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Introduction

Reuse is important for men. As the availability of energy and matter is
not unlimited, waste should be contained. One way to limit waste is to
take advantage of what has already been built, i.e. through the reuse of
resources. Such observations apply to anything that can be created, from
material things to intangible stuff such as knowledge or software. Another
resource that is extremely scarce is time. Reuse also contributes to the
lowering of the waste of time by reducing the time demands for building
things.

A huge amount of software has been and is being developed. Building
software within the deadline while ensuring good quality is a challenge and
requires en effective software engineering approach. Enabling software reuse
may provide significant long-term advantage but it needs to be supported
with conscious effort.

Management support is helpful, but opportune mechanisms and tools
are necessary. Both the platform and the programming languages should
provide assistance for reuse. In particular, it is interesting to understand
how language features and abstractions affect reuse.

Modular programming and the object-oriented paradigm do represent
significant improvements for software construction and the ability to lever-
age on existing software components. Other techniques that foster the sepa-
ration of concerns (e.g. dependency injection, aspect-oriented programming
etc.) may also be valuable.

However, things get complicated when concurrency and distribution
need to be accounted for. First of all, the essential point of what means
reusing concurrent entities and how to do it effectively has not been consid-
ered yet with adequate attention. Such a lack does reflect itself in program-
ming languages, which typically provide chance for extending concurrent
behavior by redirecting the concern to object inheritance and composition.
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Moreover, almost all the concurrent object-oriented programming languages
are affected, at different degree, by some forms of inheritance anomaly,
caused by a semantic conflict between inheritance and synchronization con-
straints. Again, a better separation (of concerns) between synchronization
code and object behavior may provide relevant results.

The raise of concurrency and distribution demands for concurrent paradigms.
The Agent-Oriented Programming (AOP) paradigm embraces these issues
by providing human-inspired abstractions that help to model an extremely-
interactive, concurrent world. The central abstraction is that of agent, a
situated, autonomous and pro-active entity built around the notion of task.
The inheritance anomaly shows that reuse of both passive and active enti-
ties in concurrent settings is difficult and not-well understood. Pro-activity
may be sources of additional puzzles, ultimately pointing out to the question
“What means reusing a behavior?”

This thesis aims to provide an overview on software reuse in the con-
text of programming languages, programming techniques, and concurrency
models. No works in the literature shares the same point of view. My in-
tention is to highlight this lack and to suggest the possibility of performing
further investigation on the subject.
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Chapter 1

Software Reuse: An
Introduction

This chapter provides an organic overview of software reuse, with emphasis
on object-orientation and language-level reuse mechanisms. It consists of
two parts.

The aim of the first part is to introduce the concept of software reuse.
We will see why it represents a crucial software engineering practice and we
will try to analyse the reasons for which it may be difficult to implement in
all the situations. We will also see that software reuse can happen at many
different levels.

The second part of the chapter focuses on the reuse-enabling mechanisms
provided by object-oriented programming languages. We will look at the
facets of inheritance and composition, with code examples. Finally, a quick
survey of other reuse techniques is given.

1.1 Software reuse: the what, the why, the

how

1.1.1 Software reuse defined

Before diving into the details of how reuse in software can be achieved,
a precise definition of what we are talking about is needed. So, the first
important question to be answered is: “What is software reuse?”

1



2 CHAPTER 1. SOFTWARE REUSE: AN INTRODUCTION

Software reuse can be defined as the process of creating software systems
from existing software rather than building software systems from scratch
[1]. From this definition, a number of consequences can be drawn about
software reuse:

• It is a process, so it consists of a number of interrelated tasks which
are aimed at making reuse happen

• It addresses the problem of the construction of software, thus exclud-
ing repeated execution of software, porting and source-code distribu-
tion as forms of reuse (at least, for the scope of this thesis)

• In order to be worth, all the activities involved in software reuse must
require less efforts than those needed for creating the system ex novo

Note that the definition is general and don’t specify what actually are the
“software system” to be created and the “existing software” to be reused.
In general, it is possible to substitute these expressions with “software arti-
fact”, indicating a generic element that is stored in some form in a computer
and belongs to a software system. Examples of software artifact are: code,
object files, executables, requirement specifications, architectural designs,
and so on.

This consideration, in addition to pointing out that software reuse is
not just limited to source code reuse, is propaedeutic for a concept that is
prominent in the context of software reuse, that of abstraction, which con-
sists of the selection or exclusion of certain parts of an idea with the aim to
make it more manageable. The next section discusses more on abstraction.

Another point on the expression “existing software”, i.e. the software
artifact to be reused, is that it completely hides a huge part of the over-
all process of software reuse: the creation of reusable software. In fact,
reusability (the ability of being reused) is a property of a software artifact
that is determined by how the artifact is built, and measures the degree
at which it can be reused. Reusability is not an automatic achievement, it
should be promoted by the developers through intentional design decisions.
The mechanisms provided by the tools used for building a software artifact
can impact on reusability. Specifically, the focus of this thesis is on the
reuse-enabling mechanisms provided by programming languages.

2



CHAPTER 1. SOFTWARE REUSE: AN INTRODUCTION 3

1.1.2 Why software reuse?

Building software is difficult. Building software with limited resources (time
and money) is far more difficult. The approaches to improve or simplify the
software development process include:

• dilating time constraints in order to be able to focus more on quality

• increasing budget for team and/or process strengthening

• adoption of a more effective process framework

• approaches for improving productivity

• approaches for improving software quality

These are not well-defined families, they might intersect based on the
point of view. For example, the adoption of a more effective process frame-
work may involve better approaches for increasing software quality. More-
over, it must be considered that software development is complex and po-
tential solutions may not produce the attended results. For example, adding
new developers to the team does not typically yield a linear growth in pro-
ductivity and, in some cases, it may even hinder or reduce it (see Brooke’s
Law [2] ).

Software has been developed for fifty years, this means that for nearly
every kind of problem a solution has been already built. So, the new prob-
lems that need to be solved can be thought as a combination of variants
of “old” solutions within a new context. If these “old” solutons were avail-
able, configurable to the specific needs, and able to be connected with one
another, we could develop new software by just selecting, configuring and
interconnecting pieces of software that were built in the past. If these oper-
ations were effort-less, this scenario would be the utopia of software reuse.

Productivity does matter. Not only it allows to stay on budget and to
meet deadlines, which are key factors for a project’s success and sources
of series of advantages and gains, from stakeholder’s satisfaction to poten-
tial new business opportunities, but it can make the difference through
shorter Time-To-Market (TTM), which is especially important in the cur-
rent competitive world scenario and may directly impact on the Return on
Investment (ROI).

3



4 CHAPTER 1. SOFTWARE REUSE: AN INTRODUCTION

However, it should be emphasized that it is not just matter of produc-
tivity, but also of quality. Yes, it is possible to build software solutions
from scratch, but who guarantees that these solutions are better than those
developed in the past?

Thus, this vision of software reuse as a way for overcoming the “software
crisis”, i.e. the problem of building large software systems in a predictable,
efficient and sustainable way, realizes itself through two big achievements:

1. productivity improvement (which also implies shorter time-to-market)

2. quality improvement

While the former is primarily concerned with the construction of new
software, the latter’s biggest consequence is the reduction of the efforts re-
lated to the maintenance of the system. However, these contributions do
intersect as the building process is more effective if it is possible to leverage
on very good components. Also, productivity enhancements can indirectly
influence quality through time savings, allowing for more quality-related ac-
tivities to take place. Moreover, the availability of high-quality assets has
shown to be considered one factor affecting reuse, together with other as-
pects such as a reuse education, a common process, the perceived economic
feasibility, and the type of industry [3]. In other words, an insufficient
quality of reusable artifacts can limit their chance of reuse.

Empirical evidence to the widely recognized advantages of reuse pre-
sented above is provided by studies, such as [4], which found “significant
benefits from reuse in terms of reduced defect density and rework as well
as increased productivity”. However, the gains should always be considered
together with their associated costs in terms of complexity and resources.

1.1.3 Success or failure? Why is it so difficult?

What is crucial to understand is that software reuse is not just a technical
problem [5]. Experiences such as [6] have shown that for large-scale reuse
to work the problems to overcome are mostly non-technical, with manage-
ment playing a crucial role as an enabler. This is mainly due to the fact
that software reuse is actually a long-term investment [7] and does require
significant changes in the software development process. Change is neither
easy nor immediate, so it should be supported with adequate resources and
right decisions.

4



CHAPTER 1. SOFTWARE REUSE: AN INTRODUCTION 5

Reusability, as a quality attribute of software, needs planning and con-
scious effort. In practice, this may means different things:

• defining the expected applications (i.e. the context) for reusable as-
sets, as universal reusability may not probably be convenient

• considering the lack of reusability as a “technical debt”

• considering refactoring cycles to enforce this quality

• taking appropriate design decisions

• packaging the asset in a way to be easily reused

Similarly, software reuse should be pursued continuously (it does not
just happen) and the development process should include both technical
and non-technical support for it.

The two big achievements of reuse – higher productivity and less mainte-
nance effort – should be considered in perspective with the costs associated
to the setup and execution of such a software reuse process:

• the identification and definition of good abstractions requires bigger
effort on problem analysis

• the creation of reusable software involves spending hours of work on
artifacts’ reusability, documentation and quality in general

• the creation of new software based on reusable artifacts involves search-
ing them, learning to use them, adapting them to the specific needs,
and integrating them with other software components

• in order to effectively execute these activities, tools and process sup-
port may be needed

All these activities demand resources. Are they worthwhile? This kind of
decisions are taken by the organization. It is essential that the entire orga-
nization is pervaded by a software reuse education, with a shared product
vision. The single projects should not be considered isolated efforts, but
the idea is to capitalize the work done in the perspective of value for the
organization.

In summary, the most significant benefits are afforded by a systematic
approach to software reuse.

5



6 CHAPTER 1. SOFTWARE REUSE: AN INTRODUCTION

1.2 More on reuse

1.2.1 Different levels of reuse

Source code level

At this level, the developer reuses pieces of code that are composed and
integrated for defining a certain behavior. In practice, this may mean:

• using specific functions or classes from a library to implement an al-
gorithm

• reusing the implementation of a class by specializing it through inher-
itance

• copying a snippet of code (e.g. an algorithm or a data structure) and
tailoring it to the needs

All these examples involve a single software element that typically will be
low-level in terms of abstraction. Consequenty, they allow for low-levels of
reuse; it means that the amount of reused behavior is little with respect to
the behavior of the system under development.

How is it possible to reach higher-levels of reuse? For example, by raising
the level of abstraction and dealing with a set of cohesive software elements.

Design level

The term design implies two things: elements and relationships. An ex-
ample of software at the design level is a Java package such as java.io (see
Figure 1.1). It consists of a set of related classes that model files, streams
and input/output operations.

It is unusual to reuse designs in their code representation. Instead,
it is common and very important to reuse design principles or patterns
of design, such as the well-known GOF’s design patterns [8]. The idea of
design patterns is to distil experience through guiding principles (or abstract
solutions) that are aimed to solve recurrent design problems in an effective
and elegant manner.

GOF’s design patterns are described by specifying the following ele-
ments:

6



CHAPTER 1. SOFTWARE REUSE: AN INTRODUCTION 7

Figure 1.1: The java.io package.Taken from http://101.lv/learn/Java/ch30.htm

• name, synonims, classification – these elements allow for pattern ref-
erencing when discussing about design; for reuse, they help for pattern
search and cataloguing

• intent, motivation, applicability – for reuse, they simplify the selection
of the pattern given a certain design issue

• partecipants, collaborations – these are the elements of design and help
to understand the pattern

• consequences – they describe dependencies and use-constraints that
may directly affect the reusability of the design

7



8 CHAPTER 1. SOFTWARE REUSE: AN INTRODUCTION

• structure, implementation, sample code – these descriptions give a
sense of how the pattern can be implemented

• known uses

• related patterns – by listing patterns that solve similar problems or
that are sometimes used in conjunction with the pattern, it promotes
search and selection of patterns

Confusing patterns with their implementation is a common misunder-
standing. The pattern realizations may assume different forms depending
upon:

• the context where the patterns are applied

• the programming language constructs and mechanisms

Design patterns are important for reuse because, in addition to their
application (which is itself reuse of good design concepts), they provide well-
proven software solutions that exhibit high internal quality (which usually
include reusability).

Just to mention, a similar concept for the most basic abstractions in
programming has been introduced by Jason McC. Smith in [9]. The idea of
Elemental Design Patterns (EDPs) is to describe the low-level concepts that
are used to model solutions for the smallest design issues, thus providing a
common language (supplied with a graphical notation, the Pattern Instance
Notation, PIN ) that allows the reasoning, discussion and description of
software from its fundamental aspects. These EDPs are composable and
can be seen as building blocks for larger patterns and abstractions.

Architecture level

The architecture can be defined as the “fundamental organization of a sys-
tem embodied in its components, their relationships to each other, and
to the environment, and the principles guiding its design and evolution”
(IEEE 15288-2008, Systems and software engineering – System life cycle
processes).

At this level, the idea is to tackle complexity through increased modu-
larity, which involves breaking a system into separate physical entities [10],
according to the divide et impera principle. The unit of modularity (and

8



CHAPTER 1. SOFTWARE REUSE: AN INTRODUCTION 9

reuse) is the component. There is a shift from lines of code, functions, and
classes to coarse-grained components which conform to a component model
and can be independently deployed and composed. Also, solutions such as
the OSGi1 Service Platform provide services and a runtime environment to
support modularity.

Components allow for high-levels of reuse in the contexts where they
can be reused. Coarse-grained components can be created by composition
of finer-grained components. This approach finds its maximum expression
in the so-called Component-based Software Engineering.

Figure 1.2: Use vs. reuse.Taken from [10]

In addition, frameworks allow for reuse from architectural (or process
level as well) to source-code level. A framework provide libraries, services,
and tools with the aim to simplify the creation of an application for a given
context.

1OSGi commonly refers to both the platform and the specification, which describes a
modular architecture for JVM-based systems: http://www.osgi.org/

9



10 CHAPTER 1. SOFTWARE REUSE: AN INTRODUCTION

Even tough frameworks generally allow for high levels of reuse, there are
some drawbacks that may seriously hinder their use:

• time has to be spent in learning how the framework works and what
it provides

• they may be too restrictive with respect to certain quality attributes or
requirements (e.g. efficiency, as the flexibility that justify the existence
of a framework often comes at the expense of performance)

• they may excessively constraint the application’s architecture

System, infrastructure, and project level

An additional need may be that of reusing an entire system or parts of
it (subsystems or system components at different levels of granularity). A
particular case is when the object of reuse is not just a single component
but two or more components together with their relations. In the context of
the object-oriented paradigm, a similar issue has been approached by family
polymorphism [11], aimed at the expression and management of multi-object
relations.

A particular case of system reuse is the following. Suppose that you
have to build a program with a simple logic and that it must work on
different platforms. Due to distribution and heterogeneity, it is likely that
the resulting source code is mostly infrastructural code and only in minimal
part representative of business logic.

Would not be great if it were possible to write the infrastructural code
just once for every target platform? Would not be nice if we could, for exam-
ple, abstract the platform-dependent communication details by providing a
very high-level language aimed at the specification of the communication
semantics – that can subsequently be mapped on anyone of the supported
platforms?

Such prospect is feasible and can be addressed by using custom soft-
ware factories with a combination of Model-Driven Software Development
(MDSD) and pattern languages.

The goal is to have an almost complete working system at the end of the
analysis stage (not intended as a waterfall process) by raising the execution
platform with an additional horizontal layer of platform-independent meta-
models that capture the essential elements of their target platform.

10



CHAPTER 1. SOFTWARE REUSE: AN INTRODUCTION 11

In practice, it may turn to:

1. the ability to express the model of a software system by using a meta-
model (Domain-Specific Language) that capture the concepts of prob-
lem domain (e.g. semantics of interaction)

2. the mapping of the instances of such meta-model into another meta-
model which refers to the target platform

3. the executing of the resulting model to generate platform-specific code

See Figure 1.3 as an alternate description of such an idea.

Figure 1.3: Towards software factories.

1.2.2 Effective reuse

We’ve seen that software reuse can happen at different levels. From this
fact, one question follows: “Which is the appropriate level of reuse?” It is
very similar to asking when reuse is effective.

11



12 CHAPTER 1. SOFTWARE REUSE: AN INTRODUCTION

Considering that the aim of reuse is to reduce the time and effort needed
to build and maintain a software system, Krueger in [1] evaluates the effec-
tiveness of reuse techniques by how much they help to reduce the cognitive
distance (or conceptual gap), which can be defined as the distance between
the concepts informally describing the system and the platform where the
system will be executed. This can be done in two ways:

1. through effective abstractions that can be used to model the system

2. through mechanisms that help to obtain an executable system from
its specification

1.2.3 The impact of programming languages on reuse

This thesis covers reuse at the language level. The problem of reuse has
been presented by considering two separate steps of the process:

1. the creation of reusable software, i.e. how to increase reusability of
software artifacts

2. the actual process of reusing reusable artifacts

The distinction between these two aspects is subtle because the definition of
reusability is based on the available reuse mechanisms. Programming lan-
guages provide language-level reuse mechanisms which affect the reusability
of software artifacts and their consequent chance of reuse.

Biddle and Tempero in [12] distinguish between context reuse, where
the same context can be reused with different components (where the terms
“context” and “component” are intended in their general sense), and com-
ponent reuse, where the same component can be reused in different contexts
(see Figure 1.4). Consequently, reusability can be seen as a direct expression
of:

• how many contexts can invoke a component; and

• how many components can be invoked by a context

Languages’ mechanisms and features can impact on these aspects. For
example, we see that context reusability is related to the notion of substi-
tutability, which in turn is connected to the notion of type.

12



CHAPTER 1. SOFTWARE REUSE: AN INTRODUCTION 13

Another important concept that need to take part in this discussion is
that of dependency, which is a constraint relationship between a context
and a component. For example, a function invocation introduces a depen-
dency of the caller on the calling; this means that changes in the name or
behavior of the function directly affect the caller, which in turn must be
changed. Excessive dependencies reduce the chance of reuse, so they should
be kept at the minimum.

In summary, programming languages contribute to software reuse [13]
through:

• abstraction mechanisms

• dependency management features

Figure 1.4: Component reuse vs. context reuse.
Taken from http://www.mcs.vuw.ac.nz/research/design1/1998/submissions/biddle/

1.3 Basics of reuse in the object-oriented paradigm

The object-oriented paradigm is a way of developing software by modelling
systems as a set of interacting objects. It is built upon three big pillars:

1. encapsulation

13
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2. inheritance

3. polymorphism

The unit of modularity is the object, which encapsulates state and behavior.
The language may also provide classes to define similar objects. In the
following subsections we will look at the main mechanisms provided by
object-oriented programming languages to support software reuse.

1.3.1 Encapsulation

The term encapsulation is used to refer to two things:

1. the ability to pack some data together with the behavior that acts
upon it

2. the ability to have boundaries for objects through information hiding,
which allows to hide implementation details behind a well-defined ex-
ternal interface

The ability to isolate the implementation logic behind an interface is im-
portant because clients can minimize the dependencies on the component
by programming to the interface; this way, changes to the implementation
of the component do not affect the clients. For this reason, encapsulation
is said to support context reusability [12].

Languages typically provide visibility modifiers as a way to enforce in-
formation hiding. For example, Java offers four visibility levels for class
members:

• private: only the class can access its members

• protected: only the class and its subclasses can access the member

• package-private: only the class and its subclasses in the package can
access the member

• public: the member is accessible from the outside

As an example showing (lack of) encapsulation, consider the following
source code:

14
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1 // Person.java
2 public class Person{
3 public int age;
4 ...
5 }
6

7 // context code
8 form.fill( person.age );
9 ...

Listing 1.1: Dependencies on components’ implementation are dangerous.

Suppose we would like to change Person’s implementation by substi-
tuting the age field with a date_of_birth field. Now, the context code
need to be changed as well because it relied on Person’s internal details.
Instead, by enforcing encapsulation, changes in implementation do not af-
fect client code:

1 // Person.java
2 public class Person{
3 public Date date_of_birth;
4

5 public int getAge(){
6 return Calendar.getInstance().get(Calendar.YEAR) -
7 date_of_birth.getYear();
8 }
9 ...

10 }
11

12 // context code
13 form.fill( person.getAge() );
14 ...

Listing 1.2: Encapsulation allows context code to be independent from the
details of the implementation of the components it uses.

An additional example shows how programming to interfaces can help to
write context code which can be reused with different components.

1 // IntOperation.java
2 public interface IntOperation{
3 int op(int elem);
4 }

15
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5

6 // Multiplier.java
7 public class Multiplier implements IntOperation {
8

9 int factor;
10

11 public Multiplier(int m){ this.factor = m; }
12

13 public int op(int elem){ return elem*factor; }
14

15 }
16

17 // Utils.java
18 public class Utils {
19

20 // perform an operation on each item of the input array
21 // and return a new array with the produced elements
22 public static int[] map(int[] lst, IntOperation op){
23 int[] res = new int[lst.length];
24 for(int i=0; i<lst.length; i++){
25 res[i] = op.op(lst[i]);
26 }
27 return res;
28 }
29

30 public static void main(String[] args){
31 int[] arr = new int[]{ 1,5,10 };
32 IntOperation doubler = new Multiplier(2);
33 int[] res = Utils.map(arr, doubler);
34 for(int i=0; i<arr.length; i++)
35 System.out.println(arr[i]+" => " + res[i]);
36 }
37

38 }

Listing 1.3: Interfaces represent a contract between a service provider and
a service consumer.

Here the map() function can be seen as “context code,” that can be
reused with different IntOperations.

16
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1.3.2 Inheritance

The taxonomy of inheritance is broad [14]. It is a mechanism that can
serve multiple purposes and that may differ from one programming language
to the other.

Basically, it allows for implementation reuse: the state and behavior
from the base class is said to be inherited by the derived class. Moreover,
through specialization it is possible to create specialized child classes. Spe-
cialization is a combination of:

• variation: where changes are made to the behavior of the base class

• extension: where the base class is augmented through additional be-
havior and state

As an example of implementation and specialization inheritance, con-
sider the following Scala code:

1 abstract class Shape(var x:Int, var y:Int){
2

3 def position = (x,y)
4

5 def area():Int
6

7 override def toString() = "Shape at position " + position
8

9 }
10

11 class Square(x:Int, y:Int, var side:Int) extends Shape(x,y){
12

13 def area():Int = return side*side
14

15 }
16

17 val s = new Square(2,2,6)
18 println(s) // Shape at position (2,2)
19 println("Area = " + s.area) // Area = 36

Listing 1.4: Implementation reuse, variation and augmentation.

The code is simple, however, multiple things happen:

• Shape modifies the inherited toString() implementation (varia-
tion)

17
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• Square inherits the implementation of Shape’s position()method
(implementation reuse)

• Square augments Shape by defining a new integer side field and
realizing the abstract area() method (extension)

Sometimes inheritance includes subtype inheritance, resulting in the
child class being a subtype of the base class. Some languages such as Java
merge these two concepts, even tough they are actually separate [15]. Other
languages keep this separation; for example, C++ provides public inheri-
tance, which include subtyping (interface conformance), and private/pro-
tected inheritance, which is just implementation inheritance.

1 class Person{
2

3 protected:
4 int age;
5

6 public:
7 Person();
8 int getAge(void);
9

10 };
11

12 // inheritance WITH subtyping (interface conformance)
13 class Child : public Person { }
14 Person* p = new Child(); // OK
15

16 // inheritance WITHOUT subtyping
17 class Child : private Person { }
18 Person* p =
19 new Child(); // error: Person is an inaccessible base of Child

Listing 1.5: Inheritance with and without subtyping.

If inheritance does not imply subtyping, objects of the Child class
cannot be used where objects of the (type of) parent class Person are
expected.

Multiple inheritance

Some languages such as C++ allow classes to have multiple (more than one)
base classes. While it can be seen as a natural and powerful mechanism to

18
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model (real-world) hierarchies, it can also introduce levels of complexity
that may outweight its benefits.

The main practical problem is concerned with what happens when the
same operation is inherited multiple times. This issue comes in two forms.
The first form is when the same operation is inherited by two or more par-
ents: a name clash occurs. Dealing with it may involve renaming the mem-
ber or requiring full member qualification. The second form, also known as
the diamond problem, occurs in the situation depicted by the Figure 1.5,
where there is a class (StudentWorker) with two or more base classes
(Student and Worker) which share a common parent (Person). This
situation of repeated inheritance raises issues about how to deal with the
inherited members. Two options are possible:

1. replication of the members (it is the case for the profession field),
if they refer to coexisting variants

2. merge (or sharing) of the members (it is the case for the age field),
if they are actually the same thing

For these reasons and the additional complexity, multiple inheritance
is considered dangerous when not used properly. As a consequence, many
object-oriented programming languages provides single-inheritance for classes,
often with the addition of other mechanisms in order to overcome the re-
sulting limitations in modelling power. For example, languages such as
Java and C# maintain multiple inheritance only for interfaces; other lan-
guages such as Scala and Ruby provide mixins as a way to reuse multiple
implementations.

1.3.3 Composition

Whereas subtyping is said to be an IS-A relationship, composition is said
to be an HAS-A relationship. With composition, an object consists of
other object which provide functionality that contributes to the behavior
of the containing object. A similar notion is that of aggregation; while in
composition the lifecycle of the contained objects is bound to the containing
object’s lifecycle, it does not hold in aggregation.

1 import scala.math._
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Figure 1.5: The diamond problem

2

3 class Point(var x:Int, var y:Int){
4

5 def distance(other: Point) : Double =
6 sqrt(pow(x-other.x,2)+pow(y-other.y,2))
7

8 }
9

10 class Rectangle(val p1:Point, val p2:Point){
11

12 def area():Int = abs(p1.x-p2.x)*abs(p1.y-p2.y)
13

14 def diagonal():Double = p1.distance(p2)
15

16 }

Listing 1.6: Composition.

In the previous example, a Rectangle is composed of two Points
representing two opposite corners. As a consequence, it can (re)use the
functionality provided by its components to implement new behavior. The
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diagonal() method has been defined this way.

White-box vs black-box reuse

Reuse can be considered of two types:

1. white-box – if reuse exploits knowledge upon the internal details of
the reusable component

2. black-box – if reuse does not exploit it (so the reusable component is
seen “from the outside” as a black-box)

Inheritance is considered a mechanisms for white-box reuse, whereas
composition is considered a black-box reuse technique. White-box reuse can
be dangerous because it can create dependencies on implementation details,
which are more unstable than interfaces. For this reason, a common advice
is to favor composition over inheritance [8], because the latter can break
encapsulation by exposing the internals of the base class to its subclasses.

It should be noted that inheritance can be used in a black-box manner,
by avoiding the use of protected members. However, this may preclude
opportunities for specialization. It is also possible to use composition in a
white-box manner, if implementation details are exposed through the public
interface.

1.4 More on reuse in object-oriented soft-

ware

1.4.1 Interfaces, substitutability, types

We have seen that subtyping, through interface conformance, allows objects
of subclasses to be used where objects of the type of the base class are
expected. Polymorphism is what make it possible to dispatch the correct
method implementation.

In languages such as Java and C#, interfaces can be defined using lan-
guage constructs and can be used as types. An interface represents a con-
tract between providers and consumers; it makes the syntactic dependencies
explicit. Programming to interfaces has shown to be an effective practice for
writing reusable code. The notion of type is important because the higher
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the substitutability of the components used in a piece of code is, the higher
is its potential reusability because it can be reused with a higher number of
different components.

In the aforementioned languages, interfaces need to be implemented ex-
plicitly by providers, resulting in what is referred to as nominal subtyping,
which is based on names and explicit declarations. However, other kinds of
type systems exist.

For example, duck typing is a dynamic type system which is often
informally described by the expression “if it walks like a duck and quacks
like a duck, it must be a duck.” It means that the type of an object is
defined by what the object is able to do. Consider the following example:

1 class Adder
2 def self.add(x,y)
3 x+y # equals to x.+(y)
4 end
5 end
6

7 Adder.add(1, 5) # -> 6
8 Adder.add("duck","typing") # -> "ducktyping"
9

10 class Person
11 attr_accessor :age
12

13 def initialize
14 @age = 18
15 end
16

17 def +(years){
18 @age = @age + years
19 }
20 end
21

22 bob = Person.new
23 Adder.add(bob, 2) == bob.age # 20 == 20 -> true
24

25 Adder.add("code",404) # TypeError

Listing 1.7: Duck typing in Ruby.

It is immediate to see the flexibility given by such a dynamic behavior:
the Adder’s static add() method can be used with any object x that
supports a +() method. However, the disadvantage is also clear: errors
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can be caught only at runtime (see the “TypeError: can’t convert Fixnum
into String” on the last line). In particular, the problem is that to be able to
use correctly Adder::add(), we should know parts of the implementation
of both Adder::add() and x.+() (dependencies are implicit, so they
should be documented!). The consequences are serious and impact directly
on the ability to write robust code for large systems.

A static approach to achieve a sort of “type-safe duck typing” is based
on the notion of structural typing, where type compatibility depends on
how objects are defined (i.e. what is their structure), conversely to the
nominal approach where names and explicit declarations are used. The
following example in Go source code shows the things work as if interfaces
were implicitly implemented:

1 package main
2 import "fmt"
3

4 type Printable interface {
5 toString() string
6 }
7

8 type Printer interface {
9 print(string)

10 }
11

12 func printThemAll(p Printer, lst ...Printable) {
13 for _, item := range lst { p.print(item.toString()) }
14 }
15

16 // implicit implementation of Printable interface
17 type Person struct {
18 name string
19 age int
20 }
21 func (p Person) toString() string {
22 return fmt.Sprintf("Name: %s - Age: %d", p.name, p.age)
23 }
24

25 // implicit implementation of Printer interface
26 type BasicPrinter struct { }
27 func (BasicPrinter) print(s string){
28 fmt.Println(s)
29 }
30
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31 func main(){
32 printer := BasicPrinter{}
33 bob := Person{"Bob", 30}
34 john := Person{"John", 35}
35 printThemAll(printer, bob, john)
36 }
37 // Output:
38 // Name: Bob - Age: 30
39 // Name: John - Age: 35

Listing 1.8: Structural typing in Go.

Here, the printThemAll() function can be called with any Printer
and any number of Printables. The conformance to these interfaces is
checked by the compiler. The code is type-safe but extremely flexible. For
example, it is possible to write an interface for existing objects, which im-
plicitly implement the interface without any need to be adapted on purpose.
In languages such as Java, it is not possible: when an interface is introduced,
classes are required to be changed in order to create the desired subtype
relation.

1.4.2 Mixins and traits

So far, we have seen that implementation reuse is supported by composi-
tion and inheritance. However, these techniques do introduce strong de-
pendencies, especially inheritance which may also involve subtyping and
dependencies on implementation details.

Mixins are, substantially, abstract classes: they cannot be instanti-
ated and provide implemented methods which can be inherited by other
classes. However, mixins are more a way to collect functionality, rather
than representing concepts that can be specialized. Mixins have more sense
in multiple-inheritance languages because in single-inheritance languages
there is place for just one base class.

Instead, traits [16] offer different composition operators. They are like
interfaces (thus, with no state) with implemented methods, representing
purely unit of reuse, distinct from classes which serve different purposes.
Traits can be also parametrized with methods, requiring classes implement-
ing the traits to provide them.

Some languages such as Scala and Ruby provide trait-like mechanisms.
As a simple example, consider the following Scala code:
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1 trait Person {
2

3 def getName():String
4

5 def presentMyself() = println("Hi, my name is " + getName())
6

7 }
8

9 class Engineer(name:String){
10

11 def getName():String = return name
12

13 }
14

15 bob = new Engineer("Bob") with Person
16 bob.presentMyself() // "Hi, my name is Bob"

Listing 1.9: Scala traits.

Here, Engineer class is augmented by the functionality provided by
the Person trait, but in order to achieve this, it has needed to fulfill the
contract with the mixing in module by providing an implementation for
the abstract getName() method (which represents a parameter for the
Person’s trait).

The Ruby programming language provides modules that can be used
similarly to traits. They can be used as a simple extension mechanism,
but they also serve to support metaprogramming techniques. Metapro-
gramming allows for the creation of extremely expressive code (and domain
specific languages as well) and great code flexibility; in this sense, it can
be seen as a powerful reuse technique. The next example is not trivial and
shows in action the use of modules and metaprogramming:

1 module Utils
2

3 def self.included(klass)
4 klass.extend(ClassMethods)
5 end
6

7 module ClassMethods
8 def accessor(attrname)
9 define_method "#{attrname}=" do |value|

10 instance_variable_set("@#{attrname}", value)
11 end
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12 define_method "#{attrname}" do
13 instance_variable_get("@#{attrname}")
14 end
15 end
16

17 def accessors(*attrlst)
18 attrlst.each do |attr|
19 accessor(attr)
20 end
21 end
22 end
23

24 def presentMyself
25 puts "Hi, my name is " + @name
26 end
27

28 end
29

30 class Person
31

32 def initialize(name, age)
33 @name = name
34 @age = age
35 end
36

37 include Utils
38 accessors ’name’, ’age’
39

40 end
41

42 bob = Person.new("Bob", 30)
43 bob.presentMyself # Hi, my name is Bob
44 bob.name # "Bob"
45 bob.age = 31 # 31

Listing 1.10: Mixin modules and metaprogramming in Ruby.

Here the accessors() utility method is used to define a getter and
a setter for each of its arguments; in Ruby classes the state is private and
can be accessed from the outside only through accessors, as in the last two
lines in the listing. Other things to note include:

• the Utils module defines the presentMyself() method which,
through module inclusion, will be an instance method of Person
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• the definition of presentMyself() is based on the @name instance
variable, which must be defined by the including class in order to avoid
runtime errors

• self.included() is a hook method that is called when the module
is mixed-into by the class

• self.included() calls the extend() method, which includes the
module provided as argument into the receiver’s metaclass (its effect
is to have the ClassMethods module’s methods to become static
methods in the Person class)

• the methods define_method(), instance_variable_get(),
and instance_variable_set() allows to define class members
dynamically

It is very dynamic code which provides powerful features. The module
includes method implementations that can be easily reused: just one call to
accessors() is sufficient to generate getters and setters for any arbitrary
number of fields!

1.4.3 Genericity

Genericity (or generic programming) consists of creating generic code schemes
that accept type parameters. Next, they can be instantiated to specific
types. Such code schemes are called in various ways, such as templates in
C++, generics in Java, or parametrized types. Usually they are statically
checked, so to be type-safe.

The positive impact of genericity on reuse is crystal-clear because it
allows to implement type-safe functionality independently from the specific
types. Otherwise, it would be extremely unsatisfying to write the same code
for each type it works with.

Static type checks allow for more robust code, without the need of casts.
The following code snippets shows Java generics in action:

1 // Iterable.java
2 public interface Iterable<T> {
3 Iterator<T> getIterator();
4 }
5
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6

7 // Iterator.java
8 public interface Iterator<T>{
9 boolean hasNext();

10 T next();
11 void reset();
12 }
13

14

15 // Pair.java
16 public class Pair<T> implements Iterable<T>{
17 private T first;
18 private T second;
19

20 public Pair(T first, T second){
21 this.first = first;
22 this.second = second;
23 }
24

25 public Iterator<T> getIterator(){
26 return new PairIterator<T>(this);
27 }
28

29 public T getFirst(){ return first; }
30

31 public T getSecond(){ return second; }
32

33 }
34

35

36 // PairIterator.java
37 public class PairIterator<T> implements Iterator<T>{
38 private Pair<T> pair;
39 private int counter;
40

41 public PairIterator(Pair<T> p){
42 this.pair = p;
43 this.counter = 0;
44 }
45

46 public boolean hasNext(){ return counter<2; }
47

48 public T next(){
49 if(counter==0){
50 counter++;
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51 return pair.getFirst();
52 } else if(counter==1){
53 counter++;
54 return pair.getSecond();
55 }
56 return null;
57 }
58

59 public void reset(){ counter = 0; }
60

61 }
62

63

64 // main program somewhere
65 public class MainProgram {
66 public static void main(String[] args){
67 Iterable<Integer> p = new Pair<Integer>(1,5);
68 Iterator<Integer> it = p.getIterator();
69 while(it.hasNext()){
70 System.out.println(it.next());
71 }
72 }
73 }
74 // Output:
75 // 1
76 // 5

Listing 1.11: Java generics: iterable and iterator.

Generics are commonly used for defining container classes as well as the
generic algorithms that act upon them.

1.4.4 Other reuse techniques: a quick glance

Inversion of Control

Inversion of control is a technique (which can be implemented through the
Dependency Injection pattern) where an object’s dependencies are not re-
trieved by the object itself but they are determined and set by other com-
ponents.

Thus, inversion of control can be seen as a way to promote context
reusability because an object does not need to be changed to work with an-
other component. Dependencies can be configured externally but no change
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in code is required.

Prototypes and delegation

Prototype-based languages are object-oriented but they do not provide
classes. Instead of using inheritance, these languages allow for implemen-
tation reuse through delegation. Objects are not created by instantiating
a class; instead, they are cloned from another object (that is called their
prototype).

A different approach is taken by the Go programming language which
can not be defined neither as a class-based language (as it does not have
classes/inheritance) nor as a prototype-based language (as prototypes and
cloning are not present).

1 package main
2 import "fmt"
3

4 type Pair struct{
5 a int // composition
6 b string // composition
7 }
8

9 func (p Pair) getKey() int { return p.a }
10 func (p Pair) getValue() string { return p.b }
11

12 type OnOffPair struct {
13 Pair // embedding, delegation
14 on bool // composition
15 }
16

17 func main() {
18 a := OnOffPair{Pair{1, "hello"}, true}
19 fmt.Println(a.getKey()) // delegation
20 fmt.Println(a.getValue()) // delegation
21 }
22

23 // output:
24 // 1
25 // hello

Listing 1.12: Delegation in Go.

Note that getKey() and getValue()methods are called on an OnOffPair
object even though they are defined by accepting a Pair object as receiver.
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This is possible because the OnOffPair object delegates the execution of
these methods (implementation reuse) to the embedded Pair object.

Aspect-Oriented Programming

Aspect-Oriented Programming is a programming technique that promotes
the separation of concerns by supporting the implementation of the so-
called crosscutting concerns, which are functionality that spans the entire
application, into aspects.

Normally, crosscutting concerns would produce code that is both scat-
tered and tangled. The result is code that is difficult to understand and
change. Moreover, if a new class require the same functionality, the same
code has to be written again, given that the class does not belong to a
hierarchy where that logic has been factored in the base class.

Aspects come to solve these issues. They promote reuse and flexibility
by encapsulating functionality that otherwise would be scattered across the
system.

Moreover, aspect-oriented approaches have been considered in the at-
tempt of solving the inheritance anomaly problem - which will be covered
in the next Chapter -, producing better results with respect to more tradi-
tional approaches.
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Summary

The key points of this chapter are:

• software reuse is a process that consists of developing new software
from existing software

• its aim is to increase productivity and quality in the software devel-
opment process while reducing the maintainance effort

• it is not just a technical issue, it requires an appropriate process and
management support in order to pursue its long-term benefits

• reusability is a quality of software that requires calculated design de-
cisions and supporting activities

• reuse can happen at many different levels

• in OO software, inheritance and composition (with the support of
encapsulation) are the most common mechanisms for reuse

• many different techniques and constructs such as interfaces, types,
generics, traits, aspects etc.. can impact on reusability and reuse
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Chapter 2

Concurrency and Reuse

The first chapter was about software reuse and reuse mechanisms, with spe-
cial emphasis on the object-oriented paradigm and language-level aspects.

This chapter looks at concurrency and explores the topic of software
reuse in concurrent settings. This topic has not been tackled yet in its full
scope by research. Here, some considerations are reported, together with
the realization of the importance of the question.

An overview of some of the most important models for concurrent pro-
gramming is provided. We will see what their approaches are and how they
relate with reuse and inheritance.

Finally, a digression about the inheritance anomaly in object-oriented
concurrent programming languages is presented.

2.1 Concurrency

2.1.1 Basics of concurrency

The success of the object-oriented paradigm has been dictated by its con-
tributes in terms of modularity and data abstraction [17], which are decisive
aspects for the construction and the maintenance of large and robust soft-
ware systems. However, the object oriented approach is mainly structural
and, while representing a valid foundation for the development of sequen-
tial programs, it lacks of adequate support for concurrency and distri-
bution, which represent two of the major issues of software development
at the present time.
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The world is inherently concurrent and nowadays computers are ev-
erywhere, pervasively accessing all the aspects of the life and where all is
interconnected, bringing us to a notion of ubiquitous computing. This is
why we need adequate tools aimed at reducing the complexity involved in
these increasingly important issues.

The term “concurrency” comes from the verb “to concur”, which in turn
comes from the Latin “concurrere” (CUM+CURRERE, “to run with”). The
etymology suggests that, in concurrency, software entities (or pieces of code)
progress simultaneously. Thus, they may run together, that is, they may
be executed at the same time. When there is only one processor, such
an execution can be only virtually simultaneous. In the case of two or more
processors, the concurrent execution can be actually contemporaneous, or
parallel.

With respect to sequential contexts, where the execution path of a pro-
gram is predictable, concurrency entails unpredictability upon the execution
order. This results in greater complexity.

Concurrent programming refers to all the aspects that are involved in
the implementation of concurrent programs. Concurrent programming is
performed using a language which may adhere, in general, to one or more
concurrency models.

A concurrency model consists of abstractions that support the reason-
ing and the description of concurrent programs. It defines a set of concepts,
relations and semantic properties that can be used to model a concurrent
scenario. A concurrency model is effective when it reduces the conceptual
gap between the problem to be solved (at the human level) and the under-
lying platform; thus, such a model should provide high-level abstractions
and easy-to-use realization mechanisms for them.

Execution models

As said before, the execution order of the steps of a sequential program
is predictable, as the next step (determined by the program’s logic) cannot
change accidentally: with a given set of inputs, the same output will always
be provided. It is an easy way of thinking, but also limited because such a
deterministic execution model makes it impossible for the program to
be parallelized.
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By contrast, concurrent executions may, in general, produce different
orders in which the steps of a program are carried out. In fact, when multiple
pieces of software run concurrently, it is impossible to guarantee which is
the next statement to be executed. This is particularly evident when the
execution is actually parallel, for example when part A of a program is run
by processor 1 and part B is run by processor 2. However, also in a scenario
with a single processor where the concurrent parts are interleaved in time,
it is not possible to predict when such parts will be paused or started.

Coordination

Figure 2.1: Example of race condition. In this case, P2’s update is over-
written by P3, and P3’s update is overwritten by P1.
Taken from http://thwartedefforts.org/2006/11/11/race-conditions-with-ajax-and-php-
sessions/

As concurrency implies uncertainty upon the execution order of the steps
of a program, a number of issues arise. In fact, not all the execution paths
may be correct, with respect to the desired behavior. For example, when
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multiple threads of execution access some share data (see Figure 2.1), race
conditions are possible. Thus, synchronization constraints are required
in order to exclude the execution paths that lead to incorrect behavior.

The solution to the issue in Figure 2.1 is to have the concurrent parts
P1, P2, and P3 to coordinate themselves so that the two-step read-write
operations are serialized in time.

Programming languages provide different synchronization mechanisms
or primitives, depending upon the concurrency model they embrace, that
can be used to implement the coordination logic.

2.1.2 The meaning of reuse in concurrent settings

Reuse targets state and behavior. Objects encapsulate both these elements,
and we have seen in Chapter 1 how reuse takes place in the object-oriented
paradigm. Specifically, we have seen how inheritance can be used to modify
or extend base classes.

However, whereas in sequential settings there is just one thread of execu-
tion, in concurrent settings two or more threads of execution exists. More-
over, the behavior may contain coordination logic as well, which typically
should be preserved by reuse (especially if it is accompanied by a subtype
relation). Later in this Chapter we will see how such a synchronization logic
may result in issues when using inheritance.

In general, reuse means leveraging on existing software artifacts in order
to produce new artifacts. For example, a set of objects can be intercon-
nected to form a new system; likewise, new tasks can be created by reusing
behaviors.

When it comes to concurrency, additional semantic constraints (e.g.
upon the order of some computational steps, or upon the set of messages
that an object can accept) need to be accounted for, and should be guar-
anteed in the new context of reuse.

2.2 Multi-threaded programming

2.2.1 Basics of multi-threaded programming

Multi-threaded programming consists of creating applications using multi-
ple threads that execute concurrently. A thread (of execution), or kernel
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thread (also known as native thread), is the smallest entity that can be sched-
uled by the operating system. It differs from the notion of process because,
in general, processes may include multiple threads which share the process’
resources. Also, typically threads share the same address space, resulting
in cheaper context-switch overhead with respect to process context-switch.
Threads can be think as lightweight processes that share memory.

In addition to kernel threads, user threads (also known as green threads)
exist. User threads are threads at application level. They are not managed
by the kernel; instead, support for them is given by the language runtime.
User threads can be mapped to kernel threads in different ways. One pos-
sibility is N-to-1 mapping, where N user threads are mapped to one kernel
thread; in this case, context switch overhead may be sensibly lower, however
no parallelization is possible as the operating system scheduler sees only one
(kernel) thread.

2.2.2 Synchronizing access to shared data

Threads typically share data. This solution is very efficient, but it is also
source for issues: when an object is accessed concurrently, its state may
potentially be corrupted. For this reason, a form of synchronization must
be applied in order to serialize access to it. Critical section is the term used
for referring to the part of code wherein a shared resource is accessed; their
execution must be mutually exclusive.

The two main forms of synchronization exist:

• lock-based synchronization

• non-blocking (or lock-free) synchronization

The former kind of synchronization involves the use of locks, i.e. mech-
anisms that allow exclusive access to resources or parts of code. Before
being granted the right to access a shared resource, the corresponding lock
must be acquired; after processing has been performed, the lock must be
released. Situations when more than one thread try to acquire a lock must
be managed with appropriate lock contention policies. Multiple lock-based
mechanisms exist:

• locks (mutexes)
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• condition variables

• monitors

• semaphores

The mutex is the lock mechanism used to achieve mutual exclusion:

1 int shared_int = 0;
2

3 std::mutex gmutex;
4

5 void increment(){
6 // using lock_guard<>, lock on gmutex is acquired
7 // at construction and released at destruction
8 std::lock_guard<std::mutex> lg(gmutex);
9

10 // the increment operation needs atomic semantics
11 // in order to avoid race conditions
12 shared_int++;
13 }

Listing 2.1: Use of mutexes in C++11.

Conversely, lock-free synchronization supports access to resources along
with ensuring system or thread progress. This is mainly achieved through
atomic operations, which must be provided by the hardware or emulated at
the operating system level.

2.2.3 Threads and inheritance

Threads have an associated thread body containing the instructions that
will be executed when the thread is running. The thread body contains
the behavior scheme or processing logic of the thread. Threads are, in this
sense, similar to functions executed concurrently. Therefore, threads are
usable, but not reusable.

When threads and object-oriented programming merge, one possibility
for reuse is to apply inheritance and the Template Method design pattern.
Consider the example in Listing 2.6.
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1 /***** Work.java *****/
2 public class Work {
3 private int value;
4

5 public Work(int value){ this.value = value; }
6

7 public int getValue(){ return value; }
8 public void setValue(int value){ this.value = value; }
9 }

10

11 /***** WorkQueue.java *****/
12 public class WorkQueue<Work>
13 extends java.util.concurrent.ArrayBlockingQueue<Work> {
14

15 public WorkQueue(int capacity){ super(capacity); }
16

17 public Work nextWork(){ return this.poll(); }
18 }
19

20 /***** Worker.java *****/
21 public class Worker implements Runnable{
22 protected WorkQueue<Work> queue;
23

24 public Worker(WorkQueue<Work> wq){ this.queue = wq; }
25

26 /* THREAD BODY */
27 public void run(){
28 Work work;
29 while( (work=nextWork()) !=null){
30 boolean ok = preProcess(work);
31 if(ok){
32 process(work);
33 }
34 }
35 }
36

37 protected Work nextWork(){ return queue.nextWork(); }
38

39 /* TEMPLATE METHODS */
40 protected boolean preProcess(Work w){
41 return (w.getValue()%2==0) ? true : false;
42 }
43

44 protected void process(Work w){
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45 System.out.print(w.getValue() + " ");
46 }
47 }
48

49 /***** SpecializedWorker.Java *****/
50 public class SpecializedWorker extends Worker {
51 public SpecializedWorker(WorkQueue<Work> wq){ super(wq); }
52

53 public void process(Work w){
54 System.out.print("["+w.getValue()+"] ");
55 }
56 }
57

58 /***** Executor.java *****/
59 public class Executor {
60 public static void main(String[] args)
61 throws InterruptedException {
62 WorkQueue<Work> wq = new WorkQueue<Work>(200);
63 for(int i=0; i<100; i++){
64 wq.put(new Work(i));
65 }
66

67 Worker wk = new Worker(wq);
68 Worker wk2 = new SpecializedWorker(wq);
69

70 Thread t = new Thread(wk);
71 Thread t2 = new Thread(wk2);
72

73 t.start();
74 t2.start();
75 }
76 }

Listing 2.2: Threads, inheritance, and the Template Method pattern.

First of all, note that synchronization is required for WorkQueue ob-
jects; in fact, as its operations (such as polling an element out of the queue)
are not atomic, race conditions can occur and leave the objects in an incon-
sistent state. The required protection is achieved by extending the thread-
safe ArrayBlockingQueue<T> class in the java.util.concurrent.

Here, subclasses of Worker can provide their implementations for meth-
ods preProcess() and process(). Of course, chance of reuse are lim-
ited to the template methods.

Finally, note that similar results may be achieved by using composition.
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Thread classes may depend upon utility classes which can be extended to
provide specialized behavior.

2.2.4 Major drawbacks

Threads represent a commonly-used mechanism for implementing concur-
rent programs. However, some disadvantages are serious and demand for
better approaches to concurrency.

First and foremost, the thread is inadequate as an abstraction mech-
anism. The concept of “thread” is at the level of either the language run-
time or the operating system, too low with respect to the concepts of the
domain problem. Also, the association of threads with objects (as it can be
found in Java, for example) does not represent a solution.

Moreover, access to shared data must be synchronized, resulting
in additional complexity in the code and in the risk of incurring in deadlocks
or inconsistent system states. In particular, it is not easy to write thread-
safe software while keeping low the overhead associated with the protection
of shared data structures. Alternative forms of communication (other than
data-based communication) exists, as we will see when talking about the
Actor model.

Finally, it can be affirmed that, as a model of computation, the con-
tribute of threads for handling nondeterminism has shown to be far from
being satisfying [18].

2.3 Tasks in Ada

This section briefly describes Ada’s [19] approach to concurrency [20] and
points out the most peculiar traits of the model.

2.3.1 Tasks, task type, task body

In Ada, programs consist of one or more tasks that execute concurrently.
Tasks are similar to threads, but, whereas a thread is a mechanism for
achieving concurrency, namely, an entity encapsulating an autonomous thread
of control, a task is more a conceptual entity representing some work to be
done.
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Ada is an object-oriented language. So, passive entities can be modelled
through objects. Active entities, instead, can be modelled by means of tasks.

A task unit consists of a task declaration and a task body. A task
declaration is either the definition of a task type or the declaration of a
single task. The declaration of a task specifies its communication interface,
that is a list of entries which represent the access points for other tasks to
communicate.

1 task type MyServer(port: Integer) is
2 entry Service1(in_arg: in T1);
3 entry Service2(arg: T2, out_arg: out T3);
4 end MyServer;
5

6 task body MyServer is
7 -- imports..
8 -- local declarations..
9 begin

10 -- TASK BODY
11 -- ...
12 accept Service1(in_arg: in T1) do
13 -- Service1 ENTRY BODY
14 end Service1;
15 -- ...
16 end MyServer;

Listing 2.3: Task type and task body.

Thus, an explicit separation between communication interface and im-
plementation exists.

2.3.2 Task creation and execution

A task is created when an object of the relative task type is declared.

1 declare
2 type TaskType_A_Ptr is access TaskType_A;
3 task_a1, task_a2 : TaskType_A; -- these tasks are created
4 begin
5 -- exec is blocked until task_a1 and task_a2 are activated
6 -- this context, task_a1, and task_a2 run concurrently
7 dynamic_task_a : TaskType_A_Ptr := new TaskType_A;
8 -- here, exec is blocked until dynamic_task_a is activated
9 -- dynamic_task_a runs concurrently

10 end;
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Listing 2.4: Task type and task body.

Before being able to be executed, tasks need to be activated. Next,
they execute (concurrently) until completion.

Ada is a block-structured language. Blocks can be nested, and tasks can
be created within any block. Thus, a task hierarchy arises, where we have
master tasks and dependend tasks. Before a task is said to be terminated, it
must be finalized (so that its memory is reclaimed); however, a dependant
task may need to access to its master’s local data. Due to this reason, a
task is not finalized until all its dependent tasks have terminated.

Figure 2.2 provides a summary of state transitions for a task.

2.3.3 Task communication

Tasks can communicate between one another

• directly, using task-to-task communication facilities, or

• indirectly, using shared data

Direct communication is achieved through rendez-vous. It is a form
of synchronous communication where the calling task and the called task
meet at one entry point:

• the calling task performs an entry call and waits for it to be accepted
and completed

• the called task is suspended until it receives an entry call for the entry
it is accepting

Once they meet the accept body for the entry is executed; when it is fin-
ished, the rendez-vous terminates and both the tasks proceed with their
flow of execution (see the bottom part of Figure 2.2). During rendez-vous,
data can flow in both directions through in, out or inout parameters.

Indirect communication is achieved through protected objects. Pro-
tected objects are defined by a protected type and a protected body ; alterna-
tively, a single protected object can be specified. The protected type consists
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Figure 2.2: Task state diagram.Taken from [20]

of the declaration of the private data (i.e. the data to be protected) and a
set of operations. Three types of operation are possible:

• protected functions : allow for concurrent read-only access to the pro-
tected data

• protected procedure: are executed in a mutually exclusive fashion

• protected entries : are like protected procedure but can also be guarded

As an example, consider the following code snippet:

1 protected type Bounded_Buffer(capacity: Positive) is
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2 entry Get(item: out Integer);
3 entry Put(item: in Integer);
4

5 function Empty return Boolean;
6 function Full return Boolean;
7 private
8 buffer : array (1..capacity) of Integer;
9 nitems : Integer;

10 -- ...
11 end Bounded_Buffer;
12

13 protected body Bounded_Buffer(capacity: Positive) is
14

15 entry Get(item: out Integer) when nitems>0 is
16 begin
17 -- ...
18 end Get;
19

20 -- ...
21 -- ...
22 end

Listing 2.5: Definition of a protected object: protected type and protected
body.

2.3.4 Tasks and reuse

The possibility of reusing tasks has not been sufficiently considered by the
designers of Ada.

No mechanism has been provided for defining a new task body by reusing
an existing task body. In fact, only tagged types support type extension
and polymorphism. Consequently, tasks can be extended only indirectly
and with considerable effort [21].

This lack is an additional demonstration of what poor emphasis has been
given to the reuse in concurrent settings.
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2.4 The SCOOP model

2.4.1 Overview of the SCOOP model

The goal of the SCOOP (Simple Concurrent OOP) model [22] is to
simplify the development of concurrent system by providing a minimal set
of extensions able to add concurrency and distribution support to object-
oriented programming.

The object-oriented paradigm has shown through the years to be a valid
approach for software construction. It represents a consolidated way to
reason, analyse, design, and implement software-based solutions. Unfor-
tunately, distribution and concurrency still constitute complex issues to
deal with in object-oriented languages. Traditional approaches for integrat-
ing concurrency with object-orientation work by explicitating concurrency
(at increasingly higher levels). Instead, a different approach (embraced by
SCOOP) consists of hiding concurrency, or at least introducing it in the
most unobtrusive manner.

Basic concepts

The SCOOP model of concurrency is based on two concepts: processors
and separateness.

A SCOOP processor represents a logical thread of control where in-
structions are carried out sequentially. Every object is handled by one and
only one processor. SCOOP processors are abstract concepts and should
not be confused with physycal processors. In fact, the idea is to decouple
the high-level notion of thread of execution from the actual mapping to
physical resources (often referred to as computational vehicles).

Within the context of the same SCOOP processor, client objects call
methods on provider objects with the traditional synchronous invokation
semantics. If, instead, the client object is handled by a different SCOOP
processor with respect to the provider object (also called separate object),
calls should be asynchronous and can progress at the same time with the
calling context.

A separate entity is an entity that is defined as being potentially
handled by SCOOP processor different to the processor handling the current
context. As a result, method calls to that entity (also called separate calls)
should be executed concurrently.
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Design by Contract

The SCOOP model builds on the Design by Contract (DbC) [14] ap-
proach to software development, which promotes the use of “contracts”
between software components. Contracts formally specify the obligations
and benefits resulting from such an agreement. They are expressed in terms
of:

• preconditions are required by providers and should be respected by
clients

• postconditions should be guaranteed by providers, so that clients are
assured that nothing unexpected happens once they had respected the
contract preconditions

• invariants should always be mantained and represent a guard against
incorrect states

These in turn consist of assertions, i.e. predicates that must be true.

The idea of the Design by Contract method is to have contracts to guide
design. The main advantages of such an approach include:

• an effective documentation of software components through the ex-
plicitation of their constraints

• a systematic approach for designing correct software, together with a
framework supporting this activity

• a way for dealing with errors, together with the mechanism of excep-
tions

The Eiffel programming language and SCOOP

SCOOP has been designed for the Eiffel programming language. The exten-
sion to Eiffel (i.e. the implementation of the SCOOP model in the language)
merely consists of the addition of a keyword, separate.

1 -- Separate entity declaration
2 separate_obj : separate SomeType
3
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4 -- Separate call
5 separate_obj.some_feature

Listing 2.6: Separate entity and separate call.

In addition, the semantics of contracts must be adjusted for concurrency.

Figure 2.3: Separate call.

2.4.2 Contracts and concurrency

Preconditions The preconditions that are not expressed in terms of sep-
arate entities maintain the usual semantics, i.e. when a precondition is not
met, an exception is raised.

Conversely, if a precondition expressed as a separate expression is not
met, it becomes a wait condition, forcing the client to wait until the condi-
tion is satisfied, at which time the feature application is able to proceed.

Postconditions The benefit of postconditions deteriorates in concurrent
settings. In fact, even though postconditions holds at the end of the call,
they are not guaranteed to be satisfied when, later on, the client may need to
count on them; this is because, in the meantime, other clients, by interacting
with the server, can potentially invalidate the original postconditions.

Invariants Expressions with separate calls are not allowed in invariants.
Thus, their semantics remain unchanged.
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2.4.3 Synchronization

The approach of SCOOP for what concerns the protection of the access to
shared resources is peculiar. First of all, in order to be valid a separate call
requires the target to be an argument of the enclosing routine. Then, it is
established that when a routine is called with separate arguments, it will be
executed only when exclusive locks on all the separate objects are acquired.
These two statements express SCOOP’s access control policy. With such
a scheme, for separate calls to be correct a lock for the associated separate
object have been acquired. As a result, no race condition are possible.

Once the locks for the separate objects are acquired, preconditions for
the routine are evaluated. If any of the separate preconditions is not met,
all the locks must be released and the process must be restarted.

It has been said that a call on a separate entity should be handled
asynchronously. However, in some cases the client may need to wait for the
feature call to complete. As no explicit mechanisms are introduced, how
is it possible to discriminate between asynchronous and synchronous calls?
The idea of wait-by-necessity has been introduced. It states that the
client should wait only if it actually needs to.

Now, a discrimination (also known as Command-Query Separation) has
to be made between:

• query : attribute read or function call which returns data from the
called object, and

• command : procedure call which modifies the state of the called object

Returning to wait-by-necessity, the result is that, when a call is a query
on a separate object, then it must wait for the previous calls (be they
queries or commands) on the same separate object to be completed, and
will be executed with synchronous semantics. Conversely, commands which
are invoked without separate arguments can proceed asynchronously.

As an example, consider the following implementation of the producer-
consumer problem:

1 -- Bounded buffer: array-based, generic implementation
2 ---------------------- buffer.e ----------------------
3 class BUFFER[T] -- (1)
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4

5 create init
6

7 feature
8

9 buffer : ARRAY [T]
10 capacity : INTEGER
11 cursor : INTEGER
12 nitems : INTEGER
13

14 init(max_size: INTEGER)
15 require
16 size_is_positive: max_size>0;
17 do
18 create buffer.make(0,max_size)
19 capacity := max_size
20 cursor := 0; nitems := 0
21 end
22

23 put(value: T)
24 require
25 buffer_not_full: nitems < capacity
26 do
27 buffer.put(value, next_pos(cursor,nitems))
28 nitems := nitems + 1;
29 end
30

31 get() : T
32 require
33 non_empty: nitems>0
34 do
35 Result := buffer.item(cursor)
36 cursor := next_pos(cursor,1)
37 nitems := nitems-1
38 end
39

40 is_full() : BOOLEAN do
41 Result := (nitems=capacity)
42 end
43

44 is_empty() : BOOLEAN do
45 Result := (nitems=0)
46 end
47

48 next_pos(k: INTEGER; i: INTEGER) : INTEGER do
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49 if (k+i)>=capacity then
50 Result:= (k+i-capacity)
51 else
52 Result:=k+i
53 end
54 end
55 end
56

57 ----------------------------------------------------
58 -------------------- producer.e --------------------
59 class PRODUCER
60

61 create init
62

63 feature
64

65 buffer: separate BUFFER [INTEGER]
66

67 init(buf: separate BUFFER [INTEGER]) do
68 buffer := buf
69 end
70

71 put(buf: separate BUFFER [INTEGER]; value: INTEGER) -- (2)
72 require
73 buffer_not_full: not buf.is_full
74 do
75 buf.put(value) -- (3) (5)
76 end
77

78 produce_first_n_nums (n: INTEGER) -- (4)
79 require
80 positive_num: n>0
81 local
82 i:INTEGER
83 do
84 from i := 0
85 until i = n
86 loop
87 put(buffer, i)
88 i := i+1
89 end
90 end
91 end
92

93 ----------------------------------------------------
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94 -------------------- consumer.e --------------------
95 class CONSUMER
96

97 create init
98

99 feature
100

101 buffer: separate BUFFER [INTEGER]
102

103 init(buf: separate BUFFER [INTEGER]) do
104 buffer := buf
105 end
106

107 consume(buf: separate BUFFER [INTEGER]) -- (2)
108 require
109 buffer_not_empty: not buf.is_empty
110 local
111 value:INTEGER
112 format: FORMAT_INTEGER
113 do
114 value := buf.get -- (3) (6)
115 create format.make(1)
116 print("I’m consuming elem "+ format.formatted(value) + "%N")
117 end
118

119 consume_n(n: INTEGER) -- (4)
120 local
121 i:INTEGER
122 do
123 from i := 0
124 until i=n
125 loop
126 consume(buffer)
127 i := i+1
128 end
129 end
130 end

Listing 2.7: Producer-consumer implementation in Eiffel-SCOOP.

The following facts should be noted:

1. no critical sections are defined; we can say that class BUFFER is
unaware of concurrency (actually, classes can be defined as being
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separate, thus defining a separate type, expressing a sort of “con-
currency awareness”)

2. in order for PRODUCER.put and CONSUMER.consume to be exe-
cuted, a lock must be acquired on their actual (separate) argument
and preconditions must be satisfied (i.e. the buffer must not be full
and empty, respectively)

3. the call buf.put(value) and buf.get are valid because buf is a
separate argument of the enclosing routine

4. no separate calls can be made inside produce_first_n_nums()
and consume_n

5. buf.put(value) is a command, so it would be carried out asyn-
chronously

6. buf.get is a query call, so it is carried out synchronously

2.5 The Actor model

2.5.1 Overview of the Actor model

The Actor model [23] is a model of concurrent computation that is built
around the notion of actor, an autonomous object that acts concurrently
and asynchronously, with a globally unique name and a behavior that is
based on three primitives:

• send, that allows to send messages to other actors

• create, that allows the creation of new actors

• become, that allows the actor to update its state into another state

Within this model, software systems consists of autonomous actors that
interact with one another by sending messages in an asynchronous fash-
ion, following certain patterns of interaction. The only way for actors to
communicate is through message exchange, as they do not share state.

Every actor owns a mailbox that contains incoming messages. The be-
havior of an actor can be considered as a loop where the actor:
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1. wait for incoming messages (if the mailbox is empty)

2. remove a message from the mailbox

3. execute the behavior associated to such message

Figure 2.4: Actors.
Taken from http://werner.yellowcouch.org/Papers/chubiqcomp/index.html

Semantic properties

The standard Actor model defines a few semantic properties for actors:

1. encapsulation: actors do not share state; one consequence is that
message passing should have call-by-value semantics

2. atomicity of message processing : a macro-step semantics apply, re-
sulting in the target actors to process one message at a time

3. fairness of execution: guarantee of actor execution exists, so that
actors do not starve
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4. fairness of delivery : guarantee of message delivery exists, unless the
recipient actor is permanently unreachable

5. location transparency : the actual location of an actor does not influ-
ence its name and thus the way through which messages are sent to
him

• mobility, which is simplified by location transparency, is essential
for supporting scalability approaches (e.g. load balancing) and
fault-tolerance

These properties may or may not be enforced by implementations. It has
been noted that faithful but naive implementations can be highly inefficient
[24]. For example, it makes sense to allow call-by-reference semantics for
immutable types, as deep copying of message data can result in considerable
overhead.

2.5.2 Synchronization and actor coordination

Actors do not share data, so there is no risk for data corruption due to
concurrent access on write (or read/write). However, there is still the need
for actor coordination, as not all the interactions may be correct with respect
to the desired behavior of the system.

Communication is the way to achieve synchronization. Therefore, con-
straints upon the way in which messages are exchanged are necessary in
order to exclude incorrect execution orderings. For example, consider the
following synchronization mechanisms.

RPC-like messaging

Here, the actor which initiated the communication by sending a message
waits for the reply of the recipient actor. It is a sort of synchronous com-
munication, similar to classical function call or RPC.

If the sender receives a message that is not the reply it is waiting for,
the processing of such message is postponed. As actors should not block
indefinitely, the possibility of not receiving the reply must be taken into
account, for example, by associating a timeout with the interaction.
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This kind of communication is useful when the behavior of the send-
ing actor depends upon the reply by the receiving actor, or when holding
conversations.

Local synchronization constraints

An actor may not be able to handle all the possible messages that can be
sent to it. Also, the messages that can be handled in a given situation may
depend upon the current state of the actor.

The local synchronization constraints provide a way to specify which
messages can be processed by an actor in a given state.

For example, consider an actor implementing a bounded buffer. It can-
not accept a put message when the actor is in the full state, or a get
message when it is empty.

When a message cannot be handled when it is received, the actor must
decide if it has to be postponed (deferring the processing of the message
when the actor is able to do it) or discarded. In the case when the latter
policy is adopted, one possibility for client actors is to poll the server actor
in busy waiting, which is very expensive and typically not satisfying as an
approach.

Synchronizers

One limit of the local synchronization constraints is that they are, indeed,
local ; that is, they are based on the local state of a single actor. However,
they are not effective for expressing the coordination constraints of a group
of actors.

One proposal for multiactor coordination consists of the use of syn-
chronizers, that are special actors that determine which messages can be
accepted or deferred by a certain group of actors. Synchronizers define
conditions that need to be met for messages in order to be accepted for
processing by the group.

2.5.3 Case study: Actors in Scala/Akka

The Scala Actors API is defined under the scala.actors package. Since
Scala 2.10 (released in January, 2013) such library is deprecated in favor of
Akka, an actor framework which have been integrated in Scala’s standard
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library under the akka.actor package. This section briefly describes how
actors work in Scala/Akka [25].

Quick glance at Scala/Akka API

Originally, actors were defined by extending the scala.actors.Actor
trait and overriding the act method. It is a body-based approach, which
makes reusing actors very difficult.

In Akka, defining an actor consists of extending the Actor class in the
akka.actor package and implementing the receive method (message
handler or message loop), which is declared as returning an object of type
PartialFunction[Any,Unit] and typically contains multiple case
statements that express the mapping between received messages and asso-
ciated processing logic. Whereas act needed to loop explicitly, in Akka the
loop is implemented in the library code.
Note that both these approaches are different with respect to the standard
Actor model which is based on an implicit reception and dispatch of mes-
sages (messages are automatically routed to the corresponding method).

In order to create an actor, the method actorOf has to be called
on an ActorSystem or ActorContext instance. In the former case, the
actor is a top-level actor and is supervised by the system. In the latter case,
the actor is the child of the current actor, which is also its supervisor. In
fact, a supervisor hierarchy exists and allows the supervisors to apply a
SupervisorStrategy to handle child termination and failure.
actorOf is passed a Props instance, which contains the options for the
creation of the actor, and returns an ActorRef instance, which is a ref-
erence to the newly created actor. Such reference can be used to send
messages to the actor; it can be serialized and passed through the network,
always pointing to the actor in the node where it resides. Inside an actor,
two ActorRef instances are available:

• self, pointing to the actor itself

• sender, pointing to the actor which sent the current message

Moreover, inside an actor the object context (of type ActorContext)
is available and refers to the current context.
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Actors communicate by sending messages. Two forms of communica-
tion are provided by Akka:

• Tell (Fire-And-Forget): destActor ! msg

• Ask (Send-And-Receive-Future): destActor ? msg

ask returns a Future, which is a container for the destination actor’s
reply. The use of Futures allows for avoiding blocking, for example by
registering a callback through Future.onComplete.

The receive method, as we have seen, defines the initial behavior of an
actor. Moreover, an actor can also update its behavior. This can be done
by calling context.become, which accepts a PartialFunction[Any,Unit]
object as an argument. Conversely, unbecome rewinds to the previously
defined behavior.

Scala/Akka and the standard Actor model semantics

As we have seen in Section 2.5.1, the standard Actor model specifies a few
semantic properties for actors. Are they enforced in Scala/Akka? Well, it
turns out that:

• encapsulation is not enforced for actors: actors may share data and
messages can be of mutable types

• the macro-step semantics for message processing is ensured

• fairness can be promoted through an adequate configuration of the
system

• location transparency is supported through ActorRef

– actors are movable from one node to another: both the actor
itself and its reference can be serialized and moved around the
distributed system
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Extending actors

The Akka documentation [25] suggests two ways for specializing actors via
inheritance. Both consist of extending the original receive implementa-
tion with one or more specific message handling clauses.

1 // the class need to be abstract because
2 // ’specificReceive’ is unimplemented
3 abstract class ParentActor extends Actor {
4 // ’Receive’ is an alias for ’PartialFunction[Any,Unit]’ type
5 // the following need to be redefined in child actors
6 def specificReceive: Receive
7

8 def genericReceive: Receive = { /* generic rcv impl */ }
9

10 // when ’specificReceive’ is not defined, receive impl
11 // fallbacks to genericReceive
12 def receive = specificReceive orElse genericReceive
13 }
14

15 class ChildActor extends ParentActor {
16 override def specificReceive: Receive =
17 { /* additional rcv impl */ }
18 }

Listing 2.8: Extending actors: providing a specific ’receive’ implementation.

A similar approach, slightly more flexible and still based on PartialFunction
chaining via onElse, is shown in the following Listing:

1 abstract class ParentActor {
2 var rcvs: List[Receive] = List()
3

4 def registerReceive(newrcv:Receive) = { rcvs = newrcv :: rcvs }
5 def unregisterLastReceive() = { rcvs = rcvs.tail }
6

7 // the following produces the ’union’ of the
8 // message handling ’parts’;
9 // the last added part takes higher priority as parts

10 // are added at the head of the list, thus having precedence
11 def receive = rcvs reduceLeft { _ orElse _ }
12 }
13

14 class ChildActor extends ParentActor {
15 registerReceive( { case _ => print("Sw reuse thesis") } )
16
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17 registerReceive( { case _ => print("It’ll be unsubscribed") } )
18 unregisterLastReceive()
19 }

Listing 2.9: Extending actors: message handler subscription.

It makes use of list reduction. We have used reduceLeft instead of
reduce because in the documentation for the latter is specified that “the
order in which operations are performed on elements is unspecified and may
be nondeterministic.”

Note that nothing prohibits from providing a message handler imple-
mentation through a construction argument.

In addition to what we have just seen about actor extension, consider
that:

• the Template Method design pattern naturally applies: the receive
message handler is responsible for selecting the appropriate processing
logic upon a certain message reception; such processing logic can be
“templated” and easily specialized in subclasses

• become can be used to update an actor’s behavior

• the new behavior for a becoming-actor can also be provided from the
outside (it can be seen as a sort of learning or actor’s mind program-
ming) as in Listing 2.10; such a technique can be accompanied by
mixing traits into objects at runtime

1 class ExtendMsg(val rcv: PartialFunction[Any,Unit]){ }
2

3 class MyActor extends Actor {
4 var rcvs: List[Receive] = List()
5

6 def registerReceive(newrcv: Receive) = { rcvs = newrcv::rcvs }
7

8 def unregisterReceive() = { rcvs = rcvs.tail }
9

10 def genericMsgHandler: Receive = {
11 case ex: ExtendMsg => {
12 registerReceive(ex.rcv) // register new behavior
13 context.become(receive) // extend current actor behavior
14 }
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15 /* other cases */
16 }
17

18 registerReceive(genericMsgHandler)
19

20 def receive = rcvs reduceLeft { _ orElse _ }
21 }
22

23 /****** SYSTEM EXECUTION ******/
24 val system = ActorSystem("mysystem")
25

26 val myactor = system.actorOf(Props(new MyActor), "myactor")
27

28 def newbehavior: Actor.Receive = {
29 case "newmsg" => print("new behavior")
30 /* other cases */
31 }
32 myactor ! new ExtendMsg( newbehavior )
33 myactor ! "newmsg"

Listing 2.10: Extending an actor message loop from the outside.

A code example: the Producer-Consumer problem

The following listing represents a basic implementation of the Producer-
Consumer problem and shows Scala/Akka actors in action.

1 import akka.actor._
2 import akka.pattern.ask
3 import akka.util.Timeout
4 import scala.concurrent.duration._ // for implicit timeout
5 import scala.concurrent.Future
6 import scala.language.postfixOps // for postfix ops, e.g. seconds
7 import system.dispatcher // for execution context
8 import java.util.concurrent.Executors // for futures
9

10 /****** MESSAGES ******/
11 class PutMsg(val item: Int) { }
12 class ProduceMsg(val value: Int){ }
13 class ConsumeNMsg(val n: Int){ }
14

15 /****** BOUNDED BUFFER ACTOR ******/
16 class BoundedBuffer(capacity:Int) extends Actor{
17 val buffer = new Array[Int](capacity)
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18 var start = 0
19 var end = 0
20 var nitems = 0
21

22 def receive = {
23 case p:PutMsg if nitems<capacity => put(p.item)
24 case "get" if nitems>0 => sender ! get()
25 case "isEmpty" => sender ! (nitems==0)
26 case "isFull" => sender ! (nitems==capacity)
27 }
28

29 def get():Any = {
30 val postoget = start
31 start = nextPos(start)
32 nitems = nitems-1
33 return buffer(postoget)
34 }
35

36 def put(value:Int) = {
37 buffer(end) = value
38 nitems = nitems+1
39 end = nextPos(end)
40 }
41

42 def nextPos(i:Int):Int = {
43 return if (i+1 == capacity) 0 else i+1
44 }
45 }
46

47 /****** PRODUCER ACTOR ******/
48 class Producer(val buffer: ActorRef) extends Actor {
49 val random = new scala.util.Random(System.currentTimeMillis)
50 val MAX_RANDOM = 9999
51

52 def produce(value: Int) = {
53 buffer ! new PutMsg(value)
54 }
55

56 def produce_random(max: Int) = {
57 buffer ! new PutMsg(random.nextInt(max))
58 }
59

60 def receive = {
61 case p:ProduceMsg => produce(p.value)
62 case "produce_random" => produce_random(MAX_RANDOM)
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63 }
64 }
65

66 /****** CONSUMER ACTOR ******/
67 class Consumer(val buffer: ActorRef) extends Actor {
68 def consume() = {
69 val gotval:Future[Int] =
70 buffer.ask("get")(5 seconds).mapTo[Int]
71 gotval onSuccess {
72 case res => processing_logic(res)
73 }
74 gotval onFailure {
75 case e => print("\nCannot process it. Exception: " + e)
76 }
77 }
78

79 def consume_n(n: Int){
80 for(i <- 1 to n) consume()
81 }
82

83 def processing_logic(value: Int) = {
84 print("{Processing " + value + "}")
85 }
86

87 def receive = {
88 case "consume" => consume()
89 case c:ConsumeNMsg => consume_n(c.n)
90 }
91 }
92

93 /****** SYSTEM EXECUTION ******/
94 val system = ActorSystem("mysystem")
95

96 val CAPACITY = 100
97

98 val mybuffer =
99 system.actorOf(Props(new BoundedBuffer(CAPACITY)), "mybbuffer")

100

101 val myproducer =
102 system.actorOf(Props(new Producer(mybuffer)), "myproducer")
103

104 val myconsumer =
105 system.actorOf(Props(new Consumer(mybuffer)), "myconsumer")
106

107 myproducer ! "produce_random"

63



64 CHAPTER 2. CONCURRENCY AND REUSE

108 myproducer ! new ProduceMsg(100)
109

110 myconsumer ! new ConsumeNMsg(2)
111

112 system.shutdown

Listing 2.11: The Producer-Consumer problem in Scala/Akka.

2.6 Inheritance anomaly

2.6.1 What and why

The term inheritance anomaly [26] refers to a class of issues that emerge
from the use of inheritance in object-oriented concurrent programming lan-
guages (OOCPLs).

A language may keep the notion of object and thread separate. Alterna-
tively, the process of unifying objects and concurrency brings to the notion
of active object. Objects become concurrency units encapsulating a thread
of control. This is what happens, for example, by merging objects with
actors.

Be the objects active or separated from the concurrency building blocks,
synchronization is needed in order to enforce coordination and safe access
to shared data.

However, usually that synchronization code cannot be kept completely
separate from the code expressing the logic or behavior of objects. Such
an imperfect separation is what allows inheritance anomalies to happen. In
fact, it turns out that, in these cases, synchronization code cannot be
effectively inherited without requiring extensive class redefinitions.

The inheritance mechanism works in a (usually) static, structural per-
spective. Conversely, the synchronization code expresses dynamic, func-
tional constraints. This difference may justify (in part) the semantic con-
flict between inheritance and concurrency that have been noted through
the years. Such interference is what makes it so difficult to inherit synchro-
nization code and preserve the inherited behavior without breaking encap-
sulation.
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2.6.2 Kinds of anomalies

A specific inheritance anomaly may or may not happen depending upon
which synchronization primitives are used and how they are applied collec-
tively (which is referred to as a synchronization scheme). So, every language
exhibits an inclination to suffer of inheritance anomaly that is determined
by its concurrency facilities.

The occurrences of inheritance anomaly can be divided into three main
categories [27]:

History-sensitiveness of acceptable states

The inheritance anomaly may occur when the extension consists of one
or more methods guarded against history-sensitive constraints. A history-
sensitive constraint is a condition that regulates if a method is enabled or
not which depends on the past history of the object state. A typical ex-
ample is the addition in the child class of a BoundedBuffer class of a
method gget which “cannot be called after get”. Suppose that get and
put contains the state transition logic as below in Listing 2.12. Now, the
new constraint is clearly history-sensitive and it can be shown that it re-
quires get and put to be redefined in order to keep trace of that “history”
(for example, by using a boolean after_get state variable).

1 class BoundedBuffer(capacity:Int) extends Actor {
2 /* ... IMPL cut for space ... */
3

4 def empty_state : PartialFunction[Any,Unit] = {
5 case p:PutMsg => put(p.item)
6 case "isEmpty" => sender ! true
7 case "isFull" => sender ! false
8 }
9

10 def full_state : PartialFunction[Any,Unit] = {
11 case "get" => sender ! get()
12 case "isEmpty" => sender ! false
13 case "isFull" => sender ! true
14 }
15

16 def partial_state : PartialFunction[Any,Unit] = {
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17 case p:PutMsg => put(p.item)
18 case "get" => sender ! get()
19 case "isEmpty" => sender ! false
20 case "isFull" => sender ! false
21 }
22

23 def receive = { empty_state }
24

25 def get():Any = {
26 /* impl */
27

28 if(nitems==0) context.become(empty_state)
29 if(nitems==capacity-1) context.become(partial_state)
30

31 return result
32 }
33

34 def put(value:Int) = {
35 /* impl */
36

37 if(nitems==capacity) context.become(full_state)
38 if(nitems==1) context.become(partial_state)
39 }
40 }

Listing 2.12: Alternative (naive) bounded-buffer implementation in
Scala/Akka.

Partitioning of states

The need for redefinitions may take place when the extension forces the
original set of states to be further partitioned. A characteristic example
consists of specializing BoundedBuffer with a get2 method that behaves
like get but returns two items of the buffer. This addition causes a partition
of the buffer state set. In fact, in the partial state the buffer can contain
from 1 to N-1 items; however, get2 must not be enabled in the case that
only a single element exists in the buffer. So, a one_element state should
be considered, but it requires both get and put to be redefined in order
to adjust the state transitions.
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Modification of acceptable states

Suppose of extending the BoundedBuffer by mixing into it a Lock trait
that allows the buffer to be locked or unlocked by calling lock and unlock,
respectively. Now, you see that it is not possible to use put when the the
buffer is locked, even if the buffer is empty. In fact, the locked and
unlocked states are orthogonal with respect the other states. Thus, such
a mix-in has modified the acceptable states. Depending on how the method
enabling logic is expressed, different types of actions may be required. Using
the approach of Listing 2.12, for each of the original states, a locked/un-
locked version should be provided. So, we can have the locked_empty
and unlocked_empty states. Such changes must be reflected in put and
get implementation. Ideally, these methods should contain only the be-
havior needed to put/get an element into/from the buffer; instead, we see
that the coexistence with the state transition logic results into the necessity
of redefinitions.

2.6.3 Language-level mechanisms and inheritance anomaly

We have seen the three main classes of inheritance anomalies. A program-
ming language, depending on the constructs it provides, may be immune
to one or more kinds of anomalies. For example, Eiffel (and SCOOP-based
approaches) do not suffer from anomalies related to active objects, however
they are not totally resistant (e.g. they do suffer from anomalies due to
history-sensitiveness of states [27]). Here, we consider a few synchroniza-
tion schemes and analyze their position with respect to the aforementioned
issues.

Bodies

The body is an object method with its own thread of control. Examples
of bodies are the run method in Java Threads, the act method of the
Actor trait in the (old) Scala Actors Library, and the task body in Ada.
The problem with bodies is that they contain both the concurrent object
behavior and the synchronization code. The only chance of clean reuse is to
specialize the methods that are called inside the body. In all the other cases,
it is evident that the body needs to be totally rewritten. The impedance to
reuse is extreme.
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Explicit message reception

While the standard Actor model establishes that message reception is im-
plicit as well as the corresponding method invokation, other Actor-based
implementations may support a different semantics. For example, the Scala
Actors Library supports the explicit reception of messages via the receive
construct (that may be called select/accept in other languages), which
works similarly to the receive message handler method in Scala/Akka.

In many cases, adding new methods on the class would force the redef-
inition of the entire message handler in order to take them into account
[26]. Actors written in Scala/Akka, however, are not susceptible to such
a catastrophic eventuality because new message handling clauses can be
aggregated (as in Listing 2.9), and because methods can be overridden, so
the original processing logic (if expressed via the Template Method pattern)
can be easily modified.

Guards

Guards can be used to control the method enabling, postponing the method
execution until a certain condition holds. Guards may be specified on meth-
ods (e.g. when message reception is implicit) or together with receive
clauses as in Scala/Akka.

Of course, when the acceptable states are modified (e.g. in the case of
the Lock trait mixed-into the buffer), guards need to be adjusted accord-
ingly. Thus, the question is: does the language allow to adjust the guards
without requiring the method redefinition? If it is not possible, it is a serious
inheritance anomaly.

Now, consider the bounded buffer and the case of the addition of gget,
method that cannot be executed after get. gget would normally be
guarded against a afterGet boolean variable. This variable must be up-
dated. Consequently, get and put must be redefined (maybe not totally
in fortunate circumstances).

2.6.4 Case study: Inheritance anomaly in Scala/Akka

Here, we try to implement the extensions for the bounded buffer that has
been described in Section 2.6.2. The aim is to evaluate how much effort
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is necessary to implement such specialized buffers with the concurrency
facilities provided by Scala/Akka.

History-sensitiveness of states: gget

In Listing 3.4 we see that get and put need to be redefined. Luckily, the
original implementation can be partially reused. However, it is not optimal.

1 abstract class BoundedBuffer extends Actor{
2 /* ... IMPL cut for space ... */
3

4 def messageHandler:Receive = { /* ... */ }
5 def moreMsgHandler : Receive
6 def receive = moreMsgHandler orElse messageHandler
7

8 def get():Int = { /* ... */ }
9 def put(value:Int) = { /* ... */ }

10 }
11

12 class HistoryBoundedBuffer extends BoundedBuffer {
13 var lastIsGet = false;
14

15 override def moreMsgHandler() : Receive = {
16 case "gget" if !lastIsGet => /* ... */
17 }
18

19 override def get():Int = {
20 val result = super.get()
21 lastIsGet = true
22 result
23 }
24

25 override def put(value:Int) = {
26 super.put(value)
27 lastIsGet = false
28 }
29 }

Listing 2.13: Extending the bounded buffer: implementation of ’gget’ in
Scala/Akka.

A different approach is possible: the addition of Template methods
afterPut and afterGet. They can be redefined in the subclass in order
to contain the logic needed to keep track of the history-sensitive informa-
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tion. However, while it is possible, it is unrealistic: why the designers of
BoundedBuffer would have done this? Moreover, what if such an action
needed to be performed on more than two methods? In summary, this al-
ternative is far from being satisfying. Nevertheless, it points out a suitable
technique that may be useful in similar cases: aspect-oriented programming.

Partitioning of states: get2

The buffer extension with get2 does not suffer from inheritance anomaly
in Scala/Akka, as the following code demonstrate:

1 // the parent ’BoundedBuffer’ code is the same as
2 // in the previous listing
3 class PBoundedBuffer extends BoundedBuffer {
4 override def moreMsgHandler(): PartialFunction[Any,Unit] = {
5 case "get2" if nitems>1 => sender ! get2();
6 }
7

8 def get2(): Tuple2[Int,Int] = {
9 /* get first and second value */

10 return (first, second)
11 }
12 }

Listing 2.14: Extending the bounded buffer: implementation of ’get2’ in
Scala/Akka.

Modification of acceptable states: Lock mixin

In this case, the message handler receive must be entirely redefined.
However, no changes to get and put are necessary.

1 trait Lock {
2 var isLocked = false
3 def lock = { isLocked = true }
4 def unlock = { isLocked = false }
5 }
6

7 class LockableBoundedBuffer extends BoundedBuffer with Lock {
8

9 override def receive = {
10 case p:PutMsg if nitems<capacity && !isLocked => put(p.item)
11 case "get" if nitems>0 && !isLocked => sender ! get()
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12 case "lock" => lock
13 case "unlock" => unlock
14 }
15

16 }

Listing 2.15: Extending the bounded buffer: implementation of a lockable
buffer in Scala/Akka.

Another approach is to factor guard conditions into methods, as in the
following Listing:

1 abstract class BoundedBuffer extends Actor {
2 /* ... IMPL cut for space ... */
3

4 def messageHandler:Receive = {
5 case p:PutMsg if putGuard => put(p.item)
6 case "get" if getGuard => sender ! get()
7 /* other cases */
8 }
9

10 def putGuard:Boolean = { nitems < capacity }
11 def getGuard:Boolean = { nitems > 0 }
12

13 def moreMsgHandler : Receive
14 def receive = moreMsgHandler orElse messageHandler
15 }
16

17 class LockableBoundedBuffer extends BoundedBuffer with Lock {
18

19 def moreMsgHandler: Receive = {
20 case "lock" => lock
21 case "unlock" => unlock
22 }
23

24 override def putGuard:Boolean = { super.putGuard && !isLocked }
25 override def getGuard:Boolean = { super.getGuard && !isLocked }
26 }

Listing 2.16: Factorizing guard conditions into methods in Scala/Akka.

Such a technique may also makes sense as a general approach for devel-
oping actor classes in Scala/Akka.
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2.6.5 Solving the inheritance anomaly

The inheritance anomaly has a huge impact when the synchronization scheme
of a language does not allow for a sufficient separation between the synchro-
nization logic and the object behavior. This consideration shows that the
separation of concerns can be crucial for avoiding anomalies related to
the conflict between concurrency and inheritance. As a result, all the tech-
niques the foster the separation of concerns can potentially contribute to
solve these issues. For example, aspect-oriented programming can be valu-
able and some proposals based on it have already been advanced [27].
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Summary

The key points of this chapter are:

• concurrency and distribution are two key issues in software design and
development

• concurrency, by removing the constraint of fixed execution order that
regulates sequential programs, entails an unpredictability that need
to be managed through opportune synchronization logic

• reusing concurrent units should ensure that both their original be-
havior and semantic (concurrency-related) constraints are preserved
in the new context

• the thread is the smallest schedulable unit in a system; it shares the
same address space with the other threads in the process

• threads typically share data, which - if it is not read-only - must
be accessed in a mutually exclusive fashion; programming languages
provide synchronization primitives both for thread coordination and
for avoiding race conditions on shared resources

• threads do not contribute enough to the lowering of the conceptual
gap, and issues such as race conditions and deadlocks make it difficult
to write both reliable (thread-safe) and efficient concurrent code

• tasks in Ada provide a conceptual separation between the work to
be done and the underlying concurrency mechanism; task definition
requires an explicit separation between communication interface (en-
tries) and task implementation (task body)

• tasks communicate directly with rendez-vous or indirectly via (shared)
protected objects

• SCOOP is a concurrency model which aims to empower the OOP with
a minimal extension for concurrency, according to its motto “concur-
rent software development made easy”

• the SCOOP’s model builts on the concepts of processors and sepa-
rateness and is based upon the Design by Contract technique
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• SCOOP’s realization consists of: an extended semantics for contracts
in concurrent settings, the definition of what a valid separate call is
(Separateness Consistency Rules), mutual exclusion through an ap-
propriate access control policy on separate objects, the determination
of the synchronous or asynchronous nature of a separate call based on
wait-by-necessity

• actors are autonomous objects executing concurrently and asynchronously,
with an associated mailbox, which communicate between one another
only by exchanging messages (no shared data)

• each actor can send/receive messages, create another actor, and up-
date its local state

• the standard Actor model defines some semantic properties: encapsu-
lation, atomicity, fairness, location transparency

• the term “inheritance anomaly” refers to a class of issues originated
by a semantic conflict between inheritance and concurrency and by
an imperfect separation between object behavior and synchronization
logic

• the result of the inheritance anomaly is that a class cannot be inherited
without causing the need of considerable redefinitions; the synchro-
nization logic as expressed does not hold, thus breaking encapsulation

• the occurrence of the inheritance anomaly depends on the synchro-
nization schemes which are used; three broad classes of issues are
commonly recognized: history-sensitiveness of acceptable states, par-
titioning of states, modification of acceptable states
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Chapter 3

Agent-Oriented Programming
and Reuse

The last chapter covered concurrency and reuse. We have come across dif-
ferent concurrency models, each with its own set of concurrency mechanisms
and abstractions. We can see a trend of increasingly higher abstractions fi-
nally aimed at reducing the conceptual gap inherent to the construction of
concurrent applications: from threads to tasks, to end with SCOOP sepa-
rateness and actors.

This chapter includes the Agent-Oriented Programming paradigm to the
discussion, taking the simpAL programming language as a reference imple-
mentation. Agents can be seen as abstractions which conceptually extend
the notion of actor and concurrent object. After an overview of agents
and related abstractions as they are provided by the simpAL programming
model, the aim is to discuss what is the meaning of reuse in the context of
multi-agent systems.

3.1 Agents, agent-oriented programming and

simpAL

Agents [28] are subject of study in multiple areas of computer science re-
search. Two important areas are:

• (Distributed) Artificial Intelligence, where agents were introduced and
are primarily studied with respect to their “intelligent capabilities,”
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with focus on machine learning and reasoning

• Software engineering, which sees agents as entities that can contribute
to the modelling of modern software systems where concurrency, dis-
tribution, and interaction represent increasingly important issues

Within the latter point of view, the Agent-Oriented Programming (AOP)
paradigm has been proposed as an approach for (general-purpose) software
development where software systems consist of a set of interacting agents.
Such systems can be called multi-agent systems.

In this thesis, we take the simpAL programming language [29] as a repre-
sentative of the agent-oriented paradigm and as a reference of the concepts
that will be described hereafter.

3.1.1 Agents: definition and reason

No single authoritative definition exists for the term “agent.”
As we intend it, an agent is both a software abstraction and a compu-

tational entity which is characterized by specific human-inspired properties
and capabilities. In particular, an agent is:

• situated in an environment which can be perceived and manipulated
by the agent (at the same time with other agents situated in the same
environment)

• reactive, i.e. he is able to react to changes in the environment and
to the messages that are sent to him by the other agents

• autonomous and pro-active, i.e. he does not only react to percep-
tion but also exhibits an autonomous behavior aimed at the accom-
plishment of certain tasks that have been assigned to it

• possibly social, i.e. he may have a social ability which makes he
able to collaborate with other agents in order to meet his objectives;
collaboration is based on communication, which can be direct (by
sending messages) or indirect (by manipulation of shared artifacts)

The emphasis is on the attitude of agents to continuously pro-act so as
to fulfill their assigned duties.
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Agents can be seen as an extension of the Actor model, which has been
covered in Chapter 2. Actors were defined as autonomous objects that act
concurrently and that communicate between one another by exchanging
messages in an asynchronous fashion. Thus, actors are both autonomous
(as they encapsulate a thread of control) and reactive (as they act on the
basis of the received messages), but they are neither pro-active nor specified
as being situated in an environment.

Moreover, agents are defined upon an abstraction layer that is inspired
by the way in which human societies work. So, not just objects or actors as
in traditional application models, but is provided an entire set of concepts
aimed at the description of a human-like “agent world.”

In summary, the agent-oriented paradigm introduces a new model, with
new abstractions, that embraces concurrency and decentralization of control
from the beginning; that is, multi-agent systems are inherently concurrent
and distributed. Therefore, the agent-oriented programming represents an
attempt to provide a solid foundation for developing modern applications,
where “modernity” is characterized by an evolution of computational in-
frastructure which results in increasingly higher levels of parallelism, inter-
connection, and ubiquitousness.

3.1.2 The simpAL model: a high-level overview

In simpAL, programs are organizations of agents. A program, or multi-
agent system, consists of multiple agents – playing certain roles –, which
autonomously act in order to accomplish the tasks that have been assigned
to them. The agents live in a common environment that is organized into
one or more workspaces. Agents can interact between one another by send-
ing messages, or requests. They can also make use of tools and resources,
which are called artifacts.

Such a scenario does resemble real-world work organizations. Note that
the similarity is not only about the structure, but common elements exist
also in the dynamics. In fact, for example:

• our world is by nature concurrent and asynchronous, and the same is
perceived by agents

• certain objects (e.g. a spoon, a pen..) cannot be effectively used by
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two or more people, and the same is for artifacts

• when people work together, they typically reside in the same place,
where all the equipment they need is available; such a container for
work groups and tools is represented by the workspace

• companies and industries have one or more branches and/or offices
which allow for work distribution; the organization, environment, and
workspace concepts reflect such an arrangement

Moreover, agents are very similar to human workers. While an agent
may not get bored at work, he have a job to do which consists of completing
the tasks that are assigned to him. In order to do so, he cooperates with
other agents and, while doing one or more tasks (likewise to people, which
support multi-tasking!), he perceives changes that occur in the environment
and acts accordingly.

Figure 3.1: A world with agents.
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3.1.3 Agent behavior

Agents have an autonomous goal-oriented behavior. It means that, for
an agent, all the actions are finally directed towards the accomplishment of
some objectives. So, agents own an implicit notion of task, which is the
primary element upon which their behavior can be described and defined.
The knowledge about how a certain task can be fulfilled is encapsulated
by the concept of plan. A plan is a module that specifies the logic – in
terms of actions and interactions to be performed – that allow the agent to
progress in the task and ultimately finish it (hopefully).

simpAL is based on the Belief-Desire-Intention model [30], which pro-
vide a foundation for the reasoning capabilities of intelligent agents.

The BDI model, in addition to defining how the rational process works
in agents, ultimately allows the separation of two activities:

• the decision of what to do (the creation of an intention)

• the actual execution of the action (the expression of an intention)

Such separation is crucial for the implementation of agent behavior. Ac-
cording to this model, in order for an action to be executed it must first
be established – based on the current knowledge (belief) and the desired
consequences (desire) – and become an intention.

The beliefs for an agent can be compared, for humans, to the facts that
reside in memory, even though – of course – agents are not affected by issues
related to memory retention and retrieval. The summa of all the beliefs
represents the “conscious” knowledge of the agent, which may be learned
at some point in the past (with respect to the “birth” of the system) or be
the result of recent experiences, for example drawn by speaking with other
agents or by looking at the environment.

Belief, desire, and intention can be seen as the mental states of an agent
while he is reasoning:

• belief – consider all your knowledge (information state)

• desire – consider what state of affairs you want (motivational state)

• intention – commit yourself for doing an action that allows to reach
your desired state of affairs (deliberative state)
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There may be a virtually infinite number of “hows”, of ways for a desire
to be satisfied. The actual process of choosing the actions that are aimed
at turning the desire into facts is known as means-end reasoning. In the
context of simpAL, it just turns to the application of appropriate criteria
for the selection of a plan from a set of available plans.

On this basis, the behavior of an agent can can be thought as a non-
blocking execution cycle (also known as control loop) where the following
stages are carried on in a sequential fashion:

• sense – The agent perceives the world around him: a change in the
environment, an update on the state of an artifact of interest, a mes-
sage from another agent. Such perception is automatically reflected
on the knowledge of the agent (i.e. its beliefs). All the (new) per-
ceptible information can be seen as external events that are enqueued
on a queue associated to the agent; such events are processed in this
stage, and the internal state of the agent is updated accordingly.

• plan – Based on local state and intentions, the actions to be performed
are selected; moreover, if new tasks have been assigned to the agent
since the last plan stage, a plan (i.e. the actions to be executed in
order to accomplish the task) must be chosen for each of them and
must be added to the current set of intentions.

• act – The actions that were selected in the plan stage are performed.

Again, note that the human behavior (decision making process followed
by action) can be reasonably represented with SENSE-PLAN-ACT cycles:
the five senses perceive the world around us and the brain elaborates an
“execution strategy” that is carried on through the capabilities of the human
body. Also, such an approach has been used in robotics; for example, a
robot may work with sensors providing inputs, a computational unit which
elaborates these inputs and produces a plan of actions and movements, and
actuators that operate on the environment.

3.1.4 Environment, workspaces and artifacts

Agents live in an environment. They are situated entities that encapsu-
late control and act in a working environment that supports them for the
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satisfaction of their goals.
At the beginning of the studies in the field of multi-agent systems, the

environment actually corresponded to the deployment context (as it is typi-
cally seen in traditional software development). It was not considered yet as
a significant abstraction for the design of systems of agents. At the present
time, there is a general agreement about such view which suggests to treat
the environment as a first-class concept in multi-agent systems [31], accom-
panied by the realization of the its importance as an infrastructural pillar
[32] where several system-wide functions can be provided.

The environment serves two main related purposes:

1. encapsulation of a significant part of the system’s functionality, such
as core services, basic mechanisms, distribution support, and so on

2. provision of environment abstractions representing functions and ser-
vices for agents

Thus, by factoring a relevant part of the system logic in the environment,
agents and the other abstractions can be accounted for less responsibilities.
Moreover, the environment has the role of a common context for agents,
which can be used to model aspects that span the entire organization.

Agents, in order to be able to complete the tasks that have been assigned
to them, often require a working environment, i.e. an environment that
enables and supports their work. This is especially true for cooperative
work, where two or more agents collaborate – each with its own set of
capabilities and tasks to do – in order to reach a common goal (of which
they may also be unaware).

As a craftsman requires both raw matter and utensils in order to produce
its creation, the same may be for agents. For this purpose, simpAL is based
on the Agents&Artifacts (A&A) model [33], which provides a conceptual
foundation for the modelling and definition of working environments.

According to the A&A model, a working environment is organized into
workspaces which contains agents and artifacts. The main concept that has
been introduced is that of artifact. The artifact abstraction is voluntarily
general so that it could be used to represent different types of artifacts. Two
main classes of artifact exist:

1. tools – provide functions, extended capabilities that enable agents to
do some actions; for example a megaphone or a calculator
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2. resources – encapsulate information that may be updated and ob-
served by agents; for example a blackboard or a thermometer

As it would be a very chaotic world if people did not organize themshelf
and their resources using spatial critera, agents and artifacts should not be
sparse in the MAS “world”. Workspaces come to the rescue. They are
logical containers for agents and artifacts, and allow to model the notion of
locality together with the topology of the environment.

The set of agents and artifacts in a workspace is dynamic. The same
happens in real-world workplaces: employees may change job or be fired,
new ones may be hired, the machinery may be enlarged with new tools, and
so on.

Artifacts are not autonomous, they are passive and can only be used
by agents. For this purpose, artifacts provide a usage interface which
specifies the manner in which agents can make use of them. The usage
interface also defines the external quality af an artifact. Artifacts should be
highly usable and ergonomic, in parallel with the need of human workers to
have instruments which satisfy (at least basic) interaction design principles.

Ergonomic arguments also apply to workspaces and environment, and
refer to the ease with which tasks can be fulfilled through an efficient com-
munication and an effective and coordinated use of artifacts.

The usage interface of an artifact specifies:

• a set of operations, aimed at the execution of some functions (e.g.
writing on a blackboard with a piece of chalk)

• a set of observable properties, so that an agent can keep track of states
(e.g. the temperature of a thermometer) and events (e.g. a mail is
arrived at the post office)

Definitely, the actions that an agent can do are of three types. He can
update its internal state (internal action), send a message or a request
to another actor (communicative action), and perform an action on arti-
facts (practical/usage action) including the possibility to create and destroy
them.
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3.2 The simpAL language and platform

simpAL is a platform that includes both a programming language and
tools which provide support for the creation of multi-agent systems. At
the present, the simpAL platform equips the developers with:

• an Eclipse-based IDE with a simpAL perspective

• a compiler, based on the open-source Xtext1 framework

• a runtime for execution of agent-based programs, with concurrency
and distribution support coherently with the semantics of the agent
conceptual framework

The simpAL programming language embeds a subset of Java for the
object-oriented support, in order to be able to use objects as values (e.g.
for beliefs) and reusing existing functionality that does not conflict with the
new agent paradigm.

Certain principles are embraced by the simpAL language:

• separation of concern – in particular, the separation between interface
and implementation is extensively fostered

• easy of use – through broad use of syntactic sugar to make common
patterns and interaction quick and effortless to express

• consistency between conceptual and programming model

simpAL is currently under definition and development.

3.2.1 The simpAL language: an overview

Agent interface (agent types)

An agent, as we have seen, is a computational entity that encapsulates
control and is characterized by a pro-active goal-oriented behavior. As a
consequence, the computational model of agents must build upon the no-
tions of belief, task, and plan. In simpAL, each agent is internally composed
by the following elements:

1It is a framework that allows developers to build (domain-specific) languages:
http://www.eclipse.org/Xtext/
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• belief-base – It logically contains all the beliefs, thus representing the
knowledge base of the agent.

• plan-library – Here reside all the plans, i.e. the practical competence
that specifies how tasks can be done.

• intentions – It is the set with all the on-going plans that will be
executed in the act stage of control loop. During the plan stage,
the plans chosen for new tasks are added to this data structure.

• event queue – It is where the incoming external events (such as mes-
sages from other actors or state changes of observed artifacts) are
enqueued. This queue is checked for new events during the sense
stage.

The definition of an agent’s behavior includes actions that implicitly ma-
nipulate these data structures, so it is useful to know them.

Now, how can agents be defined? How can they be created?
In simpAL, agents can be created by instantiating the associated agent type.
An agent type is identified by a role, which consists of the definition of any
number of task types. So, the type of an agent depends on the tasks that
the agent is able to do inside the organization.

1 role Producer {
2

3 task Booting { }
4

5 task Producing {
6 input-params {
7 numInitialItemsToProduce: int
8 bufToUse: Buffer
9 }

10

11 understands {
12 newItemsToProduce: int;
13 }
14 }
15

16 }

Listing 3.1: Agent type definition in simpAL.
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For example, agents of the agent type Producer are able to perform
tasks of task type Producing, that is, they approach the problem of pro-
ducing items on a given buffer by turning into actions their encoded exper-
tise. However, it does not mean that a producer will actually be able to
produce items on the buffer.

A role specifies an interface for agents of that type, defined on the basis
of the capabilities that the role itself exposes. As an abstraction, the role
may be associated to the notion of profession. For example, the “teacher”
occupation is characterized by the ability to teach.

Roles, similarly to Java interfaces, support inheritance through the extends
keyword. Coherently with the specialization in professions, a role can ex-
tend another role to provide an increment in terms of supported tasks (i.e.
in terms of capabilities or expertise).

Task types are defined using the task construct, which accepts a block
to contain attributes that describe the task, for example:

• input-params, to specify the inputs for the task

• output-params, to specify the outputs returned by the task

• understands, to indicate which messages can be sent to the agent
who is doing the task, and so on.

Figure 3.2: SimpAL agent.
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Agent implementation

The implementation of an agent type (i.e. of a role) is encapsulated in a
module that is called a script. Inside a script both beliefs and plans can
be defined; such definitions will be available into the belief-base and plan-
library data structures of the agent.

An agent implementation must contain a plan for each task declared in
the implementing role. Plans contains the procedural knowledge needed to
perform a certain type of task. A plan definition consists of:

• the target task type

• an optional context

• the body of the plan, that is, an action rule block

An action rule block encapsulates the behavior aimed at the accomplish-
ment of tasks of the relative task type. It can specify local beliefs and a
set of action rules. Such blocks can be quite complex, as they may need to
execute both autonomous and reactive behavior. The language is intended
to provide sufficient expressiveness to model various patterns of interaction
and action-oriented behavior. Moreover, some syntactic sugar is provided
to simplify common schemes of behavior.

Examples of features provided by simpAL to support the programming
of plans include:

• several attributes affecting the execution of action rule blocks, for
example:

– #hard-block and #soft-block for, respectively, non-interruptible
and interruptible action blocks

– #completed-when to provide a condition for action block com-
pletion

– #to-be-repeated for action blocks with iterated behavior

– and so on

• sequences for serial execution of a set of actions

• action rule block nesting
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• pre-defined internal actions, for example

– actions for manipulation of tasks: new-task, assign-task,
do-task, etc..

– actions for communication, such as tell

– actions for creating a new-artifact or a new-agent

– and so on

• conventions for semantic defaults (e.g. reaction blocks are by default
hard blocks)

Note that certain pre-defined actions (e.g. those for the creation of new
artifacts or agents) are actually mapped to operations on “special” artifacts
which implement a part of system functionality.

As an example of agent implementation consider the following listing:

1 agent-script MyProducer implements Producer in ProdConsModel {
2 itemMaker: ItemMaker // POJO
3 testing: boolean
4

5 plan-for Booting {
6 new-artifact ACMEItemMaker() ref: itemMaker
7 testing = false
8 }
9

10 plan-for Producing context: !testing {
11 #completed-when: is-done jobDone || is-done stopNotified
12 #using: console@main, gui@main
13

14 noMoreItemsToProduce: boolean = false
15 nProduced: int = 0
16 nItemsToProd: int = numInitialItemsToProduce
17

18 println(msg: "num items to produce: "+nItemsToProd);
19 {
20 #to-be-rep-until: nProduced >= nItemsToProd || stopPressed
21 #using: itemMaker, buffer
22

23 newItem: acme.Item
24

25 makeItem(item: newItem);
26 put(item: newItem) on buffer;
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27 nProduced = nProduced + 1
28 };
29 println(msg: "job done") #act: jobDone
30

31 when changed stopPressed in gui@main => {
32 println(msg:"stopped.")
33 } #act: stopNotified
34

35 every-time told newItemsToProduce => {
36 nItemsToProd = nItemsToProd + this-task.newItemsToProduce
37 }
38 }
39

40 plan-for Producing context: testing {
41 #using: console@main
42 println(msg: "this is a test")
43 } // multiple plans for same task can be provided
44 }

Listing 3.2: Agent type implementation in simpAL.

Finally it should be noted that, actually, scripts does not conceptually
represent an agent implementation. Instead, they are modules that encapsu-
late the expertise needed to perform the tasks for which plans are defined.
They can be seen as educational programs which endow agents with the
knowledge and the capabilities that make them operative (in a given role).

Artifacts

We have seen in Section 3.1.4 that the artifact model is based on the notion
of usage interface. Thus, the simpAL language allows the definition of both
the usage-interface, in terms of supported operations and observable
properties, and the implementation (also referred to as artifact template) of
an artifact.

Some peculiarities of simpAL include:

• keyword-based parameters for operations, which must be explicitly
indicated during invokation

• parameters marked with #out are returned to the invoking agent at
completion of the operation
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• operations are like synchronized Java methods, i.e. they are executed
in a mutually exclusive fashion

• operations may use synchronization primitives – e.g. wait, which
suspend execution until the relative condition is satisfied

• agents are notified for the completion of an requested operation through
an appropriate event – this would have spared a lot of burnt food in
real world kitchens!

1 /*** Buffer’s usage interface ***/
2 usage-interface Buffer {
3 obs-prop nElems: int;
4

5 operation put (item: Item);
6

7 operation get (item: Item #out);
8 }
9

10 /*** Buffer’s artifact template (impl) ***/
11 artifact BoundedBuffer implements Buffer {
12 /* declaration of local state */
13 // obs prop nElems don’t need to be declared
14

15 init (maxElems: int) { /* construction */ }
16

17 operation put (item: Item) {
18 await nElems < numMaxElems;
19 /* impl */
20 }
21

22 operation get (item: Item #out) {
23 await nElems > 0;
24 /* impl */
25 }
26 }

Listing 3.3: Definition of an artifact in simpAL.

When an agent is observing an artifacts, the observable properties of
that artifact are automatically mapped to the agent beliefs. Observability
is hard-wired into the agent infrastructure. However, the agent beliefs may
be different from the actual environment state in a given instant of time. In
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fact, we can say that an agent’s beliefs are caused by its perception of the
world, which cannot be perfectly istantaneous.

Organization

A program, in simpAL, is an organization with a defined topology expressed
by one or more workspaces which logically contain a group of agents and a
set of artifacts. Workspaces may be distributed across different nodes on the
network, so they can be considered as distribution units; such deployment
information can be specified at configuration level.

The topology of an organization is specified through an organization
model (org-model), which consists of a number of definitions of workspaces
together with their initial contained entities. Then, such a model of the or-
ganization must be implemented. The implementation typically consists of
the instantiation of artifacts and agents declared in the model. At creation
of agents, an initial script and an initial task for it must be provided.

1 /*** Organization model (logical topology) ***/
2 org-model ProdConsModel {
3

4 workspace producers { manager: Manager }
5

6 workspace consumers {
7 buffer: Buffer
8 cons: Consumer
9 }

10

11 workspace main { gui: GUI }
12 }
13

14 /*** Organization "implementation" ***/
15 org ProdCons implements ProdConsModel {
16

17 workspace main {
18 gui = new-artifact SimpleGUI (title: "Simple GUI")
19 }
20

21 workspace producers {
22 manager = new-agent ManagerScript()
23 init-task: new-task Manager.SetupProducers()
24 }
25
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26 workspace consumers {
27 buffer = new-artifact BoundedBuffer(maxElems: 10)
28 cons = new-agent SimpleConsumer()
29 init-task: new-task Consuming (maxItemsToProcess: 5000)
30 }
31

32 }
33

34 /*** Physical topology - Configuration - Deployment ***/
35 org ProdCons
36 org-id my-test-app
37 workspace-addresses {
38 main = localhost
39 producers = localhost:1000
40 consumers = 137.204.107.188
41 }

Listing 3.4: Defining an organization in simpAL.

3.3 Agents and reuse

In this section we try to discuss about the relation between agents and reuse.
In particular, the following questions should find an answer:

• Why do we need reuse in the context of MAS (Multi-Agent Systems)?

• What means “reuse” in the context of MAS?

• How can reusability be promoted in the context of MAS?

• How can reuse be applied in the context of MAS?

Fundamentally, for what concerns the “why” question, the arguments
explained in Chapter 1 apply: productivity, time-to-market, quality.
The remaining questions are approached in the following sections.

3.3.1 Reusing artifacts

It is about reuse of passive entities. Artifacts have a usage-interface which
defines observable properties and operations, and an artifact template which
implements those operations and possibly an internal state. Artifacts are
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similar to object monitors in that their operations are performed under
automatic mutual exclusion.

A natural way to think at artifact extension may be that of having a new
set of operations and observable properties in addition to the original set. t
It is not very different from extending classes in traditional object-oriented
programming, so we will pass over it.

3.3.2 Reusing agents

It is about reuse of proactive entities. The conceptual framework from which
we can start reasoning about agent reuse is the following:

• The task is the central notion of agency

• The plans are the response of an actor to its assigned tasks

• The role represents the guarantee of a task-oriented expertise, i.e. it
is a contract that specifies that agents implementing the role are able
to work (and hopely accomplish, but it cannot be guaranteed) for the
designated tasks

• The script does not correspond exactly to an agent implementation.
It is more a module encapsulating the expertise for doing one or more
roles within an organization; it is similar to a formative course for
giving actors the procedural knowledge they need to tackle certain
types of task

Our aim is to be able to define new agents by reusing, in general, both
the knowledge and the behavior of existing agents.

Moreover, the substitutability principle must hold; informally, the agent
with extended capabilities must be able to be used in place of the reused
agent. However, a rigorous definition of (behavioral) substitutability should
be considered, but it is beyond the scope of this thesis.

Now, let’s examine a few cases of reuse, but consider that they are more
a way to start a discussion than sound proposals to be evaluated.
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1) More plans: specialization

An interpretation of agent reuse may be the following: “A specialized agent
provides more expertise for tackling the same set of tasks.”

In this case the new agent reuses the plans defined for the parent agent
and, in addition, provides its own set of plans. The real-world parallel is
that of job specialization (intended as vertical learning), where the aim is
not that of being able to do more tasks, but that of learning to do the
already-known tasks better.

In simpAL, such an approach would turn itself into a sort of script
extension which actually seems to be more a composition of scripts (see
Figure 3.3).

Note that actually, in this case, we are not reusing agents. Instead, we
are reusing scripts as modules that can be used to give agents the instruc-
tion that accumulates to form their total expertise (localized in the local
plan-library).

Figure 3.3: Specialization: more plans to tackle the original set of tasks.

Remember that plans can be defined to be applicable in a specific con-
text. It is reasonable that the newly added plans could specify:

• a new context of applicability

• a context that intersect the contexts specified for other plans

• the same context as other plans or a context that include one or more
contexts of existing plans
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The second and third possibilities would be useful if used together with
policies (which may be defined as configuration or programmatically) that
specify conditions for the selection of a plan (in the plan stage) when more
than one plans are applicable. In this case, it may also be useful to consider
the possibility to attach annotations to plans.

2) More tasks: role extension

A different interpretation may be the following: “An extended agent is able
to pro-actively act in order to accomplish more tasks within the same role.”

In simpAL, it substantially reflects to:

1. extending a role from a basic role

2. defining a script that

• reuses the plans for the basic role (i.e. a script implementing
that role)

• implements new plans only for the newly added tasks

Such an approach is illustrated in Figure 3.4.

Figure 3.4: Role extension

In the previous reuse interpretation, we have seen that the addition of
plans for the same set of tasks can be seen as vertical learning. In this case
we have an extra set of plans that target supplementary tasks. So, the act
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of loading them into an agent can be conceived as horizontal learning, i.e.
a broadening of oneself’s competences.

Moreover, note that not only this interpretation of agent reuse does not
exclude the previous one, but it builts on it (on the ability to extend a script
with other plans).

3) More tasks: multi-role implementation

Another approach for augmenting agents is that of making them implement
more roles. For example, in a software project one team member may work
both as a programmer and as a tester.

The idea is that we would like to use a mechanism for role composition
and plan reuse. Suppose to have defined two roles R1, R2, and their associ-
ated scripts S1 and S2. Now remember that, in simpAL, a correspondence
between agent type and role exists. A new role may be created by merging
the two roles. Then, two possibilities may be considered:

1. simply load the two scripts on the agent implementing the new role

2. define a new script that consists of the composition of the two initial
scripts and load it into the multi-role agent

The second option is represented in Figure 3.5.

Figure 3.5: Multi-role implementation.

Conceptually, it is a sort of multiple inheritance aimed at implementa-
tion reuse. So, different issues need to be managed, primarily those due to
name clashes.
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4) Task composition

The reuse of agents readily turns into reuse of behavior. So, the way may
be that of analyzing what means reusing a behavior. One interpretation
may be the following: “If I am able to do something, I would like to be able
to do something more.”

Now, suppose you have a task T1 and a set of plans P1i. There are
more possibilities to augment it. For example, if T1 is “Clean your room”,
a composite task may be:

• “Clean your room” and then “Open the window”

• “Clean your room” but, before completing it, “Open the window”

• “Clean your room” but, before starting it, “Open the window”

• “Clean your room” and in the meantime start “Open the window”

• “Clean your room” and finish if you have already started “Do your
homework”

• and so on

It is about tasks and relations, with new tasks that can be defined by
combining existing tasks. Of course, we would like to be able to reuse
already-defined plans. Such an approach allows, for example, to define
tasks as sequences of sub-tasks.

Some issues exist, in particular those related to “conflicting” tasks and/or
plans. For example, how to deal with tasks that have contrasting effects?
How to deal with plans that affect the state of the same artifact, at the
same time, and that need to retrieve such an information later on?

5) Learning via script loading

At the beginning of this section it has been said that our aim is to reuse pro-
active behavior. All the previous proposals are similar in that they all try
to reuse existing plans. In other words, it is inside the plans the knowledge
we would like to reuse. The differences are about how such a knowledge is
organized into plans and roles.

Let’s review how agents, roles, and scripts are related in simpAL, at the
present time:
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• scripts implement roles, not tasks

• a script can implement only one role

• a script must provide at least one plan for every task of the role

• an agent is defined via a role

• an agent is created by providing a script which makes the agent im-
plement the associated role

Such constraints are the reason because, in the multi-role implementa-
tion proposal, the roles must be combined into a new role and a new script
must be composed; it is because of the 1-to-1 relation between roles, scripts,
and agent types.

Such constraints might be relaxed. For example, it might be possible
to have agents loaded with more than one script – scripts could be seen as
mixin modules and the process could be considered as a sort of learning. In
this case, the 1-to-1 association between roles and scripts may be mantained,
but agents would nevertheless be able to implement multiple roles by simply
loading the respective scripts.

6) Plan variation/specialization

Another possibility for reuse may be that of supporting plan specialization.
The idea is to have points within the code describing the plan into which a
replacement or additional behavior can be injected.

Remember that plans allow to define both procedural and reactive (event-
driven) behavior. Plans consist of possibly nested action rule blocks that
can be serialized (action sequences) or parallelized.

Now, in order to support the specialization of plans, the following expe-
dients might be applied:

1. provision of a mechanism for definition of custom actions

2. application of the Template ����
Method Action design pattern to provide

doorways for variation or specialization

And, of course, an extension mechanism for scripts must be provided so
that actions could be overridden. It would make scripts similar to classes
and actions similar to methods.

97



98 CHAPTER 3. AGENT-ORIENTED PROGRAMMING AND REUSE

Summary

The key points of this chapter are:

• Agents are situated, autonomous (encapsulating control), reactive,
pro-active, and possibly social entities built around the notion of task

• The Agent-Oriented Programming (AOP) is a paradigm that em-
braces concurrency and distribution by supporting the construction of
software systems through agents and other human-inspired abstrac-
tions

• While agents have been traditionally studied in the context of Dis-
tributed Artificial Intelligence (DAI), the simpAL platform and lan-
guage advance AOP as a general-purpose paradigm

• The simpAL model draws inspiration from the Agent&Artifact con-
ceptual model and the Belief-Desire-Intention agent architecture

• In summary, the simpAL language provides the means for defining the
following concepts and first-class abstractions:

– agent – autonomous, proactive entity encapsulating control in
form of a SENSE-PLAN-ACT cycle

– belief – an agent’s knowledge about its state or about the envi-
ronment

– task – something an agent may be assigned to do

– plan – description of the steps an agent must apply in order to
accomplish a certain task

– role – it is specified as a set of tasks that the agent implementing
the role must be able to do

– script – module encapsulating the plans that define how to do
the tasks for a certain role; it is used to provide agents with the
expertise for that role

– action – as the name imply, it is an action that can be done in a
plan
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– artifact – it represents a tool or a resource; it can be used or
observed through its usage-interface

– operation – it represents a function provided by an artifact

– observable property – information encapsulated by an artifact
that can be perceived by agents who are interested at it

– artifact template – module encapsulating the implementation of
an artifact’s operations

– workspace – container that logically groups related agents and
artifacts

– organization – it abstracts over a set of workspaces and gives a
name to the whole environment

– organization model – it describes how the organization is subdi-
vided into workspaces

• Agent reuse is about reuse of pro-active behavior

99



100CHAPTER 3. AGENT-ORIENTED PROGRAMMING AND REUSE

100



Chapter 4

Conclusion

The reuse is one of the most important issues in software engineering. We
have seen that it is not just an activity, but really a process which needs
both management and technical support. By a technical point of view, it
is a two-step activity: design for reusability and actual reuse. Different
software-related artifacts can be reused, but in this thesis we have focused
on code.

Programming languages mainly contribute to reuse through abstraction
and dependency-management mechanisms. Moreover, programming tech-
niques and many language features may have a sensible impact for both com-
ponent reuse and context reuse. The object-oriented programming, through
a strong support for abstraction and modularity, provides a solid basis for
both reuse and reusability. In particular, the inheritance is a commonly
used mechanism for implementation reuse and extension of objects.

However, we have seen that porting inheritance – which works pretty
well in sequential programs – in concurrent settings results in a class of
issues also known as inheritance anomaly. Languages may be resistant to
some kinds of anomaly while suffering from others, depending on the set of
supported synchronization schemes.

Concurrency, together with distribution, is an issue that is becoming
increasingly more important, due to current trends in the ICT field. So,
one question was considered: how do concurrency models and programming
languages tackle reuse?

We went through some significant concurrency models – multi-threaded
programming, tasks in Ada, the SCOOP model, and the Actor model –
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each with its own strength and weakness. Such an analysis shows that no
particular attention has been given to reuse. For example, the designers of
the Ada programming language did not consider the possibility of creating
new task bodies from existing task bodies. For multi-threaded program-
ming and the Actor model, no particular best-practices or features have
been proposed for reuse, thus delegating the issue to the implementing lan-
guage, which generally offers inheritance or extension mechanisms that are,
however, effective only in sequential settings.

One may argue, for example, about the usefulness of reuse mechanisms
for actors. The behavior of actor-based applications may primarily arise
from (maybe complex) interactions of several simple actors; so, why would
one care about overloading actors with extended behavior?

The final part of the thesis considered simpAL and the Agent-Oriented
Programming paradigm. After an analysis of the main abstractions of multi-
agent systems and the programming model of simpAL, some ideas about
the reuse of agents were advanced.

It is about reuse of pro-active behavior, which is not very different
from thinking about the reuse of human-like procedural knowledge and
approaches for task-oriented work. Some possibilities were described, for
example

• The ability of implementing more plans for the same set of tasks
(Vertical learning or job specialization)

• The ability of implementing more tasks via role extension or multi-role
realization (Horizontal learning)

• The definition of new tasks by composition of more sub-tasks tied
together with specific relations

In particular, the last idea involves the concept of task composition,
which cannot be faithfully transposed, for example, to objects as it is (rea-
sonable for and) characteristic of pro-activity, maybe revealing the scope of
a new paradigm.

This thesis points out a lack in research and in mainstream programming
languages. It may not be considered worthwhile tackling this issue at this
level. However, with the advent of concurrent paradigms, this concern need
to be adequately faced.
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[16] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts,
and Andrew P. Black. Traits: A mechanism for fine-grained reuse.
ACM Trans. Program. Lang. Syst., 28(2):331–388, March 2006.

[17] Gul Agha. Concurrent object-oriented programming. Commun. ACM,
33(9):125–141, September 1990.

[18] Edward A. Lee. The problem with threads. Computer, 39(5):33–42,
May 2006.

[19] S. Tucker Taft, Robert A. Duff, Randall L. Brukardt, and Erhard
Ploedereder. Consolidated ada reference manual: language and stan-
dard libraries. Springer-Verlag, Berlin, Heidelberg, 2000.

104



BIBLIOGRAPHY 105

[20] Alan Burns and Andy Wellings. Concurrent and Real-Time Program-
ming in Ada. Cambridge University Press, New York, NY, USA, 3rev
ed edition, 2007.

[21] Stephen Michell and Kristina Lundqvist. Extendable, dispatchable task
communication mechanisms. Ada Lett., XIX(2):54–59, June 1999.

[22] Volkan Arslan, Patrick Eugster, Piotr Nienaltowski, and Sebastien Vau-
couleur. Dependable systems. chapter SCOOP: concurrency made easy,
pages 82–102. Springer-Verlag, Berlin, Heidelberg, 2006.

[23] Rajesh K. Karmani and Gul Agha. Actors. In Encyclopedia of Parallel
Computing, pages 1–11. 2011.

[24] Rajesh K. Karmani, Amin Shali, and Gul Agha. Actor frameworks for
the jvm platform: a comparative analysis. In Proceedings of the 7th
International Conference on Principles and Practice of Programming
in Java, PPPJ ’09, pages 11–20, New York, NY, USA, 2009. ACM.

[25] TypeSafe Inc. Akka Documentation Release 2.1.0, 2012.

[26] Satoshi Matsuoka and Akinori Yonezawa. Research directions in con-
current object-oriented programming. chapter Analysis of inheritance
anomaly in object-oriented concurrent programming languages, pages
107–150. MIT Press, Cambridge, MA, USA, 1993.

[27] Giuseppe Milicia and Vladimiro Sassone. The inheritance anomaly: ten
years after. In Proceedings of the 2004 ACM symposium on Applied
computing, SAC ’04, pages 1267–1274, New York, NY, USA, 2004.
ACM.

[28] Michael Wooldridge. An Introduction to MultiAgent Systems. Wiley
Publishing, 2nd edition, 2009.

[29] Alessandro Ricci and Andrea Santi. From actors and concurrent objects
to agent-oriented programming in simpal.

[30] Anand S. Rao and Michael P. Georgeff. BDI agents: From theory to
practice. In Victor R. Lesser and Les Gasser, editors, 1st International
Conference on Multi Agent Systems (ICMAS 1995), pages 312–319,
San Francisco, CA, USA, 12-14 June 1995. The MIT Press.

105



106 BIBLIOGRAPHY

[31] Danny Weyns, Andrea Omicini, and James Odell. Environment as a
first class abstraction in multiagent systems. Autonomous Agents and
Multi-Agent Systems, 14(1):5–30, February 2007.

[32] Mirko Viroli, Tom Holvoet, Alessandro Ricci, Kurt Schelfthout, and
Franco Zambonelli. Infrastructures for the environment of multiagent
systems. Autonomous Agents and Multi-Agent Systems, 14(1):49–60,
February 2007.

[33] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. Give agents their
artifacts: the a&a approach for engineering working environments in
mas. In Proceedings of the 6th international joint conference on Au-
tonomous agents and multiagent systems, AAMAS ’07, pages 150:1–
150:3, New York, NY, USA, 2007. ACM.

106


