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Scuola di Scienze

Corso di Laurea Magistrale in Fisica

Quantum field theory of (p, 0)-forms on
Kähler manifolds

Relatore:

Prof. Fiorenzo Bastianelli

Correlatore:

Dott. Roberto Bonezzi

Presentata da:

Marco Cofano

Sessione I

Anno Accademico 2012/2013





Contents

Table of contents iii

Introduction 1

1 (p, 0)-Forms: an introduction 7

1.1 Complex manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Holomorphic/Antiholomorphic decomposition . . . . . . . . 8

1.1.2 (r, s)-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.3 Dolbeault differentials . . . . . . . . . . . . . . . . . . . . . 9

1.1.4 Hermitian metric and Kähler manifolds . . . . . . . . . . . 10

1.1.5 Adjoint Dolbeault operators . . . . . . . . . . . . . . . . . . 12

1.2 Equations of motion for the (p, 0)-form gauge theory . . . . . . . . 13

1.2.1 Redundant gauge invariances . . . . . . . . . . . . . . . . . 14

1.2.2 Classical Action . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Coupling with a background Kähler metric . . . . . . . . . . . . . 14

1.3.1 Minimal coupling with the Kähler metric . . . . . . . . . . 14

1.3.2 Coupling with the U(1) part of the holonomy . . . . . . . . 15

2 Gauge systems and the BV-BRST formalism 17

2.1 Constrained dynamical systems . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Gauge invariance . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Gauge fixing and observables . . . . . . . . . . . . . . . . . 21

2.1.3 Longitudinal derivatives . . . . . . . . . . . . . . . . . . . . 22

2.2 BRST formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 The general construction . . . . . . . . . . . . . . . . . . . . 23

2.2.2 BRST differential in gauge theories . . . . . . . . . . . . . . 25

i



CONTENTS CONTENTS

2.2.3 Canonical action for s . . . . . . . . . . . . . . . . . . . . . 26

2.3 Action formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Equation of motion and Noether identities . . . . . . . . . . 27

2.3.2 Reducible case . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3 Covariant phase space . . . . . . . . . . . . . . . . . . . . . 29

2.4 Batalin-Vilkovisky formalism . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 The Koszul-Tate differential δ . . . . . . . . . . . . . . . . . 30

2.4.2 Longitudinal derivative . . . . . . . . . . . . . . . . . . . . . 32

2.4.3 Antibrackets . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.4 The master equation . . . . . . . . . . . . . . . . . . . . . . 35

2.4.5 Residual gauge invariance and the gauge fixing fermion . . . 36

3 p-forms in the Batalin-Vilkoviski approach 39

3.1 Real p-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 The 2-form case . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.2 The Ghost-Antighost Tree Diagram . . . . . . . . . . . . . 45

3.1.3 The p-form case . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.4 Gaussian gauge fixing . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Complex (p, 0)-form . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Example: complex (1, 0)-forms . . . . . . . . . . . . . . . . . 51

4 Effective Action and Seeley DeWitt coefficients 55

4.1 Effective action for (p, 0)-forms . . . . . . . . . . . . . . . . . . . . 55

4.2 Effective action expansion: heat kernel method . . . . . . . . . . . . 56

4.2.1 Heat kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Relation between the heat kernel and the Effective Action . 57

4.2.3 Heat kernel Expansion . . . . . . . . . . . . . . . . . . . . . 58

4.3 Seeley-DeWitt coefficients for the (p, 0)-forms . . . . . . . . . . . . 60

4.3.1 Coefficient b0 . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.2 Coefficient b2 . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Coefficient b4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Conclusions 69

A Totally antisymmetric tensors 71



INDEX iii

B Binomial coefficient: useful formulas. 73

References 77





Introduction

In this thesis we want to study the quantum field theory of a special class

of differential forms living on a complex manifold endowed with a Kähler metric.

Higher forms gauge theories have been studied for a long time and find applications

in a very broad class of physical theories. They are quite ubiquitous as low energy

states in String theories [15] [14]. Various supergravity models made extensive use

of antisymmetric tensor fields, and it was in this wide area that the first complete

and general quantization schemes for p-forms appeared [24] [25] [22]. They are

also useful in the theory of vortex motion in an irrotational incompressible fluid

[20].

As we will see, one can separate the coordinates basis of a complex manifold into

two pieces: holomorphic and antiholomorphic coordinates, respectively denoted by

z and z̄. We will deal only with forms of p degree in the holomorphic sector or

(p, 0)-forms. The main variable of our theory is a (p, 0)-form potential:

A =
1

p!
Aµ1...µpdz

µ1 ∧ . . . ∧ dzµp . (1)

As in the Maxwell, real 1-form case, one can define a (p + 1, 0) field strength for

these complex forms, with coordinates:

Fµ1...µp+1 = (p+ 1)∂[µ1Aµ2...µp+1] = ∂µ1Aµ2...µp+1 ± cyclic perm, (2)

where [. . .] denotes weighted antisymmetrization. The equations of motion of our

system in terms of the potential A are:

∂̄µ∂µAµ1...µp + (−1)pp∂̄µ∂[µ1Aµ2...µp]µ = 0 (3)

and possess the very important feature of being invariant under gauge transfor-

mations:

Aµ1...µp = p∂[µ1Λ
0
µ2...µp], (4)

1



2 INTRODUCTION

where Λ0
µ2...µp

is a (p−1, 0)-form gauge parameter. The main feature of those gauge

invariances is that they are not all independent, indeed they possess redundancy,

or they are completely ineffective if we choose for gauge parameter:

Λ0
µ1...µp−1

= p∂[µ1Λ
1
µ2...µp−1]. (5)

It is clear that there is a full tower of redundancy of this kind, until one reaches the

last step in which the gauge parameter comes without indices (i.e. it is a 0-forms).

The quantization of systems with (redundant) gauge invariances is a well stud-

ied subject. All these gauge invariances are there to make manifest some symme-

tries like the Lorentz one, but usually the canonical quantization is a hamiltonian

procedure that spoils manifest Lorentz covariance to retain manifest unitarity. Sev-

eral formalisms have been constructed to deal with gauge systems without spoiling

neither unitarity or covariance. Quite all of them need the introduction of addi-

tional variables of opposite statistics (instead of a reduction of the phase space)

named ghosts, to account for the elimination of the gauge degrees of freedom from

the physical sector. The first example of such a procedure is the Faddeev-Popov

trick for SU(N) non abelian gauge theories [8]. In this path integral approach the

integration over all the degrees of freedom yields an over counting because there

are entire (infinite) subsets of configuration space that are physically equivalent.

To cope with this problem one formally divides by the volume of those subsets.

This amounts to a redefinition of the integration measure and the appearance of a

functional jacobian (i.e. the Faddeev-Popov determinant). This determinant can

be represented as an integration over fermionic variables, the ghosts. In the new

action there is no gauge invariance anymore but it appears a new, odd, global,

nilpotent symmetry between old fields and new ghosts, called BRST symmetry,

named after the four physicists Becchi, Rouet, Stora and Tyutin. The BRST

symmetry revealed by the Fadeev-Popov trick is actually a very general structure.

Indeed, it can be proved that this symmetry can be realized from scratch for all

gauge systems and that the ghosts are exactly what is needed to eliminate the

gauge degrees of freedom from the physical sector. This enlarged space of vari-

ables could be achieved both in an Hamiltonian or Lagrangian setting. We will

mainly review the Lagrangian setting for it is the best suited when redundancies

are present, and it is quite powerful in application. The main difference here is

that the symplectic structure of the Hamiltonian formalism is replaced by a odd-
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symplectic one provided by a new kind of brackets called “Antibrackets”. The

variables needed for a complete BRST description will be separated in fields and

antifields (indeed this is sometimes called the Field-Antifield formalism).

Since the first studies, thirty years ago, mainly due to physicists working on

Supergravity, it has been realized that the redundancies in the gauge invariances

need a general modification of the BRST structure and require the introduction

of a tower of ghost variables (named ghosts for ghosts). Also in the BV formalism

we will see that for each stage of reducibility a new set of fields and antifields is

required.

The goal of this thesis will be the calculation of an expansion of the 1-loop

effective action Γ of the theory that encodes some UV divergences at the quantum

level. Usually the starting point is the representation of the 1-loop effective action

in terms of the trace of the Heat kernel of the (kinetic) operator D:

Γ =

∫
dt

t
Tr
(
e−tD

)
. (6)

For small t, the heat trace has an expansion, whose coefficients are called Seeley-

DeWitt coefficients. This is a standard tool to compute the effective action at

1 loop [26] [12] [18] [16] [11]. The coefficients provide all the information about

divergences and counterterms needed in the renormalization of the theory.

There are other approaches that could be used to find those coefficients, like

the worldline formalism [21] [3] [6] [4]. The starting point is the same eq. (6). The

difference is that this approach represents the heat trace of some field theory with

kinetic operator D, as a path integral of a particle mechanical model described by

its world line coordinates and additional internal degrees of freedom. In particular

in [5] it has been found the correct particle model that reproduces the gauge

structure of the (p, 0)-form gauge theory. In that paper a calculation of the first few

Seeley-DeWitt coefficient has been performed. Moreover, a non trivial coupling

with the trace of the background connection Γ arose in the quantization of the

particle model.

In this thesis we will see how the same Seeley-DeWitt coefficients are computed

in the more standard Batalin-Vilkovisky approach following the Heat Kernel ex-

pansion, even in the presence of the further coupling with the trace part of the

connection. We verify the correctness of the worldline approach reproducing ex-

actly the same coefficients as in [5].
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We conclude this introduction with a brief outline of the various chapters.

• In the First Chapter we will give some concepts in complex differential ge-

ometry and Kähler manifolds in particular. We will introduce the classical

theory of (p, 0)-forms we want to study. We will derive the equations from an

action principle and we will couple them to a curved background geometry.

• In the Second Chapter we will focus on the connections between constrained

systems and gauge ones, reviewing the BRST construction and the Fields-

Antifields formalism. We will introduce the concepts of ghosts for ghosts and

the cohomological structure behind BRST invariance. At the end we will find

the master equations of the BV formalism and introduce the problem of the

gauge fixing procedure.

• In the Third Chapter we will construct step by step the BV formalism for

the (p, 0)-form theory. We will start with the simpler case of real p-forms to

give a first bite of the formalism, then we will generalize it to the full theory

we want to deal with.

• In the Fourth Chapter we will review the connections between the 1-loop

effective action and the heat kernel. We will state the general formulas for

the first few Seeley-DeWitt coefficients in a form that is best suited for the

comparison with other results in literature. Then we will perform explicitly

the computation of some coefficients.



Sommario

In questa tesi abbiamo studiato la quantizzazione di una teoria di gauge di

forme differenziali su spazi complessi dotati di una metrica di Kähler . La parti-

colarità di queste teorie risiede nel fatto che esse presentano invarianze di gauge

riducibili, in altre parole non indipendenti tra loro. L’invarianza sotto trasfor-

mazioni di gauge rappresenta uno dei pilastri della moderna comprensione del

mondo fisico. La caratteristica principale di tali teorie è che non tutte le variabili

sono effettivamente presenti nella dinamica e alcune risultano essere ausiliarie. Il

motivo per cui si preferisce adottare questo punto di vista è spesso il fatto che

tali teorie risultano essere manifestamente covarianti sotto importanti gruppi di

simmetria come il gruppo di Lorentz. Non sempre i metodi usati per la quan-

tizzazione di tali teorie preservano la manifesta covarianza sotto trasformazioni

di Lorentz o mantengono la manifesta unitarietà nel passaggio alla teoria quan-

tistica. La maggior parte dei metodi che preservano queste importanti proprietà

richiede l’introduzione di campi non fisici detti ghosts e di una simmetria globale e

fermionica che sostituisce l’iniziale invarianza locale di gauge, la simmetria BRST.

Nella presente tesi abbiamo scelto di utilizzare uno dei più moderni formalismi

per il trattamento delle teorie di gauge: il formalismo Lagrangiano di Batalin-

Vilkovisky. Questo metodo prevede l’introduzione di ghosts per ogni grado di

riducibilità delle trasformazioni di gauge e di opportuni “antifields” associati a

ogni campo precedentemente introdotto. Questo formalismo ci ha permesso di

arrivare direttamente a una completa formulazione in termini di path integral

della teoria quantistica delle (p, 0)-forme. In particolare esso permette di dedurre

correttamente la struttura dei ghost della teoria e la simmetria BRST associata.

Per ottenere questa struttura è richiesta necessariamente una procedura di gauge

fixing per eliminare completamente l’invarianza sotto trasformazioni di gauge. Tale

procedura prevede l’eliminazione degli antifields in favore dei campi originali e dei

5



6 INTRODUCTION

ghosts.

Nell’ultima parte abbiamo presentato un’espansione dell’azione efficace (eu-

clidea) che permette di tenere sotto controllo le divergenze (a 1 loop) della teoria.

In particolare abbiamo calcolato i primi coefficienti di tale espansione (coefficienti

di Seeley-DeWitt) tramite la tecnica dell’heat kernel. Questo calcolo ha tenuto

conto dell’eventuale accoppiamento a una metrica di background cosi come di un

possibile ulteriore accoppiamento alla traccia della connessione associata alla met-

rica di Kähler .



Chapter 1

(p, 0)-Forms: an introduction

1.1 Complex manifolds

Here we will introduce some general concepts about complex manifolds. We

will stress only basic facts that differs from the real case. For a detailed description

we refer to Nakahara [10].

We define a complex manifold M in the usual way:

Definition 1.1. A complex manifold M is defined by the following properties:

1. M is a topological space

2. there exist a family of pairs (Ui, φi) (i.e. an Atlas), where Ui are open sets

that cover M and φi are homeomorphisms from M to an open subset of Cd

3. for each Ui and Uj with non-empty intersection, the map ψji = φj ◦ (φi)
−1

from φi(Ui ∩ Uj) to φj(Ui ∩ Uj) is holomorphic (i.e. it satisfies the Cauchy-

Riemann equations).

Some comments are in order: first, M is a differentiable manifold of real dimen-

sion 2d. Second, there could be many atlases, if the union of two atlases is again

an atlas, that is, it satisfies the properties listed above, then it is said to belong

to the same complex structure, defined as the collection of equivalent classes of

atlases.

7



8 1. (p, 0)-Forms: an introduction

1.1.1 Holomorphic/Antiholomorphic decomposition

Let z be the coordinates of a point p ∈ (U, φ), the tangent space TpM is spanned

by 2d-vectors: 1 {
∂

∂zµi
,
∂

∂z̄µi

}
i = 1, . . . , d. (1.1)

We define the tensor J as:

Jp : TpM → TpM (1.2)

Jp
∂

∂zµ
= i

∂

∂zµ
; Jp

∂

∂z̄µ
= −i ∂

∂z̄µ
(1.3)

Jp has the following very important property:

J2
p = −1 (1.4)

M is a complex manifold and the complex structure implies the global existence

of this tensor. If we were on a real even-dimensional manifold, even the global

existence of J would be in doubt. In general an even-dimensional manifold M ′

that has a global tensor like J is defined an almost complex manifold. What is

missing for M ′ to become a complex manifold is an integrability condition on the

J , which allows to introduce complex coordinates.

The property 1.4 allows one to decompose TpM
C into two orthogonal subspaces,

denoted TpM
+ and TpM

− respectively. The vectors belonging to the first one are

called holomorphic, the ones belonging to the second one are called antiholomor-

phic. The decomposition takes the form

TpM
C = TpM

+ ⊕ TpM− (1.5)

where: TpM
± =

{
Z ∈ TpMC JpZ = ±iZ

}
(1.6)

Obviously the vectors (1.1) are basis respectively of TpM
+ and TpM

−

We denote the space of complexified vector fields χ(M)C. The same decompo-

sition can be achieved on it with the use of J .

1Where the symbol of the coordinate z̄ is present we won’t put a bar on the index. We will

use barred indices only on general tensors or forms.
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1.1.2 (r, s)-forms

Let M be a complex differentiable manifold. We define as usual the space

of forms Ωr(M) (we have not retained the dependency from the point because we

denote by ”form” an object in the space of sections of the antisymmetric cotangent

bundle). If we take two r-forms α and β belonging to Ωr(M) , it is possible to

define a complex r-form as γ = α + iβ ∈ Ωr(M)C.

Now, given the orthogonal decomposition 1.5 it is possible to define a (r, s)-form

in the following way:

Definition 1.2. Take a complex manifold M of complex dimension d, a form

α ∈ Ωq(M)C, 2 integers r, s ≥ 0 such that r+s = q, and vectors Vi ∈ χC belonging

to χ+ or χ−, where i = 1 . . . q.

ω is called a (r, s)-form ∈ Ωr,s(M) if ω(V1 . . . Vq) = 0 unless there are r of the Vi ∈
χ+ and s of the Vi ∈ χ−

In the basis (1.1) a (r, s)-form ω is simply

ω =
1

r!s!
ωµ1...µr,ν̄1...ν̄s dz

µ1 ∧ . . . ∧ dzµr ∧ dz̄ν1 ∧ . . . ∧ dz̄νs (1.7)

the real dimension of Ωr,s(M) is given by

DimR Ωr,s(M) =

(
d

r

)(
d

s

)
0 ≤ r, s ≤ d (1.8)

1.1.3 Dolbeault differentials

The de Rham differential d has a simple action on (r, s)-forms in the basis (1.1),

namely:

dω =
1

r!s!

{
∂

∂zλ
ωµ1...µr,ν̄1...ν̄s dz

λ +
∂

∂z̄λ
ωµ1...µr,ν̄1...ν̄s dz̄

λ

}
∧ dzµ1 ∧ . . . ∧ dzµr ∧ dz̄ν1 ∧ . . . ∧ dz̄νs (1.9)

This action can be separated into two pieces, called the Dolbeault operators:

d = ∂ + ∂̄, (1.10)

where: ∂ : Ωr,s(M) → Ωr+1,s(M), (1.11)

∂̄ : Ωr,s(M) → Ωr,s+1(M), (1.12)

∂∂ = ∂̄∂̄ = (∂∂̄ + ∂̄∂) = 0, (1.13)
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i.e. they anticommute to each other and they are separately differentials. This

last property allows one to define the Dolbeault complex in the very same way one

defines the de Rham complex. For example in the case of ∂:

Ω0,s(M) → Ω1,s(M) → . . .→ Ωd,s(M) → 0. (1.14)

The cohomology group is defined as the set of equivalence classes of ∂-closed

(r, s)-forms denoted by Zr,s
∂ (M) (∂ω = 0) modulo the exact ones (i.e {ω ∈

Zr,s
∂ (M)∃η s.t. ω = ∂η)} denoted by Br,s

∂ (M).

1.1.4 Hermitian metric and Kähler manifolds

Let M be a Riemannian manifold and gMN be the components of a Rieman-

nian metric on it. Note that in holomorphic coordinates (denoted with greek

letters) there is a distinction between holomorphic and anti holomorphic indices,

the symmetry between all the indices is complete also in those coordinates.

gµν = gνµ (1.15)

gµ̄ν = gνµ̄ (1.16)

gµ̄ν̄ = gν̄µ̄. (1.17)

Definition 1.3. Let J be a complex structure, then g is an Hermitian metric if

satisfies

g(JX, JY ) = g(X, Y ) ∀X, Y ∈ χ(M). (1.18)

There are very important features related with this structure:

• JX is orthogonal to X with respect to the metric g, i.e. g(JX,X) = 0.

From this it follows that only gµν̄ = gν̄µ 6= 0.

• Every complex manifold has an Hermitian metric.

• One can define an inner product on TM± by

p(X, Y ) = g(X, Ȳ ). (1.19)
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One can define on M , Hermitian manifold, a 2-form Ω, called the Kähler form

as:

Ω(X, Y ) = g(JX, Y ) (1.20)

where X, Y ∈ TpM and J is an almost complex structure. In holomorphic co-

ordinates this is a (1, 1)-form so only the mixed components are different from

zero.

It is possible to introduce also covariant derivatives ∇ and show that the only

non vanishing components of the connection are Γλµν and Γλ̄µ̄ν̄ . For example in

complex coordinates the covariant derivatives acts on a tensor T λ̄µν as:

(∇ηT )λ̄µν = ∂ηT
λ̄
µν − ΓξηµT

λ̄
ξν − ΓξηνT

λ̄
µξ (1.21)

(∇η̄T )λ̄µν = ∂ηT
λ̄
µν + Γλ̄η̄ξ̄T

ξ̄
µν (1.22)

In this thesis we are interested in a special class of complex manifolds calledKähler

manifold.

Definition 1.4. A Kähler manifold is an Hermitian manifold M with metric g

whose kähler form is d-closed. The metric g is called now a Kähler metric.

If one requires the metric compatibility (that is the metric is covariantly con-

stant) then the connection coefficients are:

Γλµν = gη̄λ∂µgνη̄, Γλ̄µ̄ν̄ = gηλ̄∂µ̄gν̄η. (1.23)

One can also prove directly that the complex structure J is covariantly constant

with respect to this connection.

(∇AJ)BC = 0. (1.24)

where A, B, C are either holomorphic or anti-holomorphic indices.

The Kähler nature of g has some consequences on the differential geometry of

M . The connection Γ is torsionless, that is it is symmetric in the covariant indices

Γλµν = Γλνµ

Γλ̄µ̄ν̄ = Γλ̄ν̄µ̄. (1.25)
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The Riemann tensor has only two kind of non vanishing components, namely:

Rρ
σµ̄ν = ∂µ̄Γρσν

Rρ̄
σ̄µν̄ = ∂µΓρ̄σ̄ν̄ . (1.26)

Moreover the Riemann tensor has all the usual symmetries, but for a kähler man-

ifold there is one extra symmetry as one can easily see from (1.25) (1.26).

Rρ
σµ̄ν = Rρ

νµ̄σ, (1.27)

along with all the other symmetries derived from this last one and known symme-

tries of the Riemann tensor.

1.1.5 Adjoint Dolbeault operators

If α is a (r, s)-form, then the Hodge-* map is defined as:

∗̄ : Ωr,s(m) → Ωd−r,d−s(M), (1.28)

∗̄α =∗ ᾱ. (1.29)

For example in holomorphic coordinates, * is:

∗dzµ1 ∧ . . . ∧ dzµr ∧ dz̄ν1 ∧ . . . ∧ dz̄νs ∝
ε µ1,...,µrµ̄r+1,...,µ̄dε

ν1,...,νs
ν̄s+1,...,ν̄ddz̄

µr+1 ∧ . . . ∧ dz̄µd ∧ dz̄νs+1 ∧ . . . ∧ dz̄νd . (1.30)

With the help of the Hodge-* operator we can construct an inner product between

forms also in the case of complex manifolds:

(α, β) =

∫
M

α ∧ ∗̄β (1.31)

and define adjoints with respect to this product:

(α, ∂β) = (∂†α, β) (1.32)

(α, ∂̄β) = (∂̄†α, β) (1.33)

∂† : Ωr,s(M) → Ωr−1,s(M) (1.34)

∂̄† : Ωr,s(M) → Ωr,s−1(M) (1.35)
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Since M is always even dimensional as a differentiable manifold, the adjoint of the

de Rham operator can always be written as:

d† = −∗d̄ ∗, (1.36)

and the two adjoint Dolbeault operators have the following form

∂† = −∗∂̄ ∗ (1.37)

∂̄† = −∗∂ ∗. (1.38)

1.2 Equations of motion for the (p, 0)-form gauge

theory

We are interested in this thesis in the quantum gauge theory of (p, 0)-forms.

The gauge invariance has a prominent role in the whole discussion and it implies

that in the Lagrangian there is no room for quadratic (mass) terms. The starting

point are the Maxwell-like equations written in the geometric form.

Let F ∈ Ω(p+1,0)(M) on a complex manifold M of complex dimension d. The

equations of motion we want to study are:

∂F = 0 (1.39)

∂†F = 0 (1.40)

F = ∂A solves identically the Bianchi equation (1.39) and then the second equation

(1.40) becomes:

∂†∂A = 0 (1.41)

these equations have a simple and well known form when written in components,

in flat space:

∂[µFµ1...µp+1] = 0 (1.42)

∂̄µ1Fµ1...,µp+1 = 0 (1.43)

where the square brackets stand for weighted antisymmetrization.

The introduction of a gauge potential (p, 0)-form yields

Fµ1...µp+1 = (p+ 1)∂[µ1Aµ2...µp+1] = ∂µ1Aµ2...µp+1 ± cyclic perm, (1.44)

∂̄µ∂µAµ1...µp + (−1)pp∂̄µ∂[µ1Aµ2...µp]µ = 0 (1.45)
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1.2.1 Redundant gauge invariances

This system has one special feature with respect to the usual 1-form system.

As in the 1-form case, one has the possibility to add a (∂)-exact form to the gauge

potential without affecting the equations of motion. Indeed if A(p) → A(p)+∂λ(p−1)

then F(p+1) = ∂A(p) + ∂∂λ(p−1) = ∂A(p), since (∂)2 = 0, where we have indicated

the form degree in brackets. Moreover it is clear that also λ(p−1) shares the same

gauge invariance as A(p) and that there is a full tower of gauge invariances until

one reaches δλ(1) = ∂λ(0).

δA(p) = ∂A(p−1)

...

δλ(1) = ∂λ(0). (1.46)

As we will see, this crucial difference has profound implications and yields many

complications in the quantization procedure.

1.2.2 Classical Action

The construction of a classical action that reproduce the equations (1.40) as

Euler Lagrange equation is analogous to the case of a real Riemannian manifold

M , substituting the usual scalar product by (1.31).

S =

∫
M

F ∧ ∗̄ F, (1.47)

where F is a complex (p+ 1, 0)-form.

This action can be written in components as:

S =
1

(p+ 1)!

∫
M

ddzddz̄ F̄ µ1...µp+1Fµ1...µp+1 , (1.48)

1.3 Coupling with a background Kähler metric

1.3.1 Minimal coupling with the Kähler metric

The coupling with a background metric is performed substituting all the deriva-

tives with covariant ones. This substitution in particular does not spoil the crucial
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property of the Dolbeault operators of being nilpotent. In this way we can easily

recover the curved form of the equations of motion.

The adjoint Dolbeault operator become:

∂† = − δ

δ(dzµ)
gµν̄∂ν̄ . (1.49)

Indeed, the equations of motion (1.41) can be put in a more familiar form2 ex-

tracting the covariant Laplacian:

(∂†∂ + ∂∂†)A(p) − ∂∂†A(p) = 0, (1.50)

where A(p) = Aµ1...µpdz
µ1 ∧ . . . ∧ dzµp .

When written in components this equation has the following form :

− 1

2
∇2A(p) +

p

2
Ric · A(p) − ∂∂†A(p) = 0, (1.51)

where Ric ·A(p) = Rλ
µ1
Aλ,µ2,...,µpdz

µ1 ∧ . . .∧ dzµp . Note that the last term contains

a divergence of A, i.e. it can be set to zero or ignored with an appropriate gauge

fixing condition. Actually if we were not on a Kähler manifold it would have

appeared also a term proportional to the Riemann tensor contracted with two

indices of the form A (for p > 0), this term is:

p(p− 1)Rσ
µ1

ρ
µ2 Aσ,ρ,µ3...,µpdz

µ1 ∧ . . . ∧ dzµp , (1.52)

but this term is zero due to the fact that A is antisymmetric in the exchange of

(ρ, σ), while the Riemann tensor in the Kähler case is symmetric in the first and

third components (as well as in the second and fourth ones) as we saw in (1.27).

1.3.2 Coupling with the U(1) part of the holonomy

In [5] emerged a possible coupling of a (p, 0)-form with the trace of the connec-

tion Γ (that is the U(1) part of the holonomy group of the Kähler manifold M). In

that paper this possibility come from an ordering ambiguity in the quantization of

the relativistic particle model used in the worldline representation of the effective

2this form will be very important when we will compute the heat kernel coefficients for a

(p, 0)-form
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action of our theory. In our case this coupling has to be put in by hand to perform

a comparison with the results of that approach.

The minimal coupling with the trace of the connection amounts in a twisting

of the Dolbeault operator ∂:

∂q = (∂ + qΓ), (1.53)

where q measures the strength of the coupling and Γ is the 1-form Γ = Γλµλdz
µ .

This operator has the very important feature of being nilpotent, i.e. (∂q)
2 = 0.

This property allows one to follow the same arguments that lead to the equation of

motion (1.51) in the previous subsection, and to rephrase all the gauge invariances

in terms of this new differential.

In particular one finds that the adjoint operator acts like a twisted divergence:

∂†q = − δ

δ(dzµ)
gµν̄(∂ν̄ − qΓν̄). (1.54)

Moreover the equation of motion can be cast in the form (∂†q∂q + ∂q∂
†
q)A(p) −

∂q∂
†
qA(p) = 0, this yields in components two new parts, the first one adds a coupling

to the Ricci scalar R while the other one shifts the contribution to the coupling

with the Ricci tensor:(
−1

2
∇2
q + qR

)
A(p) +

p

2
(1− 4q)Ric · A(p) − ∂∂†A(p) = 0, (1.55)

where the covariant Laplacian now takes the form:

∇2
q = gµν̄ {(∇µ + qΓµ)(∇ν̄ − qΓν̄) + (∇ν̄ − qΓν̄)(∇µ + qΓµ)} (1.56)

Note that there is no contribution from the Riemann tensor as in (1.52). For later

purposes is better to rewrite the equation (1.55) in the following form:

D(p)A(p) − 2∂∂†A(p) = 0. (1.57)

The operator D(p) acts on the space of (p, 0)-forms and is:

D(p) = −(∇2
q + E) where (1.58)

E = −2qR1Ω(p,0)(M) − p(1− 4q)
{
Rν1

[µ1
δν2µ2 . . . δ

νp
µp]

}
, (1.59)

where the square brackets stand, as usual, for weighted antisymmetrization of the

indices.



Chapter 2

Gauge systems and the BV-BRST

formalism

In this thesis we want to deal with a system with gauge invariances. Those

systems are tightly connected to constrained dynamical ones. Indeed under very

general conditions one can state that quite every gauge system is a constrained one.

Even classically it could be quite tricky to fully understand the general structure of

those systems but it is certainly on the quantum side that the real difficulties arise.

A gauge system has the particular feature of being under determined: not all vari-

ables are physical and in the dynamics some functions with arbitrary dependence

on time appear. In the quantization procedure this could be a problem. One can

reduce the (phase) space before quantization and try to find a representation of the

Poisson algebra of the reduced phase space functions in terms of commutators or

retain all the variables and reduce the physical Hilbert space after quantization. In

each of these formalisms there are problems to deal with. As a general feature the

gauge symmetry is there to preserve manifest symmetries like manifest Lorentz co-

variance, while retaining the gauge variables also after the quantization procedure

can spoil manifest unitarity. Moreover the process of reduction and quantization

not always commute and the systems described could be different (see [19] for a

simple example).

There is a general scheme to reformulate a gauge theory, at classical and quan-

tum level, in a way that encodes the whole gauge structure without manifestly

showing it, and that, at the same time, does not spoil covariance nor unitarity.

17
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The theory is rewritten in an enlarged space of variables. This space is no more a

commuting space but it becomes a graded algebra, with Grassmann variables next

to the usual ones. The original gauge symmetry is substituted by a rigid (global),

odd (anticommuting), nilpotent symmetry called BRST symmetry between all the

variables. Instead of reducing the phase space to a physical one, one is forced to

enlarge it. The new variables are there to (in a certain sense) “kill” the gauge

degrees of freedom. This formalism has a beautiful algebraic structure that we

will try to briefly show in this chapter. Indeed the gauge invariant functions will

be the functions belonging to the zeroth order cohomology group of the BRST

symmetry operator. These ideas have been formulated both in a Hamiltonian and

Lagrangian setting. After a general introduction to the topic we will focus mainly

on the construction of the BRST symmetry in the Lagrangian case. This is called

Field-Antifield or Batalin-Vilkovisky formalism. There are two main features of

this formalism. First of all the lack of a Poisson structure that will be substituted

by another bracket structure. Second the need for a final gauge fixing procedure

to be sure that the BRST procedure cancels out all the remnant gauge invariances.

This topic is way to wide too be completely covered in a thesis so we will sketch

only the main ideas and concepts useful for a direct application to the theory

of (p, 0)-forms and refer the reader to the very complete books and reviews in

literature [17] [7] [13] [2].

2.1 Constrained dynamical systems

We postulate that our theory is defined by a Lagrangian action principle with

Lagrangian function denoted by L. The Euler-Lagrange equations of motion read:

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

. (2.1)

They can be written as a second order partial differential equation as:

Aij q̈
j +Bij q̇

j − Ci = 0. (2.2)

where Aij = δ2L
δq̇iδq̇j

, Bij = δ2L
δq̇iδqj

, Ci = δL
δqi

.

A constrained system is characterized by the non invertibility of the Aij matrix.

This means that not all the accelerations can be determined by (qi, q̇i). In the
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dynamics arbitrary functions of time eventually appear, so the motion is under-

determined.

Now, we switch to the Hamiltonian formalism. The conjugate momenta are:

pi =
∂L
∂q̇i

. (2.3)

The non invertibility of Aij now means that one cannot explicit all the velocities in

terms of momenta and coordinates. So, there is a certain number N of constraints:

φm(q, p) = 0 withm = 1 . . . N. (2.4)

The last equations define a surface on the phase space Φ , called the constraint

surface Σ. One can prove that, under certain conditions, a function, vanishing on

Σ equals a linear combination of constraints. This fact is encoded in the symbol ≈,

which means ”weakly vanishing” or better ”vanishing on the constraint surface.”

One could expect that the constraints have to satisfy the consistency condition

of being preserved in time at least on the constraint surface Σ. Using the canonical

Poisson Brackets (PB), denoted by {, } this consistency condition can be rephrased

as:

{φm, H} =
∑
k

αkφk or {φm, H} ≈ 0. (2.5)

There are two main classifications of constraints. Primary/secondary constraints

and first class/second class constraints. The first classification derive from an

algorithmic procedure to extract from (2.4) and the consistency condition (2.5)

all possible independent constraints. This is not so useful as a classification. It is

far better to consider the notion of first class and second class functions. A phase

function f ∈ F(Φ) is called first class with respect to the system of constraints

(φm) if, for all m:

{f, φm} ≈ 0. (2.6)

In this thesis we will deal only with first class constraints, i.e. constraints that

satisfy the conditions:

{φm, φn} = fmnlφ
l (2.7)

{φm, H} ≈ 0. (2.8)
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Where fmnl are called structure constants. The last equations mean that the

constraints are compatible with each other (i.e. they form a closed Poisson algebra)

and they are preserved in time.

One can impose the constraints to the action modifying the structure of the

Lagrangian with the introduction of Lagrange multipliers λi:

S =

∫
dt
{
piq̇

i −H(q, p)− λiφi(q, p)
}
. (2.9)

Note that the equation of motion for λ enforces the constraints surface equations.

The other equation of motion now display arbitrary time dependent functions

λm(t).

q̇i =
∂H

∂pi
+ λm(t)

∂φm

∂pi
(2.10)

ṗi = −∂H
∂qi
− λm(t)

∂φm

∂qi
(2.11)

2.1.1 Gauge invariance

The Poisson structure is very useful to see how gauge invariances arise from

the constraints algebra. Indeed a Poisson (symplectic) structure always allows to

associate to every phase function f a vector field over the phase space such as:

Xf = {f, ·} (2.12)

This vector field defines a one-parameter group of transformation on phase space,

i.e. the flux or orbits of the vector field. In particular we can interpret the

consistency condition also as a crucial property of the algebra of constraints: φm

are the generators of local symmetries. Indeed (2.12) and (2.5) mean also that on

Σ the dynamics (encoded by the Hamiltonian function) is left unchanged along

the orbits of Xφm . In the very same way we define the infinitesimal transformation

of a generic phase function f as:

δεf = {ε(t)φ, f} (2.13)

where ε is an infinitesimal parameter of the transformation. Note that this trans-

formation is local (i.e. it depends on time t in a classical mechanics setting, it will
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depend on xµ in a field theoretic context). These transformations are symmetries

of the action S, i.e.:

δεS = 0. (2.14)

2.1.2 Gauge fixing and observables

It should be clear now that not all the degrees of freedom (phase space points)

and not all the phase functions are physically acceptable in a constrained system.

Now we want to characterize better these concepts. First of all we saw that the

dynamics lies on Σ, a subset of Φ, defined by (2.4). This is not the only reduction.

Indeed we saw that the phase space is foliated by the orbits of the vector fields

Xφm . On each orbit the Hamiltonian is the same, i.e. each point of an orbit is

physically equivalent. So Σ is a collection of equivalence classes of states. We

can choose for each class a representative. This procedure is called gauge fixing

and amounts for example to choose an appropriate phase function F that defines

another phase space reduction via the equation F (q, p) = 0. The gauge fixing

surface intersect Σ, selecting the class representative from the orbits of Xφ
1.

It can be proved that (if the gauge condition is properly chosen) this double re-

duction defines the true physical phase space with a symplectic structure inherited

from the one of Φ. So the reduction from the whole set of variables to the physical

ones is a two step process (or, as it has been said: “the gauge strikes twice”):

1. reduction to the constraints surface Σ,

2. gauge fixing, that is selection of one representative from each class of gauge

orbits.

Let now move to the notion of observables. It is not so simple to characterize

this notion completely, as it would need the comparison between a certain theory

with some experimental apparatus, but what we can do now is to give a math-

ematical necessary condition. An observable is a phase function f that is also

gauge invariant. Gauge invariant means, generally, constant along gauge orbits.

Actually, the notion of a gauge invariant function involves a two step process like

1F has to satisfy a number of conditions to be an appropriate gauge fixing, the most natural

is that it selects one and only one representative from each class. If this were not the case the

gauge fixing procedure suffers from the so called Gribov ambiguities.
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the one described before. To be more precise, we set f to be in the algebra of

smooth phase functions, i.e. C∞(Φ). We are dealing only with a subset Σ of phase

spase, so we denote the smooth functions on Σ as C∞(Σ). Define now N ⊂ C∞(Φ)

as the set of phase functions that vanish on Σ 2. This set form a double ideal of

the algebra C∞(Φ), indeed each phase function multiplied (to the left or to the

right) to a function vanishing on Σ belongs to N . Now we can say that:

C∞(Σ) = C∞(Φ)/N . (2.15)

What we said before is sufficient to prove that C∞(Σ) is itself an algebra. Equation

(2.15) means simply that the reduction to Σ for phase functions is performed

identifying the phase functions that are equal on Σ (whose difference on Σ is

zero). As before a two step process is necessary to fully characterize a physical

quantity:

1. reduce to Σ as in (2.15),

2. take only those functions f ∈ C∞(Σ) that are constant along gauge orbits,

i.e.:

f is a gauge invariant function ⇐⇒ {φm, f} ≈ 0, ∀i. (2.16)

2.1.3 Longitudinal derivatives

We have defined the vector fields Xφm associated to constraints in the previous

section. The space of those fields is called the space of longitudinal vectorfields.

Longitudinal here means that the fields point in the direction of gauge transfor-

mation, i.e. in the direction on which physics does not change. Along with this

space one can construct in the usual manner the associated (tensor product) dual

space, that is the space of longitudinal p-forms. Those forms acts on the tensor

product of longitudinal fields. Obviously this construction allows also the defini-

tion of a longitudinal (de Rham) differential acting on this space of longitudinal

forms. The main reason to introduce the formalism of differential forms on the

2Note that N is the space of functions proportional to a combination of constraints, so it is

exactly the algebra generated by the constraints
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space of longitudinal vector fields is that if we pick up a 0-form, i.e. a function

f ∈ C∞(Σ) the formula:

df = 0. (2.17)

denotes exactly the vanishing of the directional derivative of f in the direction of

the gauge orbits, so the last equation rephrase the fact that f is a gauge invariant

function. At this point we should observe the crucial fact that the gauge invari-

ant functions arise as d-closed 0-forms, or in a more elegant way as the zeroth

cohomological space of d: H0(d). Note that we are considering functions on the

constraints surface Σ, so if we want to pursue a formalism that use this geomet-

rical view, we have to characterize also in the very same way the reduction to Σ.

This is precisely what BRST symmetry does, providing a beautiful and uniform

formalism to represent the two step process described so far.

2.2 BRST formalism

The BRST formalism is based on the idea of substituting the original gauge

invariance with a rigid odd symmetry s, defined on an extended phase space con-

taining now anticommuting (i.e. odd) variables named ghosts. We will construct

two different operator d, δ such that one will implement the restriction to Σ and

the other will implement the cohomology described before. Those two operators

are combined to form the so called BRST differential s in order to preserve its

nilpotency (s2 = 0). The zeroth cohomology group of s will give exactly the gauge

invariant functions. The very fact that s defines a symmetry means that it is pos-

sible to construct from the beginning an action principle on the extended phase

space, that includes fields and ghosts, such that the application of s leave the ac-

tion invariant. Let us sketch briefly what is the procedure in the Hamiltonian case,

in the Lagrangian case we will follow the same strategy but on different functional

spaces.

2.2.1 The general construction

Let A be a graded algebra and s a differential on it. According to the grading

of A, s could be expanded in a series of operators. Since s is a differential its
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degree is dg(s) = 1. If we start the series with a differential δ we will have:

s = δ + d+ “more”. (2.18)

The higher order terms are relevant in the discussion only because they guarantee

that s preserves the nilpotency property. Using this property one can see that:

0 = s2 =

dg=2︷︸︸︷
δ2 +

dg=3︷ ︸︸ ︷
{δ, d}+

dg=4︷ ︸︸ ︷
d2 + {δ, s1}+“higher degree terms”. (2.19)

This implies that:

δ2 = 0, (2.20)

{d, δ} = 0, (2.21)

d2 = −[δ, s1]. (2.22)

The first property does not add anything, δ is a differential. The last two properties

say that d is a so called “differential modulo δ”. (2.21) shows that d is still a

derivation on the homology of δ, H∗(δ), i.e. on x ∈ A such that δx = 0. (2.22)

shows that d is a differential (it is also nilpotent) if we restrict to H∗(δ). For

the BRST construction it will be very useful to study the cohomology of d when

we restrict the domain of d to the homology space of δ. This is denoted by

H∗(d|H∗(δ)). Generally the problem to solve is the opposite if we have δ and d

with the previous properties, we want to construct (under a certain grading k of

A) a differential s with the expansion (2.18) and such that

Hk(s) = Hk(d|k(δ)) (2.23)

This is possible thanks to a property that is always true in the BRST case, i.e. δ

provides a homological resolution.

Definition 2.1. Let A be a graded algebra, a homological resolution of A is a

graded algebra Ā with differential δ of degree −1 such that

Hk(δ) = 0 k 6= 0,

H0(δ) = A (2.24)
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The grading of Ā is called resolution degree (rdg). Now we can state the central

theorem of homological perturbation theory, which establishes that a differential

s like the aforementioned one can actually be constructed from d and δ. Let δ

provide a resolution of H0(δ). Let d be a derivation modulo δ of resolution degree

0. If we denote the degree associated to d as dgd with:

dgd(δ) = 0, dgd(d) = 1. (2.25)

We can define a total grading known as “total ghost number”:

gh(x) = dgd(x)− rdg(x). (2.26)

Note that gh(δ) = gh(d) = 1. Now we can state the very important

Theorem 2.2.1. If Hk(δ) = 0 ∀k 6= 0, there exist a differential s that combines d

and δ with the properties:

1. s(AB) = As(B)− s(A)B.

2. s = δ + d+ s1 + s2 + . . .,

3. rdg(sk) = k,

4. gh(s) = 1,

5. s2 = 0,

6. Hk(s) = Hk(d|Hk(δ)).

Obviously the most important property is the last one. Indeed it states that at

the cohomology level only d and δ are relevant, and sk are there only to preserve

the nilpotency of s.

2.2.2 BRST differential in gauge theories

Let us briefly sketch what is the idea behind the BRST symmetry and how to

construct an extended phase space on which s acts representing however all the

feature of the gauge invariant theory we start from. δ and d implement the two

part process of reduction of phase space (we saw that “the gauge strikes twice”). In



26 2. Gauge systems and the BV-BRST formalism

particular the δ operator is called “Koszul-Tate” differential. It is constructed to

provide a resolution of the algebra of functions C∞(Σ). The algebra that resolves

it is:

C∞(Φ)⊗ Pol[Pα], (2.27)

that is the polynomials with coefficients in C∞(Φ) and with generators Pα. The

generators are there to “kill”, on C∞(Φ), those functions that are vanishing on

Σ. This is the first enlargement of the space of variables needed in the BRST

formalism.

The second step is the selection of the gauge invariant functions on Σ. We

have already encountered a differential that implements that request. It is the

longitudinal differential d. One extend d on the space of longitudinal forms with

generators ηα with coefficients in the previously extended space of variables, so

that one obtains at the end the total extended space:

C∞(Φ)⊗ Pol[Pα]⊗ Pol[ηβ]. (2.28)

Actually one has to extend d such that it becomes a differential modulo δ and

in order to guarantee the construction of the operator s through the Homological

perturbation theory. We have already noted that the zeroth cohomological space

of d (on the homology of δ that is C∞(Σ)) is actually equal to H0(s) so we arrive

at the very important result:

H0(s) = {gauge invariant functions on Σ} (2.29)

2.2.3 Canonical action for s

By now s is undetermined and so is the extended space of variables. The most

striking fact about Hamiltonian BRST is that one can construct s such that the

number of Pα and ηβ is equal and that the new space of variables can be endowed

with a canonical symplectic structure. Moreover s can be viewed as a symmetry

of the system that has a canonical action:

sx = {x,Ωε} , (2.30)

where x belongs to the extended phase space, ε is an infinitesimal parameter and

Ω is the BRST canonical generator. The nilpotency of s yields to the fundamental
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equation of BRST symmetry:

{Ω,Ω} = 0. (2.31)

This equation allows one to construct recursively Ω.

2.3 Action formalism

2.3.1 Equation of motion and Noether identities

To reformulate the BRST construction in Lagrangian terms we have to state

the gauge invariance problem directly on the action. We collect all the variables

in the notation yi(t), and write the action as:

S(yi(t)) =

∫ t2

t1

L dt. (2.32)

The equations of motion (e.o.m from now on) read:

δS

δyi(t)
= 0 (2.33)

the δ derivation on the LHS is a functional derivative defined by:

δS =

∫
δyi(t)

δS

δyi(t)
dt, (2.34)

note that the variation on the variables yi(t) vanishes at the boundaries, set for the

variational principle (2.32). The gauge transformations are denoted briefly with:

δεy
i(t) = Ri

(0)αε
α +Ri

(1)αε̇
α + . . . (2.35)

where ε are arbitrary gauge parameters. Under these variation the Lagrangian

transforms as a total derivative, so they do not affect the e.o.m. It is more conve-

nient to rewrite the last gauge invariance equations as:

δεy
i(t) = Ri

αε
α ⇐⇒ δεy

i(t) =

∫
dt
′
Ri
α(t, t

′
)εα(t

′
)

where Ri
α = Ri

(0)αδ(t− t
′
) +Ri

(1)αδ
′
(t− t′) + . . . . (2.36)

In this notation the variation of the action is:

δεS =
δS

δyi
δεy

i =
δS

δyi
Ri
αε
α = 0. (2.37)
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This has to be true ∀εα, so we arrive at the celebrated Noether identities :

δS

δyi
Ri
α = 0. (2.38)

Those identities are very important, they show for example that not all e.o.m. are

independent, due to gauge invariances.

We are working with a great number of gauge transformation, but not all of

them are really relevant. for example we can safely factor out those that are

proportional to the e.o.m. These are called trivial gauge transformations and

they form an ideal of the gauge transformations algebra. So we pick up only the

quotient space of gauge transformations modulo trivial ones. At the end we restrict

only to a generating set of gauge transformations, i.e. the minimal set of gauge

transformations that contains all the information about Noether identities.

The commutator of to elements of a generating set is also a gauge transforma-

tion so we can this means that:

Rj
α

δRi
β

δyj
−Rj

β

δRi
α

δyj
= Cγ

αβR
i
γ +M ij

αβ

δS

δyj
, (2.39)

where M ij
αβ are antisymmetric in i, j.

2.3.2 Reducible case

The theory we want to develop in this thesis has the fundamental property

of being reducible. With that we mean that not all gauge transformations are

independent. The gauge transformations are all independent if:

δµF = {F, µαφα} ≈ 0 ∀F ⇒ µ ≈ 0. (2.40)

In a reducible theory instead, we have that certain combination of constraints

vanish:

Zα
Aφα = 0 (2.41)

For example if we take as gauge parameters:

µα = µAZα
A (2.42)

that are not vanishing on-shell, then we obtain:

δµF ≈ 0. (2.43)
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2.3.3 Covariant phase space

The BRST construction in a Lagrangian setting (Batalin-Vilkoviski formalism),

proceed along the same lines as in the Hamiltonian one. What is needed is a

redefinition of the relevant functional spaces on which a (BV)-BRST differential

will act.

Let (q0, p0) be the initial conditions at t = t0 that determine completely every

(q(t), p(t)) at later times through the Hamiltonian evolution. The phase space is

then the space of all solutions to the e.o.m. If one switches to a Lagrangian setting

and eliminates the p’s the e.o.m. are now second order differential equations (2.2)

with solution q(t). So one can view the“covariant” phase space as the functional

space (infinite dimensional!) of the solutions to the e.o.m. in Lagrangian form.

One identifies each point in the phase space with the entire classical trajectory

determined by it. one can construct an entire functional space, denoted by I that

contains all possible histories of a theory.

I =
{

space of all histories qi(t)
}
. (2.44)

This includes the possibility to apply the same arguments to a configuration history

of a field theory. A point φi in this functional space could not satisfy the e.o.m.

so to recover the concept of “covariant phase space” one selects a submanifold of

I, denoted by Σ. It is the space of the field configurations that solve the e.o.m.,

namely
δS

δφ
(φi) = 0. (2.45)

This submanifold is called the “Stationary surface”. Functionals on the stationary

surface are then smooth functionals on I modulo the ones that vanish on Σ, i.e.:

C∞(Σ) = C
∞(I)/

N (2.46)

In the presence of gauge invariances the Noether identities (2.38) are such that a

solution to the e.o.m is mapped by a gauge transformation to a solution of the

e.o.m., so there are well-defined orbits, denoted by G on Σ, due to the gauge invari-

ances. The “gauge strikes twice argument” is the same here as in the Hamiltonian

formalism. The gauge invariant functions are constant along the gauge orbits that

lie on the stationary surface. The gauge invariant functions are then functions

on the quotient space Σ/G, i.e. f ∈ C∞(Σ/G). this space is the new “covariant
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Hamiltonian Lagrangian

phase space Φ I

reduced surface Constraint Surface Σ Stationary Surface Σ

gauge orbits (transf.) δεF = {F, εαφα} δεF = δF
δφi
Ri
αε
α

gauge invariant functions f ∈ C
∞(Φ)/

N (Σ)
C∞(I)/

N (Σ)

Figure 2.1: Hamiltonian setting vs Lagrangian setting

phase space” where only the true physical solutions to the e.o.m live. Fig. (2.1)

summarize and translate the relevant functional spaces.

2.4 Batalin-Vilkovisky formalism

In this final section we will be able to explore the BRST formalisms (as sketched

in sect. (2.2)) but in a Lagrangian setting. We will refer to the notation exposed

in the last section and in the Lagrangian part of Fig.(2.1).

We want to construct explicitly a BRST differential s with the usual properties

(2.29), (2.18). As in the previous case, δ is the Koszul-Tate differential that imple-

ments the restriction to Σ and d is a differential modulo δ, namely the longitudinal

differential that extracts the gauge invariant functions defined on Σ.

2.4.1 The Koszul-Tate differential δ

The differential δ have to implement, in the covariant phase space I, the re-

striction to the functionals that satisfy the e.o.m. To do that, we first enlarge

the space of variables including, for each field φi a correspondent “antifield” φ∗i .

Next we impose that all the fields φi are δ-closed and the antifields become what

is needed to make the equations of motion δ-exact, namely:

δφi = 0 (2.47)

δφ∗i = −δS0

δφi
. (2.48)

We denote the degree induced by δ as the antighost number or antigh(.) and with

ε(s) the parity, such that a real or complex variable has ε = 0 and a Grassmann
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variable has ε = 1. Note that:

antigh(φ∗i ) = 1, (2.49)

antigh(φi) = 0, (2.50)

ε(φ∗i ) = 1, (2.51)

ε(φi) = 0. (2.52)

This procedure is quite effective. It is clear that there is no cohomology of δ of

degree k 6= 0 because only the antighosts could provide such a cohomology, but

they are all not even closed, by definition (if there are no gauge invariances). So

all the cohomology is at zero antighost number. To see what is H0(δ) note that

from (2.47):

(Ker δ)0 = C∞(I) (2.53)

and from (2.48):

(Im δ)0 = N . (2.54)

To understand why the last equation is true remember that all the functionals

vanishing on the stationary surface Σ could be written as a linear combination

of the e.o.m. The extension of the space of variables and the need of a BRST

differential even in the case without gauge invariances is a peculiar feature of the

Lagrangian formalism that is not encountered in the Hamiltonian counterpart.

But we are dealing with gauge invariant theories and we saw that gauge invari-

ances are encoded in the Noether identities (2.38). They say that the e.o.m are

not all independent. This fact produces an interesting difference from the previ-

ous case. It is not true anymore that there is no cohomology at antighost number

different from zero. Indeed there is one particular combination of the antifields

that is δ-closed:

δ(Ri
αφ
∗
i ) = −Ri

α

δS0

δφi
= 0, (2.55)

due to the Noether identities. This is not good because to fulfill the hypothesis

of homological perturbation theory δ has to provide a resolution. In particular all

the higher degree cohomology spaces should be trivial. The only way to bypass

this obstacle is to further enlarge the space of variables to include objects that
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make those combinations δ-exact. Those new variables are such that:

antigh(φ∗α) = 2

δφ∗α = Ri
αφ
∗
i (2.56)

this produces the result of cancelling all the cohomology of degree 1 (the others

are still zero),

H1(δ) = 0. (2.57)

The power of the formalism introduced in the last section reside in the fact

that the reduction to Σ, the Noether identities and the reducibility condition have

the same form. Indeed if there are reducibility conditions like (2.41) we have also

that:

Zα
AR

i
α = Cij

A

δS0

δφi
with Cij

A = −Cji
A . (2.58)

Due to this last equation the combination:

− Zα
Aφ
∗
α −

1

2
Cij
Aφ
∗
iφ
∗
j , (2.59)

is δ-closed without being δ-exact. This means that the cohomology at degree 2 is

not zero. As before the only way to cope with this problem is to further enlarge

the antifields sector introducing φ∗A:

antigh(φ∗A) = 3,

δφ∗A = −Zα
Aφ
∗
α −

1

2
Cij
Aφ
∗
iφ
∗
j . (2.60)

this implies that:

H2(δ) = 0. (2.61)

It should be clear that for further reducibility conditions the procedure is quite

the same, and one has to introduce antifields of increasing antighost number to

make the higher degree cohomologies trivial.

2.4.2 Longitudinal derivative

The differential d modulo δ needed for the construction of the BRST differential

s is exactly the longitudinal exterior differential acting on longitudinal p-forms.

The order of the forms is also the grading induced by d and it is called “pure ghost
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number”. To account for the gauge invariances in the irreducible case one as to

fix the gradings of the longitudinal 1-forms denoted now by Cα:

puregh(Cα) = 1, ε(Cα) = 1 (2.62)

These forms are called “Ghosts” and allows us to eliminates all the functionals

F ∈ C∞(Σ) that are not gauge invariant from the cohomology of d simply by:

dF =
δF

δφi
Ri
αC

α. (2.63)

Indeed F is exact (and so it is removed from cohomology) unless F is gauge invari-

ant, i.e.:
δF

δφi
Ri
α = 0 ⇔ δεF =

δF

δφi
Ri
αε = 0 ∀ε. (2.64)

d has to be a differential so we define the action of d on 1-forms as:

dCα =
1

2
Cα
βγ C

βCγ, (2.65)

Where Cα
βγ has been introduced in (2.39). The reducible case needs the introduc-

tion of a “model” D for the differential d with the same cohomology. In this case

D acts in the same way d does with respect to s. To deal with the redundancy in

the gauge transformations we introduce other forms of degree 2, CA called “Ghosts

for ghosts”:

puregh(CA) = 2, ε(CA) = 0. (2.66)

such that:

DF =
δF

δφi
Ri
αC

α (2.67)

dCα =
1

2
Cα
βγ C

βCγ + Zα
AC

A (2.68)

2.4.3 Antibrackets

The two operators d and δ are what we need for the main theorem of homo-

logical perturbation theory. we define a total degree called “ghost number”:

gh = puregh− antigh. (2.69)
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Reducibility Gauge Σ reduction fields Gauge Reducibility

φ∗A φ(∗)α φ∗i φi Cα CA

(−3) (−2) (−1) (0) (1) (2)

Figure 2.2: Extended space of variables. The number in the third line is the ghost

number.

and the cohomology of ghost number zero of s is equal to the cohomology of the

same degree of d, and correspond to the gauge invariant functionals on Σ. This

formalism has by now an important difference with respect to the Hamiltonian

one. The BRST differential does not act canonically on the extended space of

variables, because the Poisson brackets simply does not exist. This can be seen by

inspecting the grading property of the full set of variables as in Fig.(2.2). However

there is a symmetry between fields and antifields. This led to the introduction

of a different kind of brackets called “Antibrackets”. Those brackets are an odd

derivation and carry a ghost number.

Definition 2.2. if A,B are functions of the fields and antifields defined above,

the Antibracket is defined by:

(A,B) =
δRAδLB

δφiδφ∗i
− δRAδLB

δφ∗i δφ
i

+
δRAδLB

δCαδφ∗α
− δRAδLB

δφ∗αδC
α

+
δRAδLB

δCAδφ∗A
− δRAδLB

δφ∗AδC
A

(2.70)

Since we are dealing also with fermionic (Grassmann) variables, R,L denotes

right and left derivation. The Antibracket has the following properties:

1. it is odd, i.e. εA,B = 1 + ε(A) + ε(B),

2. gh(A,B) = 1 + gh(A) + gh(B),

3. it satisfy the usual Jacobi identity, i.e. (A, (B,C)) + cyclic permutations of

A,B,C = 0,

4. (A,B) = −(−)(εA+1)(εB+1)(B,A).
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With this bracket structure we declare that:

(φi, φ∗j) = δij, (Cα, φ∗β) = δαβ , (CA, φ∗B) = δAB. (2.71)

So we can treat fields, ghosts and ghosts for ghosts as “coordinates” and the

antifields as “momenta”.

2.4.4 The master equation

As in the Hamiltonian case we can define a “canonical” action for the s differ-

ential, if A is a dynamical variable:

sA = (A, S). (2.72)

S is the generator of the differential s and has the following properties:

ε(S) = 0, (2.73)

gh(S) = 0, (2.74)

(S, S) = 0. (2.75)

The very last property is due to the nilpotency of s and it is the fundamental

equation of the Batalin-Vilkoviski formalism, it is called the Master Equation.

This formula is very important because one can easily see that S is nothing but

the extension to the whole set of variables of the classical action. Indeed if we

separate the contributions to S from different antighost numbers (i.e. how many

antifields are present) we obtain, as solution to the master equation:

S0 = S0, (2.76)

S1 = φ∗iR
i
αC

α + . . . (2.77)

S2 = φ∗αZ
α
AC

A + . . . (2.78)

as one can easily prove using the definition of the antibracket and the formulas

defining the action of d and δ on all the variables, as presented in the last sections.

If there are other reducibility conditions we would have other terms like the last

one. S0 is exactly the gauge invariant action we started from. Moreover those
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pieces are all truncated to the first order, the following orders would contain the

gauge structure functions 3.

As we will see a gauge fixing procedure is needed. To implement some very

important derivative gauge conditions it is necessary to further enlarge the space

of variables. This is actually possible if we add cohomologically trivial pairs, i.e.

pairs that are excluded in the cohomology of s (otherwise they would alter the

main result (2.29)). Those “canonical” pairs are (C,C∗), (b, b∗) such that:{
sC = b

sb = 0

} {
sb∗ = C∗

sb∗ = 0

}
(2.79)

Note that any of those fields are present in cohomology because they are either

exact or not even closed. Lets state what are the ghost degrees of those fields.

gh(C) = gh(b)− 1, (2.80)

gh(C∗) = −gh(C)− 1, (2.81)

gh(b∗) = −gh(b)− 1. (2.82)

The solution to the master equation (2.75) is now extended to include the fields

in the non minimal sector:

S = Sminimal +
∑

C∗b. (2.83)

where the sum runs over all non minimal sectors one has the need to add.

2.4.5 Residual gauge invariance and the gauge fixing fermion

Differently to what happens in the Hamiltonian formalism, the master equation

gives a solution that is BRST invariant but that does not eliminate all the gauge

invariances. In particular if we collect all the 2N variables (fields, ghosts, ghosts

for ghosts, and antifields) in the notation:

zα =
{
φA, φ∗A

}
withA = 1, . . . , N, (2.84)

one can prove that the matrix:

Ba
b = σac

δLδRS

δzcδzb
, (2.85)

3The theory we are dealing with in this thesis is abelian and free, so there is no need to

include such terms.
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with

σab =

(
0 δAB
−δAB 0

)
(2.86)

define a gauge transformation:

δεz
a = Ba

b ε
b (2.87)

or in a form that resemble the Noether identities:

δRS

δza
Ba
b = 0. (2.88)

The Lagrangian formalism for the BRST invariance has been introduced to work

directly with a path integral quantization, without dealing with Hamiltonians. The

main concern in using path integrals for gauge systems is that one has to integrate

over entire histories that are physically equivalent, producing an (infinite!) over

counting. The Hamiltonian BRST formalism kills all gauge invariance and sub-

stitute them with a rigid symmetry providing the right setting to deal with path

integrals. Now the gauge invariances are still present, but this is only a feature

that is introduced by the antifields. What we have to do is to correctly implement

the functional measure of the path integral and choose an appropriate gauge fixing

to eliminate the antifields from the action. To do this, the simple choice of setting

all the antifields to zero is useless because we would return to the original gauge

invariant action S0. A more appropriate choice is to set:

φ∗a =
δψ

δφa
(2.89)

where we have introduced the functional ψ, that depends only on fields and ghosts.

To match the statistics and the ghost numbers we have to impose:

gh(ψ) = −1, ε(ψ) = 1. (2.90)

For this reason ψ is called the “gauge fixing fermion” and is appropriately chosen

to fix all the gauge invariance such that in the final action the propagators exist.

At the path integral (quantum) level we can impose this gauge fixing as:∫
DφDφ∗ δ

(
φ∗a −

δψ

δφa

)
exp

(
i

~
W [φ, φ∗]

)
. (2.91)
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Here δ stands for the Dirac delta functional. What we have to require is that the

path integral does not depend on the gauge fixing fermion choice. If we perform

an infinitesimal change in ψ, namely δψ, the difference between the previous and

the transformed path integral is proportional, at the lowest order in δψ to:

∆exp

(
i

~
W

)
(2.92)

where the ∆ operator is a kind of odd Laplacian:

∆ ≡ (−)εA+1 δ
R

δφA
δR

δφ∗A
, (2.93)

ε(∆) = 1, (2.94)

∆2 = 0. (2.95)

The requirement of path integral invariance under variations of ψ amounts

to the vanishing of (2.92). This is equivalent to the so called “Quantum master

equation”:

i~∆W − 1

2
(W,W ) = 0. (2.96)

Note that this equation reduces to the classical master equation (2.75) in the limit

~→ 0.

As we will see, the theory of p-forms provides a general example of a redundant

gauge theory, and we will be able to show in that context an example of a gauge

fixing procedure.



Chapter 3

p-forms in the Batalin-Vilkoviski

approach

The BV formalism, reviewed in the last chapter is certainly the best suited

approach for the search of a BRST gauge fixed Lagrangian of p-form theory. In-

deed this theory is free (non interacting), abelian and redundant in the gauge

invariances. The very last feature is the most complicated one to deal with in the

hamiltonian BRST formalism, but it is quite simple to treat in the Lagrangian

setting. In what follows we considered only the euclidean version of the theory.

It is convenient to illustrate the BV formalism with the simplest non trivial

example of a real 2-form on a real manifold. This example encodes all the most

important properties of the BV formalisms and we will be able to generalize it to

a p-form theory simply repeating the same arguments for each reducibility stage.

At the end of the chapter we will arrive at the full theory on complex manifolds.

Before starting it is important to note that the redundant gauge transformations

(1.46) have the same form at each stage. In the notation used for example in [17]

at the s-th stage the gauge generator is the differential ∂(p−1−s) acting on the space

of (p− 1− s)-forms:

39
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R0 = ∂(p−1),

Z1 = ∂(p−2),

...

Zp−1 = ∂(0). (3.1)

The procedure to recover the whole ghost structure and the gauge fixed action

is for this reason quite recursive.

3.1 Real p-forms

3.1.1 The 2-form case

This theory is defined in n (real) dimensions. The fundamental variable is the

2-form Aµν . We introduce the totally antisymmetric field strength:

Fµνλ = ∂µAνλ + ∂λAµν + ∂νAλµ (3.2)

The theory we want to deal with is defined by the Lagrangian:

L =
1

12
F µνλFµνλ, (3.3)

The Lagrangian is invariant under the following gauge transformations:

δAµν = ∂µΛν − ∂νΛµ (3.4)

where Λ is a 1-form gauge parameter. Those gauge transformations are not all

independent, since they vanish if we choose a function Γ such that:

Λµ = ∂µΓ (3.5)

In order to construct a BV-BRST invariant action we have to enlarge the

configuration space of our theory to include a set of fields: a vector Cµ, and a

scalar C1, and antifields: an antisymmetric tensor A∗µν , a vector C∗µ, and a

scalar C∗. Those fields and antifields define our BRST complex on which the
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antifields fields

C∗1 C∗µ A∗µν Aµν Cµ C1

−3 −2 −1 0 1 2 gh

1 0 1 0 1 0 ε

Figure 3.1: Fields-antifields structure.

BRST variation s acts. They are arranged as in Fig. 3.1 with respect to their

gradings, defined on the BRST complex, namely the ghost number and parity.

The Master equation (2.75) has a simple solution, since the theory is free and

the constraints form an abelian algebra. This solution is the BV-BRST action:

S = S(0) + S(1) + S(2). (3.6)

The correspondent Lagrangian terms are

L(0) = L0(Aµν), (3.7)

L(1) = A∗µνR0(C)µν , (3.8)

L(2) = C∗µ(Z1)µC1. (3.9)

where R0, Z1 are the gauge generators (3.1) and L0(Aµν) is the classical action.

The explicit form of these pieces read:

L(0) = − 1

12
F µνλFµνλ, (3.10)

L(1) = A∗µν(∂µCν − ∂νCµ), (3.11)

L(2) = C∗µ(∂µC1). (3.12)

This action has some gauge invariances that have to be fixed through an appro-

priate gauge fixing procedure. We want to implement a Feynman-Lorentz (FL)

gauge condition to eliminate from the action all the divergences of the fields. This

condition is explicitly:

∂µAµν = 0. (3.13)

To do this we proceed step by step. The FL condition is of derivative type so in

order to correctly implement it we enlarge the configuration space to include other

fields that disappear in the cohomology of the BRST differential. In this way
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we can construct a non minimal solution to the master equation that is BRST

invariant but does not affect the gauge invariant degrees of freedom Explicitly this

non minimal sector is (C̄µ, C̄
∗
µ, bµ, b

∗
µ)1. Starred and non-starred variable with the

same name are conjugate to each other with respect to the antibrackets (2.70).

The BRST structure of the non-minimal sector is, following (2.79):

sbµ = 0,

sC̄µ = bµ,

sb∗µ = C̄∗µ. (3.14)

We saw in the last chapter that the corresponding solution to the master equation

is (2.83). In the case at hand we have:

SNM =

∫
dnx C̄∗µbµ. (3.15)

and it has to be of zero ghost number and parity. This solution is obviously BRST

invariant due to (3.14) and the nilpotency of s. We introduce the gauge fixing

fermion ψ, with the properties: gh(ψ) = −1 and ε = 1 in order to implement the

FL gauge fixing condition. An appropriate choice seems to be:

ψ =

∫
dnx C̄µ(∂νA

νµ) (3.16)

but it turns out to be incomplete as we will see. This gauge fixing fermion has

the structure encountered in Chapter 2 (see [13] for a more general treatment).

It is used to eliminate the antifields and to fix the remaining gauge invariances of

the action, in order to safely work with a path integral approach. Such a gauge

fixing fermion is called “properly chosen”. In fact the elimination of the antifields

is performed by the conditions

A∗µν =
δψ

δAµν
= ∂µC̄ν − ∂νC̄µ, (3.17)

C̄∗µ =
δψ

δC̄µ
= ∂νA

νµ. (3.18)

C∗µ = 0. (3.19)

1 C̄µ is usually ”called antighost”, because in the 1-form theory it is the same as the Fadeev-

Popov antighost, while bµ is usually called the auxiliary field
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This leads to the action:

Sψ =

∫
M

dnx

(
− 1

12
F µνλFµνλ − ∂νC̄µ(∂µCν − ∂νCµ) + (∂µA

µν)bν

)
. (3.20)

The ghost numbers of the non minimal sector fields have to be consistent with the

ghost numbers of the other fields and the previous equations. In particular one

finds that:

gh C̄µ = −1,

gh bµ = 0,

gh C̄∗µ = 0,

gh b∗µ = −1. (3.21)

The FL gauge condition on the 2-form is implemented in the path integral:

Z =

∫
DAµνDC̄µDCµDbµDC1 e

−iSψ , (3.22)

by the integration over bµ. This yields the so called ”delta function gauge fixing”

δ(∂µA
µν). But those gauge conditions are not all independent. This is the first

way to see that this gauge fixing procedure is incomplete and produces singular

terms. Indeed the degeneracy in the FL conditions leads to a δ(0) in the path

integral. Morover C1 is not present in the action. The degeneracy shows up also

through the appearance in the action (3.20) of further gauge invariances in the

ghost Cµ and the antighost C̄µ, namely

δCµ = ∂µλ, (3.23a)

δC̄µ = ∂µλ
′.. (3.23b)

Those arguments show that the gauge fixing fermion ψ is not properly chosen

and we have to amend it. Fortunately it is not a difficult task. The last gauge

invariances are of the same type as the original one. So we can use the same

strategy to fix the gauges with the two LF conditions:

∂µCµ = 0, (3.24a)

∂µC̄µ = 0, (3.24b)
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by means of a further enlarged non minimal sector. This actually amounts to

introducing two new sectors, one for (3.23a) and the other for (3.23b).(
C̄1 C̄∗1
b1 b∗1

)
forCµ, (3.25)(

C̄2 C̄∗2
b2 b∗2

)
for C̄µ, (3.26)

with BRST variation:

sC̄1 = b1, (3.27)

sb∗1 = C̄∗1 , (3.28)

and

sC̄2 = b2, (3.29)

sb∗2 = C̄∗2 . (3.30)

The total non minimal action is then:

SNM =

∫
dnx

(
C̄∗µbµ + C̄∗1b1 + C̄∗2b2

)
. (3.31)

In the same manner as we did before, we can add terms in the gauge fixing fermion

ψ to implement a δ function gauge fixing for (3.24a) and (3.24b).

ψ =

∫
dnx

(
C̄µ(∂νA

νµ) + C̄1(∂µCµ) + C̄2(∂µC̄µ)
)
. (3.32)

The ψ allows us to eliminate the antifields from the action:

A∗µν = ∂µC̄ν − ∂νC̄µ, (3.33)

C̄∗µ = ∂νA
νµ − ∂µC̄2, (3.34)

C̄∗1 = ∂µCµ, (3.35)

C∗µ = −∂µC̄1, (3.36)

C̄∗2 = ∂µC̄µ. (3.37)

To complete this analysis let us state what are the ghost numbers and parities

of the non minimal variables and what is the form that the gauge fixed action

assumes at the end:
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C̄µ bµ C̄∗µ b∗µ b1 C̄1 b∗1 C̄∗1 b2 C̄2 b∗2 C̄∗2
gh −1 0 0 1 −1 −2 0 1 1 0 −2 −1

ε 1 0 0 1 1 0 0 1 1 0 0 1

S =

∫
dnx

{
− 1

12
F µνλFµνλ − ∂[νC̄µ](∂

µCν − ∂νCµ)− ∂µC̄1∂µC1

+ (∂µA
µν − ∂νC2)bν + (∂µCµ)b1 + (∂µC̄µ)b2

}
(3.38)

where we have suppressed the bar on C2 because it is a simple real scalar field.

A few comments are in order. There are no gauge invariances in this action, so the

gauge fixing procedure has been properly chosen. We have introduced the minimal

and non minimal sectors and solved the master equation in order to have a BRST

symmetric action. Indeed this symmetry is present as one can easily verify. To

show that, it is important to remember that along with the transformation rules

(3.30) ,(3.28) and (3.14) there are the transformation rules for the minimal sector:

sAµν = ∂µCν − ∂νCµ, (3.39)

sCµ = ∂µC1. (3.40)

Moreover, s is a graded differential of parity εs = 1, i.e. if A has parity εA then

whatever the parity of B, s(AB) = A(sB)(−)εB(sA)B.

The fact that ψ does not depend on the antifields allows us to always recover

the action in a simple way and to see the BRST invariance immediately:

S = S0 + sψ. (3.41)

where S0 is the usual classical action. Indeed, the BRST invariance of the gauge

fixed action S follows directly from the nilpotency of s and the fact that S0 is

BRST closed.

3.1.2 The Ghost-Antighost Tree Diagram

In order to generalize this process to an arbitrary p-form, we will represent the

steps that led us to the gauge fixed action (3.38) with a diagram that encodes all

the properties that are relevant in the situation when ghosts of ghosts are present.



46 3. p-forms in the Batalin-Vilkoviski approach

This diagram can summarize the important information of the gauge fixing pro-

cess. This diagram will contain only the fields and the antighosts. There is a

correspondent diagram for the auxiliary fields. Let us start with the 2-form. We

picture the fields and the ghosts in this way:

Aµν

Cµ

C1

this part of the diagram corresponds to the minimal solution of the master equa-

tion, so to each of the fields displayed corresponds a term in the action as in (3.12).

In the diagram, the form degree decreases at each step until it reaches zero. The

statistics (grassmann parity) instead has an alternating pattern.

In order to fix the gauge invariance of Aµν we introduced the first non minimal

sector (3.14). We added to the Lagrangian a term of the form:

(antifield of the antighost) x (auxiliary field),

and we use the gauge fixing fermion ψ of the form:

(antighost) x (FL gauge condition),

to reach a covariant delta function gauge fixing. We represent this procedure with

an arrow:

Aµν

CµC̄µ

C1
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Note that each row continue to respect the gradings described above. We have

already noted that this is not the end of the story because of further gauge invari-

ances that show up for Cµ and C̄µ (3.23a), (3.23b). To cope with this problem we

will follow the same procedure as for the first step. The introduction of the second

non minimal sectors (3.26) can be represented with two other arrows, meaning

similar insertions in the action and in the gauge fixing fermion as in the first step.

At the end we have the diagram:

Aµν

CµC̄µ

C1C̄1C2

Ap

Bp−1B̄p−1

Cp−2¯Cp−2Cp−2

Dp−3D̄p−3D
′
p−3D

′′
p−3 . . .

Figure 3.2: Ghost structure tree diagram.

3.1.3 The p-form case

It would be clear that this procedure is the same for theories with higher

order reducibilities. On the right we have the fields and ghosts (and ghosts for
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ghosts, etc...). At each step we introduce a non minimal sector for each gauge

invariance present in the action at that step. We fix the residual invariances with

an appropriate gauge fixing fermion. The diagram is pictured in Fig.(3.1.2)

For each A, B in an arrow A→ B, gh(A) + gh(B) = −1 and we construct the

gauge fixing fermion as:

ψ =

∫
dnxBf(A) (3.42)

where f is the gauge condition. In our case we choose always: f(A) = ∂ · A.

3.1.4 Gaussian gauge fixing

The delta function gauge condition has an important drawback: it imposes in

the path integral the condition f(A) = ∂ ·A = 0 on all the fields which we still have

to integrate over. This poses a problem because this constrained space of variables

is not always easy to handle. It is possible to overcome this problem through the

very known trick of averaging over a family of gauge conditions. To do that we

need to simply add to the gauge fixing fermion a (consistent) term linear in the

auxiliary field. To explain the procedure it is convenient to go back to the 2-form

example. The terms needed in this case are:∫
dnxαC̄µbµ,

∫
dnx βC̄1b2,

∫
dnx γC2b1. (3.43)

where α, β, γ are generic real numbers. note that the condition gh(ψ) = −1 is

satisfied. The elimination of the antifields with this new gauge fixing fermion

produces the following action:

S =

∫
dnx

{
− 1

12
F µνλFµνλ − ∂[νC̄µ](∂

µCν − ∂νCµ)− ∂µC̄1∂µC1

+ (∂µA
µν − ∂νC2 + αbν)bν + (∂µCµ + βb2)b1 + (∂µC̄µ + γb1)b2

}
(3.44)

The functional integrations over the auxiliary fields are then all gaussians. This

procedure allows us to eliminate in the action all the terms like ∂ · A without

constraining the space of variables, but simply cancelling them out. We integrate

first over bν , that is a real and bosonic variable. Up to a constant the result is:

exp

{∫
dnx

(∂µA
µν − ∂νC2)2

α

}
(3.45)
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The terms ∂µA
µν∂νC2 are zero, upon integration by parts, due to the anti-

symmetry of Aµν . The term (∂νC2)2 is a ghost Klein-Gordon kinetic term (free

0 − form). The quadratic term in the divergence of Aµν with the appropriate

choice of α is canceled with the opposite term one can extract from the Maxwell

like kinetic term of Aµν , after an integration by parts. Finally we are left with an

invertible kinetic operator, i.e. the laplacian acting on the full space of 2-indices

antisymmetric tensors. The same can be done with the integration over b1 and b2.

We integrate them out as a multivariable gaussian integral. We define

A =

(
0 γ

β 0

)
(3.46)

x =

(
b1

b2

)
(3.47)

B =

(
∂Cµ

∂C̄µ

)
(3.48)

The relevant terms in the (euclidean) functional integral are then (we suppress the

integration symbol in the first line):∫
Dx exp(−xtAx−Bx) ∝ exp(BtA−1B)

= exp

(∫
dnx (−1

γ
+

1

β
)∂µC̄µ∂

νCν

)
, (3.49)

where in the last line we used the fact that Cν and C̄µ are Grassmann variables.

This term has to be equal to the one that can be extracted from the Maxwell

like complex kinetic term in the action 3.44, i.e. −∂µC̄µ∂νCν . So we can fix the

parameters to be, for example: β = 2 and γ = −2. After the integrations the

action in the path integral as the very suggestive form:

S =

∫
dnx

(
1

4
Aµν∆2Aµν − C̄µ∆1Cµ + C̄1∆0C1 + C2∆0C2

)
(3.50)

where ∆(p) is the laplacian acting on the full space of p-forms. Now the triangular

diagram is very useful, because one can extend the procedure described in this

section to a generic p-form. At the end the diagram tells us exactly what are

the pieces of the action, once the integration over the auxiliary fields has been
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performed. Each field in the diagram gives a quadratic term with kinetic operator

∆(p). The fields to the right of the diagram that comes in pairs (for example Cµ,

C̄µ) give only one term of the same type (as a complex field).

Had we used a delta function gauge fixing procedure, the form of the action

would be very similar, except for a crucial difference: the kinetic operator would

act not on the full space of p-forms but on the constrained space of forms that

satisfy the FL condition. We are interested in the first kind of operators because

all the computations are obviously simpler.

Another comment is important. The gauge invariances and the initial action

are not affected by the introduction of a minimal coupling to a background metric.

This is a consequence of the antisymmetry both of Fµνλ and of gauge conditions.

Indeed we choose to work with a simple gravitational theory for the background in

which the connections is the Levi-Civita one (symmetric and metric compatible).

This eliminates the dependence of the gauge conditions from the background. On

the other hand it is important to stress that we end up with a gauge fixed action,

and we use this as the Lagrangian that produces the correct equation of motion.

When the elimination of the divergence of the fields is performed, for example with

(3.49), the terms containing the coupling to the metric appear as a modification

of the kinetic operator, due to the integration by parts as we pointed out in the

first chapter (see eq. (1.55)).

3.2 Complex (p, 0)-form

We have sketched the procedure to arrive at a completely gauge fixed and

BRST invariant Lagrangian in the real case. What we want to do now is to extend

those arguments to the complex case. In the following Chapter we are interested

only in the final structure like (3.50). This structure is very important because it

is totally splitted in quadratic terms. In each term it appears only a Laplacian

type operator ∆(s) = −(∇+ E)(s).

In the complex case the starting Lagrangian is:

S =
1

(p+ 1)!

∫
M

ddzddz̄g F̄ µ1...µp+1Fµ1...µp+1 , (3.51)

where indices are raised with the inverse metric gµν̄ . We have to deal with the

gauge invariances of the field Aµ1...µp as well as those of its complex conjugate.
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The gauge invariances are one the complex conjugate of the other so they are not

really independent. However each gauge invariance possesses now its own ghosts

and antifield set of the same type as in Fig. 3.1. Repeating the same arguments as

in the previous section, one can show that the gauge fixed action has a similar tree

structure like in Fig. 3.1.2. Now this structure is repeated twice, one for Aµ1...µp
and the other for its complex conjugate. It is obvious that this diagram couldn’t

be read as the previous one. For example the very first row of each part of the

diagram is not a separate term in the Lagrangian. However each term continue to

follow the structure:

φ(s)D
(s)χ(s), (3.52)

where D(s) in our case, with a coupling with the background metric and the trace

of the connection is:

D(s) = −(∇2
q + E) where (3.53)

E = −2qR1Ω(s,0)(M) − s(1− 4q)
{
Rν1

[µ1
δν2µ2 . . . δ

νs
µs]

}
. (3.54)

φ(s) and χ(s) are fields belonging to the row containing (s, 0) and (0, s)-forms.

Each term then splits the path integral in a product of gaussian integrals. The

gaussian integration can be performd easily, at least formally yielding the power

of a functional determinant of ∆(s). The exponent is determined by the nature of

the fields involved in the gaussian functional integration, i.e.:

(Det(D(s)))
(−)ε+1 r

2 , (3.55)

where ε is the parity of the fields (they belong to the same row of the ghost

diagram, so they have the same parity) and r = 2 if there were 2 fields involved

in the integration and r = 1 if there was only 1 field involved.

3.2.1 Example: complex (1, 0)-forms

To illustrate what is the meaning of the construction sketched in the previous

section we present here the case of a (1, 0)-form in the Batalin-Vilkoviski approach

along with the whole gauge fixing procedure. This could be extended as we previ-

ously described.
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Ã(0,p)

φ̃1
(0,p−1)φ̃2

(0,p−1)

φ̃1
(0,p−2)φ̃2

(0,p−2)φ̃3
(0,p−2)

φ̃1
(0,p−3)φ̃2

(0,p−3)φ̃3
(0,p−3)φ̃4

(0,p−3) . . .
(a) Tree for Ā(p)

A(p,0)

φ1
(p−1,0)φ2

(p−1,0)

φ1
(p−2,0)φ2

(p−2,0)φ3
(p−2,0)

φ1
(p−3,0)φ2

(p−3,0)φ3
(p−3,0)φ4

(p−3,0)

(b) Tree for A(p)

Figure 3.3: Tree structure. Complex case

We obtained before a general feature of the Batalin Vilkoviski approach. In

the case of a gauge fixing fermion ψ, that is independent from the antifields the

BV action takes the form:

S = S0 + sψ. (3.56)

In the case at hand we have denoted the ghosts belonging to the complex conjugate

part of the tree with a tilde. Now we have:

S0 =
1

2

∫
M

ddzddz̄g F̄ µνFµν (3.57)

sψ = s
(
C̄(∂µA

µ − αb̃) + ˜̄C(∂̄µÃ
µ − α̃b)

)
(3.58)
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Aµ

CC̄

Ãµ

C̃˜̄C
(a) (1, 0)-form tree diagram

Aµν

CµC̄µ

C1C̄1C2

(b) Real 2-form

Figure 3.4: Tree structure. Complex case

We show in figure (3.4) the diagram for the ghost structure of the (1, 0)-form

and the real 2-form. We can see from it why we choose such a gauge fixing fermion.

Indeed, compare the complex case we are dealing with to the second and third row

of the real 2-form case discussed before, in particular the arrow pointing to the

left-downwards. We have two copies of the gauge fixing procedure, but the most

important thing to realize is the gaussian average. This is clearly the same as the

real 2-form case, at the second stage, when we tried to fix the gauges for (C̄µ, Cµ).

So, we enlarge the gauge fixing fermion as in the last equation, with a term linear

in the auxiliary fields b and b̃. The functional gaussian integration is exactly the

same as in (3.49) with α and α̃ taking the place of β and γ. After a suitable choice

of those constants this integration yields a term in the argument of the exponential

of the path integral like:

− ∂̄µAµ∂ ν̄Ãν̄ , (3.59)

that cancels out the (opposite) term one can extract from the S0 part after an

integration by parts. As usual we are left only with Laplace type kinetic terms.





Chapter 4

Effective Action and Seeley

DeWitt coefficients

4.1 Effective action for (p, 0)-forms

In the previous chapter, we found that the path integral splitted in a products

of integrals. Each term of the product was a gaussian integral over fields belonging

to the same row of the tree diagram 3.3. Each term in the path integral contributes

as:

(DetD(s))
(−)ε+1 r

2 . (4.1)

In the last equation ε is the grassmann parity of the fields and r = 2 if there

were two real fields involved in the integration and r = 1 if there was only 1 field

involved. We label each row of the tree diagram 3.3 with an index k, starting from

k = 0 for the first row on top. We stress that going from a row to the next, the

parity changes. So in the formula (4.1) we can change ε + 1 with k. What we

want to study here is the so called Euclidean Effective Action W , defined by the

relation:

Z = e−W ,

or W = − lnZ (4.2)

In terms of the functional determinants (4.1) each term of the Effective Action

reads:

W = (−)k
r

2
ln(det(D(s))), (4.3)

55
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but this time the terms are summed because of the formula ln(AB) = ln(A) +

ln(B). Moreover for the operators we are considering in this thesis it is possible

to say that:

ln(Det(D(s))) = Tr(ln(D(s))). (4.4)

Now we are able to write down the total Effective Action by simple inspection of

the tree diagram. The number r simply counts the number of fields in the trees.

If we separate the contribution from each row we arrive at the very important

formula:

W = −
p∑

k=0

(−1)k(1 + k)(Tr(ln Detp−k)). (4.5)

4.2 Effective action expansion: heat kernel method

4.2.1 Heat kernel

The evaluation of the trace that appeared in the last formula is usally performed

by means of the heat kernel of the operator D(s). We review here briefly that

method following mainly Vassilievich and Gilkey.([26], [12], [18]). So we define

formally the heat kernel of a self adjoint operator D:

K(t, x, y;D) =< x|e−tD|y >, (4.6)

where the bra-ket notations denotes the usual scalar product on functions belong-

ing to L2. The heat kernel is formally a solution of the heat equation:

(∂t +Dx)K(t, x, y,D) = 0 (4.7)

with initial condition:

K(0, x, y,D) = δ(x, y) (4.8)

To be more precise, the operator D is a self adjoint elliptic operator of Laplace

type acting on sections of a vector bundle V. In our case this vector bundle is the

(s, 0)-form bundle, namely Ω(s,0)(M). We define the Heat Trace as:

K(t, f,D) = TrL2(V )(fexp(−tD)) (4.9)
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where f is a test function belonging to L2(V ) and t is a positive number. We can

relate the Heat Trace (4.9) and the formal heat kernel (4.6) through the integral

of the x→ y limit:

K(t, f,D) =

∫
M
dnx
√
gK(t, x, x;D)f(x) (4.10)

It is possible to prove that the Heat Trace has an expansion for t→ 0:

TrL2(fexp(−tD)) '
∑
k≥0

t
(k−n)

2 ak(f,D) (4.11)

. (4.12)

It is not so simple to prove the existence of this expansion, for a proof one can

see for example.[16]. The coefficients ak(f,D) are usually called ”Seeley-DeWitt

Coefficients”. and their computation in the case of a (p, 0)-form theory will be

the main goal of this Chapter. Note that the computation of those coefficients

has been performed by other means, in particular the worldline formalism by F.

Bastianelli and R. Bonezzi in [5]. We rescale the parameter that regulates the

expansion as t = β
2
, in order to compare our results with those contained in that

paper.

4.2.2 Relation between the heat kernel and the Effective

Action

The starting point for quite all the computations of the asimptotics of the

1-loop effective actions is the integral representation of the logaritm:

lnλi = −
∫ ∞

0

dt

t
e−tλi (4.13)

This relation is correct modulo an (infinite!) constant that does not depend on

λi. For this reason we will not consider it in what follows. Consider λi as the

eigenvalues of our Laplace type operator D(s), now we can extend the last formula

to the whole operator and take the functional trace obtaining:

Tr ln(D(s)) = −
∫ ∞

0

dt

t
TrL2(V )(fexp(−tD(s)))

t→ 0 = −
∫ ∞

0

dt

t

∞∑
k=0

t
k−n
2 ak(f,D(s)). (4.14)
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Note that all the contributions to the effective action up to k = n for small

t are divergent (UV divergences). In particular the most important coefficient

is certainly an. Indeed it is the coefficient of the logarithmic divergence. As a

simple example if we put cutoffs in the previous integral for k = n the logarithmic

divergence is:

Γlog
1-loop = −an

∫ 1
µ2

1
M2

dt

t
= 2an log

M

µ
. (4.15)

4.2.3 Heat kernel Expansion

For a manifold M1 without boundaries there exist a method to compute the

heat kernel’s coefficients due to Gilkey. It is possible to extend the method to

manifolds with boundaries but it is not the goal of this thesis to deal with such

manifolds. For a more extensive treatment see [11]. For a general self adjoint

Laplace type operator D on a smooth manifold without boundaries it is not only

possible to prove that an expansion like (4.12) exists but also that the odd k

components vanish and that the other even k components are locally computable

in terms of geometric invariants of dimension k. So the heat kernel coefficients are:

ak(f,D) = trV

∫
M
dnx
√
g{f(x)ak(x,D)} =

∑
I

trV

∫
M
dnx
√
g{fAi(n)I ik(D)},

(4.16)

Here I ik(D) are all the geometric invariants of dimension k. To clarify what will

be the geometric invariants that we will be choose, we recall the structure of the

elliptic, Laplace type operator D(s). This operator is:

D(s) = −(∇2
q + E)s where (4.17)

E = −2qR1Ω(s,0) − s(1− 4q)
{
Rν1

[µ1
δν2µ2 . . . δ

νs
µs]

}
, (4.18)

The s subscript indicates that this operator acts on (s, 0)-forms. In particular

we have that ∇q has three terms: the usual Dolbeault operator ∂, the metric

connection term (in components Γmetric = Γλµν) and the further coupling with the

trace of the connection and coupling constant q (in components Γtrace = Γλλν).

∇q = ∂ + Γmetric + qΓtrace. (4.19)

1We will follow the review by Vassilievich in which M is considered an ordinary differentiable

manifold. We will specify the differences in the coefficients in the case of a complex Kähler

manifold later, directly on the coefficients’formulas.
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We can define the curvature associated with the full connection term, i.e. Γmetric +

Γtrace. In components this curvature is the commutator of two twisted covariant

derivative ∇q µ

Ωµν̄ = [∇q µ,∇q ν̄ ]. (4.20)

It is possible to refine (4.16) expliciting the dependence of the factors Ai(n) from

the dimension of the manifold n. One can prove that:

Ai(n) =
√

4πAi(n+ 1) (4.21)

from this relation follows that we can extract the true constants αi:

Ai(n) =
αi

(4π)
n
2

. (4.22)

The geometric invariants can be chosen in different ways, because of relations

between different invariants that makes some of them not independent (like the

Bianchi identities). The first few heat kernel coefficients for the operator D are

written as:

a0(f,D) = (4π)−
n
2

∫
M
dnx
√
gTrV {α0f} (4.23)

a2(f,D) = (4π)−
n
2

1

6

∫
M
dnx
√
gTrV {f(α1E + α2R(r)} (4.24)

a4(f,D) = (4π)−
n
2

1

360

∫
M
dnx
√
gTrV { f(α3E;kk + α4R(r)E + α5E

2

α6R(r);kk + α7R(r)2 + α8R(r)ijR(r)ij + α9R(r)ijklR(r)ijkl

+ α10Ω(r)ijΩ(r)ij)}. (4.25)

Here Ω is the curvature operator of the connection acting on the space of (s, 0)-

forms and we denoted the covariant derivative with a ;. We used the same notation

as in [26], with a (r) on the invariants to remind that these refers to a real manifold.

In particular in that review the geometric invariants are constructed in a local

orthogonal frame (the indices i,j,k,. . . are flat). The constants αi are computed by

means of some differential and recursive formulas (see [26] and references within).
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They are:

α0 = 1; α1 = 6;

α2 = 1; α3 = 60;

α4 = 60; α5 = 180 :

α6 = 12; α7 = 5;

α8 = −2; α9 = 2;

α10 = 30. (4.26)

In order to compare our results with those of [5] we have substituted t = β
2

so we

can define in the expansion (4.14) the rescaled coefficients:

b̃k =
1

2
k
2

ak. (4.27)

The following geometrical relations allow us to rewrite the coefficients for the case

of a complex manifold:

R(r) = 2R,

R(r)MNR(r)MN = 2Rµν̄Rµν̄

R(r)MNPQR(r)MNPQ = 4Rµν̄σρ̄Rµν̄σρ̄. (4.28)

ΩMNΩMN = 2Ωµν̄Ω
µν̄ (4.29)

Remembering that n = 2d real dimensions, the new coefficients are:

b̃0(f,D) = (4π)−d
∫
M
ddzddz̄ gTrV {f} (4.30)

b̃2(f,D) = (4π)−d
1

12

∫
M
ddzddz̄ gTrV {f(6E + 2R} (4.31)

b̃4(f,D) = (4π)−d
∫
M
ddzddz̄ gTrV { f

( 1

24
∇2E +

1

12
RE +

1

8
E2

1

60
∇2R +

1

72
R2 − 1

360
(Rµν̄)

2 +
1

180
(Rµν̄σρ̄)

2 +
1

24
(Ω2

µν̄)
)
} (4.32)

4.3 Seeley-DeWitt coefficients for the (p, 0)-forms

Now we are ready to perform the calculations of the Seeley-DeWitt coefficients

of a (p, 0)-form and to obtain the first few terms in the expansion of the 1-loop
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effective action. Let us recall briefly some formulas. First of all the Euclidean

Effective Action for a (p, 0)-form has an expansion:

W =

∫ ∞
0

dβ

β

1

(β
2
)2

∑
i even

β
i
2 bi. (4.33)

Note that with bi we denote the coefficient of the full theory of (p, 0)-forms. Only

these coefficients are gauge invariant because they have contributions from the

whole set of fields and ghosts. From (4.5) we can expand the coefficient bi in a

sum of contributions derived from the full tree diagram of fields and ghosts of

Fig.(3.3) .

bi =

p∑
k=0

(−1)k(1 + k)b̃
(p−k)
i (4.34)

where b̃
(p−k)
i is the heat kernel coefficient for the kinetic (Laplacian type) operator

acting on the space of (p − k, 0)-forms. In particular we recall the form of this

operator in terms of the form degree s = p− k:

D(s) = −(∇2 + E) (4.35)

where E is the endomorphism on V = Ω(s,0)(M):

E = −s(1− 4q)

(s!)

(
Rν1

(µ1
, δν2µ2 . . . δ

νs
µs)

)
− 2qR1V. (4.36)

From now on it will be better to explicit the combinatorial factors so the round

brackets (...) will denote unweighted antisymmetrization of the indices. Remember

that q is a real constant that measure the strength of the coupling with the U(1)

part of the holonomy of the background Kähler manifold M . The study of the

coefficients will be splitted in several parts. From the formulas (4.30)-(4.32), it

is clear that the explicit computation of the traces on the space of forms V =

Ω(s,0)(M) will be required.

It is easy to get lost for the great number of pieces involved in the calculations

so we will use the following notation that anticipate the final result.

W =

∫
dβ

β

ddzddz̄

(2πβ)2
g
{
v1 + v2β + β2[v3Rµν̄σρ̄R

µν̄σρ̄ + v4Rµν̄R
µν̄

+ v5R
2 + v6∇2R]

}
(4.37)

Note however that in this notation v1 = b0 and v1 = b2, because they yield

only one term.
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4.3.1 Coefficient b0

First of all we have to deal with the heat kernel coefficients b̃
(s)
0 . It explicitly

reads:

b̃
(s)
0 = (4π)−d

∫
M
ddzddz̄ gTrV {f} (4.38)

It is implicit that we are tracing over the identity on the space V = Ω(s,0)(M).

This trace produce the dimension of this space and it is well known that:

dimΩ(s,0)(M) =

(
d

s

)
, (4.39)

where the RHS is the binomial coefficient
(
d
s

)
= d!

s!(d−s)! . However, it is instructive

to give a proof of this statement, computing directly the trace.

Proof. The trace we have to compute is:

TrV (1V ) =
1

s!
TrV

(
δν1(µ1

, δν2µ2 . . . δ
νs
µs)

)
(4.40)

(4.41)

This trace is performed separately on each space constituting the tensor product,

i.e. over the pairs (µ1, ν1) . . . (µs, νs). The last equation can be simplified by means

of (A.5):

1

s!
TrV

(
δν1(µ1

δν2µ2 . . . δ
νs
µs)

)
=

1

s!
TrV

(
εν1...νsµ1...µs

)
1

s!
εµ1...µsµ1...µs

=
d!

s!(d− s)!
. (4.42)

where in the last line we used (A.3)

This result has to be inserted in the sum formula (4.34) to give the b0 coefficient:

b0 =

p∑
k=0

(−1)k(1 + k)b̃
(p−k)
0

=

p∑
k=0

(−1)k(1 + k)

(
d

p− k

)
=

(
d− 2

p

)
. (4.43)

where in the last line we use the result (B.7), proved in appendix.
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4.3.2 Coefficient b2

This coefficient is proportional to the Ricci scalar. From (4.31), we need to

compute:
1

12
TrV (6E + 2R) , (4.44)

where:

E = −s(1− 4q)

(s!)

(
Rν1

(µ1
δν2µ2 . . . δ

νs
µs)

)
− 2qR1V (4.45)

The unknown part is only:

−s(1− 4q)

(s!)
TrV

(
Rν1

(µ1
δν2µ2 . . . δ

νs
µs)

)
(4.46)

Even if a simple argument can show the value of the last formula, we give also a

direct computation that we consider valuable for it shows the basic steps that will

lead to other coefficients. The trace of E is:

− s(1− 4q)

d

(
d

s

)
R− 2qR

(
d

s

)
. (4.47)

Proof. Method 1.

We prove only the first part of trace of E, because the second has been shown in

the calculations of the b0 coefficient. We start with the formula:

− s(1− 4q)

s!
TrV

(
Rν1

(µ1
δν2µ2 . . . δ

νs
µs)

)
(4.48)

now, we can separate the Ricci tensor, in each term of the antisymmetrization, in

a part proportional to the identity plus a traceless part:

Rν
µ =

R

d
1 + R̃ν

µ (4.49)

only the trace part survives and we obtain, then:

− s(1− 4q)

d
TrV (1V)R

= −s(1− 4q)

d

(
d

s

)
R (4.50)

Method 2.

With the help of (A.5) we can extract the antisymmetric part of E:
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− s(1− 4q)

s!
TrV

(
Rν1

(µ1
δν2µ2 . . . δ

νs
µs)

)
= −s(1− 4q)

s!
TrV

(
Rν1
σ1
δν2σ2 . . . δ

νs
σs ε

σ1...σs
µ1...µs

)
, (4.51)

then using the deltas we obtain:

− s(1− 4q)

s!
TrV

(
Rν1
σ1
εσ1ν2...νsµ1...µs

)
, (4.52)

next, performing the trace we obtain:

− s(1− 4q)

s!

(
Rµ1
σ1
εσ1µ2...µsµ1µ2...µs

)
,

= −s(1− 4q)

s!

(d− 1)!

(d− s)!
(
Rµ1
σ1
δσ1µ1
)

= −s(1− 4q)
R

d

(
d

s

)
(4.53)

where in the last line we have used (A.4).

The heat kernel coefficient b̃p−k2 now reads:

b̃p−k2 =
1

12

{
6

(
−(p− k)(1− 4q)

d

)
− 2q + 2

}(
d

p− k

)
R. (4.54)

Inserting this result in (4.34), yields:

bp2 =

p∑
k=0

(−1)k(1 + k)

{
1

6
− (p− k)(1− 4q)

2d
− 1

6
q

}(
d

p− k

)
R

=

(
d− 2

p

){
1

6
− p

2(d− 2)
− qd− 2− 2p

d− 2

}
(4.55)

in perfect agreement with [5].

4.4 Coefficient b4

This coefficient presents some algebraic complications. For this reason we will

able to give only the results with q = 0. Let us rewrite for clarity the coefficient



4.4 Coefficient b4 65

b̃4(s).

b̃4(s) = (4π)−d
∫
M
ddzddz̄ gTrV

{
f(

1

24
∇2E +

1

12
RE +

1

8
E2

1

60
∇2R +

1

72
R2 − 1

360
(Rµν̄)

2 +
1

180
(Rµν̄σρ̄)

2 +
1

48
(Ω2

µν̄))
}

(4.56)

This coefficient will split in a sum of four terms as previously announced in (4.37),

Remember that the “tilde” denotes always the contribution of only one row in the

ghost diagram. So we will follow the same procedure we used for the first two

coefficients. First we compute the coefficient for a single s-form then we insert it

in the sum formula (4.34). The first thing to note is that four of the eight pieces

of (4.56) are already in the right form, belonging to different four pieces of the

result. The trace is performed over the identity as in the case of the b0 coefficient.

We use the compact notation (v3; v4; v5; v6) for this result. If we insert only these

terms in the sum formula we obtain that the coefficients start with:(
d− 2

p

)
·
(

1

180
+ . . . ;− 1

360
+ . . . ;

1

72
+ . . . ;

1

60
+ . . .

)
(4.57)

Now we have to compute the other four traces. We denote the form degree with

an s, to stress the fact that this is not the degree of our original theory (which we

called p). The first term is:
1

12
Tr(RE), (4.58)

but this amounts to compute the trace of E. We already know the result, we found

it in the last section, see eq. (4.47) (with q=0). So this term gives contributions

only to the R2 piece, i.e. v5.

1

12
Tr(RE) = −s R

2

12d

(
d

s

)
(4.59)

The second term is:
1

24
Tr(∇2E), (4.60)

but also in this case the only thing to know is the trace of E. The result is:

− 1

24

s

d

(
d

s

)
∇2R. (4.61)

The third term is a bit more difficult:

1

8
Tr(E2). (4.62)
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If we write it explicitly, it reads:

s2

8(s!)2
Tr
{
Rν1

(µ1
δν2µ2 . . . δ

νs
µs)
·Rµ1

(σ1
δµ2σ2 . . . δ

µs
σs)

}
(4.63)

Remember that (. . .) stand for unweighted antisymmetrizazion. This could be

reduced using a similar technique as the one used for b2, expliciting the antisym-

metric part with the help of the Levi-Civita symbol. A very useful formula for this

computation is (A.8). At the end we are left with:

s2

8(s!)2

{
K1Rµν̄R

µν̄ +K2R
2
}
, (4.64)

where

K1 =
(s!)2(d− s)
sd(d− 1)

(
d

s

)
K2 =

(s!)2(p− 1)

sd(d− 1)

(
d

s

)
. (4.65)

So, this term produces two contributions:

s(s− 1)

8d(d− 1)

(
d

s

)
(v5) (4.66)

s(d− s)
8d(d− 1)

(
d

s

)
(v4). (4.67)

Then the last term is:
1

24
Tr(Ωµν̄Ω

µν̄). (4.68)

We have to explicit what is the curvature operator Ωµν̄ when it acts on the space

of (s, 0)-forms. One can compute it as the commutator of two covariant derivative

acting on a (p, 0)-form:

(Ωµν̄)Aσ1...σs = Aσ1...σs;(ν̄µ)∑
a

Rλ
σaνµAσ1...λ(a)...σs , (4.69)

where λ(a) means that lambda is in the a-th position . We can extract only the

operator part:
1

s!

∑
a

Rλ
(µaδ

ν1
µ1
. . . (δνaµa) . . . δ

νs
µs)
, (4.70)
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where the δνaµa in curved brackets is not present in each term of the sum. Inserting

this in the trace formula, extracting the antisymmetric parts by means of the

Levi-Civita symbol and using (A.8) yields:

s2

24(s!)2

{
−K1 Rµν̄σρ̄R

µν̄σρ̄ −K2 Rµν̄R
µν̄
}

(4.71)

where K1 and K2 are the same as in (4.65). At the end this produces two contri-

butions:

− s(s− 1)

24d(d− 1)

(
d

s

)
Rµν̄R

µν̄ (v4) (4.72)

− s(d− s)
12d(d− 1)

(
d

s

)
Rµν̄σρ̄R

µν̄σρ̄ (v3) (4.73)

We have all we need to perform the last step. Each contribution as to be inserted

in the sum formula (4.34), paying attention to use s = p − k in each sum, then

sum in k. Grouping together the contributions belonging to the same coefficient,

we arrive at the final result:

v1 =

(
d− 2

p

)
(4.74)

v2 =

{
1

6
− p

2(d− 2)

}(
d− 2

p

)
(4.75)

v3 =

{
1

180
− p(d− p− 2)

24(d− 2)(d− 3)

}(
d− 2

p

)
(4.76)

v4 =

{
− 1

360
+

p(3d− 4p− 5)

24(d− 2)(d− 3)

}(
d− 2

p

)
(4.77)

v5 =

{
1

72
+

p(3p− 2d+ 3)

24(d− 2)(d− 3)

}(
d− 2

p

)
(4.78)

v6 =

{
1

60
− p

24(d− 2)

}(
d− 2

p

)
(4.79)

Again this result is in full agreement with the one obtained by means of the

worldline formalism in [5].





Conclusions and future prospects

In this thesis we presented a Batalin-Vilkovisky approach to properly quantize

the gauge theory of (p, 0)-forms on Kähler manifolds, and we used the heat ker-

nel technique to compute some Seeley-DeWitt coefficients for the 1-loop effective

action of the same theory. The reasons to choose the BV formalism were twofold:

it is simpler to apply with respect to other approaches when redundancies in the

gauge invariance are present and it offers a direct way to the path integral quan-

tization. The redundancies in the gauge invariances required a tower of ghosts for

ghosts to reproduce the full gauge structure.

The most important fact we devised is that a complete covariant gauge fix-

ing procedure, performed at each reducibility step, produce a simple and quite

recursive way to construct the final Lagrangian as a sum of kinetic terms like:

φ(s)∆
(s)χ(s), (4.80)

where φ(s) and χ(s) are (Field or Ghosts) forms of degree s that belongs to one row

of the simple diagram 3.3, and ∆(s) is a Laplace type operator acting on (s, 0)-

forms. When the theory is minimally coupled to a Kähler background manifold

we could add a further coupling to the trace of the metric connection Γµ = Γλλµ
with a coupling constant q. This coupling does not spoil the nilpotency of the

Dolbeault operator ∂, so that one can safely perform the usual analysis of the

gauge invariances simply substituting it with its twisted version ∂q = ∂ + qΓ. In

this case the Laplace type operator ∆(s) takes the form:

D(s) = −(∇2
q + E)s where (4.81)

E = −2qR1Ω(s,0) − s(1− 4q)
{
Rν1

[µ1
δν2µ2 . . . δ

νs
µs]

}
, (4.82)

This form is what we needed to perform the study of the 1-loop effective action

with the heat kernel technique as we showed in the last chapter. In particular we
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used a method due to Gilkey in which the coefficients are computed as a trace

over a sum of geometric invariants. The computation of the first few Heat kernel’s

coefficients has been performed in a way that allows a direct comparison with the

same results obtained by means of the worldline formalism in [5].

The computation of the coefficients, performed with the method proposed in

this thesis, become rapidly very involved for three main reasons. First, one has

to compute traces over functions of operators acting on forms of arbitrary order.

Second one has to sum the heat kernel coefficients over the full ghosts for ghosts

structure to obtain the final gauge invariant coefficients. Third the expansion in

geometric invariants start soon to acquire a huge number of terms to deal with.

Actually, this is not a great problem when the number n of dimensions is low

because all the information about divergences is contained in the coefficients bk

with k ≤ n.

It is possible to expand the work done so far in different ways. It is possible to

compute other heat kernel coefficients, as well as completely determine the form

of b4 in the case of q 6= 0. There is also the possibility to substitute the coupling

to the trace of the connection with a more general U(1) field Bµ. Actually this

coupling would spoil the nilpotency of the Dolbeault operator ∂. However the

obstruction to the full nilpotency of ∂ is due simply to the totally holomorphic

part of the Bµ field strength, i.e. Fµν = ∂µBν − ∂νBµ. Including the condition

of the vanishing of those components of the field strength (for the emergence of

those background in string theories see for example [14]), we could perform safely

the calculations of the heat kernel coefficients for that coupling.



Appendix A

Totally antisymmetric tensors

When we computed the Seeley DeWitt coefficients with the heat kernel method

we faced the problem of the computation of traces over Ω(p,0)(M). This often

requires the knowledge of some formulas concerning totally antisymmetric symbols

(known also as Levi-Civita symbols). Albeit they are ubiquitous in mathematics

and physics it is not so simple to find in literature listings of those formulas. So

we state here some basic facts about them that have been useful in this thesis.

The Levi-Civita Symbol in d dimensions is defined as the totally antisymmetric

tensor εµ1...µd where the indices run from 1 to d. It means that it is zero if two

indices are equal and it is conveniently normalized as: ε1,...,d = 1. The very basic

fact about this tensor is its square, namely:

εµ1,...,µd εµ1,...,µd = d! (A.1)

from the last equation, the total antisymmetry is sufficient to prove that:

ελ1...λd−p,µ1,...,µp ελ1...λd−p,ν1,...,νp =

(d− p)!
{
δν1µ1δ

ν2
µ2
. . . δνpµp ± permutations

}
. (A.2)

We denote the part in curly brackets of the RHS of the last equation: ε
ν1,...,νp
µ1,...,µp . We

will call it bi-ε symbol. The trace of this symbol is:

εµ1,...,µpµ1,...,µp
=

d!

(d− p)!
. (A.3)

From this last formula one infer that:

εσ,µ2,...,µpρ,µ2,...,µp
=

(d− 1)!

(d− p)!
δσρ . (A.4)

71



72 A. Totally antisymmetric tensors

So if an expression contains a total antisymmetry in some indices (denoted by

round brackets), one use the symbol above, in the following manner:

A(µ1Bµ2 . . . Zµp) = Aσ1Bσ2 . . . Zσp ε
σ1,...,σp
µ1,...,µp

(A.5)

Another important formula is the trace of the product of two bi-ε symbols:

εν1,...,νpµ1,...,µp
εµ1,...,µpν1,...,νp

= (p!)2

(
d

p

)
. (A.6)

When we trace only over (p− 1) indices in the above formula the result is:

εσ,ν1,...,νp−1
µ1,...,µp

εµ1,...,µpρ,ν1,...,νp−1
= (p!)

(d− 1)!

(d− p)!
δσρ . (A.7)

All those formulas allows one to compute also:

ε
σν1...νp−1

λµ1...µp−1
ερ,µ1...µp−1
γν1...νp−1

= K1δ
σ
λδ

ρ
γ +K2δ

σ
γ δ

ρ
λ (A.8)

where:

K1 =
(p!)2(d− p)
pd(d− 1)

(
d

p

)
K2 =

(p!)2(p− 1)

pd(d− 1)

(
d

p

)
(A.9)



Appendix B

Binomial coefficient: useful

formulas.

In this appendix we state some useful formulas and two results that are en-

countered in the main text. First of all the Binomial coefficient is defined by the

very well known expression: (
d

s

)
=

d!

s!(d− s)!
(B.1)

To start we list some important formulas about the binomial coefficient, there are

a lot of them. A more complete list could be found in [1].

(
n− 1

k

)
=
n− k
n

(
n

k

)
, (B.2)(

n− 1

k

)
= −1 + k

n

(
n

k + 1

)
, (B.3)(

n

k

)
−
(
n− 1

k − 1

)
=

(
n− 1

k

)
. (B.4)

Next we want to prove two important results that are used throughout the thesis:

Proposition B.0.1.

p∑
k=0

(−1)k
(

d

p− k

)
=

(
d− 1

p

)
. (B.5)
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Proof. We prove this statement by induction. It is certainly true for p = 0 (it

yields 1). Now considering that it is true for a certain p, we show that it is also

true for p+ 1. Indeed,

p+1∑
k=0

(−1)k
(

d

p+ 1− k

)
=

(
d

p+ 1

)
+

p∑
k=1

(−1)k+1

(
d

p+ 1− k

)
(

d

p+ 1

)
−

p∑
k=0

(−1)k
(

d

p− k

)
(

d

p+ 1

)
−
(
d− 1

p

)
=

(
d− 1

p+ 1

)
, (B.6)

in the second line we shifted by one the index of the sum and in the third we used

(B.4).

Proposition B.0.2.

p∑
k=0

(−1)k(k + 1)

(
d

p− k

)
=

(
d− 2

p

)
. (B.7)

Proof. Again, we prove this statement by induction. It is true for p = 0. So as we

did for the last proposition,

p+1∑
k=0

(−1)k(k + 1)

(
d

p+ 1− k

)
=

(
d

p+ 1

)
+

p∑
k=1

(−1)k+1(k + 1)

(
d

p+ 1− k

)
(

d

p+ 1

)
−

p∑
k=0

(−1)k(k + 1 + 1)

(
d

p− k

)
(

d

p+ 1

)
−

p∑
k=0

(−1)k(k + 1)

(
d

p− k

)
−
(
d− 1

p

)
(

d

p+ 1

)
−
(
d− 2

p

)
−
(
d− 1

p

)
(
d− 1

p+ 1

)
−
(
d− 2

p

)
=

(
d− 2

p+ 1

)
(B.8)

in the second line we shifted the index by one and in the last we used repeatedly

(B.4).
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