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SECONDA FACOLTÀ DI INGEGNERIA CON SEDE A CESENA

Corso di Laurea in Ingegneria informatica

BioTuCSoN: biochemical

extension of TuCSoN to support

self-organising coordination

Tesi di Laurea in Sistemi Multi-Agente

Relatore:
Chiar.mo Prof. Andrea Omicini

Correlatore:
Ing. Stefano Mariani

Presentata da:
Marco Piraccini

Secondo appello, III sessione
Anno Accademico 2011/2012





“. . . limits, like fears,

are often just an illusion.”

- MJ





Introduction

In the last twenty years, but more markedly in the last decade, we have wit-

nessed an extraordinary technological evolution. The scientific progress in

the field of hardware engineering has led to the development of smart devices,

provided with an increasing computational power into a reducing skeleton.

The rapid and continual spread of such kind of technologies, more and more

commonly used by people in daily life, have brought to dramatic change the

ICT landscape. A new scenario can be outlined, where computing systems

are anywhere, embedded in environmental object, always connected, for ex-

ample by means of wireless technologies, and always active to perform tasks

on our behalf. It is known as pervasive computing paradigm, and its purpose

can be briefly defined as design “machines that fit the human environment

instead of forcing humans to enter theirs”. Accordingly to this model, people

could be connected with each other, or with environmental items, with the

aim to retrieve useful informations concerning our own interests or contin-

gent necessities. The possibility to have at your disposal specific knowledge

in a given context is even more essential in a world bombarded with a terrific

amount of data, and in which people have a short time to select and use it.

The delineated profile implies the creation of complex systems character-

ized by numerous interconnected elements, each one with a defined computa-

tional capability, that have to coordinate themselves and interact aiming to

achieve global goals, other than personal ones. In order to be able to manage

the new requirements, we direct our attention to the study of dynamics of

biological eco-systems. Analysing them, it is possible to extract some recur-
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ii Introduction

ring and useful patterns; in particular, it is observed that, generally, natural

environment is populated by a certain number of individuals, with a limited

intelligence, that achieve an organised global behaviour arising from simple

local interactions (phenomena called emergency).

Our work starts from studying a specific project, that takes inspira-

tion from these principles, named SAPERE (“Self-aware Pervasive Service

Ecosystem”). It is conducted by an European collaboration, that also in-

volves the University of Bologna, and focussed on the development of a

highly-innovative nature-inspired framework, suited for the decentralized de-

ployment, execution, and management, of self-aware and adaptive pervasive

services in future network scenarios[25]. After we have inferred the principal

abstractions and architectural features of this approach, we want to evaluate

how a nature-inspired software system can be realized, considering biochem-

ical tuple spaces model. This analysis leads us to individuate the essential

characteristics, necessary to build on its concrete implementation. So, start-

ing from the existent tuple spaces infrastructure TuCSoN, we realize a first

biochemical released(BioTuCSoN ), reifying the principal concepts acquired

by the previous studies. Comparative performance tests between TuCSoN

and BioTuCSoN are, then, provided, in order to prove respective advantages

in different situations. Our work ends evaluating a case study that points

out the capabilities of the realized biochemical technology.

The thesis is organised as follows. In chapter one we present the SAPERE

project, first through general considerations and then analysing, carefully, its

structure and model. Chapter two provides a discussion on biochemical tuple

spaces, analysing some background researches and, then, deducing from them

essential abstractions and features. Chapter three describes TuCSoN tech-

nology that constitutes the basis from which we start to define BioTuCSoN.

The related work process is explained in chapter four. Finally, chapter five

shows an interesting case study, highlighting the results achieved by means

of the weighted probabilistic behaviour of BioTuCSoN.
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Chapter 1

SAPERE project

The expression “ubiquitous computing”, then also called pervasive comput-

ing, was coined by Mark Weiser in the influential 1991 paper [23]. In those

years the technological development was not so mature to really provide the

described scenario, but now the situation has totally changed. The increas-

ing spread of advanced computational devices, the huge progress concerning

hardware solutions, that leads to integration in smaller and smaller skele-

tons computational capabilities in conjunction with more and more durable

memories, are all elements that have revolutionized the ICT landscape. The

strong integration between social environment and technology offers a wide

set of possibilities for a better exploitation of the enormous amount of in-

formation, available thanks principally to internet. For example, we should

desire that it is not users who search for information but the contrary. So, a

public display could show only the useful information for the user in front of

it, given some personal preferences saved on a user device and depending on

a specific environment context.

But pervasive computing scenario, besides ensuring some interesting prop-

erties and applications, presents also challenges across computer science. Sev-

eral issues have to be considered during designing and implementation stage

and, some of them, have never been faced before. Actually, this approach

does not come out of the blue, but is the result of previous evolution steps
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8 1. SAPERE project

that are distributed system and mobile computing. So, some problems can be

faced referring to researches about these matters. We can outline the rela-

tionships between each evolution steps by means of the following taxonomy

of issues [17].

Now, we want to scan the new requirements introduced by pervasive com-

puting scenario. First of all, such kinds of systems should deal with a high

dependability, since they have to work continuously, ensuring a reliable use

experience with minimal maintenance support. Then, a basic property is

to support self-* features, that are, principally, self-management and self-

adaptation, so that pervasive infrastructures can survive contingencies with-

out any human intervention and at limited management cost[20]. These are

intrinsically related with adaptivity, another important characteristic, that

expresses the necessity of adapting themselves automatically to changes. It

is, also, to underline the role of the system to manage context-awareness and

situatedness, i.e. for example, allowing display to show the right informa-
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tion, at the right time, depending on environment status and user necessities.

Moreover, in pervasive systems in every moment could appear new services,

requests, users or physical items, so it is indispensable to satisfy requirements

such as openess, robust evolution and flexibility.

Now, the question is: how can we design and realize a software system

facing all these aspects?

A possible solution comes from the eco-system in which we human be-

ings live. Latest researches address their studies towards other, apparently

uncorrelated, science fields such as chemistry, biology, physics or ecology. By

means of such inter-disciplinary approaches, it is possible to extract, from

each area, models, methods and techniques useful in the design of pervasive

software systems.

Each field of study entails specific metaphors, analysing the same category

of problems at different levels of abstraction. We will see them one by one,

starting from low-level [26].

Physical metaphor

The components of the system are modelled by physical particles, that live

together into and are affected by a sort of virtual computational fields, which

represents the coordination media. Particles’ activity are determined by a set

of rules that define how each of them is influenced by the field, following the

value of its gradient. Depending on this information a particle can modify

its status or move into the space. The virtual field can be simple (euclidean

field) or complex (gravitational field).

Chemical metaphor

The eco-system is composed by computational atoms or molecules, that have

internally the description of the characterizing properties, in a formal way.

These, substantially, represents the role of each component into the space.

The set of rules, that models eco-system behaviour, is shaped by a set of

chemical reactions. They are formed by a list of reagents and a list of prod-
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ucts. Once firing, a reaction can link together different molecules depending

on some property values, insert or remove components and so on. The space

is subdivided into several chemical compartments, through which molecules

can move freely to ensure a global interaction.

Biological metaphor

It is considered to be a small biological environment. Components are simple

cells or animals with limited intellectual capabilities. They act over the space

based on some basic goal-oriented behaviour, that are influenced by chemical

signals spread over the environment. This trace can be scattered by means

of the individuals themselves, that so can be affected by the behaviour of

others (mechanism named stigmergy). In this kind of system, the set of rules

specifies how chemical signals are spread, how much time is required for them

to evaporate and in what way they influence individuals’ behaviours.

Ecological metaphor

It represents the higher level of abstraction and models individuals as animal

species provided by some form of intelligence. Their behaviour is guided by

a personal goal to achieve, as, for example, the research of resources nec-

essary to survive. The ecological rules (or laws) are in charge of defining

how individuals can find resources and in what conditions they can perform

specific tasks (i.e. eat, reproduce,etc). It means, basically, that laws govern

system dynamics ruling the interactions between individuals of the same and

different species. Similarly to chemical systems, the shape of the world is

typically organized around a set of localities, i.e. ecological niches, yet en-

abling diffusion of species across niches.

Now we will analyse the SAPERE project, that wants to face the new re-

quirements of the pervasive scenario, referring to a nature-inspired solution.
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1.1 SAPERE approach

The European SAPERE project (“Self-aware Pervasive Service Ecosystems”)

was born in 2010 (and will end in September 2013) with the aim to develop “a

highly-innovative theoretical and practical framework for the decentralized

deployment and execution of self-aware and adaptive services for future and

emerging pervasive network scenarios”.

As we have said, SAPERE draws inspiration from natural ecosystems in

order to tackle the new challenges induced by the pervasive computing sce-

nario. In particular, the purpose is to face the problem, from the foundations,

conceiving a new way of modelling pervasive systems, in order to consider

and satisfy every requirement.

1.1.1 SAPERE logic architecture

The analysed scenario concerns a distributed computational ecosystem in

which a lot of services, data and devices engaged in very dynamic and flex-

ible coordinated activities. Self-organisation is essential in order to ensure

context-awareness and manage the coordination activities between compo-

nents physically close to each other. Moreover, the system should provide the

ability of supporting the communication between components, without their

prior-knowledge, promoting an interaction pattern which is self-adaptive and

self-managing. To deal with these issues, we refer to a nature-inspired solu-

tion, modelling the pervasive service environment as a non-layered spatial

substrate, mapped above the actual pervasive network infrastructure[21].

The substrate embeds the basic laws of nature (named eco-laws) that rule

system behaviour. System components (devices, users, software services) are

modelled as individuals of different species. They interact and combine with

each other, complying with the eco-laws and generally based on their spatial

relationship, so as to achieve personal goals as well as global interests. Hu-

man users can interact with the eco-system acquiring data and services (as

consumers) or, also, inserting requests or information (as “prosumers”).
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Each individual of the ecosystem has associated a semantic description by

means of LSAs (Live Semantic Annotation). They are “live” and active anno-

tations, strictly coupled with the described component, considering, also, the

current situation and context. They are assigned at design time to individ-

uals, performing the role of their observable interface and allowing dynamic

forms of aware interactions, leading by semantic issues. More in concrete, it

means that components evolve influencing and being influenced, internally,

in their LSA description, by others individuals or by the environment and

deciding with who interact, observing LSA information.

In any SAPERE node there is included a LSA-space in which self-adaptive

coordination mechanisms take place so as to mediate the interaction between

components. Whenever an individual comes close to a node, its LSA is,

automatically, injected into the LSA-space of that node, entering into local

coordination dynamics. Similarly, when the component goes away, its LSA is

removed. In turn, also SAPERE nodes can be connected together based on

physical or logical proximity. Each node can refer to or interact with another

one through exchange of LSAs.
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The eco-laws, that govern system behaviour, are inserted into SAPERE

nodes. They are modelled by proper chemical reactions, involving LSAs of

the individuals. Their firing condition is ruled by probabilistic and semantic

aspects, and involves actions such as definition of new connection between

entities, production/removal of LSAs or their spread over the network, from

one node to another.

1.1.2 The eco-laws framework

Now we will see a possible language for eco-laws, focussing on syntactic struc-

ture of LSAs, properties of eco-laws and matching issues.

As first, we show, specifically, what we mean with LSAs. They are se-

mantic annotations similar to RDF(Resource Description Framework) and

they can be expressed as:

i : [ p1 = v1, ... , pn = vn]

where i represents the unique LSA identifier (over the entire eco-system),

pi expresses property’s name and vj the related value. There are, also,
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some particular properties/values (starting with “#”) that are managed in a

specific way by the infrastructure, providing an automatic reification of some

aspects of the environment inside the LSA-space. In particular, each LSA-

space must contain one LSA of type #location for each neighbour, showing

its id and its extimated distance d, and one of type #time indicating the

current time. For example:

i : [type=#time,value=t]

i : [type=#neighbour,where=d,distance=d]

The eco-laws can be composed of two types of LSAs: LSA pattern and

LSA ground. The first can include variables instead of some values while the

latter can not contain any variables. A LSA ground L matches with a LSA

pattern P if there exists a substitution of variables to values that applied to

P gives L. An eco-law can be expressed as:

P1 + ...+ Pn
r7−→ P ′1 + ...+ P ′m

The left-hand side shows the list of reagents, while the right-hand side

the list of products involved in the reaction. LSAs L1, ..., Ln, that matches

reagents P1 + ... + Pn, are extracted from the space, saving the bindings

between variables and values. So, they are replaced by the LSAs obtained

applying the previous associations to products P ′1+ ...+P ′m. Rate r expresses

the frequency at which the reaction fires. More precisely, the execution of

an eco-law can be modelled as a CTMC (Continuos Time Markov Chain)

transition with Markovian rate r. The application of an eco-law can be

subdivided in two steps:

1. Iteratively, a reagent pattern Pi is non-deterministically selected from

the eco-law and, accordingly, is retrieved from the space an LSA Li,

that matches Pi. The results of the unification is, then, applied to the

remainder of the eco-law.

2. In case the iteration ends, the products set up the set of LSA to put

into the space.
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An eco-law can involve only LSAs of the same space and the products can

be inserted only in the local space or in one of the neighbours. Such kind of

constraints are verified through the #location properties.

Finally, we want to consider aspects concerning mechanisms of matching.

First of all, we have to distinguish between reagents pattern and products

pattern. The former type of template has to specify only the associations

properties/values that allow to select the required LSAs. On the other hand,

products pattern has to detail only the values for the properties that have

to be modified. Moreover, the associations can be expressed not merely with

“=” operator, but also with others, that allow, for example, to match a vari-

able to more than one value (“=*”), or to filter LSAs depending on properties

value (“has” and “has-not”), or to add/remove value from specific products’

properties (“+=” and “-=”). Controls about semantic match can be man-

aged by adding a fuzzy predicate fp that returns, instead of yes/no, a value

in [0,1]. This further operator can be used also for simple computations.

1.1.3 The adaptive displays use case

Here we want to shortly describe a potential use case (extracted by [21]),

with the mere purpose to point out, concretely, how this infrastructure can

be exploited.

We can imagine a public area, such as an airport, in which a lot of people

wander around with their personal devices. We suppose that each device

keeps user preferences and is equipped with proper sensors that perceive

user behaviour. All around, in the public area, are spread several displays

that visualize different kind of services and information. They should have

to acquire data and preferences from the closest user, in front of it, with the

aim to provide the best service in regard to user needs and environmental

status.

SAPERE approach ensures these dynamics, distributing in the environ-

ment a proper number of nodes. Each one includes a LSA-space and is
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located in a specific area, so that when an user comes in front of a display,

one LSA-space must contain: LSA of display, LSA of the user device and

LSA of the required service. For example, it could be provided one LSA-

space for each display. Then to allow displays to visualize in every moment

the right information, self-organising patterns are necessary . They are real-

ized through three basic concepts: SAPERE architecture (just described), a

proper set of rules, a probabilistic engine to execute them (following CTMC

process) and, finally, a mechanism for semantic matching.

Now we, abstractly, define what kind of rules the system needs. First

of all, it is necessary that a reaction allows an LSA to link to a user device

with one of a displays, that expresses the will to visualize contextualized

information. Similarly, it is essential to bind the LSA of a display with LSAs

of every visualizing service suitable for that display. Specific properties,

within LSAs of the displays, indicate what service has to be shown and

towards who. Lastly, it is required a reaction that executes the visualization,

connecting, actually, display and service and setting some relevant properties

such as the current time and the display status.

1.2 SAPERE basic abstractions

Here, we want to infer the fundamental features and abstractions required by

SAPERE infrastructure, and suggest a first potential mapping with existent

technologies. From the previous description, it is clear that a tuple spaces

approach could be a potential solution. We will try to explain why and how,

referring, in particular, to TuCSoN technology (described in chapter 3).

1.2.1 Model entities

Analysing SAPERE model, it is possible to outline its architecture with the

following tuple:
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< Set(σ), Set(L), Set(F ), Set(r), Set(θ),�, loc,@ >

Variables

σ : unique identifier for node/space;

L : LSA;

F : LSA filter;

r : abstract rate for scheduling policies;

Functions

θ : expresses how to bind terms together;

� : Set(F )× Set(L)→ Set(L) , update function based on filters;

loc : Set(L)→ Set(σ) ∪ {∗} , extracts the LSA’s target location;

@ : Set(L) × Set(σ) → Set(L) , creates a clone of a LSA into another

location.

The system is composed of several LSA-spaces, spread over the physical

network. Any LSA-space is a multi-set of LSAs, characterized by a unique

identifier (σi) system-wide. This aspect is, for example, naturally modelled

in TuCSoN, through the concept of tuple centres, expressing the identifier as

tname@netid:portno, where tname stands for the name of the tuple centre

that is located into a TuCSoN node hosted by a network device netid on port

portno.

The LSAs, that fill the space, are semantic tuples characterized by unique

name system-wide and a list of items in the form properties-values. They can

be expressed as: i〈po; po; ...; po〉, where i represents LSA’s identifier, p some

kind of properties to which are associated one or more values (o = o1, ..., on).

The values can be atomic values or, in turn, a list of elements properties-

values. LSAs can be reified by means of TuCSoN tuples (namely Prolog

atom) with some specific considerations. Specifically, it is required to ensure
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uniqueness to tuple’s name, for example considering some controls over the

insertion operation, so as to merge tuples with the same names or prevent

the addition of new ones, if they are incompatible with namesake tuples in

the space. For example, a LSA of kind: id911〈src = s01; type = service; ...〉,
can be represent with a TuCSoN tuple: id911(src(s01), type(service), ...).

A filter is a set of patterns, each one being, namely, a sort of LSA-

template. Other than matching function, it makes available further oper-

ations over LSAs, such as assigning variables to some value obtained as a

result of a specific expression or to a value that makes true some boolean

predicate. Moreover, filters provide a characteristic syntax to express several

relationships between properties and values. TuCSoN templates are quite

similar to these, but do not provide the same level of expressiveness, and so

should be extended with the required functionalities.

Binding and update function follow the rule of logic unification. Since

TuCSoN communication language is logic-based, these aspects are naturally

managed.

Location function allows to define the location which a given tuple

belongs to, while clone function ensures a transactional move from the

source space to the destination one. These can be implemented with the

existent TuCSoN abstractions such as a specific tuple argument and reactions

ReSpecT (that have a transactional semantics), or they can be inserted at

infrastructural level, realizing proper extension of TuCSoN’s Java code.

Finally, we have to consider how the system is configured. It is a multi-set

of LSA-spaces, eco-laws and topological connections. The last ones define

the neighbourhood structures for each space and they can be modelled in

TuCSoN which proper tuples, possibly confined into a specific area of the

tuple space. Eco-laws need to some important considerations, dealed with

separately in the following.
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1.2.2 Eco-laws

As we have stated, eco-laws in SAPERE are expressed as R
r−→ P , where

R,P ∈ F , and F represents a LSA filter. Accordingly with the previous

observations about filters, we can simply model eco-laws in TuCSoN as:

law([Reagents],rate,[Products]),

where Reagents and Products ara both a list of TuCSon templates.

But how can they be used? The eco-system’s dynamics involve three pos-

sible transitions: the application of an eco-law, named [REA], the diffusion

of LSAs towards a specific LSA-space among neighbours, named ([DIFF]),

or towards all of them, named ([BRO]). Now we, shortly, describe them in-

dividually:

[REA] : retrieves from the space the LSAs that match templates in R, then,

considering the defined bindings, inserts the LSAs specified in P into the

space.

[DIFF] : if, in some space σ, there is a LSA in which the value of location

properties is loc = σi, with σ 6= σi, then removes such LSA from σ and inserts

it into σi, if these spaces are defined connected in the system configuration.

[BRO] : if some space σ there is a LSA in which the value of location prop-

erties is loc = ∗, then removes such LSA from σ and inserts it into all the

neighbouring spaces.

The operational semantics, just abstractly described, could be imple-

mented in TuCSoN by means of a proper set of ReSpecT reactions, that

could reify a sort of chemical engine allowing it to select and execute the

eco-laws in a probabilistic way and at variable time intervals. To ensure

better performance and better system usability there should be provided an

integrated version of the chemical simulator, acting directly on Java code of

TuCSon.





Chapter 2

Biochemical Tuple Spaces

Starting, again, from the pervasive scenario, previous described, we want now

to focus on a possible solution, that takes inspiration from a nature-inspired

approach, in particular applying the chemical metaphor, i.e. the biochemi-

cal tuple spaces model. Its purpose is to engineer the spatial coordination

and self-organisation of distributed pervasive services, into today’s complex

system, by means of a specific computational model based on chemical reac-

tions. Tuple spaces are extended with the ability of evolving tuples similarly

to a chemical system; so tuples can be seen as chemical substances to which

is associated a value that expresses their activity/pertinence into a given con-

text. As for chemical solutions, they can move inside a single-compartment,

namely a tuple space, or from one to another. Finally, the coordination rules

are organised as chemical reactions, selected and executed by a proper chem-

ical engine, whose behaviour has to allow the essential system properties of

self-organisation, adaptivity and self-management.

Described the reference model[20] and discussed some examples[18], then

we delineate the essential features typical of biochemical tuple spaces; so, we

try to define a potential concrete mapping, taking TuCSoN as background

technological infrastructure.

21
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2.1 Biochemical tuple spaces model

The current ICT landscape offers a lot of sensing and actuating devices that

leads to the possibility of developing computational environments, composed

by pervasive services. They have to be situated and evolve themselves in

relation with the social and physical context. Standard solutions, such as

Service-Oriented Architecture (SOA), are not able to manage naturally the

newly introduced features (situatedness, adaptivity, self-*,etc). So, in or-

der to prevent complex and time-consuming implementations, we turn to

chemical-inspired tuple spaces, that exploit their intrinsically distributed ar-

chitecture and bio patterns to face the new requirements. The components

of the system are coordinated as though they were molecules fluctuating into

a distributed space under specific chemical rules. System stochasticity and

dynamism issues, are supervised by a proper modality of selection and execu-

tion of the bio-laws. We show how the basic properties of pervasive systems

are, naturally, satisfied by biochemical tuple spaces:

• situatedness : local state is defined by tuples into the space;

• self-* : global self-organisation and adaptivity are satisfied by a proper

set of chemical-rules, drawn from natural patterns (e.g. prey-predator

system) and performed by a chemical simulator.

• diversity : semantic matching for reagents extraction and products in-

sertion ensures to define general rules that can be applied in contingent

or potentially new cases.

In the following we will illustrate how a distributed system based on bio-

chemical tuples spaces can be constructed.

2.1.1 Space

The global distributed space is modelled as a sort of graph that defines

specific relationships of connection between the nodes of the system. It means
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that each node (named location) can directly communicate only with a given

set of neighbours. Any location hosts a tuple space, into which the local

dynamics of interaction take place.

These are, principally, ruled by the evolution of tuples’ concentration over

time, as a consequence of the probabilistic application of chemical rules (or

reactions). The value of concentration is modelled as an integer number,

non-negative, that states the level of pertinence/activity of the related tuple

in a given context. A high value implies a high probability for the tuple

to be engaged in a chemical reaction thereby affecting system behaviour.

Concentration varies over time as it changes its relevance in the environment.

As already stated, tuple spaces are connected to each other in order to

simulate the process of chemical diffusion of molecules through membranes.

A tuple, that is scheduled to be spread towards other neighbouring tuple

centres, is called firing tuple. Each connection is realized by an one-way link,

characterized by a rate r that measures the maximum transfer of tuples for

time unit. The diffusion process can be affected by the computational field

self-induced due to the same motion of the tuples. Each firing tuple defines

a local gradient G and a local gradient δ in [0,+,-]. When δ is ‘0’ the transfer

rate r is not influenced by G, when δ is ‘+’ the tuple tends to ascend G, while

tends to descend it when δ is ‘-’. To reify the probabilistic evolution of the

chemical processes, it is essential to introduce the concept of thermodynamic

noise. It expresses the probability that a firing tuples moves off contrary to

the information specified by the gradient δ, introducing a mechanism similar

to simulated annealing.

2.1.2 Reactions

The local dynamics inside each tuple space as well as the global system

behaviour are governed by proper set of rules, installed into each node. They

are modelled as chemical reactions of the type:

X + Y
0.1−→ X +X
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It means that two tuple x and y, that match respectively the reagents X and

Y , are selected from the local space; so y decreases its concentration by one

unit, while concentration of x increases by one. But to fully understand the

semantics of the execution of reactions we have to analyse the behaviour of

the chemical engine.

2.1.3 Chemical engine

The evolution of the computational environment and of its components must

occur with dynamics similar to those of a real biochemical system in or-

der to satisfy “pervasive requirements”. Since system behaviour is defined

and governed by the set of rules inserted into each tuple centre, the previ-

ous assertion means that it has to be defined a proper way to manage such

rules, designing a chemical engine that selects and executes them. Thanks to

the work accomplished by Gillespie[8], we have at our disposal a stochastic

formal meta-model that simulates the evolution of a biochemical system by

means of a CTMC (Continuous-Time Markov Chain) computational system.

It is substantially a variation of DTMC (Discrete-Time Markov Chain), in

which edges, that represent system transitions, are labelled with probability

instead of rates and do not require a continuous time to be triggered. A

transition is the abstraction used to model a single evolutive step of the bio-

chemical system, namely a chemical reaction. The associated rate represents

the average firing frequency, computing the time interval between two con-

secutive occurrences of a transition with the negative exponential probability

distribution.

Accordingly with Gillespie’s algorithm, the probability of a reaction to be

triggered is affected not only by the rate intrinsically associated, defined at

design-time, but also by the concentration of its reagents. This value varies

over time and so is a key element to achieve context-dependent properties.

We illustrate this mechanism in detail. Consider a solution of substances X,

Y and Z with nx, ny and nz concentration values (or molecules in chemical

acceptation), and a chemical reaction with intrinsic rate r:
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X + Y
r−→ Z

Its meaning is: one molecule of X binds with one of Y , transforming into a

single new molecule of Z. It entails that nx and ny decrease by one, while

nz increases by one. The real rate (called markovian rate) R associated to

the reaction is given by the intrinsic rate r multiplied by the number of

possible combinations of molecules that cause the reaction, in the previous

case: R = r ∗ nx ∗ ny. Other cases can be:

X
r−→ Z =⇒ R = r ∗ nx

X + Y + Z
r−→ Z =⇒ R = r ∗ nx ∗ ny ∗ nz

X +X
r−→ Z =⇒ R = r ∗ nx ∗ (nx − 1)/2

A possible algorithm[8] for the execution of chemical reactions is:

1. at each step calculate the markovian rate of all reactions r1, r2, ..., rn,

whose sum is S;

2. choose and apply one of them with probability: Pi = ri/S

3. calculate time interval between execution steps: ∆t = log(1/τ)/R,

where τ is a random number in [0,1].

This algorithm permits to obtain a system evolution suitable to model

bio pattern[6]. For example, prey-predator dynamics can be modelled by:

X +Y
r−→ X +X, where a predator X first eats a prey Y and then generates

a son. In particular, such a chemical engine allows to realize some useful

spatial coordination and competition between the individuals of the system

so that the most significant ones wins over others. In this way, the status

of the system is always updated and evolve in relation to the contingent

necessities of every moments. In the following, we will show some examples

of these patterns.
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2.1.4 Semantic matching

As discussed in the introduction, an essential aspect for pervasive environ-

ment is that at every time some new devices, services or requests can be

introduced into the system. It is clear that a prior knowledge, at design-

time, of every possible elements is impossible or, at least, impracticable. To

manage this requirement, named diversity, is necessary that biochemical tu-

ple spaces provide a function of semantic matching. We can synthesize its

role saying that it wants to allow, for defining general reactions that can

uniformly be applied to specific cases. An approach is to assume that each

association between a reagent R and a tuple t leads not to a net value but

fuzzy, i.e. a value in [0,1]. This value will be “high” if t has a strong match-

ing with R, otherwise it is low. The matching degree affects the markovian

rate so that if into the space there are only tuples less correlated with the

reagents of a reaction r, the probability for r to fire is reduced. So for ex-

ample, considering a reaction X +Y
r−→ Z, the global rate, updated with the

value of matching degree, can be expressed by: G = r ∗ nx ∗ ny ∗ #x ∗ #y,

where #x and #y represent respectively the matching degree of tuple x with

reagents X and the matching degree of y with Y .

To evaluate match degree, it is necessary to extend the system with the

ability of performing semantic reasoning over tuples, that means to con-

sider not only their syntactical structure but also their semantics. Several

studies have been conducted on this critical topic; a possible solution based

on ontology is proposed in [12]. It considers a tuple space as a knowledge

repository structured as a set of tuples and, using Description Logic(DL),

wants to define relationship between them. In particular, it describes the do-

main ontology through the notions of concepts and roles. The first denotes

meaningful sets of individuals while the latter denotes relationships among

individuals. Namely, semantic reasoning of DL aims to check whether indi-

vidual belongs to a concept, providing as results a fuzzy value that stands

for the match degree. As we have just realized, the implementation of a

proper mechanism of semantic matching is not easy and implies specific and
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deepened considerations to evaluate aside. For this reason we consider it

orthogonal to our biochemical tuple space model and we will not do further

analysis on it.

2.2 Some examples

Here we present some useful cases with the aim to explain the concrete pos-

sibilities of the biochemical tuple spaces approach. We refer, similar as in

previous chapter, to the pervasive scenario of airport display infrastructure

in which user devices, displays and services have to be coordinated to present

information related to user needs.

2.2.1 Services competition

Local competition

We start from considering a single tuple space, located in the node that

hosts the display. The space acts as a coordination medium of services and

users. As first purpose, we desire that less required services gradually dis-

appear from the system, while services of interest emerge increasing their

concentration. Such kinds of behaviour are possible activating competition

dynamics between services, ruled by user requests. A possible interaction

protocol could be:

1. a service provider inserts into the space a tuple service, specifying ser-

vice id and the semantic description of its content;

2. a client puts a specific request;

3. tuple space has to bind service and request, considering some kind of

semantic matching, and so creates a tuple toserve(service,request). This

tuple is then read from service provider that computes the result and

inserts it into the space by means of a tuple reply. Finally, the client

retrieves reply ending the interaction.
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The rules, that model this competition, are:

(DECAY) SERV
d−→ 0

(USE) SERV |REQ
u−→ SERV |SERV |toserve(SERV,REQ)

The rule (DECAY) decreases the concentration of a certain service that

matches the reagent SERV, while rule (USE) aims to find a service and a re-

quest that matches respectively SERV and REQ, so retrieves them and creates

a tuple toserve(SEV,REQ) increasing the concentration of the service consid-

ered. This positive feedback, in conjunction with the rule (DECAY), stands

for simulate a prey-predator system ensuring to achieve a sort of struggle for

survival between services.

Spatial competition

Now we consider a network of tuple spaces, to perform a spatial competition

between services highlighting the context-dependent behaviour. We add to

the previous set of rules, the next one:

(DIFFUSE) SERV
m−→ SERV 

The rule (DIFFUSE) enables the spread of tuples from the source space

to others, passing through neighbouring nodes. It models the concept of

firing tuples previous described. This simple extension ensures an important

spatial characteristic, i.e. services globally requested and useful can diffuse in

the entire network while services with a local demand concentrate themselves

only in a specific area. Moreover, this set of rules allows that if a new better

service is added in a given node, it gradually replaces the old ones due to a

better matching with REQ and so an increasing positive feedback.
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2.2.2 Pattern based on gradient

Another interesting opportunity is represented by modelling spatial pattern

based on the notion of computational gradient. It is a sort of force field in-

duced, at the beginning, in a source node and then diffused around until each

node settles its value in relation to the distance from the field source. This

mechanism is useful to spread information from one node to its neighbours

and iteratively to the entire environment, allowing also to make aware each

space of the information diffusion path (backward node→source). Even now,

we use the concept of firing tuples:

(PUMP) PUMP
p−→ PUMP |GRAD

(DECAY) GRAD
d−→ 0

(MOVE) GRAD
m−→ GRAD (GRAD−)

The protocol requires to insert in the source node a token PUMP with

concentration equal to one. This action leads it to start the generation of

gradient GRAD, thanks to reaction (PUMP). This inflation is hindered by

(DECAY) rule, so that the situation of saturation is avoided, making the

gradient tends to an asymptotic limit. Finally, (MOVE) rule has the task of

spread GRAD tuples towards neighbouring nodes, following, in the example,

negative direction of the gradient, i.e. it tends to move where its concentra-

tion is lower. The gradient decreases its value in regard to the distance from

the source because, progressively, the influence of pumping force is reduced

and the decay rule has more effect. The point, beyond which the gradient is

totally vanished, is called gradient horizon.

To show how to exploit patterns based on gradient, we consider the fol-

lowing typical scenario. A request, located in a node, pumps a gradient in

order to obtain a specific service. Once the gradient arrives in the node that

hosts the requested service, an answer is pumped, for a limited time, ascend-

ing the gradient until reaches the node source of the request. For achieving

this behaviour, it is necessary to add to the previous three rules:
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(ANSWER) SERV |GRAD
p−→ PUMP-A

(PUMP-A) PUMP-A
p−→ PUMP-A |ANSW

(DECAY-PA) PUMP-A
d′
−→ 0

(ASCENT) ANSW
m−→ ANSW (GRAD+)

(DECAY-A) ANSW
d−→ 0

(STOP) ANSW |PUMP
m−→ 0

The dynamics can be explained in detail as following. At a specific mo-

ment t0 a request starts to pump a gradient(g), searching for a specific

service(s). When g comes to the space containing s, here it is generated,

thanks to (ANSWER), a pump-token that gets off the production of the reply

ANSW, for (PUMP-A). The generation of pump-token goes on for a limited

time, restricted by (DECAY-PA), after that the answer gradually fades-out

for (DECAY-A). Meanwhile, ANSW ascends the gradient (ASCENT) until

reaches request’s source, where, interacts with the pump-token of the service,

ending the production of the gradient (STOP).

2.3 Mapping on TuCSoN

Linda appears as a suitable infrastructure to reify a system based on bio-

chemical tuple spaces. Linda’s purpose is to coordinate the interaction

among several parallel processes/agents, acting upon data that are stored

as record with type fields, called tuples. A tuple space is a sort of repository

of tuples, which is used as coordination medium to affect the behaviour of

the external agents, supporting spatial and temporal uncoupling. This is

possible thanks to the coordination language that allows an agent to insert

a tuple through an out primitive, to retrieve it with in or to read it with

rd. The primitives in/rd require as argument a tuple template, namely, a

tuple with wildcards instead some of its argument. Basically, they have sus-

pensive semantics, blocking their execution until a matching tuple is found.

Anyway, their non-suspensive version is also provided, called inp/rdp, that

simply fails if a matching tuple is not found at the first execution. TuCSoN
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is a working technological platform based on Linda model, providing in ad-

dition the possibility to specify the behaviour of a tuple space against some

external or internal events. This programmable tuple spaces are called tuple

centres and we can specify their actions by means of a meta-coordination

language, defined through ReSpecT reactions. Its full description is treated

in chapter three, here we just want to analyse if the notions and mechanisms

provided by TuCSoN suffice to realize the biochemical tuple spaces model,

and, otherwise, to propose a solution to fill the gap.

2.3.1 Model analysis

We will examine singularly the principal issues of the biochemical tuple spaces

model [18], providing for each one specific evaluations and a potential map-

ping on TuCSoN platform.

Communication language

We start considering the foundations of the model, that is the communication

language. The agents of the biochemical system can interact and coordinate

themselves by means of tuples. At each tuples is associated a concentration

value, proportional to its relevance in a given context. Concentration is

dynamic and evolve over time due to the chemical laws.

Tuples in TuCSoN are simply logic atom, composed by a name and a list

of arguments. So concentration cannot be naturally managed by TuCSoN,

but it is necessary to plan some extension. For example, we can imagine to

define a new entity, called biotuple, that, starting from TuCSoN tuple, wraps

into itself both the tuple content and its concentration value. A possible

syntax can be:

biotuple(τ, n)

where, τ stands for the content of the biotuple, while n represents its con-

centration. For convenience, we can model τ simply as a TuCSoN tuple. It
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means that the new entity has to handle properly only the adding concen-

tration value. This extension has to be applied directly on source code of

TuCSoN, to realize biotuple as basic abstraction. A first implementation, in

pseudo-code, could be:

public class BioTuple{
private LogicTuple l t u p l e ;

private long mult ;

public BioTUple ( LogicTuple l tup l e , int mult ){
this . l t u p l e = l t u p l e ;

this . mult = mult ;

}
public void setLog icTuple ( LogicTuple l t u p l e ){

this . l t u p l e = l t u p l e ;

}
public void setMult ( long mult ){

this . mult = mult ;

}
public LogicTuple getLogicTuple ( )

return l t u p l e ;

}
public long getMult ( ){

return mult ;

}
}

Following this solution, we can expand previous syntax as:

biotuple(tuple_name(arg1,arg2,...), #multiplicity)

The term multiplicity has unnecessarily the same meaning of concentra-

tion. With multiplicity we mean the quantity of a given tuple into a specific

space. On the other hand, as we have stated, concentration expresses the

level of activity/pertinence of a tuple into a local and limited environment.

This evaluation can be applied simply considering the total tuple’s quan-

tity in the local space, and so multiplicity and concentration have the same

meaning, or considering the tuple’s quantity in relation to the total amount

of other tuples. Last acceptation involves further computations but probably

ensures better performance and a more interesting evolution of the system

status. In this case, if we plan that each tuple has to contain the proper
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value of concentration, will be necessary to update it at each insertion/re-

moval operation, implying a considerable computational load. To avoid an

excessive number of updates, we can think to maintain in each biotuple entity

just the multiplicity value, leaving the correct evaluation of concentration to

a specific function, used only when such value is required by the chemical

engine to apply rules.

In the following we assume that there exists a matching function µ(τ, τ ′) ∈
[0, 1], returning 0 if τ and τ ′ do not match, 1 if they completely match, some

internal value if they partially match.

Coordination language

The coordination language makes available a set of coordination primitives

that allow the interaction between agents and tuple spaces. This set is simi-

lar to the one typical of Linda and TuCSoN, but provided with the further

function of managing tuples’ concentration. So, out primitive has to specify

the initial concentration of the inserted tuple, in can be either used to entirely

remove a tuple (if no concentration is specified) or to decrease the concentra-

tion of an existing tuple, and so rd but without to remove anything. Their

chemical equivalent actions are, respectively, to inject a chemical substance

in a solution and to remove/observe a certain quantity of a substance.

The syntax for coordination primitives in biochemical tuple spaces model

is the same as for TuCSoN primitives, but operational semantics is different[18].

We consider a DTMC model in which the execution of a primitive is repre-

sented as a transition with a specific probability(except out that fires out-

right). Its likelihood is given by the product between the degree of match

µ(τ, τ ′) and, in case concentration is specified, the relative quantity of tuple

required in relation to the total amount of a matching tuple. For exam-

ple, given τ〈n〉, the tuple required with concentration n, and τ ′〈n + m〉, a

matching tuple with total amount n+m, a removal/reading operation, that

involves these tuples, has a probability to fire computed as:
n+m

n
µ(τ, τ ′).

From this analysis we can assert that TuCSoN does not provide a suitable
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mechanism to model biochemical primitives and to fill the gap should be

planned a proper extension. In particular the work should be oriented in two

directions. As first, should be realized a biochemical version of primitives

in order to manage tuples’ concentration. Then should be implemented a

transition system, based on DTMC model, as previously described.

Topological structure

A pervasive computational system, built on biochemical tuple spaces model,

has to present a well-defined topological structure. To simulate a complex

biological environment, it is necessary to provide a network of tuple spaces,

connected by means of neighbouring structures, that resemble biochemical

compartments. Interaction between tuple spaces could follow, for example,

the linkability model [22]. It can be achieved through a particular chemical

law that takes one unit of some tuple and spreads it towards one of the

neighbours, picked probabilistically.

This issue is feasible in TuCSoN quite naturally. Indeed, TuCSoN basi-

cally supports the definition of a distributed architecture (as the same name

asserts: Tuple Centres Spread over the Network). As we stated in the pre-

vious chapter, a tuple centre is uniquely identified by means of its name

tname@netid:portno, that stands for a tuple centre tname located at node

netid on port portno. So to define a neighbouring structure is sufficient to

keep in each space the full name of tuple centres considered as “neighbours”.

Then, in order to communicate, it is just necessary to insert at the end of

the name ?op, where op represents the primitive we want to excute on that

node. The probabilistic choice of the neighbour could be performed through

the uniform primitive urd available in TuCSoN (reads one tuple choosing it

with uniform distributed probability among those that match the template).

The proposed solution exploits the existent TuCSoN mechanisms and entails

a certain delay due to the execution of uniform primitives. However, it is

estimated to be a valuable approach because the diffusion of a tuple’s unit

involves only one uniform reading to pick the destination tuple centre and so
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the overhead should be limited.

Chemical laws

The evolution of the system is governed by chemical laws (or reactions). Each

tuple space is characterized by a proper set of reactions that affect tuples

concentration over time in the same way as chemical substances evolve into

chemical solutions. In order to simulate natural dynamics it is necessary to

satisfy two requirements: the first is to define a set of laws that is inspired

by bio patterns, the second is to provide a chemical engine that picks and

executes the reactions simulating a real chemical system. This is possible

following Gillespie’s algorithm. In particular we can express the operational

semantics of the execution of a chemical law as:

J[Ti r−→ To]|T |SKσ µ(Ti,T )G(r,Ti,T |S)−−−−−−−−−−−→ J[Ti r−→ To]|To{Ti/T}|SKσ

This represents exactly the semantics described earlier. When reagents in

Ti are found in the space, they are removed and replaced by the products in

To considering the previous bindings. Generally, the matching between T and

Ti provides more solutions and so in the evaluation of the markovian rate it is

to count how many different combinations of tuples that match Ti, actually

occur in S. This is considered in the factor G(r, Ti, T |S) = r ∗ count(T, T |S),

where:

count(0, S) = 1

count(τ〈n〉 ⊕ T, τ〈m〉 ⊕ S) =

(
m

n

)
∗ count(T, S)

Clearly in TuCSoN a similar mechanism is not present. We have two

ways to implement it. Initially, we can think about leaning on the existent

tools and model a simulator programming tuple centres through ReSpecT

reactions. This solution has the advantage of not entailing changes in the

source code of TuCSoN but implies some problems during the implementa-

tion stage, in particular due to a problematic debugging. Moreover, since
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ReSpecT reactions are used also for boot protocol and other general system

operations, chemical laws, in such form, could lead to some tricky side-effects

and to a low usability (users have to pay attention on using tuples that can

compromise the working of the engine). Finally, it is a penalising approach,

also, as regards performance, especially in the critical computation of global

rate previous considerd. A possible solution, for this latter problem, could be

to instantiate as many concrete laws as the possible combinations of match-

ing templates/tuples, to calculate for each one its markovian rate and then

to apply one of them probabilistically.

The other alternative is to implement a chemical engine acting directly

on source code of TuCSoN, following the previous observations. In this way

the simulator becomes a core abstraction of the model, offering better perfor-

mance, clear separation of functionality and a good usability. On the other

side, it is to consider some potential problems concerning time required for

the realization and integration/compatibility issues.
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TuCSoN & ReSpecT

In this chapter we want to describe the technologies to which we have referred

until now and which we will take as foundation to realize a first implementa-

tion of a biochemical tuple space, that are TuCSoN and ReSpecT. After we

have discussed TuCSoN model and architecture, we will focus on ReSpecT

from the point of view of its language and of its engine’s working principles.

3.1 TuCSoN

TuCSoN (Tuple Centres Spread over the Network) is a general purpose

agent-oriented model and infrastructure for Multi-Agent System (MAS) co-

ordination. TuCSoN is based on a coordination model providing tuple centres

as first-class abstractions to design and develop general purpose coordination

artifacts. Tuple centres are programmed through the ReSpecT logic-based

specification language [13].

Agents can interact with tuple centres and coordinate themselves by ex-

changing tuples through a Linda-like set of coordination primitives. This

approach presents three key features, useful to handle a pervasive scenario:

generative communication, associative access and suspensive semantics. Gen-

erative communication means that the information inserted into the space

have an independent life with respect to the generator. It allows agents to be

37
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uncoupled in space, time and name, i.e interacting agents have not necessary

to know each other, to coexist in the same space or at the same time in

order to communicate. Associative access means that access to information

is based on tuple matching, considering their structure and content rather

than their location or name. This characteristic leads to a sort of data-driven

coordination allowing, potentially, to define knowledge-based coordination

pattern. At last, suspensive semantics promotes coordination pattern based

on knowledge availability, coping well with the issue of incomplete or partial

knowledge typical of system continuously under evolution.

In the following, we will illustrate by means of what model and architec-

ture TuCSoN allows these interesting features.

3.1.1 Model & Language

A TuCSoN system is a collection of TuCSoN agents that interact with Re-

SpecT tuple centres (the coordination media), located in a set of nodes po-

tentially distributed over the network. Agents act as proactive entities that

coordinate themselves by means of reactive entities (tuple centres). They are

composed of two different spaces: a shared space for communication based on

tuples (tuple space) and a specification space that contains the programmable

logic of the related tuple centre.

Each tuple centre can be univocally identified, within the entire sys-

tem, through their full name: tname@netid:portno. It locates a tuple cen-

tre tname (can be any Prolog-like first-order logic ground term) available on

node netid:portno, where netid stands for the IP number of the DNS entry of

the device hosting the node and portno is the port number where TuCSoN

coordination service listens the invocations for the execution of coordination

primitives.

The interaction between agents and tuple centres occurs through a specific

coordination language executing coordination operations. In turn, they rest

on TuCSoN communication language that includes tuple language and tuple

template language. Since the TuCSoN coordination medium is the logic-
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based ReSpectT tuple centre, both languages are logic-based allowing as

instances any first-order logic Prolog atom.

Each coordination operation is composed of two stages: first an agent

requires an operation on a specific tuple centre target (invocation), then, after

the tuple centre has computed the result, it replies to the agent including

all the information concerning the execution of the required primitive. The

syntax to invoke an operation op on a tuple centre tname@netid:portno is:

tname@netid:portno?op. In this way it is possible to invoke a primitive also

on external tuple centres (i.e not in the same node of the agent). In particular,

TuCSoN provides nine basic coordination primitives[16], that are 1:

out(Tuple) writes Tuple in the target tuple space; after the operation is

successfully executed, Tuple is returned as a completion;

rd(TupleTemplate) looks for a tuple matching TupleTemplate in the target

tuple space; if a matching Tuple is found when the operation is served,

the execution succeeds by returning Tuple; otherwise, the execution is

suspended to be resumed and successfully completed when a matching

Tuple will be finally found in and returned from the target tuple space;

in(TupleTemplate) looks for a tuple matching TupleTemplate in the target

tuple space; if a matching Tuple is found when the operation is served,

the execution succeeds by removing and returning Tuple ; otherwise,

the execution is suspended to be resumed and successfully completed

when a matching Tuple will be finally found in, removed and returned

from the target tuple space;

rdp(TupleTemplate) predicative (non-suspensive) version of rd(TupleTemplate);

if a matching Tuple is not found, the execution fails (operation outcome

is FAILURE) and TupleTemplate is returned;

1Tuple belongs to tuple language, while TupleTemplate belongs to tuple template

language
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inp(TupleTemplate) predicative (non-suspensive) version of in(TupleTemplate);

if a matching Tuple is not found, the execution fails, no tuple is re-

moved from the target tuple space and TupleTemplate is returned;

no(TupleTemplate) looks for a Tuplematching TupleTemplate in the target

tuple space; if no matching tuple is found when the operation is served,

the execution succeeds, and TupleTemplate is returned; otherwise, the

execution is suspended to be resumed and successfully completed when

no matching tuples can any longer be found in the target tuple space,

then TupleTemplate is returned;

nop(TupleTemplate) predicative version of no(TupleTemplate); if a match-

ing Tuple is found the execution fails and Tuple is returned;

get reads all the Tuples in the target tuple space and returns them as a

list; if no tuple occurs in the target tuple space at execution time, the

empty list is returned and the execution succeeds anyway;

set(Tuples) overwrites the target tuple spaces with the list of Tuples; when

the execution is completed, the list of Tuples is successfully returned;

Later, the necessity to manage more than one tuple with a single primitive

and with good performance leads to the supplement of bulk primitives:

out all, rd all, in all, no all. Substantially, they return, not one tuple, but

all the tuples that match the template; otherwise, if no tuples match, will be

returned the empty list (bulk primitives never fail).

Another important extension is represented by uniform primitives:

urd, uin, urdp, uinp, uno, unop. Their purpose is to insert a probabilistic

behaviour within agents’ coordination. In particular, they replace the don’t

care non-determinism of Linda-like primitives with a uniform probability

distribution. This set of primitives is important especially as potentially

allowing to model stochastic behaviour of some nature-inspired patterns.

Finally, a further useful primitive is spawn. It deals with activating some

kind of computation Java or Prolog, local to the tuple centre where it is in-
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voked. This operation presents a non-suspensive semantics starting a parallel

computational activity that is carried out asynchronously w.r.t the caller. It

has two arguments, that are the activity to perform (a Prolog atom including

Prolog theory and goal or a Java class) and the identifier of the tuple centre

where to execute it. Through such primitive it is possible to handle complex

computational activities related to coordination, managing them by means of

a standard sequential computation instead of a sequence of time-consuming

coordination primitives.

3.1.2 Architecture

A TuCSoN system is a collection of TuCSoN nodes that host TuCSoN ser-

vices. Each node is characterized by a network device (netid) and by a

network port (portno) where the service listens to incoming requests. This

solution allows the presence of multiple nodes on a single device, as long as

each one is listening on a different port.

A TuCSoN agent has at any time the possibility of invoking a primitive on

any tuple centre available on the network through: tname@netid:portno?op.

So the TuCSoN global coordination space is composed by all the tuple centres

located in all the nodes of the system. On the other side, the TuCSoN local
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coordination space for a network device netid is defined at any time as the set

of all the tuple centres made available by all the nodes hosted by this device.

Each node defines a default tuple centre (called default) and a default port

(20504). If the network device’s address is not specified, the execution of the

primitive refers to the local coordination space. For example, if it is specified

only op, this primitive is invoked on default tuple centre of local node on port

20504.

Figure 3.1: Overall view over TuCSoN ACCs

From the point of view of agents, the idea is to structure tuple centres in

organisation and govern the access to them associating at each agent specific

role. Thus, an agent can perform only a limited number of actions that are

allowed to him. This solution is based on the Role-Based Access Control

(RBAC) model and requires to provide a special tuple centre in which to

maintain RBAC rules. In order to model such hierarchy of agents we refer to

the notion of Agent Coordination Context (ACC). It is a runtime and stateful

interface that is used by agents to invoke primitives on tuple centres of a spe-

cific organisation. Substantially, ACCs rules the interaction between agents

and tuple centres; actually TuCSoN stands, only, at a first stage towards the

full implementation of this approach. In particular, TuCSoN provides three

basic ACC each one both in synchronous and asynchronous version, that

enable the usage respectively of the three principal sets of primitives, i.e.

Ordinary ACCs, Bulk ACCs and Uniform ACCs. In the synchronous version

the agent invokes the primitive and then blocks waiting for its completion;
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on the other hand, in the asynchronous version, the agent, after invocation,

does not block but is asynchronously notified of the operation’s completion.

However, TuCSoN presents other ACCs that enable access to ReSpecT speci-

fication and other useful combinations. The overall view over TuCSoN ACCs

is showed in the figure above.

3.1.3 Programming tuple centres

A tuple centre is a tuple space enhanced with the possibility to program

its behaviour in response to some external or internal events. An agent

can define it through the TuCSoN meta-coordination language and by exe-

cuting meta-coordination primitives. Similarly as before, meta-coordination

language is composed by specification language and specification template

language that actually coincide, since TuCSoN coordination medium is the

logic-based ReSpecT tuple centre. Admissible tuples for these languages are

expressed through the syntax: reaction(E, G, R) ∈ specification language and

reaction(ET, GT, RT) ∈ specification template language, where we consider

E, G, T as Prolog term ground(without variables) and ET, GT, RT as Prolog

term containing potentially some variables. Any TuCSoN meta-coordination

operation is invoked by a source agent on a target tuple centre, to which is

delegated its execution. Syntax and phases for invocation are the same as for

the coordination operations. There are 9 meta-coordination primitives, that

perfectly match the 9 basic coordination primitives: out s, rd s, etc. This

ensures an uniform access both to tuple space and to the specification space

in a TuCSoN tuple centre. But to really understand the behaviour of tuple

centre against a given specification, we have to analyse ReSpecT language.

3.2 ReSpecT

ReSpecT (Reaction Specification Tuples) is a logic-based coordination lan-

guage that enables tuple space programming, actually distributed as a part of

TuCSoN middleware. It has a twofold nature: it allows to associate events to
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reactions (specification language) and to execute them as local computations

(reaction language). We will illustrate both roles in the following.

3.2.1 ReSpecT language

As specification language, ReSpecT allows event to be declaratively asso-

ciated to reactions by means of specification tuples of kind: reaction(E,

G, R). Its semantics is: given a ReSpecT event Ev, a specification tuple

reaction(E,G,R) asociates a reactionRθ to Ev if and only if θ = mgu(E,Ev)

and a guard predicate G is true.

In particular, event E stands for any TuCSoN primitive (except for get s

and set s), guard G represents a logical condition that has to be satisfied

(quod vide [13], Table 5) while reaction R can be any TuCSoN primitive (as

before) or any Prolog computation or any combinations of the two.

3.2.2 ReSpectVM

As reaction language, ReSpecT provides a support to the execution of reac-

tions. Here, we want to describe its internal behaviour and architecture to

understand how tuple centres actually work. This analysis is important be-

cause in the next chapter we will present a biochemical extension of TuCSoN

& ReSpecT, that deals, also, with the ReSpecT engine.

First of all, we report the informal semantics of ReSpecT virtual machine

based on paper [13]. The main cycle of a tuple centre works as follow. When-

ever the invocation of a tuple centre primitive by either an agent or a tuple

centre is performed, an (admissible) ReSpecT event is generated, and reaches

its (the primitive) target tuple centre, where it is automatically and orderly

inserted in its InQ queue. When the tuple centre is idle (that is, no reaction

is currently being executed), the first event ε in InQ (according to a FIFO

policy) is moved to the multiset Op of the requests to be served: this stage

is called the invocation phase of the event ε. Consequently, reactions to the

invocation phase of ε are triggered by adding them to the multiset Re of the
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triggered reactions waiting to be executed.

All triggered reactions in Re are then executed in a non-deterministic

order. Each reaction is executed sequentially, with a transactional semantics,

and may trigger further reactions, again to be added to Re, as well as new

output events representing link invocations: such events are added to the

multiset Out of the outgoing events, and then moved to the tuple-centre

outgoing queue OutQ at the end of the reaction execution, if and only if

successful.

Only when Re is finally empty, requests waiting to be served in Op are

possibly executed by the tuple centre, and operation/link completions are

sent back to invokers. This may give rise to further reactions, associated to

the completion phase of the original invocation, and executed again with the

same semantics specified above for the invocation phase. Thus, the main

cycle of an ReSpecT tuple centre is finally concluded.

ReSpecT state machine

Let’s see how the ReSpecT engine manages such events and queues at soft-

ware level.

We start from RespectVM class, cornerstone of the entire process. It is

a thread in charge of listening new events generated against some agents’

request. Its principal role is to ensure the continuous and cyclic behaviour

of the ReSpecT engine, inserting the generated events into the InQ queue.

The operations expressed before in the description of the informal seman-

tics are reified by means of a sort of state machine. It is composed by six

states, that are:

• ResetState: represents the initial state, considered only at the system

boot;

• IdelState: represents the condition in which there are not any events to

manage or reaction to perform, it is called idle state of the system;
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• ListeningState: at this point the system is waiting for an event coming

from an external agents;

• ReactingState: state reached when there are some triggerable reactions;

• FetchEnvState: state reached when the system perceives some environ-

mental events;

• SpeakingState: fundamental state in charge of managing the execution

of primitives requested by agents.

At each state corresponds an namesake class that implements its be-

haviour. Here below we present a diagram that shows clearly the structure

of the ReSpecT state machine.

Another key class is represented by RespctVMContex that deals with the

low-level interfacing of TuCSoN and ReSpecT operations. It has two princi-

pal tasks. The first is to actually manage the insertion/removal/reading of

tuples in the tuple space. The second is to make available the functionalities

to verify whether the current primitive leads to generate an event that implies

the firing of some reaction (with a matching event triggering). In chapter
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four we describe the work made on this class to achieve a bio extension for

TuCSoN and ReSpecT.

If at least one reaction is found, after evaluating that the predicate guard

is satisfied, the reaction is performed considering the association variables/-

values defined in the previous matching(between primitive’s event and reac-

tion’s event). The real execution of the reaction’s body is delegated partly

to the Prolog engine, as regards Prolog computations, and partly to the class

Respect2PLibrary that represents a TuProlog library through which defines

the behaviour of ReSpecT primitives.





Chapter 4

Biochemical TuCSoN

4.1 Motivations

As we have seen before, TuCSoN is an interesting technology that, poten-

tially, allows to realize several applications in different scenarios. One of

these is biochemical coordination. In particular, TuCSoN lends itself to

model nature-inspired patterns, thanks to its architecture characterized by

programmable tuple centres. Agents can coordinate themselves and interact

uncoupled in space and time, leaving information in the tuple space. Tuple

centres can be programmed with a specific behaviour against some internal or

external events. Moreover, support to distributed communication is intrinsi-

cally provided, allowing interaction between tuple spaces located in different

nodes of the system. These characteristics make TuCSoN very similar to

the natural environment where organisms live, interact and organise them-

selves, achieving global complex patterns, from simple individual behaviour

(for example ACO pattern).

Taking inspiration from the considerations of previous chapters, we want

to define a biochemical version of TuCSoN, extending the original one with

abstractions and mechanisms specific to biochemical tuple spaces. In partic-

ular, the aim is to realize an independent release, focusing on architectural

aspects such as maintainability and extensibility.

49
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4.2 Architectural requirements

Before explaining the way adopted to implement BioTuCSoN, it is important

to underline some aspects considered during the work process.

First of all, we have to point out that TuCSoN, for its academic na-

ture, is a software system continuously under evolution. In theory, every day

some bugs could be fixed, new features could be added or some mechanisms

changed. Potential extensions would have to consider this issue in order to

simplify the work of developers, i.e. reduce as much as possible the time

required to carry the changes from the standard version to the new one. For

these reasons, in the design of bio extension, we analysed the different alter-

natives and chose those that minimize variance by the approach of original

TuCSoN, exploiting as much as possible the current mechanisms. This is

what we mean with the term maintainability.

In the same way, the requirement of extensibility is important. The work

we are going to describe, is only a first step toward the full BioTuCSoN

implementation. Biochemical tuple spaces are complex systems that require

several new aspects and abstractions to be managed [18].

Firstly, the principal concept to introduce is concentration. It is a char-

acteristic value of each tuple that expresses its level of pertinence/activity.

This information is essential to execute uniform primitives such as uin, urd,

etc, that select probabilistically the matching tuple according to its concen-

tration. In theory, selection probability should be affected also by the degree

of match between template and tuple, a fact that implies semantic aspects.

The presence of concentration cause to modify the behaviour of every TuC-

SoN primitive, named bio primitive in BioTuCSoN, aiming to allow them to

manage this value in a proper way.

In the second place, we have to consider also topological issues such as

linking neighbouring tuple spaces, retrieving information about reachabil-

ity of neighbours, sending tuples between different spaces and update tuple

properties in relation to their moves.

Finally, an aspect, that is fundamental to ensuring the working principle
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of biochemical coordination, is the chemical engine (or chemical simulator).

As seen in the initial chapters, it is an algorithm that cyclically retrieves, in a

stochastic way, the coordination rule to perform, computing probabilistically

even the time interval between steps. A solution could be to refer to Gille-

spie’s algorithm, implementing it as a Java function integrated into TuCSoN

code.

Principally, our work deals with analysing, defining and implementing

basic aspects of biochemical tuple spaces, i.e. concepts of bio tuple and bio

primitive. Then, wanting to ensure the programmability of bio tuple space,

we plan and realize some changes to ReSpecT engine (BioReSpecT ). For now,

topological aspects are considered realizable through the current TuCSoN

mechanisms, while chemical engine is not considered. Indeed, we want to

prove whether exploiting the features of this first version of BioTuCSoN &

BioReSpecT, we can model and obtain some interesting system properties,

including especially self-organisation and situatedness.

4.3 Bio extension foundations

Now we illustrate the process that brings us to define and implement the

two principal abstractions of BioTuCSoN: bio tuples and bio primitives. We

present the choices we took, explaining the reasons, the advantages and even-

tually the disadvantages involved.

4.3.1 Bio tuple

In this section we show how we worked to introduce bio tuples abstraction,

that is, namely, the communication language of BioTuCSoN.

Similarly as TuCSoN, BioTuCSoN communication language is, theoreti-

cally, composed by bio tuple language and bio tuple template language, both

logic-based. The difference is that while a bio tuple must be completely

specified (i.e ground Prolog atom, with a defined concentration value), a bio

template can be partially specified (i.e. Prolog atom can contain variables
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and/or concentration value can be not specified). Although these are dif-

ferent characteristics we choose to define only one class that models both

languages. This simplifying solution leads to only one setback, that is to

check that bio out has a bio tuple (and not a bio template) as argument.

As already stated, bio tuple is a standard tuple enriched with a value,

called concentration(or multiplicity), that specifies the level of its relevance

in a given context. TuCSoN models tuples with LogicTuple class into pack-

age alice.logictuple, so now we focus on this part of code. The easiest way

to introduce this abstraction is to define an entity that integrates, into it-

self, LogicTuple and a numerical value representing the concentration. It is

a positive integer (different from zero) that can reach high values in most

scenarios. Consequently, we can plan to define a class, naming it BioTuple,

that has two class fields, one of type LogicTuple and the other of type long

representing multiplicity. Now, we have two alternatives.

The first is to let BioTuple to implement the generic interface Tuple (also

implemented by LogicTuple). In theory, this appears a possible and coherent

solution because BioTuple and LogicTuple can be seen as different realizations

of Tuple interface, each one with specific characteristics. However, this way

leads to some practical problems at implementation time: Tuple is actually a

fictitious interface, without any declaration of fields or methods. Moreover,

in TuCSoN code every operation over tuples requires as input parameter, or

returned value, objects of type LogicTuple, and not of type Tuple as we could

suppose. So if we want to follow this way, we have to replace every occurrence

of LogicTuple with BioTuple, a trivial operation but time consuming and not

so efficient. As an alternative, we can define correctly Tuple interface using it

in place of LogicTuple. But even this expedient does not resolve the problem

of previous substitutions. Both described solutions have then a substantial

incoherence with the architectural requirements expressed before. To satisfy

the maintainability property it is important to modify as little as possible

the structure of TuCSoN code while the previous ways need a lot of small

changes.
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The second alternative, the chosen one, is to realize a BioTuple class as

an extension of LogicTuple. In this way, a bio tuple is seen as a standard

tuple with, in addition the concentration value, exactly as it was described

before. Its implementation can be simplified by delegating to the inherited

methods some basic operations and defining from scratch only the character-

izing aspects. TuCSoN code is affected in a minimal way because, wherever

it is specified a LogicTuple, we can pass an instance of BioTuple thanks to

polymorphism. So we can exploit the most of existent TuCSoN mechanisms.

Specific controls of type (through instaceof) and explicit casts are then needed

at the time to choose the actual operation(bio or standard primitive) to exe-

cute. Shown below is an UML diagram that represents the adopted solution,

highlighting the overridden methods by BioTuple class.
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BioTuple constructors exploit functions of super class to set in the right

way the content of the bio tuple, that is at last a Prolog term. It can be passed

in several forms such as functor and arguments (String, TupleArgument,...) or

without functor name or simply as a Prolog term (Term). The only new task

of bio tuple constructors is to set the specific multiplicity value (long mult)

of that instance.

Now we have to clarify one important detail. The concept of multiplicity

is similar but not the same as concentration. In the first case, we mean the

overall amount of one specific bio tuple into the space. Concentration is a

more complicated aspect that implies spatial consideration, i.e it is a measure

of pertinence/activity of a tuple in a given context obtained computing the

ratio between its multiplicity and the sum of the quantity of all tuples into

the considered space. The introduction of the concept of concentration, in

its full meaning, is relevant most of all for chemical engine, and so it is left

to future works. In the following we use multiplicity and concentration with

the same intent.

Each bio constructor throws an InvalidMulitplicityException, specifically

created, in case that the multiplicity argument is equal or less than zero.

The unique constructor noteworthy is BioTuple(Term): its roles is to cre-

ate a bio tuple, retrieving information from only a Term. This means that

there is a necessary sort of parsing stage to evaluate if the term is defined

coherently according with the structure of a bio tuple and then to extract

the information about tuple content and its multiplicity.

public BioTuple (Term t ) throws I nva l i dMu l t i p l i c i t yExc ep t i on {
Struct s t = ( Struct ) t . getTerm ( ) ;

i f ( s t . getName ( ) . equa l s ( ” b i o tup l e ” ) &&

s t . ge tAr i ty ()==2 && s t . getArg ( 1 ) . isGround ( ) ){
i n f o = new TupleArgument ( s t . getArg ( 0 ) ) ;

long m = ((Number) s t . getArg ( 1 ) . getTerm ( ) ) . longValue ( ) ;

i f (m<=0)

throw new I nva l i dMu l t i p l i c i t yExc ep t i on ( ) ;

this . mult = m;

} else i f ( s t . getName ( ) . equa l s ( ” b i o tup l e ” ) &&

s t . ge tAr i ty ()==2 && ! s t . getArg ( 1 ) . isGround ( ) ){
i n f o = new TupleArgument ( s t . getArg ( 0 ) ) ;
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} else {
throw new I nva l i dMu l t i p l i c i t yExc ep t i on ( ) ;

}
}

Not originally planned, this constructor is defined during the work process

because it is useful in several situations. In particular, it is used in three

strategical classes:

• TupleSet : class that wraps the business logic of every primitive and

the basic tools of TuCSoN infrastructure;

• Tucson2PLibrary : a tuProlog library that makes available TuCSoN

primitves also to tuProlog agents;

• Respect2PLibrary : a tuProlog library that defines the behaviour of

ReSpecT primitives, used inside ReSpecT virtual machine.

In every previous case, the utility of this constructor is to let developers

to manage bio tuples, building as they were logic tuples, and so promote the

concept of maintainability.

Other than constructors, we have to add some methods. First of all, we

add setMultiplicity(long m) and getMultiplicity(), useful to set and retrieve the

concentration value of a given bio tuple instance. To show bio tuples in a

string format we redefine toString(), representing it as:

biotuple(〈LogicTuple〉, 〈#multiplicity〉).

Again, to convert a bio tuple into a Prolog term we realize specific meth-

ods: toTerm(), overriding the inherited one, and toTerm(long), used in Tuple-

Set and defined with the aim to promote maintainability, ensuring to manage

bio tuple similarly as logic tuple. Specifically, the second method returns a

bio tuple as a Prolog term setting its multiplicity at the specified value.

Then we define two static methods parse(String,long) and parse(String)

to allow developers to create a bio tuple simply passing the Prolog term as
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string and multiplicity as long value. The second one is useful when we want

to define a bio tuple template, without ground concentration value. They

are principally used by TucsonAgent (programmed with Java) to define bio

tuples. Now we present some examples. The first deals with the building of

a bio tuple ground, i.e without any variable:

// b i o t u p l e ( h e l l o ( world ) ,8)

BioTuple tup l e = BioTuple . parse ( ” h e l l o ( world ) ” , 8 ) ;

Then, we show how to create a bio tuple template with variable argument

and variable concentration:

// b i o t u p l e ( h e l l o (X) ,0)

BioTuple template = BioTuple . parse ( ” h e l l o (X) ” ) ;

When, in the string representation, the multiplicity field assumes the value

of zero, this means it is not specified and so is considered variable. As we will

see later, a variable multiplicity can be used in all primitives, except for out

(namely in every retrieving/reading primitive), implying that concentration

is ignored when matching between tuple and template is performed. The

constructor BioTuple(TupleArgument,Long) allows to manage both situations:

if multiplicity is not specified, the second parameter is set to null, otherwise,

it is set to the given value.

Even parseCLI(String tuple) was not planned at the first design of BioTuple.

This function is used in CLIAgent class to parse the string obtained by the

command line returning the relative BioTuple, always with the aim to ensure

a similar management of bio tuples and logic tuples, .

Finally, isMultGround() is a simple method that checks whether or not

the concentration value is set.

4.3.2 TuCSoN code analysis

Before explaining the bio updates from the point of view of requirements

(semantics), design (architectural choices) and implementation (technical de-

tails), we point out some interesting aspects of TuCSoN behaviour, to better
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understand the operations flow, critical sections and, generally, the context

we are going to consider.

Communication dynamics

At an high abstraction level, we can see the execution of a TuCSoN primitive

as follow: a TuCSoN agent, located in a specific network node, makes a

request that is accepted by a TuCSoN tuple centre, situated in the same or

in a different network node. It performs the required operations and then

gives back the result to the caller. These two entities have a dual behaviour.

To make request TuCSoN agent invokes the function corresponding to the

desired primitive and then waits for the reply from the contacted tuple centre

through a control thread. On the other side, TuCSoN tuple centre waits for

requests from agents through a specific thread ; once come, it invokes proper

functions to compute the result and finally returning it.

As already mentioned, agent and tuple centre could be situated in dif-

ferent spatial location, so their interaction occurs through the network. The

protocol followed to establish a connection between an agent A and a tuple

centre T is:

1. As first step, A must authenticate itself and overcome a security proto-

col (for now only theoretical); if it succeeds, an entity is created called

ACCProxyAgentSide, which is delegated the communication tasks. The

authentication is valid at a system level, i.e. it is necessary only the

first time an agent joins the system making the first request.

2. The initial stage expects that ACCProxyAgentSide communicates with a

node-side thread called WelcomeAgent which waits for requests to pass

on to another class named ACCProvider. This entity analyses request’s

type, sender and content. In case everything is fine and the request is

not an exception, it creates an ACCProxyNodeSide, dual node-side entity

to ACCProxyAgentSide, in charge of supporting the communication with

A. In this stage, it is also established the session in which the following
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interaction between ACCProxyAgentSide and ACCProxyNodeSide takes

place.

3. Real comunication between A and T happens actually through the

entities ACCProxyAgentSide and ACCProxyNodeSide into a specific ses-

sion. If A wants to interact with other tuple centres, he leans on the

same ACCProxyAgentSide, repeating from the communication with Wel-

comAgent and maintaining one session for each tuple centre contacted.

As regards the internal behaviour of a TuCSoN node, synthetically, it has

to check whether or not an operation has as target itself. A negative answer

implies that the operation is passed on the specified tuple centre target. In

the other case, operation is inserted into a input event queue that will later be

scanned by ReSpecT engine to extract events to handle. Then, the computed

result is put into an output event queue, from which ACCProxyNodeSide takes

the information through which it builds the reply message. These two buffers

allow tuple centre to manage more than one suspensive primitives at time.

Operations flow

Now we analyse the operations flow necessary to perform a TuCSoN prim-

itive, considering the connection between agent and tuple centre has been

already established. That is, the observation of interaction between AC-

CProxyAgentSide and ACCProxyNodeSide. It is useful to explain the context

in which we apply changes.

From agent-side, the request for the execution of a specific TuCSoN primi-

tive is performed by sending a message (TucsonMsgRequest) towards a defined

tuple centre target. This message is built starting from a specific instance of

TucsonOperation class related to the required primitive. The principal opera-

tions that lead to message dispatch is confined in the method doOperation into

the ACCProxyAgentSide. At this stage, the agent waits for a reply message

(TucsonMsgReply) from the tuple centre, through a control thread instance

of Controller internal class. Once the reply arrives, the control thread checks
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if the execution ends well and if the information obtained are coherent with

the request. If so, it signals the correct termination to ACCProxyAgentSide

thread, which has suspended waiting for that. Finally, the latter returns the

operation result to the agent.

From node-side, the operations flow are more complex. We can subdivide

the primitive management into two principal activities reify with as many

threads:

• ACCProxyNodeSide supervises and implements communication protocol

to interact with other system subject;

• RespectVM models ReSpecT engine that actually executes the primi-

tives.

ACCProxyNodeSide waits requests from agents/tuple centres cyclically

reading from the input stream. Once they arrive, the thread checks the

type of request and invokes an appropriate function to insert into a input

event queue the related event. We can outline the classes involved in this

flow as following:

ACCProxyNodeSide→ TupleCentreContainer →
OrdinaryAsynchInterface→ RespectTC → RespectV MContext

On the other side, RespectVM thread merely fires cyclically (after two

consecutive calls) execute() method into SpeakingState class. Its fundamental

role is to extract, if there are, one by one events from input buffer and

depending on the type of specified operation performs the functions required

to get results. These, again, call methods of RespectVMContext class, that

in turn exploits functions of TupleSet. The latter is the topic class where the

business logic is confined, i.e. the code that defines the basic behaviour of all

primitives. Principally we operate here to realize ”bio changes”. As before,

we show the class involved synthetically:

RespectV M → TupleCentreVMContext→ SpeakingState→
RespectV MContext→ TupleSet
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4.3.3 Bio primitives

Now we want to describe the updating process towards bio primitives. The

semantic we consider for them is drawn from [18] with some differences.

There all retriving/reading primitives are divided into two types, one man-

aging template with ground multiplicity (in, rd, ...) and one template with

multiplicity as variable (inv, rdv, ...). Moreover, all of them have a proba-

bilistic behaviour influenced by concentration values. We consider a different

structure. To ensure one-one mapping with TuCSoN and so a better system

maintainability, we merged into a single primitive the management of the

different template types and planned bio extension of the most of TuCSoN

primitives, following TuCSoN name conventions. That means we defined also

bio primitives with non-probabilistic behaviour. Finally, it is not taken into

account any semantic match issue and, for the moment, every primitive fires

instantaneously.

We achieve bio extension of all synchronous primitives except get, set and

the bulk ones, without considering timeout. For their realization we followed

the same logic of original primitives and left unchanged as much as possi-

ble TuCSoN structure, with the aim to respect the previous architectural

requirements. Thanks to have modelled BioTuple as extension of LogicTu-

ple, we could exploit the existent mechanisms, using polymorphism, and so

confine the changes only to the business logic, i.e. to the code that actually

implement the behaviour of the primitives.

We want to realize an indipendent BioTuCSoN version, that means that a

user can only handles bio abstractions. For this reason, instead of defining a

new interface for bio primitives, we modify the existing one, so that its func-

tions required as arguments no more LogicTuple but BioTuple. In particular,

we act on OrdinarySynchACC and UniformSynchACC. These simple changes,

that reverberate on ACCProxyAgentSide, allow bio primitives to be managed

at agent-side.

On node-side, as we have seen before, we were able to relegate the changes

only at the final stage of the operations flow; more specifically into the Re-
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spectVMContext and TupleSet classes. These aspects will be analysed care-

fully for each primitives.

In the following we expose singularly the fundamental bio primitives in

which we make substantial design choices, while the others, whose behaviour

were derived by the previous one, will be described shortly. We performed

one-one mapping between primitives and bio primitives, so their name does

not change. Since that, from this point forward we consider only bio TuCSoN

extension, and so when we talk about tuples or primitives, we actually refer

to bio tuples and bio primitives.

Bio out

It is shown below a bio out example, through TuCSoN agent code.

long mult = 5 ;

BioTuple tup l e = BioTuple . parse ( ” t e s t ( b io ) ” , mult ) ;

ITucsonOperation op = acc . out ( t id , tuple , null ) ;

Bio out : writes tuple in the target tuple space tid; if in tid there are a bio

tuple that matches tuple, merges them together summing up their concen-

tration values. Third parameter (null), representing timeout, is ignored for

the moment.

Observations. At design time we evaluated some aspects. In standard

TuCSoN, tuple space is reified, in TupleSet class, by a LinkedList. Suppos-

ing to insert, here, also bio tuples we will have in the same data structure

instances of two different kinds, a fact that leads to a bit confusion when we

want to retrieve them. Indeed, we should provide controls of type at each list

reading, modifying RespectVMContext class. Moreover bio out needs addi-

tional checks compared with standard out and so it is impossible to unify the

code of this two operations. To overcome these problems, we defined a new

LinkedList〈BioTuple〉, named bioTuples, splitting clearly standard space from

bio space. Due to this division, we have to update TupleSet inserting further

control methods, i.e. all the necessary methods to acquire information about
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the status of the two distinct spaces. So for example, we have to implement

isEmptyLogicSet() and isEmptyBioSet(), and so on.

As for bio out primitive, the changes are confined into add(LogicTuple t)

method of TupleSet, so that RespectVMContext remains unchanged. In this

method we plan, as first operation, to check the instance type through in-

stanceof command to choose between bio out code or out code1. Essentially,

more than standard version, bio out has to update concentration values con-

sidering the merging with an eventual matching tuple. Bio out needs as

argument a ground tuple with ground multiplicity. Otherwise the request

is not performed by agent, blocked thorough a specific control at invocation

time. Here below, we show the code that models bio out behaviour.

public void add ( LogicTuple t ){
i f ( t instanceof BioTuple ){

BioTuple bioT = ( BioTuple ) t ;

i f ( bioTuples . s i z e ()==0)

bioTuples . add ( bioT ) ;

else {
L i s t I t e r a t o r<BioTuple> l=bioTuples . l i s t I t e r a t o r ( ) ;

while ( l . hasNext ( ) ){
BioTuple tu=l . next ( ) ;

i f ( bioT . match ( tu ) ){
l . remove ( ) ;

long oldValue = tu . g e tMu l t i p l i c i t y ( ) ;

try {
tu . s e tMu l t i p l i c i t y ( oldValue + ( bioT ) . g e tMu l t i p l i c i t y ( ) ) ;

}catch ( I nva l i dMu l t i p l i c i t yExc ep t i on e ) {
e . pr intStackTrace ( ) ;

}
l . add ( tu ) ;

return ;

}
}
bioTuples . add ( bioT ) ;

i f ( t r an s a c t i on )

bioTAdded . add ( bioT ) ;

}
} else {

tup l e s . add ( t ) ;

i f ( t r an s a c t i on )

1It is necessary to preserve works of standard primitives because TuCSoN infrastructure

starts using LogicTuple.
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tAdded . add ( t ) ;

}
}

Controls over transaction field are necessary to ensure the transactional be-

haviour of ReSpecT reactions, as we will see later.

Bio in

Here we show two bio in examples, through TuCSoN agent code. The first

deals with a template with ground multiplicity, while the second considers a

template without specifying any concentration value.

Bio in with multiplicity:

long mult = 5 ;

BioTuple template = BioTuple . parse ( ” t e s t (X) ” , mult ) ;

ITucsonOperation op = acc . in ( t id , template , null ) ;

looks for a tuple matching template in the target tuple space tid that has a

concentration equal or greater than mult. If such a tuple is found when the

operation is served, the execution succeeds by removing from it the indicated

quantity and returning this tuple with concentration equal to mult. Other-

wise, the execution is suspended to be resumed and successfully completed

when a matching tuple, with the previous requirements, will be finally found

in, removed and returned from the target tuple space as explained before.

Bio in without multiplicity:

BioTuple template = BioTuple . parse ( ” t e s t (X) ” ) ;

ITucsonOperation op = acc . in ( t id , template , null ) ;

looks for a tuple matching template in the target tuple space tid. If such

a tuple is found when the operation is served, the execution succeeds by

removing this tuple entirely and returning it. Otherwise, the execution is

suspended to be resumed and successfully completed when a matching tuple

will be finally found in, removed and returned from the target tuple space.

Observations. Even now we decide to relegate all changes into TupleSet to
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preserve from transformations RespectVMContext. In particular we change

getMatchingTuple(LogicTuple t) that previously implemented only standard

in. Here, we specify the behaviour of the three basic case: standard in, bio

in with and without multiplicity. First separation is made always through

instanceof while the second one through BioTuple’s method isMulGround().

Bio rd

As before, we present two examples for bio rd extracted from TuCSoN agent

code. Ultimately, the only difference compared to bio in is that bio rd does

not remove matching tuple.

Bio rd with multiplicity:

long mult = 5 ;

BioTuple template = BioTuple . parse ( ” t e s t (X) ” , mult ) ;

ITucsonOperation op = acc . rd ( t id , template , null ) ;

looks for a tuple matching template in the target tuple space tid that has a

concentration equal or greater than mult. If such a tuple is found when the

operation is served, the execution succeeds by returning it with concentration

equal to mult. Otherwise, the execution is suspended to be resumed and suc-

cessfully completed when a matching tuple, with the previous requirements,

will be finally found in and returned from the target tuple space as explained

before.

Bio rd without multiplicity:

BioTuple template = BioTuple . parse ( ” t e s t (X) ” ) ;

ITucsonOperation op = acc . rd ( t id , template , null ) ;

looks for a tuple matching template in the target tuple space tid. If such

a tuple is found when the operation is served, the execution succeeds by

returning it with own overall concentration. Otherwise, the execution is

suspended to be resumed and successfully completed when a matching tuple

will be finally found in and returned from the target tuple space.

Observations. Similarly as before, we worked only into TupleSet class mod-
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ifying readMatchingTuple(LogicTuple t), this time without removing matching

tuple.

Bio out, bio in and bio rd are the basic primitives of BioTuCSoN (as well

as out, in and rd are for TuCSoN). The other ones are a sort of their variation

and so in the following we will point out only the distinctive characteristics of

each primitive. We want to underline that every primitive manages templates

with or without multiplicity, so the previous use cases can be extended to

the other primitives simply replacing primitive’s name.

Bio uin

Bio uin has exactly the same semantics of bio in save that the selection and

the extraction of matching tuple is probabilistic. This means that if two or

more tuples match the specified template, one is removed and returned with

probability given by its multiplicity.

ITucsonOperation op = acc . uin ( t id , template , null ) ;

Observations. In this case we modify both RespectVMContext and TupleSet.

We assign to RespectVMContext the task to verify whether or not template

multiplicity is set. This choice is taken principally due to considerations

linked to code readability. Unifying in a single function the management

of both cases, generates too complex code, since the probabilistic behaviour

requires additional operations compared to bio in. So we decided to make a

clear separation designing two different method into TupleSet:

• getUniformMatchingTuple(BioTuple templ): manages template without

multiplicity

• getUniformMatchingTupleGround(BioTuple templ): manages template with

multiplicity

Now we illustrate how we worked presenting the “ground version” and

explaining its behaviour through several steps. At first we have to select
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from the bio space, all the tuples that match the specified template (templ).

So we iterate over bioTuples list, but before applying Prolog matching, we

check if the considered tuple has a multiplicity at least equal to that of the

template. This expedient allows to achieve better performance since the

matching operation, which is relatively time-consuming, is performed only

on suitable tuples. So we insert all tuples that pass the two previous controls

into a temporary list (tmp).

. . .

while ( l . hasNext ( ) ){
BioTuple tu=l . next ( ) ;

long multTu = tu . g e tMu l t i p l i c i t y ( ) ;

i f (multTempl<=multTu){
i f ( templ . match ( tu ) ){

multTot += tu . g e tMu l t i p l i c i t y ( ) ;

tmp . add ( tu ) ;

}}}
. . .

After that we evaluate list size. If it is empty, the function returns null,

activating bio uin suspensive semantics. Otherwise, if it contains only one

element, we can immediately return it paying attention to remove the right

quantity, as specified by template multiplicity.

. . .

i f (tmp . s i z e ( ) == 0) return null ;

else i f (tmp . s i z e ( ) == 1){
BioTuple t = tmp . g e tF i r s t ( ) ;

while ( l . hasPrev ious ( ) ){
BioTuple t r = l . p rev ious ( ) ;

i f ( t . t oS t r i ng ( ) . equa l s ( t r . t oS t r i ng ( ) ) ) {
long multTr = t r . g e tMu l t i p l i c i t y ( ) ;

i f (multTr == multTempl ){
l . remove ( ) ;

i f ( t r an s a c t i on )

bioTRemoved . add ( t r ) ;

} else i f (multTr > multTempl ){
l . remove ( ) ;

i f ( t r an s a c t i on )

bioTRemoved . add ( t r ) ;

try {
t r . s e tMu l t i p l i c i t y (multTr−multTempl ) ;

}catch ( I nva l i dMu l t i p l i c i t yExc ep t i on e ){
e . pr intStackTrace ( ) ;
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}
l . add ( t r ) ;

i f ( t r an s a c t i on )

bioTAdded . add ( t r ) ;

}
AbstractMap<Var , Var> v = new LinkedHashMap<Var , Var>() ;

try{
return new BioTuple ( t r . toTerm(multTempl ) . copyGoal (v , 0 ) ) ;

}catch ( I nva l i dMu l t i p l i c i t yExc ep t i on e ){
e . pr intStackTrace ( ) ;

}
}}}
. . .

Finally, if tmp has more than one element, we have to implement a prob-

abilistic behaviour in order to select and retrieve with higher probability

tuples with higher multiplicity values. We consider the following algorithm:

as first it is computed a random value (r) from zero to the overall sum of

multiplicities of matching tuples (multTot), so we iterate over tmp list, up-

dating from time to time counter value, i.e. adding to it, at every turn, the

value of multiplicity of the considered tuple. If counter is equal or greater

than r, we extract from bio space the considered tuple, otherwise we repeat

previous step. Since counter, at last iteration, is necessary equal to multTot,

it is ensured that at least one element is retrieved.

. . .

else i f (tmp . s i z e ()>1){
long r = ( long ) (Math . random ()∗multTot ) ;

long counter = 0 ;

int i = 0 ;

BioTuple tup l e ;

for ( BioTuple t : tmp){
tup l e = tmp . get ( i ) ;

i++;

counter += tup l e . g e tMu l t i p l i c i t y ( ) ;

i f ( counter >= r ){
while ( l . hasPrev ious ( ) ){

BioTuple t r = l . p rev ious ( ) ;

i f ( tup l e . t oS t r i ng ( ) . equa l s ( t r . t oS t r i ng ( ) ) ) {
long multTr = t r . g e tMu l t i p l i c i t y ( ) ;

i f (multTr == multTempl ){
l . remove ( ) ;
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i f ( t r an s a c t i on )

bioTRemoved . add ( t r ) ;

} else i f (multTr > multTempl ){
l . remove ( ) ;

i f ( t r an s a c t i on )

bioTRemoved . add ( t r ) ;

try{
t r . s e tMu l t i p l i c i t y (multTr−multTempl ) ;

}catch ( I nva l i dMu l t i p l i c i t yExc ep t i on e ){
e . pr intStackTrace ( ) ;

}
l . add ( t r ) ;

i f ( t r an s a c t i on )

bioTAdded . add ( t r ) ;

}
AbstractMap<Var , Var> v = new LinkedHashMap<Var , Var>() ;

try {
return new BioTuple ( t r . toTerm(multTempl ) . copyGoal (v , 0 ) ) ;

}catch ( I nva l i dMu l t i p l i c i t yExc ep t i on e ){
e . pr intStackTrace ( ) ;

}
}}}}}}
. . .

Bio urd

Bio urd has exactly the same semantics of bio rd save that tuple reading

is probabilistic. This means that if two or more tuples match the specified

template, one is selected with probability given by its multiplicity.

ITucsonOperation op = acc . urd ( t id , template , null ) ;

Observations. Previous considerations are valid. We acted on RespectVM-

Context inserting the control over template multiplicity, and on TupleSet

defining as before two methods to manage templates with/without multi-

plicity.

Derived primitives

After we have defined bio out, bio in, bio rd, bio uin and bio urd the basic

operations of the others primitives is actually already implemented. So we do
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not have to make particular changes, but we exploit the existent mechanisms

to perform non-suspensive semantics and negative variations. For these rea-

sons, in the following, we only expose briefly the semantics of each primitive.

As before the primitive structure which we refer to is:

ITucsonOperation op = acc .<prmit ive >( t id , template , null ) ;

Bio no looks for a tuple matching template in the target tuple space tid con-

sidered also multiplicity constraint if this value is specified in template.

If no one tuple is found the operation is served, the execution succeeds,

and template is returned; otherwise, the execution is suspended to be

resumed and successfully completed when no suitable tuples can any

longer be found in the target tuple space, then template is returned.

Bio nop predicative version of bio no (non-suspensive semantics); if a suit-

able2 tuple is found the execution fails (operation outcome is FAIL-

URE) and tuple is returned.

Bio inp predicative version of bio in; if a suitable tuple is not found the

execution fails, no tuple (neither partially) is removed from the target

tuple space and template is returned.

Bio rdp predicative version of bio rd ; if a suitable tuple is not found the

execution fails and template is returned.

Bio uinp uniform version of bio inp, i.e probabilistic extraction affected by

multiplicity value and non-suspensive semantics.

Bio urdp uniform version of bio rdp, i.e probabilistic reading affected by

multiplicity value and non-suspensive semantics.

Bio uno/Bio unop uniform version of bio no and bio nop.

2with suitable we mean that the tuple matches template and satisfy multiplicity con-

straint if its value is specified
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4.3.4 Surrounding changes

Since we modify the primitive signatures into OrdinarySynchACC and Uni-

formSynchACC interfaces, we have to enable their management from tuProlog

agents, updating Tucson2PLibrary, and from command line, updating CLIA-

gent.

In order to allow tuProlog agents to use bio primitives, as first thing we

change Prolog theory that defines all operators and predicates available. To

ensure a syntax consistent with the previous examples, we split in two each

predicate, assigned one to template/tuple with ground multiplicity and one

to template with no multiplicity. Consequently, we define their behaviour

through specific Java functions (one for each predicate).

On the other side, to enable bio primitives application from command line

interface, we have to work on CLIAgent class. The request is read from input

stream and parsed by TucsonOpParser, so that it is possible to identify the

kind of primitive required and its tuple argument obtained as string value. In

turn, the string represents tuple has to be parsed in order to create a proper

BioTuple. This operation is done by parseCLI(String) function of BioTuple

class just introduced. The solution adopted permitted us to manage bio

primitIves exactly as standard primitives.

4.4 BioTuCSoN performance

After we have introduced bio primitives and tested that their behaviour is

coherent with the specified semantics, we focus on evaluating BioTuCSoN

performance. We take as a basis of comparison standard TuCSoN primi-

tives, in order to appreciate the advantages or disadvantages of the new bio

version. Not all primitives are considered but only the basic ones, because

the performances of others can be simply derived. So we proceed as follows:

first of all we describe the test planned, then we expose the achieved results

with some explicative graphs.
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4.4.1 Test environment

We want to analyse the performances of the five principal primitives (out, in,

rd, uin, urd) in standard and bio version, i.e. evaluate their execution time

values. For bio evaluations we consider both templates with and without

multiplicity. So we have to supervise five operations for TuCSoN and ten for

BioTuCSoN. The test environment is the same in both situations and sets up

in order the following actions. As first, we test out primitive filling the space

with nTupleTot tuples divided into nType different types. For BioTuCSoN

test we consider tuples in form of:

biotuple(test〈type〉(i), i),

while for TuCSoN:

test〈type〉(i),

where, type ∈ [1, 2, ..., nType] and i ∈ [1, 2, ..., nTuple], having that nTuple =
nTupleTot
nType

.

Now we can start to monitor the computational time for the others prim-

itives following a standard pattern: after selecting a specific type of tuple

(type), performs nIter iterations of rd/in/urd/uin primitive, searching any

tuple matches the template

biotuple(test〈type〉(X),M)

if multiplicity is not specified, or

biotuple(test〈type〉(X), r)

if it is, where r is a random number chosen in [1, 2, ..., nTuple]. On the other

hand, for TuCSoN we use the template

test〈type〉(X).

Since we have defined a parametric test environment, now we are able

to perform several tests shaping, to our taste, the content of the space. In
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order to evaluate primitives’ behaviour in different conditions we plan some

test benches each one with a specific purpose. However, in all simulations

we keep the value of nIter fixed to 10, because its function is only to reduce

the variability of a single execution of a primitive and to obtain a signifi-

cant amount of time that can be compared. As consequence, the other tests

concern about a sort of trade-off between the total number of tuples (nTu-

pleTot), the number of tuples for each type (nTuple) and the number of type

(nType).

In particular, we analyse two situations. As first, we hold nType fixed to

1 and increase of 1000 unit, at each new simulation, the value of nTupleTot,

starting from 5000 up to 10000. The purpose is to verify primitives’ behaviour

filling the space with more and more matching tuples. Then, we evaluate

how primitves manage “noise” tuples, setting as constant nTuple = 1000

and increasing, this time, nType. It means that reading/retriving primitives

can choose at every simulations from 1000 matching tuples in a space filled

of 1000× (nType− 1) “noise” tuples.

To be thorough, we list here the principal technical specific of the PC in

which the simulations take place. Processor: Intel(R) Core(TM)2 Duo CPU,

2.00 GHz; RAM: 4 GB; system: 32-bit Operating System.

4.4.2 Performance results

Now the achieved results are shown, describing it briefly in general and re-

porting in detail the comparison between uniform primitives of the two ver-

sions. In summary we can say that non-uniform primitives, both bio and

standard, exhibit a good behaviour in all simulations, maintaining stable ex-

ecution times that level off good values. They do not seem to be significant

affected by the different conditions of the space. Comparing bio in/rd with

and without multiplicity, we can notice that the first one takes slightly longer

to be carried out, probably due to the more operations required to manage

the concentration values.

More interesting considerations can be done in regards to uniform prim-
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itives. In this case, their execution times alter substantially on varying of

tuple space composition. We analyse separately the previous two situations.

Test bench: increasing matching tuples

The increase of the number of matching tuples does not influence signifi-

cantly the behaviour of standard uniform primitives that keep at a constant

value its execution time. On the other hand, we can identify a tendency for

bio uniform primitives to deteriorate their performances when they have to

manage an higher multitude of matching tuples. Both for bio uin and bio

urd, it is visible that “ground” versions settle to lower values of execution

times in respect to “variable” versions. The gap between them appears dif-

ferent depending on the kind of bio uniform primitive considered. This is not

a structural trend but it is probably due to their probabilistic behaviour. In-

deed, the execution time of ground versions is deeply influenced by the value

of multiplicity that we choose at random in the tests. These considerations

can be spotted in the two following graphs.

Test bench: “noise tuples”

In this test bench, an opposite situation take shape. Standard uniform prim-

itives manage with a big effort the presence of an increasing number of non-

matching tuples, while the bio ones limit the decay of performances. It is

important to underline that the next graphs report a logarithmic scale on

Y axis, i.e. bio primitives largely overcome standard ones in these operative

conditions.
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4.5 Bio ReSpecT

So far, we have focussed the attention on implementing an independent bio

version of TuCSoN, realizing its communication language (bio tuple) and

its coordination primitives (bio primitives). Now, we want to consider and

describe the bio extension of the coordination media, allowing ReSpecT to

manage bio primitives, i.e. programming tuple centres to react to and re-

spond with them. We have to highlight that meta-coordination language

and meta-coordination primitives are left unchanged. It means that, even in

our bio ReSpecT extension, the tuple centres are programmed by means of

specific logic tuples, called specification tuples, whose form is reaction(E,G,R)

and through standard meta-primitives. Basically, what we want to realize

can be formally expressed as follows. Given a BioReSpecT event Ev, a spec-

ification tuple reaction(E,G,R) associates a reaction Rθ to Ev if and only if

θ = mgu(E,Ev) and guard predicate G is true, and where:

E(Event) : any BioTuCSoN primitive previous considered.

G(Guard) : same as ReSpecT guard.

R(Reaction) : any BioTuCSoN primitive previous considered.

The key issues to evaluate are related principally with the matching be-

tween event and bio primitives. Now bio primitives involve bio tuples, and

so we have to establish an appropriate matching semantics, considering how

manage the multiplicity value. More in concrete, for example, considering a

reaction of the kind:
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reaction(out(biotuple(test,MT)), response, in(biotuple(test,MR))

where MT and MR could be a ground or variable multiplicity, and an event

such as:

out(biotuple(test,M))

it is questionable whether such kind of event implies the firing of that reac-

tion. We have three basic possibilities: approve the matching when M≥MT

or M≤MT or, finally, only in case M =MT. In our implementation we con-

sider the last solution, evaluating it as the more linear and consistent with

the previous works.

After we have defined when a reaction can fire, since the guard predicates

are exactly the same as for ReSpecT, we have only to focus on allowing

BioReSpecT engine to elaborate bio primitives.

4.5.1 Our work

Here, we illustrate the undertaken work process to realize BioReSpecT, fol-

lowing the code flow triggered by the reactions. For a more detailed descrip-

tion of ReSpecT engine behaviour you can refer to chapter 3. However, to

clarify we report, again, its state machine.
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The core class, in which reactions are managed, is RespectVMContext. As

we seen, this class, other than dealing with low-level management of primi-

tives, has also the function of checking the presence of triggerable reactions

by means of the essential method fetchTriggeredReactions(Event ev). It is in-

voked each time is necessary, to check eventual triggering reactions against

a specific event. Each event can be of three types: input, output or internal.

In every case, the role of this method is to analyse the operation related

to ev and so builds a proper Prolog term, called currentReactionTerm. In

turn, it will be used to create another Prolog term representing the reaction

template, related with ev. This reaction term has to be searched in the Pro-

log theory that implements the programmable behaviour of the tuple centre.

The reaction term is on the form of:

reaction( <currentReactionTerm> , Guard , Body )

where, Guard and Body are, for now, variables. Indeed, the only intent is to

looking for a reaction that presents as Event something that matches with

currentReactionTerm.

So as first intervention, we have to build, in the right way, currentRe-

actionTerm. We want also to alter as little as possible RespectVMContext,

always for ensure maintainability. For these reasons, the solution adopted is

simply to override the method toTerm(), defining a specific version for bio

tuples. So, thanks to Java polymorphism, it is possible to not change at all

the method considered, because it will be execute the right toTerm() version

depending on the native class of the instance involved in the operation.

As for bio primitives, we commit to the existent mechanisms all necessary

operations that ensure the correct system behaviour and concentrate our

labour on making available bio primitives for ReSpecT engine. It means

taking Respec2PLibrary into account. This class represents a tuProlog library

defining the behaviour of ReSpecT primitives, used inside ReSpecT virtual

machine. Since the entire system gets started on by means of reactions

involving logic tuples, we have to ensure the correct management both of bio

and standard primitives. So, briefly, for each primitive it is verified the type
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of the specific tuple involved and, depending on its nature, the proper code

is performed. The control is made through an utility method inserted at the

end of this class. Specific examples about BioReSpecT are illustrated in the

following chapter.





Chapter 5

Case study

To prove the capabilities of BioTuCSoN & BioReSpecT we consider a case

study extracted from the paper Biochemical Tuple Spaces for Self-organising

Coordination [19].

5.1 Service ecosystem

5.1.1 General context

We want to realize a basic infrastructure that models a space in which per-

vasive services compete and interact following simple nature-inspired rules.

These rules have to be selected and executed in a probabilistic way, as speci-

fied by Gillespie’s algorithm discussed earlier. The aim is to achieve a global

and complex self-organising behaviour arising from a limited and elementary

set of rules.

The idea is to reify this infrastructure through biochemical tuple spaces

disseminated on the network, each one with proper, general-purpose chemical

rules. The agents of the system, such as services, clients and devices, coor-

dinate them self interacting through such distributed coordination medium.

The relevance of the information is modelled by the concept of concentra-

tion. A higher value stands for a higher pertinence of that service. The

system dynamics as well as the services survival is governed by the evolution
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of concentration over time.

The case study considered here presents a simple scenario in which agents

compete and interact into a single node, with the mere intent of appreciating

the capabilities of BioTuCSoN & BioReSpecT in relation to self-organisation

and local competition of services.

5.1.2 Specific scenario

As expressed before, we now consider a simple scenario in which a single

tuple space mediates the interaction between services and users in an open

and highly-dynamic system. This means that there is no prior knowledge

about what kind of services will be deployed and how much they will be

requested and used.

In this condition, we want to check that: less requested services fade

until eventually disappearing from the system and, on the other hand, the

most useful services increase their concentration over time. Also, we want

to verify that in the competition between two services, the most efficient

wins over the other one. Services and clients interaction is regulated by the

following protocol:

defDs :=out(σ, publish(service(ids, desc))).callD′s

defD′s :=in(σ, toserve(service(ids, desc), request(Idc, Req))).

out(σ, reply(Idc, Rep)).callD′s

defDc :=out(σ, request(idc, req)).in(σ, reply(idc, Rep)) (5.1)

Service agents publish their service with out primitive, only one time,

at the beginning. Then they enter in a loop to serve requests from clients,

retrieving the request associated with their own service and inserting in the

space the reply computed. Dually, client agents put requests in the space,

waiting for the reply. It is responsibility of the system infrastructure to create

toServe tuples that bind service and request, based on some criteria ideally

affected by a certain semantic match degree.
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The tuple space has to be programmed with the following rules to allow

the desired self-orginising behaviour:

(DECAY) DECAY
r dec−−−→ 0

(FEED) publish(SERV)
r feed−−−−→ SERV |publish(SERV)

(USE) SERV |REQ
r use−−−→ SERV |SERV |toserve(SERV,REQ)

5.2 Test system architecture

After we had focussed the reference scenario, we realized a software system

to really execute tests on BioTuCSoN & BioReSpecT. The system, or eco-

system, is composed, essentially, by the following agents:

• TCConfigurator : its role is to configure the node where simulations

happen, i.e. sets reactions, publishes rules and then starts off the sim-

ulation.

• ServiceAgent : its role is to publish a specific service and to provide

replies to the related requests; there are as many ServiceAgent-s as the

number of services.

• ClientAgent : its role is to make requests; each request is modelled

as a single client, inserting in the space at a specific rate.

5.2.1 Tuple space programming

First of all, we have to illustrate the tuple spaces programming logic. It is

wrapped in the class TCConfigurator, that extends TucsonAgent. (DECAY),

(FEED) and (USE) rules are reified by specific ReSpecT reactions that, ac-

cording to [18], have to be selected and executed in a probabilistic way. To

simulate the chemical engine behaviour we exploit the concept of multiplicity

(or concentration) typical of BioTuCSoN. The idea is to put in the space as

many bio tuples as the number of rules, each one associated with a specific
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multiplicity value that corresponds to its own rate. For example:

biotuple(rule(decay), 1)

biotuple(rule(feed), 100)

biotuple(rule(use), 50)

So, each simulation step is started through a probabilistic read that selects

the rule to execute:

urd(biotuple(rule(R), C))

The time interval between steps are computed, non-deterministically, with

∆t =
log(1/τ)

R
,

extracted by Gillespie’s algorithm (τ :random number in [0,1]).

We have to clarify that this is a very simple approximation of chemical

engine. Some relevant aspects are not considered here. For example rule

rates are not affected by reagent concentrations and so a rule can be selected

even if in the space there are not its reagents. Or, also, it is not provided

any support of semantic match. Although we recognise these omissions, the

approach adopted is considered adequate for our purpose.

In particular, tuple centre is programmed with the following reactions:

reaction(out(biotuple(selection,X)), response, (in(biotuple(selection,X)),

urd(biotuple(rule(R), Rate)), out(biotuple(current rule(R), Rate))))

(5.2)

reaction(out(biotuple(current rule(decay service), Rate)), response,

(in(biotuple(current rule(R), Rate)), uin(biotuple(service(Ids,Desc), 1))))

(5.3)
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reaction(out(biotuple(current rule(decay publish), Rate)), response,

(in(biotuple(current rule(R), Rate)), uin(biotuple(publish(S), 1))))

(5.4)

reaction(out(biotuple(current rule(feed), Rate)), response,

(in(biotuple(current rule(R), Rate)), urd(biotuple(publish(S), C)),

out(biotuple(S,C)))) (5.5)

reaction(out(biotuple(current rule(use), Rate)), response,

(in(biotuple(current rule(R), Rate)), urd(biotuple(service(Ids,Desc), C)),

uin(biotuple(request(Idc,Desc), 1)), out(biotuple(service(Ids,Desc), 1)),

out(biotuple(toserve(service(Ids,Desc), request(Idc,Desc)), 1))))

(5.6)

(5.2) is triggered at the beginning of each step in order to select the

reaction to execute. Others simply map (DECAY), (FEED) and (USE) rules.

(DECAY) rule is subdivided in two reactions (5.3) and (5.4) to allow the

fading both of publications and services.

5.2.2 Services and clients

The active entities of the system are represented by ServiceAgent and Clien-

tAgent. Both extend TucsonAgent class and their behaviour is consistent

with the previous specification (5.1). Clients make requests probabilistically;

requests’ rates are one of the simulation parameters.

In addition, we have defined an agent that stands for monitoring the space

and, in particular, the evolution of service concentration over time.
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5.3 Simulations planned

Here we explain the simulations planned, their structure and aims. Conse-

quently, we present some graphs obtained from plotting the results of the

most significant instances.

We have defined four type of tests that coincide with as many again

classes. Each one have the function of establishing the connection with the

TuCSoN node and then launching the agents with the proper set of param-

eters distinctive of its specific simulation.

The first, called NoiseAndCompetition, presents some services asso-

ciated with a low demand and two highly popular services. The aim is to

check that the unpopular services settle their multiplicity value over time at

a low level while, in competition between the other two, the most required

service win.

Then, in the FeedAsDecay test, we set the same value for (DECAY) and

(FEED) rates. In this case, it is necessary to start with a high multiplicity

value for each service to ensure their initial diffusion. The purpose is to check

that the multiplicity value of the services increases over time mostly due to

the rule (USE).

As a third test we present TemporaryFeed that simply makes available

the rule (FEED) for a limited number of iterations. The aim is to check that

the multiplicity value of less required services vanishes over time.

Finally, the ServComp41Req test wants to simulate two services that

compete for replying the same kind of request. One service is more efficient

than the other, and the first should win the contest.

After several preliminary simulations, we set the value of some critical

parameters that will remain unchanged in all tests. A proper number of

simulation steps is setted in 10000: it is sufficient to identify significant

trends in the evolution of concentration value and not overly time consuming.

Another important parameter is the rate at which clients make requests. If

it is too high the system cannot manage all of them and crashes. On the

other hand, a too low rate implies slow system dynamics and does not put
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the infrastructure under enough stress. We suppose that the time interval

between requests is 1 second (expressed in millisecond, rate = 1 ÷ 1000 =

0.001).

The parameters are presented in the following order: first we show the

available services with the associated probability request (i.e. probability that

a client asks exactly that service), then rate request and number of simulation

iterations, fixed parameters; after we consider the number of iterations in

which (FEED) rule is available (null value means that is always available, it

is setted not null only in TemporaryFeed test). Finally, we report the rates

of the rules, one of the most critical and influential parameters.

5.3.1 NoiseAndCompetition

Low noise

# Se rv i c e s −> Req . prob

# s9 −> 1.0%

# s8 −> 1.0%

# s7 −> 1.0%

# s6 −> 1.0%

# s5 −> 1.0%

# s4 −> 1.0%

# s3 −> 1.0%

# s2 −> 1.0%

# s1 −> 30.0%

# s0 −> 62.0%

# Rate r eque s t = 0.001

# N. i t e r a t i o n s = 10000

# (FEED) i t e r . = null

# Rate r u l e s :

# decay pub l i sh = 1

# decay s e r v i c e = 2

# feed = 50

# use = 25

We report two graphs obtained from two simulations with the same set of

parameters. In this case, the request’s probability for secondary services is

very low (1%) while, as concerning the primary ones, one has double request’s

probability than the other. The trend appears well-defined, with the noise
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due to less requested services confined to low value.

In the first graph it is interesting to highlight that, at the initial stage,

service s3 obtains a high concentration value, likely due to a consecutive

choice of rule (FEED) for that service. However this initial fluctuation does

not compromise the system dynamics and concentration value settles at a

low level. In this sense, the system can be defined as “stable”.

High noise

# Se rv i c e s −> Req . prob

# s9 −> 5.0%

# s8 −> 5.0%

# s7 −> 5.0%

# s6 −> 5.0%

# s5 −> 5.0%

# s4 −> 5.0%

# s3 −> 5.0%

# s2 −> 5.0%

# s1 −> 25.0%

# s0 −> 35.0%

# Rate r eque s t = 0.001

# N. i t e r a t i o n s = 10000

# (FEED) i t e r . = null

# Rate r u l e s :

# decay pub l i sh = 1

# decay s e r v i c e = 2

# feed = 50

# use = 25

Here noise level was slightly increased, but we can still observe that it

does not damage the correct evolution of service concentration. However,

the trend is now less clear than before. Even now initial fluctuations do not

compromise the following system behaviour.

(FEED) rate Vs (USE) rate

Maintaining the previous request probabilities (s0 : 35%, s1 : 25%, others

5%) and the same values for rate request, n.iterations and (FEED) iter., we

want to analyse the evolution of service concentration changing only the ratio

between (FEED) rate and (USE) rate.
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# Rate r u l e s :

# decay pub l i sh = 1

# decay s e r v i c e = 2

# feed = 50

# use = 50

# Rate r u l e s :

# decay pub l i sh = 1

# decay s e r v i c e = 2

# feed = 50

# use = 100

# Rate r u l e s :

# decay pub l i sh = 1

# decay s e r v i c e = 2

# feed = 100

# use = 50

We have to pay special attention to this series of graphs. At first sight

we might be quite surprised. A greater (USE) rate might lead us to think

that more requested services would be rewarded while increasing the value of

ratio(= use rate÷feed rate) in favour of the (USE) rule, the trend seems to

be less well-defined. But, actually, looking carefully, we can notice that this

unexpected behaviour appears only at the initial stage and it is correct. A

high (USE) rate implies that a small initial fluctuation, due to a probabilistic

choice of (FEED), will accentuate, rewarding the services just published. In

spite of this wrong parameter setting, the system appears ”stable”, even if it

takes longer to stabilize the correct trend.
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5.3.2 FeedAsDecay

Here we want to check the system dynamics when (FEED) rate is equal to

(DECAY) rate. Since there are two rules that reify (DECAY), we present

three different settings of parameters, trying to explore some interesting com-

binations. The parameters, that are not specified, have the same value as

before.

# Rate r u l e s :

# decay pub l i sh = 1

# decay s e r v i c e = 10

# feed = 10

# use = 100

# Rate r u l e s :

# decay pub l i sh = 1

# decay s e r v i c e = 1

# feed = 1

# use = 50

# Rate r u l e s :

# decay pub l i sh = 5

# decay s e r v i c e = 5

# feed = 10

# use = 50

As we can observe from the graphs, all services start with a specific con-

centration value (specifically 50) that is setted for each one at the first pub-

lication. This is necessary to ensure their initial diffusion in spite of (FEED)

rule and (DECAY) rule have similar rates.

The equilibrium between (FEED) rate and (DECAY) rate implies the

disappearance of the initial fluctuations, a fact that confirms the previous

assertions.



5.3 Simulations planned 89

5.3.3 TemporaryFeed

We report here results of simulations in which (FEED) rule is available for

a limited number of steps, specifying only the changed parameters.

# (FEED) i t e r . = 500

# Rate r u l e s :

# decay pub l i sh = 1

# decay s e r v i c e = 2

# feed = 200

# use = 50

# (FEED) i t e r . = 1000

# Rate r u l e s :

# decay pub l i sh = 1

# decay s e r v i c e = 2

# feed = 200

# use = 50

# (FEED) i t e r . = 3000

# Rate r u l e s :

# decay pub l i sh = 1

# decay s e r v i c e = 10

# feed = 100

# use = 50

# (FEED) i t e r . = 5000

# Rate r u l e s :

# decay pub l i sh = 1

# decay s e r v i c e = 10

# feed = 100

# use = 50

The initial fluctuations are very accentuated in the first two simulations

(feed rate = 200) while less emphasized in the last two (feed rate = 100).
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However, in all four cases, a slight downward trend of concentration value is

visible related to less requested services when (FEED) rule is made unavail-

able. On the other hand, the two popular services are not affected by the

elimination of the rule and continue to increase their concentration thanks

to (USE) rule.

5.3.4 ServComp41Req

These simulations deal with the competition of two equiprobable services for

serving the same kind of request. We want to check that the more efficient

service increases its concentration to the detriment of the other one.

# Se rv i c e s −> Req . prob

# s1 −> 50.0%

# s0 −> 50.0%

# Rate r eque s t = 0.001

# N. i t e r a t i o n s = 10000

# (FEED) i t e r . = null

# Rate r u l e s :

# decay pub l i sh = 1

# decay s e r v i c e = 2

# feed = 100

# use = 50

# Se rv i c e s −> Req . prob

# s1 −> 50.0%

# s0 −> 50.0%

# Rate r eque s t = 0.001

# N. i t e r a t i o n s = 10000

# (FEED) i t e r . = null

# Rate r u l e s :

# decay pub l i sh = 1

# decay s e r v i c e = 2

# feed = 50

# use = 100

In both simulations the most efficient service wins the competition. Ser-

vice s1 takes three times as long as service s0 to reply to the same kind

of request, which means that s0 manages more clients’ requests than s1.

To allow that concentration value increases according with the number of
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served clients, a small change in the system is necessary. In particular we

have to ensure that a service is not rewarded when the related tuple toserve

is chosen but effectively when the service makes the reply available. For this

purpose we modify the rule (USE) removing the rewarding insertion of tuple

service(Ids,Desc) and assigning this task to ServiceAgent after it has put the

reply into the space.





Conclusions & Future works

The achieved results prove that BioTuCSoN & BioReSpecT provide inter-

esting mechanisms to model systems characterized by some basic form of

self-organisation and situatedness. In particular, we have demonstrated that

this infrastructure faces well local competition between services, satisfying

one of the behaviours described in chapter 2 concerning biochemical tuple

spaces model.

Further tests would be necessary to inspect the capabilities of our im-

plementation as regards spatial competition or gradient-based patterns. Ac-

tually, the software developed to realize the case study was designed also

to support a distributed architecture composed by several tuple centres, in

different network nodes, that interact spreading probabilistically their tuples

according to a specific rule named (DIFFUSE). However, due to some in-

frastructural problems, it was not possible to realize concrete tests on this

issue.

It is also valuable to point out that we have obtained good results in

spite of the fact that we have not exploited the functionalities proper of

a chemical engine. This means that our extension, associated with some

probabilistic methods of rules’ execution, suffices to implement simple forms

of coordination based on nature-inspired patterns.

We can, also, consider BioTuCSoN & BioReSpecT as a foundation from

which to start to define a full version of the biochemical tuple spaces model.

A first aspect is the integration of a chemical engine, following Gillespie’s

algorithm, as basic mechanism of the infrastructure, for example adding a
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specific Java class that provides such functionalities. Another key issue is to

enable some kind of semantic reasoning for matching operations. A possible

solution could refer to the notion of domain ontology using description logic

to define relationship among its elements. Finally, according to paper [18],

it is necessary to associate to bio primitives a probabilistic behaviour based

on the described DTMC model. This aspect could involve some significant

changes to BioTuCSoN core.

In conclusion, we can assert that our work, starting from the analysis

of background researches on nature-inspired computational models, leads to

the implementation of a stable and independent bio extension of TuCSoN

that reveals good results as for local competition and self-organisation of

services. It is a first step towards a full implementation of the biochemical

tuple spaces model, that is a potential approach, nature-inspired, to deal

with the new requirements of current pervasive environments. The idea be-

hind these researches and this thesis is to change the relationship between

human and technology. Users no longer exploit technology, but technology

exploits users’ preferences to shape the status of the environmental (compu-

tational) artifacts in order to satisfy, in every moment, the necessities of the

people around. This vision entails a better management of the information,

providing their more convenient presentation, so that to enrich social context

and, ultimately, to improve daily life.
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pazzi... non credo esistano persone piú divertenti e “imbarazzanti” di loro!!

... E per ultimi i famigerati BBoys, troppi da elencare (lo pensa anche il mio

freezer!!), ma tutti a loro modo unici.. per tutti i week-end, sempre diversi,

in posti esotici e lontani.. sono come una seconda famiglia ed é bello sapere
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