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FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI

Corso di Laurea Magistrale in Matematica

Pants Homology

for Surfaces

Tesi di Laurea Magistrale in Geometria Superiore II

Relatore:

Chiar.mo Prof.

Stefano Francaviglia

Presentata da:

Simone Marzioni

Terza Sessione

Anno Accademico 2011/2012





To my family





Preface

In this thesis we present two recent results about surfaces that play a

central role in the proofs of both the Ehrenpreise Conjecture and the Sur-

face Subgroup Theorem. Let S be a closed oriented surface and denote by

H1(S) the first singular homology group with rational coefficients. Let γ be

a closed curve immersed in S, such that [γ]H1(S) = 0. Thus there is a singular

2-chain which is bounded by γ. A priori there is no guarantee —and indeed

will be false in general— that there exists an immersed surface T bounded

by a representative of the homotopy class of γ, that is an orientation pre-

serving immersion f : T −→ S such that ∂f := f |∂T is an homeomorphism

between ∂T and a representative of the homotopy class of γ. As we said

such f doesn’t exists in general. However, if we restrict to the case of genus

g > 1 and we relax the hypothesis on ∂f to be a covering map instead of

an homeomorphism such f can be found (see Section 2.2 for counter exam-

ples without such hypothesis). In this case we say that γ virtually bounds

T . More in general, given an integral formal sum C =
∑k

i=1 niγi of closed

curves of S we can ask, as well, if there is an orientation preserving immersion

f : T −→ S such that ∂f is a covering on an homotopy representative of the

curves (γn1
1 , . . . , γnkk ) :

⊔k
i=1 S

1 −→ S. The answer is again positive under the

same assumptions on the genus. This fact was first proven by Danny Calegari

in the work [Cal09]. Moreover the work of Calegari implies the following fact.

By pair of pants we mean a topological space homeomorphic to a sphere with

three holes. Then we have that every 1-chain C, trivial in H1(S), bounds a

2-chain of immersed pair of pants. This can be interpreted by saying that

i



ii Preface

the Pants Homology is the same theory of the classical Homology.

The theory of Pants Homology has a geometric counterpart, called Good

Pants Homology, where objects are required to satisfy some geometric bounds.

If we start with an hyperbolic surface Σ, one can define the set Γε,R of the

closed geodesics of Σ with length in the interval [2R− ε, 2R+ ε], and the set

Πε,R of the immersed pants with boundary components in Γε,R. Then one

can ask if, given a chain C =
∑
riγi with ri ∈ Q and γi ∈ Γε,R such that

[C]H1(Σ) = 0, there is a rational formal sum of pants P =
∑
siΠ

i, si ∈ Q and

Πi ∈ Πε,R such that C = ∂P .

This question rise up along the recent proof of the Ehrenpreise Conjecture,

which states that for every ε > 0 and for any two hyperbolic surfaces S and

T , we can find two finite covers Ŝ and T̂ of S and T respectively, such that

Ŝ and T̂ are (1 + ε) quasi-isometrics. With (1 + ε) quasi-isometric we mean

that the two surfaces are homeomorphic and that the two metric induced

by the hyperbolic structure differs of a multiplicative factors that goes to 1

when ε → 0. J. Kahn and V. Markovic prove such conjecture in their work

[KM13] following the structure of their proof of the Surface Subgroup Theo-

rem published in [KM12]. However the proof of the Ehrenpreise Conjecture

is harder and the additional difficulties can be thought in terms of the Good

Pants Homology, that is more precisely described as the homology theory of

the curves in Γε,R and the boundaries in ∂Πε,R. One of the main question

about this theory is if the Good Pants Homology is equivalent to classical

Homology H1(S). The answer is again positive (here the fact that we have

supposed the surfaces hyperbolic is sufficient to satisfy all the necessary con-

ditions). The proof is not simple and relies also on deep results on Ergodic

Theory and Dynamical Systems. In this thesis we focus on the geometric as-

pects of the proof. We will follow the original approach of [KM13]. We want

to remark that both in the Calegri’s Pants Homology and Kahn-Markovic’s

Good Pants Homology the harder part is to prove that, given X, Y ∈ π1(S)

the class [XY ] in the homology theory in question is the same of the sum

of classes [X] + [Y ]. This fact is proven in the Pants Homology giving an
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explicit construction of an immersed surface in an example over a once punc-

tured torus, and the proof of the general situation is constructed from this

example glueing suitable pair of pants to the surface constructed. The Good

Pants Homology require a more deeper study of the curves in Γε,R, since in

general an homotopy class X ∈ π1(S) has geodesic representative not in Γε,R.

What we do is define a way to assign to each X ∈ π1(S) a closed geodesic

(X)T ∈ Γε,R
1 which is not homotopic to X, but it is homologically equivalent

to [X]H1(S). Finally, with some work, we will see that (XY )T = (X)T +(Y )T ,

and then the final equivalence between the homologies. We remark that the

definition of (·)T is not trivial, and that it is sufficiently powerful to give the

above equation for products.

In the first chapter we give some preliminaries about hyperbolic and con-

formal geometry without proofs. In Chapter 2 we give the complete proof

of the Calegari’s Immersion Theorem, and then that the Pants Homology is

equivalent to the classical Homology. In Chapter 3 we prove that also the

Good Pants Homology is equivalent to the standard homology. This is the

main chapter of the thesis. Finally in Chapter 4 we present the framework in

which is developed the proof of the Ehrenpreise Conjecture and of the Sur-

face Subgroup Theorem. In particular we sketch a proof of them stressing

when and how the Good Pants Homology is used.

1The definition of (·)T and its basic properties is one of the main subjects of Section

3.2
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Introduzione

In questa tesi presentiamo due recenti risultati riguardanti la teoria delle

superfici che giocano un importante ruolo nella dimostrazione della Con-

gettura di Ehrenpreise e del Teorema del Sottogruppo di Superficie. Sia S

una superficie chiusa e orientata e denotiamo con H1(S) il primo gruppo di

Omologia Singolare a coefficienti razionali. Sia γ una curva chiusa in S tale

che [γ]H1(S) = 0. Quindi γ è bordo di una 2-catena. Non c’è garanzia a priori

—e sarà falso in generale— che esista una superficie T immersa in S della

quale γ è bordo, ovvero che esista una immersione f : T −→ S che preserva

l’orientazione e tale che ∂f := f |∂T è un omeomorfismo tra ∂T ed un rap-

presentante della classe di omotopia di γ. Come abbiamo detto in generale

tale f non esiste. Tuttavia, se ci restringiamo al caso di superfici di genere

g > 1 e rilassiamo le condizioni su ∂f ad essere un rivestimento anzichè un

omeomorfismo tale immersione esiste (si veda la Sezione 2.2 per dei controe-

sempi in assenza di tali ipotesi). In tal caso diciamo che γ borda virtualmente

T . Più in gnerale, data una somma formale intera C =
∑k

i=1 niγi di curve

chiuse di S, ci chiediamo se esiste una immersione f : T −→ S che preserva

l’orientazione e tale che ∂f è un rivestimento su un rappresentante omo-

topico delle curve (γn1
1 , . . . , γnkk ) :

⊔k
i=1 S

1 −→ S. Anche in questo caso sarà

possibile trovare una tale f , sotto le stesse ipotesi sul genere. L’esistenza di

queste immersioni è stata dimostrata per la prima volta da Danny Calegari

nel lavoro [Cal09]. Il lavoro di Calegari implica anche la seguente cosa. Con

il termine paio di pantaloni intendiamo uno spazio topologico omeomorfo ad

una sfera con tre fori. Allora abbiamo che ogni 1-catena C, banale in H1(S),

v
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è bordo di una 2-catena di paia di pantaloni. Questo può essere interpretato

dicendo che l’Omologia dei Panataloni è la stessa cosa dell’Omologia classica.

La teoria dell’Omologia dei Pantaloni ha un corrispettivo geometrico, chiam-

ato Omologia dei Pantaloni Buoni, che richiede delle limitazioni quantitative

su alcune proprietà geometriche dei suoi oggetti. Se prendiamo una super-

ficie iperbolica Σ, possiamo definire l’insieme Γε,R delle geodetiche chuse di

Σ di lunghezza compresa nell’intervallo [2R− ε, 2R+ ε], e l’insieme Πε,R the

pantaloni immersi in Σ con bordo in Γε,R. Quindi ci possiamo chiedere se,

data una catena C =
∑
riγi con ri ∈ Q e γi ∈ Γε,R tale che [C]H1(Σ) = 0,

esiste una somma razionale formale di pantaloni P =
∑
siΠ

i, con si ∈ Q e

Πi ∈ Πε,R, tale che C = ∂P .

Questa domanda sorge durante la prova della Congettura di Ehrenpreise, la

quale afferma che, per ogni ε > 0 e per ogni S e T superfici iperboliche, pos-

siamo rivestire S e T con due rivestimenti finiti, rispettivamente Ŝ e T̂ , in

modo tale che Ŝ e T̂ siano (1+ε) quasi-isometrici. Con (1+ε) quasi-isometrici

intendiamo che le due superfici sono omeomorfe e che le rispettive metriche

iperboliche differiscono per un fattore moltiplicativo che tende ad 1 quando

ε→ 0. J. Kahn e V. Markovic hanno dimostrato questa congettura nel loro

lavoro [KM13], seguendo la struttura della (sempre loro) dimostrazione del

Teorema del Sottogruppo di Superficie pubblicata in [KM12]. Tuttavia la di-

mostrazione della Congettura di Ehrenpreise è più difficile di quest’ultima e la

difficoltà aggiuntiva va affrontata attraverso l’Omologia dei Pantaloni Buoni,

più precisamente descritta come la teoria omologica delle curve in Γε,R e dei

bordi in ∂Πε,R. Una delle principali domande che ci si pone è se l’Omologia

dei Pantaloni Buoni è equivalente all’Omologia Singolare H1(S). Avremo

una risposta affermativa anche in questo caso (e qui supporre la superficie

iperbolica sarà una condizione sufficiente) ma dimostrarlo non è affatto sem-

plice e si utilizzano profondi risultati di Teoria Ergodica e Sistemi Dinamici.

Noi ci focalizzeremo sugli aspetti geometrici della dimostrazione. Seguiremo

l’approccio originale del lavoro [KM13]. Va sottolineato che sia nell’Omologia

dei Pantaloni di Calegari che nell’Omologia dei Pantaloni Buoni di Kahn e
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Markovic il fatto principale da dimostrare è che, dati X, Y ∈ π1(S), la classe

[XY ] nella teoria omologica in questione è la stessa cosa della somma delle

classi [X] + [Y ]. Questa cosa nell’Omologia dei Pantaloni si dimostra par-

tendo da un esempio di costruzione esplicita di una superficie immersa in un

toro forato, che poi verrà utilizzata in una superficie generiaca, incollandoci

gli eventuali pantaloni necessari. L’Omologia dei Pantaloni Buoni richiede

una comprensione più profonda delle curve in Γε,R, infatti, in generale, il rap-

presentante geodetico della classe di omotopia di X ∈ π1(S) non è una curva

in Γε,R. Perciò troveremo un modo per assegnare una geodetica (X)T ∈ Γε,R
2

ad ogni classe X ∈ π1(S) in maniera tale che (X)T non sarà necessariamente

omotopica a X, ma sarà equivalene in omologia a [X]H1(S). Cos̀ı, con un pò di

lavoro, potremo dimostrare che (XY )T = (X)T + (Y )T e, successivamente,

che le due teorie omologiche sono equivalenti. Dare la definizione di (·)T
non sarà semplice (ne sarà ben posta la definizione in genarale), tuttavia la

definizione sarà abbastanza potente da portare all’equazione per il prodotto

di classi d’omotopia.

Nel primo capitolo descriveremo i concetti preliminari necessari ai capitoli

successivi, omettendo le dimostrazioni, con pricipale riguardo alla geome-

tria iperbolica e conforme. Nel Capitolo 2 daremo la prova completa del

Teorema di Immersione di Calegari, quindi proveremo che l’Omologia dei

Pantaloni è la stessa cosa dell’Omologia classica. Nel Capitolo 3 dimostr-

eremo che anche l’Omologia dei Pantaloni Buoni è equivalente all’Omologia

standard. Di fatto, questo è il capitolo principale della tesi. Infine nel Capi-

tolo 4 presenteremo il contesto in cui si sviluppano la prova della Congettura

di Ehrenpreise e del Teorema del Sottogruppo di Superficie. In particolare

daremo un breve schema della dimostrazione sottolineando come e quando

viene utilizzata l’Omologia dei Pantaloni Buoni.

2Dare la definizione di (·)T e provare le sue prime proprietà è uno degli scopi principali

della sezione 3.2
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Chapter 1

Preliminaries

In this chapter we gives the definitions and the theorems that will be

useful in the following chapters without proving anything. We start with

concepts about Riemannian geometry. A good treatment of this subject can

be found in [Pet06] and [dC92]. We omit the definitions and basic facts about

standard algebraic topology. For these subjects we refer to the book [Hat02].

Definition 1.0.1 (Riemannian Metric). A Riemannian metric over a smooth

manifold M is a family of inner products

gp : TpM × TpM −→ R

for p ∈M , such that, given two smooth vector fields X and Y , the map

p 7−→ gp(X(p), Y (p))

is C∞. The couple (M, g) is called a Riemannian manifold.

When the metric is understood we can write only M for (M, g). We

observe that an immersion of smooth manifolds f : M −→ N can pull back

an eventual metric g overN , defining gM as gMp (u, v) := gNf(p)(Tpf(u), Tpf(v)).

Definition 1.0.2 (Length). Given a curve c : [a, b] −→M in a Riemannian

manifold we define the length of c as

lba(c) =

∫ b

a

√
g(c′(t), c′(t))dt.

1



2 1. Preliminaries

Proposition 1.0.1. Any connected Riemannian manifold M is a metric

space with metric function given by

d(p, q) = inf l(c)

where the infimum vary over all the curve from p to q. The eventual (and

not necessarily unique) γ which realize such distance is called geodesic.

1.1 Conformal Geometry

The theory of conformal geometry, in particular in dimension 2, is the

right framework to study a lot of properties that touches different points of

view, such as topology, hyperbolic geometry, Riemannian geometry, holomor-

phic functions and dynamical systems. Intuitively conformal maps preserves

angles, and so conformal geometry is a geometry ”up to scalar multiplica-

tion”. A good and elementary introduction to conformal geometry can be

found in [BP92] and [Rat06].

Definition 1.1.1 (Conformal structures). Two Riemannian metrics g and

h over a smooth manifold M are said conformally equivalent if exists a real

smooth function λ : M −→ R such that g = λh. The equivalence class

of conformally equivalent Riemannian metrics of a manifold is a conformal

structure for M .

Definition 1.1.2 (Conformal Map). A diffeomorphism between two Rieman-

nian manifolds is said a conformal map if pulls-back conformally equivalent

metrics. We call Conf(M,N) the set of conformal maps from M to N .

A very important case for conformal geometry is the one given by the

plane. In fact it happens that:

Proposition 1.1.1. Given two oriented and connected Riemann surfaces X

and Y (complex manifolds of dimension 1) the set Conf(X, Y ) is the set of

all holomorphisms and anti-holomorphisms between X and Y .



1.1 Conformal Geometry 3

So, in particular, holomorphic maps on the plane or on regions of the plane

are conformal maps. The following result is fundamental for the theory of

such maps

Theorem 1.1.2 (Riemann mapping theorem). Let Ω be a simply connected

region of the plane different from the whole C. Then there exists a biholo-

morphism (a bijective holomorphism) f : Ω −→ D2 where D2 = {z ∈ C :

|z| < 1}.

More generally, we have the celebrated Uniformization Theorem

Theorem 1.1.3 (Uniformization Theorem). Let X be a 2-dimensional sim-

ply connected manifold with a fixed conformal structure. Then X is confor-

mally equivalent to one the following three Riemann surfaces:

(1) the sphere S2 = C ∪ {∞} = Ĉ,

(2) the plane C,

(3) the unit disk D2.

These theorems are classically subjects of the theory of Riemann Surfaces.

They are treat in every book about this subject, for example [For91]

Quasi-Conformal maps

We are going to introduce the concept of quasi-conformal map, that is

a generalization of a conformal map: a quasi-conformal map is a conformal

map which not only rescales lengths but also permits bounded distortions

on angles. There are several equivalent definitions of quasi-conformal maps

and such equivalences are not trivial at all. We give definitions and theorems

that we need without proofs. Most of the basics facts and a classical and

good introduction to this subject can be found in [Ahl06] and we refer to it

for the proofs of most of the facts we introduce.

Definition 1.1.3. A rectangle R in the plane C is the bounded set R(a, b) =

{z ∈ C : Re(z) ≤ a, Im(z) ≤ b}. The ratio a : b is called the module of R

written m(R).
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The module of a rectangle is a conformal invariant. Let Ω be an open

region of C

Definition 1.1.4. A quadrilateral is a Jordan region (a region bounded by

a Jordan curve) Q, with Q̄ ⊂ Ω, together with a pair of disjoint closed arcs

(called b-arcs) in ∂Q and a conformal map of Q̄ to a rectangle R(a, b) which

sends the b-arcs to the veritcal sides of the rectangle.

This definition depends on the existence of the conformal maps, which

is not trivial since depends on the Riemann Mapping Theorem. However

this gives the definition of module of a quadrilateral m(Q) = a : b. Let Ω

and Ω′ be two regions of the complex plane and f : Ω −→ Ω′ an orientation

preserving homeomorphism.

Definition 1.1.5 (Quasi-conformal map). f is a K-Quasi-conformal (K -q.c.

from now on) map if

1

K
m(Q) ≤ m(f(Q)) ≤ Km(Q)

for every quadrilateral in Ω.

Some basic properties are:

Proposition 1.1.4. If f is K-q.c. then:

(i) f−1 is K-q.c.,

(ii) the composition with a H-q.c. map gives a KH-q.c. map,

(iii) if K = 1, f is conformal.

Q.c. maps of the unitary disk D2 has some important properties.

Theorem 1.1.5 (Mori’s Theorem). Every K-q.c. map of the open unitary

disk onto itself extends to an homeomorphism on the boundary. Furthermore

if we think to S1 = R ∪ {∞} and we call the induced homeomorphism of the

boundary as h : S1 −→ S1, we have that exist a constant M(K) < 1
16
eπK

such that

M−1 ≤ h(x+ t)− h(x)

h(x)− h(x− t)
≤M



1.2 Hyperbolic Geometry 5

Such condition is called M -condition. It is also true the inverse:

Theorem 1.1.6 (M -Condition Sufficiency). Every map h satisfying an M-

condition can be extended to a K-q.c. map, with K depending only on M .

Consider the distributional derivatives fz and fz̄. We call complex dilata-

tion the measurable function µf = fz̄
fz

. If f is a homeomorphism we have

that it is a K-q.c. map if satisfy the following two conditions:

(i)f has locally integrable distributional derivatives,

(ii)|fz̄| ≤ k|fz| for some k < 1. The map f is K-q.c. with K = 1+k
1−k

This leads to the problem of searching quasi-conformal solutions for the

Beltrami equation

fz̄ = µfz (1.1)

given the measurable complex-valued function µ with ||µ||∞ < 1. The so-

lution of this problem is called the measurable Riemann mapping theorem.

Consider the quasi-conformal maps from the extended plane Ĉ = C ∪∞ to

itself normalized by fixing points 0, 1 and ∞. We have

Theorem 1.1.7 (Measurable Riemann Theorem). There is a one to one

correspondence between normalized quasi-conformal maps of Ĉ and solutions

of the Beltrami equation varying µ. Moreover the normalized solution fµ

depends holomorphically on µ

We notice that we can give the definition of K-quasi-conformal homeo-

morphism between two Riemann Surfaces X and Y as follows: f : X −→ Y

is a K-q.c. homeomorphism if it is an homeomorphism and if the lift f̃ :

X̃ −→ Ỹ between the universal covers is K-q.c.

We notice that the universal covers are one of the three individuated by the

Uniformization Theorem.

1.2 Hyperbolic Geometry

We want to present the fundamental facts of hyperbolic geometry. As in

all the preliminaries we don’t prove anything. A complete introduction to
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the subject can be found in [Rat06] and in [BP92]

Definition 1.2.1 (Hyperbolic Space Hn). Consider Rn+1 with coordinates

x1,. . . , xn+1. Then we call Hn = {(x1, . . . , xn+1) ∈ Rn+1 : x2
1 +x2

2 + · · ·+x2
n−

x2
n+1 = −1, xn+1 > 0} with the Riemannian metric given by the restriction

on it of the metric tensor

dx2 = dx2
1 + dx2

2 + . . . dx2
n − dx2

n+1.

It can be proved that Hn is a simply connected n-Riemannian manifold.

The geodesics here can be found by intersecting Hn with planes through the

origin.

There are many others models for hyperbolic space, some of them really

useful in some situations. We present them for future uses.

Example 1.2.1 (The Poincaré disk model). Consider the unitary n disk Dn

in the n-Euclidean space. If we consider the interior of Dn with the metric

tensor given by

ds2 = (
1

1− r2
)2dx2

where r is the distance from the origin, and dx2 is the Euclidean metric

tensor, we obtain a simply connected surface with constant curvature −1

which is isometric to Hn.

In this model the geodesics for the metric ds2 are the euclidean spherical

arcs orthogonal to ∂Dn, as well hyperbolic k-plane are euclidean k-spheres

orthogonal to the boundary. We also consider the limit cases of circles and

planes which are lines and planes through the origin of Dn. Finally in this

model the boundary of the disk has an interpretation in terms of hyperbolic

geometry: every geodesic in Hn can be uniquely identified by two points of

Sn−1 and every two such points uniquely determines a geodesic in Hn. Such

points are exactly the intersection points of the circle which represent the

geodesic with ∂Dn. By this interpretation is well defined ∂Hn := ∂Dn In the

particular case n = 3 we usually identify S2 = ∂H3 with Ĉ = C∪{∞} = CP1.
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Example 1.2.2 (The upper half-space model). Consider the upper half space

Rn
+ = {xn > 0} with the metric tensor ds2 = ( 1

xn
)2dx2. It is a model for Hn

(it is a simply connected space with constant curvature −1, isometric to Hn)

where geodesics are lines and circles orthogonal to the hyperplane {xn = 0}.
Note that the boundary ∂Hn, as defined in the disk model, here can be

thought as the {xn = 0} ∪ {∞} Finally, in the particular case of H2 we use

the model given by CIm(z)>0, whereas for H3 we usually identify the boundary

{x3 = 0} with C.

Remark 1.2.1. The last two model for Hn that we have discussed, with the

conformal structure inherited by the Euclidean space, are conformally equiv-

alent to Hn. That is, we can compute the angles in these models to make

computations for Hn. Moreover we can pass from one to another if we speak

about conformal invariants.

There are two important formulas useful to make geometric computation

in H2. Let A,B,C ⊆ H2 be the three geodesic edges of a triangle in H2. Let

α,β and γ the internal angles of the triangle, respectively, opposite to A,B

and C. We have the following two formulas.

Hyperbolic sine formula

sinh l(A)

sinα
=

sinh l(B)

sin β
=

sinh l(C)

sin γ
. (1.2)

Hyperbolic cosine formula

cosh l(A) = cosh l(B) cosh l(C)− sinh l(B) sinh l(C) cosα. (1.3)

for quadrilaterals we have the following Theorem

Theorem 1.2.1 (Saccheri’s quadrilaterals). Let B,D1,D2, and S be four

geodesic arcs in H2 which are edges of a quadrilateral. Suppose that D1 and

D2 are opposite sides and that l(D1) = l(D2) = d. Moreover suppose that the

two adjacent internal angles where B meets the Di’s are orthogonal. Then

the other two angles are acute and equal, and we have

sinh(
l(S)

2
) = sinh(d) sinh(

l(B)

2
).
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A quadrilateral as above is named a Saccheri’s quadrilateral.

Definition 1.2.2 (Hyperbolic Manifold). Let (M,h) a n-Riemannian man-

ifold. We say that it is an hyperbolic manifold if there is a cover Hn −→M

which is a local isometry.

We remark that usually this is a theorem and not a definition for hyper-

bolic manifolds.

In the followings we want to describe the isometries of Hn. Denote by

Isom(Hn) the space of such maps.

Proposition 1.2.2 (Trace of Isometries). Every isometry of Hn extends to

an homeomorphism of Hn = Hn ∪ ∂Hn.

Furthermore every isometry can be determined by his trace on ∂Hn.

Such dependence is the basic fact for the understanding of Isom(Hn). In

particular it can be proved that:

Isom(Hn) = Conf(Dn)

Which, in the cases n = 2 and n = 3 leads to the following equalities:

(1) Isom(H2) = PSL(2,R) =
SL(2,R)

{±I}
,

(2) Isom(H3) = PSL(2,C) =
SL(2,C)

{±I}
.

In particular isometries in the hyperbolic space are that maps which pre-

serve cross-ratio.

Definition 1.2.3 (cross-ratio). Given 4 points in u, v, p and q we define

their cross-ratio as

[u, v, p, q] =
(u− p)(v − q)
(v − p)(u− q)

We remark that this means that to an isometry of Hn is only required

to preserve angles, or, equivalently, that a unit of measure is intrinsically

definite in Hn.
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Recall that, by the Brower Fixed Point Theorem (see [Mil97]), every

element of Isom(Hn) has a fixed point in Hn. This implies a classification of

the elements of Hn

Theorem 1.2.3 (Isometry Classification). Every φ ∈ Isom(Hn) falls in one

of the following mutually excluding possibilities:

(elliptic) φ has one fixed point in Hn,

(parabolic) φ has no fixed point in Hn and exactly one point in ∂Hn,

(hyperbolic) φ has no fixed point in Hn and exactly two fixed points in ∂Hn.

If φ ∈ Isom(Hn) is Hyperbolic, then the two fixed points at the boundary

are the endpoints of a geodesic γφ that is an invariant subset for φ. We call

γφ the axis of γ.

Definition 1.2.4. (i) A discrete subgroup of PSL(2,C) is called Kleinian

group,

(ii) a discrete subgroup of PSL(2,R) is called Fuchsian group.

Proposition 1.2.4 (Limit Set). Let x ∈ H3 (resp. H2 ), let G be a Kleinian

(resp. Fuchsian ) group and let Gx ⊆ H3 (resp.H2) the orbit of x with respect

to the action of G on H3 (resp.H2). Then the subset LG ⊆ ∂H3 (resp.∂H2)

of the accumulation points for Gx does not depend on the choice of x.

We notice that if Hn/G is a closed manifold (n = 2 or 3) then LG has to

be all ∂Hn.

Definition 1.2.5. If G is a group acting on a locally compact space X, then

the action is said properly discontinuous if, for every compact K ⊆ X, there

are at most finitely many g ∈ G such that gK ∩K 6= ∅.

A Kleinian group G is non elementary if LG has more then 3 points.

Denote with H(LG) the convex hull of LG in Hn. We have the following:

Proposition 1.2.5. Let n = 2, 3 Suppose that G in non elementary and acts

freely in Hn \ LG. Then

(i) LG =
⋂
Ui where the intersection vary over all the open Ui ⊆ ∂Hn such
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that GUi ⊆ Ui.

(ii) For every G′ E G, G′ 6= {id}, we have that LG′ = LG.

(iii) H(LG) is G-invariant.

(iv) G acts properly discontinuous on Hn \ LG and on ∂Hn \ LG.

(v) The following spaces are hyperbolic manifolds:

MG = H(LG)/G,

NG = Hn/G,

OG = (Hn \ LG)/G.



Chapter 2

Pants Homology

2.1 Geometric Subgroups of Surface Groups

In this section we will prove the following fact: given an homotopy class

of closed curves in a surface it is possible to find a finite cover of the surface

where the class has an embedded representatives. This fact will be used

later in section 2.2. Practically we prove a more general result where the

embeddings are generalized to a group condition and actually all the results

have a group theoretic point of view. We need some definitions to state the

main results:

Definition 2.1.1 (Incompressible Surface). Let S be a surface. A compact

subsurface X of S is said incompressible if no component of the closure of

S \X is a disk with boundary contained in ∂X

Remark 2.1.1. It follow from the definition of incompressibility and Seifert-

van Kampen’s theorem that π1(X) −→ π1(S) is injective.

Definition 2.1.2 (Geometric Subgroup). A subgroup G of a group F is said

geometric if there exist a surface S with π1(S) = F and an incompressible

subsurface X ⊆ S with π1(X) = G.

This generalizes embeddings sufficiently:

11



12 2. Pants Homology

Theorem 2.1.1 (Geometric Surface Subgroups, [Sco78] ). Let S be a surface,

let F be a finitely generated subgroup of π1(S) and let g ∈ π1(S) \ F . Then

there exists a finite cover S1 of S such that π1(S1) contains F but not g and

F is geometric in S1

Now we can answer the original question.

Corollary 2.1.2. Let γ ∈ π1(S). Then there exists a finite cover S1 of S

such that γ can be represented by an embedded closed curve on S1.

Proof. By Theorem 2.1.1 (using some element different from γ as g) the

infinite cyclic subgroup generated by γ is geometric in a suitable finite cover

S1. Which means that we can immerse homeomorphically a cylinder C into

S1 such that the loop generating π1(C) maps to γ. That is γ is embedded in

S1.

Is better for us to deeply explain the group theoretic point of view and its

connections with the geometric one, so we need others definitions and some

results:

Definition 2.1.3 (Residually Finite Group). A group G is said to be resid-

ually finite (RF) if for any non trivial element g ∈ G there is a subgroup G1

of finite index in G which does not contain g.

Definition 2.1.4 (S-Residually Finite Group). A group G with a subgroup S

is said to be S-residually finite (S-RF) if for any non trivial element g ∈ G\S
there is a subgroup G1 of finite index in G which contains S but not g.

Definition 2.1.5 (Extended Residually Finite Group). A group G is said to

be extended residually finite (ERF) if G is S-RF for every subgroup S of G.

Definition 2.1.6 (Locally Extended Residually Finite Group). A group G

is said to be locally extended residually finite (LERF) if G is S-RF for every

finitely generated subgroup S of G
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Lemma 2.1.3 (Stability of RF-properties). If G is RF or ERF or LERF,

then any subgroup of G has the same property and so does any group K which

contains G as a subgroup of finite index.

Proof. The first part about subgroups is obvious. Let K be as in the state-

ment. If G is not normal in K we consider G0 =
⋂
k∈K k

−1Gk instead of G

(note that G0 is normal, has the same property of G and has finite index in

K). So we suppose G to be normal in K and we can take the finite quotient

F = K/G and the projection p : K −→ F .

Case 1: G is RF: take k ∈ K, then if k ∈ G we found G1 by definition of

RF for G and G1 has finite index also in K; if k /∈ G then G itself is the

subgroup we are searching for.

Case 2: G is ERF: let S ≤ K and k ∈ K \ S. S ∩ G is a normal subgroup

of S and F1 = S/(S ∩ G) is a subgroup of F . We have that K1 = p−1(F1)

contains S and has finite index in K (K1 contains G), so if k is not in K1

we have done. Suppose k ∈ K1, then we can write k = gs with g ∈ G and

s ∈ S (p(k) ∈ F1 = S
S∩G). Since k /∈ S, g can’t be in S ∩ G. So there exist

a subgroup G2 of G which has finite index in it, contains S ∩G and g /∈ G2

(ERF property of G). Note that G3 =
⋂
s∈S s

−1G2s is also a subgroup of G

of finite index which contains S∩G but not g. Note also that the normalizer

NK(G3) contains S. Let K3 be the subgroup of K1 generated by S and G3.

Then G3 is normal in K3 and the quotient is F1. Now K3 contains G3 which

has finite index in G, so K3 has finite index in K and obviously contains S

but not g (which is not contained in G3). So also k can’t be in K3 and we

have done.

Case 3: G is LERF: the proof is the same of the case 2: we have only to

note that once we have S finitely generated, S ∩G has finite index in S and

so is finitely generated too.

We recall that a cover p : (X̃, ∗̃) −→ (X, ∗) is said regular (or normal)

if for some ∗̃0 ∈ p−1(∗) we have that p∗(π(X̃, ∗̃0)) is a normal subgroup of

π1(X.∗). For a detailed treatment of regular covers and their properties see

[Hat02] 70-73.
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Lemma 2.1.4. If X is a PL manifold (possibly with boundary) with a regular

covering X̃ and covering group G we have that TC := {g ∈ G : gC ∩ C 6= ∅}
is finite for every compact subset C of X̃.

Proof. SinceX is a PL manifold of dimension n also X̃ is. MoreoverX admits

a triangulation which made it in a simplicial complex K. The simplicial

structure pulls-back to a simplicial structure K̃ for X̃ . Now the group

action of G on X̃ can be viewed as an action on K̃ since every covering

transformation can be approximated with the corresponding simplicial map,

and such simplicial approximation is homotopic to the original map. Since

every map of G is in a different homotopy class the two action of G are the

same. Now take a compact C in X̃ for which TC is infinite. The compactness

of C tell us that there are only finite many n-simplexes of K̃ meeting C and

we call their union ∆. From the infinity of TC follow the infinity of T∆. Recall

that the hypothesis of regularity for the covering means that the action of G

has to be free, that is gx 6= hx for every x ∈ X̃ and g,h ∈ G. But the number

of vertices in ∆ is finite, and simplicial maps send vertices in vertices. This

means that only a finite number of g ∈ G can send vertices of ∆ inside ∆.

So T∆ is finite and also TC is.

Lemma 2.1.5. Let X be a PL manifold with the same hypothesis of Lemma

2.1.4. Then the following conditions are equivalent:

(i) G is RF,

(ii) if C is a compact in X̃ then G has a subgroup G1 of finite index such

that gC∩ = ∅ for every non trivial element g of G1,

(iii) if C is a compact in X̃ then the projection map X̃ −→ X factors through

a finite covering X1 of X such that C projects homeomorphically into X1.

Proof. (ii)⇐⇒ (iii) is obvious taking X1 = X̃/G1.

Suppose (i) true and let C be compact in X̃, then by 2.1.4 we have that

TC = {g ∈ G : gC ∩ C 6= ∅} is finite. So take G1 =
⋂
t∈TC Gt where Gt is

a group from the RF property which does not contains t. G1 satisfy (ii) by

definition.
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Now suppose that (ii) hold, let g be a non trivial element of G and x be a

point of X̃; use (ii) with C = x ∪ gx, then g /∈ G1 and we have proved that

G is RF

Lemma 2.1.6. Let X be a PL manifold with regular covering X̃ and covering

group G. Then G is LERF ⇐⇒ for any given f.g. subgroup S of G and

a compact subset C of X̃/S there is a finite covering X1 of X such that the

projection X̃/S −→ X factors through X1 and C projects homeomorphically

into X1.

Proof. (⇐). Let S be a f.g. subgroup and g ∈ G \ S, x ∈ X̃ and C in X̃/S

be the projection of x ∪ gx.

By hypothesis we get X1 = X̃/G1 a finite cover of X and clearly G1 can’t

contains g since x∪gx projects homeomorphically into X1. Hence G is LERF.

(⇒). Let S and C be as in the hypothesis, p : X̃ −→ X̃/S the projection and

Y = p−1(C). From the definition of covering we can easily find a compact

D ⊆ Y with p(D) = C. So T = {g ∈ G : gD ∩ D 6= ∅} is finite by lemma

2.1.4. By LERF of G we can find G1 which has finite index, contains S and

G1 ∩ T = S ∩ T (this last requirements is the same of ”excluding a finite

set of elements from G1”, that is we can ask a finite number of elements of

T to not be in G1 by definition of LERF). Then X1 = X̃/G1 works (note

that D is untouched by the new elements we added to S, so its image C go

homeomorphically into X1 ).

Now we restrict to the case of surfaces. Recall that every topological

surface has a PL structure.

Lemma 2.1.7 (Incompressible Subsurface Lemma). Let S be a surface such

that π1(S) is finitely generated and let C be a compact subset of S. Then there

is a compact, connected, incompressible subsurface Y of S which contains C

such that the natural map π1(Y ) −→ π1(S) is an isomorphism.

Proof. Choose a basepoint ∗ for S and a finite set of generators for π1(S, ∗).
For each such generator we consider the pointed map σi : (S1, 0) −→ (S, ∗)
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that maps S1 onto the generator and 0 to ∗ and we take a regular neighbour-

hood N of the union

C ∪ (
⋃
i

σi)

which is a subsurface of S. We may need to attach to N some 1-handles

to make it connected, and some 2-disks to make it incompressible. So we

obtain the final subsurface Y for which π1(Y ) −→ π1(S) is surjective by

construction and injective because Y is incompressible.

Lemma 2.1.8 ((LERF ↔ Geometric) Lemma). Let S be a surface. Then

π1(S) is LERF if and only if given a finitely generated subgroup F of π1(S)

and g ∈ (π1(S)−F ) there is a finite cover S1 of S such that π1(S1) contains

F but not g and F is geometric in S1

Proof. The if part is trivial. Now suppose that π1(S) is LERF and we are

given a finitely generated subgroup F of π1(S) and g ∈ (π1(S) − F ). Let

SF denote the covering of S corresponding to F . Pick x ∈ S̃ and let C

denote the projection of x ∪ gx into SF and use the Incompressible Surface

Lemma 2.1.7 to obtain an incompressible SF ⊇ Y ⊇ C with π1(Y ) = π1(SF ).

Now Proposition 2.1.6 tell us that S has a finite covering S1 through which

factorize the projection SF −→ S and Y projects homeomorphically into S1.

This concludes the proof.

So by this lemma we have that Theorem 2.1.1 is equivalent to prove that

every surface group is LERF, that is what we will prove. We start discussing

a simple example, which contains the idea of the proof for the general case.

Geometrically is the torus and Klein bottle case.

Lemma 2.1.9. The group G = Z× Z is RF.

Proof. G acts on the plane R2 as the group of translations. A fundamental

domain for this action is a square Q with side 1 and the action of G on

the plain tessellates it with infinite copies of Q. By Lemma 2.1.5 we have

to prove that given a compact C ⊆ R2 there is a finite index subgroup

G1 such that for every non trivial g ∈ G1 we have gC ∩ C = ∅. Every
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compact C ⊆ R2 is contained in a finite union of fundamental domains

X. Eventually joining finite others fundamental domains we can suppose

X is contained in a big square in the sense that exists a k ∈ N such that

X ⊆ {(x, y) ∈ R2 : −k ≤ x, y ≤ k}. So we consider such big square instead

of X and take G1 = (2k+1)Z×(2k+1)Z as subgroup. Now G1 has obviously

finite index in G and send our big square in disjoint copy of it.

A similar argument of the previous proof can be used to prove

Proposition 2.1.10. G = Z× Z is LERF.

Proof. We want apply Lemma 2.1.6. Let S a finitely generated subgroup of

G. Recall that the only subgroups of Z are of the form kZ with k = 0, 1, 2, . . . ,

so the only subgroups of G with infinite index are of the form kZ×{0} or are

the trivial subgroup. So the space R2/S is a cylinder and has non compact

fundamental domain that is a vertical or horizontal strip of the plain that we

can suppose F = {(x, y) ∈ R2 : 0 ≤ x ≤ k}. Let C be a compact subset of

the cylinder R2/S. Since the map p : R2 −→ R2/S is a covering we can find

a compact D ⊆ R2 with P (D) = C and D ⊆ F . Now since D is compact we

can find an h ∈ N such that D ⊆ F̄ = {(x, y) ∈ F : 0 ≤ y ≤ h}. Now we

have G1 := kZ× hZ ≥ kZ× {0} = S so the map

R2/S −→ R2

Z× Z

factors through the space R2/G1. Furthermore D ⊆ F̄ ⊆ F so C maps

homeomorphically in our new quotient space as required by Lemma 2.1.6.

Now we are going to study free groups or, equivalently, non-closed sur-

faces. This case is easier than the closed case and we prove it first to give a

simpler version of the proof which motivates the final proof.
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Non-closed Surfaces

Theorem 2.1.11 (Geometric non-closed surface subgroup theorem). Let S

be a non closed surface, let F be a finitely generated subgroup of π1(S) and

let g ∈ π1(S) \ F . Then there is a finite covering S1 of S such that π1(S1)

contains F but not g and F is geometric in S1. Further F is a free factor of

π1(S1).

By Lemma 2.1.8 we have the equivalence of the previous theorem with

the following:

Theorem 2.1.12 (LERF for non-closed surfaces). Let G be a free group, let

F be a finitely generated subgroup of G and let g ∈ G \ F . Then G has a

subgroup G1 of finite index which contains F but not g. Further F is a free

factor of G1.

Proof of Theorem 2.1.11 First we note that we cn suppose the surface

S to be compact. Indeed once we proved Theorem 2.1.12 for groups of

compact surfaces we have that it holds for every finitely generated free group

and, then, it holds for every free group (this implication is obvious). Then

also Theorem 2.1.11 holds for every surface (compact or not). So let S be

a compact surface with boundary. We can think to S as a 2-disk D2 with

identifications in pairs on arcs of the boundary. In particular D2 can be made

to be a fundamental region of the universal covering space of S. That is ∂D2

divided in 4n arcs, where n is the rank of the free group π1(S), identified

such that arcs lying in the interior of S are alternates with arcs lying in ∂S.

The arcs of the first type need to be oriented so that the identifications will

be orientation preserving, and we label these arcs with integers from −n to

n so that the arc i is identified with −i. Now every cover of S is a countable

collection of copy of D2 with all the labelled edges identified (coherently with

the orientations) in pairs with the same label of opposite sign. The converse

is also true: every such collection is a projection to S which is the standard

projection restricted to every copy of D2. Now let F be a finitely generated

subgroup of π1(S) and g ∈ π1(S)) \ F . Then there is a based covering
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p : SF −→ S with p#(π1(SF )) = F < π1(S). Take a path l in SF starting in

the basepoint of SF and such that p(l) represent g. Note that since g /∈ F ,

l must be not closed. By the incompressible surface lemma (2.1.7) we find

a subsurface Y of SF containing l (an l compact as described above can be

always found easily since p(l) is compact). Now let X be the union of the

finite many copies of D in SF which meets Y . We can restrict the covering

SF −→ S to the projection X −→ S which is not a covering since ∂X can

have labelled edges not glued with anything. However we can glue them in

allowable pairs since every copy of D has exactly one edge i and one −i and

they can only be glued in pairs. We obtain a finite covering S1 containing Y

thus π1(S1) contains F and F is geometric in S1. Obviously g /∈ π1(S1) since

l is not closed. To see that F is a free factor of π1(S1) we recall that Y is

incompressible in SF and Y ⊆ X ⊆ SF so we have π1(X) = π1(Y ) = π1(SF ).

We recall from homotopy theory that if we glue two edges of the boundary

surface so that it remains non-closed, we are adding a free factor of rank one

to its fundamental group (in general if we glue the vertices of a segment to

a topological space we are adding a free generator to the π1 of the space).

So when we glue the edges of ∂X we add free generator to the fundamental

group of Y

Closed surfaces

Consider the hyperbolic plane H2 and fix a point ∗ on it. Consider five

geodesic rays γi, starting from ∗ with direction vi, i ∈ Z
5Z . Suppose that the

smaller unsigned angle between vi and vi+1 is exactly 2π
5

for every i. Then let

pi be the point of γi at distance r from ∗ for an arbitrary r > 0. Taking the

geodesic arcs between pi and pi+1 we have constructed a regular pentagon

Pr in H2. By the Gauss-Bonnet theorem for polygons we have Area(Pr) =

3π−5α where α is an internal angle of Pr. Since we can get pentagons small

as we wish taking r small, we can find pentagons with internal angles near to

the euclidean case, i.e. we can find all the five angles greater then π
2
. However

letting r → ∞, we can go near as we wish to an ideal pentagon, that is a
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pentagon with every vertex in ∂H2, and then Pr have all angles near 0. So in

the middle there is an r0 for which we get a right angled pentagon Pr0 = P .

Define Γ the subgroup of Isom(H2) generated by the five reflections in the

sides of P (precisely in the geodesics individuated by the sides). Since every

internal angle of P is π/2 the translates of P by the action of Γ tessellates

H2. Furthermore P is a fundamental region for this action. Finally denote

with L the set of all the geodesics obtained translating by translations of Γ

from the sides of P .

Figure 2.1: The set L.

2
3

4

5

1

Figure 2.2: Right-angled pentagon on the left and a right angled octagon

made of pentagons on the right.

Now we can glue four pentagons isomorphic to P to obtain a right angled
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octagon as in figure 2.2, that, with the indicated identifications, represent

a closed surface F with χ(F ) = −1 . Define the following subgroup G

of Γ: called x1, x2, x3, x4 and x5 the five reflections which generate Γ,

consider the subgroup generated by the four elements x1x2x5, x1x4, x3x5

and x1x3x1x5. This group G acts on the octagon in figure 2.2 identifying

the four pairs of sides as shown in the figure so the octagon is a fundamental

region for G. Furthermore the isometry x1x2x3 is orientation reversing (since

it is the composition of three reflection) whereas all the other generators

are orientation preserving, that means that F is non orientable. By the

classification theorem for topological surfaces we have determined uniquely

the topology of F that is the connected sum of a torus with a real projective

plane. Note that since we used four pentagons we have that the index of G

in Γ is 4 (in particular is finite). Now recall that the fundamental group of F

can be calculated from the Seifert - Van Kampen theorem adding a Moebius

strip to a punctured torus, and obtaining

G = π1(F ) =< a, b, z|[a, b]z−2 > .

Lemma 2.1.13. Every closed surface S with χ(S) < 0 is a covering space

for F .

Proof. Every such surface is a connected sum of many tori T and projective

planes U , with at least one torus. First we see the lemma for S = T#T , the

closed orientable surface of genus 2 with

π1(S) =< a1, b1, a2, b2|[a1, b1][a2, b2] > .

Consider the subgroup < a, b, z−1az, z−1bz > of π1(F ) and note that

[a, b][z−1bz, z−1az] = [a, b]z−2 = id,

so it is isomorphic to the fundamental group of S. So there exist a cover F̃

of F with π1(F̃ ) mapped isomorphically to that subgroup. But the topology

of a surface is determined by his fundamental group and F̃ must be home-

omorphic to S. Now every orientable surface with χ < 0 is a cover of T#T

as well every non-orientable surface with χ < 0 is a cover of F .



22 2. Pants Homology

We want prove that every surface group is LERF that, since Lemma 2.1.8,

is equivalent to prove Theorem 2.1.1. Suppose that the group G = π1(F ) is

LERF, then by Lemma 2.1.13 and the topological classification of surfaces,

we have done (remember the stability of the LERF property in Lemma 2.1.3).

Theorem 2.1.14. The group G = π1(F ) is LERF

Proof. Let S be a finitely generated subgroup of G, C be a compact in H2/S

and p : H2 −→ H2/S be the covering map. Let D be a compact of H2 such

that p(D) = C. We are searching for a subgroup G1 with S ⊆ G1 ⊆ G with

finite index in G and such that for every g ∈ G1 is verified that g ∈ S every

time that gD ∩D 6= ∅. By Lemma 2.1.6 will come that G is LERF since C

will project homeomorphically into H2/G1. From the Incompressible Surface

Lemma 2.1.7, we can find an incompressible subsurface C1 of H2/S such that

C ⊆ C1 and π1(C1) −→ π1(H2/S) is the natural isomorphism induced by the

inclusion. Let Y denote p−1(C1) which is a connected surface in H2, since C1

is incompressible. Recall the set L defined by translations of P . Consider a

line l ∈ L which does not meet Y . Then Y is completely contained in one of

the two half-planes individuated by l. Consider the intersection of all such

half-planes varying l ∈ L and denote it with Ȳ . It is convex and union of

pentagons by definition. Now note that Y is S-invariant by definition and

so Ȳ too since S is a subgroup of Γ and Ȳ is the smallest set of pentagons

containing Y . It follow that p|Ȳ is a cover onto its image p(Ȳ ) ⊆ H2/S which

will be union of pentagons. Now consider the projection of the lines p(L).

By definitions of Y and Ȳ if an l ∈ L meets the interior of Ȳ , then p(l) has

to meet C1. But C1 is compact and so only finitely many such projections of

lines meet it. So p(Ȳ ) is compact. Now let X be a fundamental region in Ȳ

for the action of S on it. Define Γ2 the group generated by the reflections in

the sides of Ȳ . Since all the vertices of Ȳ have internal angle equal to π
2
, it

must be a (not necessarily compact) fundamental region for the action of Γ2

onto H2. Take Γ1 < Isom(H2) the subgroup generated by Γ2 and S. Since

every s ∈ S leaves Ȳ invariant it conjugates elements of Γ2 to other elements

of it. So Γ2 is normal in Γ1 and the quotient is isomorphic to S which implies
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H2/Γ1 = (H2/Γ2)/S. Since Γ2 is generated by reflections on sides of Ȳ , it

follow that X must be a compact fundamental region for the action of Γ1 on

H2. In particular Γ1 has finite index in Γ. Let D be a compact in the interior

of Ȳ which verify p(D) = C ⊆ C1 and let g ∈ Γ1 such that gD meets D.

Then g(int(Ȳ )) meets int(Ȳ ), so g is not generated by reflections of Γ2 and

it must be in S. Then G1 = Γ1 ∩G has all the required properties.

2.2 Immersed Surfaces

Let M and N be two oriented, not necessarily connected, manifolds (pos-

sibly with boundary) with dimN ≤ dimM .

Definition 2.2.1 ((Positive) Immersion). A continuous function f : N −→
M is an immersion if it is a local homeomorphism on its image. It is a positive

immersion if it is orientation preserving.

Note that the restriction of f to the interior of N is a local homeomor-

phism on M , as well the restriction to ∂N .

Let S, T compact connected surfaces, possibly with boundary.

Definition 2.2.2 (Bounded Immersion). Let γ :
⊔
i S

1 −→ S be an im-

mersion of an oriented 1-manifold in S. We say that γ bounds a positive

immersion f : T −→ S if there exists an orientation preserving homeomor-

phism ∂f : ∂T −→
⊔
i S

1 such that the following diagram commutes

∂T T

⊔
i S

1 S

................................................................................ .......................
.......
......

...................................................................................
.....
.......
.....

∂f

...................................................................................
.....
.......
.....

f

...................................................................... ............
γ

We say that γ rationally bounds (or virtually bound ) f if we allow the

map ∂f to be an orientation preserving covering map of finite degree instead

of an homeomorphism.
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We can extend the definition of rationally bounded immersion to a ra-

tional sum of closed curves. Let C =
∑n

i=0 riγi, for some ri ∈ Q and γi

immersed 1-manifolds that we suppose connected for simplicity. Taking a

common multiple we can suppose each ri to be integer. Then say that C

rationally bounds if γ = (γr11 , . . . , γ
rn
n ) :

⊔
i S

1 −→ S rationally bounds as

defined above.

Now we can state the main result of this section. It was originally proved

in [Cal09]. When we write H1(S) we mean the first homology group of S

with rational coefficients.

Theorem 2.2.1 (Calegari’s Immersion Theorem). Let S be a compact, con-

nected orientable surface (possibly with boundary) with χ(S) < 0. Let C =∑
rigi be a finite rational sum of homotopy classes of oriented closed curves

gi such that C is trivial in H1(S). Then there exists a rational number R0

such that ∀R > R0, R ∈ Q the 1-manifold identified by R∂S+
∑
rigi virtually

bounds an immersed surface.

Since every topological surface S as in the statement admits at least an

hyperbolic structure, we can realize every immersion of 1-manifolds in the

statement with geodesic representatives.

The following example remarks the relation between negative character-

istic and Theorem 2.2.1 and stress the non triviality of the statement.

Example 2.2.1 (Necessity of the negative Euler Characteristic). Consider

the torus S1 without punctures, with H1(S1) generated by a and b. It has

Euler characteristic χ(S1) = 0. Then there is no positive immersed surface f :

T −→ S1 rationally bounded by three closed curves represented by a+b−ab.

Proof.

Fact 2.2.2. f can be taken surjective.

Proof. We will prove that given an f as in the hypothesis we can find another

surjective immersion f̃ in the same homotopy class. First of all note that

a connected boundary component δ of T is a circle so a neighbourhood of
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it in T ( which is the union
⋃
x∈δNx with Nx a neighbourhood of x in T )

is homeomorphic to a cylinder Cδ. So a new map f̃ which is the same of

f outside Cδ and is homotopic to f on Cδ is in the same homotopy class

of f as a map of all T . In particular this means that if we have another

representative of the homotopy class of f(δ) we can homotope f to have

a new immersion bounded by this new representative. Take a rectangular

fundamental domain with oriented pairs of opposite sides representing a and

b. We can think to this rectangle as the compact region of R2 defined as

R = {0 ≤ x ≤ A, 0 ≤ y ≤ B} with A,B ≥ 0, with orientation on the sides

given by the increasing direction of the axis x and y. In this representation

the diagonal of the rectangle oriented from (A,B) to the point (0, 0) is in

the homotopy class of −ab. So we can start with f bounded exactly by

this curve plus the sides a and b. Since the immersion is positive we can

suppose that the points of R satisfying y ≤ B
A
x are in the image of f . Now

consider the family of curves all homotopic to −ab represented in R by the

equations y = B
A
x+ q varying q ∈ [0, B]. Note that for q 6= 0 we need also to

consider the segment in R individuated by y = B
A
x−B + q in order to have

a representative of −ab inside R. So we can homotope f along this family

of curves for the boundary −ab: this ensure at every stage of the homotopy

that all the points satisfying y ≤ B
A
x+ q are in the image of the immersion.

In particular at the end of the homotopy we have a srjective immersion

Fact 2.2.3. T must have at least 3 boundary components. In particular

χ(T ) < 0

Proof. Let γa ,γb and γ−ab be the three immersions from S1 to S1 which

are homotopic to a, b and −ab respectively and bounds f(T ). Then by

Definition 2.2.2 ∂f must be a cover over the disjoint union of the three copy

of S1 mapped as above. So there must be at least 3 boundary components

on T .

Now take a triangulation of S1 such that a, b and −ab are edges and the

degree (or valence) of every vertex is 6. Such a triangulation exists, since
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°

a

b

ab°°

Figure 2.3: A Triangulation of the torus with one vertex of degree 6

one can be found cutting S1 along γa and γb so that we obtain a rectangle,

and then considering the two triangle individuated by the diagonal of the

rectangle, that can be thought as γ−ab since what we seen in 2.2.2 (see Figure

2.3).

Now f pulls-back the triangulation over T : for it, first we can pull-back

every vertex to a disjoint union of points. Since f is a local homeomorphism

we can pull-back every path in a union of disjoint paths. Finally we have

the 1-skeleton so we can fill the triangles accordingly with f (note that we

are using the surjectivity of f 2.2.2). So we have a triangulation of T with

the property that in every vertex in the interior of T has valence 6 (since f

is a local homeomorphism) whereas the vertices in the boundary of T have

valence 4, in fact the boundary is a part of the triangulation and map to an

edge of the triangulation over S1 but the three edges intersecting the vertex

and cutting themselves, so exactly two edges are in each side of the third.

Take two distinct but equal copies of T and glue them along the boundary

components. We obtain a new surface 2T without boundary and with a new

triangulation with every vertex of valence 6. If we call V the number of

vertices in 2T , E the number of edges, and D the number of triangles we

have from the discussion above

6V = 2L (2.1)
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while the following equation is true for every triangulation

3D = 2L (2.2)

Together (2.1) and (2.2) gives the Euler characteristic χ(2T ) = 0. But 2T

is a closed surface and χ classify closed surfaces: 2T has to be a genus one

surface whereas fact 2.2.7 say that we have glued two surface with at least

three boundary components, and so the genus of 2T has genus at least 2.

We want to stress te fact that the hypothesis of virtually bounds of The-

orem 2.2.1 can’t be relaxed.

Example 2.2.2 (Necessity of the virtually hypothesis). Consider the ori-

ented topological surface S with genus 2 and 1 boundary component. We

fix the basis for the group π1(S, ∗) =< a1, b1, a2, b2 >. Now consider the free

homotopy class of γ = [a1, b1]2[a2, b2](in Figure 2.4 we can see an oriented

representative of γ). Obviously it is trivial in homology so by our theorem it

virtually bounds some subsurface. However none of its representative bounds

any immersed subsurface.

R1 R2
R3

°

Figure 2.4: A surface S of genus 2 with 1 punctures. The curve γ divides

the surface in three regions.

To prove it suppose f : T −→ S a positive immersion bounded by a

geodesic representative of γ for an hyperbolic metric g (with abuse of notation

we call gamma both the representative and the homotopy class). We notice

that γ have a self intersection point p. Then S \γ is made of three connected
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components R1, R2 and R3 (we refer to Figure 2.4 for the notation), and γ \p
is made of two arcs γ1 (between R1 and R2) and γ2 (between R2 and R3). We

fix a triangulation ∆(S) = (V,E, F ) of S with the condition that p ∈ V and

the two components of γ \p are two edges of E. In this way the triangulation

∆(S) restricts to a triangulation ∆(Ri) on every Ri’s. We observe that ∂T

has exactly 1 boundary component which wraps once around γ (because the

immersion is bounded by γ), then each Ri is completely contained in f(T ),

or meets f(T ) only in the boundary (Ri ∩ f(T ) ⊆ γ). Then T is made as

union of many copies of some Ri’s and we can pull-back the triangulation

∆(Ri) on T . In particular if we consider the orientation of γ given in Figure

2.4 we found that R3 is not in the image of f , since T has only 1 boundary

component. Now we want compute the Euler Characteristic of T from the

pull-back triangulation. We proceed as follows: the preimage of γ is one to

one on ∂T except in the point p which has two preimages p̃1 and p̃2. If we

go along γ1 starting in p and following the orientation of γ we have a copy

of R1 on the left. So we can pull-back a copy of the triangulation ∆(R1)

on T . Now we go along γ2, where on the left we have R2, then we can

pull-back a copy of ∆(R2) on T . So we are passed over all the boundary

∂T on T . However there may be other preimages of γ1, since a priori we

don’t know what happen on T away from the boundary. For any vertex of

∆(R2) we can find a concatenation of edges of ∆(R2) that ends on a vertex

in γ1. Then every time we pulls-back γ1, except the one that lift into ∂T , we

have to pulls-back an entire copy of ∆(R2). We know that the triangulation

∆(R2) pulls-back one to one on T . Then we have exactly a copy of f−1(γ1)

not belonging to ∂T . In a similar way we see that any copy of ∆(R1) that

pulls-back on T is on the left of a pull-back of γ1. Then we have that the

triangulation on T is made of two copy of ∆(R1) and one copy of ∆(R2).

Then we can compute χ(T ) as the sum of the χ of the pull-back’s, and this

gives χ(T ) = χ(R1) + χ(R1) + χ(R2) = −1 − 1 − 2 = −4. However ∂T has

only one connected component, then χ(T ) has to be a number congruent to

1 mod 2. This proves that can not exists a positive immersion of a surface
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bounded by γ.

In order to prove the main result we need the following technical lemmas.

Lemma 2.2.4 (Common Extension Lemma). Consider a compact, oriented

and connected surface T with genus g ≥ 1 and χ(T ) < 0. Let δ ⊆ ∂T be a

disjoint union of boundary component of T and f : δ −→ γ be an immersion

in a 1-manifold γ, with positive degree ni in each component of δ. Let N be

a common multiple of all ni. Then there exists a finite covering π : T̃ −→ T

such that π ◦ f = f̃ : δ̃ −→ γ has degree N in each component of δ̃.

Proof. There exists a double cover T ′ of T which doubles the number of

components of ∂T . We write δi for the connected component of δ which

maps with degree ni on γ. δi has exactly two lifts εi,1 and εi,2 on ∂T ′. We

denote with δ′ the preimage on T ′ of δ. We want to define a map

Φ : π1(T ′) −→ Z
NZ

such that Φ(εi,1) = ni and Φ(εi,2) = −ni. Obviously we have Φ(δ′) = 0 and

so (eventually extending to 0 on other components) we can ask Φ(∂T ′) = 0.

So we can extend Φ to the whole π1(T ′). Finally we found the finite cover

p : T̃ −→ T ′ defined by

p∗(π1(T̃ )) = ker Φ.

Note that Φ(ε
N/ni
i,j ) = ±N

ni
ni = 0 mod N that is N

ni
< εi,j >⊆ ker Φ. Then

the εi,j’s lift to boundary components ε̃ which maps with degree N to γ.

Remark 2.2.1. For each T with χ(T ) < 0, eventually passing to a cover, we

can suppose genus(T ) > 0 . For it a 4-holed sphere is double covered by a

4-punctured torus (see figure in the left of 2.5), and we can do the same for

n-punctured spheres, n ≥ 4, which is covered by a (2n− 4)-punctured torus.

The 3-holed sphere is covered by the 4-holed sphere (see figure in the right

of 2.5).

Lemma 2.2.5 (Immersion Sum Lemma). Let S be a compact, oriented and

connected surface with χ(S) < 0 Suppose that C1 and C2 are two chains
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Figure 2.5: On the left there is a 4-holed torus covering a 4-holed sphere. On

The right there is a 4-holed sphere covering a 3-holed sphere.

which virtually bounds two positive immersed surfaces T1 and T2 satisfying

χ(T1),χ(T2) < 0. Then the chain C1+C2 virtually bounds a positive immersed

surface in S, which has negative χ.

Proof. x an hyperbolic structure over S. Write C1 =
∑
rigi and C2 =

∑
sjhj

. If hj 6= gi, ∀i, j we can take the disjoint union of the two surface and there

is nothing to be proved. Actually we can also consider the sum surface if

gi = hj and ri has the same sign of sj. So let g be an homology class of

the remaining case, with geodesic representative γ (such a representative is

not unique but exists always for χ(S) < 0). Let δ1 ⊆ ∂T1 and δ2 ⊆ ∂T2

be the connected components which maps on γ. Eventually applying lemma

2.2.4 to both T1 and T2 we can assume that exists N ∈ N such that every

component of δi maps on γ with degree exactly N . So we can glue the two

surfaces along these components (recall that we are in the case with degree
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of opposite signs) providing a new immersion bounded by C1 +C2 (Actually

we have to do this for all g with opposite sign in the two sums ). Note that

since we are glueing or considering the disjoint union of the surfaces Ti or of

finite covering of them, the Euler characteristic of all immersed surface we

have constructed is negative.

The punctured torus case

Now we study, as an example of Theorem 2.2.1, the case of the n-

punctured torus S1,n. We fix the notation for the generators {[a], [b]} of
H1(S1,n,Z)

H1(∂S1,n,Z)
. We start with the once punctured torus S1,1. In the homotopy

class of a and b we can find two generators for π1(S1,1, ∗). We notice that

[a, b] is, then, in the homotopy class of ∂S1,1. See figure 2.6 for a picture of

the once punctured torus we are considering.

a

b

"    #

a b;

Figure 2.6: A non simply connected fundamental domain for the once punc-

tured torus

Proposition 2.2.6. The chain C = a + b − ab + 2[a, b] bounds a positive

immersed surface f : T −→ S1,1.

Proof. We will give an explicit construction of the surface. Fix an hyperbolic

structure on S1,1. Consider the 4-holed sphere T with π1(T ) freely generated
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by x, y and z. We define the map f∗ : π1(T ) −→ π1(S1,1) sending

x 7→ bab−1,

y 7→ a−1ba,

z 7→ b−1a−1.

We observe that f∗(xyz) = [a, b]2, then every boundary components is mapped

in one of the free homotopy classes that appear in the sum C. This assign-

ment correspond to the following construction: consider the boundary of T

subdivided in arcs as in figure 2.7, then labels every edge with a letter be-

tween a,b,a−1,b−1 as in the figure; then f send every boundary component

of T in the geodesic representative of the free homotopy class determined by

the letter in the labels along the component. We observe that the boundary

components in the Figure 2.7 represent the four homotopy class in the chain

C: the ”external” component is mapped to 2[a, b], the three ”internal”, re-

spectively, a, b and −ab. This identify an unique homotopy class for the map

f : T −→ S1,1. We need such class to be the class of an immersion, which is

a local property. Having the homotopy class of f is the same thing to have

an immersion for the spine Σ of T into S1,1,. We can draw such spine as the

graph on Figure 2.8. In such graph the numbered vertices are that points of

the spine where meets path that are mapped in different homotopy class in

S1,1. By the natural immersion Σ ↪→ T , we can consider four crosses of T ,

that are contractible neighbourhoods of the vertices inside T , not intersecting

each other. They are numbered in Figure 2.7 with numbers inside circles. In

order to see that we can find an immersion in the class of f : T −→ S1,1 it

is sufficient to see that f maps every cross in figure 2.7 homeomorphically in

a cover of S1,1. Figure 2.9 exhibits an explicit immersion in a cover of S1,1,

where all the crosses are immersed. This is sufficient to see that f is in the

homotopy class of an immersion.

Remark 2.2.2. In this case we don’t need to use a virtual bounding.
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Figure 2.7: The surface T as a 4-holed sphere with the boundary subdivided

into arcs with labels.

Remark 2.2.3. From the Immersion Sum Lemma 2.2.5 and the obvious fact

that ∂S bounds S, it follows that a + b − ab + n[a, b] rationally bounds

immersed surface in S1,1 for n ≥ 2.

Fact 2.2.7. Let γ be a closed curve in S1,1 such that there exist p, q ∈ Z such

that [γ] = p[a]+q[b] in H1(S1,1,Z). Let dγ denote a positive sum of boundary

components of S1,1. Then there exists an n ∈ Z such that γ − pa− qb+ ndγ

virtually bounds a positive immersed surface in S1,1.

Proof. Represent the torus like a rectangle with two sides labelled a and

other two labelled b. Since we have a punctured torus we need to remove
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4 3

1

2

Figure 2.8: The spine Σ of the surface T realized as a graph.

an open disc inside the rectangle. Now consider the cover represented by

de rectangle with sides pa and qb, with pq disks Di removed (it is a torus

with pq punctures). Put all these punctures close each other and consider a

closed simple curve δ such that all the punctures are in the same side of δ.

So we can orient δ and the Di to have δ =
∑
Di in homology (in other words

δ −
∑
Di bounds a positive immersed surface). Obviously the diagonal γ̃ of

the pq-cover is a lift of γ and from 2.2.6 we have that γ̃−pa−pq+2δ bounds

an immersed surface in the pq-cover. Now using the Immersed Sum Lemma

2.2.5 (between this last surface found and the surface bounded by δ−
∑
Di)

we obtain an immersed surface in the pq-cover that can be projected to an

immersed in S1,1.

Proposition 2.2.8. Let [γ] = α[a] + β[b] + ∂γ be the representative of the

homology class of an embedded curve γ in H1(S1,n,Z) where n ≥ 1 and ∂γ

is represented by a sum of positive components of ∂S1,n. Then there exist

another positive sum of boundary components Dγ such that γ−αa−βb+Dγ
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Figure 2.9: This is an immersed view of the surface in Figure 2.7 in a cover of

the once punctured torus. For clarity we have omit the boundary components

of the torus inside the fundamental domains. The circled numbers refer to

the cross of the figure to help to recognize the structure of T (compare with

Figure 2.7)

virtually bounds a positive immersed surface in S1,n.

Proof. The case n = 1 is proved in 2.2.7. So suppose n > 1 and fix an

hyperbolic structure on S1,n. Call S ′ the once punctured torus obtained by

adding a disk Di on every boundary components except one. Represent γ

with the relative embedded geodesic in S1,n, so it is not geodesic in S ′. It

is possible that S ′ − γ ∪ a ∪ b has some bi-gons which contain one or more

Di. We remove such bi-gons substituting, in S1,n, the geodesic γ with a new

embedded curve γ′ such that γ− γ′+ δγ bounds a positive immersed surface

in S1,n (here δγ is a positive sum of boundary components of S1,n), and with

γ and γ′ homotopic in S ′. This substitution is obtained with an iterative

procedure that, at each step removes a component corresponding to a Di

from a bi-gon. This is realized considering the curve γi that is a geodesic

homotopic to gamma in S1,n ∪Di, but is not homotopic to γ in S1,n.

We notice that γ′, a and b are geodesics in S ′ for an opportune hyperbolic
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structure. Now apply Fact 2.2.7 to γ′ in S ′ to have that γ′ − αa − βb + dγ′

bounds, then use the Immersion Sum Lemma 2.2.5 and put together all the

boundary components in Dγ.

Remark 2.2.4. The immersed surface of 2.2.6 has negative Euler character-

istic. The holed disk which contains the boundary components of 2.2.7 ha

also negative characteristic and all the others immersed surface we have con-

structed in this subsection by the Immersion Sum Lemma 2.2.5.

Proof of theorem 2.2.1 in the general case Sg,n

Now we start the proof of the main Theorem 2.2.1. Recall that S is an

oriented, compact, connected hyperbolic surface of genus g and with n disks

removed.

Since ∂S bounds S it is sufficient prove the theorem for a particular

R rational. Multiplying all by a natural number we can assume the ri all

integer and by replacing gi with g−1
i to be all positive. Let γi be a geodesic

representative for gi. Then by Corollary 2.1.2 we can assume γi embedded

if we work with one of them at time. First decompose S along a union

of embedded closed geodesics δ = {δ1, . . . , δk−1} such that every connected

component Sk of such decomposition has genus 1. So, for every k fix a

standard basis ak , bk for H1(Sk),Z
H1(∂Sk,Z)

Then a1, b1,. . . , ag, bg is a standard basis

for H1(S,Z)
H1(∂S,Z)

and we can write

[γi] =
∑
j

αi,j[aj] + βi, j[bj]−Di

where Di ∈ H1(∂S,Z). Note that we can always assume that Di is a posi-

tive sum of boundary components because [∂S]H1(S) = 0 so we can use this

equation to adjust the signs. Now

0 = [C]H1(S) =
∑
i

ri[γi]H1(S) =
∑
i

ri(
∑
j

(αi,j[aj] + βi,j[bj])−Di) =

=
∑
j

((
∑
i

riαi,j)[aj] + (
∑
i

riβi,j)[bj])−
∑
i

riDi
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which means ∑
i

riDi =
∑
j

((
∑
i

riαi,j)[aj] + (
∑
i

riβi,j)[bj]) (2.3)

so if we prove that

Ci := γi −
∑
j

(αi,jaj + βi,jbj) + ∂i (2.4)

virtually bounds a positive immersed surface in S ( ∂i is an opportune positive

sum of boundary components) we can conclude the proof as follow: by the

Immersion Sum Lemma 2.2.5
∑
riCi bounds, but (using equations (2.3) and

(2.4)) we have ∑
riCi = C +

∑
i

ri(Di + ∂i)

= C +
∑
i

∂′i.

Now the chain in the last expression is homologically trivial (since it bounds

an immersed surface) but also C is homologically trivial, so [
∑

i ∂
′
i]H1(S) = 0

and we know that a positive sum of positive boundary components is trivial

only if it is a multiple of ∂S. So we have that C + R0∂S virtually bounds a

positive immersed surface for some positive R0.

Then we are left to prove that Ci virtually bounds a positive immersed

surface.

Let ε > 0, we define tubular neighbourhood of a curve γ ⊆ S an open subset

Tγ(ε) =
⋃
x∈γ Ux(ε) where Ux(ε) = {y ∈ S : d(x, y) < ε}. Sometimes we

suppress the ε if it is not important to keep track of its value.

Lemma 2.2.9. Exists a chain γi− γ′′i + ∂′′i virtually bounding a positive im-

mersed surface and such that γ′′i is a positive sum of embedded closed geodesic

such that γ′′i ∩ δ = ∅ while ∂′′i are sums of positive boundary components.

Proof. We write γ instead of γi. If γ is a component of δ then there is

nothing to be proved. There are two components of the subdivision in Sk
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Figure 2.10: A general intersection between δj and γ

which have only one boundary component in common with δ. Le Sk one of

them, and δj the boundary component in common with δ. Then γ∩Sk can be

an embedded loop or a collection of geodesic arcs which are essentials (they

don’t bound a disk with an arc of δ). In the first case we have done. In the

second case observe first that, since δj disconnect S, for every point where γ

intersect δ oriented in the direction from outside Sk to inside there must be a

point where γ intersect δj from inside to outside. Moreover the intersection

points must be finite since δj and γ are both embedded in S. Consider

two such intersection points p and q such that one of the two connected

components of δj − {p,q}, has no other intersection points with γ, and γ

intersect δj in in opposite directions in p and q. Such two points exists for

what we said above. Call µ the connected component of δj \ {p,q} without

other intersections points. Let Tγ(ε) a tubular neighbourhood of γ. Then

Tγ \ γ has two connected components and exactly one of them intersect µ.

we denote such component as T ∗γ . Let Tµ(ε) be a tubular neighbourhood for

µ. So we can consider the positive immersed surface Π = T ∗γ ∪ Tµ taken

with geodesic boundary, and we define the resolution of γ, r(γ) = ∂Π\γ. So

γ−r(γ) bounds a positive immersed surface. Moreover r(γ) doesn’t intersect
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δj at p or q so

#(r(γ) ∩ δj) = #(γ ∩ δj)− 2 < #(γ ∩ δj).

This process can be visualised in Figures 2.11 and 2.10.

Iterating this process a finite number of time we obtain a collection of em-
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±
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µ         ¶

r °
µ         ¶

Figure 2.11: How to split a geodesics in two components.

bedded loops γ′i such that γ′i ∩ ∂Sk = ∅ and γ − γ′i + ∂̃i virtually bonds an

immersed positive surface (here ∂̃i is an opportune positive sum of boundary

components of Sk, that arise since some components of r(γ) can be bound-

aries). Passing to the other components Sk′ of the decomposition we use the

same process one component by one until we obtain γ′′i as in the statement.

Note that we implicitly use at every step the Immersion Sum Lemma.
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Now fix an arbitrary component Sk of the decomposition. Let ε be a

closed loop of γ′′i embedded in Sk. We can apply proposition 2.2.8 to all

such ε = αεak + βεbk and sum (using Lemma 2.2.5) together all the surfaces

obtained in one Sk to obtain a surface bounded by γ′′i,k−αi,kak−βi,kbk + ∂i,k

where γ′′i,k is the sum of components of γ′′i embedded in Sk, whereas αi,k =∑
ε⊆γ′′i,k

αε and similar for the β’s . The boundary components ∂i,k are made

by positive sum of boundaries components of Sk, however adding to the

immersed surface many copies of S − Sk we can suppress all the boundaries

which don’t bounds S. Summing up all the resulting surfaces from each Sk

we obtain the positive immersed surface bounded by the chain (2.4). The

coefficientsαi,j’s and βi,j’s of (2.4) are the same we have found here summing

all the αi,k’s and βi,k since in H1(S)/H1(∂S) we have [γi] = [γ′′i ].

The Pants Homology Theorem

Let S an oriented compact surface. With the term pair of pants we mean

a topological sphere with three punctures. Let Γ be the set of all the free

homotopy class of oriented closed curves of S. Then denote with QΓ the Q
vector space generated by the elements of γ with the identification γ−1 = −γ.

For every positive immersions f : P −→ S such that P is a 3-holed sphere,

we define ∂f : ∂P −→ S as the restriction of f to the boundary. Let Π

be the set of all homotopy classes of such f with the additional hypothesis

that f∗ : π1(P ) −→ π1(S) is injective. Let QΠ denote the Q-vector space

generated by elements in Π. Finally we linearly extends ∂ : QΠ −→ QΓ.

We can now define the Pants Homology as the quotient space

HΠ(S) = QΓ/∂(QΠ).

We observe that:

Fact 2.2.10. Every compact connected oriented surface T with χ(T ) < 0

admits a pants decomposition, that is we can cut T along a finite number of

closed curves γi i = 1,. . . ,m so that S \
⋃
i γi is a disjoint union of pair of

pants
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Proof. If T has genus 0 and n ≥ 3 punctures, it is simple to found dn
2
e − 1

closed curves which separates T in dn
2
e pants. If T has genus g then we only

have to cut along g curves to reduce again to the punctured sphere case.

Then the Calegari’s Theorem 2.2.1 now implies the following

Corollary 2.2.11 (Pants Homology Theorem). Let S be an oriented compact

surface with χ(S) < 0. Let H1(S) denotes the first standard homology group

with rational coefficients. Then we have

HΠ(S) = H1(S).
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Chapter 3

Good Pants Homology

3.1 Inefficiency Theory

We denote with T 1H2 the unit tangent bundle of H2 while, for a p ∈ H2,

T 1
pH2 is the set of unitary tangent vectors of at p. For u, v ∈ T 1

pH2 we denote

with Θ(u, v) the unoriented smaller angle between them. Smaller means that

Θ(u, v) ∈ [0, π]. Given a unit speed geodesic segment α : [a, b] −→ H2 we

write i(α) = α′(a) and t(α) = α′(b). From now on all parametrizations of

geodesic arcs will be supposed to have unit speed if we don’t say anything

else. However sometimes we can repeat such assumption to avoid confusion.

Let α1, . . . αn be piecewise geodesic arcs such that the endpoint of αi is the

initial point of αi+1. Denote with α1α2 . . . αn the concatenation of the arcs

while, if the endpoint of αn is the initial point of α1, [α1 . . . αn] denote the

corresponding closed curve. We write l(α) for the length of an arc α.

Definition 3.1.1 (Inefficiency of Arcs). Let α be an arc on a surface. Let γ

be a geodesic arc with the same endpoints of α and in the same homotopy

class. We call inefficiency of α the real number I(α) = l(α)− l(γ)

Fact 3.1.1 (Monotonicity). Let α, β and γ be three piecewise geodesic arcs

in H2, with endpoints such that αβγ is a well defined piecewise geodesic arc.

Then I(αβγ) > I(β).

43
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®

°

Figure 3.1: The inefficiency of α compared to γ.

Proof. Let η be the geodesic arc homotopic to αβγ relative to de endpoints,

and let β′ the geodesic arc with the endpoints of β. We have

I(αβγ) =l(αβγ)− l(η)

≥ l(αβγ)− l(αβ′γ)

= l(β)− l(β′)

= I(β).

Consider an hyperbolic triangle with edges A, B and C, and denote with

the same three letters the length of the edges. We fix the vertex where A

and B intersect, and consider the triangle when A and B go to infinity. Let

θ be the external angle between them.

By the hyperbolic cosine rule for triangles we have

coshC = coshA coshB + cos θ sinhA sinhB

we have
coshC

eA+B
=

coshA

eA
coshB

eB
+ cos θ

sinhA

eA
sinhB

eB
.

Recalling that limx→∞
coshx
ex

= limx→∞
sinhx
ex

= 1
2

we see that

(eC−A−B)(
coshC

eC
) =

coshC

eA+B
→ 1

4
(cos θ + 1),

when A, B →∞. That means

eC−A−B → 1

2
(cos θ + 1) = cos2(θ/2),
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A C

B
µ

Figure 3.2: The ABC triangle in H2.

and finally we have

A+B − C → 2 log(sec
θ

2
). (3.1)

This computation permit to define an inefficiency for the angles: fix two

geodesic rays a∞ and b∞ in H2 with a common initial point and different end

point at infinity. Let θ be the exterior angle between them at their meeting

point. Call ar and bs the geodesic subsegments of, respectively, a∞ and b∞

having lengths r and s. Then equation (3.1) gives us a way to define

I(θ) = lim
r,s→∞

I(a−1
r bs) = 2 log sec

θ

2
. (3.2)

Remark 3.1.1. In the following lemmas we often compare the inefficiency of a

concatenation of two geodesic arcs with the inefficiency of the bending angle.

We make now a general computation. With the notation above fix two real

numbers r0 ≤ r and s0 ≤ s. Then let η0 be the geodesic arc between the

final endpoints of as0 and br0 and let η be the geodesic arc between the final

endpoints of as and br. Also let a′s′ be the geodesic ray starting at the final

endpoint of as0 and having length s′. We use the same notation b′r′ for b.

Then we have, by monotonicity I(a−1
r bs) ≥ I(a−1

r0
bs0) so, taking the limit,
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a

b
µ

Figure 3.3: The external angle θ.

I(θ) > I(a−1
s0
br0).

We also have I(a−1
s bs) = l(as) + l(br)− l(η), I(a−1

s0
br0) = l(as0) + l(bs0)− l(η0)

so

I(a−1
r bs) = I(a−1

r0
bs0) + I(a′−1

r η0b
′
s),

and then

I(θ) = I(a−1
r0
bs0) + I(a′−1

∞ η0b
′
∞).

a

µ

s
0

´

bs
0

as

bs

´
0

Figure 3.4: the construction of remark 3.1.1.

Now we prove some lemmas on inefficiency of arcs, which are the basic

instruments we will use along all the chapter.

Lemma 3.1.2. Let α be an arc on the hyperbolic surface S and γ be the

appropriate geodesic arc homotopic to α relatively to the endpoints. Choose

lifts of α and γ on H2 with the same endpoints and call them α̃ and γ̃. Denote
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with π : α̃ −→ γ̃ the nearest point projection. Define the quantity

E(α) = sup
x∈α̃

d(x, π(x)).

Then

E(α) ≤ I(α̃)

2
+ log 2.

Proof. Consider the case of the piecewise geodesic arc α made of the con-

catenation of two geodesic arcs α− and α+ which meet in the point x0.

®– ®

L L⁺
°

E

–

⁺

Figure 3.5: The case of a minimally inefficient α with a point at distance E.

Then, in the chosen lift, π(x̃0) divide γ̃ in two subsegments of lengths L−

and L+. Call E the number d(x̃0, π(x̃0)) (note that coincides with E(α)).

Then we have two right angled triangles sharing the edge of length E and

we can use the inefficiency for angles and what seen in remark 3.1.1 to get

E + L− − l(α−) < I(
π

2
),

and

E + L+ − l(α+) < I(
π

2
).

Summing we have

E <
I(α)

2
+ I(

π

2
) =

I(α)

2
+ log 2.

Finally note that every arc α having γ as corresponding geodesic arc and

with E(α) = E as inefficiency greater or equal of the piecewise geodesic we

considered.
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Lemma 3.1.3 (New Angle Lemma). In H2 let α be a piecewise geodesic

arc and β be a geodesic arc such that their concatenation αβ is well defined.

Suppose γ is a geodesic arc with the same endpoints of αβ and denote with

θ the smaller angle between γ and β.

Then for every δ, ∆ > 0 there exists a constant L = L(δ,∆) > 0 such that if

l(β) > L and I(αβ) < ∆ then we have θ ≤ δ.

Proof. If θ = 0 there is nothing to be proved.

h

µ

¯

°

Figure 3.6: The New Angle Lemma.

Suppose θ 6= 0 and let h be the distance from the non meeting endpoints

of β and γ. By the hyperbolic sine rule fore right angled triangle we have

sinh(h)

sin(θ)
= sinh(l(β)) > sinh(L).

From the previous Lemma 3.1.2 we have

h < E(αβ) < I(αβ)/2 + log 2 < ∆/2 + log 2.

So we conclude

sin θ <
sinh(h)

sinh(L)
<

sinh(∆/2 + log 2)

sinh(L)
,

that is θ ≤ δ = arcsin( sinh(∆/2+log 2)
sinh(L)

).
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Lemma 3.1.4. Let αβγ be a concatenation of three geodesic arcs in H2, and

let θαβ and θβγ be the two bending (so the external) angles between the arcs.

Suppose both of them to be lesser then π/2. then we have

I(αβγ) ≤ log(sec(θαβ)) + log(sec(θβγ)).

Proof. Let η be the appropriate geodesic segment for αβγ. Let e1 be the

geodesic orthogonal to β passing through β∩α and e2 the geodesic orthogonal

to β passing through β ∩ γ. Let Aα be the geodesic arc orthogonal to e1 at

the point p and starting at the initial point of α, and let Aγ be the geodesic

arc orthogonal to e2 at the point q and starting at the initial point of γ.

The geodesic arc β′ from p to q connect e1 with e2, so l(β′) ≥ l(β) since

the last is the common orthogonal arc between e1 and e2. Follows that

l(η) ≤ l(Aα) + l(Aγ) + l(β).

p q®

A
®

¯

¯

°

A
°

e
1

e
2

Figure 3.7: The construction of Lemma 3.1.4.

We notice that the internal angle between α and e1 is exactly π
2
− θαβ.

From the hyperbolic sine rule for right-angled triangles, and recalling that
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sinh−1(z) = log(z +
√
z2 + 1) we have

l(α) = sinh−1(sinh l(α))

= sinh−1(
sinh l(Aα)

cos θαβ
)

= log(
sinh l(Aα)

cos θαβ
+

√
(
sinh l(Aα)

cos θαβ
)2 + 1)

≤ l(Aα)− log sec θαβ.

Same computations gives l(γ) ≤ l(Aγ)− log sec θβγ.

These three inequalities together gives

I(αβγ) <l(α) + l(β)− l(Aα)− l(Aβ)

< log sec θβγ + log sec θαβ

Lemma 3.1.5 (Long Segment Lemma For Angles). Let δ, ∆ > 0. There

exists a constant L = L(δ,∆) > 0 such that, if α and β are oriented geodesics

in H2 with the terminal point of α equal to the initial point of β and such that

I(αβ) ≤ ∆ and l(α), l(β) > L, then I(αβ) < I(Θ(t(α), i(β))) < I(αβ) + δ.

Proof. The first of the two inequalities of the statement follows immediately

from the monotonicity of inefficiency and the definition of inefficiency for

angles (see also remark 3.1.1). Let α′∞ and β′∞ be the two geodesic rays

starting at the final point of α and β. We also denote α∞ = α ∪ α′∞ and

β∞ = β∪β′∞. Let η be the geodesic arc with the same endpoints of αβ and η1

the geodesic ray with the same endpoints of α∞β. Finally let θ0 the angle be-

tween α and η, θ1 the angle between η and β and θ2 the one between η and η1.

By the New Angle Lemma the angles θ0, θ1 are smaller then δ provided

L sufficiently large (and then l(α) and l(β) large). Then, the triangle with

edges η, η2 and α′∞ has an ideal vertex and two non-zero angles : θ2 and
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Figure 3.8: The Long Segment Lemma for Angles.

π − θ0 > π − δ. Since their sum has to be lesser then π, θ2 has to be strictly

lesser then δ . So we have

I(Θ(t(α), i(β))) = lim
r,s→∞

I(αrβs)

≤ lim
r,s→∞

(I(αrβ)) + I(η−1
1 β′∞)

≤ I(αβ) + I(α′−1
∞ η) + I(θ1 + θ2)

≤ I(αβ) + I(θ0) + I(θ1 + θ2)

< I(αβ) + 6 log sec(
3

2
δ).
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and, since angle can be controlled by δ also the inefficiency can.

Lemma 3.1.6 (Long Segment Lemma For Arcs). Let ∆ > 0. In H2 let α

and γ be piecewise geodesic arcs and let β be a geodesic arc, such that the

concatenation αβγ is well defined. Suppose that I(αβ) + I(βγ) < ∆. Then,

for any δ > 0, there exist an l = l(δ) > 0 such that if l(β) > l then

|I(αβ) + I(βγ)− I(αβγ)| < δ. (3.3)

Proof. Replacing α and γ with the respectively geodesic arcs doesn’t change

I(αβ) + I(βγ)− I(αβγ), and decrease the value of I(αβ) + I(βγ). So we can

suppose both be geodesic arcs. Let p be the midpoint of β that divide it in

the subsegments β− and β+ (so that αβγ = αβ−β+γ). Call η the appropriate

geodesic arc for αβγ, α̂ the appropriate for αβ− and γ̂ the appropriate for

β+γ. Also denote with θ− the angle between β− and α̂, and with θ+ the

angle between γ̂ and β+.

¯ ¯

® °
µ µ

+

+

|

|

Figure 3.9: The Long Segment Lemma for Arcs.

We have

0 ≤ I(α̂γ̂) = I(αβγ)− I(αβ−)− I(β+γ). (3.4)
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Since I(αβ) + I(βγ) is bounded above we have, from the New Angle

Lemma, that θ− and θ+ are smaller then a constant σ provided l sufficiently

large. Then

I(α̂γ̂) ≤ I(θ− + θ+) < 2 log sec(σ). (3.5)

Now we note that I(αβ)− I(αβ−) = I(α̂β+) ≤ I(θ−) which gives

I(αβ)− I(αβ−) ≤ 2 log sec(σ). (3.6)

Similarly

I(βγ)− I(β+γ) ≤ 2 log sec(σ). (3.7)

Now equation (3.3) is exactly equation (3.4) with substitutions given by

(3.5), (3.6) and (3.7) where δ = 6 log sec(σ). Since σ can be taken as small

as we want, provided l sufficiently large (see the statement of the New Angle

Lemma), also δ can be as small as we want, provided same assumptions.

Now we are going to consider the inefficiency theory for closed curves.

So consider a concatenation of piecewise geodesic arcs α1 . . . αn with the

property that the terminal point of αn is the initial point of α1.

By [α1 . . . αn] we denote the closed curve corresponding to the concatenation.

Definition 3.1.2 (Inefficiency For Closed Curves). Let α be a closed curve

on a closed hyperbolic surface S. Denote by γ the closed geodesic freely

homotopic to α.

We define the inefficiency of α as

I(α) = l(α)− l(γ)

Lemma 3.1.7. Let α be a closed curve in S and let γ be the appropriate

homotopic geodesic. Choose lifts of α and γ on the universal cover H2 with the

same endpoints at infinity, and call them α̃ and γ̃. Denote with π : α̃ −→ γ̃

the nearest point projection. Define the quantity

E(α) = sup
x∈α̃

d(x, π(x)).
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Then, there exist a universal constant L0 > 0 such that, if l(γ) > L0, we

have

E(α) <
I(α)

2
+ 2.

Proof. Let E > 0. We prove the Lemma first for a particular α: fix a point

p ∈ S at distance E from γ and let α be the closed geodesic arc starting from

p and freely homotopic to γ. In particular α is locally geodesic outside p.

°

®

Figure 3.10: The minimally inefficient α with a point at distance E.

In the universal cover p has many different lifts: let p̃1 one of them, and

define p̃2 = gγ p̃1 where gγ is the isometry of H2 that corresponds to the

action of the homotopy class of γ on it. In particular such two points are at

distance E from γ̃ and the distance is realized by two geodesic arcs η̃1 and η̃2

from, respectively, p̃1 and p̃2 to γ̃. The η̃i’s individuates a subsegment of γ̃

the that has length l(γ) and that we will call γ̃ too from now since we won’t

use more the entire geodesic. The geodesic arc between p̃1 and p̃2 projects

via π onto α and has length l(α).
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Figure 3.11: The situation in H2.

By the Long Segment Lemma For Arcs with δ = 1
7

and the monotonicity

we have

I(η̃−1
1 γ̃η̃2) < I(η̃−1

1 γ̃) + I(γ̃η̃2) +
1

7
< 2I(

π

2
) +

1

7
< 2

where is needed l(γ̃) > L0 for a universal constant L0. So we have proved

that

l(γ) + 2E − l(α) = I(η̃−1
1 γ̃η̃2) = 2.

That is E = I(α)
2

+1. For any α̂ homotopic to the same γ and with E(α̂) = E

we observe that the inefficiency is higher then the inefficiency of α.

Lemma 3.1.8 (Long Segment Lemma For Closed Curves). Let ∆ > 0. Let

αβ be a concatenation of a piecewise geodesic arc α and a geodesic arc β such

that the endpoint of β is the initial of α. Suppose I(αβ) < ∆.

Then for every δ > 0 there exist an l > 0 such that, if l(β) > l, we have

|I([αβ])− I(βαβ)| < δ.
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Proof. The proof is the same of Lemma 3.1.6.

The following are the Sum of Inefficiency Lemmas. They are direct con-

sequences of the Long Segment Lemma for Closed Curves.

Lemma 3.1.9. Let δ, ∆ > 0 and n ∈ N. There exists L = L(δ,∆, n) > 0

such that the following holds. Let α1, . . . , αn+1 = α1, β1, . . . , βn be geodesic

arcs on the surface S such that α1β1 . . . αnβn is a piecewise geodesic arc on

S. If I(αiβiαi+1) ≤ ∆, and l(αi) ≥ L then

|I([α1β1 . . . αnβn])−
n∑
i=1

I(αiβiαi+1)| ≤ δ

More generally, but essentially the same is the following.

Lemma 3.1.10 (Sum of Inefficiencies Lemma). Let δ, ∆ > 0 and n ∈ N.

There exists L = L(δ,∆, n) > 0 such that the following holds. Let α1, . . . ,

αn+1 = α1 and β1,1, . . . , β1,j1, . . . , βn,1, . . . , βn,jn be geodesic arcs on the

surface S such that α1β1,1 . . . β1,j1 . . . αnβn,1 . . . βn,jn is a piecewise geodesic

arc on S. If I(αiβi,1 . . . βi,jiαi+1) ≤ ∆, and l(αi) ≥ L then

|I([α1β1,1 . . . β1,j1 . . . αnβn,1 . . . βn,jn ])−
n∑
i=1

I(αiβi,1 . . . βi,jiαi+1)| ≤ δ

Remark 3.1.2. If in Lemma 3.1.9 we take the βi’s trivial (simply a point) we

can rewrite its conclusion as

|I([α1α2 . . . αn])−
n∑
i=1

I(αiαi+1)| ≤ δ.

If we apply to it the Long Segment Lemma for Angles 3.1.5, we obtain

|I([α1α2 . . . αn])−
n∑
i=1

I(θi)| ≤ δ,

where θi = Θ(i(αi+1), t(αi)).



3.2 Square Lemmas and Applications 57

3.2 Square Lemmas and Applications

From now on S is a fixed hyperbolic surface (however we can repeat such

assumption in some important statement for completeness). We need to

recall some theory on T 1S. For details of the constructions we mainly refer

to [BM00]. The hyperbolic surface S is given by the group action of G on

the oriented hyperbolic plane H2. We recall that the unitary tangent bundle

T 1H2 can be identified with PSL(2,R) and so G\PSL(2,R) can be identified

with T 1S.

Remark 3.2.1. We remark that the identification depends on the choice of a

point in the tangent unit bundle. In fact given (p, u) ∈ T 1H2 we uniquely

determine te oriented geodesic line λ through p with direction u and end-

points at infinity (λ−, λ+), so we can found a g ∈ PSL(2,R) asking (in the

upper half plane model) g(i) = p (i is the imaginary unit), g(0) = λ− and

g(∞) = λ+ (where the last two conditions are about the action of g in ∂H2).

We observe, if an orientation of H2 is fixed and we are always in that case,

that the condition g(i) = p can be replaced by a unique condition on ∂H2:

taking v ∈ T 1
pH2 as the unit vector obtained by a positive rotation of π

2

of the vector u, then we find a geodesic ray σ starting at p with direction

v and ending at σ+ ∈ ∂H2. Then the condition g(i) = p is replaced with

g(−1) = σ+. Since three condition in ∂H2 uniquely determine g ∈ PSL(2,R)

we have finished. Obviously one have to carefully verify that this identifica-

tion is diffeomorphic. Observe that we have chosen as basepoint in T 1H2 the

couple (i, ∂
∂y

).

We also remark that this identification gives an action on the right of

PSL(2,R) on T 1H2 given by the change the basepoint: if g ∈ PSL(2,R)

comes, by the identification above, from the point (p, u) while h comes from

(q, v) then (p, u)·h is that element of PSL(2,R) corresponding to (p, u) by an

identification that is analogue to the one above but with (q, v) as basepoint,

instead of (i, ∂
∂y

) . (In particular (i, ∂
∂y

) is identified with id ∈ PSL(2,R)).

Finally there is also an action on the left of PSL(2,R) on T 1H2: given g ∈
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Figure 3.12: The isometry g acting on T 1S.

PSL(2,R) defined by g(z) = az+b
cz+d

, it act on T 1H2 by g·(p, v) = (g(p), v
(cp+d)2 ).

Such actions are isometric, and are compatible with the action given by the

identification above, that is the composition of isometries of PSL(2,R).

We also need a measure on T 1S. The natural measure of H2 in the upper

half plane model is given by dµ = dxdy
y2 , where x and y are, respectively, the

real and the imaginary part of a point z ∈ H2. One can verify that µ is invari-

ant by the action of PSL(2,R). If θ denote the standard Lebesgue measure

over the unit circle S1 we define the measure λ by dλ(x,w) = dµ(x)dθ(w) in

T 1H2. This is well defined, invariant for the action of PSL(2,R) on T 1H2,

and induces a measure (also denoted with λ) in T 1S. Recall that T 1
pH2 has

a natural complex structure, once we have oriented H2, then given u ∈ T 1
p ,

we call
√
−1u the vector rotated by π

2
in the positive direction. We recall

that the geodesic flow is defined as a map gt : T 1S −→ T 1S, for t > 0,

gt(p, u) = (q, v), where q is the point along the geodesic starting at p with

direction u, that is exactly at distance t along such geodesic (we mean that

the length of the geodesic arc from p to q that we have defined has exactly

length t). v is the parallel transportation of u along the same geodesic arc.

It can be proved that gt act as an isometry of S and preserve the measure

λ in T 1S. We need the following result about the mixing property of the
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geodesic flow. It is the Exponentially Mixing Theorem for geodesic flow, and

it is proved essentially in [Rat87] and [Moo87].

Theorem 3.2.1 (Exponentially Mixing for Geodesic Flow). Let S be a closed

hyperbolic surface, T 1S be the unitary tangent bundle of S and F , G ∈
C∞0 (T 1S). Let gt be the geodesic flow in T 1S. Define

ρ(t) = |λ(T 1S)

∫
T 1S

F (gt(p, u))G(p, u)dλ(p, u)−
∫
T 1S

Fdλ

∫
T 1S

Gdλ|.

Then there exists C > 0, dependent only on ||F ||C1 and ||G||C1, and a q =

q(S) > 0 such that

|ρ(t)| ≤ Ce−qt.

Definition 3.2.1 (E-Nearly Homotopic). Let E ≥ 0. We say that two

geodesic segments A and B in H2 are E-nearly homotopic if their endpoints

are at distance at most E.

Two geodesic arcs in a hyperbolic surface S are said E-nearly homotopic if

they have lifts on H2 which are E-nearly homotopic.

Figure 3.13: E-nearly homotopic geodesic arcs

Definition 3.2.2 (Connection). Let L > 0. We say that a unit speed

geodesic γ : [0, l] −→ S is in the set Connε,L((p, u), (q, v)) if

(i)γ(0) = p and γ(l) = q,

(ii)|L− l| < ε,

(iii)Θ(γ̇(0), u),Θ(γ̇(l), v) < ε.

With |Connε,L((p, u), (q, v))| we denote the cardinality of the set of con-

nections. We notice that in hyperbolic geometry such set is finite.
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Lemma 3.2.2 (Connection Lemma). Let (p, u), (q, v) ∈ T 1S and let ε > 0.

There exists L0 = L0(S, ε) such that for any L > L0

|Connε,L((p, u), (q, v))| ≥ eL−L0.

Proof. We can find a neighbourhood U of the identity in PSL(2,R) such

that for m ∈ U we have dis((q, v), (q, v) · m) < ε
16

. Let f : U −→ [0,∞)

be a bump C∞ function with compact support in U and
∫
U
f = 1. Let

NU(q, v) = {(q, v) ·m : m ∈ U}, define f(q,v)((q, v) ·m) = f(m) on NU(q, v)

and extend to 0 outside it. Note that the Ck norm of f(q,v) doesn’t depend

on (q, v). Let gt : T 1S −→ T 1S be the geodesic flow. By Mixing for Geodesic

Flow exists a constant V = λ(T 1S) > 0 such that∫
T 1S

f(q,v)(gt(x,w))f(p,u)(x,w)d(x,w)→ 1

V
,

uniformly in (p, u) and (q, v) when t→∞ . This means the there exists many

(x,w) ∈ NU(p, u) with gt(x,w) ∈ NU(q, v). The segment g[0,t](x,w) is then

ε-nearly homotopic to a unique geodesic α connecting p and q. Moreover they

have the initial and terminal tangent vector ε-near, in fact α, in the universal

cover of S corresponding to the tangent plane TpS, is a line starting from p

and passing through a lift of q. However the precise lift of q is determined

by the homotopy class of α and so by g[0,t](x,w). This means that also the

initial and final vector of α and g[0,t](x,w) are ε near. But (x,w) ∈ NU(p, u)

and gt(x,w) ∈ NU(q, v). So we have

α ∈ Connε,t((p, u), (q, v)).

Now consider the set Eα ⊆ NU(p, u) of (x,w) such that gt(x,w) ∈ NU(q, v)

and g[0,t](x,w) is ε-nearly homotopic to α. Take again the universal cover

pointed at p of S and lift α. This naturally fix the lift of the point p, and

reduce the lifts of q to those are along α. If (x,w) ∈ Eα then d(x, p) < ε. Fix

such an x, and take the couple (x,w) with gt(x,w) ∈ NU(q, v). Then gt(x)

has distance less then ε from q. Let Bε(q) the disk centred in q of radius ε.

The length of a circumference of radius t growth as et when t → ∞. The
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set of geodesics starting from x is in bijective correspondence with the unit

tangent vectors at x. The set of geodesics starting at x and ending in Bε(q)

with length t decrease with respect to t as e−t in fact it is in correspondence

with the intersection of the circumference of radius t with Bε(q) which is a

fraction depending only on ε of the total length of the circumference which

goes as et. If we allow the length to be ε near to t we don’t change type of

dependence on t. We have proved that exists a constant C = C(ε, S) > 0

such that λ(Eα) ≤ Ce−t. So we have∫
Eα

f(q,v)(gt(x,w))f(p,u)(x,w)d(x,w) ≤ (sup
U
f)2

∫
Eα

d(x,w) ≤ K(f)Ce−t,

and so

∫
T 1S

f(q,v)(gt(x,w))f(p,u)(x,w)d(x,w) =
∑

α∈Connε,t

∫
Eα

f(q,v)(gt(x,w))f(p,u)(x,w)d(x,w)

≤ |Connε,t |K(f)C(ε, S)e−t.

Since the first term converges for t → ∞ we have the result for t suffi-

ciently large depending on ε and S.

Recall that for u, u′ ∈ T 1
pH2 we denote by Θ(u, u′) the smaller unoriented

angle between them, while d(p, q) is the hyperbolic distance between two

points p, q ∈ H2 Let (p, u) and (q, v) ∈ T 1H2. By u@q we mean the parallel

transport of the vector u along the geodesic connecting p and q. We define

dis((p, u), (q, v)) = max(Θ(u@q, v), d(p, q)).

We don’t require dis to be a norm. For ε, R > 0 we denote with Γε,R the

set of the closed oriented geodesics in S whose half length is in the interval

[R−ε, R+ε]. Πε,R denotes the set of oriented immersed pair of pants with all

the three boundary components in Γε,R (we call such components cuffs from

now on). With RΓε,R (resp. RΠε,R) we mean the real vector space generated

by Γε,R (resp. Πε,R ) with the convention that γ−1 = −γ for γ ∈ Γε,R (resp.

Π−1 = −Π for π ∈ Πε,R ). For W =
∑
riΠi an element of RΠε,R, we define
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∂W =
∑
ri∂Πi as an element in RΓε,R (observe that ∂, as the restriction of

the classical boundary operator, here is well defined). Observe that if M ≥ 1

then ΠMε,R ⊆ Πε,R

Figure 3.14: A typical pair of pant in Πε,R for R large enough.

Definition 3.2.3 (Good Pants Homology). Let ε, R > 0. For every M ≥ 1

we can define the real vector space

HMε,R(S) =
RΓε,R

∂RΠMε,R

.

Such space is called (Mε,R)- Pants Homology.

The pants Π ∈ Πε,R are called in literature Good Pants. Their theory

became important for their application in [KM12] and [KM13]. In particular

in the second is proved the following theorem that is the main result for this

Chapter. Let H1(S) = H1(S,Q) be the first singular homology group of the

surface S.

Theorem 3.2.3 (Good Pants Homology Theorem). Let S be an hyperbolic

closed surface of genus n. Let ε > 0. There exists R0 = R0(ε, S) such that

for every R > R0 the following holds. There exists a set H = {h1,,. . . ,

h2n} ⊆ QΓε,R od linearly independent elements of H1(S,Q), such that for
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every γ

inΓε,R there are ai ∈ Q so that

γ =
2n∑
i=1

aihi

in Hε,R(S).

Shortly it means that we have the equality

H1(S,Q) = Hε,R(S).

The remainder of this chapter is devoted to the proof of this theorem.

Generating Essential Immersed Pants in a S

We will give an efficient way for generates pants in a surface, given a

closed geodesic. First of all, we need to recall the Ping-Pong Lemma

Lemma 3.2.4 (the Ping-Pong Lemma). Let X be a space, and let g : X −→
X and h : X −→ X be two maps one-to-one and onto. If A and B are two

non-empty subsets of X, such that A * B and if

gn(A) ⊆ B for every n ∈ Z \ {0}, (3.8)

hm(B) ⊆ A for every m ∈ Z \ {0}, (3.9)

then g and h generate a free subgroup of rank 2 in the group of one-to-one

onto maps X −→ X.

Proof. Let w = gn1hm1gn2hm2 . . . gnk for ni,mj ∈ Z \ {0} be a word in the

group generated by g and h. Then w(A) ⊂ B. So w 6= id. Every other word

u of the group, is conjugated with a word of the type w by a power of g.

But the only conjugates of the identity is the identity itself. So the group is

free.

Let Π be a topological pair of pants. The homotopy type is the same

of the topological space T made of two points connected with three distinct
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edges. So we can immerse T −→ Π with a π1-isomorphism. In this way we

have found in Π two points a and b and three paths connecting them, γi,

i = 0, 1, 2 with γiγ
−1
i+1 in the free homotopy class of a boundary component of

Π. We call this image of T inside Π the spine of Π. Let p and q be two points

in S and let αi, i = 0, 1, 2 be three distinct geodesic arcs connecting them

and oriented from p to q. Let i(αi) = α̇i(p) and t(αi) = α̇i(q). Suppose that

the triples of vectors (i(α0), i(α1), i(α2)) and t(α0), t(α1), t(α2)) have opposite

cyclic order.

First we see that the three piecewise geodesic arcs αiα
−1
i+1, i ∈ Z

3Z , are non

p

q

Figure 3.15: The immersed spine in a pair of pants.

trivial in homotopy since for every two points in an hyperbolic surface there

is exactly one geodesic arc connecting them for every homotopy class of arcs.

By construction is also satisfied the condition of a pants group that is:

(α0α
−1
1 )(α1α

−1
2 )(α2α

−1
0 ) = 1.

Define a = α0α
−1
1 , and b = α1α

−1
2 . We want see that the subgroup of π1(S, p)

generated by a and b is free. We consider the natural action of π1(S, p) on H2

as a discrete group of isometries. As isometries, a and b are loxodromics with

axes the lift l1 of α0α
−1
1 and l2 of α1α

−1
2 respectively, and with translation

length equal to the length of the curves they represents in S, say δ1 for l1

and δ2 for l2. We observe that, since S is closed and the li’s cover two closed

geodesics in two distinct free homotopy classes, l1 and l2 can’t have a common
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endpoint in ∂H2 or there must be a cusp on S. We also note that since the

subgroup generated by a and b is the same of the subgroup generated by a

and abn, we can suppose δ1 and δ2 larger then an arbitrary constant M > 0.

The action of a and b on H2 naturally induces an action of on ∂H2 = S1 as

the action of PSL(2,R) on RP1. Call l−i and l+i the repulsive and attracting

endpoints of the lines li’s, and U±i their not intersecting neighbourhoods in

S1. For k ∈ Z \ {0} and M sufficiently large we have

ak(U−1 )c ⊆ U+
1 ,

bk(U−2 )c ⊆ U+
2 .

l
1

l
2

U
1

U
2

U
1

U
2

+

+{

{

Figure 3.16: Apply the Ping-Pong Lemma to a pair of pants.

So, taking A = U−2 ∪ U+
2 , B = U−1 ∪ U+

1 , g = a and h = b we can

apply the Ping Pong Lemma to conclude that the fundamental group of the
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topological space
⋃3
i=0 αi generates a subgroup in π1(S) isomorphic to π1(Π)

(see figure 3.16). Now we can consider the immersion of the spine T of a

pant in S sending each γi onto αi. We seen that this will be π1-injective.

Then consider the fattening of T that is the union of three strip Gi each one

containing γi. Topologically this is a pair of pants. Let gi : Gi −→ S be the

map which send Gi in a tubular neighbourhood o αi. The condition on the

tangent vectors in p and q enables us to define the gi’s so that g := gi = gj

on Gi ∩Gj. So we have constructed an immersed pair of pants generated by

αi, i = 0, 1, 2.

Lemma 3.2.5 (Counting Pants). Let ε,R0 = R0(ε, S) > 0 and γ ∈ Γε,R. Let

Πε,R(γ) denotes the subset of Πε,R of pants with γ as a cuff. Then there exist

c1(ε, S), c2(ε, S) > 0 such that for every R > R0 we have

c1Re
R ≤ |Πε,R(γ)| ≤ C2Re

R.

Proof. Let Fγ be a set of d2Re evenly distributed points of γ. For Π ∈ Πε,R(γ)

let α be the geodesic arc of minimal length in Π that is orthogonal to γ at

its endpoints. Then consider the geodesic arc α′ with endpoints in Fγ and
1
2
-nearly homotopic to α. Then l(α) ≤ l(α′) + 1 . Note that α′ is uniquely

determined by α by construction. Moreover same α′ means same Π since

α′ ∪ γ is a spine for Π. If we fix two diametrically opposite points of Fγ, by

a standard argument similar to the one given in Lemma 3.2.2, we found at

most NeR such geodesic arcs α′, with N depending only on S. The couple of

points we have to consider are less or equal then R + 1. So we have proved

that |Πε,R(γ)| ≤ C2Re
R.

For the other inequality start fixing two diametrically opposite points p, q

on γ. Then Connection Lemma 3.2.2 say that we can find at least N1(ε, R)eR

geodesics segments α̂ ∈ Conn ε
100

,R((p,
√
−1γ̇(p)), (q,

√
−1γ̇(q))). For any α̂

we find an α orthogonal to γ and ε
10

-homotopic to α̂. Every such α determine

a unique Π ∈ Πε,R(γ). Furthermore different α’s determine different pants.
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®

°

Figure 3.17: How to find pair of pants having γ as a cuff.

Two α̂ determining the same α have endpoints ε
10

near. So we have:

2RN(S, ε)

10ε
eR ≤ |Πε,R(γ)|.

Corollary 3.2.6. Let M > 1. Under the assumption of the previous Lemma

let Xγ(M) the set of pants in Πε,R with γ as a cuff and the other two cuffs

in Γ ε
M
,R. Then |Xγ(M)| � Re−R.

Proof. The upper bound follows directly from the previous Counting Pants

Lemma. The other bound follows from the same proof given in the previous

Lemma asking α̂ to have length within ε
100M

to 2R− l(γ)
2

. Then the two cuffs

generated in this way will have the desired property, while, from the Connec-

tion Lemma, the number of such α̂ goes asymptotically as N(ε,M, S)eR.

Lemma 3.2.7 (Convergence Lemma). Let E > 0. Suppose â and b̂ are

oriented geodesics in H2 that have E-nearly homotopic geodesic subsegents A

and B, unit speed parametrized by

a : [− l(A)

2
,
l(A)

2
] −→ H2,

b : [− l(B)

2
,
l(B)

2
] −→ H2.
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Suppose that l(A) ≤ l(B) and set l = 1
2
l(A), l(B). Then there exists 0 ≤ t0 ≤

E, such that for t ∈ [−l, l] the following holds

dis((a(t), ȧ(t)), (b(t+ t0), ḃ(t+ t0))) ≤ e|t|+E+2−l.

Proof. We suppose that a and b parametrize the maximal subsegments A

and B E-nearly homotopic, that is, we can’t extends the parametrization

along â and b̂ without relaxing the E-nearly homotopic hypothesis.

Let O be the geodesic segment orthogonal to â and b̂. Since l(O) ≤ E, O

has endpoints in A and B, say a(τ) and b(τ + t0), for some τ ,t0 ∈ [−l, l] not

yet determined. Let st be the geodesic segment between a(t) and b(t + t0).

Then O, st, a([τ, t]), b([τ+t0, t+t0]) are the edges of a Saccheri quadrilateral.

Then we have, for t ≥ 0,

sinh(
l(st)

2
) = cosh(|t− τ |) sinh(

l(O)

2
),

which, for t → 0, gives cosh(|t − τ |) → 1, and, then, τ = 0. Then we can

write, for every t ∈ [−l, l]

sinh(
l(st)

2
) = cosh(|t|) sinh(

l(O)

2
), (3.10)

and, for t = ±l,

sinh(
E

2
) ≥ sinh(

l(s±l)

2
) = cosh(l) sinh(

l(O)

2
). (3.11)

Putting together (3.10) and (3.11) we get

l(st) ≤ 2 sinh(
l(st)

2
)

≤ 2
cosh |t|
cosh l

sinh(
E

2
)

≤ 2e|t|−l+E(
1 + e−2|t|

1 + e−2l
)

≤ 4e|t|−l+E

≤ e|t|−l+E+2.
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This prove the inequality for the lengths. For the angles between the tangent

vectors it sufficient to note that in a Saccheri’s quadrilateral the non-right

angles are acute and equal. Then the above inequality extends to the differ-

ence of the parallel transport of the tangent vectors.

The fact that t0 ≤ E comes as follows,

t0 ≤ l(B)/2− t ≤ l(B)− l(A)

2
≤ E.

Lemma 3.2.8. Let L > 0. There exists a constant ε′(L) with the following

properties. Suppose that α : [a0, a1] −→ H2 and β : [b0, b1] −→ H2 are

ε-nearly homotopic for some 0 < ε < 1. Suppose a1 − a0 > L. Then

dis(α̇(ai), β̇(bi)) < ε(1 + ε′(L))

and ε′ → 0 when L→∞.

Proof. Let O be the common perpendicular between two geodesic arcs with

endpoints OA on α, and OB on β. Let ei, i = 0, 1, be the geodesic arc with

endpoints α(ai)and β(bi). Consider the quadrilateral Qi with O and ei as two

opposite edges and αi = α([OA, ai]) and βi = β([OB, bi]) (with the opportune

orientation of the parametrizing segments) as the other two subsegments. By

the statement l(ei) ≤ ε. If we prove that when L→∞ we have l(αi)
l(βi)
→ 1 then

the quadrilateral Qi is near to a Saccheri’s quadrilaterals for L sufficiently

large. Then we will have that there exists an ε′ = ε′(L) > 0 such that the

internal angle γia between ei and αi and the internal angle γib between ei and

βi satisfy

|γia − γib| < εε′.

The inequality of the statement for the unit tangent vectors then, follows

from this (the inequality for the length is obvious). To prove that l(αi)
l(βi)
→ 1,

first we note that when L → ∞ also l(αi) → ∞. Then we have from the

triangle inequality

l(αi) ≤ l(βi) + ε+ l(O), (3.12)
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which imply that also l(βi)→∞ when L→∞. Then, from equation (3.12),

we can deduce
l(αi)

l(βi)
≤ ε

l(βi)
+
l(O)

l(βi)
,

Then we have done since l(O) ≤ ε ≤ 1

Now we are going to prove the main technical tool of this section (and

also of this chapter), the Geometric Square Lemma. However it is better to

prove before a simpler version in which we add an hypothesis (the number

(5)).

In these following lemmas every parametrization of a closed geodesic γ is

thought in the universal cover as a unit speed map C : R −→ S. Such maps

factorize through maps R/l(γ)Z −→ S for which we use the same name C

with an abuse of notation. So C(x+ kl(γ)) = C(x) for any k ∈ Z. For x ≤ y

real numbers, we write C[x, y] for the image of the interval [x, y] ⊆ R in S

mapped by C. Obviously we have C[x, y] = C[x + kl(γ), y + kl(γ)]. With

abuse of notation, to simplify the notation, we often use only C to indicate

both the parametrization and the geodesic γ.

Lemma 3.2.9 (Preliminary Geometric Square Lemma). There exists an ε̂ >

0 such that the following holds. Let ε̂ > ε > 0, and let E > 0.There exist

constants K = K(ε, E) > 0 and R0(S, ε, E) > 0 with the following properties.

Let R > R0. Suppose that we are given four oriented closed geodesics Cij ∈
Γε,R, i,j = 0, 1, and for each double index ij we are given 4 real numbers

x−ij < x+
ij < y−ij < y+

ij < x−ij + l(Cij).

Assume that

(1) x+
ij − x−ij > K, y+

ij − y−ij > K,

(2) the segments Cij[x
−
ij, x

+
ij] and Chk[x

−
hk, x

+
hk] are E-nearly homotopic, and

likewise the segments Cij[y
−
ij , y

+
ij ] and Chk[y

−
hk, y

+
hk] are E-nearly homotopic,

for any i, j, h, k ∈ {0, 1},
(3)the segments C0j[x

−
0j, y

+
0j] and C1j[x

−
1j, y

+
1j] are E-nearly homotopic,

(4) the segments Ci0[y−i0, x
+
i0 + l(Ci0)] and Ci1[y−i1, x

+
i1 + l(Ci1)] are E-nearly
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homotopic,

(5) y+
00 − x−00 ≥ R +K, and x+

00 + l(C00)− y−00 ≥ R +K.

Then we have ∑
i,j=0,1

(−1)i+jCij = 0

in H10ε,R(S).

xx

y y

+

+{

{

Figure 3.18: How we see the four curves Cij thanks to assumptions (1)-(4).

Proof. Write lij for l(Cij). First of all we have to find an x00 ∈ [x−00 + K
2
, x+

00−
K
2

+ 1] and an y00 ∈ [y−00 + K
2
, y+

00 − K
2

] such that y00 − x00 = R.

If y−00 ≤ x−00 +R we can fix x00 = x−00 +K/2 and so y00 := x00 +R ≥ y−00 +K/2.

If y−00 ≥ x−00 +R we let y00 := y−00 +K/2 and x00 = y00−R = y−00 +K/2−R ≥
x−00 +K/2.

In both the case using (5) we can prove the upper bound for x00 and y00 (

if (5) it is not true we can have x−00 + R ≥ y+
00). Consider the restriction

C00 : [x−00, x
+
00] −→ S that can be reparametrized with unit speed from the

interval [− l
2
, l

2
] where is required l ≥ K by assumption (1). Call A this new

parametrization. Then we have C00(x00) = A(t) for a t such that |t| ≤ l−K+2
2

.

Then, by the use of the Convergence Lemma 3.2.7 and the assumption (2),

we can find x−ij < xij < x+
ij such that

dis((C00(x00), Ċ00(x00)), (Cij(xij), Ċij(xij))) ≤ e|t|+E+2− l
2 ≤ eE−

K
2

+3 ≤ ε,

(3.13)
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where the last inequality holds if we choose a K(ε, E) > 2E + 6− 2 log ε. By

identical reasons we find y−ij < yij < yij+ such that

dis((C00(y00), Ċ00(y00)), (Cij(yij), Ċij(yij))) ≤ ε. (3.14)

From the assumptions (3) and (4), (3.13), (3.14), and the triangular in-

equality, we have that the geodesic segments C0j[x0j, y0j] and C1j[x1j, y1j]

(j = 0,1) are 2ε-nearly homotopic, and likewise Ci0[yi0, xi0+li0] and Ci1[yi1, xi1+

li1] (i = 0,1) are 2ε-nearly homotopic too. We will refer these properties as

(3′) and (4′). Set Iij = yij − xij and Jij = xij + lij − yij so Iij + Jij = lij.

Then I00 = R and |J00−R| < 2ε, since Cij ∈ Γε,R. By triangle inequality we

have

|I10 −R| = |I10 − I00| = |y10 − x10 − y00 + x00| < 2ε.

So also,

|J10 −R| ≤ |I10 −R|+ |l10 − 2R| < 4ε.

Then (using(4′))

|Ji1 −R| ≤ |Ji0 −R|+ |Ji1 − Ji0| < 8ε

|Ii1 −R| ≤ |Ji1 −R|+ |li1 − 2R| < 10ε.

In general we have |Iij − R|, |Jij − R| < 10ε for i, j ∈ {0, 1}. By the

Connection Lemma 3.2.2 we can find

α00 ∈ Connε,R+log 4((C00(x00),
√
−1Ċ00(x00)), (C00(y00),−

√
−1Ċ00(y00))).

Note that the use of the Connection Lemma implicitly defines the constant R0

which is completely independent to the constant K. In fact, the existence

of α00 require R > L0(ε, S) for L0 from the statement of the Connection

Lemma, and so R0 > L0 became a defining inequality.

We can find geodesic arcs αij connecting xij with yij that are ε-nearly ho-

motopic to α00, in fact we can see the situation in the universal cover, where

we choose some lifts of xij, x00, yij and y00 such that equations (3.13) and

(3.14) remains for the lifts; in such situation is simple to find a lift of αij
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ε-nearly homotopic to a chosen lift of α00 and such that their projections are

homotopic.

Then dis(i(αij), i(α00)) < 2ε and dis(t(αij), t(α00)) < 2ε by Lemma 3.2.8

y

y

y

x

x

x

®

+

+{

{

Figure 3.19: The resolution of the Preliminary Geometric Square Lemma

(to apply this Lemma we have to suppose that ε is bounded by a universal

constant ε̂). Since

dis((C00(x00), Ċ00(x00), (Cij(xij), Ċij(xij)) ≤ ε

and

dis((C00(y00), Ċ00(y00), (Cij(yij), Ċij(yij)) ≤ ε,

we have (by triangular inequality)

αij ∈ Conn3ε,R+log 4((Cij(xij),
√
−1Ċij(xij)), (Cij(yij),−

√
−1Ċij(yij))).

Consider Cij ∪ αij. By construction the vectors of the three geodesic arcs,

starting in xij and ending at yij, at these points have opposite cyclic order, so

they generate an immersed pants Πij with geodetic cuffs Aij freely homotopic

to Cij[xij, yij]α
−1
ij , Bij freely homotopic to Cij[yij, xij + lij]αij and Cij. Now,

using the Sum of Inefficiency Lemma for Angles 3.1.2 , we have

|I([Cij[xij, yij]α
−1
ij ])− 2I(π/2)| < 2ε,
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which means (recall that I(π/2) = log 2)

|l(Aij)−R− Iij| < 2ε,

|l(Aij)− 2R| < 10ε+ 2ε < 20ε.

Similarly we found, |l(Bij)− 2R| < 20ε. This isn’t the best bound, however

is enough for our purposes, in fact we have Πij ∈ Π10ε,R. Finally we see that

(3′) imply A0j = A1j while (4′) imply Bi0 = Bi1. It follows that

0 =
∑

(−1)i+j∂Πij =
∑

(−1)i+jCij

in the Π10ε,R homology.

Lemma 3.2.10 (Geometric Square Lemma). There exists an ε̂ > 0 such

that the following holds. Let ε̂ > ε > 0, and let E > 0.There exist constants

K1 = K1(ε, E, S) > 0 and R0(S, ε, E) > 0 with the following properties.

Let R > R0. Suppose that we are given four oriented geodesics Cij ∈ Γε,R,

i,j = 0, 1, and for each double index ij we are given 4 real numbers

x−ij < x+
ij < y−ij < y+

ij < x−ij + l(Cij).

Assume that

(1) x+
ij − x−ij > K1, y+

ij − y−ij > K1,

(2) the segments Cij[x
−
ij, x

+
ij] and Chk[x

−
hk, x

+
hk] are E-nearly homotopic, and

likewise the segments Cij[y
−
ij , y

+
ij ] and Chk[y

−
hk, y

+
hk] are E-nearly homotopic,

for any i, j, h, k ∈ {0, 1},
(3)the segments C0j[x

−
0j, y

+
0j] and C1j[x

−
1j, y

+
1j] are E-nearly homotopic,

(4) the segments Ci0[y−i0, x
+
i0 + l(Cij)] and Ci1[y−i1, x

+
i1 + l(Cij)] are E-nearly

homotopic.

Then we have ∑
i,j=0,1

(−1)i+jCij = 0

in H100ε,R(S).
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Proof. In the proof we will use some temporary constants. To avoid confusion

in the dependence of such constants we give that now. L0 = L0(S, ε, E) and

K0 = K0(S, ε, E) are constants whose values will be determined along the

argument. Q0 = Q0(L0, K0, ε, E) > 0 can depend on all that parameter,

while the constants of the statements will be K1 = K1(L0, K0, Q0, ε, S, E)

and R0 = R0(Q0, L0, K0, ε, S, E). It is important to not confuse K0 and K1

with K = K(ε, E), the constant coming from the PGSL 3.2.9.

If we can’t apply directly the PGSL, then, eventually interchanging the roles

of the x’s and the y’s, we have that

x+
ij ≤ y−ij − lij +R +K < y−ij −R +K + 1, (3.15)

for all i and j. We recall that K > 2E + 6 − 2 log ε from the proof of the

PGSL, in particular we can assume we can assume K > 10 + 2 log E
ε
. Let

Q0 > K + 11 a constant, we set y00 = y−00 + Q0 and w00 = y00 − R. So by

Equation (3.15)

w00 ≥ y−00 +Q0 −R > x+
00 + 10 (3.16)

and (by assumption (1))

y−00 +Q0 ≤ y00 ≤ y+
00 −K1 +Q0 (3.17)

Since Q0 ≥ log E
ε

+ 10 and supposing K1 ≥ Q0 + log E
ε

we have from

(3.17)

y−00 + log
E

ε
+ 10 ≤ y00 ≤ y+

00 − log
E

ε
. (3.18)

Therefore we can use the Convergence Lemma, in the same way we used

it in the proof of the PGSL, to find y−ij ≤ yij ≤ y+
ij such that

dis((C00(y00), Ċ00(y00), (Cij(yij), Ċij(yij)) ≤ ε.

Note that this imply also |yij − (y−ij +Q0)| < ε+E by triangular inequality,

(2) and definition of y00.

We let wij = yij−R ≥ y−ij +Q0− ε−E−R > y−ij +K+ 11−R ≥ x+
ij + 10

where the last inequality use (3.15). Then wij > x−ij +K1 +10 ≥ x−ij +log E
ε

+
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10. On the other hang wij ≤ y−ij − R + Q0 + ε + E ≤ y−ij − log E
ε
, provided

R0(Q0, ε, E) sufficiently large. So we have

x−ij + log
E

ε
+ 10 ≤ wij ≤ y−ij − log

E

ε
. (3.19)

Furthermore (3.19) permit us to use the Convergence Lemma as well we used

it before (the E-nearly homotopy is the one given by assumption (3)) to have

dis((C00(w00), Ċ00(w00), (Cij(wij), Ċij(wij)) ≤ ε,

and then, combining with the assumption (3), we obtain that C0j[w0j, y0j]

and C1j[w1j, y1j] are ε-nearly homotopic, and also their first derivatives are ε

near.

Fix a point (q, v) ∈ T 1S. The Connection Lemma 3.2.2 assure that there

exists an L̃(ε, E) such that for every L0 > L̃(ε, E) we can find

β0j ∈ Connε,L0(v,−
√
−1Ċ0j(w0j)).

From now on we consider L0 as a fixed constant.

Take α00 ∈ Connε,R−L0+log 4(
√
−1Ċ00(y00), v).

Note that taking α00 implicitly redefine the constant R0(ε, E, L0). Now, as

we done for the αij of the proof of the PGSL, we found

αij ∈ Conn3ε,R−L0+log 4(
√
−1Ċij(yij), v),

and

βij ∈ Conn3ε,L0(v,−
√
−1Ċij(wij)),

such that α00 and αij are ε-nearly homotopic as well β0j and βij.

Consider the geodesic segments Cij[wij, yij] and (Cij[yij, wij + lij])
−1, and

the piecewise geodesic arc β−1
ij α

−1
ij . One can see that the three unit vectors

of these three arcs at the points wij and yij have opposite cyclic order in

the unit circle. So there exist a pair of pants generated by them named

Πij. Let Aij be the closed geodesic freely homotopic to αijβijCij[wij, yij] and
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Figure 3.20: The resolution of the Geometric Square Lemma.

Bij the closed geodesic freely homotopic to Cij[yij, wij + lij]β
−1
ij α

−1
ij . Then

∂Πij = Cij − Aij − Bij. With computations similar to those made in the

proof of PGSL for l(Aij), using the Sum of Inefficiency Lemma for Angles

3.1.2 we have |l(Aij)− 2R| < 20ε and |l(Bij)− 2R| < 20ε. So Πij ∈ Π10ε,R.

We have, from the evolution of hypothesis (3) along the proof, that A0j = A1j.

Then ∑
i,j=0,1

(−1)i+jCij −
∑
i,j=0,1

(−1)i+j∂Πij =
∑
i,j=0,1

(−1)i+jBij.

Now we want parametrize Bij : R −→ Bij in order to apply the PGSL

to them. Working on lifts of Bij and Cij[yij, wij + lij]β
−1
ij α

−1
ij with same

endpoints at infinity, we can consider the standard nearest point projection

π : Bij −→ Cij[yij, wij + 1]β−1
ij α

−1
ij and call Bij(a

−
ij) = π(q), Bij(a

+
ij) =

π(Cij(y
+
ij)), Bij(b

−
ij) = π(Cij(x

−
ij)) and Bij(b

+
ij) = π(Cij(x

+
ij)) (see what we

done in 3.1.7 for a more detailed construction, see also figure 3.21).

Observe that I(Bij) ≤ 22ε and, by Lemma 3.1.7, d(x, π(x)) ≤ 1 + 11ε.
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Figure 3.21: The parametrization of Bij

Then, by positivity of inefficiency,

b+
ij − b−ij ≥ x+

ij − x−ij − 2− 20ε

> K1 − 2− 20ε

> K0,

where we have supposed K1 > K0 − 20ε− 2 > 0. For the other segment we

recall that, from (3.17), assumption (2) and definition of yij, we have

y+
ij − yij ≥ y+

00 − y00 − E − ε ≥ K1 −Q0 − E − ε.

We call simply y = Cij[yij, y
+
ij ], γ the geodesic arc between the points q and

Cij(yij) and homotopic to α−1
ij y , a = Bij[a

−
ij, a

+
ij] ,and e1 and e2 the little

geodesic arcs connecting the endpoints of a with the endpoints of γ. From

the positivity of inefficiency we have

I(yαij) = l(yαij)− l(γ) ≥ 0,
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and

0 ≤ I(e1ae2) = l(e1ae2)− l(γ) = l(e1ae2)− l(yαij) + I(yαij),

which imply

l(e1ae2)− l(yαij) ≥ 0.

Now we can see that this means

a+
ij − a−ij ≥ l(γ) + l(αij)− l(e1)− l(e2)

≥ (K1 −Q0 − E − ε) + (R− L0 + log 4− ε)− 2− 22ε

> K0 +R,

for a choice of K1 = K1(K0, Q0, L0, ε, E) > 0 sufficiently large. We want

to apply PGSL to Bij with the four points bij and aij. Suppose K0 >

K(10ε, E + 1 + 11ε), where K is the constant given by the PGSL. First

note that a+
ij − a−ij ≥ R + K0 is a sufficient condition for assumption (5) of

PGSL, and that we have just proved assumption (1). Then the (E+1+11ε)-

nearly homotopies needed in PGSL, come from the E-nearly homotopies of

GSL and the construction we made. Moreover Bij ∈ Γ10ε,R, so∑
(−1)i+j∂Πij = 0

in H100ε,R(S).

From now the surface over we work is supposed to be a pointed surface

(S, ∗). We are going to develop an algebraic language for the Good Pants

Homology, so we need to fix some notation. If A ∈ π1(S, ∗), we denote with

[A] the closed geodesic which is freely homotopic to A. We let ·A· be the

geodesic segment from ∗ to ∗ homotopic to [A].

If A1,. . . ,An ∈ π1(S, ∗) we let ·A1 ·A2 · . . . ·An· be the piecewise geodesic arc

that is the concatenation of the ·Ai·. We let [·A1 ·A2 · . . . ·An·] be the closed

piecewise geodesic made with the same piecewise geodesic of ·A1 ·A2 · . . . ·An·
but with the difference that this last is considered as a closed curve.

Be warned to no make confusion with the notation [A] where A is an element
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A

:A :

[A ]

Figure 3.22: Three curves referring to A.

of the group π1(S, ∗). In the notation without dots we mean the geodesic

representative freely homotopic, while in the dotted notation we have the

endpoints of the geodesic arcs fixed (see the remark below). As before l(·)
gives the length of the object in the argument.

Remark 3.2.2. Note that we have:

I(·A1 · . . . · An·) =
∑

l(·Ai·)− l(·A1A2 . . . An·),

and

I([·A1 · . . . · An·]) =
∑

l(·Ai·)− l([A1A2 . . . An]).

Notice that we may have (and usually we have):

I([·A1 · . . . · An·]) > I(·A1 · . . . · An·)

Now we translate the Geometric Square Lemma in this new algebraic

language.



3.2 Square Lemmas and Applications 81

Lemma 3.2.11 (Algebraic Square Lemma). There exists an ε̂ > 0 such that

the following holds. Let ε̂ > ε > 0, and let ∆ > 0. There exist constants

K = K(S, ε,∆) > 0 and R0 = R0(S, ε,∆) > 0 such that for R > R0 the

following holds. Let Ai, U , Bi, V ∈ π1(S, ∗), for i = 0,1. Assume that

(1) |l([AiUBiV ])− 2R| < 2ε, i,j = 0, 1,

(2) I([·Ai · U ·Bj · V ·]) < ∆,

(3) l(·U ·), l(·V ·) > K.

Then ∑
ij

(−1)i+j[AiUBiV ] = 0

in H100ε,R(S).

Proof. In the universal cover we use the nearest point projection πij of a lift

of [·Ai ·U ·Bj · V ·] onto a lift of Cij = [AiUBiV ] (we suppose to have chosen

two lifts with the same endpoints at infinity). By Lemma 3.1.7

d(∗̃, πij(∗̃)) < ∆/2 + 1 (3.20)

for every ∗̃ ∈ π−1
ij (∗).

Let Cij(x
±
ij) be such projections of ∗ before and after U and Cij(y

±
ij) be the

projections of ∗ before and after V . By assumption (1) Cij ∈ Γε,R.

LetK1(S, ε,∆+2) andR0(S, ε,∆+2) be the constants determined by the GSL

3.2.10, define K ≥ K1 + ∆ + 1. We have x−ij < x+
ij < y−ij < y+

ij < x−ij + l(Cij).

Assumptions (2) - (4) of the GSL follows from our definitions of Cij and

inequality (3.20). Assumption (1) of the GSL is exactly our assumption (3)

and our definition of K.

Now the conclusion of the GSL also concludes our statement.

The Sum of Inefficiency Lemmas 3.1.9 and 3.1.10 can be rewritten as

follow

Lemma 3.2.12. Let ε, ∆ > 0, and n ∈ N. There exists L = L(ε,∆, n) > 0

such that if U1,. . . ,Un+1 = U1,X1,. . . ,Xn ∈ π1(S, ∗), and I(·Ui ·Xi · Ui+1·) ≤
∆, and l(·Ui·) ≥ L, Then
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Figure 3.23: The Algebraic Square Lemma.

|I([·U1 ·X1 · U2 ·X2 · . . . · Un ·Xn·])−
n∑
i=1

I(·Ui ·Xi · Ui+1·)| ≤ δ

Remark 3.2.3. In particular,under the same hypothesis but leaving out the

X’s, we have:

|I([·U1 · U2 · . . . · Un·])−
n∑
i=1

I(·Ui · Ui+1·)| ≤ δ.

Moreover by the Long Segment Lemma for Angles we have

|I([·U1 · U2 · . . . · Un·])−
∑
i

I(θi)| ≤ 2δ,

where θi = Θ(t(·Ui·), i(·Ui+1·)).

Lemma 3.2.13. Let δ, ∆ > 0, and n ∈ N. There exists L = L(ε,∆, n) > 0

such that if U1,. . . ,Un+1 = U1 ∈ π1(S, ∗), X11,. . . ,X1j1,. . . ,Xn1,. . . ,Xnjn ∈
π1(S, ∗) , and I(·Ui · ·xi · ·Ui+1·) ≤ ∆, and l(·Ui·) ≥ L, Then

|I([·U1 ·X11 ·· · ··X1j1 ·Un ·Xn1 ·. . .·Xnjn·])−
n∑
i=1

I(·Ui ·Xi1 ·· · ··Xiji ·Ui+1·)| ≤ δ.

For X ∈ π1(S, ∗). We write X̄ for X−1. What happen to the geodesic

[TAT̄B] if we reverse A? We have the Flipping Lemma.
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Lemma 3.2.14 (Flipping Lemma). There exists an ε̂ > 0 such that the

following holds. Let ε̂ > ε > 0, and let ∆ > 0. There exists a constant

L = L(ε,∆) > 0 with the following properties. Suppose A, B, T ∈ π1(S) are

such that

I(·T · A · T̄ ·), I(·T̄ ·B · T ·) ≤ ∆,

and l(·T ·) ≥ L. Then

|I([·T · A · T̄ ·B·])− I([·T · Ā · T̄ ·B·])| < ε,

and therefore

|l([TAT̄B])− l([TĀT̄B])| < ε.

Proof. We can apply Lemma 3.2.12 to have

|I([·T · A · T̄ ·B·])− I(·T · A · T̄ ·)− I(·T̄ ·B · T ·)| ≤ ε

2
,

and,

|I([·T · Ā · T̄ ·B·])− I(·T · Ā · T̄ ·)− I(·T̄ ·B · T ·)| ≤ ε

2
.

However I(·T · A · T̄ ·) = I(·T · Ā · T̄ ·) since are the same arc with opposite

orientations. Then we have the statement.

Remark 3.2.4. In the following lemmas many computations implicitly use

the fact that log sec(x) = O(x2) for x→ 0. It simply follows from the Taylor

expansion of the function near 0.

From now to the end of this section we will use T ∈ π1(S, ∗) and ∆ > 0

as parameters. However in every statement wi will redefine them to be more

precise about their properties. We define the set C Connε,R(A, T ) as the set

of all B ∈ π1(S, ∗) such that [TAT̄B],[TĀT̄B] ∈ Γε,R and I(·T̄ ·B · T ·) < 1.

Lemma 3.2.15 (Definition of AT ). There exists an ε̂ > 0 such that the

following holds. Let ε̂ > ε > 0, and let ∆ > 0. There exist two constants

R0 = R0(ε,∆, S) and L = L(S, ε,∆) such that if R > R0, A, T ∈ π1(S, ∗),

I(·T̄ · A · T ·) < ∆, l(·T ·) ≥ L, and 2R− l(·A·)− 2l(·T ·) ≥ L, then

(1) C Connε,R(A, T ) is non empty and |C Connε,R(A, T )| ≥ e2R−l(·A·)−∆−2l(·T ·)−L,
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(2) [TAT̄B]−[TĀT̄B] = [TAT̄B′]−[TĀT̄B′] in H100ε,R(S) homology for any

B, B′ ∈ C Connε,R(A, T ).

We then define

AT =
1

2
([TAT̄B]− [TĀT̄B])

for an arbitrary B ∈ C Connε,R(A, T ).

A

T

B

T

B

Figure 3.24: The Definition of AT .

Proof. Let ·B· ∈ Connε,R′((∗,−i(·T ·)), (∗, i(·T ·))), where

R′ = 2R− l(·A·)− 2l(·T ·)− I(·T̄ · A · T ·)

≥ 2R− l(·A·)− 2l(·T ·) + ∆

≥ L+ ∆.

Such ·B· exists, if we choose a sufficiently large constant L, by the Con-

nection Lemma 3.2.2. Notice that, by the Sum of Inefficiencies for Angles

and the definition of connections, I(·T̄ · B · T ·) < ε/2 + O(ε2) (see remark

3.2.4). We start estimates:

I([·T · A · T̄ ·B·]) = l([TAT̄B])− l(A)− 2l(T )− l(B)

= l([TAT̄B])− 2R + I(·T · A · T̄ ·)± ε.

So, by the Sum of Inefficiency Lemma we have

|I([·T · A · T̄ ·B·])− I(·T̄ ·B · T ·)− I(·T · A · T̄ ·)| < ε/2,



3.2 Square Lemmas and Applications 85

and then

|l([TAT̄B])− 2R| < ε+O(ε2),

likewise

|l([TĀT̄B])− 2R| < ε+O(ε2),

all provided l(·T ·) sufficiently large. Thus, we have proved that

B ∈ C Connε,R(A, T ),

and, in particularly, (1).

(2) is exactly the application of the Algebraic Square Lemma. Obviously R0

is equal to the homonymous constant from the ASL 3.2.11.

Remark 3.2.5. In the standard homology H1(S), the curves [A] and AT are

in the same class. The following Lemmas will stress more the fact that we

are exploring a new point of view of the algebraic structure in H1.

Lemma 3.2.16 (Simple Itemization Lemma). There exists an ε̂ > 0 such

that the following holds. Let ε̂ > ε > 0, and let ∆ > 0. There exist a

constant L = L(S, ε,∆) > 0 and a constant R0 = R0(ε,∆, S) > 0 with the

following properties. For any R > R0 and A, B, T ∈ π1(S, ∗) such that

l(·T ·), l(·A·),l(·B·) > L, [TAT̄B] ∈ Γε,R, and I([·T · A · T̄ · B·]) ≤ ∆ , we

have [TAT̄B] = AT +BT̄ in H100ε,R(S).

Proof.

[TAT̄B] =
1

2
([TAT̄B]− [B̄T ĀT̄ ])

=
1

2
([TAT̄B]− [TĀT̄ B̄])

=
1

2
([TAT̄B]− [TĀT̄B]) +

1

2
([T̄BTĀ]− [T̄ B̄T Ā])

= AT +BT̄ .

The following fact is a rewriting of the Sum f Inefficiency Lemma 3.2.12.
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Fact 3.2.17. Let ε, ∆. There exists L = L(ε,∆) > 0 with the following

properties. Let Ai, Bj, T ∈ π1(S, ∗), i,j = 0,1. If l(·T ·) > L and I(·T̄ · Ai ·
T ·),I(·T ·Bj · T̄ ·) < ∆, then

|l([A0TB0T̄A1TB1T̄ ])−
∑
i

l(·T̄AiT ·)−
∑
j

l(·TBjT̄ ·) + 4l(·T ·)| < ε.

Lemma 3.2.18 (The ADCB Lemma). There exists an ε̂ > 0 such that the

following holds. Let ε̂ > ε > 0, and let ∆. There exist L = L(S, ε,∆) > 0

and R0 = R0(S, ε,∆) > 0 with the following properties. Let A,B,C,D,T ∈
π1(S, ∗) such that l(·B·),l(·D·), l(·T ·) > L and [ATBT̄CTDT̄ ], [ATDT̄CTBT̄ ] ∈
Γε,R. If R > R0 and

I(·T · A · T̄ ·),I(·T ·B · T̄ ·),I(·T · C · T̄ ·),I(·T ·D · T̄ ·) < ∆

then [ATBT̄CTDT̄ ] = [ATDT̄CTBT̄ ] in H200ε,R(S).

Proof. Let 〈X, Y 〉 = [ATXT̄CTY T̄ ], for X,Y ∈ π1(S, ∗). We want to prove

that

〈X0, Y0〉 − 〈X0, Y1〉 = 〈Y0, X1〉 − 〈Y1, X1〉 (3.21)

in H100ε,R whenever all that curves are in Γε,R and I(·TXiT̄ ·),I(·TYiT̄ ·) < ∆.

Equation (3.21) is exactly the Algebraic Square Lemma with the choice (with

reference to the notation of the statement 3.2.11) Ai = Yi, B0 = ATX0T̄C,

B1 = CTX1T̄A, U = T and V = T̄ .

Now we prove the ADCB Lemma, that is 〈B,D〉 = 〈D,B〉.
First we suppose |l(·TBT̄ ·)− l(·TDT̄ ·)| < ε

4
.

We remark that from I(·T ·B · T̄ ·) < ∆ we have

l(·TBT̄ ·)− 2l(·T ·) ≥ l(·B·)−∆

≥ L−∆, (3.22)

So for L large enough we can found, by the Connection Lemma 3.2.2,

·E· ∈ Conn ε
8
,l(·TBT̄ ·)−2l(·T ·)(−i(·T ·), i(·T ·)).
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Figure 3.25: The equation (3.21) as an application of the Algebraic Square

Lemma.

For any such E, by the Sum of Inefficiency for Angles 3.2.3 and remark

3.2.4, we have I(·T · E · T̄ ·) < ε
8

+ O(ε2) and so |l(·TBT̄ ·) − l(·TET̄ ·)| <
ε
4

+O(ε2). Since the fact that [ATBT̄CTDT̄ ] ∈ Γε,R is taken as hypothesis,

our estimates on E and the fact 3.2.17 say to us that 〈B,E〉,〈D,E〉,〈E,B〉
and 〈E,D〉 are in Γ2ε,R. We can use (3.21) to have

〈B,D〉 − 〈B,E〉 − 〈D,B〉+ 〈E,B〉 = 0

〈B,D〉 − 〈E,D〉 − 〈D,B〉+ 〈D,E〉 = 0

〈D,E〉 − 〈B,E〉 − 〈E,D〉+ 〈E,B〉 = 0

in H200ε,R(S). Hence we get

2〈B,D〉 − 2〈D,B〉 = 0

in H200ε,R(S).

If we remove the assumption |l(·TBT̄ ·) − l(·TDT̄ ·)| < ε
4
, then let k ∈ N be

the smallest natural such that

k > 4
|l(·TBT̄ ·)− l(·TDT̄ ·)|

ε
.

We set

ri =
i

2k
l(·TDT̄ ·) +

2k − i
2k

l(·TBT̄ ·)− 2l(·T ·),
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for i = 0, 1, . . . , 2k. Since ri ≥ L−∆ (see equation 3.22) we can find

·Ei· ∈ Connε,ri(t(·T ·), i(·T̄ ·)).

In order to see that 〈Ei, Ej〉 is in Γ2ε,R we need to verify that

|l(·TBT̄ ·) + l(·TDT̄ ·)− l(·TEiT̄ ·)− l(·TEjT̄ ·)| < ε, (3.23)

then fact 3.2.17 conclude the argument. From I(·T ·Ei · T̄ ·) < ε
8

+O(ε2) and

definitions of ri we can prove inequality (3.23) for the cases 〈Ei, E2k−i〉 and

〈Ei+1, Ei〉. This is sufficient to us for apply the Algebraic Square Lemma in

the form (3.21), to obtain, in H200ε,R, the equations

〈Ei, E2k−i〉 − 〈Ei+1, E2k−i〉 − 〈E2k−i, Ei〉+ 〈E2k−i, Ei+1〉 = 0,

for 0 ≤ i < k, and

〈Ei, E2k−i+1〉 − 〈Ei, E2k−i〉 − 〈E2k−i+1, Ei〉+ 〈E2k−1, Ei〉 = 0,

for 0 < i ≤ k.

Adding these we get

〈E0, E2k〉 − 〈Ek, Ek+1〉 − 〈E2k, E0〉+ 〈Ek+1, Ek〉 = 0.

Now Ek and Ek+1 can be used in the first part of the proof instead of B

and D, since they satisfy the additional hypothesis:

|l(·TEkT̄ ·)− l(·TEk+1T̄ ·)| < ε/4 .

Then follows 〈Ek+1, Ek〉 − 〈Ek, Ek+1〉 = 0 in H200ε,R. So we also have

〈E0, E2k〉 = 〈E2k, E0〉. A last application of the ASL (3.21) with B, D,

E0 and E2k gives the result.

Lemma 3.2.19 (Itemisation Lemma). There exists an ε̂ > 0 such that the

following holds. Let ε̂ > ε > 0, and let ∆ > 0. There exist L = L(ε,∆, S) > 0

and R0 = R0(ε,∆, S) with the following properties. For every R > R0 and for
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any A,B,C,D ∈ π1(S, ∗) such that l(·T ·) > L and I(·A·T ·B ·T̄ ·C ·T ·D·T̄ ·) <
∆, and that the curve [ATBT̄CTDT̄ ] is in Γε,R we have

[ATBT̄CTDT̄ ]− [TD̄T̄ C̄T B̄T̄ Ā] = 2(AT̄ +BT + CT̄ +DT )

in H200ε,R.

Proof. It follow from the definition of AT that

[ATBT̄CTDT̄ ]− [ĀTBT̄CTDT̄ ] = 2AT̄

[ĀTBT̄CTDT̄ ]− [ĀT B̄T̄CTDT̄ ] = 2BT

[ĀT B̄T̄CTDT̄ ]− [ĀT B̄T̄ C̄TDT̄ ] = 2CT

[ĀT B̄T̄ C̄TDT̄ ]− [ĀT B̄T̄ C̄T D̄T̄ ] = 2DT̄

in H100ε,R(S) homology. So this plus the ADCB-Lemma 3.2.18 gives the

result in H200ε,R(S).

Remark 3.2.6. We notice that follows from the Itemization Lemma that

[TAT̄BTCT̄D] = AT +BT̄ + CT +DT̄

in the H200ε,R. It is sufficient to see that

[TAT̄BTCT̄D] =
1

2
([TAT̄BTCT̄D]− [D̄T C̄T̄ B̄T ĀT̄ ]).
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3.3 The XY -Theorem and a Proof for the

Good Pants Homology Theorem

In the following we call θ-graph an immersed spine of a pants with the

two vertex coinciding. In particular we consider θ-graphs whose vertex is

∗ and the three arcs will be ·X·, ·Y · and ·Z· for X,Y ,Z ∈ π1(S, ∗). Then

these θ-graph will generates an immersed pair of pants with cuffs [XY ],[Y Z]

and [ZX] if and only if the triples of unit vectors i(·X·), i(·Y ·), i(·Z·) and

t(·X·),t(·Y ·),t(·Z·) have opposite cyclic orderings. We are going to prove the

XY -theorem as a corollary of te two Rotation Lemmas.

Lemma 3.3.1 (First Rotation Lemma). There exists an ε̂ > 0 such that

the following holds. Let ε̂ > ε > 0, and let ∆ > 0. There exist constants

K = K(ε,∆) > 0 and R0 = R0(ε,∆, S) > 0 with the following properties.

For every R > R0 let Wi,Si,T ∈ π1(S, ∗), i = 0,1,2, and such that

(1) I(·T ·Wi · W̄i+1 · T̄ ·),I(·T · Si · S̄i+1 · T̄ ·) < ∆,

(2) l(·T ·) ≥ K,

(3) l(·Wi·) + l(·Si·) + 2l(·T ·) < R−K,

(4) The two triples of vectors (t(·TWi·)) and (t(·TSi·)), for i = 0,1,2, have

opposite cyclic ordering in T 1
∗S.

Then
2∑
i=0

(Wi+1W̄i)T +
2∑
i=0

(SiS̄i+1)T = 0

in H300ε,R(S).

Proof. Hypothesis (1) and (3) let us ask that the system of equations

ri + ri+1 = 2R− l(·TWi+1W̄iT̄ ·)− l(·TSiS̄i+1T̄ ·) (3.24)

for i = 0,1,2, has non-negative solutions ri’s, since the right hand is bigger

then 2K − 2∆. Take an arbitrary Ai ∈ Connε,ri(−i(·T ·), i(·T ·)) (such Ai

exists provided K sufficiently large). We will show that the θ-graph with

arcs ·W̄iT̄AiTSi· generates an immersed pair of pants ΠA. The three cuffs

will be the closed curves [W̄i+1T̄Ai+1TSi+1S̄iT̄ ĀiTWi] and we will also show
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that ΠA ∈ Π3ε,R. The statement will come from the equation ∂ΠA = 0

applying the Itemization Lemma 3.2.6 and noticing that (Ai)T̄ = −(Āi)T̄ :

0 = ∂ΠA =
2∑
i=0

[Wi+1W̄iT̄AiTSiS̄i+1T̄ Āi+1T ]

=
2∑
i=0

((Wi+1W̄i)T + (Ai)T̄ + (SiS̄i+1)T + (Āi+1)T̄ )

=
2∑
i=0

(Wi+1W̄i)T +
2∑
i=0

(SiS̄i+1)T .
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Figure 3.26: The θ-graph for the First Rotation Lemma

We now verify that [W̄i+1T̄Ai+1TSi+1S̄iT̄ ĀiTWi] ∈ Γ3ε,R. By the New

Angle Lemma 3.1.3, provided K sufficiently large (and then l(·T ·) sufficiently

large by (2) ) we have

Θ(i(·T ·Wi+1 · W̄i · T̄ ·), i(·TWi+1W̄iT̄ ·)) <
ε

2
,
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and

Θ(t(·T ·Wi+1 · W̄i · T̄ ·), t(·TWi+1W̄iT̄ ·)) <
ε

2
.

Same inequalities are satisfied replacing the W1’s with the Si’s. We also note

that i(·T ·Wi+1 · W̄i · T̄ ·) = i(·T ·) as well t(·T ·Wi+1 · W̄i · T̄ ·) = t(T̄ ). Again

we have the same for Si.

It follows that Θ(t(·Āi+1·), i(·TWi+1W̄iT̄ ·)) < 2ε since t(·Āi+1·) = −i(·A·i+1)

and Θ(−i(·A·i+1), i(·T ·)) < ε by definition of Ai+1. By the same reasons

we have that all the internal angles of the closed piecewise geodesic arc

[·TWi+1W̄iT̄ ·Ai ·TSi+1S̄iT̄ · Āi+1·] are smaller then 2ε. Since equation (3.24)

assure that ri can be take large enough taking K enough large, we can apply

the Sum of Inefficiency Lemma for Angles (see Remark 3.2.3) to have ( see

also remark 3.2.4 )

|I([·TWi+1W̄iT̄ · Ai · TSi+1S̄iT̄ · Āi+1·])− 4 log sec(2ε)| < ε

2
,

that is

I([·TWi+1W̄iT̄ · Ai · TSi+1S̄iT̄ · Āi+1·]) <
ε

2
+O(ε2).

On the other hand equation (3.24) gives

|2R− l(·TWi+1W̄iT̄ ·)− l(·TSiS̄i+1T̄ ·)− l(·Ai·)− l(·Ai+1·)| < 2ε

Last two estimates together provide that the curves in question are in Γ3ε,R.

Now we verify that the three geodesic arcs we have considered generates an

immersed pair of pants ΠA. Recall that I(θ) = 2 log sec θ
2

for every angle

θ ∈ [0, π], by definition. So we can fix the unique θ0 such that I(θ0) = ∆ + 1.

By monotonicity and (1) we have that I(·W̄i · T̄ ·) < I(·T ·Wi+1 ·W̄i · T̄ ·) < ∆,

from which follows l(·W̄iT̄ ·) > l(·T ·) − ∆ > K − ∆. Follows that l(·W̄iT̄ ·)
grows with K. So we can apply again the Sum of Inefficiency Lemma for

Angles:

|I(·TWi+1 · W̄iT̄ ·)− I(Θ(i(·W̄iT̄ ·), i(·W̄i+1T̄ ·)))| < 1,

which, together with

I(·TWi+1 · W̄iT̄ ·) ≤ I(·T ·Wi+1 · W̄i · T̄ ·) < ∆,
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gives

I(Θ(i(·W̄iT̄ ·), i(·W̄i+1T̄ ·))) < ∆ + 1,

that is Θ(i(·W̄iT̄ ·), i(·W̄i+1T̄ ·)) > θ0.

On the other hand from the New Angle Lemma ( recall that l(·W̄iT̄ ·) is large

provided K large ) we have

Θ(i(·W̄iT̄ ·), i(·W̄iT̄AiTSi·) <
θ0

2
.

So the three vectors i(·W̄iT̄AiTSi·) are alternatively bounded by the three

vectors i(·W̄i+1T̄ ·) and then obligated in the same cyclic order. The same

argument shows the same property for the terminal vectors t((·W̄iT̄AiTSi·))
and t(·TSi·). This, together assumption (4), complete the proof since now

ΠA is effectively a pair of pants.

Remark 3.3.1. If the two triples of vectors (t(·TWi·)) and (t(·TSi·)), for

i = 0,1,2, have the same cyclic order in T 1
∗S, we can permute the Wi’s in

another cyclic order, then apply the lemma gives the equation

2∑
i=0

(WiW̄i+1)T +
2∑
i=0

(SiS̄i+1)T = 0.

In particular the lemma can be applied to the case Wi = Si.

Lemma 3.3.2 (Second Rotation Lemma). There exists a universal constant

ε̂ > 0 such that the following holds. Let ε̂ > ε > 0, and let ∆ > 0. There exist

K = K(ε,∆) > 0 and R0 = R0(ε,∆, S) > 0 with the following properties.

Let R > R0 and let Wi,T ∈ π1(S, ∗), i = 0,1,2 such that

(1) I(·T ·Wi · W̄i+1 · T̄ ·) < ∆,

(2) l(·T ·) > K.

Then
2∑
i=0

(WiW̄i+1)T = 0,

in H300ε,R(S).
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Proof. Let v ∈ T 1
∗S and let ρ = e

2πi
3 . By the Connection Lemma for L suffi-

ciently large Connε,L(t(·T ·), (ρiv)) is non empty for every i = 0,1,2. Choose

·Si· ∈ Connε,L(t(·T ·), (ρiv)). By the Sum of Inefficiency Lemma for Angles

(see 3.2.3)

|I(·T · Si · S̄i+1 · T̄ ·)− 2ε− I(
π

3
)− ε| < 2ε,

that is I(·T · Si · S̄i+1 · T̄ ·) ≤ O(ε) + log(4
3
) ≤ 1, if ε is sufficiently small

(this implicitly defines ε̂). So we are in condition to apply the First Rotation

Lemma 3.3.1 with our Si’s as both the Wi’s and the Si’s of that statement

(see also remark 3.3.1). Then we have

2
2∑
i=0

(SiS̄i+1)T = 0

in the H300ε,R(S).

Now we reuse the First Rotation Lemma with both Wi’s and Si’s from this

lemma to have
2∑
i=0

(WiW̄i+1)T +
2∑
i=0

(SiS̄i+1)T = 0,

that imply

2
2∑
i=0

(WiW̄i+1)T = 0.

Note that we can be both in the situation of the First Rotation Lemma or

in the situation of Remark 3.3.1 for the order of tangent vectors to the Wi’s,

however we can cancel the Si’s in both of them and then reorder the Wi’s as

in the statement.

Theorem 3.3.3 (The XY Theorem). There exists a universal constant ε̂ > 0

such that the following holds. Let ε̂ > ε > 0, and let ∆ > 0. There exist

K = K(ε,∆) > 0 and R0 = R0(ε,∆, S) > 0 with the following properties.

Let R > R0, and let X,Y ,T ∈ π1(S, ∗), such that

(1) I(·T ·X · Y · T̄ ·),I(·T ·X · T̄ ·),I(·T · Y · T̄ ·) < ∆,

(2) l(·T ·) ≥ K.

Then

(XY )T = XT + YT
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in H300ε,R.

Proof. It is simply the Second Rotation Lemma with W0 = ∗, W1 = X and

W2 = Ȳ .

Lemma 3.3.4 (Good Direction Lemma). Let W ⊆ π1(S, ∗) be a finite subset.

Then there exist ∆ = ∆(S,W ) > 0, L0 = L0(W,S) > 0 with the following

properties. For every L > L0 there exists T ∈ π1(S, ∗) with l(·T ·) > L such

that I(·T ·X · T̄ ·) < ∆ for every X ∈ W .

Proof. Given v ∈ T 1
∗S and t > 0, we write α(tv) for the geodesic segment

starting at ∗ in the direction v and of length t. Then we write α−1(tv) for

the same geodesic segment with the opposite orientation.

Let X ∈ π1(S, ∗) X 6= ∗ (the identity of the group). We consider an arc X̃

within two lifts of ∗ on lift of X in H2. Then we also have two different lifts

of v, called ṽ1 and ṽ2 in the two endpoints of X̃. Then the geodesic arcs

α(tṽi), i = 1,2, are isometric lifts of α(tv). We claim that the equation

lim
t→∞

I(α−1(tv) ·X · α(tv)) =∞ (3.25)

is satisfied if and only if the endpoint α∞(ṽ1) in ∂H2 is the same of

α∞(ṽ2).

Let γ be the geodesic arcs on H2 with endpoints α∞(ṽ1) and α∞(ṽ2). If

such two points are the same then the inefficiency written above is infinite.

Suppose such points different. Let t > 0, and consider, on H2, the piecewise

geodesic arc α−1(tṽ1) ·X · α(tṽ2). Then consider the geodesic arc O starting

at the midpoint of X̃ and ending orthogonal to γ at the pint p. Let λ be

the half length of X̃, let S(t) be the geodesic segment between p and the

endpoints of α(tṽ2) which is not a lift of ∗. To prove the claim we are left

to prove that he quantity t + λ + l(O)− l(S(t)) doesn’t go to infinity when

t→∞. To see that let t0 > 0 such that the geodesic arc S(t0) is orthogonal

to α(tṽ2), and denote with θ the angle between S(t0) and S(t). Then the

hyperbolic sine rule gives

sinh(l(S(t))) ≥ sinh(t− t0)

sin θ
≥ sinh(t− t0).
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Then, using the monotonicity of sinh, we have that S(t) ≥ t − t0 and then

t + λ + l(O) − l(S(t)) has to be bounded, since it can’t be negative. This

ends the proof of the previous claim.

The map from T 1
∗S to ∂H2 that send v to the endpoint at infinity α∞(ṽ), for

a fixed lift ṽ, is a Möbius transformation M , since that map is simply the

identity if we lift ∗ to the centre of the unit disk model, and compose with a

change of coordinates for T 1H2 in other cases.

Let Mi, i = 1,2 the Möbius transformation T 1
∗S 3 v 7→ α∞(ṽi) ∈ ∂H2. Define

M = M2M
−1
1 . Then (3.25) holds if and only if α∞(ṽ1) is a fixed point of M .

Since M has at most two fixed points, or it is the identity, in order to prove

that (3.25) is satisfied at most by two different v it is sufficient to prove that

M is not the identity. By contradiction, suppose M the identity.

Since ·X· is a closed geodesic, we have i(·X·) = t(·X·). Then we can consider

p ∈ ∂H2 such that M1(
√
−1i(·X·)) = p. Then from the equation Mp = p we

deduce that M2(
√
−1t(·X·)) = M2(

√
−1i(·X·)) = p. In the universal cover

this last equation means that we have constructed a triangle (with vertices p

and the two lifts of ∗ ) with sum of internal angles equal to π and two angle

exactly equal to Π/2. But it is impossible. So M 6= id and (3.25) has only

two solutions in v. We call such two directions the bad directions of X.

Then there are at most 2|W | bad directions for elements of W . Now the map

v 7→ lim
t→∞

I(α−1(tv) ·X · α(tv))

is continuous as a map from T 1
∗S to [0,∞]. Then we have that for any closed

connected subset J of T 1
∗S disjoint from the set of the bad directions of W ,

there exists ∆ > 0 such that I(α−1(tv) ·X ·α(tv)) < ∆ for any X ∈ W , t > 0

and v ∈ J . We have proved that such a J exists.

Then let v0 be the midpoint of J , and δ the half length of J . Let ·T · ∈
Connδ,L+1(v0, v0) (this determines L0), then L < l(·T ·) < L + 2 and I(·T ·
X · T̄ ·) < ∆ for all X ∈ W

Let n be the genus of S. Let g1,. . . ,g2n ∈ π1(S, ∗) be generators of the

fundamental group. Then [gi] denote the closed curves corresponding to gi.
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We denote with H1(S) the first homology group of S with rational coeffi-

cients. For any oriented closed curve γ ⊂ S exist unique a1,. . . ,a2n ∈ Q such

that [γ] =
∑
ai[gi] in H1. So, defined Γ as the set of all oriented closed curves

of S, we can define q : Γ −→ R{g1, . . . g2n} as q(γ) =
∑
aigi. Finally we can

extend the definition to q : π1(S, ∗) −→ R{g1, . . . g2n} by q(X) = q([X]).

Given X ∈ π1(S, ∗) the word length of X is the minimal number of generator

gi (counted with the multiplicity) needed to write X. For h ∈ N, Wh is the

subset of π1(S, ∗) of element with word length less or equal then h.

Theorem 3.3.5 (Good Pants Homology for Short Words). There exists a

universal constant ε̂ > 0 such that the following holds. Let ε̂ > ε > 0. For

any h ∈ N there exists an L0(ε, S) > 0 such that for any L > L0, exist

T ∈ π1(S, ∗) and R0 > 0 such that l(·T ·) > L and for every R > R0 and

every X ∈ Wh we have

XT = (q(X))T

in H300ε,R(S).

Proof. Let L0(Wh, S), ∆ = ∆(Wh) and T = T (Wh, L) given by the Good

Direction Lemma 3.3.4. Then l(·T ·) > L and I(·T · X · T̄ ·) < ∆ for all

X ∈ Wh.

If X ∈ W1 then q(X) = X or q(X) = −X̄, therefore (q(X))T = (X)T .

Suppose X ∈ Wk+1 and the theorem verified in Wi for i ≤ k. Then X = gσi Y

for some i = 1,. . . ,2n, Y ∈ Wk and σ = ±1. Then the Good Direction

Lemma assure that we are satisfying the assumption of the XY -Theorem

3.3.3, so we can write XT = (gσi )T + YT . Now we have the theorem verified

for both the terms on the right. By induction we conclude the proof.

Lemma 3.3.6 (First Cut Lemma). There exists a universal constant ε̂ > 0

such that for every ε̂ > ε > 0 there exist an L = L(ε, S) > 0, and an

R0 = R0(ε, S) > 0 with the following properties.

For any γ ∈ Γε,R and T ∈ π1(S, ∗) with l(·T ·) > L we can find X0, X1 ∈
π1(S, ∗) such that for any R > R0

(1) |l(·Xi·)− (R + 2L− log 4)| < 1
2
,
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(2) Θ(t(·T ·), i(·Xi·)), Θ(t(·Xi·), i(·T̄ ·)) < π
6
,

(3) γ = (X0)T + (X1)T in H300ε,R(S) homology.

Proof. Let l = l(γ)/2 the half length of γ. We think to γ as an isometric map

γ : S1
γ −→ S where S1

γ is [−l,l]
{−l,l} (simply a circumference of length 2l). Take

two points x0 and x1 in S1
γ at distance l and let wi ∈ T 1

γ(xi)
S be −

√
−1γ′(xi).

We let γi be the subsegment of γ from xi to xi+1.

Let αi ∈ Conn ε
10
,L(t(·T ·), wi) where L = L(ε, S) > 0 is determined in the

Connection Lemma by the fact that the set is non empty.

®
1

°
0

T

A

T

®
0

°
1

Figure 3.27: The First Cut Lemma

Then let X0 ∈ π1(S, ∗) be the element corresponding to α0γ0α
−1
1 as well

X1 ∈ π1(S, ∗) corresponds to α1γ1α
−1
0 . The property (1) follows the Sum of

Inefficiency Lemma for Angles with δ = 1/4 − ε
2

(we suppose ε̂ < 1/2 ) for

the inefficiency of I(α0γ0α
−1
1 ) and I(α1γ1α

−1
0 ). In fact we have, for L and R
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sufficiently large (in particular this define the R0 of the statement)

|l(·Xi·)− 2L+
ε

5
−R +

ε

2
+ 4 log sec(

π

4
+
ε

2
)| < 1

2
− ε,

that for ε sufficiently small gives (1). We notice that ε sufficiently small

means that there exists an ε̂ bounding ε above.

It also follows from (1) that I(α0γ0α
−1
1 ) is bounded above. Since l(αi) > L,

by the New Angle Lemma we have Θ(i(·X0·), i(α0)) small as L growth. Com-

bined with the inequality Θ(i(α0), t(·T ·)) < ε
10

we can conclude (2) provided

ε sufficiently small and L sufficiently large (the other case are similarly).

Let ·A· ∈ Conn ε
10
,R+log 4−2L−2l(·T ·)(−i(·T ·), i(·T ·)). Again we use the Sum of

Inefficiency Lemma for Angles for I([·X0 · T̄ · Ā · T ·]) and I([·X1 · T̄ ·A · T ·])
to have

|l([X0T̄ ĀT ])− 2R| < 2ε,

|l([X1T̄AT ])− 2R| < 2ε,

where we stress that the left side only contains the inefficiency of the piecewise

geodesic, while the right side absorb also the inefficiency of the angles: in

fact these depends only on the choice of ε, while the constant in the estimate

of the Sum of Inefficiency Lemma can be reduced taking larger R and L.

Then γ = [X0T̄ ĀT ] + [X1T̄AT ] in Hε,R(S), since by construction they are

the three cuffs of a pair pants. Now the Simple Itemization Lemma 3.2.16

gives [X0T̄ ĀT ] = (X0)T + (Ā)T̄ and [X1T̄AT ] = (X1)T +AT̄ in the H100ε,R .

The fact that (Ā)T̄ = −AT̄ let us conclude

γ = (X0)T + (X1)T

in the H300ε,R homology.

Definition 3.3.1. For T ,X ∈ π1(S, ∗) with X 6= ∗ we define

θTX = max{Θ(t(·T ·), i(·X·)),Θ(t(·X·), i(·T̄ ·))}
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Lemma 3.3.7 (Second Cut Lemma). There exists a constant L0 = L0(S) >

0 such that for any L > L0 and X,T ∈ π1(S, ∗) with X 6= ∗, we can write

X = X0X1, for X0,X1 ∈ π1(S, ∗) such that

(1) |l(·Xi·)− (l(·X·)/2 + L− log 2)| < 1
2
,

(2) I(·X0 ·X1·) ≤ 2L+ 3,

(3) θTXi ≤ max{θTX + eL+4−l(·Xi·),π
6
}

Proof. Let α : [0, l(·X·)] −→ S be a unit speed parametrization with α(0) =

α(l(·X·)) = ∗. Fix y = l(·X·)
2

. Then, by the Connection Lemma, there exists

L0 > 0 such that for every L > L0 we can find

β ∈ Conn 1
20
,L(t(·T ·),

√
−1α′(y)).

We observe that α[0, y]β−1 represent an X0 ∈ π1(S, ∗) as well βα[0, l(·X·)]
represent an X1 ∈ π1(S, ∗). Obviously X = X0X1.

¯

y
l0

X
0 X

1

Figure 3.28: The Second Cut Lemma.

Now we use the Long Segment Lemma 3.1.5 for Angles to I(α[0, y]β−1)

and I(βα[0, l(·X·)]), which prove (1): note that the δ of the lemma absorb

the errors of the lengths and the errors of the right angles, after that we

choose the appropriate δ to have 1
2

in the right side of the inequality.

The property (2) follows immediately from the definition of I(·X0 ·X1·) and

the property (1).
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Let θ = Θ(i(·X·), i(·X0·)). By the hyperbolic law of sine sin θ = sinh(l(β))
sinh(l(·X0·))

that gives, provided l(·X0·) > L+ 1,

sin θ ≤ sinh(L+ 1)

sinh(l(·X0·))
≤ eL+2−l(·X0·)

since sinhx
sinh y

≤ ex−y if x ≤ y. Therefore (using the fact that for θ small

sin θ ≥ θ
e2

),

Θ(t(·T ·), i(·X0·) ≤ Θ(t(·T ·), i(·X·)) + eL+4−l(·X0·).

Let ϕ = Θ(t(·X0·),−i(β)) then

sinϕ ≤ sinh(l(·X·)/2)

sinh(l(·X0·))
≤ e2−L <

π

12
,

for L large enough. Then, since t(·T̄ ·) = −i(·T ·) and Θ(−i(β), t(·T ·)) < 1
20
<

π
12

we can conclude Θ(t(·X0·), i(·T̄ ·) ≤ π
6
. The same argument apply for X1.

So also (3) is proved

The following is essentially the Good Pants Homology theorem. We recall

that given g ∈ π1(S, ∗), then (g)T ∈ Γε,R

Theorem 3.3.8. Let n be the genus of S and g1,. . . ,g2n be generators for

π1(S, ∗).

There exists an ε̂ > 0 such that the following holds. Let ε̂ > ε > 0. There

exist R0 = R0(S, ε) > 0 and T ∈ π1(S, ∗), where T depends only on ε and

S, with the following properties. For every R > R0 and γ ∈ Γε,R there exist

ai ∈ Q, i = 1,. . . ,2n, such that we have

γ =
2n∑
i=1

ai(gi)T

in H300ε,R(S).

Proof. The constant ε̂ is determined by the XY -Theorem and the First Cut

Lemma. Let ε̂ > ε > 0. Let L = L(ε, S) > 0 the maximum of the two

homonymous constants from the two Cut Lemmas 3.3.6 and 3.3.7. Con-

sider the X ∈ π1(S, ∗) such that l(·X·) < 2L + 5, then there must exists
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an h ∈ N such that X ∈ Wh where Wh is the set of word long a most h,

and so is finite for every h. By theorem 3.3.5 we find a T ∈ π1(S, ∗) with

l(·T ·) > max{L,K(ε, 2L + 3)}, where the K is the homonymous constant

determined by Theorem 3.3.3, and such that XT = (q(X))T for X ∈ Wh. We

take R > R0(S, ε) with R0 the constant determined by the First Cut Lemma

3.3.6, and we also ask R > R0(L, T, ε) for R0 determined by Theorem 3.3.5.

Let γ ∈ Γε,R.

By the First Cut Lemma 3.3.6 we can find X0,X1 ∈ π1(S, ∗) satisfying as-

sumptions (1)−(2) of the Lemma, and γ = (X0)T+(X1)T inH300ε,R(S). Since

the co-domain of q is abelian and recalling the definition of XT (see 3.2.15),

we have q(γ) = q((X0)T + (X1)T ) = q(X0) + q(X1). Then we use the Second

Cut Lemma 3.3.7 to have X0 = X00X01, where l(·X0i·) ∈ [R
2

+2L, R
2

+2L+1]

by Hypothesis (1) of both Lemmas 3.3.6 and 3.3.7. Same Decomposition

can be done for X1. Let χ0 = {X0, X1}, χ1 = {X00, X01, X10, X11} and then

iterate the definition applying the Second Cut Lemma 3.3.7 at every step, so

that χk = {Xi0,...,ik : ij = 0, 1}. We are interested in χk with k ≤ blog2Rc−1.

Observe that |χk| = 2k+1.

Let X ∈ χk. We have the recursive formula for the length

|l(·Xi0,...,ik ·)− (
l(·Xi0,...,ik−1

·)
2

+ L− log 2)| < 1

2

which gives

l(·X·) ∈ [R2−k + 2L,R2−k + 2L+ 1]. (3.26)

Now we fix a sequence {Yi}i≤k with Y0 = X0 or X1 and such that Yk = X and

every Yi+1 ∈ χi+1 is obtained from Yi by the Second Cut Lemma. Equation

(3.26) gives l(·Yi+1·) ≤ l(·Yi·) − R
2i+1 ≤ l(·Yi·) − R

2blog2 Rc−1 ≤ l(·Yi·) − 1, and

also l(·Yi·) ≥ 2L. These last inequalities together gives

l(·Yi·) ≥ 2L+ (k − i).

By a recursive use of property (3) in 3.3.7, and noting that the sum of two
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number is greater then their maximum, we have

θTYk ≤
π

6
+

k∑
i=0

eL+4−l(·Yi·)

≤ π

6
+

e

e− 1
e4−L

<
π

3
,

where the last inequality can be satisfied by an L sufficiently large. Then

θTX < π
3
. We are near to apply the XY -Theorem: by Lemma 3.1.4 and the

fact we have just proved we have I(·T ·X · T̄ ·) ≤ log 4 for any X ∈ χk. Then

theorem 3.3.3 provides

YT = (Y0Y1)T = (Y0)T + (Y1)T (3.27)

for every Y ∈ χk, where Yi are the two element of χk+1 generated by Y .

A iterative use of (3.27) gives

γ =
∑
X∈χk

XT ,

in the H300ε,R. If k is maximal (that is k = blog2Rc − 1 ) we have that

l(·X·) ≤ 2L+ 5 by (3.26), and so X ∈ Wh by definition, and XT = (q(X))T .

Then, in H300ε,R(S):

γ =
∑
X∈χk

(q(X))T = (q(γ))T .

By the definition of q (see before the Good Pants Homology for Short Words

Theorem 3.3.5) we obtain the result.

This is essentially The Good Pants Homology Theorem but we have small

ε and an amplification coefficient for ε in the Good Pants. We adjust these

things with the following Lemma.

Lemma 3.3.9. Let ε > 0,and M > 1. There exists an R0 = R0(ε,M, S) > 0

such that for every R > R0 we can find a map qM : Γε,R −→ Q+Πε,R and a

constant K = K(ε,M, S) > 0 such that for every γ ∈ Γε,R, qM(γ) is a positive

sum of pants all of which have γ as one boundary cuff (with the appropriate

orientation), the two other cuffs in Γ ε
M
,R, and γ − ∂qM(γ) ∈ Q+Γ ε

M
,R.
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Proof. Let γ ∈ Γε,R. From the corollary after the Counting Pants Lemma

3.2.5 we have that the set Xγ(M) of pants with γ as a cuff and the other two

cuffs in Γ ε
M
,R is finite with cardinality of the order ReR. Define

qM(γ) =
1

|Xγ(M)|
∑
Xγ(M)

Π.

Then the Lemma follows immediately.

Theorem 3.2.3 then follows from Theorem 3.3.8 and Lemma 3.3.9. We

use the notation form Theorem 3.3.8. Define hi = (gi)T . Since

[hi]H1(S) = [(gi)T ]H1(S) = [gi]H1(S),

and the gi’s are generators for π1(S, ∗), then the hi’s will be generators for

H1(S,Q).

Then Theorem 3.3.8 assure that

γ =
∑

ai(gi)T =
∑

aihi.

Now we want to see that the equivalence H300ε,R = H1(S) implies the equiv-

alence Hε,R = H1(S).

Let q300 : Γ300ε,R −→ Q+Π300ε,R be the map in Lemma 3.3.9. For each hi as

above we can consider h′i = hi − ∂q300(hi) ∈ Q+Γε,R. Lemma 3.3.9 assure

that

γ =
∑

aih
′
i,

in Hε,R.

Finally we want to suppress the hypothesis that ε has to be lesser then a

universal ε̂.

Suppose γ ∈ ΓE,R with E > ε̂, then there exists M > ε̂/E and such that

γ′ = γ − ∂qM(γ) ∈ Γε,R for an ε < ε̂. Again by Lemma 3.3.9 we can work

with γ′ instead of γ.

This ends the proof of The Good Pants Homology Theorem 3.2.3.



Chapter 4

The Ehrenpreise Conjecture

4.1 Coordinates and Representations for Fuch-

sian and Quasi-Fuchsian Structures

Teichmuller Space

The Uniformization Theorem asserts that the only simply connected Rie-

mann Surfaces up to biholomorphisms are the plane C, the sphere Ĉ and the

unit disk D2. Moreover we know that holomorphic structures, hyperbolic

structures and conformal structures can be viewed as the same thing in di-

mension 2. We recall that the conformal structure on H2 is the same of D2

as a Riemann Surface. Then, given a closed surface S of genus g ≥ 2, we

can ask how many hyperbolic structures such surface admits, that is in how

many inequivalent way we can cover S with H2. Let H denotes the space

of the Riemannian metrics h on S such that (S, h) is an hyperbolic surface.

Let Diff+(S) be the group of the orientation preserving diffeomorphisms of

S, with the natural topology induced by S. Let Diff+
0 (S) the connected com-

ponent of Diff+(S) containing the identity map. The group Diff+(S) acts on

H by the push-forward of the metrics:

f∗(h)p(u, v)) = hf−1(p)(dp(f
−1)u, dp(f

−1)(v)),

105
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where f ∈ Diff+(S),p ∈ S,u, v ∈ TpS, h ∈ H. The most natural space of

hyperbolic structures one can consider is the so called Moduli Space:

M(g) = H/Diff+(S).

However it comes very hard to be studied.

A simpler space is the so called Teichmuller Space:

T (g) = H/Diff+
0 (S).

These spaces are related by the so called Mapping Class Group

MCG(g) = Diff+(S)/Diff+
0 (S),

in the following way

M(g) = T (g)/MCG(g).

In this section we present a way to parametrize the space T (g) with the

Fenchel-Nielsen coordinates. These topics are well explained in details in

[BP92].

Because of the importance of the Teichmuller space we explain how can be

interpreted the quotient by Diff+
0 . Let ϕ, φ : S −→ S be two diffeomorphisms.

We say that ϕ and φ are isotopic, if there is a smooth homotopy between

them F : S × [0, 1] −→ S × [0, 1] such that F (x, t) is a diffeomorphism

for every t ∈ [0, 1]. Then it can be proved that an orientation preserving

homeomorphism is in the component Diff+
0 if and only if it is isotopic to the

identity.

T (g) can be thought as the space of the hyperbolic structures over S which

not differs by a diffeomorphism isotopic to the identity. Likewise MCG(g) is

the group of the isotopy class of diffeomorphisms of S.

Complex Distances

The following notation for the distances is fixed until the end of the chap-

ter. For every subsets X and Y of the hyperbolic space Hn we denote with
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d(X, Y ) the hyperbolic distance between the two sets. For p, q ∈ Hn and

γ an oriented geodesic in Hn such that p, q ∈ γ, then dγ(p, q) denotes the

signed real distance between the two point, that is the hyperbolic distance

with a sign dependent on the orientation of γ, taken positive if γ goes from

p to q. In particular dγ(p, q) = −dγ(q, p).
As in the previous chapters, given two vectors v and u in T 1

pH3, we denote

with Θ(u, v) the unoriented angles between them with values in [0, π). More-

over, given n ∈ T 1
pH3 orthogonal to the plane spanned by u and v, we define

Θn(u, v) as the angle between u and v, measured anticlockwise in the plane

spanned by u and v and oriented by n. We suppose Θn takes values in

(−π, π].

If not specified, every parametrization of a geodesic in this chapter is consid-

ered with unit speed.

Now we introduce a complex valued function that,intuitively, can be thought

as a distance between geodesics in H3. We work in H3 in the upper half space

model with the identification ∂H3 = Ĉ ∪ {∞}.
Let α and β be two oriented geodesics in H3, and define γ as their common

orthogonal oriented from α to β. We can find an orientation preserving isom-

etry B ∈ PSL(2,C) such that Bγ has endpoints (0,∞). Then the endpoints

of Bα and Bβ will be, respectively, (−q, q) and (−p, p), for q, p ∈ C.

We define the signed complex distance between α and β as d∗γ(α, β) ∈ C/2πiZ
by the formula

ed
∗
γ(α,β)q = p.

Remark 4.1.1. Let α, β and γ be as above and suppose x = α∩γ, y = β ∩γ,

u = α̇(x), v = β̇(y), and n = γ̇(y). Then

d∗γ(α, β) = dγ(x, y) + iΘn(u@y, v).

In particular we notice that the signed complex distance d∗γ coincide with the

signed real distance dγ if α and β are coplanar.

Obviously we have that d∗γ(α, β) = −d∗γ(β, γ) = −d∗(γ−1)(α, β) and that

d∗γ(α
−1, β) = d∗γ(α, β

−1) = d∗γ(α, β) + iπ.



108 4. The Ehrenpreise Conjecture

Finally we define the unsigned complex distance (we use the notation defined

above)

δ(α, β) =


d∗γ(α, β) if Re(d∗γ(α, β)) > 0,

i|d∗γ(α, β)| if Re(d∗γ(α, β)) = 0,

−d∗γ(α, β) if Re(d∗γ(α, β)) < 0.

We observe that such definition doesn’t depend on γ.

The unsigned complex distance is useful since it can be expressed in terms

of the endpoints of α and β. Let (a1, a2) and (b1, b2) ∈ Ĉ the endpoints of ,

respectively, α and β. Define χ = (a1−a2)(b1−b2)
(a1−b2)(b1−a2)

, then we have

cosh δ(α, β) =
1 + χ

1− χ
. (4.1)

The definition of complex distance gives a definition of the complex trans-

lation length for an hyperbolic element A ∈ PSL(2,C). Let γ be the axis

of A oriented from the repelling to the attractive point. Let β an oriented

geodesic of H3 orthogonal to γ. We define the complex translation length of

A as l(A) = d∗γ(β,A(β)). It can be verified that l(A) does not depend on the

choice of β. We notice that Re(l(A)) > 0 by definition, so here isn’t useful to

make difference between the signed and unsigned case. We also observe that

in PSL(2,C), Tr(A) is defined up to multiplication of ±1 whereas l(A)/2 is

defined up to addition of iπ, then it is well defined the following formula for

the complex length of an hyperbolic element

Tr(A) = −2 cosh(l(A)/2), (4.2)

For a complete introduction to complex distance and related topics, see

[Ser01], [Tan94] and [Kou94].

Right-Angled Hexagons

A skew hyperbolic right-Angled hexagon H is a cyclically ordered set of

oriented geodesic arcs Li, i ∈ Z
6Z , such that Li meets orthogonally Li+1. We
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write H = (L1, L2, L3, L4, L5, L6). Let λn = δ(Ln−1, Ln+1). We have the fol-

lowing two formulas for a skew right-angled hexagon. They are consequence

of (4.1), however it is possible to find a proof in [Kou94] and in [Fen89].

Proposition 4.1.1 ( Cosh Rule for Right Angled Hexagon).

cosh(λn) =
cosh(λn+3)− cosh(λn+1) cosh(λn−1)

sinh(λn+1) sinh(λn−1)
. (4.3)

Proposition 4.1.2 ( Sinh Rule for Right Angled Hexagon).

sinhλ1

sinhλ4

=
sinhλ3

sinhλ6

=
sinhλ5

sinhλ2

. (4.4)

We notice that such formulas apply also in the degenerate case in which

a line Li has shrunk to a point at infinity (equivalently when Li−1 and Li+1

meets at infinity). However, from now on we don’t consider degenerate cases.

If the λi are all real, we observe that the hexagon is planar. These formulas

are the main tools for the proof of the proposition below (see [Kou94] 1.6). We

say that an hexagon H with edges coherently oriented is positively oriented.

This condition is equivalent to ask δ(Ln−1, Ln+1) = d∗γ(Ln−1, Ln+1) for every

i ∈ Z
6Z .

The following proposition says that, essentially, a positively oriented skew

right angled hexagon is determined by three complex numbers (or by three

of its edges).

Proposition 4.1.3. Let Σ = {z ∈ C : Re(z) > 0, −π < Im(z) ≤ π}. For

any λ1, λ3, λ5 ∈ Σ there exist three oriented geodesics L2,L4 and L6, such

that every triple of oriented geodesics (X2, X4, X6) satisfying

λi = δ(Xi−1, Xi+1), for i = 1, 3, 5 mod 6

is congruent by an orientation preserving isometry to one of (L2, L4, L6) or

(−L2,−L4,−L6).

All the four triples of complex numbers (λ1, λ3, λ5), (λ1, λ3 + πi, λ5 + πi),

(λ1 + πi, λ3, λ5 + πi) and (λ1 + πi, λ3 + πi, λ5) give the same three geodesics

L2,L4 and L6 but with different orientations.
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Then we can generate 8 skew right angled hexagons individuated connecting

the Li’s by geodesic arcs of the required complex lengths, however exactly one

of them is positively oriented.

Remark 4.1.2. If we restrict our attention to the planar case the above Propo-

sition say that given three positive real numbers λ1, λ2 and λ3 we can find

exactly one planar right angled hexagon, up to orientation preserving isome-

tries of H2 with three alternates edges of length λi.

Pants and Fenchel-Nielsen Coordinates

LetH = (C1, a2, C3, a1, C2, a3) be a positively oriented planar right-angled

hexagon. In the planar case H is the boundary of a region of the plane. We

denote such region with the boundary again with H. We can take two copy

of the hexagon H with opposite orientations and then glue them along the

arcs ai’s. What we get is a pair of pants (with geodetic boundary).

Now we start from a pair of pants Π with geodetic boundary. Let Ci, i ∈ Z
3Z ,

denotes the three boundary components. Let ai be the common perpen-

dicular geodesic segment between Ci−1 and Ci+1. Cutting along the ai’s

disconnect Π into two right angled hexagons, which are congruent by 4.1.3

since they share three alternating edges. So the Cj’s are cut by the ai’s in

two arcs of the same length. In particular we have that the three half lengths

hl(Ci) of the Ci’s determines a unique hyperbolic structure over a pair of

pants.

Now we want to glue such pants along the boundaries to construct closed

hyperbolic surfaces. Let S be a fixed closed oriented topological surface with

genus g > 1. Every such surface admits a pant decomposition: we can find

a finite set C of simple closed curves not homotopically equivalent, such that

S −
⋃
C∈C C is a disjoint union of some topological pair of pants. We recall

that such decomposition can be done with exactly 3(g−1) curves. We denote

with P the finite set of such pair of pants. Moreover we fix a diffeomorphism

ψ : S −→ Σ where Σ = (S, h) is an hyperbolic surface.

Fix a C ∈ C, then we have one of the following two mutually exclusive situ-
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ations:

(i) There are exactly two pair of pants Π′(C), Π′′(C) ∈ P with C as bound-

ary component. Notice that the orientation of C as boundary of Π′ is the

opposite of the orientation as boundary of Π′′.

(ii)There is only one pair of pants Π′(C) such that there are two components

of ∂Π′ equal to C.

In the case (i) fix KC as the free homotopy class of a closed simple curve

in Π′ ∪ Π′′ ∪ C which meets C in exactly two points, and that disconnect

Π′∪Π′′∪C into two topological pair of pants. When we consider ψ(Π′∪Π′′∪C)

we found a unique real number hl(C) determined by the length of the geodesic

representative of C and a unique oriented geodesic representative for the class

KC , which meets C in the two points pC and qC . We can fix a lift K̃C of

the geodesic representative of KC in H2. In such lift we can fix three points

p̃1
C ,q̃2

C and p̃3
C that are two consecutive lifts of pC with a lift of qC between

them. K̃C meets a lift C̃i of C in p̃iC and a lift C̃2 on q̃2
C . We observe that

the orientation of C̃2 is the opposite of C̃1 and C̃3. Let D̃i be the common

perpendicular between C̃i and C̃i+1, for i = 1,2. The orientations of D̃i’s are

from C̃i to C̃i+1. We define the twist parameter for Σ at C as the real signed

distance t(C) = dC̃2
(D̃1, D̃2).

In the case (ii) we fix KC as the homotopy class of the closed simple

curve of Π′ ∪ C which meets C in only one point and doesn’t disconnect

Π′. The definition of hl(C) is equal to the case (i), for t(C) we proceed

as follows. We found the geodesic representative for KC in ψ(Π′ ∪ C) that

intersect the geodesic representative γ of C at the point pC . Then we can

choose two lifts p̃1
C and p̃2

C in H2 of pC such that they are consecutive along

a lift K̃C of the geodesic representative for KC . This construction define two

lifts C̃1 and C̃2 of C at the points p̃1
C and p̃2

C . Then we can consider D̃ as the

common perpendicular between them, which meets C̃1 and C̃2 at the points

d̃1 and d̃2 respectively. Such points projects to two (not necessarily distinct)
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points d1 and d2 on γ. We define t(C) as the real signed distance dγ(d1, d2).

Then we can assign to any hyperbolic surface Σ = (S, h) the real parameters

(hl(C), t(C))C∈(C) ∈ R3(g−1)
+ × R3(g−1). These are coordinates for T (g).

Theorem 4.1.4 (Fenchel-Nielsen Coordinates). Let g > 1 and fix a closed

topological surface S of genus g. Fix a pant decomposition C made by 3(g−1)

curves. Let Ψ̂ : H −→ R3(g−1)
+ × R3(g−1) be the map that assign to every

hyperbolic metric h ∈ H its Fenchel-Nielsen coordinates (hl(C), t(C))C∈C.

Then Ψ̂ induces a map

Ψ : T (g) −→ R3(g−1)
+ × R3(g−1),

which is an homeomorphism.

Quasi-Fuchsian Groups

We recall that a Kleinian (resp. Fuchsian) group is a discrete subgroup

of PSL(2,C) (resp. PSL(2,R)). Let S be a closed topological surface an let

G′ be a Kleinian group such that M = H3/G′ is an hyperbolic 3-manifold

homeomorphic to S × R. Recall that the action of Kleinian groups on H3 is

determined by (and determines) an action ζ : G′ −→ Aut(Ĉ), which maps

each g′ ∈ G′ to ζ(g) ∈ Aut(Ĉ).

Definition 4.1.1. In the situation above G′ is said a quasi-Fuchsian group

if the limit set LG′ ⊆ Ĉ is a Jordan curve.

In fact Ĉ \ LG′ will be two simply connected components.

If G is a Fuchsian group then it acts on ∂H2 and such action can be naturally

extended to ∂H3, as an action η : G −→ Aut(Ĉ), which maps each g ∈ G in

η(g) ∈ Aut(Ĉ).

Proposition 4.1.5. A Kleinian group G′ is quasi-Fuchsian if and only if

there is an isomorphism of groups σ : G −→ G′ with a Fuchsian G, and

a quasi conformal map f : Ĉ −→ Ĉ such that, defined the actions of these

groups on Ĉ as the maps ζ, and η of G′ and G,respectively, on Aut(Ĉ), we
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have that

f ◦ (ζ(σ(g))) = η(g) ◦ f for every g ∈ G.

In this case we say that G and G′ are quasi-conformally conjugated by f .

In particular every Fuchsian group is quasi-Fuchsian.

If we call Ω1 and Ω2 the two components of ∂H3 \LG′ one can see that Ω1

G′
, Ω2

G′

and S are all three homeomorphic. Moreover the homeomorphism between

the Ωi
G′

’s is given by the quotient of the map f ◦ c ◦ f−1, where c(z) = z̄.

Let H(G′) be the convex hull of LG′ , and let Hε(G
′) be an ε neighbourhood of

H(G′). Then MG′ = Hε(G′)
G′

is homeomorphic to M . We notice that we need

to use Hε instead of H since if G′ is itself Fuchsian then H(G′) is H2 ⊆ H3

and then H(G′)
G′

is a surface.

Let S be a closed surface, as before, with genus g and with fundamental group

G. We want to describe the properties of the set of quasi-Fuchsian groups,

that is the set of group G′ founded as above. Let Q̃ ⊂ Hom(G,PSL(2,C))

be the set of the injective homomorphisms with quasi-Fuchsian image. There

is a natural action by conjugation of PSL(2,C) on Q̃. We need to consider

the quotient of Q̃ by such action since also Fuchsian groups inside PSL(2,C)

are defined modulo conjugation. We define such quotient of Q̃ as Q(S), the

set of all quasi-Fuchsian groups quasi-conformally congruent to G. In fact

Q(S) is a topological ball of dimension 12g − 12 (see, for example, [Ber70]).

We are interested to give coordinates for Q(S) in analogy to the Fenchel-

Nielsen coordinates given for T (g). These will be the complex Fenchel-

Nielsen coordinates, which parametrize Q(S) with holomorphic coordinates

(with respect to the natural complex structure onQ(S) inherited from PSL(2,C)).

The complex Fenchel-Nielsen coordinates were introduced in [Kou94] and

[Tan94].

Skew Pants and Complex Fenchel-Nielsen Coordinates

We want to extend the construction given for pair of pants starting from

planar right angled hexagons, to skew right-angled hexagons to have skew
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pair of pants. It is better to use a more algebraic argument. Let Π be a

topological pair of pants as before. There exists a presentation of π1(Π) with

three generators c1, c2 and c3 such that c1c2c3 = id. The following is proved

in [Kou94].

Proposition 4.1.6. Let λ1, λ2, λ3 ∈ C/2πiZ such that Re(λi) > 0. Then

there exists a representation ρ̂ : π1(Π) −→ SL(2,C) such that Tr(ρ̂(ci)) =

−2 coshλi for i = 1,2,3. This homomorphism is unique up to conjugation in

SL(2,C), provided that the axis of the ρ̂(ci)’s are pairwise distinct.

Then given the three half lengths hl(Ci) = λi we can determine a repre-

sentation in SL(2,C), unique up to conjugation.

Definition 4.1.2 (Skew pair of pants). Let Π be a topological pair of pants.

Let ρ : π1(Π) −→ PSL(2,C) be a discrete and faithful representation. We

say that the conjugacy class [ρ] is a skew pair of pants.

We also have a geometric point of view. A skew pair of pants ρ deter-

mine, up to homotopy, a map fρ : Π −→ H3/ρ(π1(Π)) = Mρ. We orient

every boundary component Ci ⊂ ∂Π in such a way that Π is on the left of

Ci. For each i ∈ Z
3Z there is exactly one closed oriented geodesic γi ⊂ Mρ

freely homotopic to f(Ci). Define ηi ⊆ Mρ as follows: let γ̃i−1 and γ̃i+1

be two lifts in H3 of γi−1 and γi+1, respectively, then consider their com-

mon orthogonal η̃i and define ηi as its projection on Mρ; ηi is a geodetic

arc and doesn’t depend on the chosen lifts of the γj’s. In this way we have

found a unique 1-complex determined by ρ and this leads to a description

of a skew pair of pants in terms of skew right angled hexagons similar to

the description made in the planar case. The hexagon in this case will be

Hρ = (γ1/2, η3, γ2/2, η1, γ3/2, η2) where the γi/2 is the half of the arc γi, in-

dividuated by the endpoints of the ηj’s on it.

Conversely three half lengths λi’s determine a unique positive skew hexagon

by Proposition 4.1.3. Then we can proceed with a similar argument to that

we used for the planar case, to see how geometrically we can glue two oppo-

sitely oriented copies of skew hexagons in alternate edges, to construct the
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1-complex of a skew pair of pants.

Let S be a fixed closed oriented topological surface with genus g > 1. As

we done in the classical case we fix a pant decomposition C made of 3(g− 1)

curves, and we denote with P the set of pair of pants.

Let ρ̄ : π1(S) −→ PSL(2,C) be a quasi-Fuchsian representation for π1(S)

(up to conjugacy). Then ρ̄ is faithful and discrete. We want to give coordi-

nates for ρ̄(π1(S)) inside Q(S).

We recall the notation used in the description of the Fenchel-Nielsen coordi-

nates. Fix a C ∈ C, then there can be two situation.

(i) There are exactly two pair of pants Π′(C), Π′′(C) ∈ P with C as bound-

ary component.

(ii) There is only one pair of pants Π′(C) such that two components of ∂Π′

are C.

Suppose we are in (i).

Let KC be the free homotopy class of a closed simple curve in Π′ ∪ Π′′ ∪ C
which meets C in exactly two points, and that disconnect Π′ ∪ Π′′ ∪ C into

two topological pair of pants. With a little abuse of notation, we use for

every element of π1(S) the same name of a freely homotopic representative,

for example we denote with C both a closed curves in S and the element

of π1(S) freely homotopic to C (since ρ̄ is determined up to conjugation,

this abuse doesn’t make confusion in the representation). We consider the

pant Π′(C) with ∂Π′ = C ∪ C2 ∪ C3. Let λ1 = l(ρ̄(C))/2, λ2 = l(ρ̄(C2))/2

and λ3 = l(ρ̄(C3))/2 be the three complex number corresponding to half of

the complex translation lengths. Such three complex numbers determines a

representation ρ′ : π1(Π′(C)) −→ SL(2,C) up to conjugation, by proposition

4.1.6.

We observe that is well defined the three manifold Mρ′ = H3/ρ′(π1(Π′)), and

an homotopy class of maps fρ′ : Π′ −→Mρ′ . We can consider the intersection

κ of a representative of KC with Π′(C). Then fρ′(κ) is defined as geodesic



116 4. The Ehrenpreise Conjecture

arc, if we take a geodesic representative for fρ′(κ ∪ C). We call pC and qC

the two points of intersections in Mρ′ of the geodesic representative of κ with

the geodesic representative of C.

We can choose an axis C̃1 of ρ′(C) in H3 (it is determined up to orientation

preserving isometries of H3). Chosen C̃1 we determine C̃2 as follows: let K̃C

be the oriented geodesic arc in H3 meeting in a point p̃1
C with C̃1 such that,

when projected on Mρ′ , maps over fρ′(κ) and p̃1
C is projected on pC ; then

there is a lift q̃2
C of the point qC to the other endpoints of K̃C , and with him

a new lift C̃2 of C passing through q̃2
C . Finally this determines the oriented

geodesic line D̃1 in H3 as the common perpendicular from C̃1 to C̃2.

Now we proceed in a similar way to choose a representation ρ′′ : Π′′(C) −→
SL(2,C) by proposition 4.1.6, with the restriction that we have to choose as

axis of ρ′′(C) the geodesic C̃2 (again, we take the half lengths values from

the quasi-Fuchsian representation ρ̄ in order to apply the Proposition 4.1.6).

Then this determines, as a translated by K̃C in anology of what we done for

Π′, the geodesic C̃3 up to orientation preserving isometries of H3. We can

define D̃2 as the common perpendicular from C̃2 to C̃3.

Since in both the representation ρ′ and ρ′′ we asked the half lengths of

the images of C to be determined as ρ̄ do, then we have that Tr(ρ′(C)) =

−2 cosh(λ1) = Tr(ρ′′(C)). Then we can determine a representation of π1(Π′∪
Π′′) in SL(2,C) specifying the parameter t(C) = d∗

C̃2
(D̃1, D̃2). We remark

that this definition of t(C) is now dependent only on ρ̄ since the remaining

geometry of the two pants is completely determined.

Suppose that we are in (ii).

Let KC be the homotopy class of the closed simple curve of Π′∪C which meets

C in only one point and doesn’t disconnect Π′. Let ∂Π′(C) = C ∪ C1 ∪ C.

Thank to Proposition 4.1.6 we can find a representation ρ′ : π1(Π′) −→
SL(2,C) specifying λ3 = λ1 = l(ρ̄(C))/2 ad λ2 = l(ρ̄(C2))/2. Then we

consider the three manifold Mρ′ = H3/ρ′(π1(Π′)) and the homotopy class of

maps fρ′ : Π′ −→ Mρ′ . We can find the geodesic representatives γ and κ
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in Mρ′ for fρ′(C) and fρ′(KC) that intersect in the point pC . Then we can

proceed as we done for the (real) Fenchel-Nielsen coordinates, briefly: take

an arc k̃ in H3 between two preimages of pC and that projects onto κ, then

we can find two covers C̃1 and C̃2 of C and their common orthogonal arc D̃

meeting in d̃1 and d̃2; projected these two points over d1 and d2 ∈ C we can

define t(C) = d∗C(d1, d2).

Thus we have determined a representation of π1(Π′ ∪ C) on SL(2,C)

Repeating the procedures for all C ∈ C we find a representation ρ̂ :

π1(S) −→ SL(2,C) where for every C the equation Tr(C) = − cosh(hl(C))

is satisfied. From this equations one can verify that the nearest Fuchsian

group to ρ̂(π1(S)) in PSL(2,C) satisfy Tr(C) < 0.

One can ask if the family of complex numbers (hl(C), t(C))C∈C describe com-

pletely the structure of Q(S). In fact they are coordinates for Q(S), named

Complex Fenchel-Nielsen Coordinates as the following Theorem states.

Theorem 4.1.7 (Complex Length Coordinates for quasi-Fuchsian Groups

[Kou94],[Tan94]). Given a pant decomposition C of a surface S, there are

complex length functions

(hl(C), t(C))C∈C : Q(S) −→ C3(g−1) × C3(g−1),

which form a global set of holomorphic coordinates for Q(S) (with respect to

the complex structure inherited from PSL(2,C)).

Remark 4.1.3. The complex half lengths hl(C) in this statement can have

Re(lC) < 0. This is required in order to have holomorphic coordinates.

4.2 The Kahn-Markovic Theorem

The works [KM12] and [KM13] together proves a very strong result. Let

S(R) denote the hyperbolic surface of genus 2 with Fenchel-Nielsen coordi-

nates (hl(C), t(C)) = (R, 1). With O(R) we denote the quotient orbifold of

S(R) by the group Isom(S(R)).
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Definition 4.2.1 (Quasi-isometry). Let (X, d), (Y, δ) be two metric spaces.

We say that they are quasi-isometric if there is a continuous map f : X −→
Y and two constant C,A > 0, such that the following two conditions are

satisfied.

(1) d(a,b)−A
C

≤ δ(f(a), f(b)) ≤ C(d(a, b) + A),

for every a,b ∈ X.

(2) for every y ∈ Y there exists an x ∈ X such that d(f(x), y) ≤ A.

Such an f is called quasi-isometry.

If f is a quasi-isometry with A = 0 we speak about C quasi-isometry. One

can verify that a C quasi-isometry of H2 is a quasi-conformal homeomorphism

too. We recall from the preliminaries that a quasi-conformal map of the open

unit disk extends to an homeomorphism of the closed unit disk. Moreover

there is a condition on the boundary, named M -condition. We have the

converse: an homeomorphism of the boundary which satisfy an M -condition

extends to an homeomorphism of the closed unit disk which is K(M) quasi-

conformal in the open disk. In [Ahl06] it is proved that such extension is a

C(K) quasi-isometry with respect to the hyperbolic metric for the unit disk.

The following is the Unified Kahn-Markovic Theorem.

Theorem 4.2.1 (J. Kahn, V. Markovic, Unified Theorem). Let M be an

hyperbolic manifold of dimension n equal to 2 or 3. For any ε > 0 there

exists an R0 = R0(ε,M) > 0 with the following properties. For every R > R0

there exists an hyperbolic surface S which is a finite cover of O(R) and an

immersion f : S −→ M such that the corresponding map in the universal

cover f̃ : S̃ −→ M̃ is a (1 + ε) quasi-isometry.

It has two famous corollaries:

Corollary 4.2.2 (Surface Subgroup Theorem). For any closed hyperbolic

3-manifold M3 there exist a closed hyperbolic surface S and an immersion

f : S −→M3 such that f∗ : π1(S) −→ π1(M3) is an injective morphism.

Proof. It follows from the Kahn-Markovic Theorem for n = 3. We don’t give

the details of the proof, however it is based on the fact that the geodesics
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on S are mapped by quasi isometries at bounded distance from geodesics on

M .

Corollary 4.2.3 (Ehrenpreise Conjecture). Let S, T be two closed hyperbolic

surfaces, and let ε > 0. Then there exist two finite covers Ŝ −→ S and

T̂ −→ T and an (1 + ε) quasi-conformal map f : Ŝ −→ T̂ .

Proof. Given an ε > 0 say that ψ : X −→ Y is an ε-good cover if X

and Y are hyperbolic surfaces, ψ is a covering, and the lift ψ̃ of ψ on the

universal covers is an (1+ε) quasi-isometry. From the Unified Kahn-Markovic

Theorem we can find two ε-good covers S1 −→ S and T1 −→ T which are

both finite locally isometric coverings of O(R), for a real R > 0 sufficiently

large. Then there exists a surface S2 which is a finite cover both for S1 and

T1, is a finite locally isometric cover for O(R) and is an ε-good cover of S and

T . Let Ŝ be the locally isometric cover of S which is the same topological

cover of S2. Then we can find an homeomorphism Ŝ −→ S2 which lift in

the universal cover to a (1 + ε) quasi-isometry of H2. In particular we find

an homeomorphism fS : Ŝ −→ S2 which is KS(ε) quasi-conformal, with

K(ε) −→ 1 when ε → 0. In the same way we find a finite locally isometric

cover T̂ −→ T with a KT (ε) quasi-conformal homeomorphism fT : T̂ −→ S2.

Finally f = f−1
T fS is the quasi-conformal homeomorphism desired (one have

to adjust the constant, however KS(ε)KT (ε)→ 1 for ε→ 0, so the constants

are coherent with the statement).

Reduced Complex Fenchel-Nielsen coordinates

In their work [KM12] Kahn and Markovic use a slightly different descrip-

tion of the Fenchel-Nielsen coordinates. Let Π0 be a topological pair of pants,

and ρ : π1(Π0) −→ PSL(2,C) a representative for a skew pair of pants, with

the corresponding homotopy class of maps fρ : Π −→ Mρ = H3/ρ(π1(Π0)).

For such skew pair of pants and its 1-complex inside Mρ we use the same

notation introduced after the definition of skew pair of pants 4.1.2.

Fix an i ∈ {0, 1, 2}. Orient ηi−1 and ηi+1 in the direction pointing away from
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γi. We conjugate ρ so that there is a lift γ̃i of γi on H3 that has endpoints at

infinity 0 and ∞ (we use the half space model). Let Aγi ∈ PSL(2,C) be the

hyperbolic isometry with axes γ̃i that corresponds to the element of π1(Π0)

representing γi. Then Aγi extends to ∂H3 = Ĉ as the map z 7→ el(Aγi )z (We

recall that l(Aγi) is the complex translation length as introduced after the

complex distances). We observe that the lifts η̃i−1 and η̃i+1 of, respectively,

ηi−1 and ηi+1, that intersects γ̃i will alternate along γ̃i. In particular we can

define the half length of γi as

hl(γi) = dγ̃∗i (η̃i−1, η̃i+1),

where the lifts η̃i−1 and η̃i+1 are chosen so that they intersect γ̃i consecutively.

One can verify that this definition coincides with the previous. Moreover we

can consider the hyperbolic element
√
Aγi ∈ PSL(2,C) defined by its action

on ∂H3 as z 7→ ehl(γi)z. We have that
√
Aγi maps η̃i−1 to η̃i+1.

We observe that the unit normal bundle N1(γ̃i) is a cylinder on which acts

the group C/2πiZ by translations: every v ∈ N1(γ̃i) is determined by a point

p ∈ γ̃i and an angle θ ∈ (−π, π], then z = x + iy ∈ C/2πiZ translates p by

x and rotate θ by y. Observe that the action is free and transitive. This

action pass to the quotients. On the unit normal bundle N1(γi) acts freely

and transitively the group

C/2πiZ/〈Aγi〉 = C/(2iπZ + l(γi)Z).

As well, if we define

N1(
√
γi) = N1(γ̃i)/〈

√
Aγi〉,

we have that

C/2πiZ/〈
√
Aγi〉 = C/(2iπZ + hl(γi)Z)

acts on it freely and transitively. For i, j = 0, 1, 2 and i 6= j let n(i, j) ∈
N1(γi) be the unit vector at γi∩ηj pointing along ηj. If we consider N1(

√
γi)

instead of N1(γi) we see that n(i, i− 1) and n(i, i+ 1) are the same point on

it, then we define such point as footγi(ρ) (sometimes we can write footγi(f)
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where f = fρ, recall that ρ where fixed as a skew pair of pants).

Consider a pant decomposition C = {Ci} for a topological closed oriented

surface S with genus g > 1. We consider the curves Ci as non oriented. Let C∗

be the set of oriented closed curves of C, where every C ∈ C is taken with both

the orientations in C∗. A marked pair of pants for the pant decomposition

(S, C) is a couple (Π, C) where C ∈ C∗, Π is a pant of the pant decomposition

given by C with C ⊂ ∂Π, and C lies on the left of Π. For every marked pair of

pants (Π, C) there is a unique (Π′, C ′) such that C = −C ′ (where the notation

−C ′ means C ′ with the opposite orientation). Let ρ : π(S) −→ PSL(2,C)

be a representation that is discrete and faithful when restricted to π1(Π), for

each pair of pants Π from the pant decomposition C. This means that each

restriction ρ|π1(Π) is a representative for a skew pair of pants.

Definition 4.2.2 (Viable Representation). Let (S, C) be a panted surface (a

surface with a pant decomposition C) such that the genus g of S is strictly

grater then 1. We say that the representation

ρ : π1(S) −→ PSL(2,C)

is viable if

(i) ρ is discrete and faithful when restricted to π1(Π) for each pair of pants

Π ∈ S \
⋃
C∈C C,

(ii) if we denote with hlΠ(C) the half length of C as defined by the restriction

ρ|π1(Π), we have that hlΠ(C) = hlΠ′(C) for every marked pair of pants (Π, C)

and (Π′,−C).

Remark 4.2.1. We observe that quasi-Fuchsian representations are in partic-

ular viable.

Given a viable representation ρ : π1(S) −→ PSL(2,C) it is well defined

the three dimensional manifold M(ρ) = H3/ρ(π1(S)). For every marked pair

of pants (Π, C) we can consider the geodesic γ freely homotopic to a represen-

tative of ρ(C) in M(ρ). From the definition of viable representation follows

that is well defined hl(C) as the half length of γ in M(ρ), independently on

the marked pair of pants.
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For γ′ = γ−1 and (Π′,−C) the marked pair of pants having −C has cuff, we

define

s(C) = footγ(ρ|Π)− footγ′(ρ|Π′)− iπ.

It follows that s(C) ∈ C/(2iπZ + hl(C)Z) and it is independent to the roles

of (Π, C) and (Π′,−C). The couples of complex numbers (hl(C), s(C))C∈C

are called reduced complex Fenchel-Nielsen coordinates.

Now fix a pair of pants Π of the pant decomposition individuated by C, and

denote with C0, C1 and C2 the three cuffs of Π. Let c0,c1 ∈ π1(Π) be the

elements representing the homotopy classes of C0 and C1. We say that a rep-

resentative for the conjugacy class of ρ : π1(S) −→ PSL(2,C) is normalized

if ρ(c0) has oriented axis (0,∞) in H3 and the repelling endpoint of ρ(c1) is

1.

For any R > 0 we define the set Ω = Ω(R) of the coordinates (z, w) =

{(zC , wC)}C∈C satisfying:

(i) zC ∈ C/2iπZ with |zC −R| < 1,

(ii) wC ∈ C/(2iπZ + zCZ) with |wC − 1| < 1
2R

.

If R is sufficiently large, it follows from Theorem 4.1.7 that for every (z, w) ∈
Ω there exists a viable normalised representation with reduced Fenchel-

Nielsen coordinates (z, w).

Remark 4.2.2. We notice that, since the coordinates are reduced, the real

part of s(C) takes value in R/ hl(C)Z, then there are infinitely many (non-

reduced) complex Fenchel-Nielsen coordinates which reduce to the same

(z, w). This means that the normalized viable representation with reduced

coordinates (z, w) is not unique in general.

The following theorem is a restatement of 4.1.7 in terms of viable repre-

sentation and reduced complex Fenchel-Nielsen coordinates.

Theorem 4.2.4. There exists an R0 = R0(S) > 0 such that the following

holds for every R > R0. Let ρ′ : π1(S) −→ PSL(2,C) be a viable representa-

tion such that | hl(C) − R| < 1 and |s(C) − 1| < 1
2R

where (hl(C), s(C))C∈C

are the reduced complex Fenchel-Nielsen coordinates for ρ′. Then, defined
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z′C = hl(C) and w′C = s(C), we have that (z′, w′) ∈ Ω(R). Moreover we have

that for each (z, w) ∈ Ω there exist a unique normalized viable representation

ρz,w : π1(S) −→ PSL(2,C) such that:

(1) zC = hl(C) and wC = s(C) where (hl(C), s(C))C∈C are the reduced com-

plex Fenchel-Nielsen Coordinates for ρz,w.

(2) The family of representation ρz,w varies holomorphically in (z, w).

(3) ρ′ = ρz′,w′.

Remark 4.2.3. We have the uniqueness of the viable representation since the

normalization fix the representative for the conjugacy class of ρz,w and, for

R large enough, Ω is sufficiently small so that the s(C) can be related to a

unique (non-reduced) complex parameter, once we have fixed (z′, w′).

Definition 4.2.3. Fix R > 0. For every C ∈ C let ζC ,ηC ∈ D2 = {z ∈ C :

|z| ≤ 1}. For any τ ∈ D2 we define the normalized viable representation

ρτ : π1(S) −→ PSL(2,C) by its reduced complex Fenchel-Nielsen coordi-

nates

hl(C)(τ) = R + τ ζC
2

,

s(C)(τ) = 1 + τηC
2R

.

Then ρτ is an holomorphic family of representation with respect to τ , by

Theorem 4.2.4. The following Theorem is proved in [KM12]. It is used to

control the constant K of the quasi-conformal map which conjugates a quasi-

Fuchsian group to a Fuchsian, not so distant in terms of reduced complex

Fenchel-Nielsen coordinates.

Theorem 4.2.5. There exists ε̂ > 0 such that the following holds. Let S

be a closed topological surface with genus g > 1 and let C be a fixed pants

decomposition. For any ε̂ > ε > 0 there exists R0(ε, S) > 0 such that the

following holds. Let ρ : π1(S) −→ PSL(2,C) be a viable representation with

reduced complex Fenchel-Nielsen coordinates satisfying

| hl(C)−R| < ε, and |s(C)− 1| < ε

R
.
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Then there exists a viable representation ρ0 : π1(S) −→ PSL(2,C) with

reduced coordinates hl(C) = R and s(C) = 1, and a K(ε) quasi-conformal

map f : ∂H3 −→ ∂H3, such that K(ε)→ 1 when ε→ 0, and

f−1ρ(π1(S))f = ρ0(π1(S)).

In particular the group ρ(π1(S)) is quasi-Fuchsian.

Remark 4.2.4. The proof is based on the Wolpert-Kerckhoff-Series Formula

which is the main tool to control geodesic lengths when we deform a quasi-

Fuchsian group holomorphically. Such formula was proved by Caroline Series

in [Ser01] and it is a generalizations of the previous works of Wolpert [Wol81],

Kerckhoff [Ker83], and Kourouniotis [Kou92]. In particular the Theorem

above follows from the following statement about the holomorphic family ρτ

as defined in 4.2.3.

Theorem 4.2.6. Let S be a closed topological surface with genus g > 1 and

let C be a fixed pants decomposition. There exist ε̂ > 0 and R0(ε̂, S) > 0

such that the following holds. For each C ∈ C fix ζC,ηC ∈ D. For any

R > R0, and |τ | < ε̂ the group ρτ (π1(S)) is quasi-Fuchsian, conjugated by

the K quasi-conformal map fτ : ∂H3 −→ ∂H3 to ρ0(π1(S)). Moreover

K =
ε̂+ |τ |
ε̂− |τ |

.

We observe that the statement holds also if we are in a planar situation:

we can estimate the quasi conformal constant between two Fuchsian struc-

ture in terms of reduced Fenchel Nielsen coordinates.

Now we see how this is used in order to prove the Theorem 4.2.1. It can

be proved that the K quasi-conformal maps of ∂H3 correspond to C(K)

quasi-isometries of H3 (this is not a simple fact to be proved, see for example

[Tuk94]). Then C(K) will goes to 1 when K → 1.

Finally we observe that the surface that comes up from Theorem 4.2.5 with

exact reduced Fenchel-Nielsen coordinates is a finite cover of O(R). In or-

der to prove the Unified Kahn-Markovic Theorem one has left to find an
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immersed surface in M (recall that it can be either an hyperbolic surface

or 3 manifold) with a viable representation and reduced complex Fenchel-

Nielsen coordinates as in the hypothesis of Theorem 4.2.5. In the following

subsection we sketch how this can be done finding a big collection of skew

pair of pants with the desired property inside M and then combining them

accordingly to the requirements.

Measures on Skew Pants and the Equidistribution Theorems

From now on M3 = H3/G is a fixed closed hyperbolic three manifold

(G is a suitable Kleinian group). Let Γ (respectively Γ∗) be the set of un-

oriented (resp. oriented) closed geodesics in M3. With −γ∗ we denote the

curve γ∗ ∈ Γ∗ with the opposite orientation. Let Π0 be a topological pair of

pants and an homotopy class of map f : Π0 −→M3 induced by an injective

homomorphism ρ : π1(Π0) −→ π1(M3). This determines, with a little abuse

of notation, a skew pants, that is a ρ : π1(Π0) −→ PSL(2,C) up to conju-

gacy. Fix an orientation and a base point on Π0. Let ω : Π0 −→ Π0 be an

orientation preserving homeomorphism of order 3 that permutes the three

boundary components and fix the base point of Π0. Then we can denote

them with ωi(C), i = 0,1,2. With ω we also denote the induced isomorphism

of π1(Π0). Then we can choose a c ∈ π1(Π0) such that c correspond to a

boundary component C ⊂ ∂Π0 and ω−1(c)cω(c) = 1.

Definition 4.2.4 (Admissible Pants Representation). let ρ : π1(Π0) −→
PSL(2,C) be a faithful representation. We say that ρ is admissible if ρ(ωi(c))

is an hyperbolic Mobius transformation, and

hl(ωi(C)) =
l(ωi(C))

2
,

where we choose l(ωi(C)) so that −π < Im(l(ωi(C))) ≤ π.

Definition 4.2.5 (Admissible Skew Pants). Let ρ : π1(Π0) −→ PSL(2,C)

be an admissible representation. We define the admissible skew pants Π1

to be the conjugacy class Π1 = [ρ]. The set of all admissible skew pants is
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denoted by Π. The set of all oriented admissible skew pants is denoted by

Π∗.

Definition 4.2.6 (Good Skew Pants). Let Π0 ∈ Π, let ε,R > 0. We say that

Π0 is a Good Pair of Pants if

| hl(ωi(C))−R| < ε.

We denote with Πε,R the set of the Good Pair of Pants in M3. Π∗ε,R is the

set of the oriented Good Pants.

Definition 4.2.7. Let Π1 ∈ Π, and let ρ : π1(Π) −→ G be a representa-

tion such that Π1 = [ρ] and ρ(ωi(c)) = Ai. Define ρ1 : π1(Π1) −→ G by

ρ1(ω−i(c)) = A−1
i . Define R(Π1) ∈ Π as R(Π1) = [ρ1].

One can verify that R is well defined and it is a fixed point free involution

of Π. We observe that ,if γ∗(Π0, ωi(c)) is the oriented geodesic representative

of the homotopy class ωi(c) with c ∈ ρΠ0(π1(Π0)) where [ρΠ0 ] = Π0, we have

that γ∗(Π0, ωi(c)) = −γ∗(R(Π0), ω−i(c)).

We notice that all these definitions are still true if we replace M3 with

M2 = H2/F , a closed hyperbolic surface (here F is a suitable Fuchsian

group). In particular admissible skew pants are immersed pants in the planar

case (see their construction in section 3.2). Now we make some observations

about N1(
√
γ) for γ ∈ Γ.

First suppose that we are in the case of M3. Then there is a natural iden-

tification of N1(
√
γ) with C/(2iπZ + hl(γ)Z) (after we have fixed a point)

which provides an euclidean structure to N1(
√
γ).

If we are in the case of M2 we have that N1(γ) has two connected compo-

nents both isomorphic to γ. One can verify that, then also N1(
√
γ) has two

connected components (that we denote N1
−(
√
γ) and N1

+(
√
γ)) both isomor-

phic to a circle of length hl(γ).

This is the main difference in between the cases M2 and M3. In both the

cases N1(
√

Γ) is the disjoint union of all the N1(
√
γ) for γ ∈ Γ.

Given a space X, we denote withM0(X) the space of the Borel measures

with compact support. Moreover M+
0 (X) ⊂ M0(X) denotes the subspace
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of positive measures. By MR
0 (Π∗) we define the space of the positive Borel

measures with finite support on the set of oriented skew pants Π invariant

by the action of R. Let λ(γ) denote the Lebesgue on N1(
√
γ).

For A ⊂ X and δ > 0 we define the δ-neighbourhood of A as Nδ(A) = {x ∈
X : ∃a ∈ A such that d(x, a) ≤ δ}.

Definition 4.2.8. Let µ,ν ∈ M+
0 (X) be two measures such that µ(X) =

ν(X), and let δ > 0. Suppose that for every Borel set A ⊂ X we have

µ(A) ≤ ν(Nδ(A)).

Then we say that µ and ν are δ-equivalent measures.

We need the following simple result about measures.

Theorem 4.2.7 (Hall’s Marriage Theorem). Let A, B two finite sets with

the same cardinality, and let (X, d) be a metric space. Let δ > 0. Let ΛA

and ΛB the counting measures on A and B respectively. Let f : A −→ X,

g : B −→ X be two maps. Suppose that f∗ΛA and g∗ΛB are δ-equivalent.

Then one can find a bijection h : A −→ B such that d(f(a), g(h(a))) ≤ δ,

for every a ∈ A.

We define the operator

∂̂ :M0(Π∗) −→M0(N1(
√

Γ))

as follows. The set Π is a countable set, so every µ ∈M0(Π∗) is determined

by its value on every Π1 ∈ Π∗. Let γi ∈ Γ for i = 0,1,2 denote the cor-

responding oriented geodesic so that (Π1, γi) are marked pair of pants. If

Π1 = [ρ] we denote with αΠ1

i ∈M0(N1(
√

Γ)) the atomic measure supported

at the point footγi(ρ) ∈ N1(
√
γi). Let

αΠ1

=
2∑
i=0

αΠ1

i ,

then define

∂̂µ =
∑

Π0∈Π∗

µ(Π0)αΠ0

.

When we write ∂̂µ(γ) we mean the restriction of the measure ∂̂µ on γ.
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Remark 4.2.5. We notice that a measure µ ∈ M0(Π∗) can be viewed as a

linear combination of RΠ∗, with the convention that a change of orientation

change the sign of the pants.

The following is the main result about measures in skew pants.

Theorem 4.2.8 (Corrected Equidistribution Theorem). Let M a closed 2 or

3 dimensional hyperbolic manifold. Let ε > 0. There exist q = q(M, ε) > 0,

R0 = R0(M, ε) > 0 and a polynomial P (R) with coefficients dependent only

on ε and M , such that for every R > R0 there exists a measure MR
0 (Π∗ε,R)

with the following properties. Let γ ∈ Γ and let ∂̂µ(γ) be the restriction of

∂̂µ to N1(
√
γ). If ∂̂µ(γ) is not the zero measure then there exists a constant

Kγ > 0 such that the measures ∂̂µ(γ) and Kγλ(γ) are P (R)e−qR-equivalent.

The Corrected Equidistribution Theorem permits to conclude the proof

of the Theorem 4.2.1. We briefly sketch how to conclude.

Sketch of the proof of the Unified Kahn-Markovic Theorem. We may assume

that the measure has integer coefficients, and we may think to µ as a formal

sum in ZΠ∗ε,R.

We want to use the Hall’s Marriage Theorem to determine couples of skew

pants and glue them along a common cuff.

R defines a (not uniquely determined) partition Πε,R = Π+
ε,R∪Π−ε,R. Then, for

Π0 a good skew pants, footγ∗(Π
0) = foot−γ∗(R(Π0)). Moreover the measures

µ+ ∈ M+
0 (Π+

ε,R) and µ− ∈ M+
0 (Π−ε,R) that are restriction of µ, satisfy ∂̂µ =

∂̂µ+ + ∂̂µ− = 2∂̂µ+ = 2∂̂µ−.

Fix a boundary γ ∈ Γ such that ∂̂µ(γ) is not the zero measure. Then the

measure µ (which we think as a formal sum), once restricted to Πε,R(γ) (which

means that we restrict the measure to the set of good pants with γ as a cuff)

can be identified with multiset X(γ) of the good pants in the formal sum,

taken many times as their coefficients. Then the partition Πε,R = Π+
ε,R∪Π−ε,R

gives a partition X(γ) = X+(γ) +X−(γ).

One can easily found a coherent definition of ∂̂ : X(γ) −→ N1(
√
γ). It can
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be proved that the measures ∂̂µ±(γ) are exactly the push-forward measures

by ∂̂ of the counting measures on X±(γ) (denote such counting measures as

σ±(γ)). One can define a g : X−(γ) −→ N1(
√
γ) which is the ∂̂ composed

with an automorphism of N1(
√
γ). We can choose such automorphism, such

as send points within distance 1 + ε
R

.

Then the push forwards ∂̂∗σ
+(γ) and g∗σ

−(γ) can be proved to be P (R)e−qR

equivalent, using the equality 2∂̂µ+ = 2∂̂µ− and the fact that are P (R)e−qR

equivalent to the a multiple of the Lebesgue measure. Now we can use the

Hall’s Marriage Theorem to found an h : X+(γ) −→ X−(γ) such that the

euclidean distance between g(h(x)) and ∂̂x is less then P (R)e−qR.

Essentially we gave a pairing between the multisets X+(γ) and X−(γ). Now

we can glue such pairs along γ. We notice that a good choice of the map g

gives parameters |s(C)− 1| ≤ ε
R

.

The Corrected Equidistribution Theorem has not the same proof in the

two cases M = M2 and M = M3. In fact the proof in M2 is harder, and the

additional difficult will be The Good Pant Homology.

In the case M3 Theorem 4.2.8 is proved using equidistributional and expo-

nentially mixing arguments. It is the harder part of the work [KM12]. Now

we state the strongest equidistributional result for M2, that can be proved

using similar type argument. We need some notation.

Recall that in M2, the normal unit bundle N1(γ) as two connected com-

ponents N1
−(γ) and N1

+(γ). A measure α on M+
0 N

1(
√
γ) decompose into

two measures α+ and α−, respectively on N1
+(
√
γ) and N1

−(
√
γ). In par-

ticular the Lebesgue measure λ(γ) on N1(
√
γ) can be thought as the sum

λ+(γ) + λ−(γ), as well every measure of the type ∂̂µ decompose to ∂̂+µ and

∂̂−µ. We denote with Γε,R ⊆ Γ the set of the closed geodesics γ of M2 such

that | hl(γ)−R| < ε.

Theorem 4.2.9 (Equidistribution Theorem for Surfaces). Let ε > 0. There

exist constants q = q(ε,M2) > 0, C = C(ε,M2) > 0 and R0 = R0(ε,M2)

such that for every R > R0 the following is true. Let µ be the measure on

Πε,R that assigns to each pants in Πε,R the value 1. Then we have
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(1) µ(Πε,R) � e3R.

(2) For every γ ∈ Γε,R there exist two constants K±γ λ±(γ), satisfying

|
K+
γ

K−γ
− 1| < Ce−qR,

such the measure ∂̂±µ(γ) is Ce−qR-equivalent to K±γ λ±(γ).

(3) the constants satisfy K±γ � ReR for every γ ∈ Γε,R.

To prove the Correct Equidistribution Theorem for Surfaces we have to

produce a measure on MR
0 (Πε,R) such that for every γ ∈ Γε,R, ∂̂µ(γ) is

P (R)e−qR-equivalent to Kγλ(γ) for some constant Kγ. The first remark is

that we can work withM+
0 (Πε,R) instead ofMR

0 (Πε,R) since the decomposi-

tion Πε,R = Π+
ε,R∪Π−ε,R is intrinsically given, around any γ ∈ Γε,R, by the two

components of the normal unit bundle. Since λ is balanced with respect to

the two components of N1(
√
γ) we need that ∂̂µ(γ) has the same total mea-

sure on both the components. If we define ∂µ = |∂̂+µ| − |∂̂−µ|, the previous

condition became ∂µ(γ) = 0.

The Equidistribution Theorem 4.2.9 gives a measure µ0 on Πε,R, such that

∂̂µ0(γ) is Ce−qR-equivalent to the measures K±γ λ±(γ), where the constants

satisfy

|
K+
γ

K−γ
− 1| < Ce−qR.

If we think to µ0 as a multi-set of pants, then we have almost the same

number of pants on the two sides of γ. We want to replace µ0 with µ0 + X

where ∂X = −∂µ0.

Think to the general problem

∂X = α, (4.5)

and ask:

(1) for which α there exists a solution X,

(2) If there is bound for X with respect to a bound for α.

If we think to α as a formal sum of curves of Γε,R, then the equation (4.5)

imply that [α]H1(M2) = 0, since, as a set of curves, it is a boundary of a set of
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pants. However Theorem 3.2.3 assure that also the converse is true if X is a

measure on Πε,R; that is, given [α]H1(M2) = 0, there exists an X which solves

∂X = α. If α = γ ∈ Γε,R (which means that the measure is concentrate in

only one geodesic), and ∂X = γ then, by the Counting Pants Lemma 3.2.5,

the average of the weights assigned by X to every pants in Πε,R adjacent to

γ is at least 1
ReR

. In general it is possible to solve (4.5) asking

||X||∞ ≤ P (R)e−R||α||∞,

where P (R) is a polynomial in R with coefficients depending only on ε and

M2 (see the Good Correction Theorem 4.2.10). In all what follows we write

P (R) for a suitable polynomial on R.

Theorem 4.2.10 (Good Correction Theorem). Let ε > 0. There exists R0 =

R0(ε,M2) > 0,and a polynomial P (R) with coefficients depending only on ε

and M2 such that for every R > R0 there exists a set H = {h1, . . . , h2g} ⊂
QΓε,R, and a map φ : Γε,R −→ QΠε,R such that

(1) h1, . . . , h2g is a basis for H1(S),

(2) ∂(φ(γ))− γ ∈ ZH,

(3) ∑
γ∈Γε,R

|φ(γ)(Π1)| < P (R)e−R.

Remark 4.2.6. The points (1) and (2) are equivalent to the Good Pants

Homology Theorem 3.2.3. To prove the point (3) one need to use the Ran-

domization theory developed in [KM13].

Remark 4.2.7. If we have [γ]H1(M2) = 0 then γ is a boundary, then ∂φ(γ) = γ

because of (2) and the fact that they differ only by boundaries. In particular

we have that for any µ ∈ QΠε,R, we have

∂φ∂µ = ∂µ.

We omit the proof of the following technical lemma.

Lemma 4.2.11. Let λ denote the standard Lebesgue measure on R/2RZ.

If there are δ, K > 0 such that a measure α is δ-equivalent to Kλ then α+β

is ( |β|
2K

+ δ).equivalent to (K + |β|
2R

)λ on R/2RZ for every measure β.
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Sketch of the proof of The Correct Equidistribution Theorem for Surfaces

To any α(γ) ∈ M(N1(
√
γ)) we associate the number |α|(γ) = |α+(γ)| +

|α−(γ)|. Let µ be the uncorrected measure from the Equidistribution Theo-

rem 4.2.9. Define µ1 ∈ M(Πε,R). as µ1 = µ− φ(∂µ) where φ is the function

determined by the Good Correction Theorem 4.2.10. By construction and

(1) − (2) of 4.2.10 we have ∂µ1 = 0 (see the second remark after the state-

ment). From 4.2.9 follows that the measures ∂̂±µ(γ) are Ce−qR equivalents

to K±γ λ±(γ), for some constants K+
γ and K−γ that satisfy the inequality

|
K+
γ

K−γ
− 1| < Ce−qR,

and such that K±γ � eR. From (3) of 4.2.10 we have, for any subset I ⊂
N1(
√
γ)

|∂̂φ(∂µ)(γ)(I)| ≤ |P (R)e−R
∑

Π1∈Πε,R

2∑
i=o

footγi(Π
1)(I)|

≤ |P (R)e−R
∑

Π1∈Πε,R

∂̂±µ(γ)(I)|

≤ P (R)e−R(ReR)K±γ λ(γ)(NCe−qR(I))

≤ P (R)eR(Ce−qR + λ(γ)(I)),

which in particular gives

|∂̂φ(∂µ)|(γ) ≤ P (R)e(1−q)R.

Now we can conclude the proof of 4.2.8 using the above Lemma to see that

∂̂µ1(γ) is P (R)e−qR equivalent to the Lebesgue measure λ on N1(
√
γ).
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