
Alma Mater Studiorum · Università di Bologna
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Abstract

In questo lavoro abbiamo studiato la presenza di correzioni, dette unusuali, agli stati eccitati
delle teorie conformi. Inizialmente abbiamo brevemente descritto l’approccio di Calabrese
e Cardy all’entropia di entanglement nei sistemi unidimensionali al punto critico. Questo
approccio permette di ottenere la famosa ed universale divergenza logaritmica di questa
quantità. Oltre a questo andamento logaritmico son presenti correzioni, che dipendono
dalla geometria su cui si basa l’approccio di Calabrese e Cardy, il cui particolare scaling è
noto ed è stato osservato in moltissimi lavori in letteratura. Questo scaling è dovuto alla
rottura locale della simmetria conforme, che è una conseguenza della criticità del sistema,
intorno a particolari punti detti branch points usati nell’approccio di Calabrese e Cardy.
In questo lavoro abbiamo dimostrato che le correzioni all’entropia di entanglement degli
stati eccitati della teoria conforme, che può anch’essa essere calcolata tramite l’approccio di
Calabrese e Cardy, hanno lo stesso scaling di quelle osservate negli stati fondamentali.
I nostri risultati teorici sono stati poi perfettamente confermati dei calcoli numerici che
abbiamo eseguito sugli stati eccitati del modello XX. Sono stati inoltre usati risultati già
noti per lo stato fondamentale del medesimo modello per poter studiare la forma delle
correzioni dei suoi stati eccitati. Questo studio ha portato alla conclusione che la forma
delle correzioni nei due differenti casi è la medesima a meno di una funzione universale.
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Introduction

In recent years the entanglement has been extensively studied in many very different fields
of physics like quantum information theory, quantum many body systems, phase transitions
and black hole theory.
From the birth of quantum mechanics the Entanglement between particles has been consid-
ered one of the most mysterious and peculiar characteristics of the theory. The presence of
this strange “spooky action at distance”, as Einstein called it, was described by Schrodinger
as “the” nature of quantum physics, see Ref.[1], and actually it is still one of the most
rapidly evolving research fields. Entanglement has been intensively studied both from the
theoretical and the experimental point of view, where in the last years many results have
been confirmed by experiments also on macroscopic scale. For example an experimental
group created entanglement between pairs of particles on the scale of 143 Km, see Ref.[2].
In quantum computation, see Ref.[3] and Ref.[4], the use of entangled states can change the
complexity class of the algorithms and this is impossible in classical computation theory.
Two beautiful examples are the Quantum Fourier Transform, see Ref.[3], and the Shor’s
algorithm that allows to find prime numbers in a much more easy way with respect to the
classical computation theory, for more information see Ref.[5]. Since the entanglement can
be used to improve communications and computation protocols, many ways to quantify and
describe the entanglement were defined and they are called entanglement measures, for a
more complete discussion about this topic see Ref.[6] and Ref.[7]. For the case of bipartite
entanglement, the entanglement that takes place between two parts of the same system,
the most used ones are the von Neumann entropy and the Renyi entropy. The applications
of these entanglement measure to many body physics are useful to have a deepen descrip-
tion of the ground state properties of the many body system and to describe what happens
in a phase transition, for a complete review of entanglement in many body systems see
Ref.[8], Ref.[9]. In particular the behaviour of 1D many body systems at the critical point
is particularly interesting. In Ref.[10], Ref. [11] and Ref.[12] it is demonstrated that the
entanglement entropy of the ground state of those systems takes an universal logarithmic
behaviour that is one of the most amazing consequences of the concept of universality in
physics. The logarithmic divergence can be obtained mapping the system under study on a
complicated Riemann surface and then computing its partition function over it, see Ref.[13],
this approach is called Replica Trick approach. The model on the Riemann surface can be
mapped on the complex plane defining a new model called multi copy model, see Ref.[14],
that is defined in a suitable way to preserve the locality of the theory. Furthermore the log-
arithmic behaviour of entanglement entropy receives geometry dependent corrections due to
particular points defined on the Riemann surface, that are called branch points, and these
corrections are called unusual corrections, see Ref.[15]. They have a scaling behaviour that
is very different from the standard renormalization group one but they were observed in
many theoretical and numerical works on lattice models such as spin chains, like Ref.[16],
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Ref.[17] and Ref.[18]..
The aim of our work is to investigate the presence of unusual corrections also in the excited
states of conformal field theory. In fact only the leading order behaviour of the Renyi en-
tropy of the excited states is known, see Ref.[19], and it can be computed using the same
Replica Trick approach valid for the ground state. A possible comment could be that un-
usual corrections should arise also in the excited state case, due to the geometrical structure
of the Riemann surface used in both cases. In this work we will derive how unusual correc-
tions arise in all details. We will analyse also the specific case of the Two dimensional Ising
model where, using Ref.[20], it is possible to make explicit computations. The study of the
corrections and their scaling properties will be performed using the same theoretical tools
employed in the ground state case. At the end of our work we will present some numerical
computations to confirm our predictions and to propose some possible extensions.
The structure of the work is the following one:

Chapter 1 In this chapter we will introduce the main concepts of the entanglement and quantum
phase transitions. We will follow Ref.[21] and Ref.[22].

Chapter 2 is dedicated to the computation of the entanglement entropy of 1D quantum critical
systems that exhibit conformal invariance using the Replica Trick method developed
by Calabrese and Cardy in Ref. [10]

Chapter 3 We will extend the Replica Trick approach to the excited states of a generic conformal
filed theory following Ref. [19], in the end we will restrict to the specific case of bosonic
system that is the continuum limit of the XX spin chain.

Chapter 4 In this chapter we will expose how to extract the corrections to the leading order of
entanglement entropy and in particular we will study their scaling as did Calabrese
and Cardy in their Ref. [15].

Chapter 5 In this chapter we will extract the unusual correction from the excited state of con-
formal field theory and we will demonstrate that them can be extracted by the same
argument used in the ground state case.

Chapter 6 This is the last chapter where we will present numerical computations that are in
perfect agreement with our theoretical predictions.
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Chapter 1

Entanglement in many body
systems

The aim of this section is to present some important and general results about the entangle-
ment in order to give a global view on the topic. There are many introductory review about
entanglement and entanglement entropy, we choose to follow in the first part Ref. [21] and
in the second part the book Ref.[22].
In the first part we will describe the general theory of entanglement, studying the situation
of a system S divided in two subsystems A and B. We will analyse the situation from
the point of view of the density matrix formulation of quantum mechanics introducing the
reduced density matrix of the subsystems. We will also describe three methods commonly
used to compute it and some explicit computations. For a more complete view about entan-
glement see also Ref.[9], focused on many body systems, or Ref.[7], concerning the quantum
information point of view.
In the second part we will briefly describe the fundamental aspects of phase transitions.
The physics of quantum systems at critical points is peculiar because the energy spectrum
becomes gapless and the correlation length diverges. We will see in Chapt.2 how these
physical facts in 1D quantum systems give us the famous universal logarithmic behaviour
of entanglement entropy,see Ref.[13], Ref.[11] and Ref.[12].

1.1 The Schmidt decomposition

It is a well known fact that entanglement manifests itself when we divide a system S into
two parts A and B where S = A ∪B.
We can write the wave function of the whole system S, called |Ψ〉, as a combination of the
local basis |ΨA

m〉 and |ΨB
n 〉 of the Hilbert spaces of the subsystems A and B:

|Ψ〉 =
∑
m,n

Am,n |ΨA
m〉 |ΨB

n 〉 . (1.1)

The matrix A is a rectangular matrix, in general dimHA 6= dimHB , that is formed by the
projections of |Ψ〉 on the local basis of HA and HB .
It is a well known result from linear algebra that a rectangular matrix can be rewritten using
the singular value decomposition as:

A = UDV′, (1.2)
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where U is an unitary transformation, D is a diagonal matrix and V is a matrix with
orthonormal rows.
Inserting 1.2 in 1.1 we can find a more suitable basis to write the state |Ψ〉 of S:

|ΦAl 〉 =
∑
m

Um,l |ΨA
m〉 (1.3)

|ΦAl 〉 =
∑
n

V ′l,n |ΨB
n 〉 . (1.4)

The state of S written as superposition of |ΦAl 〉 and |ΦBl 〉:

|Ψ〉 =
∑

l≤min{m,n}

λl |ΦAl 〉 |ΦBl 〉 , (1.5)

where λl ≡ Dl,l. The normalization of the wave function |Ψ〉 imposes a constraint on the
coefficients λl:

〈Ψ|Ψ〉 =
∑
l

|λl|2 = 1, (1.6)

that holds for the property of the matrices U and V′.
The entanglement properties are all encoded in the values λl because they give us a measure
of the overlap between the quantum states of the two subsystems, physical effect responsible
of entanglement.
In order to have a more clear vision of how the coefficients λi affect the entanglement we
can analyse two extreme cases.
The first one is:

λl = δl,l0 , (1.7)

that gives us:
|Ψ〉 = |ΦAl0〉 |Φ

B
l0〉 . (1.8)

The state 1.8 is separable and in this case there is no entanglement between the two sub-
systems; a measure on the subsystem A will not affect a measure on the subsystem B.
The most different case is the following:

λn = λ→
∑
l

λ2 = 1→ λ =
1√
N
, (1.9)

that defines the maximally entangled state:

|Ψ〉 =
1√
N

∑
l

|ΦAl 〉 |ΦBl 〉 . (1.10)

Generally it is very difficult to detect entanglement in a generic quantum state, for example
in weak entangled states Ref.[7], and it is also difficult to define which states are entangled
and which not. This is the reason why we can define the entanglement only using a non
definition:
A state |Ψ〉 of the whole system S is non entangled if it could be written as a direct product
of the states of the two subsystems:

|Ψ〉 = |ϕ〉A ⊗ |φ〉B . (1.11)

Every other state is called entangled and this means that it is possible to influence the state
of the subsystem A performing local measurements on the subsystem B.
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1.2 Reduced density matrix and entanglement entropy

We have studied the division of the whole system in two parts from the point of view of
the wave functions of the system and subsystems. It is a well known fact that the quantum
state of systems can be described by their density matrices and it is possible to rewrite the
quantum mechanics using density matrices instead of wave functions.
If the whole system S is in a pure state defined by the vector |Ψ〉 ∈ HS its density matrix
is defined as:

ρ = |Ψ〉 〈Ψ| . (1.12)

The reduced density matrix of one of the two subsystems can be obtained simply by tracing
out the degrees of freedom of the other one:

ρA = TrBρ ρB = TrAρ. (1.13)

We can compute the density matrix of S using its Schmidt decomposition 1.5 and the reduced
density matrix of the subsystem α becomes:

ρα =
∑
l

|λl|2 |Φαl 〉 〈Φαl | . (1.14)

From this relation we can see that the Schmidt basis |Φαl 〉 is the one that diagonalize the
reduced density matrix ρα with eigenvalues wl = |λl|2.
We can also notice from 1.14 that the reduced density matrix ρα describes a mixed state
even if we started from a density matrix ρ that was in a pure state. The expectation value of
a generic observable restricted to the subsystem A is obtained as usual for a generic mixed
state:

〈Aα〉 =
∑
n

|λn|2 〈Φαn|Aα |Φαn〉 . (1.15)

From 1.14 we can see that the reduced density matrix ρα is a hermitian operator, with
positive eigenvalues and we can rewrite it as an exponential operator:

ρα =
1

Z
e−Hα , (1.16)

where the Hα is the entanglement hamiltonian, that is different from the hamiltonian H of
the system, and the Z is a normalization factor that ensures the proper normalization of
the reduced density matrix:

Z = Tre−Hα → Trρα = 1. (1.17)

Another important property of the expression 1.14 is that the reduced density matrices ρA
and ρB share the same non zero eigenvalues, it holds because the whole system S was in
a pure state. This implies that their entanglement properties are the same and when we
will define a measure of entanglement we have to take into account the existence of this
particular symmetry.
In the Density Matrix Renormalization Group algorithm the properties of the eigenvalues
wl are used to truncate the Hilbert space selecting only their m higher values and the
corresponding states |Φαl 〉. This method is expected to work only if the total weight of the
erased spectrum is sufficiently small.
It is clear that, in order to obtain reasonable results from DMRG, it is necessary to have
a knowledge, even only qualitative, of the behaviour of the spectrum wn of the reduced
density matrix.
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Lest us assume to have computed in some way, numerical or analytic, the spectrum of
reduced density matrix and that now, for example, we want to perform a measure of the
entanglement encoded in the subsystem A. Since we know that all the information about
the mixing between A and B lies in the coefficients wn, we want to have a measure that it
is only a function of these variables. In classical information theory there is a measure of
the information that is the Shannon entropy. We can compute it for the weights wl and use
the result as entanglement measure called entanglement entropy :

SA = −
∑
n

wn lnwn. (1.18)

This expression is a function only of the eigenvalues of the reduced density matrix, that
implies SA = SB for arbitrary bipartitions of system S in a pure state. Although there are
many other entanglement measures, see Ref.[6] for a more complete list of them, but the
entanglement entropy is the most used for bipartite entanglement. We have to keep in mind
that 1.18 measures a mutual connection between subsystems and it is not proportional to
their size. We can compute the entanglement entropy for 1.10 and 1.8. In the 1.8 we have
the weights wn = δn,n0

and the entanglement entropy vanishes. In the opposite case of 1.10,
wn = 1/M for n = 1, ......,M , we have the maximum of the entropy: S = lnM .
The last statement allows us to define an effective number of coupled states Meff that
describes the entanglement entropy as:

S ≡ lnMeff. (1.19)

We can rewrite the entropy as a functional of the reduced density matrix using the spectral
theorem:

S = −TrAρA ln ρA, (1.20)

that is formally equal to the definition of thermal entropy in statistical mechanics. This
similarity is only apparent since it has a completely different behaviour with the system
size.
In fact the thermal entropy is a measure of absence of information due to the fact that many
microstates can give the same macrostate of the system.
In general this quantity scales with the number of microstates that can be approximated
with the volume of phase space accessible to the system. The phase space is a direct product
between the space of momenta and the real space accessible at the mechanical system so it
is natural that the thermal entropy scales with the direct volume accessible to the system.
In conclusion we have that the thermal entropy of a system of typical length l in d dimensions
scales as:

ST ∼ ld. (1.21)

The situation is very different if we look at the entanglement entropy where the quantity
that play the key role is the surface that divides the two subsystems: this will lead to an
area law behaviour instead of a volume law.
We can rewrite this statement in a more formal way: the system S, in generic dimensions
d, is divided in two parts A and B. In general for a non critical quantum system described
by a local quantum field theory we expect that the entangled degrees of freedom are the
ones placed near the surface that separates A and B. This simple analysis implies that
entanglement entropy scales with the area of the surface that divides the subsystems, this
means that in generic dimensions d it has to scale as:

SL ∼ c1
(
l

ε

)d−1

, (1.22)
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where l is the size of the subsystem and ld is its volume and ε is a cutoff. For a more
complete discussion of area law and its implication on physical systems see Ref.[23].
For d = 1 the precedent expression would lead us to a bounded entanglement entropy, but
we will see that in some cases there are violations of the previous argument. These violations
take place at critical points where the correlation lengths of the theory is divergent and the
system is more correlated than the non critical case.

1.3 Reduced Density Matrix for free lattice models

In this section we will expose three methods that are commonly used to compute explicitly
the reduced density matrices.
We will focus our attention only on very simple Hamiltonians that are quadratic in the
bosonic/fermionic creation/annihilation operators and they can be diagonalized using a
Bogoliubov transformation. This is a very large class of models and we will use only the
most physically relevant ones:

• Fermionic hopping models with conserved number of particles:

H = −1

2

∑
〈m,n〉

tm,nc
†
mcn, (1.23)

where the symbol 〈. . . 〉 means that the sum is restricted to the nearest neighbors.

• Coupled oscillators with eigenfrenquency ω0 and hamiltonian:

H =
∑
n

[
−1

2

∂2

∂x2
n

+
1

2
ω2

0x
2
n

]
+

1

4

∑
〈m,n〉

km,n(xm − xn)2. (1.24)

• spin one-half models that can be mapped into free fermionic models using the Jordan-
Wigner transformation, as the XY model:

H = −
∑
n

[
1 + γ

2
σxnσ

x
n+1 +

1− γ
2

σynσ
y
n+1

]
− h

∑
n

σzn, (1.25)

where the σα are the Pauli matrices.
If we set γ = 0 the model becomes the XX spin chain, that will be studied intensively
in Chapt. 6, on the other side if we set γ 6= 0 the model admits the creation and
annihilation of pairs. The case of γ = 1 describes the Ising model in external magnetic
field that could be written rescaling the unit of energy as the coupling between nearest
neighbors:

H = −
∑
n

σzn − λ
∑
n

σxnσ
x
n+1. (1.26)

In general it is very difficult to compute the reduced density matrix starting from the density
matrix of the whole system S. Sometimes there are particular symmetries or properties of
the system, like integrability, that can help us in this task.
As we saw in the last section 1.14, we can write the reduced density matrix of the subsystem
as an exponential of the entanglement hamiltonian:

Hα =

l∑
i=1

εif
†
i fi, (1.27)
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where l is the length of the subsystem α, that could be A or B, and the operators f†l and
fl are fermionic or bosonic and they correspond to single particle states with eigenvalues εl.
The important fact is that the entanglement hamiltonian Hα and the true hamiltonian of
the system H are functions of the same creation/annihilation operators.
Now we can expose three of the most used methods to obtain the reduced density matrix of
a subsystem.
The first one is an application of the definition of reduced density matrix: we obtain the
reduced density matrix of the subsystem A by tracing out the degrees of freedom of the
subsystem B from the density matrix of the whole system S.
This can be done explicitly for example in a system of N coupled harmonic oscillators in
their ground state, see Ref.[24] and Ref.[25]. We know from quantum mechanics that the
wave function of the ground state of a single harmonic oscillator is a gaussian function. This
allows us to write the ground state of the whole system as:

Ψ(x1, x2, . . . , xn) = C exp

(
−1

2

N∑
m,n

Am,nxmxn

)
, (1.28)

Am,n is defined as the square root of the matrix associated to the potential energy:

A2 = V→ Am,lAl,n = Vm,n. (1.29)

From the wave function we can easily derive the density matrix ρ of the system and then we
can integrate the degrees of freedom of the variables xl+1, xl+2, . . . , xN that will leave the
reduced density matrix ρA of the subsystem composed by the first l sites. Since we integrate
over a great number of gaussian functions we expect that the result would be still a gaussian
function in remaining variables.
We can define linear combinations of the remaining variables, namely yl and y′l, in order to
have only combinations of the type y2

l , (y′l)
2 and (yl − y′l)2. We can write the differences

(yl − y′l)2 as second derivatives with respect to the variables obtaining the reduced density
matrix of the subsystem:

ρA = K

l∏
i=1

exp

(
−1

4
ω2
i y

2
i

)
exp

(
1

2

∂2

∂y2
i

)
exp

(
−1

4
ω2
i y

2
i

)
. (1.30)

The exponent can be recasted in a quadratic expression of bosonic creation/annihilation
operators and from its diagonalization can be found that the entanglement hamiltonian is
simply a collection of l harmonic oscillators.
The eigenvalues εi can be obtained from the submatrices ofAm;n, namely: aAA, aAB , aBA, aBB ,
where the labels A and B describe the position of the site.
We can define the l × l matrix:

aAA
(
aAA − aAB(aBB)−1aBA

)−1
, (1.31)

that can be diagonalized since it is hermitian. Its eigenvalues are functions of the entangle-
ment eigenvalues: coth2(εl/2). The last statement gives us all the entanglement properties
of the subsystem under study and it ends the demonstration.
The procedure exposed above works also in the case of fermionic systems where we have to
replace real valued variables with Grassman ones, see Ref.[26] and Ref.[27] for more details.

In the case of a free fermionic system at zero temperature there is a very easy way to
find the eigenvalues of the reduced density matrix from the correlation matrix (see Ref.[28],
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Ref.[12] and Ref.[29]) and it avoids the explicit computation of the reduced density matrix
starting from the density matrix of the system. This method will be also used in the Chapt.6
to compute the entanglement entropy of the excited states of the XX chain.
The ground state of an N particles Fermi system at zero temperature is a Slater determinant
of single particle wave functions. In such state all the many particles correlation functions
factorize into products of one particle functions as:

〈a†ma†nakal〉0 = 〈a†mal〉0〈a†nak〉0 − 〈a†mak〉0〈a†nal〉0, (1.32)

where 〈〉0 indicates an expectation value taken over the ground state of the system.
If all the sites are in the same subsystem the previous expression can be computed using
the reduced density matrix and the definition of expectation value. Wick’s theorem forces
the reduced density matrix to be in the form:

ρα = K exp

−∑
i,j

Hijc
†
i cj

 , (1.33)

where i and j are sites in the subsystem. The hopping matrix Hij is determined imposing
that it gives the correct correlation matrix:

Cij = Tr
(
c†i cjρα

)
. (1.34)

The matrices C and H are diagonalized by the same transformation and they satisfy the
formal relation:

H = ln

(
1− C
C

)
. (1.35)

From the spectral theorem we have that the same relation holds for the eigenvalues ζl of H
and εl of C. In particular they satisfy:

(1− 2C)ϕl = tanh
(εl

2

)
ϕl. (1.36)

This approach is valid also in presence of creation and annihilation of pairs described by the
matrices:

Fi,j = 〈c†i c
†
j〉, F∗i,j = 〈cicj〉. (1.37)

Obviously the terms responsible of generation and annihilation of pairs have to be present
also in the entanglement hamiltonian. In the case of a real valued matrix F we can obtain
an equation satisfied by the hopping matrix in the entanglement hamiltonian:

(2C− 1− 2F) (2C− 1 + 2F)ϕl = tanh2
(εl

2

)
ϕl. (1.38)

The eigenvalues of the entanglement hamiltonian, and the entanglement entropy, can be
found from the solution of the previous equation.
This method is extremely flexible and it can be use to explore many different physical
situations like the presence of defects in the system, random systems and systems at finite
temperature.
The main assumptions are:

• The ground state can be written as a Slater determinant
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• The Hamiltonian of the system H is quadratic in the creation/annihilation fermionic
operators

The third way is to relate the model to some statistical solvable model, Ref.[30] and
Ref.[31] for a more complete discussion about this topic. In general a spin system in d
dimensions can be related to a classical d+1 dimensional statistical model using the transfer
matrix.
In a the case of a finite length spin chain we can obtain its quantum state |Ψ〉 starting from
a generic state |Ψs〉 and then applying n times a proper operator T . A suitable choice of
this operator T is the row-to-row transfer matrix, that is used in the solution of the classical
Ising model. In this situation we create a relation between the quantum state |Ψ〉 and the
partition function of a semi-infinite strip of that classical system, the corresponding density
matrix is computed using two strings of operators T .
If we want to compute the reduced density matrix for the first part of the system, for
example, we have to trace out the degrees of freedom of the subsystem B, and it is simply
done by sewing together its edges and leaving an open cut in presence of the subsystem A,
as it is represented in Fig.1.1. In this situation ρα is the partition function of a system that
is a full strip with a perpendicular cut.
This method works for a very large class of systems, here are some examples:

• the transverse Ising chain is correlated to a two-dimensional Ising model on a rotated
square lattice (Ref.[31])

• the chain of coupled oscillator studied above is correlated to a two-dimensional Gaus-
sian model (Ref.[24])

• the XY spin chain is correlated to an Ising model on a triangular lattice (Ref.[32])

• XXZ and XYZ and other higher spin chains are correlated to different vertex models
(Ref.[33],Ref.[31] and Ref.[34])

The problem of this approach is the explicit computation of the partition function of the
statistical model. This can be done using the corner transfer matrices that are partition
functions of the quadrants represented in Fig. 1.1.

T

T

T

T

T

T

T

T

T

T

21

trace

C

B

D

A

Figure 1.1: Left: Density matrices for a quantum chain seen as a two dimensional partition function. On
the far left we have an expression of the total density matrix ρ as a consecutive application of a large number
of operators T . The central figure is the expression of the reduced density matrix ρ1, it is represented by
the open cut. On the right we have a partition function seen as composed by four corner transfer matrices
A,B,C,D. This figure has been taken from Ref.[21]
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If the subsystem under study is half of an infinite system, like in Fig.1.1, it is possible to
compute explicitly its reduced density matrix as an ordinate product of infinite size corner
transfer matrices of quadrants:

ρα ∼ ABCD. (1.39)

In particular, for infinite systems the form of the corner transfer matrices is known:

A = e−uHCTM , (1.40)

that is a consequence of the star triangle relation of integrability introduced by Baxter in
Ref.[35].
This approach gives the entanglement hamiltonian Hα and an explicit expression for its
eigenvalues εl. We have described this approach in the case of an infinite system divided in
two half-infinite subsystems, but the derivation is still valid in the case of finite systems of
length L much larger than the correlation length ξ, we are in the non critical case and this
quantity is finite.
In this section we exposed the most used techniques to obtain the entanglement hamiltonian
and its eigenvalues. Unfortunately in many cases it is impossible to compute analytically
the εl and then we have to proceed numerically. Even in numerical computations some
problems arise: the εl approach very fast to the values ±1 when the number of sites in
the subsystem increases. This creates many problems in the correct evaluation of physical
quantities. These problems can be avoided only using sophisticated numerical techniques,
but the computation is possible only if the number of sites is smaller than 100. We will
see in Chapt.2 that in the case of a critical 1D quantum system there is another, and very
elegant, way to compute the entanglement entropy. This method takes into account that
at the critical point the system becomes scale invariant and this will lead us to the famous
logarithmic divergence of the entanglement entropy found in Ref.[13], Ref.[11] and Ref.[10].

1.4 Quantum phase transitions

In all the thesis we will study one dimensional quantum systems, even if some arguments
can be extended to arbitrary dimensions. In particular we will focus on critical 1D quantum
systems and now we briefly describe the physical background of this situation.
A physical system is described by a hamiltonian depending on a generic number of parame-
ters that regulates the microscopic behaviour of the quantum system. The values taken by
the parameters can put the system in macroscopic states with very different properties and
these different macroscopic states are called Phases. A system can have a number of phases
larger than one and this means that there is at least one combination of the parameters
shared by two different phases, called critical line.
There are some mathematical objects that can be used to detect and distinguish between
different phases of the system: they are called order parameters. An order parameter is
a quantity that is zero, even statistically, outside its phase and it differs from zero inside
it. This particular behaviour of the order parameters is due to a more deeper concept: the
spontaneous symmetry breaking. In the spontaneous symmetry breaking we have a mi-
croscopic hamiltonian that is invariant under some generic symmetry but it has some low
energy states, like the ground state, that explicitly violate the symmetry itself.
A very famous example where the spontaneously symmetry breaking occurs is the Ising
model. It is the simplest model developed to study the magnetic properties of matter and
it has been studied in many works in the literature. It is described by a global Z2 invariant
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hamiltonian:
H = −J

∑
〈i,j〉

SiSj , (1.41)

where Si are classical variables that range in the set {±1}, they should behave like a classical
version of quantum spins and they interact like little magnetic dipoles. The notation 〈i, j〉
stands for the nearest neighbour sum. We will assume that the coupling constant J is
positive and this will support the ferromagnetic phase instead of the paramagnetic.
The hamiltonian 1.41 is trivially invariant under the simultaneous flip of all spins, namely
{±1} → {∓1}. In fact the energy of a certain spin configuration is determined by the
relative positions of the spins, we can flip them all and we will obtain another configuration
that has the same energy of the first one.
We can easily find the ground state of the system since the energy is lower for states with
a great number of spins aligned along the same direction: up direction is {+1} and down
direction is {−1}. It is obvious that the two lower energy configurations are the two with
all the spins aligned along the directions ±1.
Both these configurations are not invariant under the action of the group Z2, the one with
all up spins goes to the one with all down spins and vice versa: they are connected by the
action of the group.
Obviously we can be in one of these configurations only if the temperature is sufficiently
low, in the specific case of 1D Ising model only at T = 0, because they are two extremely
ordered configurations. We know that at high temperature the favourite configurations are
the disordered ones.
In the Ising model the order parameter is simply the magnetization along the direction of
the spins: in the high temperature limit it is statistically zero, the number of up and down
spins are equal and their contributions cancel out. When we are in the ordered phase the
macroscopic magnetization has a non zero value along a direction, {±1} depending on the
case, because there is a macroscopic number of spins aligned along the up or down direction.
We saw above these two cases are connected by the action of the invariance group Z2.
In general, when we are in the high temperature regime, the system is completely described
by the classical statistical mechanics and it has classical fluctuations around the mean value
of its observables. In this regime we have an energy scale that is KBT where T is the
absolute temperature and a length scale that is λT , called thermal wavelength. The intrinsic
quantum nature of matter is not evident here but, when we approach the low temperature
regime T ≈ 0, the mean values of observables are affected by a completely different kind of
fluctuations that are the quantum ones.
In the low temperature regime the spectrum of low energy excitations has typical frequency
ω and the typical energy scale ~ω. The quantum fluctuations are described by two scales:
the correlation length ξ and the correlation time τ . Both of them diverge with a power law
behaviour approaching the critical line.
The main parameter for a system near a critical point, occurring at critical temperature TC ,
is the reduced temperature defined as:

t =
T − TC
TC

, (1.42)

we are at the critical point when t = 0, in an ordered phase when t < 0 and in a disordered
phase when t > 0.
We can parametrize the divergences of ξ and τ as:

ξ ∼ |t|−ν τ ∼ |t|−zν . (1.43)
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The correlation time defines an energy scale ∆ that is called gap energy:

∆ ∼ 1

τ
∼ |t|zν , (1.44)

this gap in the spectrum tends to zero approaching the critical point, at the critical point
the system is called gapless.
Using the definition of the correlation length 1.43 we have the simple relation:

∆ ∼ 1

ξz
. (1.45)

In general at the critical point the correlation length is divergent and the spectrum is gapless,
that has a lot of strong consequences in the physics of critical systems.
The classical fluctuations are totally suppressed only at zero temperature and the only
fluctuations present are the quantum ones. Obviously there are some problems with this
picture because experimentally we cannot reach the zero temperature limit, fortunately all
the previous considerations can be extended to a region where the quantum fluctuations and
the thermal energy are comparable, namely:

KBT ∼ ∆, (1.46)

that defines the quantum critical region.
In a system at T = 0 we have that the correlation length is not dependent on the temperature
but on the set of parameters present in the hamiltonian. In the simple case of a single
parameter g we can parametrize the gap ∆ in this region as:

∆ ∼ |g − gc|νz, (1.47)

where gc is the critical values of the parameter g, where the transition occurs. Since we are
at T = 0 the behaviour of the system is completely described by quantum mechanics and
the transition that takes place at gc is called quantum phase transition. We can now define
the region called quantum critical as the region where the gap is comparable to the thermal
energy:

KBT ∼ |g − gc|νz. (1.48)

In the following chapters we will study principally 1D systems that are very important in
condensed matter physics because their behaviour is peculiar compared to the higher di-
mensions ones. In particular we have that in 1D the Mermin Wagner Hohenberg theorem
holds: in d ≤ 2 spatial dimensions and at finite temperature a system with sufficiently short
range interaction cannot spontaneously break any continuous symmetry of its hamiltonian,
see Ref.[36], Ref.[?]. This means that using a little energy cost, a great number of long-range
fluctuations can be created. These fluctuations are favored because they increase the entropy
of the system. This creates at low temperature a strange mixture of order and disorder and
it is called quasi-long-range order and it is described by a power law decay of correlation
functions.
The absences of a length scale and the power law decay of the correlation function are
characteristic of critical one dimensional systems that can be described properly using con-
formal field theory. This has very important consequences for the entanglement entropy of
1D critical systems that will lead to the famous universal behaviour:

S ∼ α ln l. (1.49)
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α is an universal constant that will be fixed in Chapt.2 and its specific geometrical meaning
will be clear. This expression was obtained in very different contexts in Ref.[13], Ref.[10],
Ref.[11] and Ref.[12]. The divergence of the correlation length at the critical point has an
important consequence: the logarithmic scaling of the entanglement entropy. In fact all the
degrees of freedom of the system are connected and not only the ones around the surface
that separates the two subsystems. The area law argument is still valid away from criticality
meaning that we have an entanglement entropy saturation. In dimensions higher than one
we have that at critical point the area law is an understimation of the entanglement entropy
of the system. In general there are violations of the area law but they depends on the model
and it is not always true that corrections are dominant with respect to power law behaviour.
For example we could have a violation of the type:

Sl ∼ (l)
d−1

ln l. (1.50)

The scaling behaviour is known for some specific models like critical fermions in d = 2,
Ref.[37], that is:

Sl ∼ l ln l. (1.51)

All the violations of the area law in d > 1 dimensional systems are model dependent. In the
1D case the violation of the area law is universal as we will see in the next chapter and it is
one of the beautiful example of the concept of universality that takes place in the 1D world.
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Chapter 2

Entanglement entropy in
conformal field theory

In this chapter we will focus our attention on critical 1D quantum systems, even if some
part of our approach can be extended to quantum systems in generic dimensions.
As we have seen in the previous chapter, in critical systems we have a divergent correlation
length that motivates the scale invariance symmetry and, most important, that these systems
violates the area law of the entanglement entropy, that holds for non critical systems.
The 1D case is the most beautiful case of violation of area law, the entanglement entropy
takes the famous (see Ref.[13], Ref.[29] and Ref.[11]) logarithmic universal form :

Sl =
c

3
ln l + γ. (2.1)

This logarithmic divergence is completely model independent, the model enters only in the
central charge c that multiply the divergence.
We will compute the entanglement entropy for a generic 1D system that exhibit conformal
invariance using the Replica Trick, see Ref.[13], approach described below.
The expression 2.1 has become one of the most used expression in the entanglement theory
since it is the natural way to find out the central charge of a generic model and that gives us a
great number of information about it like the universality class. We will follow Ref.[10] where
the conformal field theory approach to 1D critical quantum system is presented together with
other interesting results.

2.1 Entanglement and entanglement measures

Let be ρ the density matrix of a system S that is assumed to be in a pure state |Ψ〉, its
density matrix is:

ρ = |Ψ〉 〈Ψ| . (2.2)

We can divide S in two parts A and B in this way:

S = A ∪B, (2.3)

and the Hilbert space can be written as:

H = HA ⊗HB . (2.4)
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The reduced density matrix of the subsystem A is obtained as usual by tracing out the
degrees of freedom of B:

ρA = TrHBρ. (2.5)

We can define the entanglement entropy as the von Neumann entropy associated to the
reduced density matrix ρA:

SA = −TrHAρA ln ρA. (2.6)

It is important to notice that, since S is in a pure state, the entanglement entropy of the
subsystem A is equal to the entanglement entropy of the subsystem B, as we said before.
It is useful to define a family of functionals of the reduced density matrix called Renyi
entropy, see Ref.[38], labelled by an integer number n:

S
(n)
A =

1

1− n
ln TrρnA. (2.7)

The reason why we introduced the Renyi entropy is the following: although the von Neumann
entropy is a good measure of the entanglement between the two subsystems in many cases
it is very difficult to compute. On the other side there is a very elegant way to compute the
Renyi entropy for a generic index n as we will see below. Furthermore the Renyi entropy is
a very important quantity for quantum information since it takes into the accounts all the
correlations, also the long range ones, inside a many body system.
Assuming to have computed the Renyi entropy as function of n, we can easily obtain the
von Neumann entropy taking the limit:

SA = lim
n→1+

S
(n)
A . (2.8)

When the system S is in a mixed state, for example S is in a thermal state, the entanglement
entropy is no longer a good measure of entanglement because we have classical and quantum

correlations in the system. This means that the relation between the Renyi entropy S
(n)
A =

S
(n)
B does not hold anymore.

In this case from the Renyi entropies we can define the mutual information of the system:

I
(n)
A:B = S

(n)
A + S

(n)
B − S(n)

A∪B , (2.9)

this quantity is, by definition, symmetric in A and B. It has the property of satisfying the
area law of entanglement, see Ref.[39] and Ref.[23], also at finite temperature, see Ref.[40].
On the other hand the mutual information is not a good estimator of entanglement as
demonstrated in Ref.[8].

2.2 Replica trick approach

As we have seen in the first chapter the eigenvalues of the reduced density matrix ρA are
very difficult to obtain analytically. In many cases, in order to find its eigenvalues λi, we are
forced to use numerical methods: the most used one for 1D systems is the Density Matrix
Renormalization Group (DMRG), that we briefly described in the Chapt.1.
Once we have obtained the eigenvalues of the reduced density matrix, the von Neumann
entropy can be evaluated using the spectral theorem:

SA = −
∑
i

λi lnλi. (2.10)
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The main problem is that the eigenvalues of the reduced density matrix ρA are very difficult
to compute, also numerically there are some great problems.
In order to avoid these problems we will follow a different way that is reminiscent of the
Replica Trick approach, Ref.[13]. This method is described in details in literature, see like
Ref.[11], Ref.[41] and Ref.[42], but we will review it another time here because it is crucial
for all the results in this thesis.
By definition, all the eigenvalues of the density matrix lie in the interval [0; 1] and they sum
to 1. This fact implies that the series

∑
i λ

n
i is absolutely convergent and analytic in the

region Ren > 1. We can take also the derivative with respect to n treated as a real variable
intead of an integer one:

− lim
n→1+

∂

∂n
TrρnA = − lim

n→1+
TrρnA ln ρA = lim

n→1+
S

(n)
A = SA. (2.11)

This result shows that if we are able to compute the TrρnA for every real parameter n we
can get the von Neumann entropy simply taking its derivative and then the limit to 1.
Unfortunately the computation of TrρnA for a generic index n and for a generic system is
an almost unsolvable problem due to its complexity. We will use a method similar to the
Replica-trick approach discovered by Holzey in Ref.[13], and we will compute TrρnA as a
partition function of a system living on a complicated Riemann surface that we will define
soon. Then the main problem will be to show if the expression obtained can be analytically
continued to n = 1+.

2.3 The Riemann surface

In this section we will show how to define the Riemann surface in a proper way.
We will describe this method in the case of an 1D critical quantum system but it works
anyway in arbitrary dimensions.
Let be x the variable, discrete, that labels the sites of the lattice, with spacing a. The
length of the system is called L and it can be finite, infinite or semi-infinite. We will work
in continuous time.
Let be {φ̂x} a set of complete commuting observables with eigenvalues {φx} and eigenstates
|{φx}〉. A complete basis of the Hilbert space of the system is given by the states:⊗

x

|{φx}〉 = |
∏
x

{φx}〉 . (2.12)

The matrix elements of the density matrix in this basis are:

ρ ({φx} | {φ′x′}) ≡ 〈
∏
x

{φx}| ρ |
∏
x′

{φ′x′}〉 . (2.13)

We start our analysis from the density matrix of a system in a thermal state of inverse
temperature β = 1/T :

ρ =
e−βH

Z(β)
, (2.14)

where H is the hamiltonian of the system that describes its time evolution, and Z(β) is the
partition function that ensures the proper normalization of the density matrix:

Z(β) = Tre−βH . (2.15)
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Equation 2.13 can be rewritten using the path integral formulation of quantum mechanics:

ρ ({φx} | {φ′x′}) = Z(β)−1

∫
[dφ(y; τ)]

∏
x′

δ (φ(y; 0)− φx′)
∏
x

δ (φ(y; τ)− φx) e−SE , (2.16)

where SE is the euclidean action defined using the euclidean lagrangian LE :

SE(β) =

∫ β

0

dτLE . (2.17)

In the path integral formulation we can compute the partition function setting {φx} = {φx′},
that corresponds to the trace operation, and then integrating over the field. This operation
can be seen as sewing together the initial and finial states creating a cylinder of circumference
β and integrating over it.
This visual scheme for the computation of the partition function is useful in order to have
a picture of what happens every time we evaluate a trace of a generic quantity in the path
integral formulation.
A generic subsystem A of an 1D system is composed by all the x coordinates in the disjoint
intervals (u1; v1) . . . (uN ; vN ). The trace over the degrees of freedom of B is made sewing
together the x in B and not the x in A. This procedure leaves open cuts in correspondence
of every interval (ui; vi) along the line τ = 0 of the cylinder described above for the partition
function.
Lets assume now to create n copies of the system on study and gluing them cyclically along
the cuts corresponding to x ∈ A in this way:

φj(x; τ = β−) = φj+1(x; τ = 0+) ∀jx ∈ A, (2.18)

φ1(x; τ = β−) = φn(x; τ = 0+) ∀x ∈ A, (2.19)

this defines an n-sheeted structure that is represented in Fig.2.1:

Figure 2.1: Riemann surface of the case R3,1. Figure from Ref.[10]

The partition function over this surface is called Zn(A) and it is possible to define TrρnA
as:

TrρnA =
Zn(A)

Zn(A)
. (2.20)
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From this expression we can compute the von Neumann entropy as in 2.11:

S(A) = − lim
n→1

∂

∂n
TrρnA = − lim

n→1

∂

∂n

Zn(A)

Zn(A)
. (2.21)

Now we have to extend this approach, derived for a lattice system, to a continuous system.
We start from a lattice theory and we take the continuum limit defined as a → 0 keeping
other lengths fixed. The variable x becomes real valued after the limit and we have to
integrate the values of the fields φ(x; τ) over a n-sheeted Riemann surface with branch
points at ui and vi. The Riemann surface is fully defined by two values:

• 2N : the number of branching points labelling the disjoint intervals that form the
subsystem A

• n: the number of copies

and we will denote the most generic Riemann surface by Rn;N .
The most interesting case is a quantum field theory described by a Lorentz invariant action,
in this case the adimensional free energy of the system in two dimensions is well studied and
it takes the form:

lnZ = f1Aa−2 + f2La−1 + . . . , (2.22)

where A is the area of the domain and L is length of its boundary; f1 and f2 are non
universal bulk and boundary free energy.
In the case of a conformal field theory there are also universal terms proportional to ln a,
see Ref.[43]. This is due to the non-zero curvature of the Riemann surface around the branch
points that breaks locally the conformal invariance.
This local non zero curvature will be responsible of other important physical effects as the
unusual corrections to the scaling as we will see in Chapt.4.

2.4 From the Multi copy model to the Twist fields

The calculation of the partition function over the Riemann surface is, in many cases, an
unachievable task but there is a way to solve the problem mapping it into a simplest one.
Since the Riemann surface has zero curvature everywhere except around the points vi and
ui, that are a finite number, we can try to map the problem into the complex plane and
we can choose proper boundary conditions around these points with non zero curvature in
order to implement the structure of the Riemann surface.
This is possible because the lagrangian density L is local and it is not affected by the global
structure of R.
Let now take the specific case of a single interval [u1; v1] which generates the Riemann
surface Rn;1.
We want to create a theory on the complex plane z = x + ıτ and we expect that the
partition function of this theory depends on the values of some “fields”, that we will define
later, around the points (u1; 0) and (v1; 0).
These fields and their correlation functions are defined from the partition function, on the
Riemann surface, of the system:

ZR =

∫
[dφ]R exp

(
−
∫
R
dxdτφ(x; τ)

)
. (2.23)
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The main problem of 2.23 is that it makes the theory on the complex plane non local, as it
is discussed in Ref.[14].
Since locality is a fundamental hypothesis for all the results of quantum field theory we want
to define a new model that preserves it.
Therefore we can think to implement the complicated structure of the Riemann surface on
the target field instead of the complex plane and we use the so called multi copy model as
it was suggested by Cardy and Doyon in the reference cited above.
We define a new system composed by n copies of the system previously defined and we will
call it multi-copy model; it is formally described by the following partition function:

ZR =

∫
C(u1;v1)

[dφ1 . . . dφn] exp

(
−
∫
C
dxdτ(L[φ1](x; τ) + · · ·+ L[φn](x; τ))

)
. (2.24)

It is important to notice that the number of the copies n is the same number that labels the
Riemann surface Rn;1. In 2.24 we used the so called restricted path integral

∫
C(u1;v1)

that is

a short hand notation to indicate the path integral with boundary conditions:

φi(x; 0+) = φi+1(x; 0−) ∀x ∈ [u1; v1] ∀i = 1, 2 . . . , n, (2.25)

where we have to use the cyclical condition n+ i ≡ i.
The lagrangian density of the multi copy model is:

L(n)[φ1; . . . ;φn](x; τ) ≡ L[φ1](x; τ) + · · ·+ L[φn](x; τ), (2.26)

and it is easy to see, from 2.26, that the multi copy energy density will be the sum of the n
energy densities of the copies.
We have that 2.24 and 2.23 define the same model, but the first one gives us a model with
local fields in (u1; 0) and (v1; 0) and it allows us to use the full power of local quantum field
theory.
The field defined in 2.24 are an example of a very wide class of fields called twist fields.
Every time we have a theory that admits an internal (i.e. not involving the space-time
degrees of freedom) and rigid (i.e. not depending on the space-time point) symmetry σ, so
that: ∫

dxdτL[σφ](x; τ) =

∫
dxdτL[φ](x; τ), (2.27)

where the fields φ(x; τ) are called twist fields.
In our case the internal symmetry σ is the following one:

Tn ≡ Tσ σ : i 7→ i+ 1 mod n ∀i = 1, 2, . . . , n+ 1 ≡ 1 (2.28)

T̃n ≡ Tσ−1 σ−1 : i+ 1 7→ i mod n ∀i = 1, 2, . . . , n+ 1 ≡ 1, (2.29)

and the corresponding twist fields as called branch-points twist fields, denoted by Tn(x; τ).
The partition function of the model, in the general case of Rn;N , can be written as a

correlation function of the fields Tn and T̃n:

ZRn,N ∝ 〈Tn(u1; 0)T̃n(v1; 0) . . . Tn(uN ; 0)T̃n(vN ; 0)〉L(n),C. (2.30)

In fact for all x ∈ A the fields Tn(vi; 0) give us the connection at τ = 0 whereas for the
points x ∈ B we have that the presence of both T̃n and Tn cancels out and these points do
not contribute to the partition function.
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We are also interested to express the expectation value of a string of generic operators
O(x; τ ; i-th sheet) in terms of branch-points twist fields, in particular we are interested in
the case of Rn,1 where we have:

〈O(x; τ ; i-th sheet) . . . 〉L,Rn =
〈Tn(u1; 0)T̃n(v1; 0)Oi(x; τ) . . . 〉L(n),C

〈Tn(u1; 0)T̃n(v1; 0)〉L(n),C
, (2.31)

and the proportionality factor cancels out in the ratio.

2.5 The single interval case in Conformal Field Theory

We conclude our analysis with the particular case of a conformal field theory with the explicit
calculation of the entanglement entropy of a single interval, N = 1, in the case of an infinite
1D quantum system at zero temperature. This particular case was also considered in Ref.[13]
and in Ref.[11] where the same result is obtained in a slightly different way.
The subsystem A starts from the point u and ends in v and its length is l = |v−u|. We will
see that the entanglement entropy will exhibit the famous universal logarithmic divergence
multiplied by an amplitude that will depend only on the central charge of the conformal
field theory.
This behaviour is completely different from the one predicted by the area law because we
are dealing with a critical system. In the case of non critical 1D quantum systems the area
law holds and we have an upper bound to the entanglement entropy as expected by our
argument in Chapt.1.
Let’s start with mapping the Riemann surface into the complex plane. It can be done with
the conformal transformation:

z =

(
w − u
w − v

) 1
n

≡ (ζ)
1
n , (2.32)

where:

z, ζ ∈ C
w ∈ Rn;1 ≡ Rn.

A visual representation of the transformation is presented in Fig.2.2:

vu

w z
ζ

0

Figure 2.2: the effect of the conformal mapping 2.32. Figure from Ref.[10]

The transformation of the holomrphic stress energy tensor T (w) was found in Ref.[44]
and it is:

T (w) =

(
dz

dw

)2

T (z) +
c

12
{z;w}, (2.33)
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where we used the Schwartzian derivative:

{z;w} ≡
z′′′z′ − 3

2 (z′′)2

(z′)2
. (2.34)

The c parameter is the central charge of the theory and tells us how the free energy behaves
when the conformal invariance is broken, also locally. For a more complete discussion about
the role of the central charge see Ref.[45].
Taking now the expectation value of 2.33 and using 〈T (z)〉C = 0 for the rotational and
traslational invariance of the theory on the complex plane we have:

〈T (w)〉Rn =
c

24

(
1− 1

n2

)
(u− v)2

(w − u)2(w − v)2
. (2.35)

We know from our previous arguments that the expectation value of a generic operator on
the surface Rn can be computed using 2.31:

〈Tn(u1; 0)T̃n(v1; 0)Tj(z)〉L(n),C

〈Tn(u1; 0)T̃n(v1; 0)〉L(n),C
, (2.36)

where j labels the copies in the multi-copy model.
From the definition of L(n) we have that the energy density of the multi-copy model is the
sum of the energy densities of the copies and, since the right hand side of 2.35 does not
depend on j, we can conclude that all the copies have the the same stress energy tensor.
This gives us the following result:

〈Tn(u1; 0)T̃n(v1; 0)T (n)(z)〉L(n),C

〈Tn(u1; 0)T̃n(v1; 0)〉L(n),C
= n

(
〈Tn(u1; 0)T̃n(v1; 0)Tj(z)〉L(n),C

〈Tn(u1; 0)T̃n(v1; 0)〉L(n),C

)
=

=
c

24

(
n− 1

n

)
(u− v)2

(z − u)2(z − v)2
. (2.37)

We can compare this expression with the holomorphic Ward identity for the energy momen-
tum tensor, see Ref.[44]:

〈Tn(u1; 0)T̃n(v1; 0)T (w)〉L(n),C =

(
1

w − u
∂

∂u
+

hTn
(w − u)2

+
1

w − v
∂

∂v
+

hT̃n
(w − v)2

)
×

× 〈Tn(u1; 0)T̃n(v1; 0)〉L(n),C, (2.38)

and we obtain the scaling dimensions dn and d̃n of the fields Tn and T̃n.
This can be done simply rewriting 2.37 as:

c(n2 − 1)

24n

(u− v)2

(w − u)2(w − v)2
=
c(n2 − 1)

24n

(w − v − (w − u))2

(w − u)2(w − v)2
=

=
c(n2 − 1)

24n

(
1

(w − u)2
+

1

(w − v)2
− 2

(w − v)(w − u)

)
,

and by comparison with 2.38 we obtain:

hT̃n = hTn =
c

24

(
n− 1

n

)
=
dn
2
→ dn =

c

12

(
n− 1

n

)
. (2.39)
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The same result was also obtained by Knizhnik Ref.[46] in a completely different context.
In conformal field theory, see Ref.[45], the holomorphic and antiholomorphic dimensions fix
the two point function:

〈Tn(u; 0)T̃n(v; 0)〉L(n),C ∼
1

|u− v|4dn
. (2.40)

Let now focus our attention on the trace of the n-th power of the reduced density matrix,
that is the most important quantity of our study.
In the multi copy model defined on the Riemann surface it is defined as:

TrρnA ∝
Zn(A)

Zn
, (2.41)

and it has to behave, apart from an overall constant, identically to the correlation function
2.40:

TrρnA = cn

(
v − u
a

)− c6 (n− 1
n )
, (2.42)

where the multiplicative factors cn are model-dependent and they cannot be determined
with this approach. They are known just for few integrable models, see Ref.[14], Ref.[47]
and Ref.[48] for example.
The parameter a has been inserted in order to make the final result dimensionless as it
should be.
The coefficient c1 is the only one fixed as consequence of the normalization of the reduced
density matrix:

lim
n→1

TrρnA = lim
n→1

cn

(
v − u
a

)− c6 (n− 1
n )

= c1 = 1. (2.43)

From 2.42 we can easily obtain the Renyi entropy for a generic real valued index n:

S(n)(A) =
1

1− n
ln TrρnA =

1

1− n
ln cn

(
v − u
a

)− c6 (n− 1
n )

=
c

6

(
1 +

1

n

)
ln
l

a
+ c′n, (2.44)

where we used the definitions c′n ≡ ln(cn)/(1 − n) and l ≡ v − u that is the length of the
subsystem. It is important to notice that this expression in true also for real value of the
index n, not only for integer ones.
The von Neumann entropy is now computed simply by taking the limit n→ 1+ of 2.44:

S(A) = lim
n→1

S(n)(A) =
c

3
ln

(
l

a

)
+ c′1. (2.45)

This expression shows the well known logarithmic divergence, that violates the area laws for
1D systems, with an universal prefactor defined by the central charge c.
This result was also confirmed by random matrices computations, see Ref.[49], and it is an
important result because it creates a connection between two different universality classes:
the conformal field theory and the random matrices ensambles.
The constants cn and c′n, as we said before, are model dependent and they are known only
for few simple and integrable models, as the XX spin chain for example.

25



2.6 Generalization to finite temperature and finite size

In the precedent section we studied an infinite 1D quantum system at zero temperature,
now we show how to extend the 2.44 and 2.45 to infinite systems at non-zero temperature
and to finite systems at zero temperature. The last case will be important for us since in
the Chapt.s 5, 4 and 3 we will work with a finite size systems at zero temperature.
in the last section we mapped the surface Rn (generated by n copies of an infinite system
at zero temperature) into the complex plane C using the conformal mapping:

w =

(
z − u
z − v

) 1
n

. (2.46)

Physically, we know that the axis τ of the complex plane is related to the inverse temperature
β. In the previous case we have no bound on the imaginary axis and it means that T = 0,
now we want to identify the points at a fixed distance β in order to have a bound:

z1 ∼ z2 ⇐⇒ τ1 = τ2 + kβ k ∈ Z. (2.47)

This operation corresponds to the compactification of the complex plane into a cyinder, and
analytically can be done with the transformation:

w = e2πz/β . (2.48)

It is easy to see that this transformation is also conformal. The two point function transforms
as usual in conformal field theory (see as usual Ref.[45]):

〈Tn(z1; z̄1)T̃n(z2; z̄2) = |w′1(z1)w′2(z2)|dn 〈Tn(w1; w̄1)T̃n(w2; w̄2)〉. (2.49)

This transformation affects the trace of ρnA in this way:

TrρnA ∝ 〈Tn(z1)T̃n(z2)〉cyl =

((
2π

β

)2

e
2π
β (z1+z2)

)dn
1(

e
2π
β z1 − e

2π
β z2
)2dn

(2.50)

=

(
β

π
sinh

(
πl

β

))−2dn

. (2.51)

The Renyi entropy and von Neumann entropy are:

S(n)(A) =
c

6

(
1 +

1

n

)
ln

(
β

πa
sinh

(
πl

β

))
+ c′n, (2.52)

S(A) =
c

3
ln

(
β

πa
sinh

(
πl

β

))
+ c′1, (2.53)

these results were found also in Ref.[11] and Ref.[50].
It is usefull to study the last expressions in the high and low temperature regimes in order
to recover in the first case the well known thermal entropy and in the second one the infinite
system entropy found in last section.
The limit of zero temperature is defined by l � β, formally the cylinder has a so small
curvature that it is almost flat, the von Neumann entropy in this regime is:

S(A) ≈ c

3
ln

(
β

πa

πl

β

)
+ c′1 =

c

3
ln

(
l

a

)
+ c′1, (2.54)
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and we recover 2.45 that was obtained in the case of infinite system at zero temperature.
The high temperature limit is defined by β � l:

S(A) ≈ πc

3β
l + c′1, (2.55)

in this regime the correlations due to entanglement is negligible compared to the thermal
ones and we recover the classical thermal form of the Von Neumann entropy. The expression
2.55 was found in Ref.[51] and Ref.[52] using the free energy for a standard CFT.
In the finite size and zero temperature case we want to identify the points separated by a
distance of L along the real axis of the complex plane:

z1 ∼ z2 ⇐⇒ x1 = x2 + kL k ∈ Z, (2.56)

and the transformation is:
w = e2πız/L. (2.57)

Following the same steps of the non zero temperature case we obtain the Renyi entropy and
the von Neumann entropy:

S(n)(A) =
c

6

(
1 +

1

n

)
ln

(
L

πa
sin

(
πl

L

))
+ c′n, (2.58)

S(A) =
c

3
ln

(
L

πa
sin

(
πl

L

))
+ c′1. (2.59)

The infinite size result can be found taking the limit l� L:

S(A) ≈ c

3
ln

(
l

a

)
+ c′1. (2.60)

These expressions are very important since they show us a very simple rule to move from
the infinite size case to the finite size one, it can be simply done using the replacement:

l→
(
L sin(πl/L)

π

)
. (2.61)

This correspondence will be intensively used in the following chapters to compare our results,
that will be computed for finite systems, with other results that were obtained in the infinite
size case.
We can think to the case of non zero temperature and finite size system. Here we have to
identify the points on real and imaginary axes:

z1 ∼ z2 ⇐⇒ τ1 = τ2 + kβ k ∈ Z, (2.62)

z1 ∼ z2 ⇐⇒ x1 = x2 + jL j ∈ Z, (2.63)

and these two conditions identify a torus.
The topological structure of the torus is completely different from the structure of the
complex plane (they have a different genus) and they cannot be mapped one into the other
with an analytic conformal map. Anyway there are some cases when it is possible to perform
analytic computation like in Ref.[53] for massless Dirac Fermions.
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Chapter 3

Entropy of the excited states of
conformal field theory

In the previous chapter we studied the entanglement entropy of an 1D system with conformal
invariance, now we want to study the entanglement entropy of the excited states of this
system and, in particular, if there are differences in the entanglement entropy of the different
excited states.
G.Sierra, M.I.Berganza and F.C. Alcaraz in Ref.[19] solved this problem in the case of
excitations due to primary fields, in particular they found a way to compute, using also the
replica trick approach exposed in 2, the following quantity:

F
(n)
Υ =

TrρnΥ
Trρn

, (3.1)

where ρΥ is the reduced density matrix of the excited state.
At the end of this chapter we will also show the explicit calculation of the function FnΥ
for the spinless massless bosonic theory and we will study the changes in the entanglement
entropy due to its different primary operators.

3.1 Primary fields and their entanglement entropy

We want to study the effects of an excitation produced by a primary field Υ. Since in the
Cardy Calabrese approach exposed in Chapt.2 we evaluated all the quantities in the limit
β → ∞ now we need to evaluate the perturbation field in the in and out states. This can
be done using the radial quantization where we have that the infinite past is mapped in the
origin of the complex plane and the infinite future is mapped at long radial distances from
the origin.
The in state of a perturbation Υ is defined as:

|Υ〉 = lim
(z;z̄)→0

Υ(z; z̄) |0〉 , (3.2)

where |0〉 is the vacuum state.
The out state is mapped to the “radial” infinity and the out state can be written as:

〈Υ| = lim
(z;z̄)→0

z−2hz̄−2h̄ 〈0|Υ
(

1

z
;

1

z̄

)
, (3.3)
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for a technical description of radial quantization see Ref.[45].
Now we can use in and out states of the excitation Υ in the Cardy-Calabrese approach
exposed in Chapt.2, and we can compute TrρnA as a path integral over a Riemann surface
Rn, defined in the same way as in 2.3.
We use the same set of bosonic degrees of freedom {φ(x)} and we compute the matrix
elements of the ground state density matrix:

〈{φ′′(x′′)}| ρI |{φ′(x′)}〉 =
1

Z

∫
[dφ(x; τ)]

∏
x

δ(φ(x;−∞)−φ′(x′))
∏
x

δ(φ(x;∞)−φ′(x′′))e−SE ,

(3.4)
for sake of clarity here we use the canonical coordinates z = x + ıτ instead of the radial
quantization.
The matrix elements of the excited density matrix can be easily computed in the path
integral formulation:

〈{φ′′(x′′)}| ρΥ |{φ′(x′)}〉 = (3.5)

=
1

Z

∫
[dφ]

∏
x

δ(φ(x;−∞)− φ′(x′))
∏
x

δ(φ(x;∞)− φ′(x′′)) Υ(0;∞)Υ∗(0;−∞)e−SE .

The approach of Calabrese and Cardy, Chapt.2, allows us to compute the TrρΥn as a
correlation function of a theory defined over the Riemann surface Rn:

TrρΥn = CnZn(A)〈Υ0(0;−∞)Υ†0(0; +∞) . . .Υn(0;−∞)Υ†n(0;∞)〉Rn , (3.6)

where Zn(A) is the partition function of the multi-copy model on the surface Rn. C is a
numerical constant fixed by the normalization of the density matrix:

TrρΥ = CZ(A)〈Υ0(0;−∞)Υ†0(0; +∞)〉R1
= 1, (3.7)

that fixes the normalization constant to:

C =
1

Z1(A)〈Υ0(0;−∞)Υ†0(0; +∞)〉Ru
. (3.8)

This allows us to write a closed expression for TrρnΥ:

TrρnΥ =
Zn(A)

Zn(A)

〈
∏n−1
i=0 Υi(0;∞)Υ†i (0;−∞)〉Rn

[〈Υ0(0;−∞)Υ†0(0; +∞)〉R1
]n

. (3.9)

From equation 2.41 we know that:

TrρnI =
Zn(A)

Zn
, (3.10)

and this can be used to rewrite 3.9 as:

FnΥ (l/L) =
TrρnΥ
TrρnI

≡
〈
∏n−1
i=0 Υi(0;∞)Υ†i (0;−∞)〉Rn

[〈Υ0(0;−∞)Υ†0(0; +∞)〉R1 ]n
. (3.11)

This expression is connected to the Renyi entropies of perturbed and unperturbed states:

F
(n)
Υ =

TrρnΥ
TrρnI

=
e(1−n)S

(n)
Υ

e(1−n)S
(n)
I

= e(1−n)(S
(n)
Υ −S(n)

I ). (3.12)

In the previous analysis the shape of the subsystem A did not play any role and all the
previous expressions hold for a generic shape of the subsystem A.

29



3.2 The single interval case

Let now focus our attention on the well studied single interval case. In order to compute
the correlation function involving the primary operators we have to obtain a transformation
that maps the Riemann surface Rn composed by n copies of the system into the complex
plane.
In the precedent section we used the conformal transfrmation:

z =

(
ζ − u
ζ − v

) 1
n

, (3.13)

that allows us to map the Riemann surface Rn into the complex plane C. In that case we
were studying an infinite 1D quantum system at zero temperature and the Riemann surface
was composed by a series of planes sewed consequently one to the others.
Now we want to study a finite size system at zero temperature and we want to find the
conformal transformation that maps its Riemann surface, generated sewing consequently n
cylinders parallel to the imaginary axis, modifying properly the transformation 3.13.
As we saw in the previous chapter the transformation that maps the complex plane to the
cylinder is:

ζ = e
2πı
L w, (3.14)

that is a compactification of the complex plane into an infinite cylinder.
The composition of the two mappings w 7→ ζ 7→ z is still conformal and it is:

z =

(
e

2πı
L W − e

2πı
L u

e
2πı
L W − e

2πı
L v

) 1
n

, (3.15)

and rewriting it in terms of sin functions:

zn = e−ıπx

 sin
(
π(w−u)

L

)
sin
(
π(w−v)

L

)
 ,

reabsorbing now the phase in z we obtain the final result:

z = ζ
1
n , ζ =

sin
(
π(w−u)

L

)
sin
(
π(w−v)

L

) . (3.16)

In Fig. 3.1 we illustrate the transformation in the case of n = 3 and there are also plotted
the in and out states of the mapping, they will be defined rigorously in 3.24:
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Figure 3.1: The cylinder w with the cut A is mapped via (3.16) to the center panel (we took x = |u−v|/L =
1/8). The transformation (3.24) with n = 3 has the effect shown in the right panel. The red crosses indicate
the images ζ∞, ζ′∞, zk, z′k of the points w∞, w′

∞. Figure from Ref.[19].

For sake of simplicity we will choose the subsystem that lies between (u = 0; 0) and
(v = l; 0):

z =

 sin
(
πw
L

)
sin
(
π(w−l)
L

)
 1

n

, (3.17)

where we can introduce the ratio:

x =
l

L
, (3.18)

that indicates the fraction of the whole system S is in the subsystem A, the system B has
a fraction 1− x.
We can invert the previous relation and find the inverse mapping C→ Rn:

zn =
sin
(
πw
L

)
sin
(
π(w−l)
L

) =
e
ıπw
L − e− ıπwL

e
ıπ(w−l)

L − e−
ıπ(w−l)

L

zn
(

exp

(
ıπ(w − l)

L

)
− exp

(
− ıπ(w − l)

L

))
= exp

( ıπw
L

)
− exp

(
− ıπw

L

)
zn
(
e(−ıπx) − e(ıπx) exp

(
−2πıw

L

))
= 1− exp

(
−2πıw

L

)
exp

(
−2πıw

L

)
(1− zneıπx) = 1− zne−ıπx

exp

(
−2πıw

L

)
=

1− zne−ıπx

1− zneıπx
→ w =

(
ıL

2π

)
ln

(
1− zne−ıπx

1− zneıπx

)
. (3.19)
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In the Chapt.s 4 and 5 it will be useful the derivative of the inverse conformal mapping:

dw

dz
=

(
ıL

2π

)(
1− zneıπx

1− zne−ıπx

)(
d

dz

)(
1− zne−ıπx

1− zneıπx

)
=

=

(
ıL

2π

)((−nzn−1e−ıπx
)

(1− zneıπx)−
(
−nzn−1eıπx

)
(1− zne−ıπx)

(1− zneıπx)
2

)
=

=

(
ıL

2π

)
+nz2n−1 − nzn−1e−ıπx − nz2n−1 + nzn−1eıπx

(1− zneıπx) (1− zne−ıπx)
=

=

(
−nL sin(πx)

π

)
zn−1

(eıπx − zn) (e−ıπx − zn)
.

Obviously all these results could be translated into the infinite size case simply taking the
limit x→ 0.
Now we can use the mapping 3.17 to map the primary fields from the Riemann surface to
the complex plane as we did in Chapt.2:

Υ(w; w̄) =

(
dz

dw

)h(
dz̄

dw̄

)h̄
Υ(z; z̄). (3.20)

As we said before we will evaluate these fields and their adjoints in the in and out states
and we have to compute the derivative of the mapping Rn → C and then we will evaluate
it in the in and out states defined by w → ±ı∞. The derivative of the mapping is:

dz

dw
= −π sin(πx)

nL

z

sin

(
π(w − u)

L

)
sin

(
π(w − v)

L

) . (3.21)

We can now take the limits w → ±ı∞:

lim
w→−ı∞

dz

dw
=
zk
n

(
4π sin(πx)e

ıπ(u+v)
L e−

2π
L |w|

L

)
, (3.22)

lim
w→ı∞

dz

dw
=
z′k
n

(
4π sin(πx)e−

ıπ(u+v)
L e−

2π
L |w|

L

)
. (3.23)

We notice that these two derivatives are exponentially suppressed and the result of this

transformation would be zero, but the function F
(n)
Υ is defined as a ratio between an equal

number of primary field and it will give us a finite result.
The in and out states on the complex plane are simply defined by taking the limits w → ±ı∞
of the mapping 3.17:

z∞ = lim
w→−ı∞

 sin
(
πw
L

)
sin
(
π(w−l)
L

)
 1

n

= (eıπx)
1
n = zj = e

ıπ
n (x+2j),

z′∞ = lim
w→ı∞

 sin
(
πw
L

)
sin
(
π(w−l)
L

)
 1

n

=
(
e−ıπx

) 1
n = z′j = e

ıπ
n (−x+2j),
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where the index j takes values j = 0, 1, . . . n− 1.
Using the mapping and its derivative we can obtain the function FnΥ:

FnΥ (x) = n−2(h+h̄)

∏n−1
k=0 z

h
k z̄

h̄
kz
′h
k z̄
′h̄
k

(z0z̄0z′0z̄
′
0)
n

〈
∏n−1
i=0 Υi(zi; z̄i)Υ

†
i (z
′
i; z̄
′
i)〉C

[〈Υ0(z0; z̄0)Υ†0(z′0; z̄′0)〉C]n
. (3.24)

This expression can be further simplified using the mapping between the complex plane and
the cylindrical geometry:

z = eıt → Υ(t; t̄) = eıπ(h−h̄)zhz̄h̄Υ(z; z̄), (3.25)

and the precedent expression becomes:

FnΥ (x) = n−2(h+h̄) 〈
∏n−1
i=0 Υ

(
π
n (x+ 2k)

)
Υ†(πn (−x+ 2k))〉cyl

[〈Υ(πx)Υ†(−πx)〉cyl]n
. (3.26)

All the results developed in this section are obtained in the specific case of a single interval.

3.3 The bosonic theory

In this section we will apply the theory developed in the previous section to the case of a
massless spinless boson that is the simplest example of conformal field theory.
This particular case is interesting because some of the most used spin chains, the XX model
and many other spin chains, are described in their continuum limit by that quantum field
theory. The action of a massless bosonic field in 2 dimensions is:

S =
1

8π

∫
dzdz̄∂zϕ∂z̄ϕ. (3.27)

The ϕ can be decomposed in two chiral parts:

ϕ(z; z̄) = φ(z) + φ̄(z̄). (3.28)

One of the primary operators of the theory, see Ref.[45], is the vertex operator defined as:

V(α;ᾱ) ≡ : eı(αφ+ᾱφ̄) : , (3.29)

and from the OPE with the energy momentum tensor we know that its holomorphic and
antiholomorphic dimensions are:

hα = h̄α =
α2

2
. (3.30)

The holomorphic part of the generic correlator between vertex operators is well known,
Ref.[45]:

〈V(α1)(z1) . . . V(αn)(zn)〉C =
∏
i<j

(zi − zj)αiαj , (3.31)

if the αi parameters satisfy the neutrality condition:
∑
i αi = 0. In all other cases the

correlation function is 0. Obviously the antiholomorphic part of the correlation function
3.31 takes the same form but it is a function of z̄i instead of zi.
We can map 3.31 on a cylindrical geometry using the transformation 3.25, and it becomes:

〈Vα1(z1) . . . Vαn(zn)〉cyl =
∏
i<j

[
2 sin

(wij
2

)]αiαj
. (3.32)

33



In order to elucidate how equation 3.32 can be obtained from 3.31 we will perform the
computation explicitly in the simple case of a two point function:

〈Vα1
(z1)Vα2

(z2)〉C = (z1 − z2)
α1α2 . (3.33)

The neutrality condition is:
α1 + α2 = 0→ α1 = −α2. (3.34)

The holomorphic dimension of the vertex operator is:

hi =
α2
i

2
, (3.35)

and the neutrality condition implies:

h1 =
α2

1

2
=

(−α2)2

2
=
α2

2

2
= h2. (3.36)

The vertex operators transforms as usual, Ref.[45], and here we are interested in their
holomorphic part:

Vαi(zi) =

(
dzi
dwi

)−hi
Vαi(wi). (3.37)

The correlation function on cylindrical geometry is:

〈Vα1(w1)Vα2(w2)〉cyl =

(
dz1

dw1

)h1
(
dz2

dw2

)h2

[eıw1 − eıw2 ]
α1α2 = (3.38)

ıh1+h2(z1)h1(z2)h2

[
2ıe

ı
2 (w1+w2) sin

(
w1 − w2

2

)]α1α2

,

where we used the previous results and the derivative of the mapping 3.25.
Making use of the neutrality condition 3.34 we obtain:

〈Vα1(w1)Vα2(w2)〉cyl = ı2h (z1z2)
h

[
2ı
√
z1z2 sin

(
w1 − w2

2

)]−2h

= (3.39)

=

[
2 sin

(
w1 − w2

2

)]α1α2

. (3.40)

Obviously the same approach works for arbitrary long string of vertex operators and it leads
to the expression 3.32.

The F
(n)
Vα

function is defined using the general expression 3.26:

FnVα
(x) = n−2(h+h̄) 〈

∏n−1
i=0 Vα

(
π
n (x+ 2k)

)
V †α (πn (−x+ 2k))〉cyl

[〈Vα(πx)V †α (−πx)〉cyl]n
. (3.41)

The α parameter of the adjoint vertex operator can be found from definition 3.29:

αV † = −αV → hV † = hV . (3.42)

The expression 3.41 can be computed explicitly for a generic index n, also real valued, and
it takes the form:

FnVα(x) =

n−n
 sin(πx)

sin
(πx
n

)
n n−1∏

m=1

 sin2(πm/n)

sin
(
π(m−x)

n

)
sin
(
π(m+x)

n

)
n−mα2

. (3.43)
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We can evaluate equation 3.43 for the value n = 2, it takes the form:

Fn=2
Vα =

2−2

 sin(πx)

sin
(πx

2

)
2  sin2(π/2)

sin
(
π(1−x)

2

)
sin
(
π(1+x)

2

)
−1


α2

= (3.44)

=

cos2
(πx

2

)[ 1

cos
(
πx
2

)]2
α2

= 1. (3.45)

This result is valid for every value of n and the interested reader can check by hand that
Fn=3
Vα

is still 1 and so on for every value of n.
To convince the reader of this statement we notice that the expression 3.43 is analytic (as
function of x) for every value of n. We can also notice that the numerator and the denomi-
nator share the same simple poles (all rational), so we can say that the numerator and the
denominator are proportional because they are both analytic functions. The proportionality
constant is fixed to 1 simply taking the limit x→ 0 of the expression 3.43.

This argument demonstrates that, in the case of vertex operators, the function F
(n)
Vα

is:

FnVα = 1 ∀n, α. (3.46)

This result shows that the entropy of the ground state and the entropy of the states |Vα〉
are the same, this will be clear in section 6.2 where we will analyse the different types of
excitations of the XX model and their continuum limit.
There is another primary operator defined in the bosonic theory and it is:

ı∂φ, (3.47)

that has holomorphic and antiholomorphic dimensions equal to (h; h̄) = (1; 0), these fix the
correlation function to be:

〈ı∂φ(z1)ı∂φ(z2)〉C =
1

z2
12

. (3.48)

Since the action 3.27 describes a free field theory, we compute the 2n correlation function
using the Wick’s theorem:

〈
2n∏
j=1

ı∂φ(zj)〉C = Hf

(
1

(zi − zj)2

)
, (3.49)

where we used the Haffian operator, see Ref.[45], that is defined as:

Hf(A) =
1

2nn!

∑
π∈S2n

2n∏
i=1

Aπ(2i−1),π(2i), (3.50)

where A is a generic matrix, S2n is the group of permutations of 2n indices, and π is one of
its elements.
In Ref.[45] it is demonstrated that:

Hf

(
1

(zi − zj)2

)
= det

(
1

zi − zj

)
. (3.51)
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This allows us to express the 2n points function as a determinant:

〈
2n∏
j=1

ı∂φ(zj)〉C = det

(
1

zi − zj

)
. (3.52)

Now we can perform the change of coordinates from the complex plane to the cylindrical
geometry:

Fnı∂φ = n−2n[sin(πx)]2n det

(
1

2 sin (wi − wj) /2

)
, (3.53)

where wi are the same in and out states on the cylinder that we used in equation 3.39 in
the case of vertex operators.
The expression 3.53 can be evaluated exactly for different integer values of n because it
involves a determinant that is not defined for generic real n. Computing by hand the
determinant in 3.53 for the value n = 2 we obtain the explicit expression for F 2

ı∂φ:

F 2
ı∂φ(x) = 1− 2(sin(πx/2))2 + 3(sin(πx/2))4 − 2(sin(πx/2))6 + (sin(πx/2))8. (3.54)

This expression is related to the Renyi entropy and it is important that it exhibits the
symmetry:

Fnı∂φ(x) = F
(n)
ı∂φ(1− x), (3.55)

that reflects the well-known fact:

Sn(A) = Sn(B), (3.56)

that holds since the system S = A ∪ B is in a pure state, that was our initial assumption
on the state of S. It is clear that in this case the entanglement entropy of the excited state
is totally different from the ground state one. The expression 3.53 has only one problem: it

involves a determinant. This is a very big problem if we want to evaluate our F
(n)
Υ function

with real values of n, not only integer, and maybe performing the analytical continuation
around the point n = 1+ in order to obtain the entanglement entropy of the excited state.
This problem was solved, in Ref. [54], by Essler, Läuchli and Calabrese where they found
an expression for 3.53 that can be easily continued to n→ 1+ because it does not involve a
determinant. The expression is:

Fnı∂φ(x) =

n∏
p=1

[
1− (n− 2p+ 1)2

n2
sin(πx)

]
=

(2 sin(πx)

n

)n Γ
(

1+n(csc(πx)+1)
2

)
Γ
(

1+n(csc(πx)−1)
2

)
2

.

(3.57)
If we take the limit n→ 1+ we get:

lim
n→1+

lnFn(x)

1− n
= ln |2 sin(πx)|ψ

(
1

2 sin(πx)

)
+ sin(πx), (3.58)

where the function Ψ(z) is the polygamma function defined as:

Ψ(z) =
d

dz
ln(Γ(z)). (3.59)

The physical difference between the perturbation of the vertex operator and the perturbation
of the ı∂φ will be clear when we will analyse the XX model and its different excitations in
section 6.2.
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Chapter 4

Unusual corrections to scaling

In Chapt.2 we analysed the asymptotic behaviour for small a of the von Neumann and Renyi
entropy, in this section we want to analyse the corrections to the leading order behaviour
and in particular their scaling.
The corrections to scaling have been computed for many different systems both numerically
and theoretically and it has been discovered the presence of corrections that depend on the
n index of the Renyi entropy. J.Cardy and P.Calabrese showed, in Ref. [15], how unusual
corrections can be due to the presence in the action of an irrelevant bulk perturbation
operator that, for particular values of n, gives corrections of the form:(

L sin(πx)

π

)− 2∆
n

, (4.1)

where ∆ > 0 is the scaling dimension of the locally perturbing operator.
In all the other cases the leading correction is the one computed using the finite size scaling
behaviour of the renormalization group, see Ref.[55] and Ref.[45]:(

L sin(πx)

π

)−2(∆−2)

, (4.2)

where ∆ > 2. These corrections are subleading with respect to the unusual corrections.

4.1 From quantum field theory to unusual corrections
to scaling

In Chapt.2 we showed that TrρnA is proportional to Zn/Z
n
1 (see also Ref.[10], Ref.[13] and

Ref.[14]) where Zn is the partition function computed on the Riemann surface.
We can take the logarithm of TrρnA obtaining:

(1− n)S(n) = ln TrρnA = ln
Zn
Zn1

= −(Fn − nF1), (4.3)

where we used the definition of adimensional free energy:

Fn ≡ − lnZn. (4.4)

37



We start our analysis considering a lattice system, that has a natural short distance cutoff
called ε, and, as we did in section 2.3, we can take its continuum limit to describe the system
using a quantum field theory.
In this procedure the effect of the lattice is taken into account by imposing that all the
correlation functions takes the usual form only for distances greater than the cutoff. This
approximation could be seem a bit too coarse but we are interested only in the scaling of
the corrections and not in their amplitudes.
The changes in the parameter ε affects the free energy through the integrated trace of the
energy momentum tensor Θ(z), see Ref.[43]:

− ε∂F
∂ε

=
1

2π

∫
Rn
〈Θ(w)〉d2z. (4.5)

In the case of a flat space time CFT we have that 〈Θ〉 is 0 for rotational and traslational
invariance and F is scale invariant, after the subtraction of the bulk free energy.
In the case of the Riemann surface Rn described in section 2.3, the presence of branch
points gives several contributions to the free energy. These contributions are due to the
local breaking of the scale invariance near conical singularities, see Ref.[43].
Assuming to have, in addition to the conformal invariant action S0, an irrelevant bulk
operator Φ(w) of scaling dimension ∆ > 2, the action S takes the form:

S = S0 + λ

∫
Rn

Φ(w)d2w, (4.6)

where λ is the dimensional coupling constant that we assume small enough to use power
expansions.
We can rewrite λ as a function of the adimensional coupling constant g and of the cutoff ε:

λ =
g

ε2−∆
. (4.7)

The perturbed adimensional free energy can be expressed as a power series in λ:

− δFn =

∞∑
N=1

(−λ)N

N !

∫
· · ·
∫
Rn
〈Φ(w1) . . .Φ(wN )〉Rnd2w1 . . . d

2wN , (4.8)

where the sum involves only the connected Feynman diagrams of the theory defined the
Riemann surface Rn.
We can now map the correlation functions from Rn into C using the transformation:

w =

(
ıL

2π

)
ln

(
1− zne−ıπx

1− zneıπx

)
. (4.9)

As usual the generic correlation function transforms as, Ref.[45]:

〈Φ(w1) . . .Φ(wN )〉Rn =

N∏
i=1

∣∣∣∣dwidzi

∣∣∣∣−∆

〈Φ(z1) . . .Φ(zN )〉C. (4.10)

We can evaluate the power series 4.8 term by term in the coupling constant. The first order
term 〈Φ(z1)〉C is trivially zero for translational and rotational invariance on the complex
plane. Therefore we will focus on the second order of 4.8, namely:

− δF 2
n =

1

2

g2

ε2(2−∆)

∫∫
Rn
〈Φ(w1)Φ(w2)〉Rnd2w1d

2w2. (4.11)
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We can map it to an integral over the complex plane:

δF 2
n = −1

2

g2

ε2(2−∆)

∫∫
C

∣∣∣∣dw1

dz1

∣∣∣∣2−∆ ∣∣∣∣dw2

dz2

∣∣∣∣2−∆

〈Φ(z1)Φ(z2)〉C = (4.12)

= −g
2

2

(
nL sin(πx)

πε

)4−2∆

× (4.13)

×
∫∫

C

|z1z2|(2−∆)(n−1)

|(zn1 − eıπx)(zn1 − e−ıπx)(zn2 − eıπx)(zn2 − e−ıπx)|2−∆|z1 − z2|2∆
,

where we used the definition x ≡ l/L.
It is important to notice that the variables ε and L appear everywhere in the combination:

L sin(πx)

πε
, (4.14)

we can move to the infinite 1D system case, studied in Ref.[15], simply taking the limit
x→ 0:

L sin(πx)

πε
→ Lπl

Lπε
=
l

ε
. (4.15)

The integral 4.12 could be a source of many divergences and it could be necessary to use
additional cut-offs. They have to be of order O(ε) in the w-plane. These further cut-offs
will give us, by scaling considerations, further powers of the combination L sin(πx)/π that
generate deviation from the finite size scaling behaviour of the renormalization group.
First of all we analyse the case n− 1 = 0+, where the integral is:∫∫

C

1

|(z1 − eıπx)(z1 − e−ıπx)(z2 − eıπx)(z2 − e−ıπx)|2−∆|z1 − z2|2∆
, (4.16)

this expression is regular in zi ≈ 0 as long as z1 − z2 is different from zero.
Lets take a look to the asymptotic behaviour of the integrals in 4.12 when, for example, z1

becomes large: ∫
C

1

|z1|4
d2z1, (4.17)

that is well behaved and it does not need to be regulated.
For larger values of ∆ the region z1 → z2 is a source of divergences and we have to introduce
a cut-off |w1 − w2| < ε, in the w-plane, to regulate them. The divergence is O(ε2−2∆) and
the contribution to the quantity δF 2

n is proportional to:

1

ε2
Area(Rn), (4.18)

and this divergence cancels out in the subtraction Fn − nF1.
Furthermore there are other divergences around the points:

zni = e±ıπx, (4.19)

and they will also cancel out in the subtraction Fn − nF1, that will leave us with a well
behaved.
We have subtracted off the divergences previously described and we have a regular expression
for the values 1 < ∆ < 3. The cutoff ε appears only in the pre-factor ε2(2−∆) that arises
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from the finite size scaling of the renormalization group.
The scaling of the corrections in L can be obtained by the scaling of the ones in ε:(

L sin(πx)

π

)−2(∆−2)

. (4.20)

As we did before we can move to the case of system of infinite size, the case considered in
Ref.[15], simply taking the limitx→ 0 and we find that the scaling of the corrections is:

l−2(∆−2), (4.21)

where l is the size of the subsystem, that is the only length scale present in the system.
In case of a non vanishing value of 〈Φ(z1)〉C we would have corrections that scale as
(L sin(πx)/π)2−∆.
Let now take into account the fact that some divergences can arise for high values of n near
a branch point. These divergences are due to the local breaking of scale invariance and they
are genuine divergence that will not cancel out in the subraction Fn − nF1.
Let now study the behaviour of our integral near the branch point z1 ≈ 0:∫

C
d2z1

∣∣∣∣dw1

dz1

∣∣∣∣2 |z1|(1−n)∆. (4.22)

We can map this integral onto the Riemann surface Rn, where we have our natural cutoff of
order O(ε). We are studying the behaviour of the integral around the point w1 ≈ 0, where
the conformal mapping takes the form:

z(w ≈ 0) =

(
− πw

L sin(πx)

) 1
n

. (4.23)

Inserting this expression inside the integral 4.22 we have:∫
Rn

d2w1|w1|∆( 1
n−1). (4.24)

This integral diverges for the following values of n:

∆

(
1− 1

n

)
> 2→ n >

∆

∆− 2
, (4.25)

this condition defines a critical vale of the index n, namely: nc = ∆/(∆−2). For n > nc the
integral 4.25 diverges and it has to be further regulated using an additional cutoff |w1| < ε.
This procedure gives us an extra ε-dependent factor:

ε2+∆( 1
n−1). (4.26)

The integral approximated around the other branch point, z2 →∞, takes the form:∫
C
d2z2

∣∣∣∣dw2

dz2

∣∣∣∣2 |z2|∆(1−n)

|z2|−2n∆|z2|2∆
=

∫
C
d2z2

∣∣∣∣dw2

dz2

∣∣∣∣2 |z2|∆(n−1). (4.27)

The limit of z2 →∞ is mapped in w2 ≈ l and the conformal mapping approximated around
this point is:

z(w ≈ l) =

(
L sin(πx)

π(w − l)

) 1
n

. (4.28)
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It is easy to see that the integrals around different branch points take the same form:∫
Rn

d2w2|w2 − l|∆( 1
n−1). (4.29)

As we did before, we have to introduce a further cutoff if n > nc and it leads us to the same
ε dependent result seen in the precedent case:

ε2+∆( 1
n−1). (4.30)

Looking at the expression δF 2
n − nF

(2)
1 as function of the variables z1 and z2, we have two

possibilities:

• z1 and z2 approach the same branch point: in this case the divergences disappear in
the subtraction Fn − nF1 and the quantity is finite.

• z1 and z2 approach different branch points: in this case the divergences do not cancel
in the subtraction Fn−nF1 and we have a finite size scaling behaviour that is different
from the renormalization group one.

In the analysis of the scaling behaviour of the corrections we have two contributions: the first
is the one that we computed above that is due to the local breaking of conformal invariance:

ε4+2∆( 1
n−1), (4.31)

and the other one comes from the finite size scaling behaviour of the renormalization group:

ε−2(∆−2). (4.32)

The total dependence of δF
(2)
n is:

ε4+2∆( 1
n−1)

ε4−2∆
= ε

2∆
n . (4.33)

The corrections in powers of L are obtained by scaling arguments:(
L sin(πx)

π

)− 2∆
n

, (4.34)

these corrections are called unusual because of the explicit presence of the index n at the
exponent.

4.2 Relevant operators at conical singularities

In section 4.1 we saw how an irrelevant bulk operator can be responsible of corrections of the
form (L sin(πx)/π)−2∆/n. These are different from the finite size scaling of the Renormal-
ization group but they had been observed in many numerical and theoretical works about
spin chains.
Now we want analyse how a relevant operator can give the same type of corrections.
Obviously it is not possible to have a bulk relevant operator because it would drive the sys-
tem away from criticality and the conformal invariance of the system would be destroyed.
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Furthermore it is possible to have a relevant perturbation located around the conical singu-
larities of the Riemann surface.
Let consider the case of a quantum spin chain, where the degrees of freedom are located
on sites, we could have a relevant perturbation operator localised near one of the branch
points that define the Riemann surface Rn. The scaling dimensions of this operator inside
the bulk are ∆ < 2, by definition of relevant operator. On the other hand it is located near
a branch point and its scaling dimension are enhanced to ∆/n. This means that it does not
drive the system away from criticality anymore, and the conformal invariance is preserved.
Lets focus on the 2d Ising case, that will be analysed in section 5.5, the computation of TrρnA
involves a partition function over a Riemann surface defined by n branch point of degree n,
as we saw in section 2.3. The degrees of freedom of the system are localised inside the sites
of the lattice. If we use a model with discrete time and discrete space, every branch point
can be placed in the middle of a plaquette. It is clear that for every n > 1 all the degrees of
freedom inside the plaquette have a larger number of neighbors than the degrees of freedom
localised inside the bulk. In the simplest case of nearest neighbor interaction we have that
the order variable at the centre of the plaquette interacts exactly with 4 other spins, but
the dual spin situated on the top of the plaquette interacts with 4n other variables. This
situation drives the system away from criticality. Lets assume now to perform the contin-
uum limit, the system will be described by a field theory and the energy operator located
around the conical singularity will give us corrections of the form: (L sin(πx)/π)−2/n, the
energy operator of the Ising model has ∆ = 1 (see Ref.[45]).
The previous arguments can suggest us that the right action of the model on the Riemann
surface Rn has to take the form:

S = SCFT +
∑
j

λj

∫
Rn

d2wΦj(w) +
∑
P

∑
k

λkΦ
(n)
k (P ), (4.35)

where the second term is the sum over all the possible irrelevant operators with ∆j > 2
and the third term takes into account all the possible operators localised at branch points
P with scaling dimensions ∆k/n with all the allowed ∆k including ∆k < 2. In the power
expansion in λk every operator appears at least one time since we can use the OPE to
simplify the expressions involving an higher number of operators. In the case of an infinite

system 〈Φ(n)
k (P )〉 = 0 and the corrections are of the form (L sin(πx)/π)−2∆k/n. On the

other hand if 〈Φ(z)〉C 6= 0, corrections of the type:(L sin(πx)/π)−∆k/n appear.

4.3 The marginal case

In previous sections we have studied the case of relevant and irrelevant operators, now we
want to analyse the case of a marginal irrelevant perturbation, that is defined by the limit
∆→ 2+.
We start our analysis rewriting expression 4.12 in a more suitable way to perform the limit
to the marginal case. The easier way to do this is to perform explicitly the subtraction:
δFn − nδF1.
We have to take care of the cutoff |w1 − w2| > ε that is due to the presence of the lattice,
as we said in section 4.1.
In order to express this cutoff in a more suitable way for our purpose we rewrite the conformal
transformation as:

w =
ıL

2π
ln

(
1− e−ıπxzn

1− eıπxzn

)
≡ ıL

2π
f(z), (4.36)
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and its derivative as:

dw

dz
= −nL sin(πx)

π

zn−1

(zn − eıπx)(zn − e−ıπx)
≡ −L sin(πx)

π
g(z). (4.37)

Now we can express the cutoff induced by the lattice as function of f(zi):

|w1 − w2| =
L

2π
|f(z1)− f(z2)|. (4.38)

This affects the integral as:

δF 2
n = −g

2

2
ε−2(2−∆)

∫∫
|f(z1)−f(z2)|>(2πε/L)

∣∣∣∣dw1

dz1

∣∣∣∣2−∆ ∣∣∣∣dw2

dz2

∣∣∣∣2−∆
1

|z1 − z2|2∆
d2z1d

2z2.

(4.39)
The term involved in the subtraction is:

− g2

2

(
L sin(πx)

ε

)4−2∆ ∫
Rn

2πε2−2∆

2− 2∆
dw1 = −g

2

2

(
L sin(πx)

πε

)4−2∆ ∫
|g(z1)|2 2πε2−2∆

2− 2∆
d2z1 =

= −g
2

2

(
L sin(πx)

πε

)4−2∆ ∫
|z1−z2|>2πε/L|g(z1)|

|g(z1)|4−2∆

|z1 − z2|2∆
d2z1. (4.40)

The cutoffs in the expressions 4.39 and 4.40 are different but this difference disappears in
the limit ∆→ 2+. This means that we can replace the cutoff of the integral 4.40 with:

|z1 − z2| > (2πε/L). (4.41)

After the substitution of the cutoff in 4.40, the integrals 4.48 and 4.40 share the same
integration region and it is possible to perform the subtraction:

δFn − nδF1 =

− g2

2

(
L sin(πx)

π

)4−2∆ ∫∫
|f(z1)−f(z2)|>2πε/L

|g(z1)|2−∆|g(z2)|2−∆ − |g(z1)|4−2∆

|z1 − z2|2∆
d2z1d

2z2,

(4.42)

we can put the previous expression in a form that is symmetric in the variables z1 and z2:

δFn−nδF1 =
g2

4

(
L sin(πx)

πε

)4−2∆ ∫∫
|f(z1)−f(z2)|>2πε/L

(
|g(z1)|2−∆ − |g(z2)|2−∆

)2
|z1 − z2|−2∆

d2z1d
2z2.

(4.43)
It is clear that in the region ∆ ≈ 2 this integral is finite also if ε ≈ 0.
We can also notice that both g(zi) are regular and consequently the limit ∆ → 2 would
return 0 inside the bulk.
The situation changes drastically when both the variables z1 and z2 approach a branch
point. Lets take the case of the branch point z = 0, we have that |g(z)|2−∆ ≈ |z|(n−1)(2−∆)

and it is clear that the limits z → 0 and ∆ → 2+ do not commute. The same argument is
obviously valid for the other branch point z →∞.
The previous considerations allow us to restrict the integration region to the set:

{|z1| < ρ, |z2| < ρ} ∪ {|z1| > ρ−1, |z2| > ρ−1} ≡ I1 ∪ I2 0 < ρ < 1, (4.44)
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without changing the result of the final result.
We can choose ρ arbitrarily small in order to use the asymptotic expressions for g(z) near
the branch points:∫∫

I1

(
|nzn−1

1 |2−∆ − |nzn−1
2 |2−∆

)2
|z1 − z2|2∆

= (4.45)

=

∫∫
I1

|nz2
1 |(n−1)(2−∆) + |nz2

2 |(n−1)(2−∆) − 2|n2z1z2|(n−1)(2−∆)

|z1 − z2|2∆
.

Since we are interested in the behaviour of the integral near zi ≈ 0 we can approximate the
integrand as:

2

∫∫
I1

|nz1|(n−1)(2−∆)|nz2|(n−1)(2−∆)

|z1 − z2|2∆
, (4.46)

where we have neglected the first two terms because they were much smaller than the third.
The integral 4.46 is exactly twice what we would obtain for a single branch point and we
can replace the expression 4.40 with this one.
In order to obtain an explicit result from 4.46 we use a simple rescaling of the second variable
z2 = kz1, that gives us:

2n4−2∆

∫∫
|z1|(n−1)(2−∆)|kz1|(n−1)(2−∆)

|z1 − wz1|2∆
|z1|2d2kd2z1 =

2n4−2∆

∫
|k|(n−1)(2−∆)|k − 1|−2∆d2k

∫
|z1|−2−2n(∆−2)d2z1, (4.47)

using the Mellin transform in the k integral we have:

I(n; ∆) =

∫
|k|(n−1)(2−∆)|k − 1|−2∆d2k =

= π
Γ
(

1 + (n+1)(∆−2)
2

)
Γ
(

1− (n−1)(∆−2)
2

)
Γ (1−∆)

Γ
(
− (n+1)(∆−2)

2

)
Γ
(

(n−1)(∆−2)
2

)
Γ (∆)

. (4.48)

Although the integrals 4.39 and 4.48 are equal only in the region ∆ ≈ 2, the expression 4.48
exhibits the genuine poles in ∆ = 1 and ∆ = 2n/(n− 1), that corresponds to nC .
We can now take the limit ∆→ 2+ of I(n; ∆):

I(n; ∆) ≈ −π
4

(n2 − 1)(∆− 2) +O((∆− 2)2). (4.49)

The integral over z1 has to be further regulated with another short distance cutoff of the
type ε1/n that gives us the result:

∫
|z1|2n(2−∆)−2d2z1 =

2π
(
ε

1
n

)2n(∆−2)

2n(∆− 2)
=

2πε2n(∆−2)

2(∆− 2)
≈ π

n(∆− 2)
. (4.50)

The final result is obtained multiplying the two previous expressions:

δFn − nδF1 = g2

(
L sin(πx)

πε

)4−2∆(
n2 − 1

n

)(
π2

4
+O(∆− 2)2

)
. (4.51)
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The limit ∆→ 2+ gives us an uninteresting constant, namely:

lim
∆→2+

(δFn − nδF1) =
π2g2

4

(
n2 − 1

n

)
. (4.52)

This result forces us to take into account the third order in the coupling constant g that is
a triple integral of the type like:

g3

6
b

(
Lπ sin(πx)

πε

)6−3∆ ∫∫∫
C

|g(z1)|2−∆|g(z2)|2−∆|g(z3)|2−∆

|z1 − z2|∆|z1 − z3|∆|z2 − z3|∆
d2z1d

2z2d
2z3, (4.53)

where b is the universal coefficient of an OPE.
Again we have that the integral measure is concentrated near the branch points, the short
distance divergences are eliminated in the subtraction and the limit ∆→ 2 gives us again a
finite result. A similar calculation was performed in Ref.[56] and Ref.[57] for the corrections
to the free energy of a cylinder that could be seen as the limit n → 0 of our previous
computations.
A more direct way to compute the O(g3) is the one that involves the Zamolodchikov’s c-
theorem exposed in Ref. [58]. In order to use it we need the logarithmic derivative of the
free energy with respect to the cutoff.
We start from the adimensional free energy up to g2:

Fn−nF1 = − c
6

(
n− 1

n

)
ln

(
L

πε
sin(πx)

)
+

(
n− 1

n

)
g2π2

4

(
L sin(πx)

πε

)4−2∆

(1+O(∆−2)2).

(4.54)
The logarithmic derivative of the previous expression in the region ∆ ≈ 2 is:

− ε∂(Fn − nF1)

∂ε
= − c

6

(
n− 1

n

)
− g2π2

2

(
n− 1

n

)
(∆− 2) ≡ −ceff

6

(
n− 1

n

)
, (4.55)

where we used the effective central charge defined as:

ceff = c− 3g2π2 (2−∆) . (4.56)

The C-theorem states that there exists a function C(g) that decreases along the renormal-
ization group flow and it is stationary at fixed points where it is equal to the conformal
anomaly of the corresponding CFT.
Zamolodchikov also demonstrated that:

C ′(g) ∝ (1 +O(g2))β(g), (4.57)

where β is the beta function:

β(g) = −ε∂g
∂ε
, (4.58)

where the derivative is performed at fixed coupling.
In a perturbed CFT like 4.6 the first two terms of the β function are known to be universal,
Ref.[58] and Ref.[59], and they are equal to:

β(g) = (∆− 2)g + πbg2 +O(g3), (4.59)

and up to this order we have that:
c′eff ∝ β(g). (4.60)
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We can now find the coefficient of the term g3 applying the C-Theorem 4.56:

ceff = c+3π2(∆−2)g2+γg3 → c′eff = 6π2(∆−2)g+3γg2 = 6π2
(

(∆− 2)g +
γ

2π2
g2
)
. (4.61)

Comparing this expression with the β function 4.59 we get:

γ = 2π3b. (4.62)

The central charge up to the third order in the adimensional coupling constant is:

ceff = c+ 3π2(∆− 2)g2 + 2π3bg3. (4.63)

The problem of the previous method is that there could be logarithmic corrections in
L sin(πx)/π due to the pole around ∆ = 2, and our previous analysis is not able to re-
produce them. The solution is the introduction of the ”RG-improving” that can reproduce
the logarithmic divergences.
In the following we will perform all calculations in an infinite system where the main pa-
rameter is the length of the subsystem l but all results that we will obtain can be easily
translated in the case of a finite system with the usual replacement:

l→ L sin(πx)

π
. (4.64)

We can start our analysis from the RG-improving flow equation:

l
dg(l)

dl
= −β(g(l)). (4.65)

In the case of ∆ > 2 the perturbation is irrelevant and the previous equation becomes, at
the leading order in g:

l
∂g

∂l
= (2−∆)g, (4.66)

that it is solved by:

g

g0
=

(
l

ε

)−(∆−2)

, (4.67)

and the effective central charge tends to c when g tends to 0:

ceff = c− 3π2(2−∆)g2 → c. (4.68)

In the case ∆ < 2 the perturbation is relevant and there are two possibilities. We could be
in the case g(l)→ g∗ where:

β(g∗) = 0→ g∗ =
2−∆

πb
, (4.69)

and the effective central charge is:

ceff = c− 3(2−∆)3

b2
. (4.70)

On the other hand we could be in the case where g(l) cannot be more described by the
perturbation theory, for a complete description of these two situations see Ref.[57].
The interesting case for us is the marginal one defined by ∆ = 2 where the β function takes
the form:

β = πbg2. (4.71)
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The differential equation that defines the coupling g(l) is:

l
∂g

∂l
= −πbg2, (4.72)

and its solution is:

g =
g0

1 + g0πb ln(l/ε)
≈ 1

bπ ln(l/ε)
. (4.73)

The behaviour of the effective central charge is:

ceff = c+
2

b2 (ln(l/ε))
3 . (4.74)

After the integration with respect to the variable ln ε we get the result final:

c− 1

b2(ln(l))3
. (4.75)

It is important to notice that the central charge is reached from below, and it is an apparent
violation of the C-theorem but this happens because we are studying the adimensional free
energy instead of the entanglement entropy. In fact the entanglement entropy is a quantity
ultraviolet finite at the fixed points, see Ref.[60], and it reaches the value of the central
charge c from above in perfect agreement with the C-theorem.
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Chapter 5

Unusual correction to scaling in
excited states of conformal field
theory

In the previous chapters we showed how the replica trick approach can be used to compute
the entanglement entropy of an 1D quantum system described in the continuum limit by
a conformal field theory and in particular we analysed the unusual corrections to scaling.
We demonstrated how an irrelevant operator in the bulk hamiltonian can be responsable of
unusual correction to scaling of the type:(

L sin(πx)

π

)− 2∆
n

. (5.1)

In this chapter we will demonstrate that the same arguments used in Chapt.4 hold also in
the case of excited states of the conformal field theory. In conclusion we can say that the
unusual corrections to scaling are present also in the excited states of conformal field theory
and they are due to the same mechanism that is valid in the ground state case.

5.1 Perturbation of the F function

In Chapt.3 we computed the quantity:

FnΥ(x) ≡ TrρnΥ
TrρnI

= exp ((1− n)(SΥ − Sgs)) , (5.2)

using the Cardy-Calabrese approach described in Chapt.2.
We demonstrated how it can be rewritten as a ratio involving correlation functions evaluated
over the Riemann surface Rn, see Chapt.3:

FnΥ(x) = lim
w→−ı∞

〈
∏n−1
j=0 Υj(w)Υ†j(−w)〉Rn[
〈Υ0(w)Υ†0(−w)〉R1

]n . (5.3)

As we did in Chapt.4, we want to study the scaling behaviour of the corrections to entan-
glement entropy. They are due to the presence in the action of an irrelevant bulk operator
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Φ(w), that changes the action in:

S = S0 + λ

∫
Rn

d2wΦ(w), (5.4)

where Φ(w) is a bulk irrelevant scalar operator, with conformal dimension ∆ > 2 and the
action S0 is the conformal invariant action. Obviously we assume that λ � 1 in order to
allow us to evaluate a meaningful perturbative expansion.

The function F
(n)
Υ of 5.3 computed on the perturbed action 5.4 will be denoted by F̃

(n)
Υ and

it is formally given by the expression:

F̃nΥ(x) = lim
w→−ı∞

〈
∏n−1
j=0 Υj(w)Υ†j(−w)e−λ

∫
Rn

d2wΦ(w)〉Rn[
〈Υ0(w)Υ†0(−w)e

−λ
∫
R1

d2wΦ(w)〉R1

]n , (5.5)

where the correlation functions are computed using the conformal invariant action S0.
We can rewrite this expression in terms of the FnΥ(x), described in Chapt.3:

F̃nΥ(x) = lim
w→−ı∞

〈
∏n−1
j=0 Υj(w)Υ†j(−w) exp

(
−λ
∫
Rn d

2wΦ(w)
)
〉Rn[

〈Υ0(w)Υ†0(−w) exp
(
−λ
∫
R1
d2wΦ(w)

)
〉R1

]n =

= FnΥ(x) lim
w→−ı∞


 〈Υ0(w)Υ†0(−w) exp

(
−λ
∫
R1
d2wΦ(w)

)
〉R1

〈Υ0(w)Υ†0(−w)〉R1

−n×
×

 〈∏n−1
j=0 Υj(w)Υ†j(−w) exp

(
−g
∫
Rn d

2wΦ(w)
)
〉Rn

〈
∏n−1
j=0 Υj(w)Υ†j(−w)〉Rn

 .
The exponential functions can be evaluated as power expansions, this is possible because we

are assuming λ� 1. We can evaluate the function F̃
(n)
Υ order by order in the perturbation

theory computing all the Feynman diagrams of the theory defined on the Riemann surface
Rn, as we did in section 4.1.
The diagrams involved in the evaluation of the expression are both connected and discon-
nected as usual in quantum field theory.
In order to evaluate only quantities defined by sums of connected Feynman diagrams we
take the logarithm of the F̃ and we expand in power series of the coupling λ:

ln
(
F̃nΥ(x)

)
= ln (FnΥ(x)) + (5.6)

+

∞∑
k=1

(−λ)k

k!

∫
· · ·
∫
Rn

〈
∏
j Υj(w)Υ†j(−w)Φ(w1)Φ(w2) . . .Φ(wk)〉Rn

〈
∏n−1
j=0 Υj(w)Υ†j(−w)〉Rn

d2w1 . . . d
2wk

− n

( ∞∑
k=1

(−λ)k

k!

∫
· · ·
∫
R1

〈Υ0(w)Υ†0(−w)Φ(w1)Φ(w2) . . .Φ(wk)〉R1

〈Υ0(w)Υ†0(−w)〉R1

d2w1 . . . d
2wk

)
.

From Ref.[45] we know how to rewrite the dimensional coupling constant λ in terms of the
adimensional coupling constant g:

λ =
g

ε∆−2
. (5.7)
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The power series written int 5.6 is related to the Renyi entropy using the definition of the

F
(n)
Υ :

lnF
(n)
Υ = (1− n) (SnΥ − SnI ) . (5.8)

The unusual corrections to scaling arise from the divergences due to the local breaking of
the conformal invariance near the conical singularities. We will study expression 5.6 order
by order in λ looking for divergences as we did for the ground state in section 4.1.
We expect from the ground state case studied in Chapt.4 that the unusual corrections to
scaling would come from divergences in the λ2 term of 5.6 and the order λ will not give
further contribution at the scaling behaviour of the Renormalization Group.
This means that we will focus our attention on the λ term:∫

Rn

〈
∏n−1
j=0 Υj(w)Υ†j(−w)Φ(w1)〉Rn
〈
∏n−1
j=0 Υj(w)Υ†j(−w)〉Rn

d2w1 −
∫
R1

〈Υ0(w)Υ†0(−w)Φ(w1)〉R1

〈Υ0(w)Υ†0(−w)〉R1

d2w1, (5.9)

and on the most important λ2 term:∫
Rn

〈
∏n−1
j=0 Υj(w)Υ†j(−w)Φ(w1)Φ(w2)〉Rn
〈
∏n−1
j=0 Υj(w)Υ†j(−w)〉Rn

−
∫
R1

〈Υ0(w)Υ†0(−w)Φ(w1)Φ(w2)〉R1

〈Υ0(w)Υ†0(−w)〉R1

. (5.10)

5.2 The λ term living on R1

We start our analysis from the simplest term in the expansion 5.6, that is the order λ term
onto the Riemann surface R1, namely:

lim
w→−ı∞

〈Υ0(w)Υ†0(−w)Φ(w1)〉R1

〈Υ0(w)Υ†0(−w)〉R1

, (5.11)

where the limit fixes the perturbation fields in the “in” and “out” states mapped on the
complex plane, as we did in Chapt.4.
We can map the correlation functions from R1 to C using the conformal transformation:

dw

dz
=

(
−L sin(πx)

π

)
1

(eıπx − z) (e−ıπx − z)
,

that is the mapping 3.17 where we fixed n = 1 because now we are on the Riemann surface
R1. The quantity 5.11 transforms as usual in CFT, see Ref.[45]:

lim
w→−ı∞

〈Υ0(w)Υ†0(−w)Φ(w1)〉R1

〈Υ0(w)Υ†0(−w)〉R1

= (5.12)∣∣∣∣(L sin(πx)

π

)
1

(eıπx − z) (e−ıπx − z)

∣∣∣∣−2hΦ 〈Υ(zout)Υ
†(zin)Φ(z1)〉C

〈Υ(zout)Υ†(zin)〉C
,

where hΦ is the holomorphic dimension of the spinless field Φ.
In the mapping from the Riemann surface to the complex plane the transformation factors
due to perturbation operators cancel out in the ratio.
It is important because if we would evaluate separately the denominator and the numerator
we would obtain a vanishing correlation functions in the limit w → ±ı∞.
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The three point functions on the complex plane are fixed by conformal invariance, see
Ref.[45], and we use their explicit expression:

〈Υ(z′0)Υ†(z0)Φ(z1)〉C
〈Υ(z′0)Υ†(z0)〉C

=

(
1

(z′0 − z0)2h−hΦ(z′0 − z1)hΦ(z0 − z1)hΦ

)
×

×
(

1

(z̄′0 − z̄0)−hΦ(z̄′0 − z̄1)hΦ(z̄0 − z̄1)hΦ

)(
1

(z′0 − z0)2h

)−1

=

(
|z′0 − z0|

|z0 − z1| |z′0 − z1|

)2hΦ

.

We will consider operators Υ with holomorphic dimension hΥ = h and antiholomorphic
dimension h̄Υ = 0, that is the particular case of the operator ı∂φ (the most interesting one
in bosonic theory).
Taking now the limit of 5.13 to the in and out states onto C:

z = eıπx

z′ = e−ıπx,

we obtain the ratio 5.11 as a function only of the variable z1:

〈Υ0(z′)Υ†0(z)Φ(z1)〉C
〈Υ0(z′)Υ†0(z)〉C

=

(
|2 sin(πx)|

|eıπx − z1| |e−ıπx − z1|

)2hΦ

.

The correlation function on the Riemann surface R1 can be easily computed using the
expression 5.12:

lim
w→−ı∞

〈Υ0(w)Υ†0(−w)Φ(w1)〉R1

〈Υ0(w)Υ†0(−w)〉R1

=∣∣∣∣(L sin(πx)

π

)
1

(eıπx − z1) (e−ıπx − z1)

∣∣∣∣−2hΦ
(

|2 sin(πx)|
|eıπx − z1| |e−ıπx − z1|

)2hΦ

=

=

(
2π

L

)2hΦ

. (5.13)

The order λ in the power expansion 5.6 is:

1

ε∆−2

∫
R1

d2w1

(
2π

L

)2hΦ

=

(
2π

L

)2hΦ A(R1)

ε∆−2
, (5.14)

where A(R1) is the area of the surface R1.
This integral has not to be further regulated and it exhibits the same dependence on the
parameter ε of the finite size scaling behaviour of the renormalization group. We know
from Chapt.4 that this behaviour is always negligible compared to the one of the unusual
corrections to scaling.

5.3 The the λ2 term living on R1

As we expected from the discussion on the ground state, the order λ does not give further
contributions to the finite size scaling behaviour of the renormalization group flow and this
is an important check because we have demonstrated that this holds for excited states as
well.
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Now we want to move to the more interesting order λ2 term because we expect that it will
be the one that has to be regulated and it will lead to the unusual corrections.
We look at the simplest part of the λ2 term that is the ratio between correlation functions
computed on the Riemann surface R1 of 5.6, namely:

lim
w→−ı∞

〈Υ0(w′)Υ†0(w)Φ(w1)Φ(w2)〉R1

〈Υ0(w′)Υ†0(w)〉R1

, (5.15)

as usual we can map it from R1 to the complex plane C:

〈Υ0(w′)Υ†0(w)Φ(w1)Φ(w2)〉R1

〈Υ0(w′)Υ†0(w)〉R1

=

∣∣∣∣dw1

dz1

∣∣∣∣−2hΦ
∣∣∣∣dw2

dz2

∣∣∣∣−2hΦ 〈Υ(z′0)Υ†(z0)Φ(z1)Φ(z2)〉C
〈Υ(z′0)Υ†(z0)〉C

,

where the Υ operators are evaluated in the in and out points mapped onto C.
The four points function is not totally fixed by conformal invariance since we can always
perform a global conformal transformation that maps 4 points (z1, z2, z3, z4) into (0, 1,∞, η).
This means that the four point function is known apart from an invariant function of η that
is defined as:

η =
(z′0 − z1)(z0 − z2)

(z′0 − z2)(z0 − z1)
. (5.16)

The four point function in 5.15 is:

〈Υ(z′0)Υ(zo)Φ(z1)Φ(z2)〉C =

= f(η; η̄)(z′0 − z0)−2h|z1 − z2|−4hΦ

(
(η − 1)2

η

)h
3
∣∣∣∣ (η − 1)2

η

∣∣∣∣ 2
3hΦ

, (5.17)

In order to demonstrate how we obtained the previous result we will compute separately the
holomorphic and antiholomorphic parts, they are different because the fields Υ have h̄Υ = 0.
The holomorphic part of the four points correlation function is, see Ref.[45]:

(z′0 − z0)
2
3h+ 2

3hΦ−2h(z′0 − z1)
2
3h+ 2

3hΦ−h−hΦ(z0 − z1)
2
3h+ 2

3hΦ−h−hΦ

(z′0 − z2)
2
3h+ 2

3hΦ−h−hΦ(z − z2)
2
3h+ 2

3hΦ−h−hΦ(z1 − z2)
2
3h+ 2

3hΦ−2hΦ =

= (z′0 − z0)−2h

(
(z′0 − z0)2(z1 − z2)2

(z′0 − z1)(z0 − z1)(z′0 − z2)(z0 − z2)

)h
3

×

×
(

(z′0 − z0)2(z1 − z2)2

(z′0 − z1)(z0 − z1)(z′0 − z2)(z0 − z2)

)hΦ
3

.

The antiholomorphic part can be compute in the same way taking into the account that the
excitation operators Υ have zero antiholomorphic dimension:

(z̄1 − z̄2)−2hΦ

(
(z̄′0 − z0)2(z1 − z̄2)2

(z̄′0 − z̄1)(z̄0 − z̄1)(z̄′0 − z̄2)(z̄0 − z̄2)

)hΦ
3

. (5.18)

We obtain the algebraic part of the correlation function simply multiplying the holomorphic
and anti holomorphic parts previously obtained:

(z′0 − z0)−2h|z1 − z2|−4hΦ

(
(z′0 − z0)2(z1 − z2)2

(z′0 − z1)(z0 − z1)(z′0 − z2)(z0 − z2)

)h
3

×

×
∣∣∣∣ (z′0 − z0)2(z1 − z2)2

(z′0 − z1)(z0 − z1)(z′0 − z2)(z0 − z2)

∣∣∣∣ 2
3hΦ

.
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We can express several combinations of the variables as functions of the anharmonic ratio
η:

η − 1

η
=

(z′0 − z0)(z1 − z2)

(z′0 − z1)(z0 − z2)
, (5.19)

η − 1 =
(z′0 − z0)(z1 − z2)

(z′0 − z2)(z0 − z1)
. (5.20)

Now we have the ratio between the four and two points functions on the Riemann surface
R1 as:

〈Υ0(w′)Υ†0(w)Φ(w1)Φ(w2)〉R1

〈Υ0(w′)Υ†0(w)〉R1

=

=

∣∣∣∣dw1

dz1

∣∣∣∣−2hΦ
∣∣∣∣dw2

dz2

∣∣∣∣−2hΦ

f(η; η̄)|z1 − z2|−4hΦ

(
(η − 1)2

η

)h
3
∣∣∣∣ (η − 1)2

η

∣∣∣∣ 2
3hΦ

. (5.21)

It is important to notice that the coordinates z1 and z2 appear in the same combination as
in the ground state case, see 4.12, but multiplied by an invariant function of the parameter
η, namely:

F (η; η̄) = f(η; η̄)

(
(η − 1)2

η

)h
3
∣∣∣∣ (η − 1)2

η

∣∣∣∣ 2
3hΦ

. (5.22)

We know from the ground state discussion that the measure is concentrated around the
conical singularities and this means that we have to look at the behaviour of the correlation
functions near those points.
We look at the behaviour of the function F (η) around the conical singularities. Its argument
η tends to:

η =
(z′0 − z1)(z0 − z2)

(z′0 − z2)(z0 − z1)
→ z′0

z0
, (5.23)

and the amplitude F (η) does not have poles in these points. This means that the divergences
eventually will come from the algebraic part of the correlation functions, in analogy with
the case studied in section 4.1. The function F (η) tends to a constant:

F (η; η̄) ≡ f(η; η̄)

(
(η − 1)2

η

) 1
3h
∣∣∣∣ (η − 1)2

η

∣∣∣∣ 2
3hΦ

→ F

(
z′0
z0

;
z̄′0
z̄0

)
. (5.24)

This constant is different from zero from the general properties of the F (η) function. This
constant will not affect the behaviour of the integrals around the conical singularities.
As we did in Chapt.4 we linearize the mapping R1 → C around the conical singularities.
Around z1 ≈ 0 it takes the form:

z1 ≈ −
π

L sin(πx)
w1 →

dz1

dw1
= − π

L sin(πx)
,

and the integral in z1 in this region behaves like:∫
C
d2z1

∣∣∣∣dw1

dz1

∣∣∣∣2−2hΦ

≈
∫
R1

d2w1

∣∣∣∣ π

L sin(πx)

∣∣∣∣2hΦ

= 2π

∣∣∣∣L sin(πx)

π

∣∣∣∣−2hΦ

ε2. (5.25)
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The mapping 3.17 for z2 →∞ is:

z2 =

(
L sin(πx)

π(w2 − l)

)
=

(
L sin(πx)

π

)
(w2 − l)−1 → dz2

dw2
= −

(
L sin(πx)

π

)
(w2 − l)−2,

and the integral approximated for large values of the variable z2 is:∫
C
d2z2

∣∣∣∣dw2

dz2

∣∣∣∣2 ∣∣∣∣ dz2

dw2

∣∣∣∣2hΦ

|z2|−4hΦ =

∣∣∣∣L sin(πx)

π

∣∣∣∣−2hΦ
∫
R1

d2w2 = 2π

∣∣∣∣L sin(πx)

π

∣∣∣∣−2hΦ

ε2.

(5.26)
The previous expressions have the same divergences of the integral studied in 4.1 and it has
to be further regulated with additional cutoffs.
We have to take into account the finite size scaling of the renormalization group flow, as we
did in section 4.1. This is simply done expressing the dimensional coupling constant λ in
terms of the cutoff and the adimensional coupling constant g.
The total ε dependence of the term λ2 living onto R1 is:(

ε2
)2

ε4−4hΦ
= ε4hΦ . (5.27)

As usual we compute the finite size scaling corrections in the combination L sin(πx)/π by
scaling:

ε4hΦ →
(
L sin(πx)

π

)−4hΦ

=

(
L sin(πx)

π

)−2∆

, (5.28)

where we used the definition of scaling dimension for a spinless field like the Φ field:

2hΦ = ∆. (5.29)

The form of the correction is the same of unusual corrections to scaling found in the ground
state case, section 4.1, with n = 1:(

L sin(πx)

π

)− 2∆
n

→
(
L sin(πx)

π

)−2∆

. (5.30)

5.4 The λ2 term living on Rn

In previous sections we computed the two terms of the expansion 5.6 living on the surface
R1, in both of them we have found the same scaling behaviour of the ground state case.
Now we compute the other term of order λ2 that is living on the Riemann surface Rn. We
expect that the following computation will confirm the result found in previous sections and
it will lead us again to the unusual corrections.
The λ2 term living on the surface Rn is:

g2

2

∫
Rn

d2w1

∫
Rn

d2w2

〈
∏n−1
j=0 Υj(w)Υ†j(−w)Φ(w1)Φ(w2)〉Rn
〈
∏n−1
j=0 Υj(w)Υ†j(−w)〉Rn

, (5.31)

and the difficult is to compute the arbitrarily long correlation functions in the numerator
and denominator.
A very simple method to do this is to compute in primis the correlation functions in the
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case of vertex operators, assuming the neutrality condition fulfilled and then we will move
back to the initial case restoring the scaling dimension of fields.
The simplification comes from the fact that correlation functions between an arbitrary large
number of vertex operators is well known, see Ref.[45]:

〈
n−1∏
i=0

Vαi(zi)〉C =
∏
i<j

|zi − zj |4αiαj . (5.32)

The neutrality condition that provides a non zero result is:∑
i

αi = 0. (5.33)

The vertex operator is defined in a bosonic free theory as:

Vα ≡: e
√

2ıαΦ(z) : . (5.34)

Using the OPE between the vertex operator and the normal ordered energy momentum
tensor of bosonic theory we can obtain the holomorphic and antiholomorphic dimension of
the vertex operator:

h = h̄ = α2. (5.35)

The last equation provides a relation between the α and ᾱ parameters and the dimensions
h, h̄ of a generic operator.
In the case of the spinless field Φ we have the usual relation hΦ = h̄Φ and we have the same
relation valid for vertex operators:

αΦ = ±
√
hΦ. (5.36)

The field Υ is different, since it has only holomorphic dimension h, this means that we have
to assign it only the holomorphic α and antiholomorphic ᾱ is zero, this choice make the
antiholomorphic neutrality condition automatically satisfied.
A possible choice of the parameters for the operators Υ and Υ† is:

(αΥ; ᾱΥ) = (
√
h; 0), (5.37)

(αΥ† ; ᾱΥ†) = (−
√
h; 0). (5.38)

We have a correlation function with n Υ operators and n Υ†, n for the in and n for the out
states, this means that the choice 5.37 automatically fulfils the neutrality condition.
A possible choice of parameters of Φ fields is:

(αΦ1
; ᾱΦ1

) = (
√
hΦ;−

√
hΦ), (5.39)

(αΦ2
; ᾱΦ2

) = (−
√
hΦ;

√
hΦ). (5.40)

Using the definition of correlation function between vertex operators we can compute the
ratio:

〈
∏n−1
i=0 Vαi(z′i)V†αi(zi)VαΦ1

(z1)VαΦ2
(z2)〉C

〈
∏n−1
i=0 Vαi(z′i)V

†
αi(zi)〉C

, (5.41)
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that is different from zero since we chose the signs of the α and ᾱ parameters in order to
satisfy the neutrality condition for the numerator and the denominator. The ratio 5.41 takes
the form:(

n−1∏
i=0

(zi − z1)2α
Υ†αΦ1 (z′i − z1)2αΥαΦ1 (zi − z2)2α

Υ†αΦ2 (z′i − z2)2αΥαΦ2

)
|z1 − z2|4αΦ1

αΦ2 .

Restoring the holomorphic and antiholomorphic dimensions of the initial operators involved
in the correlation function:(

n−1∏
i=0

(z′i − z1)(z′i − z2)

(zi − z1)(zi − z2)

)2
√
hhΦ

1

|z1 − z2|4hΦ
. (5.42)

The initial ratio between correlation functions 5.31 can be computed simply multiplying the
previous result by an invariant function of all the possible anharmonic ratios F (ηi):

〈
∏n−1
j=0 Υj(w)Υ†j(−w)Φ(w1)Φ(w2)〉Rn
〈
∏n−1
j=0 Υj(w)Υ†j(−w)〉Rn

=

=

∣∣∣∣dw1

dz1

∣∣∣∣−2hΦ
∣∣∣∣dw2

dz2

∣∣∣∣−2hΦ

F (ηi)

(
n−1∏
i=0

(z′j − z1)(z′j − z2)

(zj − z1)(zj − z2)

)2
√
hhΦ

1

|z1 − z2|4hΦ
. (5.43)

where the anharmonic ratios are defined as usual:

ηj =
(z′j − z1)(zj − z2)

(z′j − z2)(zj − z1)
. (5.44)

Obviously the ηi,j parameters involving only the in and out states are fixed by the limit
w → ±ı∞.
The expression 5.43 shows exactly the same algebraic behaviour of the two points functions
in the ground state case but multiplied by an universal function:

F (ηi)

(
n−1∏
i=0

(z′j − z1)(z′j − z2)

(zj − z1)(zj − z2)

)2
√
hhΦ

. (5.45)

If we take the limits of z1 going to 0 and z2 going to ∞, we approach the branch points, the
universal amplitude becomes constant:

ηj =
(z′j − z1)(zj − z2)

(z′j − z2)(zj − z1)
→

z′j
zj
, (5.46)

F (ηi)

(
n−1∏
i=0

(z′j − z1)(z′j − z2)

(zj − z1)(zj − z2)

)2
√
hhΦ

→ F

(
z′j
zj

) n−1∏
j=0

(
z′j
zj

)2
√
hhΦ

. (5.47)

We can ignore this numerical amplitude since it is not a source of divergences, we will restore
it at the end of our analysis.
The computation of unusual corrections from 5.43 now can be done in the same way as
the ground state case presented in section 4.1. We know that the corrections come from
the conical singularities and we will approximate the integral around these points. In case
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of divergences we will regulate the integral and we will obtain a scaling behaviour that is
different from the one of the renormalization group.
First of all we have to see how the conformal transformation from Rn to C behaves near
the two branch points and it can be simply done linearizing it:

z1 =

 sin
(πw1

L

)
sin

(
π(w1 − l)

L

)


1
n

≈
(
− πw1

L sin(πx)

) 1
n

(5.48)

z2 =

 sin
(πw2

L

)
sin

(
π(w2 − l)

L

)


1
n

≈
(
L sin(πx)

π(w2 − l)

) 1
n

. (5.49)

The derivatives of the mapping near the branch points are:

dz1

dw1
=

(
− π

L sin(πx)

) 1
n w

1
n−1
1

n
, (5.50)

dz2

dw2
= −

(
L sin(πx)

L

) 1
n (w2 − l)−

1
n−1

n
. (5.51)

These expressions are used to compute the integral 5.31 around the singularities:∫
C
d2z1

∫
C
d2z2

∣∣∣∣dw1

dz1

∣∣∣∣2−2hΦ
∣∣∣∣dw2

dz2

∣∣∣∣2−2hΦ 1

|z1 − z2|4hΦ
=

=

∫
C
d2z1

∣∣∣∣dw1

dz1

∣∣∣∣2−2hΦ
∫
C
d2z2

∣∣∣∣dw2

dz2

∣∣∣∣2−2hΦ

|z2|−4hΦ =

=

∣∣∣∣nL sin(πx)

π

∣∣∣∣−
4hΦ
n
∫
Rn

d2w1 |w1|(
1
n−1)2hΦ

∫
Rn

d2w2 |w2 − l|(
1
n−1)2hΦ . (5.52)

The integrals are divergent for n > nc, as in 4.1, and they need a further cutoff, that is in
the w space as usual.
The regulated integrals take the form:∣∣∣∣nL sin(πx)

π

∣∣∣∣−
4hΦ
n

(2π)2ε4hΦ( 1
n−1). (5.53)

Including now the ε dependence of the dimensional coupling constant λ we get:

1

ε4−4hΦ

∣∣∣∣nL sin(πx)

π

∣∣∣∣−4hΦ

(2π)2ε4hΦ( 1
n−1) = (2π)2

∣∣∣∣ επ

Ln sin(πx)

∣∣∣∣
4hΦ
n

. (5.54)

Now we can restore the numerical amplitude fixed by the limit to in and out states and to
conical singularities and we have the final result:

F

(
z′j
zj

) n−1∏
j=0

(
z′j
zj

)
(2π)2

∣∣∣∣ επ

Ln sin(πx)

∣∣∣∣
4hΦ
n

. (5.55)
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This expression shows the same unusual corrections to scaling found in the ground state
case: (

L sin(πx)

π

)− 4hΦ
n

, (5.56)

but multiplied by an universal amplitude that does not change their scaling behaviour.

5.5 The λ term living on Rn

The last term in the perturbative expansion 5.6 is the order g term on the surface Rn. As
we saw or the case 5.11 we want to demonstrate that this term does not need to be further
regulated.
First of all we notice that the approach used in 5.4 is useless here because the neutrality
condition would force us to:

αΦ = ±
√
hΦ = 0. (5.57)

This means that the only operator allowed as perturbation is the one with vanishing scaling
dimensions: the identity, and this case is not interesting.
We can argue that this term does not need to be further regulated and it has the scaling
behaviour of the renormalization group, like the other λ term in 5.11. In this case the leading
corrections to scaling would be the unusual correction found in the last section.
In order to check our statement, we will compute an odd correlation function for a very well
studied model as the bidimensional Ising model using bosonization theory.
In particular we want to compute the correlation function:

〈σ(v1)σ(v2)σ(v3)σ(v4)ε(z1)〉C
〈σ(v1)σ(v2)σ(v3)σ(v4)〉C

, (5.58)

that corresponds to the λ term on the Riemann surface R2. The reader should argue that
we are using as perturbation operator the energy operator that has ∆ε = 1 and it is not
an irrelevant operator: it would drive away our quantum system from criticality. We have
studied in 4.2 that also relevant operators could give unusual corrections to scaling but they
have to be located around conical singularities in order to not drive away the system from
criticality.
Here we changed a bit the notation in order to make it match with the one used by Ardonne
and Sierra in Ref. [20], where the write expressions for all the correlation functions of the
Bidimensional Ising model.
We will focus on the numerator of the precedent relation since it has the dependence on z1.
It can be written as:

〈σ(v1)σ(v2)σ(v3)σ(v4)ε(z1)〉 =
∑

m=(m1;m2)

F(2;1)F̄(2;1), (5.59)

where:

F(2;1) = 〈σ(v1)σ(v2)σ(v3)σ(v4)ψ(z1)〉,
m = (m1;m2).

The entries of the vector m are 0 or 1, that represent two different fusion channel. The
vector m should have an even number of 1 in it, since the 1 channel represents the fusion of
two σ operators to the operator Ψ(z).
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In our simple case we have only two possible choices: (0; 0) and (1; 1), we have only two
couples of σ operators.
The expression:

F (n;N)
p = 〈σ(v1)σ(v2) . . . σ(v2n)ψ(z1)ψ(z2) . . . ψ(zN )〉 (5.60)

can also be written in another way, see Ref.[20], as function of a binary variable p:

F (2n;2m−1)
m =

1

2

2n∏
a<b

(va − vb)−
1
8

2n−1−1∑
q=0

εpq
√
vlqvl′q

− 1
2
2n−1−1∑

q=0

εpq
√
vlqvl′q

∏n
k=1

√
v1 − vl′q∏n

k=2

√
v1 − vlq

2m−1∑
i=1

(−1)i+1(zi − v1)−1
n∏
k=1

(
zi − vlk
zi − vl′k

) 1
2

Pfj,k 6=i,2m

(
hlq ;l′q (zj ; zk)

zj − zk

) .
The function εpq and vectors lp, lq restricted to our case (n = 2 and m = 1) are:

ε00 = 1

ε01 = 1

ε10 = 1

ε11 = −1

l0 = (1; 3) l1 = (1; 4)

l′0 = (2; 4) l′1 = (2; 3).

We can perform explicitly the computation in our simple case:

F (2;1)
p = (5.61)

= 2−1
4∏
a<b

(va − vb)−
1
8

(
1∑
q=0

εpq
√
vlqvl′q

)− 1
2
[

1∑
q=0

εpq
√
vlqvl′q

∏2
k=1

√
v1 − vl′q∏2

k=2

√
v1 − vlq

1∑
i=1

(−1)i+1(zi − v1)−1
2∏
k=1

(
zi − vlk
zi − vl′k

) 1
2

Pfj,k 6=i,2

(
hlq ;l′q (zj ; zk)

zj − zk

) =

= 2−1
4∏
a<b

(va − vb)−
1
8 (
√
v13v24 + (−1)p

√
v14v23)

− 1
2

[
1∑
q=0

εpq
√
vlqvl′q

∏2
k=1

√
v1 − vl′q∏2

k=2

√
v1 − vlq

(z1 − v1)−1
2∏
k=1

(
z1 − vlk
z1 − vl′k

) 1
2

 = 2−1
4∏
a<b

(va − vb)−
1
8 (
√
v13v24 + (−1)p

√
v14v23)

− 1
2 ∗

[√
(v1 − v2)(v1 − v4)(z1 − v3)(v2 − v4)

(z1 − v1)(z1 − v2)(z1 − v4)
+ (−1)p

√
(v2 − v3)(v1 − v2)(v1 − v3)(z1 − v4)

(z1 − v2)(z1 − v3)(z1 − v1)

]
.
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The chiral correlator with p = 0 is:

F (2;1)
0 =

1

2

4∏
a<b

(va − vb)−
1
8

(√
(v1 − v3)(v2 − v4)−

√
(v1 − v4)(v2 − v3)

)− 1
2 ×

×
[√

v1 − v2

(z1 − v1)(z1 − v2)(z1 − v3)(z1 − v4)

√
(v1 − v4)(v2 − v4)(z1 − v3)+

+

√
v1 − v2

(z1 − v1)(z1 − v2)(z1 − v3)(z1 − v4)

√
(v1 − v3)(v2 − v3)(z1 − v4)

]
, (5.62)

and the one with p = 1 is:

F (2;1)
1 =

1

2

4∏
a<b

(va − vb)−
1
8

(√
(v1 − v3)(v2 − v4)−

√
(v1 − v4)(v2 − v3)

)− 1
2 ×

×
[√

v1 − v2

(z1 − v1)(z1 − v2)(z1 − v3)(z1 − v4)

√
(v1 − v4)(v2 − v4)(z1 − v3)−

−
√

v1 − v2

(z1 − v1)(z1 − v2)(z1 − v3)(z1 − v4)

√
(v1 − v3)(v2 − v3)(z1 − v4)

]
. (5.63)

In conformal field theory all the correlation functions have to satisfy a set of differential
equations, see Ref.[45] for more informations, in our case the quantities 5.62 and 5.63 have
to satisfy:4

3

∂2

∂v2
a

−
∑
va 6=vb

1

(va − vb)
∂

∂va
− 1

(va − z1)

∂

∂z1
− 1

16

∑
b6=a

1

(va − vb)2
− 1

2

1

(va − z1)

F (4;1)
m = 0,

(
3

4

∂2

∂z2
1

−
∑
a

1

(z1 − va)

∂

∂va
− 1

16

∑
a

1

(z1 − va)2

)
F (4;1)

m = 0.

We checked that all the correlation functions obtained satisfy these differential equations.
Taking the limit to the in and out states for the vi coordinates we get two expressions as
function only of the variable z1:

F (2;1)
0 =

(−1)
3
8 ı

1
4 cos

(πx
4

)
(1 + z1) (sin (πx))

1/4

2
1
2

√
cos
(
xπ
4

)2√−e− 1
2 ixπ + z1

√
e−

1
2 ixπ + z1

√
−e ixπ2 + z1

√
e
ixπ
2 + z1

, (5.64)

F (2;1)
1 =

(−1)
3
8 ı

5
4 sin

(πx
4

)
(z1 − 1) (sin (πx))

1/4

2
1
2

√
sin
(
xπ
4

)2√−e− 1
2 ixπ + z1

√
e−

1
2 ixπ + z1

√
−e ixπ2 + z1.

√
e
ixπ
2 + z1

(5.65)
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We can compute the initial correlation function using the expression 5.59:

〈σ(v1)σ(v2)σ(v3)σ(v4)ε(z1)〉 = (5.66)

=
∣∣∣F (2;1)

0

∣∣∣2 +
∣∣∣F (2;1)

1

∣∣∣2 =

=

∣∣∣∣∣ (−1)
3
8 ı

1
4 sin (πx)

1
4

2
√
−e− 1

2 ixπ + z1

√
e−

1
2 ixπ + z1

√
−e ixπ2 + z1

√
e
ixπ
2 + z1

∣∣∣∣∣
2


∣∣∣cos

(πx
4

)∣∣∣2∣∣cos
(
πx
4

)∣∣2 |1 + z1|2 +

∣∣∣sin(πx
4

)∣∣∣2∣∣sin (πx4 )∣∣2 |1− z1|2

 =

∣∣∣∣∣ sin (πx)
1
4√

−e− 1
2 ixπ + z1

√
e−

1
2 ixπ + z1

√
−e ixπ2 + z1

√
e
ixπ
2 + z1

∣∣∣∣∣
2

(1 + |z1|2).

Finally after a lot of tedious algebra we get the final result:

〈σ(v1)σ(v2)σ(v3)σ(v4)ε(z1)〉C = (5.67)

=

∣∣∣∣∣ sin (πx)
1
2

(e−
1
2 ixπ − z1)(e−

1
2 ixπ + z1)(e

ixπ
2 − z1)(e

ixπ
2 + z1)

∣∣∣∣∣ (1 + |z1|2).

Now we wanto to use the previous result to compute the ratio:

〈σ(w̄1)σ(w̄2)σ(w̄3)σ(w̄4)ε(w1)〉R2

〈σ(w̄1)σ(w̄2)σ(w̄3)σ(w̄4)〉R2

=

∣∣∣∣ π

2 sin(πx)L

(eıπx − z2
1)(e−ıπx − z2

1)

z1

∣∣∣∣×
× 〈σ(v1)σ(v2)σ(v3)σ(v4)ε(z1)〉C

〈σ(v1)σ(v2)σ(v3)σ(v4)〉C
,

on the Riemann surface R2.
We have to compute the correlation function between four spin operators that can be easily
found in the literature (Ref.[45] or Ref.[20]):

〈σ(v1)σ(v2)σ(v3)σ(v4)〉C = (5.68)

=

√
(v1 − v3)(v2 − v4)

2((v1 − v2)(v1 − v3)(v2 − v3)(v1 − v4)(v2 − v4)(v3 − v4))1/4
.

Taking the limit of vi to in and out states we get:

〈σ(v1)σ(v2)σ(v3)σ(v4)〉C =
1

2
√

sin(πx)
. (5.69)

The previous correlation functions were computed on the complex plane C, the same quan-
tities can be computed on R2 taking into account transformation R2 7→ C:

〈σ(w̄1)σ(w̄2)σ(w̄3)σ(w̄4)ε(w1)〉R2

〈σ(w̄1)σ(w̄2)σ(w̄3)σ(w̄4)〉R2

=
π

L

1 + |z1|2

|z1|
. (5.70)

We can extract the unusual corrections from this expression as usual restricting the integral
in the regions around the branch points and looking for divergences. In this particular case
it is easier to compute them starting from the integral on C:

1

ε2−1

∫
C
d2z1

∣∣∣∣dw1

dz1

∣∣∣∣2 πL 1 + |z1|2

|z1|
. (5.71)
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using the z1 dependence of the derivative of the mapping we have:

1

ε2−1

∫
C
d2z1

∣∣∣∣2L sin(πx)

π

z1

(eıπx − z2
1)(e−ıπx − z2

1)

∣∣∣∣2 πL 1 + |z1|2

|z1|
= (5.72)

=
1

ε

∫
C
d2z1

∣∣∣∣2L sin(πx)

π

z

(eıπx − z2)(e−ıπx − z2)

∣∣∣∣2 πL 1 + |z1|2

|z1|
, (5.73)

and the integrand goes to 0 when z → 0 and it goes also to 0 when z →∞.
Now we can to look for divergences of the integral near the branch points 0 and l.
The conformal transformation from R2 to C around the branch points takes the form:

z(w ≈ 0) =

(
− L

π sin(πx)

) 1
2

(w)
1
2 , (5.74)

z(w ≈ l) =

(
π sin(πx)

L

) 1
2

. (5.75)

We can evaluate the integral around w1 ≈ 0 for example:

1

ε

∫
d2w1

∣∣∣∣π sin(πx)

L

∣∣∣∣ 1
2

|w1|−
1
2 , (5.76)

and we can see that this term is not divergent around w1 ≈ 0. This means that the order λ
term on R2 does not need to be further regulated introducing new cutoffs.
We can try to generalize our argument to a general n sheeted Riemann surface Rn. In this
general case we have to study a correlation function like the following one:

〈
∏2n
i=1 σ(w̄i)ε(w1)〉Rn
〈
∏2n
i=0 σ(w̄i)〉Rn

=

∣∣∣∣dw1

dz1

∣∣∣∣−1 〈
∏2n
i=1 σ(vi)ε(z1)〉C
〈
∏2n
i=1 σ(vi)〉C

(5.77)

From Ref.[20] we know that there is another equivalent way to write the correlation function
5.59:

〈
2n∏
i=1

σ(vi)ε(z1)〉C =
∑
m

F (2n;N=1)
m F̄ (2n;N=1)

m . (5.78)

The explicit computation can be done using another version of the expression 5.61, namely:

F (2n;N=1)
m = 2−

n
2

n∏
i=1

(v2i−1 − v2i)
− 1

8

2n∏
i=1

(vi − z1)−
1
2 (Am

2n)−
1
2×

×

∑
t

 n∏
i=1

tmii
∏

1<i,j<n

(1− xi,j)
titj

4

Ψt

 ,

where we used the following definitions:

xi,j =
(v2i−1 − v2i)(v2j−1) − v2j

(v2i−1 − v2j)(v2j−1 − v2i)
, (5.79)

Am
2n =

∑
t

 n∏
i=1

tmii
∏

1<i,j<n

(1− xi,j)
titj

4

 , (5.80)

Ψt = −(v1 − v2)
1
2

 n∏
i=2

(
v1 − v2i+

ti−1

2

v1 − v2i−1− ti−1

2

) 1
2

(v
2i−1− ti−1

2
− z1)

 . (5.81)
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We are studying the z1 dependence of the correlation functions and we will start our analysis
from Ψt because it is the only one that involves z1.
From its definition it is clear that we can write Ψt as a polynomial of the variable z1:

Ψt = α0 + α1z1 + · · ·+ αn−1z
n−1
1 , (5.82)

where the coefficient αj are functions of the coordinates vi and they will be fixed after taking
the limit to the in and out states.
This fact allows us to write a simple general expression for the chiral correlator where we
take care only of the z1 variable:

F (2n;N=1)
m =

β0,m + β1,mz1 + · · ·+ βn−1,mz
n−1
1√∏2n

i=1(vi − z1)
, (5.83)

and we have a different set of coefficients βi for every vector m, but the important fact is
the dependence on the variable z1, that is the same for every m.
We can write 5.78 as a sum of the generic real polynomials in the variables z1 and z∗1 of
degree n− 1:

〈
2n∏
i=1

σ(vi)ε(z1)〉C =
γ0;0 + γ0;1z

∗
1 + γ1;0z

1
1 + · · ·+ γn−1;n−1 |z1|2(n−1)∣∣∣∏i=2n

i=1 (vi − z1)
∣∣∣ . (5.84)

We can easily compute the correlator on the Riemann surface including the proper trans-
formation factor due to the mapping Rn 7→ C:

〈
2n∏
i=1

σ(w̄i)ε(w1)〉Rn =

∣∣∣∣nL sin(πx)

π

zn−1

(eıπx − zn)(e−ıπx − zn)

∣∣∣∣−1

(5.85)

γ0;0 + γ0;1z
∗
1 + γ1;0z

1
1 + · · ·+ γn−1;n−1 |z1|2(n−1)∣∣∣∏i=2n

i=1 (vi − z1)
∣∣∣ .

We can simplify the previous expression using the following relation:

(eıπx − zn)(e−ıπx − zn) =

i=2n∏
i=1

(vi − z1), (5.86)

that is true because of the definition of in and out states on C.
Now we can write a general expression for the z1 dependence of the correlation function
5.78:

〈
∏2n
i=1 σ(w̄i)ε(w1)〉Rn
〈
∏2n
i=1 σ(w̄i)〉Rn

=

∣∣∣∣ π

nL sin(πx)

∣∣∣∣× (5.87)

× γ̃0;0 + γ̃0;1z
∗
1 + γ̃1;0z

1
1 + · · ·+ γ̃n−1;n−1 |z1|2(n−1)

|z1|n−1 .

The denominator is function only of the vi and it will become a constant after the limit to
the in and out states. We will absorb it in the coefficients γ̃i;j because it does not change
the z1 behaviour of 5.87 that is the important part.
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We are interested in the behaviour of expression 5.87 near the branch points and we look at
its behaviour for small values of z1:

〈
∏2n
i=1 σ(w̄i)ε(w1)〉Rn
〈
∏2n
i=1 σ(w̄i)〉Rn

≈
∣∣∣∣ π

nL sin(πx)

∣∣∣∣ γ̃0;0

|z1|n−1 , (5.88)

and for large values of z1:

〈
∏2n
i=1 σ(w̄i)ε(w1)〉Rn
〈
∏2n
i=1 σ(w̄i)〉Rn

≈
∣∣∣∣ π

nL sin(πx)

∣∣∣∣ γ̃n−1;n−1 |z1|n−1
. (5.89)

We can use these asymptotic expressions to look for divergences around the branch points.
If we restrict the integral to the region z1 ≈ 0, for example, we have:

1

ε

∫
C
d2z1

∣∣∣∣dw1

dz1

∣∣∣∣2 ∣∣∣∣ π

nL sin(πx)

∣∣∣∣ γ̃0;0

|z1|n−1 . (5.90)

Using the inverse conformal transformation of 3.16 we can transform it in an integral on Rn
around w1 ≈ 0:

1

ε

∫
Rn

d2w1

∣∣∣∣ π

nL sin(πx)

∣∣∣∣1+ 1
n

γ̃0;0 |w1|
1
n−1

. (5.91)

The same expression is obtained approximating the integral in the region w1 ≈ l:

1

ε

∫
Rn

d2w1

∣∣∣∣ π

nL sin(πx)

∣∣∣∣1+ 1
n

γ̃n−1;n−1 |w1 − l|
1
n−1

. (5.92)

As usual we have used the linearized expressions for the mapping 3.16 around the branch
points:

z1(w1 ≈ 0) =

(
− π

L sin(πx)
w1

) 1
n

, (5.93)

z1(w1 ≈ l) =

(
L sin(πx)

π

1

w1

) 1
n

. (5.94)

The integrals 5.91 and 5.5 are finite near the branch points and this means that they has not
to be further regulated introducing additional cutoffs. The scaling behaviour of the g term
is the same computed for 5.11: the finite size scaling of the renormalization group, namely:(

L sin(πx)

π

)−(∆−2)

. (5.95)

This scaling behaviour is subleading respect to the unusual corrections:(
L sin(πx)

π

)− 2∆
n

. (5.96)

This means that the unusual corrections to scaling are present also in the excited states of
conformal field theory and their form is equal to the one found in the analysis of the ground
state situation:
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Chapter 6

Numerical results

The results obtained analytically in Chapt. 5 confirm that the unusual corrections to scaling
are present also in the excited states of CFT and they can be obtained in the same way as
in the ground state case.
In this section we want to show numerical computations in order to check our theoretical
predictions. We will start with an analysis of the XX model and of its excited states, then
we will show how to extract the entanglement entropy from the correlation matrix in this
model and in the end we will show our numerical results.

6.1 The XX model

The XX model is one of the simplest spin chain and it has been studied, in particular in its
ground state, in many works in the literature like in Ref.[29]. This model is solvable via the
Jordan Wigner transformations and could be mapped into a free fermionic model.
The Hamiltonian operator of the model is the following:

HXX = −1

2

L∑
j=1

(
σxj σ

x
j+1 + σyj σ

y
j+1

)
+
J

2

∑
j

σzj , (6.1)

where we used the nearest neighbors coupling as the unit of energy and J is the coupling
constant between magnetic field spins.
The σi are as usual the Pauli matrices:

σx =

(
0 1
1 0

)
σy =

(
0 −ı
ı 0

)
σz =

(
1 0
0 −1

)
. (6.2)

We assume periodic boundary conditions (PBC) on the chain:

σi1 = σiL. (6.3)

We can define the raising and lowering operators as:

σ± =
1

2
(σx ± ıσy), (6.4)
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and in order to rewrite the hamiltonian as function of the ladder operators we have to invert
the previous relation:

σx = (σ+ + σ−), (6.5)

σy = −ı(σ+ − σ−). (6.6)

The hamiltonian as function of ladder operators is:

HXX = −1

2

L∑
i=1

[
(σ+
i + σ−i )(σ+

i+1 + σ−i+1)− (σ+
i − σ

−
i )(σ+

i+1 − σ
−
i+1)

]
− J

2

∑
j

σzi

= −
N∑
i=1

[σ+
i σ
−
i+1 + σ−i σ

+
i+1] +

J

2

∑
j

σzi .

The previous equation can be further manipulated using the Jordan Wigner transformation:

al =

(
l−1∏
i=0

σzi

)
σ−l , (6.7)

where the product of Pauli matrices makes this transformation non local but it is necessary
to have the canonical anticommutation relations for fermionic operators:

{am; an} = 0, (6.8)

{a†m; a†n} = 0, (6.9)

{a†m; an} = δmn. (6.10)

The hamiltonian written as function of these new fermionic operators is:

HXX = −
L∑
l=1

[
a†l al+1 + ala

†
l+1

]
+ J

∑
l

a†l al, (6.11)

and we can notice that the magnetic field plays the role of a chemical potential.
This hamiltonian is traslationally invariant and we can use the Fourier transform of the
creation and annihilation operators to diagonalize it. The Fourier transform for a fermionic
operator is:

al =
1√
L

L∑
j=1

e−ı
2πı
L jlcj , (6.12)

and for its adjoint:

a†l =
1√
L

L∑
j=1

e
2πı
L jlc†j . (6.13)

We can perform the Fourier transform of the hamiltonian term by term.
The first part of the kinetic operator transforms as:

L∑
l=1

a†l al+1 =
∑
l

1

L

∑
j;j′

c†jcj′e
2πı
L (jl−j′l−j′) =

∑
j;j′

δj;j′c
†
jcj′e

− 2πı
L j′ , (6.14)
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where we use the definition of delta function:

δu;v =
1

L

∑
l

e
2πı
L l(u−v). (6.15)

This expression allows us to eliminate one of the sums and then we remain with:

L∑
l=1

a†l al+1 =
∑
j

c†jcje
− 2πı

L j . (6.16)

The second term in the hamiltonian can be diagonalized simply taking the adjoint of the
precedent: (

L∑
l=1

a†l al+1

)†
→

L∑
l=1

a†l+1al =
∑
j

c†jcje
2πı
L j . (6.17)

The third piece, the one given by the presence of the magnetic field, is a bit different:∑
l

a†l al =
∑
l

1

L

∑
j;j′

c†jcj′e
2πı
L (j−j′)l =

∑
j

c†jcj , (6.18)

where we used again the delta function representation 6.15.
After the Fourier transformation we have a hamiltonian in diagonal form:

HXX =
∑
j

(
J − e

2πıj
L − e−

2πıj
L

)
c†jcj = (6.19)

=
∑
j

(
J − 2 cos

(
2πj

L

))
c†jcj . (6.20)

For what concerns the boundary conditions we have a that the Jordan Wigner transformation
has the following property:

a†La1 = −(−1)n↓σ+
Lσ
−
1 , (6.21)

where n↓ is the number of down spins defined as:

n↓ = L−
L−1∑
j=0

szj − 1

2
. (6.22)

From this we obtain the boundary conditions on the fermionic problem:

aL+1 = (−1)n↓a1, (6.23)

this means that periodic boundary conditions on the spin chain are mapped into Antiperiodic
Boundary Conditions in the fermionic problem and vice versa in the case of an even value
of L.
In order to find the ground state of the system we have to analyse the spectrum of the
diagonalized Hamiltonian that has been mapped into a fermionic problem with dispersion
relation:

Λk = J − 2 cos

(
2πk

L

)
. (6.24)
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In the case of J > 2 the eigenvalues are all Λk > 0 because the equation:

J − 2 cos

(
2πk

L

)
= 0, (6.25)

has no solutions. This means that all the spins are aligned along the direction of the magnetic
field.
The state of the system here is a product state like the following:∏

i

|↑i〉 , (6.26)

and the entanglement entropy for these states vanishes.
This is a more general characteristic of spin systems: there is a combination of the couplings
gi present in the Hamiltonian H(gi), called factorizing point, that corresponds to a product
state.
For J > 2 the ground state of the system is the one annihilated by all annihilation operators:

ck |0〉 = 0 ∀k, (6.27)

that is the low energy state:
H |0〉 = 0. (6.28)

If the magnetic field is 0 < J < 2 we have some negative eigenvalues of the Hamiltonian. In
fact the equation:

J − 2 cos

(
2πkc
L

)
= 0, (6.29)

has a solution:

kc =

[
L

2π
arccos

(
J

2

)]
. (6.30)

This is the maximum value of the number k given the magnetic field J . The brackets [] stand
for the floor function in order to give a natural number as it should be. For consistency
we can go back in the previous case and we found that kc cannot be defined in the case of
J > 2.
The Fermi momentum is defined as the value of the momentum corresponding to the number
kc:

kF =
2πkc
L

= arccos

(
J

2

)
. (6.31)

From the Fermi momentum we can define the filling parameter ν:

ν =
kF
π
. (6.32)

If J = 0 we have that:

kF = arccos 0 =
π

2
,

ν =
1

2
,

and this particular case is called half filling.
The energy of the ground state is given by:

E =

+kC∑
−kC

(
J − 2 cos

(
2πk

L

))
. (6.33)
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In the case of half-filled we have:

EHF = −2
∑

j∈ΩHF

cos

(
2πk

L

)
. (6.34)

Now it is time to choose the range of variables of the variable k.
In general the lower energy configuration will be obtained placing the particles in the lowest
accessible momenta and this force us to use a set of k numbers that is symmetric with
respect to the 0 momentum.
This means that if the number of particles is odd we have to choose a set of integers that
includes the 0:

Ωodd = {−νL− 1

2
;−νL− 3

2
; . . . ;−1; 0; +1; . . . ;

νL− 3

2
; +

νL− 1

2
}. (6.35)

In the other case, if the number of particles is even, we choose a set of half integers that
does not include the 0 momentum:

Ωeven = {−νL− 1

2
;−νL− 3

2
; . . . ;−1

2
; +

1

2
; . . . ;

νL− 1

2
}. (6.36)

Here we assumed an even L in both cases.
The main difference between the two situations is the fact that in the first case every positive
number has a symmetric negative mate but in the second one we have an exception that is
the k = 0. Some numerical examples will be made in following section.

6.2 Excitations of the XX model

It is a well known fact that the XX model is described in the continuum limit by a bosonic
field theory and we can assign to some excitation a corresponding operator of the quantum
field theory.
For sake of clarity in this chapter we will use the zero magnetic field XX mode, but all
following arguments can be easily extended to different values of the magnetic field. The
Hamiltonian of the model is:

HXX(J = 0) = −1

2

L∑
j=1

σxj σ
x
j+1 + σyj σ

y
j+1, (6.37)

and as we did before we can map this hamiltonian in a free fermionic model as:

HXX =
∑
j∈Ω

(
− cos

(
2πj

L

)
c†jcj

)
. (6.38)

The states of the Hamiltonian of the XX model are:∏
nF≤L

c†mj |0〉 . (6.39)

We will use Periodic Boundary conditions on the chain that are mapped on Antiperiodic
Boundary conditions on the Fermionic problem, we are using L = 2k as usual. These
conditions define the set Ω of the numbers k:

Ω = {±1

2
; . . . ;±L− 1

2
}, (6.40)
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in particular the subset mj used in 6.54 is one of the 2L subset of Ω.
The ground state of the Hamiltonian can be written as:

|nF 〉 =
∏

0<j≤(nF−1)/2

c†jc
†
−j |0〉 , (6.41)

Now we can focus on the low energy excitations that we can create from this ground state.
Due to conformal invariance we have that the excess of energy of excitations will be of
2π∆/L where ∆ is the conformal dimension of the excitation and L is the number of sites
in the chain. It is easy to see that in the limit of large L, where the model is critical, we
have a vanishing excess of energy.
We could ask if the same thing happens to the entanglement entropy of the excited states of
the model. We demonstrated in Chapt.2 that the Renyi entropy of a critical 1D quantum
system in its ground state is:

S(n)
gs (x) =

1

6

(
1 +

1

n

)
ln

[
L

π
sin (πx)

]
+ c′n, (6.42)

where we used the central charge equal to 1 because we are dealing with a free bosonic
theory.
We saw in Chapt. 3 that primary operators of CFT can generate excited states that have
sometimes the same entropy of the ground state but sometimes they have a very different
entanglement entropy. In this section we will see the excited states of the fermionic problem
that are represented, in the continuum limit, by the operators studied in 3.
The ground state of the half-filled XX model is formed by a set of L/2 particles with moment
2πj/L, here we assume an even L/2 and so the set of the numbers j is:

{−
L
2 − 1

2
; . . . ;−1

2
; +

1

2
; . . . ; +

L
2 − 1

2
}. (6.43)

We have L/2 particles that occupies all the states labelled by the momenta from −π(L/2−
1)/N to π(L/2− 1), it is easy to see that this set is compact since there are no holes inside
it.
This characteristic is the most important one since it allows us to make a classification of
different excitations of the model:

• compact if they do not exhibit holes in momentum space, they are formed by particles
of consecutive momenta separated by quantum of momentum 2π/L.

• non-compact if they have a hole in momentum space.

We will see that compact ones have the same Renyi entropy as the ground state, a paradig-
matic excitation is the vertex operator, and the non compact ones have an entanglement
entropy that is different from the ground state, for example the operator ı∂ϕ.
We can start our study of excitations from the simplest compact excitation obtained from
the ground state:

c−(nF−1)/2 |nF 〉 , (6.44)

that corresponds to the annihilation of the particle with lower momentum. It easy to see
that this excitation is compact since the change in the set of occupied numbers j is:

{−
L
2 − 1

2
; . . . ;−1

2
; +

1

2
; . . . ; +

L
2 − 1

2
} → {−

L
2 + 1

2
; . . . ;−1

2
; +

1

2
; . . . ; +

L
2 − 1

2
}. (6.45)
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Obviously this changes affects the entanglement entropy because it shifts the Fermi momen-
tum. In 6.4 we have the Renyi entropy of n = 2, 3, 4 of this excitation as we anticipated
above the only difference between the ground state and the excitations, in this case, is due
only to the different type of oscillations present.
Another simple excited state that could be created from the ground state of the XX model
is:

c†−(L/2+1)/2c
†
(L/2+1)/2 |L/2〉 , (6.46)

that is still a compact excitation: we just added a particle with j = −(L/2 + 1)/2 and a
particle with j = (L/2+1)/2. This excitation is obviously compact since the set of numbers
j is enlarged by two units but this change does not leave holes in the spectrum. The set of
momenta changes in this way:

{−
L
2 − 1

2
; . . . ;−1

2
; +

1

2
; . . . ; +

L
2 − 1

2
} → {−

L
2 + 1

2
; . . . ;−1

2
; +

1

2
; . . . ; +

L
2 + 1

2
}. (6.47)

This state is still compact and, as we can see in the Fig. 6.4, it has the same Renyi entropy
of the ground state up to oscillations described in Ref.[16]. This type of excitations creates a
change in the number of particles presents: L/2→ L/2+2 that moves the Fermi momentum
and it affects the entanglement entropy.
There is another compact excitation called Umklapp excitation that does not move the Fermi
momentum and it is defined as:

c†(L/2+1)/2c−(L/2−1)/2 |L/2〉 , (6.48)

where we move a particle from the higher negative occupied momentum to the higher free
positive momentum. This change preserves a compact set of numbers j:

{−
L
2 − 1

2
; . . . ;−1

2
; +

1

2
; . . . ; +

L
2 − 1

2
} → {−

(L2 − 3)

2
; . . . ; +

L
2 − 1

2
; +

L
2 + 1

2
}. (6.49)

This excitation corresponds, in the continuum limit, to a vertex operator and we have shown
explicitly in 3.46 that the conformal field theory approach leads us to the right result:

TrρnA,Vα = TrρnA,gs. (6.50)

This confirms the fact that the compact excitations have the same Renyi entropy of the
ground state for every value of the index n. It can be also demonstrated that the action of
the Umklapp excitation corresponds to a shifting of momenta:

k → k +
2π

L
, (6.51)

and it is obvious that the transformation 6.51 leaves unchanged the reduced density matrix
and the entanglement entropy.
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Figure 6.1: Here are plotted some data from the previously discussed compact excitations from systems.

The letters (a) and (b) labels the different types of excitations described in Table 6.1. Figure from Ref.[19]

Here we have a table with all the different types of excitations and their corresponding
operator in continuum limit (table taken from Ref.[19])

name of excitation field (h, h̄) state (nF = L/2) (h : p) L = 8 example
ground state 1 (0,0) |nF 〉 ( : ) ◦ ◦ • • • • ◦◦
(a) e−iφ (1/2,0) c(nF−1)/2|nF 〉 (1 : ) ◦ ◦ • • • ◦ ◦◦
(b) eiφ+iφ̄ (1/2, 1/2) c†nF /2+1/2 c

†
−nF /2−1/2|nF 〉 ◦ • • • • • •◦

Umklapp eiφ−iφ̄ (1/2, 1/2) c−(nF−1)/2 c
†
(nF+1)/2|nF 〉 ◦ ◦ ◦ • • • •◦

particle-hole i∂φ (1, 0) c(nF−1)/2 c
†
(nF+1)/2|nF 〉 (1 : 1) ◦ ◦ • • • ◦ •◦

R-L particle-hole ∂̄φ̄∂φ (1, 1)
c(nF−1)/2 c

†
(nF+1)/2

c−(nF−1)/2 c
†
−(nF+1)/2

|nF 〉
◦ • ◦ • • ◦ •◦

- - c(nF−1)/2 c
†
(nF+3)/2|nF 〉 (1 : 2) ◦ ◦ • • • ◦ ◦•

Table 6.1: A summary of the mentioned excitations. The horizontal line separates the compact states

from the non-compact ones. The notation (h, p) applies only for chiral excitations, but these parameters

are not interesting for our analysis. The corresponding conformal fields are shown for primary states only.

Table taken from Ref. [19]
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Figure 6.2: Here are plotted some data from the previously discussed compact excitations from systems.

The letters (a) and (b) labels the different types of excitations described in Table 6.1. Figure from Ref.[19]

Now we move to the more interesting case of the entanglement entropy of non compact
excitations. In table 6.1 are shown two type of non compact excitation.
The first one is the excited state corresponding to the operator ı∂φ that we have studied in
Chapt.3. It corresponds to the continuum limit of the excitation:

c†(N/2+1)/2c(N/2−1)/2 |GS〉 . (6.52)

This state has an excess of energy 2π/L and it is called an electron-hole excitation since we
create a particle above the Fermi sea and we have an ”hole”, that can be considered as a
particle, below the Fermi sea.
As we demonstrated in Chapt. 3 this excitation, that corresponds to the operator ı∂ϕ, have
a different entanglement entropy from the ground state. From the excess of energy of the
excited state we can find out its conformal dimensions that are ∆ = 1. We know that the
excitation operator under study has only holomorphic dimension and it means h̄ = 0 and
h = ∆ = 1.
The excitation ∂ϕ∂̄ϕ̄ has a different Renyi entropy from the ground state, but they can be
computed from the Renyi entropy of the excitation ı∂ϕ as:

F
(n)

∂ϕ∂̄ϕ̄
=
∣∣∣F (n)
ı∂ϕ

∣∣∣2 , (6.53)

in fact ∂̄ϕ̄∂ϕ has equal holomorphic and antiholomorphic parts. This means that it can be
computed simply taking the square modules of the holomorphic part, that is equal to the
one of the operator ı∂φ.
We can consider also the general case of an excitation with a ”jump” of m momenta:

c†(L/2−1)/2+mc(L/2−1)/2 |L/2〉 , (6.54)
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that corresponds to an excitation that has an excess of energy of 2πm/L. The change in
the set of numbers j is easy to compute and it is:

{−
L
2 − 1

2
; . . . ;−1

2
; +

1

2
; . . . ; +

L
2 − 1

2
} → {−

L
2 − 3

2
; . . . ; +

L
2 − 1

2
+m}, (6.55)

and it shows that this excitations are non compact for every value of m.
It is known from other works that the behaviour of the excess of entropy of excitations for
l/L� 1, infinite system length regime,is:

∆Sn=1(l) = S(l)− Sgs(l) =
2π2

3

(
h+ h̄

)( l

L

)2

+

[(
l

L

)4
]
, (6.56)

where we have used the well known result valid in the infinite system regime Sgs1 ∼ c/3 ln(l)
Ref. [10], Ref.[13] and Ref.[29]. Excited states of the type 6.54 have conformal dimension
(h = m; h̄ = 0), that can be found in the same way of the operator ı∂ϕ. In Fig. 6.3 we
plot the low x behaviour of the excess of entanglement entropy computed for some different
excitations. In the caption is showed that the quantity ∆S1/m has an universal behaviour:
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Figure 6.3: Low x regime of some different excitations. In the inset we have the excess of
entropy divided by m and we can see that all the curves collapse. Figure from Ref.[19]

Although the small x behaviour is similar and all the figures collapse on the same line
when we plot S1/m, if we look at the behaviour of entanglement entropy for arbitrary values
of x it is clear that the curves are similar only near x ≈ 0:
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Figure 6.4: Here we have the full curves of the excitation exposed in Fig.6.3, we can see that they have

completely different behaviours outside the region l� L. Figure taken from Ref.[19]

6.3 Entanglement entropy from correlation matrix

The XX model is a very simple model and a great number of results are available for it, in
particular it is possible to compute the entanglement entropy using the correlation matrix
and the exact form of its corrections to scaling is known.
In this section we will show a method, for more information about it Ref. [12], that allows
us to extract the entanglement entropy of the subsystem from the correlation matrix. This
method can be also extended to the analysis of the entanglement entropy of the excited
states.
We are interested in zero temperature finite size XX chain as we did in Chapt. 3. In this
situation the XX model is in its ground state that has been analysed in section 6.1. The
ground state of the system, in the momentum space, is defined as:

c†j |GS〉 = 0 ∀j,Λj < 0, (6.57)

ck |GS〉 = 0 ∀k,Λk > 0, (6.58)

that is a consequence of the fact that the ground state is a Fermi sea of Fermi momentum
kF .
The correlator between two fermionic creation and annihilation operators in the Fourier
transform is:

〈GS| c†jck |GS〉 = δkj Λj ,Λk < 0, (6.59)

and zero otherwise.
We are interested in computing the correlation functions between two operators in real space
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and this can be done using the Fourier transformation:

Amn = 〈GS| a†man |GS〉 =
1

L

∑
j

∑
k

eı(mk−nj) 〈GS| c†jck |GS〉 =

=
1

L

∑
j

∑
k

eı(mk−nj)δjk =
1

L

∑
k

eı(m−n)k. (6.60)

We restrict ourselves to the case of even L and zero magnetic field, but the method works
for every value of ν and L. The values of the variable k that compose the ground state are:

Ω = {±1

2
;±3

2
; . . . ;±

L
2 − 1

2
}. (6.61)

The Hamiltonian 6.19 is a free fermionic Hamiltonian and this means that Wick’s theorem
holds. Any observable involving an arbitrary number of creation/annihilation operators can
be computed from 6.60 taking into account the Fermi Dirac statistic:

〈a†ia
†
jakal〉GS = 〈a†ial〉GS〈a†jak〉GS − 〈a†iak〉GS〈a†jal〉GS. (6.62)

We can compute the correlation matrix simply using the definition of observable defined by
the reduced density matrix of a subsystem of length l:

Amn = Tr
(
a†manρl

)
, (6.63)

from its definition it is clear that the correlation matrix is hermitian and we can diagonalize
it using a unitary transformation:

Dpq =
∑
mn

UpmAmnU
∗
nq ≡ 〈GS| d†pdq |GS〉 δpq, (6.64)

where we defined new fermionic operators:

dp =
∑
m

Upmam. (6.65)

As usual we can write the expression 6.64 using the reduced density matrix of the subsystem:

Dpq = Tr(d†pdqρl) = λpδmn, (6.66)

this result implies that the ρl can be written as:

ρl =

l⊗
i=1

ρi. (6.67)

Now we can study the eigenvalues of one of the modes, for example the i-th, where the
operators previously defined take the matrix form:

di =

(
0 0
1 0

)
, (6.68)

d†i =

(
0 1
0 0

)
, (6.69)

ρi =

(
αi βi
β∗i 1− αi

)
. (6.70)
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The density matrix satisfies automatically the normalization condition:

Trρi = 1 ∀i. (6.71)

We want to determine the parameters αi and βi: the βi can be easily obtained from the one
point function:

〈GS| di |GS〉 = Tr(diρl) = βi = 0. (6.72)

and the α can be found from the diagonal matrix elements Dpp:

Tr
(
d†idiρl

)
= Tr

[(
1 0
0 0

)(
αi 0
0 1− αi

)]
= αi = λi. (6.73)

This method shows us that there is a connection between the eigenvalues of the correlation
matrix computed on the ground state and the elements of the density matrices ρi.
The spectral theorem allows us to compute the entanglement entropy as a function of the
eigenvalues of the correlation matrix:

S(l) = −
l∑
i

[(λi) ln(λi) + (1− λi) ln(1− λi)] , (6.74)

and the Renyi entropy is:

Sn(l) =
1

1− n

l∑
i

ln (λni + (1− λi)n) . (6.75)

This approach is totally general and we can extend it to the excited states of XX model
simply changing the correlation matrix.
Lets start our analysis of the excited state from the most important one: the electron hole
excitation. We have seen in 6.52 that the state corresponding the the operator ı∂φ is:

|e-h〉 = c†(nF+1)/2c(nF−1)/2 |GS〉 , (6.76)

we assume to have nF = 2k, where nF = νL and L is the number of the sites.
The correlation matrix is defined as:

〈e− h| a†iaj |e− h〉 = 〈GS| c†(nF−1)/2c(nF+1)/2c
†
i cjc

†
(nF+1)/2c(nF−1)/2 |GS〉 . (6.77)

We can rewrite this correlation matrix as an expectation value of a string of six fermionic
operators computed on the ground state that can be computed in the Fourier space using
the relation 6.59 and Wick’s theorem:

Ãij = 〈e− h| a†iaj |e− h〉 =
1

L

[∑
k∈Ων

e
2πı
L (i−j)k − e

πı
L (nF−1) + e

πı
L (nF+1)

]
. (6.78)

In the case of a set Ων of the type:

Ων = {−νL− 1

2
; . . . ;−1

2
; +

1

2
; . . . ; +

νL− 1

2
}. (6.79)

We can simplify it using the symmetry of the set Ων and we have:

Ãij =
2

L

(nF−1)/2∑
k=1/2

cos

(
2π

L
(i− j)k

)
− 1

L
e
πı
L (nF−1) +

1

L
e
πı
L (nF+1), (6.80)
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where the sum starts from k = 1/2. The correlation matrix of the electron hole excitation
has two extra pieces compared to the one of the ground state case. These extra pieces
depend on the momenta of the annihilated and created particles, namely:

e
πı
L (nF+1) − e

πı
L (nF−1) = e

2πı
L (nF−1

2 ) − e
2πı
L (nF+1

2 ). (6.81)

This can be generalized to the excited state:

c†(nF−1)/2−mc(nF−1)/2+n |GS〉 . (6.82)

This will lead to two additional terms in the correlation matrix like:

e
2πı
L (nF−1

2 −m) − e
2πı
L (nF−1

2 +n), (6.83)

the electron hole is defined as (m = 0;n = 1) and the Umklapp excitation, that is compact
and it has the same entropy of the ground state as we saw in last section, is defined with
(m = 2nF−1

2 ;n = 1).
We can do some numerical examples of chains and filling in order to fix the ideas about the
set Ων . In the case of ν = 1/3 and a chain of length L = 60 we have νL = 20. We have to
use a set of numbers symmetric with respect to the momentum 0 in order to find the ground
state:

Ων=1/3;L=60 = {−19

2
; . . . ;−1

2
;

1

2
; . . . ;

19

2
}. (6.84)

In the case of a a chain of length L = 63 and same filling the situation is a bit different,
since in this case we have νL = 31 and the set of number symmetric respect to the zero is:

Ων=1/3;L=62 = {−10;−9; . . . ;−1; 0; +1; . . . ; 9; 10}. (6.85)

The change is very small but when we work with short chains it could be very important
since the correlation matrix has an extra term depending on L:

Ãij =
2

L

(nF−1)/2∑
k=0

cos

(
2π

L
(i− j)k

)
− 1

L
e
πı
L (nF−1) +

1

L
e
πı
L (nF+1) − 1

L
. (6.86)

6.86 and 6.80 are expressions for the correlation matrices of the excited state, the entan-
glement entropy and Renyi entropy are obtained simply diagonalizing them and using the
following expressions:

S̃(l) = −
l∑
i

[
λ̃i ln λ̃i +

(
1− λ̃i

)
ln
(

1− λ̃i
)]
, (6.87)

where the λ̃i are the eigenvalues of the correlation matrix of the excited state.
The Renyi entropy is:

S̃(n)(l) =
1

1− n

l∑
i

ln
(
λ̃ni + (1− λ̃i)n

)
. (6.88)

78



6.4 Numerical Results

In our theoretical analysis of Chapt.5 we have shown that from conformal field theory
arguments it is possible to predict the existence of unusual corrections to scaling like:(

L sin(πx)

π

)− 2∆
n

. (6.89)

In this chapter we present our numerical results that will be in perfect agreement with
our theoretical predictions and we will also explore the form of the corrections to scaling
comparing them with the ground state case that is well known in literature.
We have studied the case of the electron hole excitation, that is represented in the continuum
limit by the operator ı∂φ, since it has a very different behaviour from the Renyi entropy of
the ground state.
We have shown how to compute the entanglement entropy and Renyi entropy of the excited
states starting from the correlation matrix and in particular from its eigenvalues.
The method previously exposed allows us to compute the Renyi entropy of the excited state
S̃(n) and the one of the ground state S(n). From these two quantities we can find the function

F
(n)(x)
ı∂φ by its definition:

F
(n)
ı∂φ = e(1−n)(S̃(n)−S(n)). (6.90)

We have computed in the section 3.3 using conformal field theory the continuum limit of

the function F
(n)
CFT.

We will study the scaling behaviour of the corrections defined as:

∆(n) ≡ F (n) − F (n)
CFT. (6.91)

The dependence on the index n is not restricted to the set of the integers n > 1 because we
can use the expression 3.57 that is valid for a generic real index n and it will be very useful
in order to find the corrections to the von Neumann entropy, that are defined as the limit
n→ 1+.
Our prediction is that we can write the corrections as:

∆(n) =

(
L sin(πx)

π

)− 2
n

Fn(x; ν), (6.92)

where F(x; ν) is an function of the variable x = l/L, l is the size of the subsystem and it
does not depend on the length of the chain L. It is a known result that for the XX chain we
have ∆ = 1, see Ref.[61]. This means that if we compute the values of ∆(n) for chains with
different lengths we will obtain different corrections. On the other hand when we study the
quantity:

∆(n)

(
L sin(πx)

π

)2/n

, (6.93)

all the different corrections will collapse on one.
Let start from the simplest case of the half-filled chain. We have studied chains of length
40, 80, 120, 160 and 200 and here in the figures below we have plotted ∆n as functions of
x = l/L for different values of n:
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Figure 6.5: Corrections to F (1) in the case of an electron-hole excitation in a half-filled chain.
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Figure 6.6: Corrections to F (2) in the case of an electron-hole excitation in a half-filled chain.
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Figure 6.7: Corrections to F (3) in the case of an electron-hole excitation in a half-filled chain.

As we expect from our previous theoretical analysis we can see that the corrections to scaling
approach to zero while length of the chain enhances.
All the corrections are pretty different as we expected, but if we plot the quantities:

∆n(x)

(
L sin(πx)

π

)2/n

, (6.94)

we observe that all the different corrections curves collapse on one curve:
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Figure 6.8: Scaled corrections to F (1). All the different corrections in Fig.6.5 collapse on the same curve
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Figure 6.9: Scaled corrections to F (2). All the different corrections in Fig.6.6 collapse on the same curve
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Figure 6.10: Scaled corrections to F (3). All the different corrections in Fig.6.7 collapse on the same curve

This very important since it confirms our predictions about the scaling of the corrections to
scaling.
We have also studied many different fillings case but all the corrections obtained have a scaling
behaviour that is in perfect agreement with our predictions.
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In Fig.6.11, Fig.6.4, Fig.6.13 and Fig.6.14 are presented the correction in the case of filling
ν = 1/3. Here we have ∆n(x) in ν = 1/3 case:
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Figure 6.11: Corrections to F (1) in the case of different chains with filling ν = 1/3.
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Figure 6.12: Corrections to F (2) in the case of different chains with filling ν = 1/3.
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Figure 6.13: Corrections to F (3) in the case of different chains with filling ν = 1/3.
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Figure 6.14: Corrections to F (4) in the case of different chains with filling ν = 1/3.
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If now we multiply all the previous corrections by their own proper scaling factor:(
L sin(πx)

π

)2/n

(6.95)

We see that all the different corrections collapse on the same curve as we predicted:
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Figure 6.15: Scaled corrections to F (1). All the different corrections in Fig.6.11 collapse on the same curve
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Figure 6.16: Scaled corrections to F (2). All the different corrections in Fig.6.4 collapse on the same curve

85



0 0.2 0.4 0.6 0.8 1
x

-0.2

-0.1

0

0.1

0.2

∆
3
(x
)(
L
si
n
(π
x
)/

π
)2
/3

L=60

L=120

L=180

L=240

L=300

Figure 6.17: Scaled corrections to F (3). All the different corrections in Fig.6.13 collapse on the same curve
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Figure 6.18: Scaled corrections to F (4). All the different corrections in Fig.6.14 collapse on the same curve

All these graphics have shown that the scaling of the correction is exactly the same as the
ground state case as we predicted in Chapt.5.
It is important to notice that the scaling of the oscillations is in perfect agreement with numerical
data for every filling and every Renyi index studied.
The corrections for different fillings are different and we can think that there is some relation
between them. In particular we can try to compare the corrections of excited states with the
ground state ones that are known.
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We have used the XX model that is integrable and there are some very general and analytical
results about it, in particular Calabrese, Mintchev and Vicari have studied in Ref.[61] its correc-
tions to the scaling of entanglement entropy in the ground state case.
They found an analytical relation that describes the corrections to the scaling:

dn(N) ≡ Sn(N)− Sa→0
n , (6.96)

this quantity can be computed using the Fisher-Hartwing conjecture, that in this case is not a
conjecture since it has been rigorously demonstrated. The expression for the corrections, valid
up the order N−3, is the following one:

dn(N) =
2

1− n

∞∑
p,q=1

(−1)pL
− 2p(2q−1)

n

N (Qq)
p

[
cos(2pπNl/L)

p
+
Aq sin(2pπNl/L)

LN

+

[
Bp,qe

2ıπpNl/L + h.c.
]

L2
N

]
+

1

L2
N

n+ 1

285n3

(
15(3n2 − 7) + (49− n2) sin2(πl/L)

)
+O(L−3

N ). (6.97)

In this expression we have used the definitions:

N = L sin(πν), (6.98)

LN = 2N sin(πl/L), (6.99)

Aq =

[
1 + 3

(
2q − 1

n

)2
]

cos(πl/L), (6.100)

Qq =

[
Γ( 1

2 + 2q−1
2n )

Γ( 1
2 +− 2q−1

2n )

]2

, (6.101)

Bp;q =
2q − 1

6n

[(
5 + 7

(2q − 1)2

n2

)
sin(πl/L)− 15

(
(2q − 1)2

n2
+ 1,

)]
− p

4

[(
1 + 3

(2q − 1)2

n2

)
cos(πl/L)

]2

. (6.102)

The method used to obtain these expressions is based on the fact that the correlation matrix of
the ground state is in a particular form called Toeplitz matrix.
If we look at the correlation matrix in the excited state case we have that the correlation matrix
is not a Toeplitz matrix and it is not possible to compute analytically the corrections. Anyway
we could try to compare the two cases in order to have an idea o f t he f or m o f the corre ct
ions in the excited state case.
This further study of the excitation is suggested by the fact that the functions Fn(x) for different
fillings ν and for different values of n are similar even if not equal. In particular we can notice
that the corrections to the entropy in the ground state with ν = 1/2 oscillates:

dn(N) ∼ cos(2kF l). (6.103)

In this specific case 2kF = 2πν = π that simplify the previous expression:

dn(N) ∼ cos(πl), (6.104)

since l is an integer number, it labels the number of sites that composes the subsystem under
study, we have:

dn(N) ∼ (−1)l. (6.105)
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This means that the corrections are one negative and one positive in the ground state case.
This happens also in excited states as we can see from all the figures of the half filling case: Fig.
6.8, Fig. 6.9 and Fig. 6.10.
This suggests that a comparison between the two cases should lead us to something interesting
as the ν behaviour of the functions Fn(x; ν).
We can truncate the expression 6.97 at the leading order in N−1:

dn(N) =
2 cos(2kF l)

1− n
(2N sin(πl/L))

−2/n

[
Γ
(

1
2 + 1

2n

)
Γ
(

1
2 −

1
2n

)]2

. (6.106)

We can try to look at the case of the excited state where we expect that the quantity:

Rn(x) =
(1− n)∆n(n; ν)(L sin(πx)/π)2/n(2π)2/n

2 cos(2kF l)

[
Γ
(

1
2 + 1

2n

)
Γ
(

1
2 −

1
2n

)]2 , (6.107)

has to be an universal quantity that does not depend on the fillings ν and on the lengths L
of different chains.
In order to check our last statement we plot the scaled corrections of different chains with different
filling factors, as we expect from the cases ν = 1/3 and ν = 1/2 all the scaled corrections have a
different shape:
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)(
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ν=1/2   L=120
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ν=1/6   L=240

ν=1/9   L=540

Figure 6.19: Comparison between the scaled corrections to the n = 2 Renyi entropy of different fillings XX
spin chains.
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If we plot now the expressions 6.107 for all chains we have that all the previous quantities
collapse on one:
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Figure 6.20: Plot of the expression 6.107 for previous exposed different filling spin chains.

The oscillations that affect these figures are due to the next to leading order in N−1 that
is composed by other oscillating terms, the reader can find them in the expression 6.97. If we
make computations with very long chains these contributions have to be suppressed and we will
remain only with a smooth curve.
Here we have the asymptotic behaviour for the case of n = 2:

0 0.2 0.4 0.6 0.8 1
x

0

1

2

3

4

R
2
(x

)

ν=1/2   L=1000

Figure 6.21: Shape of the function R2(x) obtained using a half-filled chain of length L = 1000
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This figure confirm that the behaviour of the corrections to scaling in the excited state case
is the same as in the ground state case. We can write the correction of the excited states in this
way:

∆n =
2 cos(2kF l)

1− n
(2N sin(πl/L))

−2/n

[
Γ
(

1
2 + 1

2n

)
Γ
(

1
2 −

1
2n

)]2

Rn(x), (6.108)

where Rn(x) is a function depending only on the fraction x.
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Conclusions and outlooks

In this work we have studied the presence of unusual corrections to scaling in the entanglement
entropy of excited states of conformal field theory.
Initially we have described the Calabrese and Cardy approach to the entanglement entropy of 1D
critical quantum systems, see Ref.[10], that is reminiscent of the Replica Trick used by Holzey in
Ref.[13]. The main result of the approach is the universal logarithmic scaling of the entanglement
entropy of an 1D critical quantum system. This scaling is one of the most beautiful example of
universality in the physics of many body systems and it has been observed in many works, see
Ref.[62], Ref.[63] and Ref.[64] for example.
Besides the logarithmic scaling behaviour there also corrections that affect the entanglement
entropy. These corrections have an unusual scaling behaviour that has been intensively studied
in literature, see Ref.[16], Ref.[17] and Ref.[18] for example. In Ref.[15] Calabrese and Cardy
demonstrated that the particular scaling of corrections is due to the local breaking of the confor-
mal invariance of the system around the conical singularities used to define the Riemann surface.
Furthermore the Calabrese and Cardy approach can be used to explore the entanglement entropy
of excited states of conformal field theory, see Ref.[19] and Ref.[64], and it gives analytic results
in perfect agreement with numerical computations both for fermionic and bosonic theories.
In our work we demonstrated that the entanglement entropy of the excited states is also affected
by corrections that has the same scaling of the ground state ones. These corrections are due to
the local breaking of conformal invariance around the conical singularities of the Riemann surface
as well as the ones of the ground state. We used numerical computations in order to confirm our
theoretical predictions and they are all in perfect agreement with analytic computations. We
analysed the entanglement entropy of the excited states of the XX model and we compare the
form of their corrections with the ones of the ground state finding the same dependence on the
filling factor ν, see Ref.[61].
The research on the excited states of conformal field theory is a very active field of study and it
would be possible to extract other interesting results from our analysis in the future.
As we said in Chapt.1 the entanglement spectrum, that is composed by the eigenvalues of the
entanglement Hamiltonian, encodes useful information about the amount of entanglement in the
quantum state of the system. A detailed description of the entanglement spectrum of excited
states can give us other information about their physics and their entanglement amount.
Another study could be the time evolution of the excited states after a quantum quench. This is
one of the protocols used to take a system out of equilibrium and it is particularly interesting be-
cause it can be realised in real experiments. This protocol consists in a system initially prepared
in one of the eigenstates, generally the ground state, of an initial Hamiltonian H0. Then a sudden
change in the initial hamiltonian, namely H0 → H1, takes the system out of equilibrium and the
time evolution of the system is observed. It would be interesting to study the time evolution,
after a quantum quench, of a system prepared in an excited state of the initial hamiltonian H0

instead of the ground state.
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