is the inner product of L2(Γ;K).

Proof. The left-hand side of (2.26) is the inner product of f and g in L2(G),
so the result holds because Φ is an isometry of Hilbert spaces.

Proposition 2.3.4. Let G be a simply connected nilpotent Lie group and let
u ∈ E ′(G). If the function λ 7→ πλ(u) from Γ into the space of unbounded
linear operators on H = L2(Rn) (with domain S(Rn)) is in L2(Γ;K), then
u ∈ L2(G) ∩ E ′(G).

Proof. Since Φ : L2(G)→ L2(Γ;K) is bijective, there exists f ∈ L2(G) such
that Φ(f)(λ) = πλ(u). Let φ ∈ C∞0 (G). By (2.25):

(u, φ̄) =

∫
Γ

tr(πλ(u)πλ(φ)∗)dµ(λ).

But C∞0 (G) ⊂ L1(G) ∩ L2(G) so Φ(φ)(λ) = πλ(φ) (by Plancherel Theorem
(7)). Thus by (2.26):∫

G
f(x)φ(x)dx =

∫
Γ

tr(πλ(u)πλ(φ)∗)dµ(λ),

which implies (u, φ̄) = (f, φ̄). Since φ ∈ C∞0 (G) is arbitrary, it follows
u = f .

Remark 7. Let G be a simply connected nilpotent Lie group and let {δr} be
a group of dilations on G. Suppose that each Wi, i = 1, . . . , q in Plancherel
Theorem is homogeneous of degree mi, i.e. δr(Wi) = rmiWi.
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1. De�ne δr : Rq → Rq, δr(λ1, . . . , λq) = (rm1λ1, . . . , r
mqλq) and suppose

that δr maps Γ into Γ for any r and 0 /∈ Γ. For every λ ∈ Rq, λ 6= 0,
there exists a unique r ∈ R+ such that the Euclidean norm ||δr−1λ|| = 1.
We call this r the norm of λ and we denote it by |λ|.

2. Since δr is an automorphism of G, πλ ◦ δr is an irreducible unitary
representation of G for every λ. Thus πλ ◦ δr(Wi) = πλ(r

miWi) =
rmiλiI, which implies by Plancherel Theorem (1) that πλ◦δr is unitarily
equivalent to πδrλ.
This means that for every λ ∈ Γ, r ∈ R+, there exists a unitary operator
Uλ,r on H such that

πλ ◦ δr = Uλ,rπδrλU
−1
λ,r . (2.27)

We will now renormalize the choice of πλ to get rid of the factor Uλ,r.

Lemma 2.3.5. For every λ ∈ Γ there is a unitary operator Vλ on H such
that the representations π̃λ = VλπλV

−1
λ satisfy the same properties as πλ in

Plancherel Theorem (only 4 is partially modi�ed) and in addition:

π̃λ ◦ δr = π̃δrλ (2.28)

for every λ ∈ Γ and r ∈ R+.

Proof. If we have:
Vδrλ
∼= VλUλ,r (2.29)

where ∼= denotes equality up to a scalar multiple of modulus 1, then by (2.27):

π̃λ ◦ δr = (VλπλV
−1
λ ) ◦ δr = Vλ(πλ ◦ δr)V −1

λ =

= VλUλ,rπδrλU
−1
λ,rV

−1
λ = VδrλπδrλV

−1
δrλ

= π̃δrλ

so (2.28) holds. So it su�ces to prove (2.29).
On the other hand, Uλ,r satis�es the "cocycle" condition:

Uλ,r1 ◦ Uδr1λ,r2 ∼= Uλ,r1r2 . (2.30)

Indeed we know that:

πλ ◦ δr1r2 = Uλ,r1r2πδr1r2λU
−1
λ,r1r2

(2.31)

and
πλ ◦ δr1 = Uλ,r1πδr1λU

−1
λ,r1



2.3#1 35

which implies:
πδr1λ = U−1

λ,r1
(πλ ◦ δr1)Uλ,r1 . (2.32)

Moreover from:
πδr1λ ◦ δr2 = Uδr1λ,r2πδr1r2λU

−1
δr1λ,r2

and (2.32) follows:

(U−1
λ,r1

(πλ ◦ δr1)Uλ,r1) ◦ δr2 = Uδr1λ,r2πδr1r2λU
−1
δr1λ

. (2.33)

Now since δr1 ◦ δr2 = δr1r2 , (2.31) and (2.33) imply (2.30).
We now de�ne Vλ by:

Vλ = Uδ|λ|−1λ,|λ|. (2.34)

By (2.30) and the de�nition of |λ| it follows:

Vδrλ = Uδ|δrλ|−1 (δrλ),|δrλ|
∼= Uδr|δrλ|−1λ,|δrλ|r−1 ◦ Uλ,r ∼=

∼= Uδ|λ|−1λ,|λ| ◦ Uλ,r ∼= Vλ ◦ Uλ,r.

Hence (2.29) holds, i.e. the "cocycle" Uλ,r is a "coboundary".
We now have to verify that π̃λ satis�es the same properties as πλ in

Plancherel Theorem.
First we show that property 2 holds, that is the space of C∞-vectors for

π̃λ is S(Rn). It follows from (2.27) that for any v ∈ H = L2(Rn), v is a C∞-
vector for πδrλ if and only if Uλ,rv is a C∞-vector for πλ ◦ δr, which means:
for any λ, r and any v ∈ L2(Rn), Uλ,rv ∈ S(Rn) if and only if v ∈ S(Rn).
Hence, by de�nition (2.34) of Vλ it follows that the space of C∞-vectors for
π̃λ is S(Rn).

Moreover, property 3 holds because: for every λ ∈ Γ by the same property
for πλ we know that {πλ(Q)|Q ∈ U(g)} = An(C), so by (2.27):

An(C) = {Uλ,rTU−1
λ,r |T ∈ An(C)}.

We will now see how property 4 of Plancherel Theorem is slightly mod-
i�ed for π̃λ. Let Q ∈ U(g). Then by Plancherel Theorem (4) there exist
T1, . . . , Tk ∈ An(C) and rational functions R1(λ), . . . , Rk(λ) such that

πλ(Q) =
k∑
j=1

Rj(λ)Tj. (2.35)

If Q is homogeneous of degree m then:

πλ ◦ δr(Q) = rm
k∑
j=1

Rj(λ)Tj. (2.36)
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But by (2.27):

πλ ◦ δr(Q) = Uλ,r

(
k∑
j=1

Rj(δrλ)Tj

)
U−1
λ,r . (2.37)

It follows that for any λ, r the right-hand sides of (2.36) and (2.37) are equal.
If we now replace λ by δ|λ|−1λ and r by |λ| (then δrλ is replaced by λ)

this equality becomes:

Vλ

(
k∑
j=1

Rj(λ)Tj

)
V −1
λ = |λ|m

k∑
j=1

Rj(δ|λ|−1λ)Tj,

where the left-hand side equals π̃λ(Q). Hence we have that if Q ∈ U(g)
satis�es (2.35) and is homogeneous of degree m then:

π̃λ(Q) = |λ|m
k∑
j=1

Rj(δ|λ|−1λ)Tj. (2.38)

Since every Q ∈ U(g) is uniquely expressible as a �nite sum of homogeneous
elements of U(g), applying (2.38) to each of these we obtain the analogue of
property 4.

Properties 1,6,8 and the second part of 5 are invariant under unitary
equivalence. Indeed:

1. For any λ ∈ Γ and any i = 1, . . . , q

π̃λ(Wi) = Vλπλ(Wi)V
−1
λ = VλλiIV

−1
λ = λiI.

6. For any f ∈ L1(G) and any λ ∈ Γ

tr(π̃λ(f)π̃λ(f)∗) = tr(Vλπλ(f)πλ(f)∗V −1
λ ) = tr(πλ(f)πλ(f)∗).

8. For any φ ∈ C∞0 (G) and any λ ∈ Γ, since π̃λ(φ) = Vλπλ(φ)V −1
λ , it

follows that π̃λ(φ) is trace-class and tr(π̃λ(φ)) = tr(πλ(φ)).
5. (second part) For any f ∈ L1(G) and any λ ∈ Γ, ||π̃λ(f)|| = ||πλ(f).
Property 7 for π̃λ can be proven in the same way as for πλ.
For the �rst part of property 5 see [2] (Lemma 33) and [9] (proof of

Lemma 2.13).

Corollary 2.3.6. If P ∈ U(g) is homogeneous of degree m, then for any
λ ∈ Γ:

π̃λ(P ) = |λ|mπ̃δ|λ|−1λ(P ) = |λ|mπδ|λ|−1λ(P ). (2.39)



2.3#1 37

Proof. The �rst equality follows from (2.28):

π̃δ|λ|−1λ(P ) = π̃λ ◦ δ|λ|−1(P ) = |λ|−mπ̃λ(P ).

Since δ1 is the identity map, it follows from (2.27) that Uλ,1 ∼= I for any
λ ∈ Γ. Thus by (2.34) Vλ ∼= I if |λ| = 1. Hence π̃λ = πλ if |λ| = 1 and so the
second equality holds.

We will need to work interchangeably with P and P̄ (resp., P ∗ and P t),
thus we observe the following.

Remark 8. Suppose that for every i = 1, . . . , q Wi is either symmetric, i.e.
Wi = W t

i , or antisymmetric, i.e. Wi = −W t
i , and let τi = 1 or −1 cor-

respondingly. Since each Wi is selfadjoint, i.e. Wi = W ∗
i , these conditions

correspond to W i = Wi and W i = −Wi, respectively. For any λ ∈ Rq, let
τλ = (τ1λ1, . . . , τqλq), and suppose that τ leaves Γ invariant.

For λ ∈ Γ de�ne:

π̂λ(x) = [π̃λ(x
−1)]t = πλ(x), (2.40)

where πλ(x)v = πλ(x)v̄ for any v ∈ L2(Rn). Then π̂λ is again an irreducible
unitary representation of G. Moreover, since S(Rn) is closed with respect to
conjugation, it follows from (2.40) that the space of C∞-vectors for π̂λ is also
S(Rn).

For any Q ∈ U(g), we have:

π̂λ(Q) = [π̃λ(Q
t)]t = π̃λ(Q̄),

where the second equality follows from (2.7) and the fact that Q̄ = Qt∗:

π̃λ(Q̄) = [π̃λ(Q
t∗)]t∗ = [π̃λ(Q

t)]t∗∗ = [π̃λ(Q
t)]t.

Since π̂λ(Wi) = π̃λ(W i) = τiλiI for any i = 1, . . . , q, it follows from
Plancherel Theorem (1) that π̂λ is unitarily equivalent to π̃τλ, i.e. there
exists a unitary operator Sλ (unique up to a scalar multiple) such that:

π̂λ = Sλπ̃τλS
−1
λ .

It follows that Sλ and S
−1
λ map C∞-vectors to C∞-vectors, i.e. they map

S(Rn) to S(Rn).
Thus for any Q ∈ U(g) and any λ ∈ Γ, we have:

π̃λ(Q̄) = [π̃λ(Q
t)]t = Sλπ̃τλ(Q)S−1

λ . (2.41)

Since Sλ, S
−1
λ map S(Rn) to S(Rn), it follows that if π̃λ(P ) has a bounded

left or right inverse (see de�nition 4.1 in Chapter 4) for every λ ∈ Γ, then so
does π̃λ(P̄ ).
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Chapter 3

Special case: G = (Rn,+)

If we consider the group G = (Rn,+) with dilations x 7→ rx, then a basis
for its Lie algebra is given by the left-invariant derivatives ∂

∂x1
, . . . , ∂

∂xn
.

The unitary irreducible representations of Rn are all 1-dimensional and
parametrized by Rn as follows:

πξ(x) = e−ix·ξ, ξ ∈ Rn

which means that πξ(x) acts on the 1-dimensional Hilbert space C by multi-
plication by e−ix·ξ. The identity representation corresponds to ξ = 0.

If we denote by δj the vector on Rn with j-th entry equal to 1 and all
other entries 0, we have by (2.1):

πξ

(
∂

∂xj

)
=

d

dt |t=0

πξ

(
exp t

∂

∂xj

)
=

d

dt |t=0

πξ(tδj) =

=
d

dt |t=0

e−itξj = −iξj.
(3.1)

Hence, if Dxj = 1
i
∂
∂xj

, then πξ(Dxj) = ξj.

For any function f ∈ L1(Rn) it follows by (2.2) that:

πξ(f)v =

∫
Rn
f(y)e−iy·ξvdy = f̂(ξ)v,

where f̂(ξ) denotes the Fourier transform of f .
Then Lemma 2.1.1 says that for every ϕ ∈ C∞0 (Rn):

πξ

(
∂ϕ

∂xj

)
= ϕ̂πξ

(
− ∂

∂xj

)
39
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which means
∂̂ϕ

∂xj
= iξjϕ.

This is the usual formula for the Fourier transform of the derivative of a
function.

For any distribution u ∈ E ′(Rn) it follows by (2.14) that:

πξ(u) = û(ξ). (3.2)

A left-invariant (hence bi-invariant) di�erential operator P on Rn is a
constant coe�cient di�erential operator. Moreover, P is homogeneous of
degree m precisely if it has only terms of highest order m in the usual sense,
i.e. we can write P as:

P =
∑
|α|=m

aαD
α1
x1
· · ·Dαn

xn , aα ∈ C. (3.3)

There is a characterization of hypoellipticity for, not necessarily homo-
geneous, constant-coe�cient di�erential operators on Rn, which is a special
case of Hörmander's result.

We will treat the homogeneous case which will give us useful tools for the
result on Heisenberg group.

Proposition 3.0.7. Let P be a constant-coe�cient di�erential operator on
Rn, homogeneous of order m. Then the following are equivalent:

i) π(P ) is invertible for every unitary irreducible representation π of Rn

except the identity representation (this means that P is elliptic);

ii) P is hypoelliptic;

iii) there exists u ∈ E ′(Rn) such that Pu = δ + f for some f ∈ C∞0 (Rn).

Proof. Let P be as in (3.3).
First we show that i) implies ii). The usual principal symbol of P is given

by:

σ(P )(ξ) =
∑
|α|=m

aαξ
α1
1 · · · ξαnn ,

which equals (−1)mπξ(P ). This shows that i) states precisely that P is
elliptic, hence implies ii).

We then show that ii) implies iii). Every constant-coe�cient di�erential
operator on Rn has a fundamental solution, i.e. there exists v ∈ D′(Rn) such
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that Pv = δ. If P is hypoelliptic then v is C∞ away from 0. Hence if we take
u = ϕv with ϕ ∈ C∞0 (Rn) such that ϕ ≡ 1 in a neighborhood of 0, we have:

Pu = P (ϕv) = ϕPv + [P, ϕ]v =

= ϕδ + [P, ϕ]v = δ + f,

where f = [P, ϕ]v is C∞0 because the derivatives of ϕ vanish near 0 where v
is not C∞. Thus iii) holds.

Finally we prove that iii) implies i). Since u, and hence Pu, is compactly
supported, we can apply unitary representations to Pu = δ + f . It follows
by (3.2) that:

û(ξ)πξ(P
t) = πξ(Pu) = πξ(δ) + πξ(f) = 1 + f̂(ξ).

But by (3.3) P t = (−1)mP , hence:

û(ξ)σ(P )(ξ) = 1 + f̂(ξ).

Replacing ξ by rξ, r ∈ R+, and noting that

σ(P )(rξ) = rmσ(P )(ξ),

we get:
rmû(rξ)σ(P )(ξ) = 1 + f̂(rξ) (3.4)

for every r ∈ R+.
Since f ∈ C∞0 (Rn), we have that f̂ ∈ S(Rn). In particular, for �xed

ξ 6= 0, |f̂(rξ)| < ε for r su�ciently large. Therefore, for r su�ciently large,
the right-hand side of (3.4) does not equal 0, and so σ(P )(ξ) 6= 0. This
means that P is elliptic.
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Chapter 4

Hypoellipticity on the Heisenberg

group Hn

The main result of this chapter is to present a representation-theoretic
characterization of hypoellipticity for homogeneous left-invariant di�erential
operators on the Heisenberg group Hn.

In particular we will prove the following theorem.

Theorem 4.0.8. Let P be a left-invariant homogeneous di�erential operator
on the Heisenberg group Hn. Then the following are equivalent:

1. P and P t are both hypoelliptic;

2. for every unitary irreducible representation π of Hn (except the 1-
dimensional identity representation), π(P ) has a bounded two-sided in-
verse;

3. for every unitary irreducible representation π of Hn (except the 1-
dimensional identity representation), π(P )v 6= 0 and π(P )∗v 6= 0 for
every nonzero C∞-vector v of π.

4.1 The Heisenberg group

We denote by Hn the n-dimensional Heisenberg group, identi�ed with
R2n+1 through exponential coordinates. A point p ∈ Hn is denoted by p =
(p1, . . . , p2n, p2n+1) = (p′, p2n+1), with p′ ∈ R2n and p2n+1 ∈ R, or by p =
(x, y, z), with both x, y ∈ Rn and z ∈ R. If p, q ∈ Hn, the group operation is
de�ned as

p · q =

(
p′ + q′, p2n+1 + q2n+1 −

1

2

n∑
j=1

(pjqj+n − pj+nqj)

)
.

43
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We denote as p−1 := (−p′,−p2n+1) the inverse of p and as 0 or e the identity
of Hn. Sometimes, we write also pq for p · q.

For r > 0 we de�ne the dilations δr : Hn → Hn as

δr(p) := (rp′, r2p2n+1).

We denote by h the Lie algebra of the left-invariant vector �elds of Hn.
The standard basis of h is given, for i = 1, . . . , n, by

Xi := ∂xi −
1

2
yi∂z, Yi := ∂yi +

1

2
xi∂z, Z := ∂z.

The only non-trivial commutation relations are [Xj, Yj] = Z, for j = 1, . . . , n.
On the Heisenberg algebra h the dilations take the form:

δr(Xi) = rXi, δr(Yi) = rYi, δr(Z) = r2Z.

The horizontal subspace h1 is the subspace of h spanned by X1, . . . , Xn

and Y1, . . . , Yn. We refer to X1, . . . , Xn, Y1, . . . , Yn (identi�ed with �rst order
di�erential operators) as to the horizontal derivatives.

If we set

Wi := Xi, Wi+n := Yi, W2n+1 := Z, for i = 1, · · · , n.

and for a multi-index I = (i1, . . . , i2n+1), we set W I = W i1
1 · · ·W i2n

2n Zi2n+1 ,
then by the Poincaré-Birkho�-Witt theorem, the di�erential operators W I

form a basis for the algebra of left-invariant di�erential operators in Hn.
Furthermore, we set |I| := i1 + · · · + i2n + i2n+1 the order of the di�erential
operator W I , and d(I) := i1 + · · · + i2n + 2i2n+1 its degree of homogeneity
with respect to group dilations. From the Poincaré-Birkho�-Witt theorem,
it follows, in particular, that any homogeneous linear di�erential operator
in the horizontal derivatives can be expressed as a linear combination of the
operatorsW I of the special form above. Thus, often we can restrict ourselves
to consider only operators of the special form W I .

Denoting by h2 the linear span of Z, the 2-step strati�cation of h is
expressed by

h = h1 ⊕ h2.

We will use exponential coordinates on Hn:

(a, b, c) ∈ R2n+1 7→ exp(a ·X + b · Y + cZ),

where X = (X1, . . . , Xn), Y = (Y1, . . . , Yn).
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4.2 Unitary irreducible representations of h

By Stone-von Neumann Theorem (see (1.50) in [3]) there are two classes
of unitary irreducible representations of Hn (see (1.59) in [3]):

1. A "degenerate" family of 1-dimensional representations which map Z
to 0.
To one of this representation τ : Hn → U(H) corresponds a represen-
tation τ̃ : Hn/{exp tZ|t ∈ R} → U(H) de�ned by τ̃([g]) = τ(g) for
any g ∈ Hn.

Moreover Hn/{exp tZ|t ∈ R} ∼= R2n, where the isomorphism is given
by (x, y, z) 7→ (x, y).

Thus this family of representations is parametrized by (ξ, η) ∈ R2n and
is given by

π(ξ,η)(x, y, z) = ei(x·ξ+y·η). (4.1)

The trivial 1-dimensional identity representation corresponds to (ξ, η) =
(0, 0).

On the Lie algebra h these representations are given by

π(ξ,η)(Xj) = i ξj,

π(ξ,η)(Yj) = i ηj,

π(ξ,η)(Z) = 0.

(4.2)

2. A "generic" family parametrized by λ ∈ R \ {0}, acting on L2(Rn),
which map Z to a nonzero scalar. They are given by

[πλ(x, y, z)v](t) = eiλ(y·t+z+x·y/2)v(t+ x) for v ∈ L2(Rn). (4.3)

The space of C∞-vectors for each πλ is S(Rn).

On the Lie algebra h these representations take the form

πλ(Xj) =
d

dtj
,

πλ(Yj) = iλtj,

πλ(Z) = iλ.

(4.4)

This second family of representations, πλ, is the one occurring in Plancherel
Theorem 2.3.1. Indeed, in this case the center of the enveloping algebra,
Z(h), is given by the polynomials in Z, so q = 1 and we can take W = Z

i
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(thus we have πλ(W ) = λ). Then Γ = R \ {0} and the Plancherel measure
dµ(λ) equals |λ|ndλ, where | | denotes the absolute value.

We now renormalize as in Lemma 2.3.5.
First we observe that by de�nition of |λ| given in Remark 7 this is the

unique r ∈ R+ such that |δr−1λ| = 1. Since Z is homogeneous of degree 2,

this means that ||λ|−2λ| = 1, which implies |λ| = |λ| 12 for every λ ∈ R \ {0}.
Remark 9. 1. It follows from (2.39) and the de�nition of πλ that for every

j = 1, . . . , n:

π̃λ(Xj) = |λ|πδ|λ|−1λ(Xj) = |λ| d
dtj

= |λ|
1
2
d

dtj
,

π̃λ(Yj) = |λ|πδ|λ|−1λ(Yj) = i|λ|δ|λ|−1λtj = i|λ|
1
2 |λ|−1λtj = i(sgn λ)|λ|

1
2 tj,

π̃λ(Z) = |λ|πδ|λ|−1λ(Z) = i|λ||λ|−1λ = iλ.

(4.5)

More generally it follows from (2.39) that if P ∈ U(h) is homogeneous
of degree m, then:

π̃λ(P ) = |λ|
m
2 π̃1(P ) = |λ|

m
2 π1(P ) if λ > 0 (4.6)

and
π̃λ(P ) = |λ|

m
2 π̃−1(P ) = |λ|

m
2 π−1(P ) if λ < 0.

2. It follows from (4.2) that π(ξ,η) ◦ δr = π(rξ,rη). Thus if P ∈ U(h) is
homogeneous of degree m, then for any r ∈ R+ and any (ξ, η) ∈ R2n:

π(rξ,rη)(P ) = rmπ(ξ,η)(P ). (4.7)

3. Since W = −W t, we can apply the considerations in Remark 8 and
thus we have π̂λ = Sλπ̃−λS

−1
λ . We now show that Sλ = I and hence

π̂λ = π̃−λ for any λ ∈ R \ {0}. Indeed:

π̂λ(Xj) = π̃λ(X̄j) = |λ|
1
2
d

dtj
= π̃−λ(Xj),

π̂λ(Yj) = π̃λ(Ȳj) = −i(sgn λ)|λ|
1
2 tj = π̃−λ(Yj),

π̂λ(Z) = π̃λ(Z̄) = −iλ = π̃−λ(Z).

Hence (2.41) takes the form:

π̃λ(Q
t) = [π̃−λ(Q)]t, π̃λ(Q̄) = π̃−λ(Q) (4.8)

for every λ ∈ R \ {0}.
Similarly we see:

π(ξ,η)(Q
t) = π(−ξ,−η)(Q), π(ξ,η)(Q̄) = π(−ξ,−η)(Q) (4.9)

for every (ξ, η) ∈ R2n.
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4.3 Construction of the parametrix

The aim of this section is to construct a parametrix for P if it satis�es
certain hypothesis. We will need the following de�nition:

De�nition 4.1. A bounded right (resp. left) -inverse for π(P ) is a bounded
linear operator B : H → H such that:

i) B maps H∞ into H∞;

ii) π(P )B = I on H∞ (resp. Bπ(P ) = I on H∞).

We will prove the following theorem.

Theorem 4.3.1. Let P ∈ U(h) be homogeneous and suppose that π(P ) has
a bounded right-inverse for every irreducible unitary representation π of Hn

(except the trivial, identity representation).
Then P has a parametrix, that is there exists u ∈ D′(Hn) and f ∈ C∞0 (Hn)

such that:
Pu = δ + f. (4.10)

Remark 10. Recall that we observed after (2.41) that if π̃λ(P ) (resp. π̃λ(P
∗))

has a bounded right or left inverse for every λ ∈ Γ, then so does π̃λ(P̄ ) (resp.
π̃λ(P

t)).

We �rst sketch the idea and then proceed with the detailed construction.
Let P ∈ U(h) be homogeneous of degree m and satisfy the hypothesis

of theorem 4.3.1. Let B1, B−1 be bounded right inverses for π̃1(P ), π̃−1(P )
respectively.

If the integral

(u, ϕ) =

∫
R\{0}

tr(π̃λ(ϕ)π̃λ(P )−1)dµ(λ)

were well de�ned for ϕ ∈ C∞0 (Hn) and determined a distribution, then u
would satisfy the equation Pu = δ. Indeed, we would have by (2.8) and by
(2.24):

(Pu, ϕ) = (u, P tϕ) =

∫
R\{0}

tr(π̃λ(P
tϕ)π̃λ(P )−1)dµ(λ) =

=

∫
R\{0}

tr(π̃λ(ϕ)π̃λ(P )π̃λ(P )−1)dµ(λ) =

=

∫
R\{0}

tr(π̃λ(ϕ))dµ(λ) = (δ, ϕ).
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Hence u would be a fundamental solution for P . But by (4.6), we have:

π̃λ(P )−1 = |λ|−
m
2 B1

if λ > 0 and
π̃λ(P )−1 = |λ|−

m
2 B−1

if λ < 0.
Thus, since dµ(λ) = |λ|ndλ, we have:∫

R\{0}
tr(π̃λ(ϕ)π̃λ(P )−1)dµ(λ) =

=

∫
R+

|λ|−
m
2 tr(π̃λ(ϕ)B1)|λ|ndλ+

∫
R−
|λ|−

m
2 tr(π̃λ(ϕ)B−1)|λ|ndλ.

Here both integrands behave well when |λ| → ∞ but they may blow up
as |λ| → 0. Thus u is not well de�ned. We will now see how to deal with
this problem and �nd a parametrix for P .

We will need the following lemma.

Lemma 4.3.2. There exists a homogeneous Q ∈ U(h) such that for every
irreducible unitary representation π of Hn except π(0,0), π(Q) has a bounded
two-sided inverse which is, in fact, of trace-class. We can take:

Q =

(
n∑
i=1

(X2
i + Y 2

i )

)N

for N a su�ciently large positive integer depending on n.

Proof. SinceXi and Yi are homogeneous of degree 1, we have that
∑n

j=1(X2
j +

Y 2
j ) is homogeneous of degree 2. By (4.2) it follows:

π(ξ,η)

(
n∑
j=1

(X2
j + Y 2

j )

)
= −

n∑
j=1

(ξ2
j + η2

j )

that is not 0 if (ξ, η) 6= (0, 0).
Moreover, by (4.5):

π̃1

(
n∑
j=1

(X2
j + Y 2

j )

)
= π̃−1

(
n∑
j=1

(X2
j + Y 2

j )

)
=

n∑
j=1

(
d2

dt2j
− t2j

)
=

= −
n∑
j=1

(D2
tj

+ t2j),
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where Dtj = 1
i
d
dtj
.

We recall that L2(R) has a complete orthonormal basis consisting of eigen-
functions {vj}∞j=0 for the harmonic oscillatorD2

t+t
2. These are called Hermite

functions and for every j they satisfy:

(D2
t + t2)vj = (2j + 1)vj, vj ∈ S(R).

Let now vk(t) = vk1(t1) · · · vkn(tn), where k = (k1, . . . , kn) runs through
all n-tuples of nonnegative integers. Then vk form a complete orthonormal
basis of L2(Rn) and for every k[

n∑
j=1

(D2
tj

+ t2j)

]
vk =

[
n∑
j=1

(2kj + 1)

]
vk.

It follows that
∑n

j=1(D2
tj

+ t2j) has a bounded two-sided inverse T , which
is given by:

Tvk =
1∑n

j=1(2kj + 1)
vk.

Since all the eigenvalues of T are positive, TN is of trace-class if and only
if: ∑

k

1[∑n
j=1(2kj + 1)

]N <∞.

This condition is equivalent to:

∞∑
k=1

α(k)

kN
<∞,

where α(k) is the number of ways k can be written as a sum of n positive
integers, thus α(k) < kn. Hence, the condition holds if N − n > 1, i.e.
N > n+ 1.

We next examine the question of measurability of the functions λ 7→
tr(π̃λ(ϕ)B1) and λ 7→ tr(π̃λ(ϕ)B−1). We will work in the general contest of
a simply-connected nilpotent Lie group.

Lemma 4.3.3. Let G be a simply-connected nilpotent Lie group (with di-
lations) and let B : H → H be a bounded linear operator. Then for any
ϕ ∈ C∞0 (G) the function:

Γ→ C
λ 7→ tr(π̃λ(ϕ)B)
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is measurable. Here Γ is the Zariski-open set (see Plancherel Theorem 2.3.1)
that parametrizes the unitary irreducible representations of G.

Moreover, if B is of trace-class then the function is continuous.

Proof. We �rst suppose only that B is bounded. Since π̃λ(ϕ) is trace-class,
so is π̃λ(ϕ)B. Let {ei}∞i=0 be any orthonormal basis for H. Then

tr(π̃λ(ϕ)B) = tr(Bπ̃λ(ϕ)) =
∞∑
i=0

〈Bπ̃λ(ϕ)ei, ei〉 =

=
∞∑
i=0

〈π̃λ(ϕ)ei, B
∗ei〉.

(4.11)

By Plancherel Theorem 2.3.1(5), for every i the function λ 7→ 〈π̃λ(ϕ)ei, B
∗ei〉

from Γ to C is continuous, hence measurable. Since tr(π̃λ(ϕ)B) is the point-
wise limit of measurable functions, it is measurable.

Suppose now that B is trace-class. To have that the function λ 7→
tr(π̃λ(ϕ)B) is continuous, we need to show that the series in (4.11) converges
uniformly in λ.

Using the polar decomposition given in theorem 1.12.1, we write B∗ =
UT , where T = (BB∗)1/2 and U is a partial isometry. We observe that T
is positive de�nite and of trace-class, so in particular compact by Theorem
1.11.5. Hence H has an orthonormal basis {ei}∞i=0 consisting of eigenvectors
of T with eigenvalues {ti}∞i=0. The trace norm of B is, in fact,

∑∞
i=0 ti <∞.

Then we have:

〈π̃λ(ϕ)ei, B
∗ei〉 = 〈U∗π̃λ(ϕ)ei, T ei〉 = ti〈U∗π̃λ(ϕ)ei, ei〉.

Thus:

|〈π̃λ(ϕ)ei, B
∗ei〉| = ti|〈U∗π̃λ(ϕ)ei, ei〉| ≤

≤ ti||U ||||π̃λ(ϕ)|| = ti||π̃λ(ϕ)|| ≤
≤ ti||ϕ||L1(G),

where the last inequality holds by (2.4).
Hence, for every integer n ≥ 0,

∞∑
i=n

|〈π̃λ(ϕ)ei, B
∗ei〉| ≤

(
∞∑
i=n

ti

)
||ϕ||L1(G).

Since here the right-hand side is independent of λ and since
∑∞

i=0 ti <∞,
the series in (4.11) converges uniformly in λ, thus we have the claim.
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We now return to the context G = Hn.

Lemma 4.3.4. Let ε > 0 and let B be a trace-class operator on L2(Rn). If
s ∈ C with Re s > −n+1

2
, then the linear map u : C∞0 (Hn)→ C given by

(u, ϕ) =

∫
0<λ≤ε

|λ|s+ntr(π̃λ(ϕ)B)dλ (4.12)

is well de�ned and u ∈ D′(Hn). In fact, there exists a constant C independent
of ϕ such that

|(u, ϕ)| ≤
∫

0<λ≤ε
|λ|Re s+n|tr(π̃λ(ϕ)B)|dλ ≤ C||ϕ||L2(Hn), (4.13)

so u ∈ L2(Hn). The same is true if we replace the domain of integration by
−ε ≤ λ < 0.

Proof. By preceding Lemma, the integrand in (4.12) is measurable.We have
to show that it is integrable. First we observe that we can write:

|λ|Re s+n|tr(π̃λ(ϕ)B)| = |λ|Re s+n
2 (|λ|

n
2 |tr(π̃λ(ϕ)B)|).

Thus, by the de�nition of u and Hölder's inequality:

|(u, ϕ)| ≤
∫

0<λ≤ε
|λ|Re s+n|tr(π̃λ(ϕ)B)|dλ ≤

≤
[∫

0<λ≤ε
|λ|2 Re s+ndλ

] 1
2
[∫

0<λ≤ε
|tr(π̃λ(ϕ)B)|2|λ|ndλ

] 1
2

.

By hypothesis 2 Re s+ n > −1, hence the �rst integral in this product is
�nite, call it C ′.

Moreover, by (1.17) |tr(π̃λ(ϕ)B)|2 ≤ tr(BB∗)tr(π̃λ(ϕ)π̃λ(ϕ)∗). But by
Plancherel Theorem (6) and Lemma 2.3.5 the function λ 7→ tr(π̃λ(ϕ)π̃λ(ϕ)∗)
from R \ {0} to R+ is measurable. Hence,[∫

0<λ≤ε
|tr(π̃λ(ϕ)B)|2|λ|ndλ

] 1
2

≤ [tr(BB∗)]
1
2

[∫
0<λ≤ε

tr(π̃λ(ϕ)π̃λ(ϕ)∗)|λ|ndλ
] 1

2

.

Since tr(π̃λ(ϕ)π̃λ(ϕ)∗) ≥ 0 for every λ ∈ R \ {0} and since the Plancherel
measure is dµ(λ) = |λ|ndλ, it follows from (2.23) that[∫

0<λ≤ε
tr(π̃λ(ϕ)π̃λ(ϕ)∗)|λ|ndλ

] 1
2

≤
[∫

R\{0}
tr(π̃λ(ϕ)π̃λ(ϕ)∗)|λ|ndλ

] 1
2

= ||ϕ||L2(Hn).
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If we now let C = C ′[tr(BB∗)]
1
2 , we obtain (4.13).

Since the linear map ϕ 7→ (u, ϕ) is continuous and L2(Hn) is its own dual,
it follows by Hahn-Banach Theorem that there exists g ∈ L2(Hn) such that
for every ϕ ∈ C∞0 (Hn),

(u, ϕ) = 〈ϕ, g〉 = (ḡ, ϕ),

i.e. u = ḡ ∈ L2(Hn).
The same proof is valid for the domain of integration −ε ≤ λ < 0.

Lemma 4.3.5. Let ε > 0 and let B be a trace-class operator on L2(Rn). For
any s ∈ C the linear map u : C∞0 (Hn)→ C given by

(u, ϕ) =

∫
λ>ε

|λ|s+ntr(π̃λ(ϕ)B)dλ (4.14)

is well de�ned and u ∈ D′(Hn). Moreover, for any nonnegative integer N
such that N > Re s + n+1

2
there exists a constant C independent of ϕ such

that

|(u, ϕ)| ≤
∫
λ>ε

|λ|Re s+n|tr(π̃λ(ϕ)B)|dλ ≤ C||ZNϕ||L2(Hn). (4.15)

Thus, there exists f ∈ L2(Hn) such that u = ZNf . The same is true if we
replace the domain of integration by λ < −ε.

Proof. The proof is similar to the one of the preceding lemma, but we now
consider the behavior "at ∞" rather than "at 0".

We can write:

|λ|Re s+n|tr(π̃λ(ϕ)B)| = |λ|Re s+n
2
−N(|λ|

n
2 |λN tr(π̃λ(ϕ)B)|).

Since Zt = −Z, we see that π̃λ(Z
t) = −π̃λ(Z) = −iλ. Thus by (2.8)

π̃λ(Z
Nϕ) = π̃λ(ϕ)π̃λ((Z

N)t)) = (−iλ)N π̃λ(ϕ). Hence from the previous
equality follows:

|λ|Re s+n|tr(π̃λ(ϕ)B)| = |λ|Re s+n
2
−N(|λ|

n
2 |tr(π̃λ(ZNϕ)B)|).

Therefore∫
λ>ε

|λ|Re s+n|tr(π̃λ(ϕ)B)|dλ ≤
[∫

λ>ε

|λ|2(Re s+n
2
−N)dλ

] 1
2
[∫

λ>ε

|tr(π̃λ(ZNϕ)B)|2|λ|ndλ
] 1

2

.

By hypothesis N is such that 2(Re s+ n
2
−N) < −1, thus the �rst integral

in this product is �nite. Now proceeding exactly as in the previous proof,
but with ϕ replaced by ZNϕ, we get (4.15).
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Let now V = {ZNϕ|ϕ ∈ C∞0 (Hn)}, which is a subspace of L2(Hn). By
(4.15) the linear map ZNϕ 7→ (u, ϕ) from V to C is well de�ned and continu-
ous. Hence, using Hahn-Banach Theorem as before, there exists g ∈ L2(Hn)
such that for every ϕ ∈ C∞0 (Hn):

(u, ϕ) = 〈ZNϕ, g〉 = (ḡ, ZNϕ) = ((ZN)tḡ, ϕ) = (ZN((−1)N ḡ), ϕ).

This means that u = ZNf , where f = (−1)N ḡ ∈ L2(Hn).
The same proof is valid for the domain of integration λ < −ε.

Lemma 4.3.6. Let P ∈ U(h) be homogeneous of degree m and suppose
π(ξ,η)(P ) 6= 0 for every (ξ, η) ∈ R2n except (0, 0). Then P is of order m
as a di�erential operator.

Proof. Suppose P is of order k as a di�erential operator. Then it can be
written as

P =
∑

|α|+|β|+γ≤k

aαβγX
α1
1 · · ·Xαn

n Y β1
1 · · ·Y βn

n Zγ,

with aαβγ ∈ C and aαβγ 6= 0 for some αβγ such that |α|+ |β|+ γ = k.
Since P is homogeneous of degree m, then:

|α|+ |β|+ 2γ = m

for every αβγ such that aαβγ 6= 0. But |α| + |β| + γ ≤ k for every αβγ so
k ≤ m for every αβγ such that aαβγ 6= 0, γ ≥ m− k.

Since π(ξ,η)(Z) = 0 for every (ξ, η) and by hypothesis π(ξ,η)(P ) 6= 0 for
every (ξ, η) ∈ R2n except (0, 0), it follows from the expression of P that there
exists αβ such that aαβ0 6= 0. Hence k = m.

Lemma 4.3.7. Let P ∈ U(h) be homogeneous of degree m and suppose
π(ξ,η)(P ) 6= 0 for every (ξ, η) ∈ R2n except (0, 0).

Let V (P ) ⊂ T ∗Hn \ 0 denote the real characteristic variety of P, i.e. the
zero-set of the principal symbol σm(P ). Identifying T ∗eHn with h∗, we have
that V (P )e is the annihilator of the 2n-dimensional subspace of h spanned by
Xi, Yi, i = 1, . . . , n.

In terms of the coordinates ξi, ηi, τ, i = 1, . . . , n de�ned on h∗ by Xi, Yi,
Z this can be expressed as:

V (P )e = {(ξ, η, τ)|ξ = η = 0, τ 6= 0}. (4.16)

Proof. By previous lemma, P is of order m as a di�erential operator so it
can be written as

P =
∑

|α|+|β|+γ≤m

aαβγX
α1
1 · · ·Xαn

n Y β1
1 · · ·Y βn

n Zγ,
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with |α|+ |β|+ 2γ = m for every αβγ such that aαβγ 6= 0.
We have that:

π(ξ,η)(P ) = im
∑

|α|+|β|=m

aαβ0ξ
α1
1 · · · ξαnn ηβ11 · · · ηβnn .

Let now σm(P )e be the principal symbol of P at e, which we consider as
a polynomial function on h∗. It is given by

σm(P )e = im
∑

|α|+|β|+γ=m

aαβγX
α1
1 · · ·Xαn

n Y β1
1 · · ·Y βn

n Zγ =

= im
∑

|α|+|β|=m

aαβ0X
α1
1 · · ·Xαn

n Y β1
1 · · ·Y βn

n ,

where the last equality holds since |α| + |β| + 2γ = m for every αβγ such
that aαβγ 6= 0.

Evaluating at (ξ, η, τ) ∈ h∗, we get:

〈σm(P )e, (ξ, η, τ)〉 = im
∑

|α|+|β|=m

aαβ0ξ
α1
1 · · · ξαnn ηβ11 · · · ηβnn =

= π(ξ,η)(P ).

Hence by hypothesis, 〈σm(P )e, (ξ, η, τ)〉 6= 0 if (ξ, η) 6= (0, 0).
But, clearly, 〈σm(P )e, (0, 0, τ)〉 = 0 for all τ . Thus (4.16) holds.

Proposition 4.3.8. Let P ∈ U(h) be homogeneous of degree m and suppose
π(ξ,η)(P ) 6= 0 for every (ξ, η) ∈ R2n except (0, 0).

Then PP̄ + Z2m ∈ U(h) is elliptic.

Proof. Since P is of order m, it follows that PP̄ , and hence PP̄ +Z2m, is of
order 2m. Thus the principal symbol of PP̄ + Z2m at e is given by:

〈σ2m(PP̄ + Z2m)e, (ξ, η, τ)〉 = 〈σm(P )eσm(P̄ )e, (ξ, η, τ)〉+ 〈σ2m(Z2m)e, (ξ, η, τ)〉 =

= (−1)m|〈σm(P )e, (ξ, η, τ)〉|2 + (iτ)2m =

= (−1)m|〈σm(P )e, (ξ, η, τ)〉|2 + (−1)m|τ |2m.

Here both terms have the same sign so the sum is 0 if and only if they
are both 0. Hence, by (4.16), the characteristic variety of PP̄ +Z2m is given
by

V (PP̄ + Z2m)e = {(0, 0, τ)|τ 6= 0} ∩ {(ξ, η, 0)|(ξ, η) 6= (0, 0)} = ∅.

Since PP̄ + Z2m is invariant under left translation, this implies that it is
elliptic.
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Remark 11. i) If P is homogeneous, then so is P̄ .

ii) If P satis�es the hypothesis of Theorem 4.3.1, then so does P̄ . Indeed:

by (4.8) for every λ ∈ R \ {0} we have

π̃λ(P̄ ) = π̃−λ(P ),

thus if π̃−λ(P ) has a bounded right-inverse, then so does π̃λ(P̄ ). Simi-
larly for π(ξ,η)(P̄ ) because by (4.9)

π(ξ,η)(P̄ ) = π(−ξ,−η)(P ).

Remark 12. We can, without loss of generality, replace the hypothesis of
Theorem 4.3.1 by the following:

i) P ∈ U(h) is homogeneous of degree m;

ii) π(ξ,η)(P ) 6= 0 if (ξ, η) 6= (0, 0);

iii) π̃1(P ), π̃−1(P ) have bounded right-inverses B1, B−1, respectively, which
are both of trace-class;

iv) P + Zm is elliptic.

Proof. Let Q be as in Lemma 4.3.2.

i) Same hypothesis as in Theorem 4.3.1.

ii) We proceed by replacing P by PQ. If B is the bounded right-inverse of
π(ξ,η)(P ) (where (ξ, η) 6= (0, 0)), then π(ξ,η)(Q)−1B is a bounded right-
inverse for π(ξ,η)(PQ). Thus, if π(ξ,η)(PQ) = 0 with (ξ, η) 6= (0, 0),
multiplying both sides by π(ξ,η)(Q)−1B we get a contradiction.

iii) We proceed by replacing P by PQ as before. We know that the
bounded right-inverses π̃1(Q)−1 and π̃−1(Q)−1 are of trace-class by
Lemma 4.3.2. If B1, B−1 are bounded right-inverses for π̃1(P ), π̃−1(P )
respectively, it follows that π̃1(Q)−1B1, π̃−1(Q)−1B−1 are bounded right-
inverses for π̃1(PQ), π̃−1(PQ). Moreover, they are of trace-class be-
cause the trace-class operators form an ideal in the space of bounded
operators.

iv) If L = PQ is homogeneous of degree µ and π(ξ,η)(L) 6= 0 if (ξ, η) 6=
(0, 0), then by Proposition 4.3.8 LL̄ + Z2µ is elliptic. Taking here
P = LL̄ and 2µ = m, we have the claim.
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Fix ε > 0. Then for any s ∈ C with Re s− m
2
> −n+1

2
de�ne distributions

us0, u
s
∞, u

s by:

(us0, ϕ) =(i)s
∫

0<λ≤ε
|λ|s−m/2tr(π̃λ(ϕ)B1)|λ|ndλ+

+ (−i)s
∫
−ε≤λ<0

|λ|s−m/2tr(π̃λ(ϕ)B−1)|λ|ndλ,
(4.17)

(us∞, ϕ) =(i)s
∫
λ>ε

|λ|s−m/2tr(π̃λ(ϕ)B1)|λ|ndλ+

+ (−i)s
∫
λ<−ε

|λ|s−m/2tr(π̃λ(ϕ)B−1)|λ|ndλ,
(4.18)

us = us0 + us∞. (4.19)

Remark 13. We know by Lemmas 4.3.4 and 4.3.5 that us0, u
s
∞ are distribu-

tions. In fact we know:

1. For every s, us0 ∈ L2(Hn);

2. For any positive integer N > Re s − m
2

+ n+1
2

there exists f ∈ L2(Hn)
such that us∞ = ZNf .

Lemma 4.3.9. The distributions us0, u
s
∞, u

s satisfy the following properties:

i) For any nonnegative integer k,

Zkus0 = us+k0 , Zkus∞ = us+k∞ , Zkus = us+k. (4.20)

ii) For any positive integer l > m
2
− n+1

2
,

Pul = Z lδ. (4.21)

Proof. i) We have that for every ϕ ∈ C∞0 (Hn):

(Zkus0, ϕ) = (us0, (Z
k)tϕ).

But by (2.8):

π̃λ((Z
k)tϕ) = π̃λ(ϕ)π̃λ(Z

k) = (iλ)kπ̃λ(ϕ) = (±i)k|λ|kπ̃λ(ϕ),
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depending on the sign of λ.

Thus by de�nition of us0:

(us0, (Z
k)tϕ) =(i)s+k

∫
0<λ≤ε

|λ|s+k−m/2tr(π̃λ(ϕ)B1)|λ|ndλ+

+ (−i)s+k
∫
−ε≤λ<0

|λ|s+k−m/2tr(π̃λ(ϕ)B−1)|λ|ndλ = (us+k0 , ϕ).

It follows that Zkus0 = us+k0 . The same argument shows that Zkus∞ =
us+k∞ , hence Zkus = us+k.

ii) We have that for every ϕ ∈ C∞0 (Hn):

(Pus0, ϕ) = (us0, P
tϕ), (Pus∞, ϕ) = (us∞, P

tϕ).

But again by (2.8) for every v ∈ S(Rn):

π̃λ(P
tϕ)v = π̃λ(ϕ)π̃λ(P )v.

Hence by (4.6) and by de�nition of B1 if λ > 0 and v ∈ S(Rn):

π̃λ(P
tϕ)B1v = π̃λ(ϕ)π̃λ(P )B1v = π̃λ(ϕ)|λ|

m
2 π̃1(P )B1v =

= |λ|
m
2 π̃λ(ϕ)v.

Similarly if λ < 0:

π̃λ(P
tϕ)B−1v = |λ|

m
2 π̃λ(ϕ)v.

Since these equations involve bounded, in fact trace-class operators, it
follows that:

π̃λ(P
tϕ)B1 = |λ|

m
2 π̃λ(ϕ), λ > 0

π̃λ(P
tϕ)B−1 = |λ|

m
2 π̃λ(ϕ), λ < 0.

Thus for any l as in the hypothesis:

(Pul, ϕ) = (Pul0, ϕ) + (Pul∞, ϕ) =

∫
R\{0}

(iλ)ltr(π̃λ(ϕ))|λ|ndλ =

=

∫
R\{0}

tr(π̃λ((Z
l)tϕ))|λ|ndλ = (δ, (Z l)tϕ) = (Z lδ, ϕ).

Hence Pul = Z lδ.
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The following Corollary is an immediate consequence.

Corollary 4.3.10.

P (δ + um) = (P + Zm)δ.

Then we proceed to construct the parametrix. By hypothesis, P +Zm is
elliptic, thus in particular it is locally solvable and hypoelliptic. This means
that there exist v′ ∈ D′(Hn), C∞ away from e, and f ′ ∈ C∞(Hn) such that:

(P + Zm)v′ = δ + f ′. (4.22)

Let ϕ ∈ C∞0 (Hn) such that ϕ ≡ 1 in a neighborhood of e and let v = ϕv′.
Then:

(P + Zm)v = ϕ(P + Zm)v′ + [P + Zm, ϕ]v′ =

= ϕδ + ϕf ′ + [P + Zm, ϕ]v′ = δ + f,

where f = ϕf ′ + [P +Zm, ϕ]v′. Since v′ is C∞ away from e and [P +Zm, ϕ]
contains derivatives of ϕ, that vanish in a neighborhood of e by de�nition of
ϕ, it follows that f is C∞. Moreover, both v and f are compactly supported
and v is C∞ away from e.

Since v ∈ E ′(Hn), we can de�ne a distribution u ∈ D′(Hn) by

u = v ∗ (δ + um). (4.23)

This is the parametrix we were looking for, because:

Pu = P (v ∗ (δ + um)) = v ∗ P (δ + um) =

= v ∗ (P + Zm)δ = (P + Zm)(v ∗ δ) =

= (P + Zm)v = δ + f.

In order to prove Theorem 4.3.1 it remains to show that this parametrix
is C∞ away from e.

We will do that under the stronger hypothesis that the inverses for π̃1(P ),
π̃−1(P ) are two-sided.

4.4 Su�ciency for hypoellipticity

We want to show that, at least under the stronger assumption that the
inverses for π̃1(P ) and π̃−1(P ) are two-sided, the parametrix u for P con-
structed in the previous section is C∞ away from e.

We will need to work in the following spaces.
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De�nition 4.2. For any δ > 0 and any nonnegative integer k we de�ne
H(k,δ)(Rn) as the set of all functions v(t) such that:

(1 + |t|)(k−|α|)δDα
t v(t) ∈ L2(Rn)

for all multi-indices α with |α| ≤ k.

Remark 14. H(k,δ)(Rn) is a Hilbert space and S(Rn) ⊂ H(k,δ)(Rn).

Proposition 4.4.1. C∞0 (Rn) (and so S(Rn)) is dense in H(k,δ)(Rn).

Proof. For N ∈ N \ {0} let ψN(|x|) be a cut-o� function on Rn, that is:
ψN ∈ C∞(Rn), ψN(|x|) ≡ 1 for |x| ≤ N and ψN(|x|) ≡ 0 for |x| ≥ N + 1.

If u ∈ H(k,δ)(Rn) then uψN → u in H(k,δ)(Rn) as N tends to ∞. Indeed:

||uψN − u||2H(k,δ)(Rn) =
∑
|α|≤k

||(1 + |t|)(k−|α|)δDα
t (uψN − u)(t)||2L2(Rn) =

=
∑
|α|≤k

||(1 + |t|)(k−|α|)δ[(Dα
t u)ψN + u(Dα

t ψN)−Dα
t u]||2L2(Rn) ≤

≤
∑
|α|≤k

||(1 + |t|)(k−|α|)δDα
t u||L2(Rn)||ψN − 1||L2(Rn)+

+
∑
|α|≤k

||(1 + |t|)(k−|α|)δu||L2(Rn)||Dα
t ψN ||L2(Rn).

This sum tends to 0 asN →∞ because ||ψN−1||L2(R)n → 0, ||Dα
t ψN ||L2(Rn) →

0 and the other two norms are bounded by a constant.
Thus if we �x ε > 0 we can choose N such that ||uψN − u||H(k,δ)(Rn) <

ε
2
.

We have that uψN ∈ W k,2
0 (B(0, N+2)) because supp(uψN) = B(0, N+1)

and in B(0, N + 2) we have the estimate:

1 ≤ (1 + |t|)(k−|α|)δ ≤ (N + 3)(k−|α|)δ.

Thus there exists ϕ ∈ C∞0 (B(0, N+2)) such that ||ϕ−uψN ||Wk,2 < σε, where
σ2 < 1

4(N+3)2kδ
. Then:

||ϕ− uψN ||2H(k,δ)
=
∑
|α|≤k

∫
(1 + |t|)2(k−|α|)δ|Dα

t (ϕ− uψN)|2dt ≤

≤
∑
|α|≤k

(N + 3)2(k−|α|)δ
∫
|Dα

t (ϕ− uψN)|2dt ≤

≤ (N + 3)2kδ||ϕ− uψN ||2Wk,2 <

< (N + 3)2kδσ2ε2 <
ε2

4
.
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Hence:

||u− ϕ||H(k,δ)
≤ ||u− uψN ||H(k,δ)

+ ||uψN − ϕ||H(k,δ)
<
ε

2
+
ε

2
= ε.

Lemma 4.4.2. Let Q ∈ U(h) be homogeneous of degree ≤ k. Then π̃1(Q)
and π̃−1(Q), viewed as operators from S(Rn) to S(Rn), are bounded if we
give the domain the H(k,1)(Rn) norm and the range the L2(Rn) norm. Hence,
since S(Rn) is dense in H(k,1)(Rn), both π̃1(Q) and π̃−1(Q) extend uniquely
as bounded operators from H(k,1)(Rn) to L2(Rn).

Proof. Let

Q =
∑

|α|+|β|+γ≤l

aαβγY
α1

1 · · ·Y αn
n Xβ1

1 · · ·Xβn
n Zγ

be homogeneous of degree j ≤ k. This means that for every aαβγ 6= 0 we
have |α|+ |β|+ 2γ = j ≤ k, hence in particular |α|+ |β| ≤ k. But by (4.5):

π̃1(Q) =
∑

|α|+|β|+γ≤l

aαβγ(i)
|α|+γtα

∂β

∂t
,

π̃−1(Q) =
∑

|α|+|β|+γ≤l

aαβγ(−i)|α|+γtα
∂β

∂t
.

Thus it su�ces to show that tα ∂
β

∂t
de�nes a bounded operator fromH(k,1)(Rn)

to L2(Rn) if |α|+ |β| ≤ k. But since by de�nition v ∈ H(k,1)(Rn) if and only
if (1 + |t|)k−|σ|Dσv(t) ∈ L2(Rn) for any |σ| ≤ k, we have the claim.

Remark 15. In the preceding proof it would have been su�cient to assume
that the order of Q as a di�erential operator was ≤ k.

Actually the same proof shows the following stronger statement:
if Q ∈ U(h) is homogeneous of degree ≤ k, then for any integer r ≥ k, π̃1(Q)
and π̃−1(Q) de�ne bounded operators from H(k,1)(Rn) to L2(Rn).

We will need the following Lemma, which we don't prove (see paragraph
6 in [9]).

Lemma 4.4.3. Let P ∈ U(h) be homogeneous of degree m and suppose that
π(ξ,η)(P ) 6= 0 for every (ξ, η) ∈ R2n\{0}. Fix λ ∈ R\{0}. Then the following
are equivalent:

i) neither of the equations π̃λ(P )v = 0, π̃λ(P
∗)v = 0 has a nontrivial

solution v ∈ S(Rn);
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ii) π̃λ(P ) has a bounded two-sided inverse L, i.e. a bounded operator L :
L2(Rn) → L2(Rn) such that L maps S(Rn) into S(Rn) and such that
π̃λ(P )L = I on S(Rn) and Lπ̃λ(P ) = I on S(Rn).

If these equivalent conditions hold, then L satis�es the following additional
properties:

1. L maps L2(Rn) into H(m,1)(Rn) and is bounded as an operator from
L2(Rn) into H(m,1)(Rn);

2. π̃λ(P )L = I on L2(Rn);

3. Lπ̃λ(P ) = I on H(m,1)(Rn);

4. if f ∈ L2(Rn) and Lf ∈ S(Rn), then f ∈ S(Rn).

The following lemmas will be useful in the proof of the crucial Proposition
4.4.7.

Lemma 4.4.4. Let Q ∈ U(h) be homogeneous of degree k and let ϕ ∈
C∞0 (Hn). Then there is a �nite set of di�erential operators Q1, . . . , Qr ∈
U(h), each homogeneous of some degree < k, and ϕ1, . . . , ϕr ∈ C∞0 (Hn) with
supp ϕj ⊂ supp ϕ, such that

[Q,ϕ] =
r∑
j=1

Qjϕj.

Proof. We prove the claim by induction on k.
If k = 1 then Q = Xi for some i = 1, . . . , n or Q = Yi or Q = Z. In any

case for every u ∈ C∞0 (Hn):

[Q,ϕ]u = Q(ϕu)− ϕ(Qu) = (Qϕ)u+ ϕ(Qu)− ϕ(Qu) = (Qϕ)u,

thus we have the claim because Qϕ has order 0.
Suppose now that we have proved the claim for any operator homogeneous

of degree k−1 and let Q be homogeneous of degree k. Since Q can be written
as sum of terms of degree k, it su�ces to prove the claim in case

Q = Xi1 · · ·Xik−1
Xik = Pk−1Xik ,

where ij ∈ {1, . . . , n} and Pk−1 = Xi1 · · ·Xik−1
is homogeneous of degree

k − 1. Then:

[Q,ϕ]u = [Pk−1Xik , ϕ]u = (Pk−1Xik)(ϕu)− ϕ((Pk−1Xik)u) =

= Pk−1(Xik(ϕu))− ϕ(Pk−1(Xiku)) =

= Pk−1((Xikϕ)u+ ϕ(Xiku))− ϕ(Pk−1(Xiku)) =

= Pk−1((Xikϕ)u) + Pk−1(ϕXiku)− ϕPk−1(Xiku) =

= Pk−1((Xikϕ)u) + [Pk−1, ϕ](Xiku).
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Using now the inductive hypothesis on [Pk−1, ϕ] and noting that Pk−1(Xikϕ)
has degree k − 1, we have the claim.

Lemma 4.4.5. Let um = um0 +um∞ be the distribution solution of Pum = Zmδ
de�ned by (4.19). Then:

i) for any integer k ≥ 0, Zkum0 ∈ L2(Hn);

ii) there exists f ∈ L2(Hn) and an integer N > 0 such that:

um∞ = ZNf. (4.24)

Proof. We recall that by Remark 13 us0 ∈ L2(Hn) for any s and by (4.20)
Zkum0 = um+k

0 for any integer k ≥ 0. Thus we get i).
On the other hand, ii) follows immediately from the same Remark 13.

Lemma 4.4.6. Under the hypothesis of the previous lemma, for every ϕ ∈
C∞0 (Hn) the following hold.

i) For any integer k ≥ 0, Zk(ϕum0 ) ∈ L1(Hn) ∩ L2(Hn).

ii) There exist ϕj ∈ C∞0 (Hn), j = 0, . . . , N (where N is the integer in
(4.24)), with supp ϕj ⊂ supp ϕ (and ϕN = ϕ) such that:

ϕum∞ =
N∑
j=0

Zj(ϕjf). (4.25)

Note, in particular, that for every j, ϕjf ∈ L1(Hn) ∩ L2(Hn).

Proof. By iterating the product rule for di�erentiation we get:

Zk(ϕum0 ) =
k∑
j=0

(
k

j

)
(Zjϕ)(Zj−kum0 ).

Since Zjϕ ∈ C∞0 (Hn) and by previous lemma Zj−kum0 ∈ L2(Hn), it follows
that (Zjϕ)(Zj−kum0 ) ∈ L1(Hn) ∩ L2(Hn) for any j = 0, . . . , k. Thus i) holds.

The proof of (4.25) is by induction on N .
If N = 1, then

ϕum∞ = ϕZf = Z(ϕf)− [Z, ϕ]f.

Thus the claim holds with ϕ0 = −[Z, ϕ].
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We now suppose that the claim holds for N and we prove it for N + 1.
We have:

ϕZN+1f = ϕZN(Zf),

which by inductive hypothesis equals to:

N∑
j=0

Zj(ϕjZf) =
N∑
j=0

Zj(Z(ϕjf)− [Z, ϕj]f) =

=
N∑
j=0

Zj+1(ϕjf)−
N∑
j=0

Zj([Z, ϕj]f).

If we set ψ0 = −[Z, ϕ0], ψ1 = ϕ0− [Z, ϕ1], . . . ,ψN = ϕN−1− [Z, ϕN ], ψN+1 =
ϕN = ϕ, we get the claim.

Proposition 4.4.7. Let P ∈ U(h) be homogeneous of degree m and satisfy:

i) π(ξ,η)(P ) 6= 0 for every (ξ, η) ∈ R2n \ {0};

ii) π̃1(P ), π̃−1(P ) both have two-sided inverses.

Let um be the distribution solution of Pum = Zmδ de�ned by (4.19). Let ϕ
be any function in C∞0 (Hn) such that e /∈ suppϕ. Then:

Zk(ϕum) ∈ L2(Hn) (4.26)

for every nonnegative integer k.

Proof. If P satis�es i) and ii), then by (4.8) and (4.9) so does P̄ . Hence, as
before, we can assume without loss of generality that P + Zm is elliptic.

Moreover, since P satis�es i), so does P ∗ because π(ξ,η)(P
∗) = π(ξ,η)(P )∗.

Also, by Lemma 4.4.3 if P satis�es ii) then so does P ∗, and hence, by
the above, so does P t = P ∗. In particular, π̃1(P t) and π̃−1(P t) both have
bounded two-sided inverses.

Viewing ϕum as an element of E ′(Hn), we have:

π̃λ(Z
k(ϕum)) = π̃λ(ϕu

m)π̃λ((Z
k)t) = (−i)kλkπ̃λ(ϕum).

Thus by Proposition 2.3.4 to prove (4.26) it su�ces to show that for any
integer k ≥ 0 and for any ϕ ∈ C∞0 (Hn) such that e /∈ suppϕ, the function:

λ 7→ |λ|kπ̃λ(ϕum) (4.27)
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lies in L2(R \ {0};K), where K is the Hilbert space of Hilbert-Schmidt op-
erators on L2(Rn) and R \ {0} has the Plancherel measure |λ|ndλ.

We now observe that:

P (ϕum) = ϕPum + [P, ϕ]um = ϕZmδ + [P, ϕ]um.

But if e /∈ suppϕ, then ϕZmδ = 0. Thus:

P (ϕum) = [P, ϕ]um.

Applying Lemma 4.4.4, we have that there exist �nitely manyQ1, . . . , Qr ∈
U(h) homogeneous of degree < m and ϕ1, . . . , ϕr ∈ C∞0 (Hn) such that
e /∈ suppϕj and

P (ϕum) =
r∑
j=1

Qj(ϕju
m). (4.28)

Since ϕum0 ∈ E ′(Hn) also lies in L1(Hn), by Proposition 2.2.2 (1) we can
view π̃λ(ϕu

m
0 ) as a bounded operator from L2(Rn) to L2(Rn).

Moreover, by (4.25) we have:

π̃λ(ϕu
m
∞) =

N∑
j=0

π̃λ(Z
j(ϕjf)) =

N∑
j=0

π̃λ(ϕjf)π̃λ((Z
j)t) =

=
N∑
j=0

(−i)jλjπ̃λ(ϕjf).

(4.29)

Since ϕjf ∈ L1(Hn), we can again view π̃λ(ϕjf), and hence π̃λ(ϕu
m
∞), as

a bounded operator from L2(Rn) to L2(Rn).
We now prove two lemmas that will complete the proof, splitting the

claim in two cases.

Lemma 4.4.8. Let N be the integer appearing in (4.24). Let k ≥ −2N
be an integer and let ϕ ∈ C∞0 (Hn) such that e /∈ suppϕ. Fix ε > 0 and

let Rε = {λ ∈ R||λ| > ε}. Then the function λ 7→ |λ| k2 π̃λ(ϕum) lies in
L2(Rε;K), where Rε is provided with the Plancherel measure |λ|ndλ.

Proof. We prove the statement by induction on k.
First let k = −2N . We want to show that the function λ 7→ |λ|−N π̃λ(ϕum)

lies in L2(Rε;K).
Since π̃λ(ϕu

m) = π̃λ(ϕu
m
0 ) + π̃λ(ϕu

m
∞), it su�ces to show that both:

λ 7→ |λ|−N π̃λ(ϕum0 ) (4.30)
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and
λ 7→ |λ|−N π̃λ(ϕum∞) (4.31)

lie in L2(Rε;K).
By Lemma 4.4.6 we know in particular that ϕum0 ∈ L1(Hn) ∩ L2(Hn).

Thus by Plancherel Theorem, the function λ 7→ π̃λ(ϕu
m
0 ) lies in L2(R \ {0}),

and so, by restriction, it also lies in L2(Rε;K). But λ 7→ |λ|−N is C∞ and
bounded on Rε, thus (4.30) lies in L

2(Rε;K).
Moreover, by (4.29):

π̃λ(ϕu
m
∞) =

N∑
j=0

(−i)jλjπ̃λ(ϕjf).

Arguing as before, we have that the function λ 7→ π̃λ(ϕjf) is in L2(Rε;K)
for any j = 0, . . . , N . Since the function λ 7→ |λ|−Nλj is C∞ and bounded
on Rε, it follows that also (4.31) lies in L2(Rε;K).

We now assume that we have shown that for any integer k such that
−2N ≤ k ≤ l and for any ϕ ∈ C∞0 (Hn) such that e /∈ suppϕ, the function

λ 7→ |λ| k2 π̃λ(ϕum) lies in L2(Rε;K). We want to prove the claim for k = l+1.
Since for any integer r ≥ 0, the function λ 7→ |λ|− r2 is C∞ and bounded

on Rε, it follows that also λ 7→ |λ|
k−r
2 π̃λ(ϕu

m) lies in L2(Rε;K). Thus in the
inductive hypothesis we can take any integer k ≤ l.

Let ϕ ∈ C∞0 (Hn) such that e /∈ suppϕ. Applying π̃λ to the compactly
supported distributions in (4.28), we get:

π̃λ(P (ϕum)) =
r∑
j=1

π̃λ(Qj(ϕju
m)).

Hence by (2.19):

π̃λ(ϕu
m)π̃λ(P

t) =
r∑
j=1

π̃λ(ϕju
m)π̃λ(Q

t
j).

Since P , and hence P t, is homogeneous of degree m whereas each Qj, and
hence Qt

j, is homogeneous of degree sj < m, we have by (4.6):

|λ|
m
2 π̃λ(ϕu

m)π̃1(P t) =
r∑
j=1

|λ|
sj
2 π̃λ(ϕju

m)π̃1(Qt
j), λ > 0

|λ|
m
2 π̃λ(ϕu

m)π̃−1(P t) =
r∑
j=1

|λ|
sj
2 π̃λ(ϕju

m)π̃−1(Qt
j), λ < 0.

(4.32)
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As we have noticed in the beginning of the proof of Proposition 4.4.7,
π̃1(P t) and π̃−1(P t) have bounded two-sided inverses, call them L1 and L−1

respectively.
Since P t is homogeneous of degree m and π(ξ,η)(P

t) 6= 0 for every (ξ, η) ∈
R2n \ {0}, it follows by Lemma 4.4.3 that L1 and L−1 are bounded operators
from L2(Rn) into H(m,1)(Rn).

Moreover, by Lemma 4.4.2 for every j = 1, . . . , r, π̃1(Qt
j) and π̃−1(Qt

j) are
bounded operators from H(m,1)(Rn) to L2(Rn).

Thus if we set T1,j = π̃1(Qt
j)L1 and T−1,j = π̃−1(Qt

j)L−1, we know that
these are bounded operators from L2(Rn) to L2(Rn) which map S(Rn) into
S(Rn).

Applying L1 to the �rst equation in (4.32) and L−1 to the second one, we
get:

π̃λ(ϕu
m) =

r∑
j=1

|λ|
sj−m

2 π̃λ(ϕju
m)T1,j, λ > 0

π̃λ(ϕu
m) =

r∑
j=1

|λ|
sj−m

2 π̃λ(ϕju
m)T−1,j, λ < 0.

These equations are initially valid between operators de�ned on S(Rn).
But, since π̃λ(ϕu

m), π̃λ(ϕju
m), T1,j and T−1,j are all bounded operators from

L2(Rn) to L2(Rn) and S(Rn) is dense in L2(Rn), we can view the equations
above as equations between bounded operators on L2(Rn).

If we now multiply both equations by |λ| l+1
2 , we get:

|λ|
l+1
2 π̃λ(ϕu

m) =
r∑
j=1

|λ|
l+1+sj−m

2 π̃λ(ϕju
m)T1,j, λ > 0

|λ|
l+1
2 π̃λ(ϕu

m) =
r∑
j=1

|λ|
l+1+sj−m

2 π̃λ(ϕju
m)T−1,j, λ < 0.

(4.33)

Since sj−m < 0 for any j, we have l+1+sj−m ≤ l. Hence, by inductive

hypothesis, the function λ 7→ |λ|
l+1+sj−m

2 π̃λ(ϕju
m) lies in L2(Rε;K) for any

j. Letting R+
ε = {λ ∈ R|λ > ε} and R−ε = {λ ∈ R|λ < −ε}, we have by

restriction that λ 7→ |λ|
l+1+sj−m

2 π̃λ(ϕju
m) lies in L2(R+

ε ;K) and L2(R−ε ;K).
We now need to observe the following.

Remark 16. It can be shown that if (Ω, µ) is any measure space, H a Hilbert
space and T a bounded linear operator T : H → H, then for any function
λ 7→ f(λ) in L2(Ω;H), the function λ 7→ T (f(λ)) also lies in L2(Ω;H).
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Indeed, it can be shown that λ 7→ T (f(λ)) is µ-measurable and(∫
Ω

||T (f(λ))||2dµ(λ)

) 1
2

≤ ||T ||
(∫

Ω

||f(λ)||2dµ(λ)

) 1
2

.

In our particular case, we recall that every bounded linear operator T :
L2(Rn)→ L2(Rn) determines a bounded linear operator on the Hilbert space
K of Hilbert-Schmidt operators on L2(Rn), de�ned by K 3 S 7→ ST ∈ K.

Thus, by the previous Remark the function

λ 7→ |λ|
l+1+sj−m

2 π̃λ(ϕju
m)T1,j

lies in L2(R+
ε ;K) for any j, and the function

λ 7→ |λ|
l+1+sj−m

2 π̃λ(ϕju
m)T−1,j

lies in L2(R−ε ;K) for any j.

Hence, by (4.33) the function λ 7→ |λ| l+1
2 π̃λ(ϕu

m) lies in L2(Rε;K) and
this completes the proof.

Lemma 4.4.9. Let k ≥ 0 be an integer and let ϕ ∈ C∞0 (Hn) such that
e /∈ suppϕ. Then the function λ 7→ |λ|kπ̃λ(ϕum) lies in L2({0 < |λ| ≤ ε};K).

Proof. We argue exactly as we have done before in the case k = −2N (actu-
ally we do not need the hypothesis that e /∈ suppϕ).

Since π̃λ(ϕu
m) = π̃λ(ϕu

m
0 ) + π̃λ(ϕu

m
∞), it su�ces to show that both:

λ 7→ |λ|kπ̃λ(ϕum0 ) (4.34)

and
λ 7→ |λ|kπ̃λ(ϕum∞) (4.35)

lie in L2({0 < |λ| ≤ ε};K).
By Lemma 4.4.6 we know that ϕum0 ∈ L1(Hn) ∩ L2(Hn). Thus by

Plancherel Theorem, the function λ 7→ π̃λ(ϕu
m
0 ) lies in L2(R \ {0}), and

so, by restriction, it also lies in L2({0 < |λ| ≤ ε};K). But λ 7→ |λ|k is C∞

and bounded on {0 < |λ| ≤ ε}, thus (4.34) lies in L2({0 < |λ| ≤ ε};K).
Moreover, by (4.29):

|λ|kπ̃λ(ϕum∞) =
N∑
j=0

(−i)j|λ|kλjπ̃λ(ϕjf).

Arguing as before, we have that the function λ 7→ π̃λ(ϕjf) is in L2({0 <
|λ| ≤ ε};K) for any j = 0, . . . , N . Since the function λ 7→ |λ|kλj is C∞ and
bounded on {0 < |λ| ≤ ε}, it follows that also (4.35) lies in L2({0 < |λ| ≤
ε};K).
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These two lemmas complete the proof of the proposition because they
show that for any integer k ≥ 0 and for any ϕ ∈ C∞0 (Hn) such that e /∈ suppϕ,
the function:

λ 7→ |λ|kπ̃λ(ϕum)

lies in L2(R \ {0};K).

Theorem 4.4.10. Let P ∈ U(h) be homogeneous of degree m and satisfy:

i) π(ξ,η)(P ) 6= 0 for every (ξ, η) ∈ R2n \ {0};

ii) π̃1(P ), π̃−1(P ) both have bounded two-sided inverses.

Then the parametrix u = v ∗ (δ + um) constructed above for P is C∞ away
from e.

Proof. As we have noted in the beginning of the proof of Proposition 4.4.7,
we can assume without loss of generality that P + Zm is elliptic (in fact we
needed this hypothesis to construct the parametrix).

First, we observe that, by construction, v ∈ E ′(Hn) is C∞ away from
e. Since convolution by a distribution which is C∞ away from e does not
increase singular support, it su�ces to show that um is C∞ away from e
(then also δ + um is C∞ away from e).

Since Z lies in the center of U(h), so does Zm. In particular, Zm commutes
with P . Hence, for every integer k > 0, we have:

(P + Zm)kum =
k∑
j=0

(
k

j

)
ZmjP k−jum.

Since Pum = Zmδ, which is supported at e, then P k−jum is supported at
e when j < k. Thus if we multiply (P+Zm)kum by any function ϕ ∈ C∞0 (Hn)
such that e /∈ suppϕ, the only non vanishing term will be the one with j = k,
i.e.

ϕ(P + Zm)kum = ϕZmkum. (4.36)

We can prove (proceeding in the same way as in the proof of (4.25)) that

ϕZmkum =
mk∑
j=0

Zj(ϕju
m),

where ϕj ∈ C∞0 (Hn) such that suppϕj ⊂ suppϕ.
Indeed we proceed by induction on mk.
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When mk = 1, then:

ϕZum = Z(ϕum)− [Z, ϕ]um,

hence we have the claim with ϕ0 = −[Z, ϕ] and ϕ1 = ϕ.
Suppose now that we have proved the claim for mk and we prove it for

mk + 1. We have:

ϕZmk+1um = ϕZmk(Zum).

Remembering that Zum = um+1, we can use the inductive hypothesis so
this equals to:

mk∑
j=0

Zj(ϕjZu
m) =

mk∑
j=0

Zj+1(ϕju
m)−

mk∑
j=0

Zj([Z, ϕj]u
m).

Hence, we have the claim if we take ψ0 = [Z, ϕ0], ψ1 = ϕ0 − [Z, ϕ1], . . . ,
ψmk+1 = ϕmk.

Since e /∈ suppϕj for any j, it follows by Proposition 4.4.7 that Zj(ϕju
m) ∈

L2(Hn) for every j = 0, . . . ,mk. Hence, ϕZmkum ∈ L2(Hn).
Thus, by (4.36) ϕ(P + Zm)kum ∈ L2(Hn) for every integer k > 0 and for

every ϕ ∈ C∞0 (Hn) such that e /∈ suppϕ. Since (P +Zm)k is elliptic of order
mk, regularity results for elliptic operators imply that um ∈ Hmk

loc (Hn \ {e}),
where Hs

loc denotes the usual Sobolev space.
Since k is arbitrary, it follows by Sobolev lemma that um ∈ C∞(Hn \{e})

and this completes the proof.

Remark 17. 1. From the previous Theorem and 1.10.2, it follows that P t

is hypoelliptic.

2. As we have observed in the beginning of the proof of Proposition 4.4.7,
if P satis�es the hypothesis of the previous Theorem, then so do P ∗,
P̄ and P t. In particular, it follows that also P is hypoelliptic.

3. Hence, the previous Theorem shows that in Theorem 4.0.8 condition 2
implies 1.

4.5 Necessity for hypoellipticity

We will now prove a necessary condition for P and P t to be hypoelliptic,
that will conclude the proof of Theorem 4.0.8.
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Lemma 4.5.1. Let P be a di�erential operator on Hn such that both P and
P t are hypoelliptic. Then there exist distributions u1, u2 ∈ E ′(Hn) both C∞

away from e and functions f1, f2 ∈ C∞0 (Hn) such that:

Pu1 = δ + f1, (4.37)

P tu2 = δ + f2. (4.38)

Proof. Since P t is hypoelliptic, then by Theorem 1.10.1 P is locally solvable,
i.e. there exist a neighborhood V of e and a distribution u ∈ D′(Hn) such
that:

Pu = δ

in V . From the hypoellipticity of P and the fact that δ is C∞ away from e, it
follows that also u is C∞ away from e. We can choose (eventually restricting
V ) V = B(e, r) for some r > 0.

Let φ ∈ C∞0 (B(e, r)), φ ≡ 1 on B(e, r
2
). Then φu ∈ E ′(Hn), it is C∞ away

from e and it satis�es:

P (φu) = φPu+ [P, φ]u = φδ + [P, φ]u = δ + [P, φ]u.

But [P, φ] contains derivatives of φ that vanish near e, thus f1 = [P, φ]u ∈
C∞0 (Hn). Hence u1 = φu satis�es (4.37).

Similarly, (4.38) holds.

Theorem 4.5.2. Let P ∈ U(h) be homogeneous of degree m and suppose
that both P and P t are hypoelliptic. Then:

i) π(ξ,η)(P ) 6= 0 for every (ξ, η) ∈ R2n \ {0};

ii) neither of the equations π̃λ(P )v = 0, π̃λ(P
∗)v = 0 has a nonzero solu-

tion v ∈ S(Rn) for any λ ∈ R \ {0}.

Proof. Applying (4.37) with P replaced by P̄ , we have P̄ u1 = δ + f1. Ap-
plying now to both sides the representations π(ξ,η), we get:

π(ξ,η)(P̄ u1) = π(ξ,η)(δ) + π(ξ,η)(f1).

Now we recall that π(ξ,η)(δ) = I (because this is valid for every unitary
irreducible representation) and by (2.19) π(ξ,η)(P̄ u1) = π(ξ,η)(u1)π(ξ,η)(P̄

t).

Moreover, by (4.9) π(ξ,η)(P̄
t) = π(−ξ,−η)(P̄ ) = π(ξ,η)(P ). Thus we get:

π(ξ,η)(u1)π(ξ,η)(P ) = 1 + π(ξ,η)(f1). (4.39)
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When, instead, we apply π̃λ for every λ ∈ R \ {0} to both sides of P̄ u1 =
δ + f1, we get for every v ∈ S(Rn):

π̃λ(u1)π̃λ(P̄
t)v = (I + π̃λ(f1))v.

But P̄ t = P ∗, thus by (2.7) π̃λ(P̄
t) = π̃λ(P

∗) = π̃λ(P )∗. Hence

π̃λ(u1)π̃λ(P )∗v = (I + π̃λ(f1))v. (4.40)

Applying now π̃λ for every λ ∈ R \ {0} to both sides of (4.38), we get for
every v ∈ S(Rn):

π̃λ(u2)π̃λ(P )v = (I + π̃λ(f2))v. (4.41)

If we use exponential coordinates on Hn, it follows from (4.1) that for any
ϕ ∈ C∞0 (Hn):

π(ξ,η)(ϕ) =

∫
Hn
ϕ(x, y, z)π(ξ,η)(x, y, z)dxdydz =

=

∫
Hn
ϕ(x, y, z)ei(x·ξ+y·η)dxdydz = ϕ̂(−ξ,−η, 0),

where ϕ̂ denotes the Fourier transform of ϕ.
Applying this together with (4.7) to (4.39), we get for any r ∈ R+:

rmπ(rξ,rη)(u1)π(ξ,η)(P ) = 1 + f̂1(−rξ,−rη, 0). (4.42)

We now argue as in the proof of Proposition 3.0.7, that is: since f1 ∈
C∞0 (Hn), we have f̂1 ∈ S(Hn), hence for �xed (ξ, η) 6= (0, 0), |f̂1(−rξ,−rη, 0)| <
ε for r su�ciently large. Therefore, for r su�ciently large the right-hand side
of (4.42) does not equal 0, and so π(ξ,η)(P ) 6= 0. Hence i) holds.

Applying now (4.6) to (4.40) and (4.41), we see that for any r ∈ R+:

r
m
2 π̃rλ(u1)π̃λ(P )∗v = (I + π̃rλ(f1))v. (4.43)

r
m
2 π̃rλ(u2)π̃λ(P )v = (I + π̃rλ(f2))v. (4.44)

But by Plancherel Theorem (5), we know that ||π̃rλ(f1)|| < ε and ||π̃rλ(f2)|| <
ε for r su�ciently large and �xed λ. Hence by Neumann series, for r su�-
ciently large, I + π̃rλ(f1) and I + π̃rλ(f2) are invertible bounded linear op-
erators on L2(Rn). In particular, the right-hand sides of (4.43) and (4.44)
cannot be 0 unless v = 0. Thus ii) follows.

This theorem shows that in Theorem 4.0.8 condition 1 implies 3. Since in
the previous section we proved that 2 implies 1 and by Lemma 4.4.3 condition
3 implies 1, we have proved Theorem 4.0.8 (modulo Lemma 4.4.3).
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