Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZA SEDE DI BOLOGNA

Corso di Laurea in Matematica

La Chiusura Algebrica di un Campo

Tesi di Laurea in Matematica

RELATRICE: Marta Morigi

Presentata da: Elisa Branchini

I Sessione
Anno Accademico 2012/2013

A mio nonno, con affetto.

Indice

1	Inti	roduzione	7
2	Prima dimostrazione		9
	2.1	I numeri cardinali	9
		2.1.1 Conoscenze e Definizioni utili	9
		2.1.2 Sulla cardinalità	12
	2.2	Richiami di teoria dei campi	19
	2.3	Esistenza della chiusura algebrica (prima dimostrazione)	22
3	Seconda dimostrazione		25
	3.1	Sui campi	25
	3.2	Esistenza della chiusura algebrica (seconda dimostrazione) .	30
4	Unicità della chiusura algebrica		33
	4.1	Teoremi utili	33
	4.2	Dimostrazione dell'unicità della chiusura algebrica	37
5	Rin	graziamenti	41

Introduzione

La tesi è incentrata sulla dimostrazione dell'esistenza e unicità di una chiusura algebrica di un campo.

Enunciato fondamentale è sicuramente il lemma di Zorn (2.12), equivalente all'assioma della scelta, che afferma l'esistenza di un elemento massimale in un insieme non vuoto parzialmente ordinato. Esso è utilizzato in tutti i capitoli per dimostrare sia l'esistenza sia l'unicità di una chiusura algebrica. Parleremo per prima di quest'ultima, trattata nel quarto e ultimo capitolo sfruttando alcune nozioni sui campi di spezzamento.

In tale capitolo dimostriamo due enunciati importanti: l'equivalenza tra una chiusura algebrica di un campo K e un campo di spezzamento su K dell'insieme S di tutti i polinomi irriducibili in K[x] (teorema 4.6), e l'esistenza di un K-isomorfismo tra due campi di spezzamento di S su K (corollario 4.3). Questo ci permette di ottenere quanto voluto infatti due chiusure algebriche di K, in quanto campi di spezzamento di tutti i polinomi irriducibili a coefficienti in K, sono K-isomorfi.

Per quanto riguarda la dimostrazione dell'esistenza, invece, essa viene presentata in due capitoli, corrispondenti a due modi diversi di approcciarsi al teorema. Il primo fa riferimento principalmente a nozioni insiemistiche mentre il secondo a nozioni algebriche.

- Il primo capitolo è diviso in tre sezioni.

La prima tratta le proprietà dei numeri cardinali utili per la dimostrazione di un importante teorema (2.32) della sezione successiva, il quale afferma che se F è una estensione algebrica di un campo K allora $|F| \leq \aleph_0 |K|$. Esso è fondamentale nella dimostrazione principale per controllare la cardinalità di alcuni campi.

Per la dimostrazione dell'esistenza di una chiusura algebrica prendiamo un insieme S abbastanza grande che abbia cardinalità $> \aleph_0|K|$ e consideriamo la classe Γ di tutti i campi $(E, +, \cdot)$ tali che $E \subseteq S$ e $K \subseteq E$ è una estensione algebrica. In realtà Γ è un insieme ordinato. Pertanto dimostriamo che su di esso possiamo utilizzare il lemma di Zorn; quindi esiste un elemento massimale A. Poichè A non ha estensioni di grado finito, segue che è algebricamente chiuso (proposizione 2.28). Pertanto A, essendo algebrico su K per ipotesi, è la chiusura algebrica cercata.

- La seconda dimostrazione è di tipo costruttivo in quanto costruiamo, a partire dal campo $F = E_0$, una successione di campi E_i algebrici su F nella cui unione E algebricamente chiusa risiede la chiusura algebrica di F.

Nella sezione 3.1 dimostriamo che la chiusura algebrica di F in un campo algebricamente chiuso è la chiusura algebrica di F (3.19), e grazie a ciò si ottiene quanto voluto.

Inoltre vedremo, attraverso l'uso della teria dei campi (nello specifico di quelli perfetti), che la chiusura algebrica di F è E_1 e che quindi non è necessario costruire tutta la successione.

Capitolo 2

Prima dimostrazione

2.1 I numeri cardinali

o $a \ge b$ vengono detti *comparabili*.

2.1.1 Conoscenze e Definizioni utili

Definizione 2.1. Un insieme parzialmente ordinato è un insieme non vuoto A con una relazione R, chiamata ordine parziale di A, che gode delle proprietà: riflessiva ($(a,a) \in R$ per ogni $a \in A$), transitiva (se $(a,b) \in R$ e $(b,c) \in R$ allora $(a,c) \in R$ per ogni $a,b,c \in A$) e antisimmetrica (se $(a,b) \in R$ e $(b,a) \in R$ allora a=b per ogni $a,b \in A$). Se $(a,b) \in R$ scriveremo $a \leq b$ (o $b \geq a$). Due elementi a e b tali che $a \leq b$

Definizione 2.2. Un ordine parziale su di un insieme A in cui ogni coppia di elementi è comparabile è chiamato *ordine lineare (totale o semplice)*. Un sottoinsiene non vuoto B di A totalmente ordinato (con \leq) è chiamato catena in A.

Definizione 2.3. Sia B un sottoinsieme non vuoto di un insieme parzialmente ordinato (A, \leq) . Un elemento $c \in B$ è un minimo di B se $c \leq b$ per ogni $b \in B$, ed è un massimo di B se $c \geq b$ per ogni $b \in B$.

Se ogni sottoinsieme non vuoto di A ha un minimo allora A è detto ben ordinato.

Un maggiorante di un sottoinsieme B di A è un elemento $d \in A$ tale che $b \leq d$ per ogni $b \in B$.

Definizione 2.4. Sia (A, \leq) un insieme parzialmente ordinato e sia m un suo elemento. Si ha che m si dice elemento massimale di A se per ogni $a \in A$ tale che $m \leq a$ si ha che a = m.

Definizione 2.5. Due insiemi $A \in B$ si dicono equipollenti $(A \sim B)$ se esiste una mappa biettiva $A \longrightarrow B$.

Osservazione 2.6. L' equipollenza è una relazione di equivalenza sulla classe S di tutti gli insiemi.

Sia $I_0 = \emptyset$ e per ogni $n \in \mathbb{N}$ e sia $I_n = \{1,, n\}$. I_m e I_n sono equipollenti se e solo se m = n. Se un insieme A è equipollente a I_n per un qualche $n \geq 0$ A si dice finito e in tal caso ha esattamente n elementi, altrimenti si dice infinito.

Possiamo quindi dire che:

Definizione 2.7. Il numero cardinale (o la cardinalità) di un insieme A (denotato con |A|) è la classe di equivalenza di A sotto la relazione di equipollenza. |A| è un cardinale finito o infinito a seconda che A sia (rispettivamente) finito o infinito.

Osservazione 2.8. La cardinalità è spesso denotata con lettere greche α , β , γ , Valgono le seguenti proprietà :

- 1. Ogni insieme ha un unico numero cardinale.
- 2. Due insiemi hanno lo stesso numero cardinale se e solo se sono equipollenti, ossia $|A|=|B|\Leftrightarrow A\sim B$.
- 3. La cardinalitá di un insieme finito può essere identificata con il numero degli elementi dell' insieme.

Esempio 2.1 (la cardinalità di \mathbb{N}). Il numero cardinale di \mathbb{N} è denotato abitualmente con \aleph_0 .

Un insieme A di cardinalità \aleph_0 è detto numerabile ed ha la propietà di essere equipollente a \mathbb{N} . Gli insiemi $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$, \mathbb{Z} , \mathbb{Q} sono numerabili mentre \mathbb{R} non lo è; dove \mathbb{N} è l'insieme dei numeri naturali, \mathbb{Z} l'insieme dei numeri interi, \mathbb{Q} l'insieme dei numeri irrazionali e \mathbb{R} l'insieme dei numeri reali.

Definizione 2.9. Siano α e β numeri cardinali. La somma $\alpha + \beta$ è definita come il numero cardinale $|A \cup B|$, inoltre il prodotto $\alpha\beta$ è il numero cardinale $|A \times B|$, dove A e B sono insiemi disgiunti tali che $|A| = \alpha$ e $|B| = \beta$.

Osservazione 2.10. Nella definizione di prodotto di elementi cardinali gli insiemi A e B possono anche non essere disgiunti.

Osservazione 2.11. Le operazioni di addizione e moltiplicazione dei numeri cardinali sono associative e commutative.

2.1.2 Sulla cardinalità

Enunciamo ora il lemma di Zorn, che è equivalente all'assiona della scelta (data una famiglia non vuota di insiemi non vuoti esiste una funzione che ad ogni insieme della famiglia fa corrispondere un suo elemento) e quindi indipendente dagli assiomi della teoria degli insiemi.

Lemma 2.12 (Lemma di Zorn). Se A è un insieme non vuoto parzialmente ordinato in cui ogni catena in A ha un maggiorante in A allora A ha un elemento massimale.

Mostreremo nei seguenti teoremi quale sia la cardinalità della somma o del prodotto di insiemi con diversi "numeri cardinali" .

Ad esempio nel teorema 2.15 è mostrato che la classe di tutti i numeri cardinali è lineramente ordinata (da \leq) e che per cardinalità finite la relazione è in accordo con l'ordinamento dei numeri non negativi.

Il fatto che non ci sia un numero cardinale più grande degli altri è conseguenza immediata del seguente:

Teorema 2.13. Se A è un insieme e P(A) è l'insieme delle sue parti allora |A| < |P(A)|.

Dimostrazione. Sappiamo che esiste una mappa iniettiva $A \longrightarrow P(A)$ tale che $a \mapsto \{a\}$ quindi $|A| \leq |P(A)|$. Supponiamo che esista una mappa biettiva $f: A \to P(A)$. Allora preso $B = \{a \in A | a \notin f(a)\} \subseteq A$ esiste un $a_0 \in A$ per cui $f(a_0) = B$. Ma ciò porta ad una contraddizione infatti:

- se $a_0 \in B$ allora $a_0 \notin f(a) = B$, che è una contraddizione;
- se $a_0 \notin B$ allora $a_0 \in f(a) = B$, che è una contraddizione; perciò $|A| \neq |P(A)|$ quindi |A| < |P(A)|.

Teorema 2.14 (di Schroeder-Bernstein). Se A e B sono due insiemi tali che $|A| \leq |B|$ e $|B| \leq |A|$ allora |A| = |B|.

 $Dimostrazione. \mbox{ Per le ipotesi esistono due funzioni } f:A\longrightarrow B \mbox{ e}$ $g:B\longrightarrow A \mbox{ iniettive (che verranno usate per costruire una funzione biettiva}$

 $h:A\longrightarrow B$). Poichè g è iniettiva, se $a\in A$ l'antimmagine $g^{\leftarrow}(a)$ può essere l'insieme vuoto (in tal caso si dice che a ha genitore vuoto in B) o $g^{\leftarrow}(a) = b$ per qualche $b \in B$. Similmente, ma scambiando A con B, avviene per f. Se continuiamo a cercare "gli antenati" degli elementi potremmo arrivare dopo un certo numero di passi ad avere un insieme vuoto (diremo che ha un "antenato vuoto") in A (o in B) oppure potremmo avere antenati all' "infinito". Possiamo quindi definire i seguenti sottoinsiemi di A e B:

```
A_1 = \{a \in A | a \text{ ha un "antenato vuoto" in } A\};
```

 $A_2 = \{a \in A | a \text{ ha "antenato vuoto" in } B\};$

 $A_3 = \{a \in A | a \text{ ha "antenati all'infinito"} \};$

 $B_1 = \{b \in B | b \text{ ha "antenato vuoto" in } A\};$

 $B_2 = \{b \in B | b \text{ ha "antenato vuoto" in } B\};$

 $B_3 = \{b \in B | b \text{ ha "antenati all'infinito"}\}$

Gli insiemi A_i (o B_i) sono a due a due disgiunti e la loro unione é A (o B), inoltre $f|_{A_i}:A_i\longrightarrow B_i$ con i=1,3 e $g|_{B_2}:B_2\longrightarrow A_2$ sono biezioni.

Definiamo quindi $h: A \to B$ come $h(a) = \begin{cases} f(a), & \text{per } a \in A_1 \cup A_3; \\ g^{\leftarrow}(a), & \text{per } a \in A_2. \end{cases}$ e $T: B \to A$ come $T(b) = \begin{cases} f^{\leftarrow}(b), & \text{per } b \in B_1 \cup B_3; \\ g(b), & \text{per } b \in B_2. \end{cases}$ Per $a \in A_i$ con i = 1, 3 si ha che $f(a) \in B_i$ e T(h(a)) = T(f(a)) = 1

e
$$T: B \to A$$
 come $T(b) = \begin{cases} f^{\leftarrow}(b), & \text{per } b \in B_1 \cup B_3; \\ g(b), & \text{per } b \in B_2. \end{cases}$

 $f^{\leftarrow}(f(a)) = a$ e per $b \in B_i$ con i = 1, 3 si ha che $f^{\leftarrow}(b) \in A_i$ e h(T(b)) =

 $h(f^{\leftarrow}(b)) = f(f^{\leftarrow}(b)) = b$. Analogamente vale per $b \in B_2$ e $a \in A_2$.

Abbiamo quindi che T è l'inversa di h e di conseguenza h è una biezione.

Teorema 2.15. Se α e β sono numeri cardinali allora uno dei seguenti casi $\alpha \leq \beta; \quad \alpha \geq \beta.$ risulta vero:

La classe dei numeri cardinali è quindi linearmente ordinata da \leq .

Dimostrazione. Supponiamo $|A| = \alpha$ e $|B| = \beta$. Consideriamo l'insieme $F = \{ (f, X) \mid X \subseteq A \text{ e } f : X \to B \text{ iniettiva} \}$ e la relazione definita su F: $(f_1,X_1) \leq (f_2,X_2) \Leftrightarrow X_1 \subseteq X_2 \in f_2 | X_1 = f_1$ ove $f_2 | X_1$ denota la restrizione di f_2 a X_1 . Abbiamo che F è non vuoto in quanto $(\emptyset, \emptyset) \in F$. Inoltre \leq è un ordinamento parziale di F infatti per ogni $(f_1, X_1), (f_2, X_2), (f_3, X_3) \in F$ si ha che:

- $-(f_1, X_1) \le (f_1, X_1)$ (banalmente)
- se $(f_1, X_1) \le (f_2, X_2)$ (quindi $X_1 \subseteq X_2$ e $f_2 | X_1 = f_1$) e $(f_2, X_2) \le (f_1, X_1)$ (quindi $X_2 \subseteq X_1$ e $f_1 | X_2 = f_2$) allora $X_1 = X_2$ e $f_1 = f_2$ ossia $(f_1, X_1) = (f_2, X_2)$
- se $(f_1, X_1) \leq (f_2, X_2)$ (quindi $X_1 \subseteq X_2$ e $f_2|X_1 = f_1$) e $(f_2, X_2) \leq (f_3, X_3)$ (quindi $X_2 \subseteq X_3$ e $f_3|X_2 = f_2$) allora $X_1 \subseteq X_2 \subseteq X_3$ e $(f_3|X_2)|X_1 = f_3|X_1 = f_2|X_1 = f_1$ quindi $X_1 \subseteq X_3$ e $f_3|X_1 = f_1$ ossia $(f_1, X_1) \leq (f_3, X_3)$. Consideriamo una catena $C = \{(f_i, X_i) \mid i \in I\}$ di F e definiamo (f, X) nel modo seguente: $X = \bigcup_{i \in I} X_i$ e $f: X \to B$ data da $f(x) = f_i(x)$ per $x \in X_i$. Osserviamo che:
- f è ben definita: Sia $x \in X$ e supponiamo che $x \in X_k$ e $x \in X_i$ per qualche $k, i \in I$. Possiamo supporre che $(f_k, X_k) \leq (f_i, X_i)$ quindi $X_k \subseteq X_i$ e $f_i | X_k = f_k$. Pertanto $f_k(x) = f_i(x)$.
- f è iniettiva: Siano $x_1, x_2 \in X$ tali che $f(x_1) = f(x_2)$. Si ha che $x_1 \in X_j$ e $x_2 \in X_i$ per qualche $i, j \in I$ e possiamo supporre $(f_j, X_j) \leq (f_i, X_i)$ quindi $f_i|X_j = f_j$. Abbiamo quindi che $f_j(x_1) = f_i(x_1) = f_i(x_2)$ ed essendo f_i iniettiva $x_1 = x_2$.
- (f, X) è un maggiorante della catena C: ogni elemento X_i della catena è incluso in X e $f|X_i=f_i:X_i\to B$.

Quindi, per il lemma di Zorn, esiste un elemento massimale (g, X) di F. Mostriamo ora che o X = A o B = Imm(g) (dove Imm(g) è l'immagine di g). Se entrambe queste affermazioni risultassero false esisterebbero $a \in A \setminus X$ e $b \in B \setminus \text{Imm}(g)$ e la mappa $h : X \cup \{a\} \to B$ definita da h(x) = g(x) per $x \in X$ e h(a) = b sarebbe iniettiva. Inoltre avremmo che $(h, X \cup a) \in F$ e $(g, X) < (h, X \cup a)$ che contraddice la massimalità di (g, X). Perciò o X = A (quindi $|A| \leq |B|$) o B = Imm(g) (quindi $|B| \geq |A|$ (in quanto esiste $g^{-1} : B \to X \subseteq A$ iniettiva)).

Teorema 2.16. Ogni insieme infinito ha un sottoinsieme numerabile. In

particolare, $\aleph_0 \leq \alpha$ per ogni numero cardinale α infinito.

Dimostrazione. Se $B \subset A$ è un sottoinsieme finito di un insieme infinito A allora $A \setminus B$ è non vuoto. Per ogni sottonsieme finito B di A scegliamo $x_B \in A \setminus B$ e consideriamo l'insieme F di tutti i sottoinsiemi finiti B di A. Definiamo quindi la mappa $f: F \to F$ nel modo seguente: $f(B) = B \cup \{x_B\}$.

Scegliamo $a \in A$ e definiamo una funzione $h : \mathbb{N} \to F$ come segue:

$$\int h(0) = \{a\}$$

$$h(n+1) = f(h(n)) = h(n) \cup \{x_{h(n)}\}$$
 per ogni $n \ge 0$

Scegnamo
$$a \in A$$
 e definitano una funzione $n : \mathbb{N} \to F$ come segue:
$$\begin{cases} h(0) = \{a\} \\ h(n+1) = f(h(n)) = h(n) \cup \{x_{h(n)}\} & \text{per ogni } n \geq 0 \end{cases}$$
 Sia $g : \mathbb{N} \to A$ definita da:
$$\begin{cases} g(0) = a \\ g(1) = x_{h(0)} = x_{\{a\}} \\ g(n+1) = x_{h(n)} & \text{per ogni } n \geq 1 \end{cases}$$
 Abbiamo quindi che
$$\begin{cases} g(n) \in h(n) & \text{per ogni } n \geq 0 \\ g(n) \not\in h(n-1) & \text{per ogni } n \geq 1 \\ g(n) \not\in h(m) & \text{per ogni } m < n. \end{cases}$$
 Osserviamo che g è iniettiva infatti presi $n, m \in \mathbb{N}$:

-se n = 0 allora $g(0) = \{a\} = g(m)$ se e solo se m = 0.

-se $m, n \geq 1$ con $n \neq m$ e g(m) = g(n) possiamo supporre m > n allora $g(m) \notin h(n) \ni g(n)$ che è una contraddizione.

Quindi
$$m = n$$
. Pertanto $|\text{Imm}(g)| = |\mathbb{N}| = \aleph_0$.

Lemma 2.17. Se $A \stackrel{.}{e}$ un insieme infinito $e \stackrel{.}{F} \stackrel{.}{e}$ finito allora $|A \cup F| = |A|$. In particolare $\alpha + n = \alpha$ per ogni cardinale infinito α e per ogni numero naturale n.

Dimostrazione. È sufficiente supporre $A \cap F = \emptyset$. Sia $F = \{b_1, \dots, b_n\}$ e sia $D = \{x_i \mid I \in \mathbb{N}^*\}$ un sottoinsieme numerabile di A la cui esistenza è dimostrata nel teorema 2.16 . Definiamo ora

$$f: A \to A \cup F \text{ nel modo seguente: } f(x) = \begin{cases} b_i & \text{per } x = x_i \text{ con } 1 \le i \le n \\ x_{i-n} & \text{per } x = x_i \text{ con } i > n \\ x & \text{per } x \in A \setminus D \end{cases}$$

Tale f è una biezione. Infatti è:

-iniettiva: notiamo che $A \setminus D, D, F$ sono insiemi disgiunti che hanno immagini disgiunte e, inoltre, $f|_{A\setminus D}$, f|D, f|F sono iniettive quindi f è iniettiva, -suriettiva: se $x = x_i \in D$ allora $x = f(x_{i+n})$, se $x = x_i \in F$ allora $x = f(x_i)$

e se $x \in A \setminus D$ allora x = f(x).

Teorema 2.18. Se α e β sono numeri cardinali tale che $\beta \leq \alpha$ e α è infinito allora $\alpha + \beta = \alpha$.

Dimostrazione. È sufficiente dimostrare che $\alpha + \alpha = \alpha$ (infatti risulta $\alpha \le \alpha + \beta \le \alpha + \alpha = \alpha$). Sia A un insieme con $|A| = \alpha$ e $F = \{(f, X) \mid X \subseteq A$ e $f: X \times \{0, 1\} \to X$ biezione $\}$. F è parzialmente ordinato dalla relazione: $(f_1, X_1) \le (f_2, X_2) \Leftrightarrow X_1 \subseteq X_2$ e $f_2|_{X_1 \times \{0, 1\}} = f_1$.

Prendiamo la biezione $k: \mathbb{N} \times \{0,1\} \to \mathbb{N}$ definita da k((t,n)) = 2n + t con t = 0,1. Per il teorema 2.16 esiste un sottoinsieme $D \subset A$ tale che $|D| = |\mathbb{N}|$. Esistono quindi una biezione tra D ed \mathbb{N} ed una biezione tra $\mathbb{N} \times \{0,1\}$ e $D \times \{0,1\}$. Allora possiamo costruire una biezione $f:D \times \{0,1\} \to D$. Quindi $(f,D) \in F$ ossia F è non vuoto.

Ragionando in modo analogo alla dimostrazione del teorema 2.15, sappiamo che ogni catena ha un maggiorante e che quindi, per il lemma di Zorn, esiste un elemento massimale (g, C) di F. Prendiamo $C_0 = \{(c, 0) \mid c \in C\}$ e $C_1 = \{(c, 1) \mid c \in C\}$. Osserviamo che C_0 e C_1 sono disgiunti. Inoltre si ha che $C_0 \cup C_1 = C \times \{0, 1\}$ e quindi $|C_0| = |C_1| = |C|$. La mappa $g: C \times \{0, 1\} \to C$ è una biezione quindi $|C| = |C \times \{0, 1\}| = |C_0 \cup C_1| = |C_0| + |C_1| = |C| + |C|$.

Supponiamo che |A|>|C|. Allora, per il lemma 2.17, $A\setminus C$ è infinito. Esiste quindi, per il teorema 2.16, un sottoinsieme numerabile B di $A\setminus C$. Perciò abbiamo una biezione $\varepsilon:B\times\{0,1\}\to B$. Prendiamo

 $h: (C \cup B) \times \{0,1\} \to (C \cup B)$ definita da: h(x) = g(x) per ogni $x \in C \times \{0,1\}$ e $h(x) = \varepsilon(x)$ per ogni $x \in B \times \{0,1\}$. Possiamo osservare che h è una biezione (in quanto lo sono ε e g) e qiundi $(h,C \cup B) \in F$. Ma $(g,C) < (h,C \cup B)$ e ciò contraddice l'ipotesi di massimalità di (g,C) in F. Abbiamo quindi che $|C| = \alpha = |A|$ e di conseguanza $A \setminus C$ è finito. Allora, per il lemma $2.17, |C| = |C \cup (A \setminus C)| = |A| = \alpha$.

Teorema 2.19. Se α e β sono numeri cardinali tali che $\beta \leq \alpha$, β è non nullo e α è infinito allora $\alpha\beta = \alpha$ e se β è finito $\beta\aleph_0 = \aleph_0$. In particolare $\alpha\aleph_0 = \alpha$.

Dimostrazione. È sufficiente dimostrare che $\alpha\alpha=\alpha$ (infatti risulta $\alpha \leq \alpha\beta \leq \alpha\alpha=\alpha$). Prendiamo A con cardinalità α e $F=\{f: X\times X\to X\mid X$ è un sottoinsieme infinito di A e f è biettiva $\}$. F è parzialmente ordinato dalla relazione: siano $f_1: X_1\times X_1\to X_1$ e $f_2: X_2\times X_2\to X_2$ $\in F$ allora $f_1\leq f_2\Leftrightarrow X_1\subseteq X_2$ e $f_2|_{X_1\times X_1}=f_1$.

Per il teorema 2.16 esiste un sottoinsieme numerabile D di A. Definiamo la mappa $g: \mathbb{N}^* \times \mathbb{N}^* \to \mathbb{N}^*$ nel modo seguente: $g(m,n) = 2^{m-1}(2n-1)$. Allora g è:

- iniettiva: se $(m,n),(t,k)\in\mathbb{N}^*\times\mathbb{N}^*$ e $2^{m-1}(2n-1)=2^{t-1}(2k-1)$ allora $(2n-1)/(2k-1)=2^{t-1}/2^{m-1}=2^{t-m}$ quindi t=m e n=k, poichè il rapporto tra due elementi dispari è dispari, e 2^{t-m} è pari.
- suriettiva: per m=1 abbiamo tutti i naturali dispari, mentre per m>1 al variare di n abbiamo tutti i pari.

Allora g è biettiva e quindi, essendo D numerabile, $k:D\times D\to D$ è una biezione. Allora $k\in F$ e quindi F è non vuoto.

In modo analogo alla dimostrazione del teorema 2.15, otteniamo che ogni catena ha un maggiorante e che quindi, per il lemma di Zorn, esiste un elemento massimale $g: B \times B \to B$ con $|B||B| = |B \times B| = |B|$.

Dimostreremo ora che $|B| = |A| = \alpha$.

Supponiamo che $|A \setminus B| > |B|$ allora esiste $C \subset A \setminus B$ tale che $|C| = |B| = |B \times B| = |B||B| = |C||C| = |C \times C| = |C||B| = |C \times B| = |B||C| = |B \times C|$. Allora, per il teorema 2.18 e la definizione 2.9, $|(B \cup C) \times (B \cup C)| = |(B \times B) \cup (B \times C) \cup (C \times B) \cup (C \times C)| = |B \times B| + |B \times C| + |C \times B| + |C \times C| = (|B| + |B|) + (|C| + |C|) = |B| + |C| = |B \cup C|$ e quindi esiste una biezione $(B \cup C) \times (B \cup C) \rightarrow (B \cup C)$, che contraddice l'ipotesi di massimalità di g in F. Allora per il teorema 2.15 $|A \setminus B| \leq |B|$ e per il teorema 2.18 $|B| = |A \setminus B| + |B| = |(A \setminus B) \cup B| = |A| = \alpha$.

Teorema 2.20. Sia A un insieme, e per ogni $n \ge 1$ sia $A^n = A \times \times A$ (prodotto cartesiano di n copie di A). Allora:

1) se A finito $|A^n| = |A|^n$; se A è infinito $|A^n| = |A|$;

$$2) \mid \bigcup_{n \in \mathbb{N}^*} A^n \mid = \aleph_0 |A|$$

Dimostrazione. Il primo punto si dimostra per induzione qualunque sia A. Per la definizione 2.9 di prodotto di numeri cardinali se n=1 $|A^1|=|A|=|A|^1$. Supponiamo quindi che sia vero per n-1. Allora, per induzione, si ha che $|A^n|=|A^{n-1}\times A|=|A^{n-1}|\times |A|=|A|^{n-1}|A|=|A|^n$ e di conseguenza $|A^n|=|A|^n$ per ogni $n\in\mathbb{N}$. In particolare se A è infinito per il teorema 2.19 (in cui $\beta=\alpha=|A|$), si dimostra facilmente, per induzione su n, che $|A|^n=|A|$ per ogni $n\in\mathbb{N}$.

Il secondo punto si dimostra distinguendo due casi. Osserviamo per prima cosa che gli insiemi A^n (con $n \ge 1$) sono tra loro disgiunti.

- sia A infinito. Allora per il primo punto $|A^n| = |A|$ ed esiste quindi una mappa biettiva $f_n: A^n \to A$ per ogni valore di n. Consideriamo la funzione $f: \bigcup_{n \in \mathbb{N}^*} A^n \to \mathbb{N}^* \times A$ definita da $f(u) = (n, f_n(u))$ per $u \in A^n$. È facile vedere che tale funzione è una biezione, quindi $|\bigcup_{n \in \mathbb{N}^*} A^n| = |\mathbb{N}^* \times A| = |\mathbb{N}^*|A| = \aleph_0|A|$.
- sia A finito. Allora A è vuoto, e la cunclusione è ovvia, oppure è finito.

Nel secondo caso abbiamo $\aleph_0 = |\mathbb{N}^*| \le |\bigcup_{n \in \mathbb{N}^*} A^n|$. D'altra parte A^n è finito ed esiste, per ogni n, una mappa iniettiva $g_n : A^n \to \mathbb{N}^*$. La mappa

 $g: \bigcup_{n\in\mathbb{N}^*} A^n \to \mathbb{N}^* \times \mathbb{N}^* \text{ definita da } g(u) = (n,g_n(u)) \text{ per } u \in A^n \text{ è quindi iniettiva e, per il teorema 2.19, } |\bigcup_{n\in\mathbb{N}^*} A^n| \leq |\mathbb{N}^* \times \mathbb{N}^*| = |\mathbb{N}^*| = \aleph_0. \text{ Perciò, per il teorema 2.14, } |\bigcup_{n\in\mathbb{N}^*} A^n| = \aleph_0 \text{ e, per il lemma 2.17, } \aleph_0 = \aleph_0 |A|.$

2.2 Richiami di teoria dei campi

La notazione usata d'ora in poi è standard. Richiameremo di seguito alcune definizioni e teoremi basilari di teoria dei campi. Per i prerequisiti si faccia invece riferimento al libro ALGEBRA di Thomas W. Hungerford.

Definizione 2.21. Un anello K è un campo se è un anello commutativo unitario in cui ogni elemento non nullo ha un inverso.

Un sottoinsieme L di K è un sottocampo di K se è un sottoanello di K e a sua volta è un campo, ossia $1 \in L$ e se $x, y \in L$ allora $x - y \in L$ e $xy^{-1} \in L$.

Definizione 2.22. Siano L e K due campi. Se L è un sottoinsieme di K diremo che $L \subseteq K$ è una estensione di campi.

Definizione 2.23. Se $K \subseteq F$ è una estensione di campi allora F è un K-spazio vettoriale. Se F ha dimensione finita n come K-spazio vettoriale si dice che $K \subseteq F$ è una estensione finita e n si dice il grado di F su K (denotato con [F:K]).

Definizione 2.24. Sia $L \subseteq K$ una estensione di campi e sia $u \in K$. Si dice che u è algebrico su L se esiste $f \in L[x]$ tale che f(u) = 0. In caso contrario u si dice trascendente.

Inoltre K si dice algebrico su L se ogni elemento di K è algebrico su L.

Definizione 2.25. Sia A un anello e sia f un polinomio non costante di A[x]. Si dice che $a \in A$ è radice (o zero) di f se f(a) = 0.

Se a è radice di f in A ed f è della forma $f = (x - a)g(x) \in A[x]$ dove $g(a) \neq 0$ allora a si dice radice semplice di f. In caso contrario a si dice radice multipla di f.

Definizione 2.26. Sia $K \subseteq F$ una estensione di campi e sia u un elemento di F algebrico su K. Il polinomio monico irriducibile $f \in K[x]$ di grado n > 0 tale che f(u) = 0 si dice polinomio minimo di u su K e si indica con p_u .

Definizione 2.27. Un campo Ω si dice algebricamente chiuso se ogni polinomio in $\Omega[x]$ ha almeno una radice in Ω .

Proposizione 2.28. Si ha che Ω è algebricamente chiuso se e solo se non ha estensioni proprie di grado finito.

Dimostrazione. Si veda il libro "ALGEBRA" di Thomas W. Hungerford, capitolo V. $\hfill\Box$

Definizione 2.29. Un campo Ω si dice una *chiusura algebrica* di un suo sottocampo F se è algebrico su F ed è algebricamente chiuso.

Sia $F \subseteq \Omega$ una estensione di campi. L'insieme degli elementi di Ω algebrici su F è un campo e si dice *chiusura algebrica di F in* Ω .

Definizione 2.30. Cosideriamo un campo K e sia $f \in K[x]$ tale che $f \notin K$ (quindi f non è costante). Un campo di spezzamento di f su K è un campo E che include K tale che f si fattorizza in fattori lineari in E[x] ed $E = K(a_1, ..., a_n)$ dove $a_1,, a_n$ sono tutte e sole le radici di f. Sia S un insieme di polinomi di grado positivo in K[x] e sia $K \subseteq F$ una estensione di campi. Allora F si dice campo di spezzamento su K dell'insieme S se ogni polinomio in S si fattorizza in fattori lineari in F[x] ed F è generato su K dalle radici di tutti i polinomi di S.

Teorema 2.31. Sia f un polinomio di F[x] di grado n > 0; allora esiste un campo di spezzamento E per f.

 $\label{eq:libro} \textit{Dimostrazione}. \ \mbox{Si veda nel libro "ALGEBRA" di Thomas W. Hungerford,} \\ \mbox{capitolo V.} \\ \mbox{} \ \mbox{} \mbox{} \ \mbox{} \ \mbox{} \ \mbox{} \ \mbox{} \ \mbox{} \ \mbox{$

Lemma 2.32. Se F è una estensione algebrica di K allora $|F| \leq \aleph_0 |K|$.

Dimostrazione. Sia T l'insieme dei polinomi monici in K[x] e sia T_n l'insieme dei polinomi monici di grado n in K[x] $(n \in \mathbb{N}^*)$. Ogni polinomio $f \in T_n$ è del tipo $x^n + \alpha_{n-1}x^{n-1} + \dots + \alpha_0$ con $n \in \mathbb{N}^*$ ed è quindi completamente individuato dai suoi n coefficienti $\alpha_{n-1}, \dots, \alpha_0 \in K$. Allora per

ogni $n \in \mathbb{N}^*$ sia $f_n: T_n \longrightarrow K^n$ una biezione. Possiamo quindi dire che T_n ha la stessa cardinalità di K^n . Gli insiemi T_n e K^n sono disgiunti tra loro ossia $T_n \cap T_s = \emptyset$ e $K^n \cap K^s = \emptyset$ per ogni $n \neq s$, quindi la mappa $f: T = \bigcup_{n \in \mathbb{N}^*} T_n \longrightarrow \bigcup_{n \in \mathbb{N}^*} K^n$ definita da $f(u) = f_n(u)$ per $u \in T_n$ è ben definita e biettiva. Allora, per il teorema 2.20, $|T| = |\bigcup_{n \in \mathbb{N}^*} T_n| = |\bigcup_{n \in \mathbb{N}^*} K^n| =$

Ora dimostriamo che $|F| \leq |T|$.

 $\aleph_0|K|$.

Per ogni $f \in T$ irriducibile ordiniamo le radici di f in F e definiamo una mappa $p: F \longrightarrow T \times \mathbb{N}^*$ come segue: se $a \in F$ allora, per ipotesi, a è algebrico su K e quindi esiste ed è unico il suo polinomio minimo $f \in T$; allora ad ogni $a \in F$ associamo la coppia $(f,i) \in T \times \mathbb{N}^*$ tale che a è la i-esima radice di f. Osserviamo che $p: F \longrightarrow T \times \mathbb{N}^*$ è iniettiva. Essendo T infinito, per il teorema 2.19, $|F| \leq |T \times \mathbb{N}^*| = |T| |\mathbb{N}^*| = |T| |\mathbb{N}_0 = |T|$. Quindi $|F| \leq \aleph_0 |K|$.

Osservazione 2.33. Se K è infinito per il lemma precedente abbiamo che $|F| \leq \aleph_0 |K| = |K|$ ma $|K| \leq |F|$ quindi |F| = |K|.

Proposizione 2.34. Sia $E \subseteq F$ una estensione di campi e sia K un campo intermedio. Se K è algebrico su E ed F è algebrico su E algebrico su E.

Dimostrazione. Si veda nel libro "ALGEBRA" di Thomas W. Hungerford, capitolo V. $\hfill\Box$

2.3 Esistenza della chiusura algebrica (prima dimostrazione)

Dimostreremo di seguito la sola esistenza della chiusura algebrica. L'unicità sarà dimostrata nel quarto capitolo.

Teorema 2.35. Ogni campo K ha una chiusura algebrica. Se A e C sono due chiusure algebriche di K allora esiste un isomorfismo tra di essi che estende l'identità di K in sè.

Dimostrazione. (prima dimostrazione)

Sia K un campo e scegliamo un insieme S tale che $\aleph_0|K| < |S|$. Sappiamo che $|K| \le \aleph_0|K|$ quindi esiste una mappa iniettiva $f: K \to S$. Pertanto possiamo considerare $K \subseteq S$.

Sia Γ la classe di tutti i campi $(E, +, \cdot)$ tali che $K \subseteq E$ è una estensione algebrica e $E \subseteq S$. Le operazioni di addizione e moltiplicazione sono definite rispettivamente dalle funzioni $g: E \times E \to E$ tale che g((a, b)) = a + b e $h: E \times E \to E$ tale che h((a, b)) = ab.

Osserviamo che le funzioni g ed h possono essere identificate con il loro grafico, che è un sottoinsieme di $E \times E \times E$. Quindi un elemento di Γ può essere identificato con un sottoinsieme di $A = S \times (S \times S \times S) \times (S \times S \times S)$. Poichè P(A) è un insieme e $\Gamma \subseteq P(A)$ si ha, in particolare, che Γ è un insieme.

Inoltre Γ è diverso dall'insieme vuoto in quanto $(K, +, \cdot) \in \Gamma$.

 Γ è parzialmente ordinato dalla relazione $(E_1, +_1, \cdot_1) \leq (E_2, +_2, \cdot_2)$ se e solo se $E_1 \subseteq E_2$ è una estensione di campi.

Allora ogni catena del tipo $\{(E_i, +_i, \cdot_i)\} \in \Gamma$, con $i \in I$ ha un maggiorante ossia $\bigcup E_i$.

Sia infatti, $E = \bigcup E_i$ con le operazioni definite da: se $x_1, x_2 \in E$ allora $x_1 \in E_i$ e $x_2 \in E_j$ per qualche $i, j \in I$ e possiamo supporre $E_i \subseteq E_j$ allora $x_1 + x_2 = x_1 +_j x_2$ e $x_1x_2 = x_1 \cdot_j x_2$. Si osserva che tali operazioni sono ben definite e che E è un campo.

Sia x un elemento di E allora $x \in E_i$ per qualche $i \in I$. Essendo gli E_i

algebrici su K, per la definizione 2.24, x è algebrico su K. Quindi ogni elemento di E è algebrico su K ossia E è algebrico su K.

Allora $(E, +, \cdot)$ è un maggiorante della catena. Quindi per il lemma di Zorn esiste un elemento massimale $(A, +, \cdot)$ di Γ .

Vogliamo ora dimostrare che A è una chiusura algebrica di K. Essendo $K \subseteq A$ una estensione algebrica è sufficiente dimostrare che A è algebricamente chiuso ossia, per quanto detto nella proposizione 2.28, che non ha estensioni proprie di grado finito.

Supponiamo per assurdo che esista una estensione algebrica B di A.

Se K è infinito, per l'osservazione 2.33, |B| = |A| = |K|, se invece è finito per il lemma 2.32 $|A| \leq \aleph_0 |K| = \aleph_0$ e quindi, per la proposizione 2.34, $|B| \leq \aleph_0 |K| = \aleph_0$. In entrambi i casi |B| < |S| e quindi esiste una mappa iniettiva $f: B \to S$ che estende l'identità di A in sè. Sia $B' = \text{Imm} f \subseteq S$. Allora la mappa che manda B in B' è una biezione che manda A in sè. Osserviamo che B' ha una naturale struttura di campo indotta da quella di B tramite f. Allora B' è un campo incluso in Γ , ma $A \subset B'$ e questo contraddice la massimalità di $(A, +, \cdot)$ in Γ . Ciò conclude la dimostrazione.

Osservazione 2.36. Di fondamentale importanza per la precedente dimostrazione è la parte finale in cui si utilizza il lemma 2.32 (e quindi i teoremi sulla cardinalità ad esso correlati) per controllare la cardinalità di B. Ciò serve a dimostrare che A non ha estensioni algebriche e di conseguenza che è una chiusura algebrica del campo K.

Capitolo 3

Seconda dimostrazione

3.1 Sui campi

Definizione 3.1. Sia $F \subseteq E$ una estensione di campi. L'estensione $F \subseteq E$ si dice *finitamente generata* se esistono $a_1, ..., a_n \in E$ tale che $E = F(a_1,, a_n)$.

Definizione 3.2. Sia f un polinomio non costante in F[x]. f si dice separabile se nel suo campo di spezzamento non ha radici multiple.

Sia $F \subseteq E$ una estensione di campi. Un alemento $\alpha \in E$ si dice separabile su F se il suo polinomio minimo è separabile.

Un campo F si dice perfetto se ogni polinomio irriducibile $f \in F[X]$ è separabile.

Definizione 3.3. Sia 1 l'unità dell'anello A. La caratteristica di A è il più piccolo numero naturale $n \neq 0$ tale che $1 + 1 + \dots + 1$ (n volte) = 0. Se non esiste tale numero n allora la caratteristica di A è zero per definizione.

Definizione 3.4. Siano F un campo ed f un polinomio monico irriducibile in F[x]. $F[\alpha]$ è stem field per f se $f(\alpha) = 0$.

Proposizione 3.5. Sia $K \subseteq F$ una estensione di campi e sia u un elemento di F algebrico su K allora:

- $K(u) \cong K[x]/(f)$ dove $f \in K[x]$ è il polinomio minimo di u;
- [K(u):K] = n > 0 dove $n \ \dot{e} \ il \ grado \ di \ f$.

Dimostrazione. Si veda nel libro 'ALGEBRA' di Thomas W. Hungerford, capitolo V. $\hfill\Box$

Osservazione 3.6. Se $F[\alpha]$ e $F[\beta]$ sono stem field per f allora sono isomorfi in quanto, per la proposizione 3.5, abbiamo che $F[\alpha] \cong F[x]/(f) \cong F[\beta]$.

Definizione 3.7. Sia A un anello commutativo. Un sottoinsieme (non necessariamente proprio) I di A è un ideale di A se è un sottogruppo di (A, +) e per ogni $a \in A$ e $x \in I$ si ha che $ax \in I$.

I si dice *ideale proprio* se $I \subset A$. In particolare un ideale proprio I di A si dice *ideale massimale* se non è contenuto strettamente in nessun altro ideale proprio.

Teorema 3.8 (Lemma della torre). Siano $K \subseteq E$ e $E \subseteq F$ due estensioni di campi. [F:K] è finito se e solo se [F:E] e [E:K] sono finiti. In tal caso vale [F:K] = [F:E][E:K].

Dimostrazione. Si veda il libro ALGEBRA di Thomas W. Hungerford, capitolo V. $\hfill\Box$

Proposizione 3.9. Se $F \subseteq E$ è una estensione algebrica allora ogni sottoanello R di E è un campo.

Dimostrazione. Se α è algebrico su F allora $F[\alpha]$ è un campo in quanto isomorfo a F[X]/(f) dove f è il polinomio minimo di α su F. Se $\alpha \in R$ allora $F[\alpha] \subset R$ e quindi α ha un inverso in R.

Le dimostrazioni del teorema e delle due proposizioni seguenti sono riportate nel libro "Field and Galois Theory" di J.S.Milne (rispettivamente) nei capitoli I e II.

Teorema 3.10. Se F è un campo allora ha caratteristica p o zero, ove p è un numero primo.

Proposizione 3.11. Sia F un campo e sia f un polinomio irriducibile in F[x]. Allora è equivalente dire:

- tutte le radici di f sono multiple;
- F ha caratteristica $p \neq 0$ ed f è un polinomio in X^p .

Proposizione 3.12. Ogni campo di caratteristica zero è perfetto, e ogni campo di caratteristica $p \neq 0$ è perfetto se e solo se ogni suo elemento è una p-esima potenza.

Proposizione 3.13. Se F è un anello commutativo con unità allora un suo ideale M è massimale se e solo se il suo anello quoziente F/M è un campo.

Dimostrazione. Si veda il libro ALGEBRA di Thomas W. Hungerford, capitolo III. $\hfill\Box$

Teorema 3.14. Sia A un anello e sia I un ideale di A. Allora I è proprio se e solo se non contiene l'unità di A.

Dimostrazione. (\Longrightarrow) Supponiamo che I contenga l'unità di A allora apparterrebbero all'ideale tutti i numeri ottenuti moltiplicando un qualsiasi elemento di A per 1. Pertanto risulterebbe, contro le ipotesi su I, I = A. (\Longleftrightarrow) I è un ideale di A non contenente l'unità di A allora $I \subset A$ ossia è un suo ideale proprio.

Teorema 3.15. (Teorema dell'elemento primitivo) Sia $E = F[\alpha_1,, \alpha_r]$ una estensione finita di F tale che $\alpha_2,, \alpha_r$ sono separabili su F. Allora esiste un elemento $\gamma \in E$ tale che $E = F[\gamma]$.

Dimostrazione. Si veda il libro "Field and Galois Theory" di J.S.Milne, capitolo V. $\hfill\Box$

Proposizione 3.16. Ogni anello commutativo ha un ideale massimale.

Dimostrazione. Sia S l'insieme di tutti gli ideali propri in A parzialmente ordinato dalla relazione: se $I_1, I_2 \subset S$ allora $I_1 \leq I_2$ se e solo se $I_1 \subseteq I_2$. Sia $T = \{I_j\}_{j \in J}$ una catena di A e sia $K = \bigcup_{I_j \in T} I_j$. Si osservi che K è un ideale di A.

Se $1 \in K$ allora, contro l'osservazione 2.34, $1 \in I_j$ per qualche $j \in J$. Pertanto $1 \notin K$ e quindi K è un ideale proprio di A e, in particolare, è un maggiorante per T. Allora per il lemma di Zorn esiste un elemento massimale di S che è quindi un ideale massimale di A.

Proposizione 3.17. $K \subseteq F$ è una estensione di campi finita se e solo se F è algebrico su K e l'estensione è finitamente generata.

Dimostrazione. Si veda il libro "Field and Galois Theory" di J.S.Milne, capitolo I. $\hfill\Box$

Proposizione 3.18. Se Ω è algebrico su F e ogni polinomio $f \in F[x]$ si fattorizza in $\Omega[x]$ allora Ω è algebricamente chiuso.

Dimostrazione. Sia $f = a_0 + + a_n x^n$ un polinomio non costante in $\Omega[x]$. Allora f ha una radice α in una estensione finita Ω' di Ω . Consideriamo le estensioni $F \subseteq E = F[a_0,, a_n] \subseteq L = F[a_0,, a_n, \alpha]$. Osserviamo che tali estensioni sono algebriche in quanto E è generato su F da elementi di Ω , algebrico su F per ipotesi, e L è generato su E da α , che è una radice di $f \in E[x]$. Allora, per la proposizione 2.34, L è algebrico su F e, in particolare, lo è anche $\alpha \in L$. Pertanto α è radice di un polinomio $g \in F[x]$ che, per ipotesi, si fattorizza in $\Omega[x]$. Allora le radici di g in Ω' , e in particolare α , stanno tutte in Ω e questo conclude la dimostrazione. \square

Corollario 3.19. Sia Ω un campo algebricamente chiuso. Per ogni sottocampo F di Ω la chiusura algebrica di F in Ω è una chiusura algebrica di F.

3.2 Esistenza della chiusura algebrica (seconda dimostrazione)

Analogamente alla prima dimostrazione analizzeremo la sola esistenza della chiusura algebrica. L'unicità sarà dimostrata nel prossimo capitolo.

Dimostrazione. Consideriamo l'anello $F[...,x_f,...]$ tale che x_f è indicizzato dai polinomi non costanti $f \in F[x]$. Sia $I \subseteq F[...,x_f,...]$ l'ideale generato dai polinomi $f(x_f)$. Se 1 appartiene a tale ideale allora è del tipo

$$1 = g_1 f_1(x_{f_1}) + \dots + g_n f_n(x_{f_n})$$
(3.1)

ove $g_i \in F[..., x_f, ...]$ e $f_i \in F[x]$. Sia E una estensione di F tale che ogni f_i ha una radice $a_i \in E$ per i=1,...,n. Sia h l'omomorfismo di anelli $F[..., x_f, ...] \to F$ definito da $h(x_{f_i}) = a_i$ e $h(x_f) = 0$ per $f \notin \{f_1, ..., f_n\}$. Pertanto la relazione (3.1) diventa h(1) = 0, che è impossibile. Allora $1 \notin I$. Per la proposizione 3.16 abbiamo che $F[..., x_f, ...]/I$ ha un ideale massimale M/I e, in quanto tale, $I \subseteq M$. Osserviamo che $\Omega = F[..., x_f, ...]/M$, per la proposizione 3.13, è un campo. Inoltre la mappa $F \longrightarrow \Omega$ definita da $a \mapsto a + M$ è iniettiva e quindi Ω contiene una copia isomorfa di F.

Sia $f(x) = a_n x^n + ... + a_0$ un polinomio non costante in F[x]. Allora in $\Omega[x]$ f(x) è della forma $f(\tilde{x}) = f(x+M) = a_n(x+M)^n + ... + a_0 = a_n x^n + + a_0 + M = f(x) + M$. Quindi $f(\tilde{x}_f) = f(x_f) + M = 0$ in quanto $f(x_f) \in I \subseteq M$. Pertanto ogni polinomio non costante in F[x] ha almeno una radice in Ω .

Ripetiamo ora il procedimento partendo da $E_1=\Omega$, anzichè da $E_0=F$, ottenendo così il campo E_2 . Procedendo ancora avremo una successione $E_0\subseteq E_1\subseteq E_2\subseteq ...$.

Osserviamo che gli E_i sono algebrici su F. Infatti E_1 è generato da elementi algebrici su F e quindi è algebrico su F. Analgamente E_2 è algebrico su E_1 quindi su F e in generale ogni E_{i+1} è algebrico su E_i e quindi su F.

Sia $E = \bigcup_i E_i$ e prendiamo un polinomio non costante $g \in E[x]$. I coefficienti

di g appartengono a E_i per qualche i e quindi g ha una radice in E_{i+1} . Pertanto $E = \bigcup_i E_i$ è algebricamente chiuso. Quindi, per il corollario 3.19, la chiusura algebrica di F in E è una chiusura algebrica di F.

Osservazione 3.20. In particolare la chiusura algebrica di F in E è E_1 in quanto algebrica su F e, per la seguente proposizione, algebricamente chiusa.

Proposizione 3.21. Sia $F \subseteq \Omega$ una estensione di campi. Se Ω è algebrico su F e ogni polinomio non costante in F[X] ha una radice in Ω allora Ω è algebricamente chiuso.

Dimostrazione. Divideremo la dimostrazione in due casi: nel primo caso supponiamo che F sia perfetto e nel secondo caso che non lo sia.

- Supponiamo quindi che F sia perfetto. Per la proposizione 3.18 basta dimostrare che ogni polinomio irriducibile $f \in F[x]$ si fattorizza in $\Omega[x]$. Sia quindi f un polinomio irriducibile in F[x] e sia E il suo campo di spezzamento. Essendo F perfetto f è separabile e quindi, per il teorema 3.15, $E = F[\gamma] \operatorname{con} \gamma \in E$. Sia g(X) il polinomio minimo di γ su F allora g(X) ha coefficienti in F e quindi, per ipotesi, ha una radice $\beta \in \Omega$. $F[\gamma]$ e $F[\beta]$ sono stem field per g e quindi, per l'osservazione 3.6, esiste un F-isomorfismo $F[\gamma] \to F[\beta] \subseteq \Omega$. Pertanto, come f si fattorizza su $E = F[\gamma]$, così si fattorizza su Ω .
- Supponiamo ora che F sia di caratteristica $p \neq 0$. Prendiamo quindi $F' = \{x \in \Omega \mid x^{p^m} \in F \text{ per qualche } m\}.$

Osserviamo che F' è un sottoanello di Ω in quanto chiuso rispetto a somma e prodotto. Allora, per la proposizione 3.9, F' è un campo.

Vogliamo dimostrare che (a) F' è perfetto (b) ogni polinomio in F'[X] ha una radice in Ω .

(a) Sia $a \in F'$ allora $b = a^{p^m} \in F$ per qualche m. Il polimonio $X^{p^{m+1}} - b$ ha coefficienti in F e di conseguenza ha una radice $\alpha \in \Omega$. Osserviamo che $\alpha \in F'$. Ma $\alpha^{p^{m+1}} = b = a^{p^m}$ quindi $\alpha^p = a$. Allora, per la proposizione 3.12, F' è perfetto.

(b) Mostriamo dapprima che Ω è perfetto.

Sia $\alpha \in \Omega$ e sia g il suo polinomio minimo su F'. Possiamo supporre che g abbia grado n>0, allora $[F'(\alpha):F']=n$. Supponiamo $X^p-\alpha$ irriducibile in $\Omega[X]$ e sia β una sua radice. Osserviamo che $F'(\beta,\alpha)=F'(\beta,\beta^p)=F'(\beta)$. Allora $[F'(\beta):F'(\alpha)]=p$. Pertanto, per il teorema della torre, $[F'(\beta):F']=pn$. Inoltre $g(\beta^p)=g(\alpha)=0$ in $F(\beta)$. Allora $g(x^p)$ è un polinomio monico di grado pn con radice β e quindi è il polinomio minimo di β . In particolare $g(X^p)$ è irriducibile in F'[X] ma, per la proposizione 3.11, non è separabile, il che va contro l'ipotesi che F' sia perfetto. Allora $X^p-\alpha$ non è irriducibile. Se L è un campo di spezzamento di $X^p-\alpha$ su Ω si ha che $X^p-\alpha=(X-\beta)^p$ in L[X] ove $\alpha=\beta^p$. Poichè il polinomio minimo di β su Ω divide $X^p-\alpha$, è del tipo $(X-\beta)^n$ con n< p ma allora, per la proposizione 3.11, n=1 ossia $\beta\in\Omega$. Quindi anche Ω è perfetto.

Concludiamo ora la dimostrazione di b).

Sia $f(X) = \{\sum_i a_i X^i \mid a_i \in F'\} \in F'[X]$. Per qualche m il polinomio $\sum_i a_i^{p^m} X^i$ ha coefficienti in F e quindi una radice $\alpha \in \Omega$. Essendo Ω perfetto esiste $\beta \in \Omega$ tale che $\alpha = \beta^{p^m}$, quindi $(f(\beta))^{p^m} = (\sum_i a_i \beta^i)^{p^m} = (\sum_i a_i^{p^m} \alpha^i) = 0$. Quindi β è una radice di f.

Pertanto, ragionando come nel primo punto ma con F' al posto di F, concludiamo che Ω è algebricamente chiuso.

Capitolo 4

Unicità della chiusura algebrica

4.1 Teoremi utili

Proposizione 4.1. Siano $\sigma: K \longrightarrow F$ un isomorfismo di campi, u un elemento di una estensione di campi di K e v un elemento di una estensione di campi di F. Se u è radice di un polinomio irriducibile $f \in K[x]$ e v una radice di $\sigma f \in F[x]$ allora σ si estende ad un isomorfismo di campi $\tilde{\sigma}: K(u) \longrightarrow F(v)$ tale che $\tilde{\sigma}(u) = v$.

Dimostrazione. Si veda il libro ALGEBRA di Thomas W. Hungerford, capitolo V. $\hfill\Box$

Teorema 4.2. Sia $\sigma: K \longrightarrow L$ un isomorfismo di campi e siano $S = \{f_i\}_{i \in I}$ un insieme di polinomi di grado positivo in K[x] e $S' = \{\sigma(f_i)\}_{i \in I}$ il corrispondente insieme di polinomi in L[x]. Se F ed M sono due campi di spezzamento rispettivamente di S su K e di S' su L allora sono isomorfi.

Dimostrazione. Supponiamo dapprima che S consista di un singolo polinomio $f \in K[x]$. Procediamo ora per induzione su n = [F : K]. Se n = 1 allora F = K ossia f si fattorizza completamente su K. Allora $\sigma(f)$ si fattorizza su L e quindi L = M. Pertanto l'isomorfismo cercato è $\sigma: F = K \longrightarrow L = M$. Supponiamo quindi che l'affermazione sia vera per

n-1 e dimostriamola ora per n.

Sia [F:K]=n>1 e sia $g(x)\in K[x]$ un fattore irriducibile di f di grado maggiore di 1. Allora $\sigma(g)$ è irriducibile in L[x]. Siano a una radice di g in F e b una radice di $\sigma(g)$ in M. Allora, per la proposizione 4.1, esiste un isomorfismo di campi $\tau:K(a)\longrightarrow L(b)$ tale che $\tau(a)=b$; inoltre F ed M sono rispettivamente i campi di spezzamento di f su K(a) e di $\sigma(f)$ su L(b). Per la proposizione 3.5, $[K(a):K]=\deg(g)>1$ dove $\deg(g)$ è il grado di g. Quindi, per il teorema della torre, segue che [F:K(a)]< n. Per ipotesi induttiva, si ha quindi che τ si estende ad un isomorfismo tra F ed M. Supponiamo ora che S sia arbitrario. Sia Δ l'insieme delle terne (E,N,τ) dove $K\subseteq E\subseteq F$, $L\subseteq N\subseteq M$ e $\tau:E\longrightarrow N$ è un isomorfismo che estende

 $(E_1,N_1,\tau_1) \leq (E_2,N_2,\tau_2)$ se e solo se $E_1 \subseteq E_2$, $N_1 \subseteq N_2$ e $\tau_2|E_1 = \tau_1$. Osserviamo che $(K,L,\sigma) \in \Delta$ e quindi Δ è non vuoto. Ragionando in modo analogo alla dimostrazione del teorema 2.15, sappiamo che ogni catena ha un maggiorante e che quindi, per il lemma di Zorn, esiste un elemento massimale (F_0,M_0,τ_0) di Δ .

 σ . Δ è un insieme parzialmente ordinato dalla relazione:

Supponiamo che $F_0 \neq F$. Allora esiste un polinomio $f \in S$ che non si fattorizza in F_0 . Pertanto, poichè F contiene tutte le radici dei polinomi in S, F contiene un campo di spezzamento F_1 di f contenente F_0 . Allo stesso modo M contiene un campo di spezzamento M_1 di $\tau_0(f) = \sigma(f)$ su M_0 e possiamo quindi estendere τ_0 ad un isomorfismo $\tau_1 : F_1 \longrightarrow M_1$. Allora $(F_1, M_1, \tau_1) \in \Delta$ ma $(F_0, M_0, \tau_0) < (F_1, M_1, \tau_1) \in \Delta$ e ciò va contro l'ipotesi che (F_0, M_0, τ_0) sia massimale. Quindi $F_0 = F$ e allo stesso modo, ma usando τ_0^{-1} , si dimostra che $M_0 = M$.

Abbiamo quindi dimostrato che $\tau_0: F \longrightarrow M$ è l'estensione di σ desiderata.

Corollario 4.3. Sia K un campo e sia $S = \{f_i\}_{i \in I}$ un insieme di polinomi di grado positivo in K[x]. Se F ed M sono due campi di spezzamento di S

su K allora sono K-isomorfi.

Dimostrazione. È sufficiente applicare il teorema 4.2 utilizzando come σ l'identità di K.

Inoltre, dati $A \in B$ due insiemi non vuoti, il .

Proposizione 4.4. F è una chiusura algebrica di K se e solo se $K \subseteq F$ è una estensione algebrica e per ogni estensione algebrica E di K esiste un K-monomorfismo $\phi: E \longrightarrow F$.

Dimostrazione. (\Longrightarrow) Se F è una chiusura algebrica di K, $K \subseteq F$ è per definizione una estensione algebrica. Sia $K \subseteq E$ una estensione algebrica e sia $S = \{(M, \phi_M) \mid K \subseteq M \subseteq E \text{ e } \phi_M : M \longrightarrow F \text{ è un } K\text{-monomorfismo}\}$ parzialmente ordinato dalla relazione: $(M, \phi_M) \leq (N, \phi_N)$ se e solo se $M \subseteq N$ e $\phi_N | M = \phi_M$.

In modo analogo alla dimostrazione del teorema 2.15, otteniamo che ogni catena ha un maggiorante e che quindi, per il lemma di Zorn, esiste un elemento massimale $(Z, \phi_Z) \in S$.

Supponiamo $Z \neq E$ allora esiste $\alpha \in E$ tale che $\alpha \notin Z$. Osserviamo che α è algebrico su K e quindi su Z.

Sia f il polinomio minimo di α su Z, si ha che $\phi_Z(f)$ appartiene ad F[x] e poichè F è algebricamente chiuso $\phi_Z(f)$ ha una radice β in F. Per la proposizione 4.1 ϕ_Z si estende ad un isomorfismo $\tilde{\phi}_Z: Z(\alpha) \longrightarrow (\phi_Z(Z))(\beta)$. In particolare $\tilde{\phi}_Z$ è un K-monomorfismo a valori in F. Allora $(Z(\alpha), \tilde{\phi}_Z) \in S$ il che contraddice la massimalità di Z. Quindi Z = E.

(\iff) Poichè l'estensione $K\subseteq F$ è algebrica si ha che F è una chiusura algebrica di K se e solo se F è algebricamente chiuso.

Sia E_1 una chiusura algebrica di F. Allora, per la proposizione 2.34, $K \subseteq E_1$ è una estensione algebrica e quindi esiste un K-monomorfismo $\Phi: E_1 \to F$. Pertanto $\Phi(E_1)$ è algebrico su K e algebricamente chiuso, in quanto isomorfo ad E_1 . Inoltre, poichè F è algebrico su K, segue che $\Phi(E_1) = F$

Allora $\Phi(E_1) = F$ ossia Φ è un isomorfismo e quindi $E_1 \cong F$. Pertanto F è algebricamente chiuso.

Proposizione 4.5. F è una chiusura algebrica di K se e solo se $K \subseteq F$ è algebrica e per ogni estensione algebrica $K_1 \subseteq E$ e per ogni isomorfismo $\sigma: K_1 \to K$ esiste un monomorfismo $\phi: E \to F$ che estende σ .

Dimostrazione. Tale proposizione è un caso generale della proposizione 4.4 e si dimostra in modo analogo.

Teorema 4.6. Sia $K \subseteq F$ una estensione di campi. Allora sono equivalenti: i) F è una chiusura algebrica di K;

ii) F è un campo di spezzamento su K dell'insieme S di tutti i polinomi irriducibili in K[x].

Dimostrazione. (i \Rightarrow ii) Sia F una chiusura algebrica di K e sia G un campo di spezzamento di S su K. Pertanto G è algebrico su K e quindi, per la proposizione 4.4, esiste un K-monomorfismo $\Phi: G \to F$. Per definizione di campo di spezzamento ogni polinomio non costante di K[x] si fattorizza in G[x] e quindi in $\Phi(G)[x]$. Sia $\alpha \in F$ e sia g il suo polinomio minimo in K[x]. Allora g è della forma $g(x) = (x - \alpha)h(x) \in F[x]$. Inoltre $g(x) = (x - a_1)^{m_1}$ $(x - a_n)^{m_n} \in \Phi(G)[x] \subseteq F[x]$. La fattorizzazione è unica in F[x] pertanto $(x - \alpha)h(x) = (x - a_1)^{m_1}$ $(x - a_n)^{m_n}$ ossia esiste $i \in \{1,, n\}$ tale che $a_i = \alpha \in \Phi(G)$. Allora $\Phi(G) = F$ ossia Φ è un isomorfismo e quindi $G \cong F$. (ii \Rightarrow i) F è campo di spezzamento di S su K quindi F è algebrico su S (e su K) e ogni elemento di S si fattorizza completamente in F. Allora, per la proposizione 3.18, F è algebricamente chiuso. Pertanto F è, per definizione, una chiusura algebrica di K.

4.2 Dimostrazione dell'unicità della chiusura algebrica

Dimostrazione. Consideriamo l'insieme S dei polinomi irriducibili a coefficienti in K. Siano C ed A due chiusure algebriche di K. Allora, per il teorema 4.6, C ed A sono campi di spezzamento di S su K e in quanto tali, per il corollario 4.3, sono K-isomorfi.

Bibliografia

J.S.Milne, Fields and Galois Theory, 2012,Thomas W. Hungerford, ALGEBRA, Springer, 2000,Nathan Jacobson, Theory of Field and Galois Theory, 1994.

Ringraziamenti

Ringrazio per prima la mia relatrice Marta Morigi per la sua disponibilità e pazienza.

Ringrazio con affetto la mia famiglia e i parenti che hanno sempre creduto in me e che mi sono vicini in questo momento così importante; ma soprattutto ringrazio a mio fratello Luca che è sempre stato in silenzio durante il mio studio.

Dei ringraziamenti speciali vanno inoltre al mio ragazzo e ai miei amici più cari Gino, Crucio, Fede, Spado, Debora, Ele che mi hanno sostenuto e sopportato nei momenti più difficili dandomi affetto e gioia.