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ABSTRACT

L’oggetto del presente elaborato di tesi e costitdal progetto preliminare di
un sistema GPS per il calcolo del posizionamentative fra un utilizzatore

mobile(o fisso) e una stazione fissa, di cui sooie te coordinate.

L’'accuratezza associata alle misure di fase GRSpei il modello relativo alle
“singole differenze”, sia per quello relativo atldoppie differenze”, puo essere
sfruttata per ottenere una stima della posiziotegiva tra i ricevitori, solo dopo

aver risolto il problema delle ambiguita iniziaismciate alle misure stesse.

Questo aspetto rappresenta I'aspetto piu critidle aeisure di fase, perché nel
caso l'aggancio del segnale di un satellite vengesq I'ambiguita intera
corrispondente, precedentemente individuata, péirdegnificato, e deve essere

determinata nuovamente una volta ripristinato laggo.

Una prima parte della trattazione e quindi incdatra evidenziare I'aspetto
teorico delle equazioni implementate dall’algoritnie particolare il modello
delle doppie differenze e il metodo LAMBDA, utila per risolvere le

ambiguita.

Una seconda parte € invece dedicata ai dati spei@hettenuti e al progetto
del software in ambiente Matlab.
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CHAPTER 1

SCOPE

1.1 Aim

Differential GPS carrier phase measurements havehmawer noise and
multipath error than that of pseudorange measurtsneHowever, the
measurement of the carrier phase has a constanbwnkinteger ambiguity.
Several technical issues are related to solvingntieger ambiguity correctly.

In this report , the full procedure for paramet&tireation based on the model of
double difference GPS observations is reviewed.  TABDA method will be
used for the integer ambiguity estimation, evenafwill not focus our attention
on the theoretical and mathematical aspects ahithod.

Using the double difference technique, we have ldpvéhe relative position
between two receivers, called baseline.

Moreover, if the location of one of the receivehsither referred to as the
reference receiver, is known to some accuracy, the postifaine other receiver,
therover receiver, can be computed at the same accuraclytbe accuracy of
the baseline estimate. This positioning technicuealled real-time kinematic
positioning (RTK).

The Matlab implementation has been made with tixedf receivers(static
mode), but in general there are no difficultiesnt is mobile.



1.2 Work organization

This thesis concentrates on precise positioninggudual signal frequency.

The goal is to examine the precision attainablegiglouble-frequency GPS
receivers. A method for precise positioning is #ddThe method expected to
be capable of achieving centimeter-level precisbrt with its respective
restricting conditions. Field experiments usinghaatic GPS data are conducted
to assess if these methods could provide goodipaisity performance.

The thesis is organized as follows: the history &adkground of satellite
positioning with the fundamental equations and mesasent are discussed in
Chapter 2

Chapter 3 deals with the LAMBDA method, and a brief pargdras also
dedicated to the least squares and weighted lepstress estimation. These
chapters are summaries of already existing knovedtigt is available in the
literature.

Experimental results and test setup are present€tiapter 4 and conclusions

are summarized and discussedimapter 5.
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CHAPTER 2

GPS SYSTEM AND OBSERVABLES

2.1 GPS

NAVSTAR, the Global Positioning System—commonly known as GPS—was
developed for military purposes, by the United &tatit is controlled by the
U.S. Department of Defense (DOD) and became fudgrational in 1995.

GPS positioning is based on trilateration, i.e. patimg the receiver position
when distances to some reference points (heresdtedlites) are known. The
atomic clocks of all GPS satellites are mutuallyjayonized and thus the
satellites (also referred to @pace vehicles, SV) are able to transmit time
synchronized ranging signals.

Currently, GPS signals are transmitted in the Lebaintwo frequencies: the
Link 1 (L1) signal at 1575.42 MHz and Link 2 (L2) E27.60 MHz. However,
the L2 signal is encrypted and only available foose authorized by DOD.
Some highend receivers are able to measure sonte qfathe L2 signal, but
unfortunately those receivers are too expensivenfass-market. Initially, the
civil-use L1 signal was intentionally distorted dithering the satellite clocks.
This interference, calle@elective Availability (SA), was switched off by a
presidential order in May 2000.

The GPS satellite constellation consists of abdutsatellites with orbits of

radius 26000 kilometers. The period for this radsua few minutes less than 12

! In the ideal case. The clocks are however subjedtifts due to e.g relativistic effects
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hours. During one pass, a satellite is visible tstationary receiver for a few

hours . A GPS user is usually able to get a pasftioin about one minute.

2.2 Coordinate Frames

In order to express locations, a coordinate frarastroe defined. For terrestrial
positioning, a natural choice is a system whereotiggn lies at the center of the

Earth. There are two approaches to this:

Earth-Centered Earth-Fixed (ECEF) : The axes are fixed to some points on

the Earth and the frame rotates.

Earth-Centered Inertial (ECI) The frame retains its directions with respect to

some fixed celestial bodies despite the rotatiotnefEarth.

For personal positioning, ECEF is the obvious chdiecause it retains the
coordinates of objects stationary with respect he €arth time-invariant.

However, ECI is useful in some position computatjoaspecially in inertial

navigation systems because Newton’s laws of motiomot apply in ECEF

frames due to the rotation.

From this point on, ECEF frames are consideredssri¢herwise mentioned.

12



Figure 1: ECEF coordinate system

The coordinate frame needs to be fixed on the ecarfaf the Earth. The
conventional way of doing this is to fix tlzeaxis along the axis of rotation of
the Earth, thex-axis along the equatorial plane to some referenegdian and

to define they-axis such that it completes the frame to a riginieled Cartesian
coordinate system.

This principle is depicted in Fig 1. Actually, thgis of rotation of the

Earth varies within time. Therefore, the z-axis barchosen to pass through the
Conventional Terrestrial Pole which is an average estimate of the North Pole
between 1900 and 1905. A frame defined this wagaited aConventional
Terrestrial Reference Frame (CTRF) .

Cartesian coordinates are inconvenient for exprgdecations on the Earth.
Therefore, the positions are usually expressedheo user in thdatitude-
longitude-altitude (LLA) coordinate system. However, to express @i, the
surface of the Earth must be modeled. Conventipnthis is done by modeling
the Earth as an oblate ellipsoid. For example WS84 reference ellipsoid is
defined to have semi-major axis 6356.7523142 km saushred eccentricity
0.00669437999014. Zero eccentricity would corregpgora sphere.

In relative positioning, where the goal is to contepthhebaseline vector from a
13



reference point to the user, the most convenient iwaexpress the baseline is
the localeast-north-up (ENU) frame. A poink in the ECEF frame is transferred
to the local ENU frame of the reference point btating the baseline vector

according to the latitudke and longitudey of xO:

—sing COS® 0
XgNy = | —SinAcosg —sinising cosA|( x- x0)
COSA cos@ COSAsing  SinA

The coefficient matrix is the product of two dinect cosine rotation matrices.
The transformation from ECEF to LLA is nontrivialuto the inverse
transformation can be computed in closed form. Atgms for these

transformations can be found in e.qg. [7].

2.3 Signals

The signals consist of three essential parts: @ecavave, a ranging code, and a
navigation message.. These are discussed in detag following subsections.

The structure of the Gps signal is show in Figure 2

2.3.1 Carrier Wave

The signals are modulated on a sinusoidal carrerewThe modulation type
depends on the GNSS. GPS uses binary phase skifmkelulation (while
GALILEO signals are modulated by binary offset cod@dulation). Even
though the carrier wave might seem to serve ontypfopagating the signal,
measurements based on it are actually the keyrtbneeter-level precision as

will be seen in Chapter 4.
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2.3.2 Ranging Code

Measuring the distance from the receiver to thellgattransmitting the signal is
done by observing the phase of the ranging code.
Definition 2.1. The correlation of two sequenceandy with y delayed by

samples is

corr(x,y,d) = Z X;Vi—d

L

Ranging codes are binary sequences satisfying dtlewfng correlation
properties:
1- Autocorrelation: The code does not correlate aiithelayed or advanced
copy of itself unless the delay or advance is etpufl i.e.corr(x,x,d) =
0 when d# 0.
2- Cross-correlation: The code does not correlate tghcode of another
satellite with any delay, i.eorr(x,y,d) = 0 when x£ .

These properties are required to ensure that thalites can be correctly
identified from the code and that two copies of slaene code can be uniquely
aligned by maximizing the correlation. Identifyirtige satellites by the code
seqguence constitutes a code division multiple ac@BMA) system.

Property 2 does not hold for GLONASS because GLOSIAsatellites are
identified by their carrier frequency, not the codeich is actually the same for
all GLONASS satellites. Thus, GLONASS is a frequentivision multiple
access (FDMA) system. Due to the properties 1 andrjing codes are called
pseudo-random noise (PRN).

Typically, Gold codes are used as ranging codesy thn easily be generated

15



using simple linear feedback shift registers, amelytdo satisfy both of the
desired properties. Gold codes are maximum lerggiences, i.e., the length of
a Gold code is"21 wheren is the length of the shift register used to germerat
the code.

For example, the GPS 1023-bit coarse acquisitiof\)(€Codes, used on the
unencrypted L1 signal, are produced using 10-hit sgisters.

To measure the range, the receiver generatesieargplthe ranging code of
the desired satellite and aligns it with the oreeneed by the antenna. Then, the
receiver compares the transmission time tag o$igpeal and the time of arrival

estimated by the receiver’s clock. The delay neededign the codes is the

estimated range divided by the propagation spedldeosignal which is equal to
the speed of light c. However, since the receieckccannot be synchronized
with the satellites, the bias in the clock introdsican offset to the range
measurements. These biased range measurementdladepseudoranges. The
offset is common to all pseudoranges measuredéyetteiver and therefore can
be solved for as an additional unknown.

The magnitude of the noise in code measurementsndspon the duration of
one code bit (chip). The receiver can measure ¢haydy some fractions of one
chip. E.g. the GPS C/A code chipping rate is 1.023z. Thus, one chip
corresponds to approximately 300 meters in distaigpically, the noise in
these measurements is in the order of decimetevkich corresponds to a

thousandth of a chip.
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2.3.3 Navigation Message

The third component in the signal is the navigatimssage. It contains the data
necessary to compute the receiver position, suclsaisllite ephemerides,
satellite clock and atmospheric corrections, and #imanac (approximate

ephemerides for determining which satellites shaalan view).

To compute the receiver position, ephemeris infoiongor few satellites must
be available. In GPS, the ephemeris and satelliiek data is broadcast every
30 seconds. In other systems, this data is broadé@En as well. The whole
navigation message takes 12.5 minutes to broadca&iPS . In an Assisted
GPS (AGPS) system, it may be possible to obtaim#wessary navigation data
from another, faster link to decrease the time adetd compute the receiver
position, i.e. théimeto first fix (TTFF).

Broadcast ephemerides are usually accurate to swtes. If the positioning
Is carried out in post-processing mode, post-coegpprecise ephemerides can

be used to enhance the solution.

17
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18

L1 Sipngl
18752 MHz



2.4 Measurement models

In this chapter, the basic GNSS measurementgode and carrier phase, are
discussed. Error sources and the effect of sa&tejj@gometry on the solution

accuracy are also reviewed.

2.4.1 Code phase observable

The purpose of the code phase measurement is @nudeé the distance
between the satellite and the receiver. The psendermeasurement is derived

from the code phase. The pseudorapder satellitel is the difference between

the time of transmissiotf) and time of arrivatfl"), shifted by the receiver clock

biasst and satellite clock biast®.
The parenthesized superscripts refer to satellte dnd are not exponents. This
time difference is scaled to meters by the speédybf c and distorted by the

measurement erroes?):
0 — O —_+® _ s+ ()
pt =c(t,” +6t—tg —6tW)+e

The error terme® contains some mutually independent components:
atmospheric effects and unmodelable errors. Thesgheric effects for GNSS
signals mainly occur in two atmospheric layers: flbaosphere and the
troposphere. The ionosphere contains ions whiclecaffelectromagnetic
radiation propagating through it. This results irdelay to the ranging code
phase. The magnitude of the ionospheric delay dbpen the amount of free
electrons in the ionosphere. It is at its maximumthe afternoon when solar
radiation has ionized molecules in the ionosphackat its minimum during the

night when the ions have recombined to moleculé® ibnospheric effect is

19



dispersive, i.e. the magnitude of the delay depemughe frequency of the

signal. Thus, a dual-frequency receiver is ablestimate the ionospheric delay.
lonospheric delay corrections are also broadca$iiGPS navigation message.
The troposphere is the atmospheric layer where hgegbhenomena occur.
Signal propagation speed through rain is slowen that during clear weather
conditions because water has a higher refractexrhan air. The tropospheric

delay is not dispersive, therefore it can only sineated by using some

tropospheric model.

Distance of
Main Signal

\Main Signal —

g

Signal ”

h“‘“—«

i

Distance of Reflected Signal

]
]
[
[
]
]
]
]
[

Figure 3: Multipath Propagation

Expanding the error term, the pseudorampgecan be modeled as:

VX = x)2 4+ —y)2+ (Zi— 2z )2+ c by +c- b+ I; + T; + My + vy,
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Where:

* p; IS the pseudorange calculated by the receittem the satellite

 X;,Y;,Z; are the components, in the ECEF system, of th@weacisition
of the satellite (obtained from the ephemeris data)

* X,V Z are the components, in the ECEF system, of thewposition
of the receiver

e cisthe speed of light in the vacuum

* b, is the receiver bias

* b; is the satellite bias

» [; is the ionospheric delay

» T; is the tropospheric delay

e M, is the multipath error

* v, Is the measurement error of the receiver

Using at least four pseudorange measurementsnitrowns (three components
of receiver position and the receiver clock biasah be estimated. Since the
pseudorange equation is nonlinear with respectet®iver position, it is

traditionally solved by linearization and least-agps methods even though

closed-form solutions exist. ( See Chapter 3).
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2.4.2 lonospheric delay

The ionosphere is the zone of the terrestrial gpimeie that extends itself from
about 60 km until more than 2.000 km in high. Asidime says, it contains a
partially ionised medium, as result of the X and k3ys of Solar Radiation and
the incidence of charged particles.

The propagation speed of the GNSS electromagnigimals in the ionosphere
depends on its electron density (see below), wisctypically driven by two

main processes: during the day, sun radiation caosésation of neutral atoms
producing free electrons and ions. During the nigit recombination process
prevails, where free electrons are recombined watis to produce neutral

particles, which leads to a reduction in the etactiensity.

A medium where the angular frequenreynd the wave numbé&rare not
proportional, is a dispersive media (i.e., the wakapagation speed and thence,
the refractive index depends on the frequency).sTibi the case with the

ionosphere where andk are related, in a first approximation,*by
w? = c*k? + w; (1)
wheré :

w, = 2mf, with f, =8.98,/N, inHz (2)

beingN, the electron density (ine”/m’). A complete derivation of this
relationship can be found in [Davies, 1988 the updated higher order terms
in [McCarthy,D. and Petit,G., 2009], typically lebsn 0.1% of the total delay.

2 crawford, 1968
3 Davies, 1989
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The previous equation is named fRetation of Dispersion of the ionosphere,
andw, is called the critical frequency of the ionospheslasma, in the sense
that signals withw < w,, will be reflected and signals with > w, will cross

through the plasma.

The electron density in the ionosphere changes with height having a
maximum of 16'— 10? on 300-500 km. Thence, according to the expression,
electromagnetic signals wifh> f, ~10°Hz will be able to cross the
ionosphere. This is the case of GNSS signals winexfuencies are at the order
of 1 GHz = 18 Hz. Radio signals with frequencies undiemwill be reflected in

the ionosphere.

From equation (1), and taking into account that 2zf and the definition
of phase and group velocity

w dw
Vph = X Vgr = dk (3)
it follows:
C
vph - (4')
2
)
f
Thence’
c C 5)
n, =—= n,, =—
P v I v,

* [Hernandez-Pajares et al., 2007] Hernandez-Pajiresuan, J. and Sanz, J.,2007. Second-ordesjbesic
term in GPS: Implementation and impact on geodstiimates . Journal of Geophysical Research. J1.2,-f6.
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the phase refractive index of the ionosphere caapipeoximatedby:
~ /A% 1(f,\" . 403
Tlph— 1—<7 ~1—§ 7 —1—?]\[3 (6)

At the frequency of GNSS signals, the previous axipration accounts for
more than the 99.9% of the refractivity (first ardenospheric effect). That is,

with less than a 0.1% of error, it can be assumed:

40.3
7z Ne

nph=1—

(7)

Differentiating the equation (1) with respectktand taking into account (3), (5)

and the approximation done before , yields tloeigrefractive index:

40.3
ngr =1+ 2

Ne (8)

Finally, the error on the pseudorange estimatdiained integrating, along the
path L of the signal in the ionosphere, the differenceveen the refractive
index (8) and the the refractive index of the spafddyht in the vacuum,1.

40.3 40.3
Il-=f(ngr—1)dl:?jNedl=—-TEC

Total electron content(or TEC) is an important descriptive quantity for
the ionosphere of the Earth. TEC is the total nunabelectrons present along a
path between two points, with units of electrons pguare meter, where
10' electrons/m? = 1 TEC unit (TECU).
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TEC is significant in determining the scintillatiand group delay of a radio
wave through a medium. lonospheric TEC is charaeer by observing
carrier phase delays of received radio signalsstnatted from satellites located
above the ionosphere, often using Global Positopr8gstem satellites. TEC is

strongly affected by solar activity.

GDHGPS Vertical lonospheric Delay at 23-Aug-2011 21:15:00
In reters at L1

Latitude (deg)

120°W  &0°W a® 60°E 120°E 180*
Longitude (deg)

Figure 4: lonospheric delay

2.4.3 Carrier Phase observable

We now introduce the carrier phase observable,wisicised for high precision
applications.

We start with the basic concepts, starting withrtieaning of “phase”. We then
go on to describe the process of observing thaetgohase, and develop an
observation model. Fortunately, most of the moadal be reduced to what we
have learned so far for the pseudorange. Unliket nreogbooks, we take the

approach of presenting the model in the “range fism”, where the carrier
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phase is expressed in units of metres, rather tlgales. However, there are
some fundamental differences between the carrias@land the pseudorange
observables, as we shall see when we discuss “paadeguity” and the

infamous problem of “cycle slips”.

The Meaning of Phase and Frequency

“Phasé is simply “angle of rotation,” which is conventially in units of
“cycles” for GPS analysis. Consider a point movargi-clockwise around the
edge of a circle, and draw a line from the cenfréhe circle to the point. As
illustrated in Figure 5, the “phasé(t) at any given timécan be defined as the
angle through which this line has rotated.

Phase is intimately connected with our concepimét which is always based
on some form of periodic motion, such as the rotabf the Earth, the orbit of
the Earth around the Sun (*dynamic time”), or tiseikkation of a quartz crystal
in a wristwatch (“atomic time”). Even our repremdat of time is often based on
rotation, such as the angle of the hands on treedfa clock. Angles of rotation
give us our measure of “time.” In this way, phaae be thought of as a measure
of time (after conversion into appropriate unitde can write this

formally as:

T(t) = k(¢(t) = ¢o)

» Tis the time according to our clock at time t (wévweer the clock may be)
* ¢y = ¢(0)is so that the clock reads zero whent =10
* k is a calibration constant , converting units gtles into units of

seconds
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Indeed, we can take the above equation addfeition of clock time. Whether
of not this clock time is useful depends on thestamncy of rate of change of
phase. This brings us to the concept of frequency.

The “‘frequency,” expressed in units of “cycles per second,” is tltumber of
times the line completes a full 3600 rotation ire@econd (which of course, is
generally a fractional number). This definition semewhat lacking, since it
seems to assume that the rotation is steady oeerdhrse of one second. One
can better define frequency instantaneously adirgtederivative of phase with

respect to time; that is, the angular speed.

_do(t)
f= dt

We chose to treat phase as a fundamental quaatit/frequency as a derived
guantity. For example, we can say that frequeneydsnstant, if we observe the
phase as changing linearly in time. Constant freques the basis of an ideal
clock. If the frequency can be written as a cortstn then we can write the
phase of an ideal clock as:

Didear = fot + ¢
therefore

Tigear = kfot

Since we want our a clock second to equal a cororaitsecondT.,;=t), we
see that an appropriate choice for the calibratmmstant i% = 1/f,, wheref,
is the nominal frequency of the oscillator. Goirark to our original equation

for clock time, we can now define clock time as:

d(t) — P

ro=—
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Figure 5: The meaning of phase

At time t, the height of poinfi(t) above the centre of the circle in figure 5 is
given by:

A(t) = Apsin (2 (t))

WhereA, is the radius of the circle. Since the conceppludse is often applied
to periodic signals, we can cadlt) the “signal” and4, the “amplitude of the
signal”.

For example, in the case of radio waweg) would be the strength of the
electric field, which oscillates in time as the waasses by. Inverting the above
formula, we can therefore determine the phaée) if we measure the signal

A(t) (and similarly, we could infer the clock time).

Note that, for an ideal clock, the signal wouldéeure sinusoidal function of
time:
Ajgear = Aosin (2 Pigear)

= A, sin(2nfyt + 2mehy)

= (Apcos(2mey)) sin (2rfyt) + (Agsin(2mepy))cos(2mfyt)

= A} sin(wgyt) + A§ cos(wyt)
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where the “angular frequencyl, = 2nf,t has units of radians per second. For
a real clock, the signal would the same sinusdidattion of its own “clock

time,” (but would generally be a complicated fuantof true time):

A(T) = A} sin(w,T) + A§ cos(w,T)

We note that the nominal GPS signal takes on tlwealorm, except that the
signal is modulated by “chips”, formed by multipigi the amplitudegly (for
C/A code) anddj (for P code) by a pseudorandom sequence of +1.0Fhe
underlying sinusoidal signal is called the “carsggnal.” It is the phase of the
carrier signal that gives us precise access tgdtwdlite clock time; therefore we

can use this phase for precise positioning.

The carrier beat signal

The GPS carrier sign@(t) from the satellite is “mixed” (multiplied) with the
receiver’'s own replica carrier sign(t). The result of this mixing is shown in

Figure 6.

Reference signal

A oA v f -'. f '
I'lll'l,'r lII\..IIQII'u':IIr‘Illl'.'Ill Il_'IJ UrlllllJlr U’Hf‘ll 1“"' h Iln'll. "J'llnll,, \, \Iulrlll' I.,l'll ll}I(LI \.I GPS Signa1

Reference x GPS

Beat signal

Figure 6: Producing a beat signal by mixing theieaand replica signals

29



Mathematically, one can show that one would exghet result to be the

difference between a low frequency signal and & fngquency signal:

R(t) ® G(t) = Gysin (2w (t)) X Rysin (2mpg(t))

GoR
22 [cos2m(9e(0) — #6(1)) — cos2((6) + B (1)

The high frequency component can be easily filteoed by the receiver
electronics, leaving only the carrier beat signal.
B(t) = Filter{R(t) ® G(t)}
GoR
= 02 - COSZT[(¢R (t) — ¢ (t))

= Bycos2n(pp (t))

where we have introduced the carrier beat plggge), which is defined to be

equal to the difference in phase between the eglgnal and the GPS signal.

¢p(t) = Pr(t) — dg(2)
By differentiating the above equation with resgedime, we find that the “beat

frequency” is equal to the difference in freques@éthe two input signals.

d
£ = ¢5

dt =fr—f¢
We note that the above formulas apply even whewdhger phase is modulated
with codes, provided the replica signal is also atatdkd (because the values of -
1 will cancel when multiplying the two signals).tife codes are not known, it is
possible to square both the incoming signal and rédpdica signal prior to
mixing. The problem with this is that squaring aifips the noise, thus

introducing larger random measurement errors.
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Origin of the Phase Ambiguity

Our model of carrier beat phase not a completeiggcisince we can arbitrarily
add an integer number of cycles to the carrier pbase, and produce exactly
the same observed beat signal.

Suppose we only record the fractional phase ofitsemeasurement. We would
have no way of telling which integ®& to add to this recorded phase so that it
really did equal the difference in phase betweenréplica signal and the GPS
signal. This is fundamentally because we have mectlimeasure of the total

phase of the incoming GPS signal. We can expréssashfollows:

@+ N =¢r— ¢

where we use a capital Greek symtpaio emphasise that it represents the phase
value actually recorded by the receiver. Providedreceiver does keep track of
how many complete signal oscillations there havenbeince the first
measurement, it can attach this number of cyclehaonteger portion of the
recorded beat phase. However, there will still heogerall ambiguityN that
applies to all measurements. That is, we can maodels being the same
(unknown) constant for all measurements. If theine looses count of the
oscillations (e.g., because the signal is obstdjcte because of excessive
noise), then a new integer parameter must be intexi to the model, starting at

that time. This integer discontinuity in phase datealled a “cycle slip.”

31



Interpretation of Phase Ambiguity

The reader might also be wondering if there is sdamel of geometrical
interpretation forN. It turns out that there is, but it does requiems
oversimplified assumptions. By definition, the uokm value of N can be
written as:

N = (integer portion of ¢p — ¢p;) — (integer portion of @)

The second term is completely arbitrary, and depamdthe receiver firmware.
For example, some receivers set this value to foerthe first measurement. Let
us assume this is true, and drop this term. Fos#ke of interpretation, let us
now assume that the receiver and satellite cloekp lperfect time. Under these
circumstances, the first term would equal the iatggprtion of the number of
signal oscillations that occur in the receiver frahe time the signal was
transmitted to the time the signal was received.cafe therefore interpré as
equal to the number of carrier wavelengths betwiberreceiver (at the time it
makes the first observation), and the satellitetifat time it transmitted the
signal). Of course, we made assumptions aboutgietfecks and the particular
nature of the firmware; so we must beware not ke tiois interpretation too

literally.

2.4.4 The Carrier Phase Observation Model

We now move towards a more rigorous treatment ef darrier beat phase
observable, building on our concepts of phase ahkmixing. Our notation
will change slightly in preparation for further ddeopment.

The carrier phase can be modeled as:
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(¢jr+1\/jr)/1=rjr+c-br+c-bj—Ij+Tj+mjr+ujr

Where

* ¢j. is the phase given from the receiver ;
* Nj, is the initial integer ambiguity;
e A is the carrier wavelength;

* ;. Is the geometric distance between the sateléiteljthe receiver r;
* m;, is the multipath error;

* ujr is the measurement error of the receiver

This measurement is significantly more precise thase phase measurements.
Typical noise levels in code and carrier phase oreasents are compared in
Figure 7. The measurements shown in the figure legiged using a

stationary consumer-grade receiver.

However, only the phase can be measured, not tiéeuof full carrier cycles.
The unknown integer number of carrier cycles is @mmly known as the
integer ambiguity. As long as the receiver tradies signal uninterruptedly and
remains locked to it, the integer ambiguity remaspnastant. Thus, subtracting
two consecutive carrier phase measurements toame satellite cancels the
integer ambiguity and gives a precise estimatehefdhange in pseudorange
between these measurements.

This idea is discussed further in Chapter 3. THemrince of two consecutive
carrier phase measurements is also known as the idlge, and the carrier
phase itself is sometimes referred to as accuntutta range.

The carrier phase measurement is corrupted byahe frror sources as the

code phase. However, while code phase is delaydtironosphere, the carrier
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phase is advanced. Also, carrier phase measureaenshifted by satellite and

receiver clock drifts (frequency biases), not iheetbiases.

Code Camer
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Figure 7: Noise in code and carrier phase measursmeéOnly differences between
consecutive measurement are shown, not absolutefsunements. The carrier phase were
scaled to meters by the signal wavelength for easimparison
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CHAPTER 3

NAVIGATION SOLUTION

3.1 Problem formulation

In this chapter, a simple method for positioningings carrier phase
measurements is presented and discussed. The nmihnades information on
the user position relative to the receiver locaabsome instant .

The major problem in using the carrier phase measents for positioning is
the integer ambiguity present in the measurementveyer, it is known that the
ambiguity remains constant as long as the recemetinuously tracks the signal
maintaining phase lock. Therefore, the ambiguity ba cancelled by forming
differences of two measurements by the same rectvthe same satellite at
different epochs of time provided that no cycleslhave occurred, i.e., the
tracking truly has been continuous. The differerafe two carrier phase
measurements yields a precise estimate of the ehangange between the
receiver and the satellite during the time betwhermeasurements.

In addition to canceling out the integer ambigtgym, the effect of other time
and/or location correlated error sources is redicaahot totally canceled their
derivatives remain present. Thus, atmospheric atellise clock and orbit errors
are diminished. Since the derivatives of thesesallgresent in the solution, the
accuracy of the time-differenced measurements wedlgrade with time.
Fortunately, these errors do not change rapidlyinne, compared to, e.g., the
clock dithering caused by SA, which was a strongtivadon for the

development of differential positioning methods fartunately is deactivated at
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the moment. Therefore, the trajectory of the remecan be computed for some

short time interval.

3.2 Single Difference

The purpose of “single differencing” is to elimirasatellite clock bias. The
model is based on differencing the phase measutsmbatween two

receivers,(the first one is fixed and the coordisatre known), relative to the
same satellite at the same epoch: if the basdishort (less than 30 km), the

common errors like ionospheric and tropospheriaylean be delete.

Satellite |

.-~ Baseline

Antenna o Antenna p

Figure 8: Single differencing geometry
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Considering the phase model (2.4.4), indicatindp Withe measurements taking
by the fixed receiver and with M the measurememgtthb mobile (or fixed) one,

for the j-satellite the single difference model Icbioe write as:

(pjr + Njp)A=1p+c-bp+c-bj— L+ T+ mjp + pjp
(pjmy + Ni)A =ty +c-by+c-bj— L+ T +mpy + ujy

(8p; +ANDA = (bjar + Ning)A = (b + Ny )
=Tjm + € by + My + pjy — (T + ¢ - bp + My + Wjr)
=T — 1jp + ¢+ (by — bpy + (mjng — myp) + (Wim — 15r)
=Ttjm — Tjp + - Ab + Am; + Ay,
where
* Ad; = (Pjm — djF)
* AN; = (Njy — Njr)
* Ab=by —br
* Amy =myy —myp

* Apj =iy — Wr

An assumption has been made, that the satellitek clmas is effectively
identical at the slightly different times that thsignal was transmitted todnd to

M. The difference in transmission time could beragh as a few milliseconds,
either because the imperfect receiver clocks haied away from GPS time
by that amount, or because the stations might jparated by 1,000 km or more.
Since selective availability is typically at thevé of 10° (variation in frequency
divided by nominal frequency), over a millisecod@s) the

satellite clock error will differ by 1s. This translates into a distance error of

10*%c, or 0.3 mm, a negligible amount under typical 86&ditions (however, it
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may not be negligible if the level of S/A were ieased; but this effect could in
principle be corrected if we used reference reesit® monitor S/A). Another
point worth mentioning, is that the coordinatestité satellite at transmission

time can easily be significantly different for ree F and M.

The atmospheric delay terms are now consideralolyced, and vanish in the
limit that the receivers are standing side by sitlee differential troposphere
can usually be ignored for horizontal separati@ss than approximately 30 km,
however differences in height should be modelldue @ifferential ionosphere
can usually be ignored for separations of 1 to B0 #epending on ionospheric
conditions. Due to ionospheric uncertainty, it issevto calibrate for the

lonosphere using dual-frequency receivers for desa greater than a few km.

Although the single difference has the advantagé mhany error sources are
eliminated or reduced, the disadvantage is thay oglative position can be
estimated (unless the network is global-scale).ddeer, the receiver clock bias
Is still unknown, and very unpredictable. This ks to “double differencing”.

3.3 Double Difference

The purpose of “double differencing” is to elimiaateceiver clock bias.
Consider the single differenced observation equatfor two receivers Rnd

M observing satellitesandk:

(Ag; + AN;)A =17 — Tjp + ¢ - Ab + Amj + Ay
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(A¢)k + ANk)}{ =Tem — Tkr +c-Ab+ Amk + A,le

The double difference phase is defined as therdiffee between these two:

(VAgj + VAN )A = (Ad; + ANj)A — (Ady + AN)A
= Tjy — Tjp + Amy; + Apy — (e — T + Amye + Apy)
= Tjm — Tjp—Tiem + Tir + (A — Amy) + (A — Ay

= T'jM — er_TkM + TkF + VAm]k + VA‘Ll]k

where
VAGj = Adj — Ay

VAm, = Am; — Amy,

VA = Apy — Ay

As more than one double difference is needed &t m@asurement epoch for
computing a position fix, the between-satellitdatiénces can be constructed in
many satellite combinations.

If there are k single differences available, onkl8ouble differences can be
constructed without redundancy.

One of the satellites is chosen as the base (erem@ie) satellite. All double
differences are formed with respect to this sageliie. between satellites (1, 2),
1,3),...,(1, k).

Usually, the satellite with the highest elevatiogle is chosen as the base
satellite because signals coming from higher elenattravel a shorter time
through the atmosphere and therefore are lessequdgyionospheric and

tropospheric errors. They are also less prone fapath. The evident drawback

39



of all measurements depending on one satelliteaisit the base satellite signal
is lost, all double differences and their possiigl§olved integer ambiguities will

be lost.

3.4 Baseline estimation process

We now deal exclusively with double difference garmphase measurement
currently available. The carrier phase measuremebi fromK satellites give
K —1 double difference equations at each epoch. A-fitaguency receiver
would provide another set df — 1 equations from the measurement at L2.
While the phase tracking is continuous, three neéknawns (new position
coordinates) are introduced at each epoch if teeigsn motion, and none if the
user is stationary. Consider static initialization.

There are B+ (K —1)] unknowns for single frequency measurements and
[ 3+ 2(K —1)] unknowns for dual-frequency measurements andr twee,
many more equations.

We expect the estimation process to be helped Byndant measurements,
good satellite geometry, dual-frequency measuresnamd significant change
in satellite geometry over the observation perlddmodeled errors would hurt.
The errors generally grow with the baseline lengtit, significant multipath at
either station can pose a challenge.

Double difference equations is linear in the intsgebut nonlinear in the
position coordinates. In order to estimate thesamaters, we will try to form
an over determined system of linear equations ahdesit using the least

squares criterion and the LAMBDA method.
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3.4.1 Linear Model for position estimation

The position of the stationary reference stationsFknown, and we are
interesting in estimating the position of the u@d) relative to the reference

station.

Consider a generic double difference equation forier phase. For a short

baseline, we can delete the multipath error.

(VAP x + VAN )A = Ty — Tip—Tien + T + VAR

For obtaining an estimate of the vectgy, the relative position between the two
receiver, we can linearize the equation of doubfeer@nce ,given an initial
estimate of the relative positidh,.

Linearazing in a neighbourhood of the vedgg the model descending is:
(VA}ji + VAN )A = Tingo = Tip—Tiemo + Tier + (hjpr — hienr) - Syt — Smo) + €

Where

» Sy isthe vector of relative position between the teceivers;

* Suo IS the reference vector for the linearization;

Sem Xy — Xp Sxmo Xmo — Xr
SM = SyM = YM — YF SMO = SyMO = YMO - YF
Szm Zy —Zf SzMo Zmo — Zr
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o = J X — (X5 = Sewro))2+(Y) — (V= Syuo))? + (Z; — (Zr — Syaro))?

him = Viulg,

_ !(XF —Semo) =X (Yr=Symo) =Y (Zp = Samo) = 7

Timo Timo Timo

e = VAuy

This equation constitutes the measurement modbkktoonsidered for solving
the problem. Therefore, the application of doubfeecence method performs a

relative positioning, because permits a baselitismaton.

Chosen the satellite 1 as the reference, writingsnthe number of visible

satellite,we regrouping terms and defining :

AVAp,1 — Topmo + Tor + Timo — Tir
y(t) = 5
AVADL1 — Tamo + Tnr + Timo — T1F
hom — him
G(t) = :
hoy — hypy
VAN;,
N = :
VAN, ,
VAu,,
£ = :
VA.unl
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6s = Sy (t) — Syo(t)

The linear equation derived from the double diffieemodel is

yt)=G({t)-6s+A-N+1-¢(t)

We can combine all such linear equations obtainau Single or dual
frequency measurements at measurement epidtb & generic vector matrix

representation

y(@)=G@{A)-6s+A-N+21-€(i) (3.1)
where
* y(i) denotes the difference between the measured anputed carrier
phase double differences for the initial positistireate;
» (i) is the observation matrix characterizing the deutifference user-
reference station satellite geometry;
* 4s is the error in the initial position estimate;

* N s the vector of double difference integer ambigsito be estimated,;
If there areK double difference measurementigj) is aK x 3 matrix andN is
a K vector. = n-1 for single frequency measurements, akid 2:(n-1) for

dual frequency measurements, where n is the nuailsatellites in view).

Consider a simple case of stationary user, the measurement epoch brings

additionalK equations
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yi+1)=G{i+1)-8s+A-N+21-e(i+1) (3.2)

We can combine (3.1) and (3.2) as:

[}’(}l](-ll-)l)] - [G(le(-ll-)l)] $0s +4 [ﬂ N+ [g(f(-:;)l) (3.3)

For a general case of measurements , perhaps fopleepochs, we can write
(3.3) as:

y=G:-6s+A-N+A-¢

Using the least squares criterion, we look fora-valuedss 3-vector and &

vector of integer®&’ which minimize the cost function

c(és,N) = ||y—G-5s—A-N||2 (3.4)

The cost function is simply the sum of the lengiheesidual vectors squared. In
a kinematic case,s would change from one measurement epoch to nagteT
is no difficulty, however, in formulating the prawsh as above. Note also that if
we have a basis for assigning different weighthidomeasurements, we can
formulate (3.4) as a weighted least squares pmabée’ll revisit this issue

below.

Minimization of (3.4) would be straightforward eve it not for the constraint
that each element of N be an integer. We have anteger |least-squares

problem. We could disgregard the constraint to ntakeroblem routine and, in
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fact, this approach is commonly used. An altermsivto limit the estimates to a
set of integers, and then ‘search’ this set forliést solution. In principle, we

can obtain the solution with measurements forrglsiepoch.

3.4.2 Least Squares

The method of least squares assumes that theibesivie of a given type is the
curve that has the minimal sum of the deviationsased (east square error)
from a given set of data.

The “estimated residuals” are defined as the wiffee between the actual
observations and the new, estimated model for biserwations.

Consider a generic linearised equation

b=B-x+v
Where

* b is the residual observation (observed minus coeatpabservations)
* x is the vector of the unknown
* B is the observation matrix of the unknown

* v is the matrix column vector contains all the ndesens, which are also

unknown at this point

Let us consider a solution for the linearised oketon equations, denoted.

Using it, we can write the estimated residuals as

vV=b—B-X
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The “least squares” solution can be found by vayyime value ofx until the
following functional is minimised:

m

](x):z:vi2 =vTv=0B-B-x)T(b—B-x)

i=1

That is, we are minimising the sum of squares efdhktimated residuals. If we
vary x by asmall amount, thep(x) should also vary, except at the desired
solution where it is stationary (since the slopa ddinction is zero at a minimum
point). The following illustrates the applicatiohtbis method to derive the least

squares solution.The minimum of the sum of squasefound by setting
the gradient to zero:

5J(®) =0
S{(b-B-2)T(h—B-%)}=0
S(b—B-)T(b-B-2)+(B—-B-2)T8(b—-B-%)=0
(=B-62)T(b—B-%)+(b—B-2)T(-B-62) =0
(=2B-86%)T(b—B-%) =0
(62T -BTY(b—B-%) =0
5%#T(B"h — BTB%) = 0

BTB% = BTb

The last line is called the system of “normal eouret’. The solution to the
normal equations is therefore:

Xx=(B"B)"1B™b
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This assumes that the inverseBbB exists. For examplen> 4 is a necessary
(but not sufficient) condition. Problems can existfor example, a pair of
satellites lie in the same line of sight, or if gaellites are all in the same orbital
plane. In almost all practical situatioms,> 5 is sufficient. Alternatively, one
parameter could be left unestimated (e.g., thehheaiguld be fixed to sea-level

for a boat).

3.4.3 Correlations among the double difference mearements

We have assumed the measurements(both code ared)daom the satellites in
view to be uncorrelated. In particular, the covace of the carrier phase

measurements at an instant is modeled as

_ 2
2p = 0pl

where oy, is the standard deviation of the phase measuremant! is the

identity matrix. We make this simplifying assumption the absence of a
simple, truer model. In this section, we examine torrelations among the

single and double differences.

The single differences corresponding to a pair ai€lstes can be written in

matrix notation as

k
u

oy _[1 —10 0] k
plr] 100 1 -1lfgpl
Lo

| —

a7



The covariance matrix of this pair of single diéRce is

- 2
_1-1007{0 95 O -1 0
st_o 0 1—1] gg O[O0 1
0 o2|t0 -1
¢

— 2

We, therefore, conclude that if the measurementiacerrelated, so are their
single differences. The common variance of thelsidgferences is twice that

for the carrier phase measurements, as we had pogenusly.

Now, on to the double differences. Taking satelliés the reference, we can

write a pair of double differences correspondingdtellitest, [ andm as

ml=lo 1 1)|#!
m|~lo -1 1w
¢ur

The covariance matrix for this pair of double éiffnces is
_ .22 1
Ydd = 204 [1 2

The double differences are correlated even if tigeral measurements are not.
Forn satellites ,the covariance matrix of double ddfere will be gn — 1) x

(n — 1) matrix.
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3.5 The LAMBDA method

LAMBDA method (Least-squares AMBIguity DecorrelatidAdjustment) is a
procedure for integer ambiguity estimation in Grphase measurements. After
applying a decorrelating transformation, a seqaémnditional adjustment is
made upon the ambiguities. As a result, integestisquares estimates for the
ambiguities are obtained.

We reformulate the problem as one of estimatifig, a 3-vector of real

numbers, and, a vector of integers, which are solutions of
y=G:-6x+A-N+A-¢

given that the covariance afis ) ;4. In other words,findx andN which

minimize a revised cost function

c(6x,N) = ||y—G-6x—A-N||§V
=(y—G-6x—A-N)TW(y —G-65x—A-N)

which uses the inverse of the noise covarianceixndtr= Y71 to give different
weights to the contributions of the residuals. &lgorithm implementation

comprises 3 steps.
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3.5.1 Stepl

The first step is obtain float solutions: disgrebtre constraint of the
ambiguities and obtain solutions @ andN which minimizie the cost
function. We now use the weighted least squarésrimn to account for the
correlations among the double differences.

In LAMBDA this is only the first step, which endstivthe float solutions for
the position and ambiguities and their covarianegrim. We now show the

mathematical process of this first step.
Let the vecto¥x contains the three components of the baselinghendector

N contain ambiguities for the L1 frequency and gagdior the L2 frequency.

The double differenced observations are collecteatie vectoly.

[G A] [iﬂ =y + errors

We shall not not derive the weighted least squastsmator here,but for
completeness, the solution is given here:

% = (BTSB)"1BTSh

where}’ is the covariance matrix of the residual.
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Applying this result to our method, the formal swuo is

P

~1 T -1
[(j:] = [fl;] YaalG A]] y Z;] *Ddd Y

67%0aG  GTXaaA] . GTde] _

AT 0aG A" aaA A" aa

_[ 9 Qan,ﬁ]. GTde] .y
Qan,ﬁT Qn ATY 4q

y

(3.5)

Where
5x| . . . .
. [A] is the float solution,Qs; and Qg the corresponding covariance
N

matrices;

Qsz 5 9ives the cross-correlations between the two.

3.5.2 Step 2

In the second step we have to find the integerové¢twhich minimize the cost

function
c(N) = (N=R) Wy(N - N) (3.6)

whereN is the float solution from step 1 and the weiglatn Wy is the inverse

of its covariance matrik/y = Qg5 .
Step 2 is the heart of LAMBDA method. The measurdistance of an integer

vector N is given by (3.6). The contour of points with anstant value of the

cost function is an ellipse in two dimensions and elipsoid in higher
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dimensions, centered &. The search space is delimited by selecting the

the ellipsoid to be searched via a parameter v&lied. The inequality
(N-N) wy(N-R)<d

defines the integer vecto which are candidates for the solution. The search
space consists of the integer grid points insidelkgpsoid.
Clearly, this search space must be large enougbritain the right answer and

small enough to be searched quickly.

In practice, the constant-cost ellipsoids can kg edongated, longer by orders
of magnitude in one direction that in another, Tikispecially the case when the
measurements are limited to a single epoch or femhyepochs.

The result is that points which appear much fartheay from N may have
lower values of the cost function than those wilaippear nearby.

Brute force search, therefore, would be inefficient

What's needed is a change of variable which would the elongated ellipsoid

into a sphere so that the search can be limitéltetoeighbors ofV.

If the weight matrix Wy is diagonal, the minimization of the cost functisn
trivial. The best estimate of the integer ambigugythe corresponding float
estimate rounded off to the nearest integer.

A diagonalW, would mean that the integer ambiguity estimatesha float
solution are all uncorrelated. In generf,, would not be diagonal, and the
objective of step 2 is to introduce a change ofaides so that the resultant

correlation matrix is diagonal.
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Wy is a positive semi-definite matrix and it would app that diagonalizing it
would not be a problem. We can use the matrixsoéigenvectors to transform
the variables. Actually, this approach will not wothere because the
transformation will not preserve the integer natafeambiguities. We have to
restrict the transformations to those that takegets into integers. Actually, the
inverse transformation must do the same, too, aowk can find the solution of
the original problem. The required transformatilbmust satisfy the following

conditions

e Z must have integer entries;
e Z must be invertible;

« Z~1 must have integer entries

These conditions ensure that there is a one-ta-@lagonship between integers
in the original and transformed spaces.
Consider a hypothetical transformatio@ in this restricted class of

transformations which diagonalizd . Let

M=ZN and M =ZN

The cost function in the transformed space is
(M- M) (ZTWyZ~ )M — 1)

Since Z-TWyZ~! is diagonal, we find the solutions fad right away by

rounding off each element dff. We now transform the problem back and find

N from
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N=Z1m

LAMBDA would be a simple algorithm ifi¥’y, could be diagonalized using our
restricted class of transformations. Unfortunatéhgt's almost never the case
and the integer ambiguities are not decorrelatég ILAMBDA involves many
subtle steps to transfori,, into a matrix that is nearly diagonal as possible
[Teunissen(1996)].

For a mathematical procedure of the method. see

Onginal LANMBDA Transformed

a 1 2 3 4 a’ ] —a5

Figure 9: The confidence ellipse for two doubldetiénces

® Paul de Jonge and Christian Tiberius(1996). Th&IB®A method for integer ambiguity
estimation:implementation aspects.
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3.5.3 Step 3

After the integer solutio® is found, we substitute it fd¥. Consequently, the
solutiondx changes tdx. In order to determinéx we multiply the lower block
in (3.5) by Qgz yQ5 ", and subtract from the upper block.

Calling

R = GTdey L= ATdey

equation (3.5) became:

1. 6x = Q53R + Qgz gL
N=0Qsz R+QzL
2. 6x = QszR + Qszpl

Q5807 N = 05005 Qs R+ QsznQy QL
Remebering tha®;' Q5 = I and subtracting ,we obtained
6x — QsznQ3' N = (02 — 052503 Qs IR
Rewriting the expression faf anddx
§x — QsznQ3' N = (0sz — 052503 Qs IR
Subtracting each other,

6x — Qs 5Q5'N — (6x — Qs 50Q3'N) = 0
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8x = 6x — Qs5Qy (N - N)

The right side is known, andx is quickly found.
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CHAPTER 4

EXPERIMENTAL TEST

4.1 Setup description and equipment used

The field tests were done using one kind of reaeivde time-difference
method was evaluated using a commercial-grade RfgBaeceiver. Double-
differenced solutions were computed from data measby a pair of dual-

frequency capable NovAtel ProPak-V3 receivers .

Figure 10: Novatel ProPak-V3
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NovAtel's ProPak-V3 is a durable, triple-frequer@@NSS receiver that tracks
GPS + GLONASS as well as L-Band and SBAS. When @oatbwith one of

NovAtel's rugged GPS-700 series antennas, the RryBaprovides superior
tracking performance, positioning accuracy andabglity. It also supports USB
communications and Inertial Measurement Unit (IM&ghnology .We take up

next the ProPak V-3 main aspects.
Features

L1, L2, L5, L-Band and SBAS tracking
 GPS only for GPS + GLONASS
« Rt-2™, RT20®, ALIGN®, API, GL1LDE® and 50 Hz firmwarmptions

¢ Aluminum enclosure

Benefits

» Multi-constellation tracking vyields higher solutioavailability and
reliability

 Durable metal enclosure ensures reliable positnim harsh
environments and EMI conditions

» Same easy-to-use interface as the ProPak-G2 plus

» Upgradeable receiver firmware ensures easy upgyadirfuture signals
as soon as they are available

» Supported by industry’s highest level of custonsvice
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Attributes

System type Enclosed

General info Length (mm) 185.00
Width/diameter (mm) 160.00
Height (mm) 71.00
Weight (g) 1000.00
Typical power consumption (W 2.80

Constellation GPS
GLONASS

Tracking Max Num of Frequency Triple
L-Band
SBAS

Performance Accuracy RMS
Single Point L1 1.5m
Single Point L1/L2 1.2m
SBAS 0.6 m
DGPS 0.4 m

Table 1: Novatel attributes
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Measurement Precision

GPS GLO
L1 C/A Code 4cm 15cm
L1 Carrier Phase 0.5 mm .5 rhm
L2 P(Y) Code 8cm 8cm
L2 Carrier Phase 1.0 mniL.5 mm

Advanced multipath mitigation

The ProPak-V3 provides superior multipath rejectitmse to the antenna and in

high multipath environments.

Supports NovAtel SPAN Technology

A single cable from the ProPak-V3 to an IMU createsobust GNSS/INS
system that provides continuous 3D position, vé&yoand attitude, even during
periods when satellite signals are blocked. Théesyslelivers measurements at
100 Hz data rate.

The test was a static one, in which both receivemsain stationary at precisely
known positions, to verify the quality of the preea algorithm.

Data, as said before, were collected by two ProR&kreceivers, with 1 Hz of
sampling rate.

Base receiver was placed on a reference landmatk woordinates 44
12'0.36”N, 12°3'45.72"E  and [4478920.0484 m; 95Z¥El15 m;
4424113.3286 m] in ECEF system;
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The user receiver, has coordinates °14468.92”"N , 12° 3'49.68"E, and
[4478933.3172 m; 957241.0112 m; 4424076.2166 ra)JGEF system;

Differencing the two ECEF coordinates of the used #he receiver we can

estimate the baseline ECEF coordinates betweenvthe

957241.0112 m 957152.4415m 88.5697 m

14478933.3172 m] [4478920.0484 m] [ 13.2688 m ]
4424076.2166 m 4424113.3286 m —37.1119m

The norm of the baseline is the distance ,in meé&txyeen the two receivers.

13.2688 m
norm 88.5697 m| | =96.9430m

—37.1119m

L]oogle ear

Data di acquisizione delle immagini: 8/4/2011  44°12'01.17/N  12°03'52.70°E elev 25

Figure 11: Google Earth image of the receiverstmrsi

61



The solution was attained through a least-squarethod with a priori
information . The standard deviation for phase measent was set to 0.001 m.
Baseline components were calculated epoch by epeth LAMBDA

methodology, described in Chapter 3, using floatbigoity values from

measurement processing in each epoch by leastesgquar

4.2 Test analysis

The data were collected in tridimensional matraedjexd OBS2 (data for the GPS
receiver 2) and OBS1( data for the GPS receiveiTthg characteristic of the

observation matrix are

OBS= timex satellitesx parameters

Where

» time is the number of epochs of samples;

» satellites is the number of GPS satellites (32);

» parameters are 11 data recording by the GPS recemweur tests, the
only parameters that we use are tfflea®id the B respectively, the phase
on the L1 frequency and the phase on the L2 fregyen
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In our test the observations matrix were

OBS1=111/A& 32x 11
OBS2=111/& 32x 11

Clearly, at the moment ,not all the 32 satellitesemn view, so we try to built
up a 2D matrix for the carrier phase. In facthié time column has a 0 on the
first epoch, the satellite is clearly not in vieWhe result was that both the
receivers were observed 10 satellites. We elimi(et¢e Matlab code) the zero
value sample epochs, and obtain four phase matrocfor the L1, and two for

the L2,for both receivers. The first row is the menof the satellite.

1 3 6 11 14
1.1126e+08 1.2077e+08 1.2640e+04 1.0631e+08 1.2687¢e
1.1126e+08 1.2077e+08 1.2640e+04 1.0631e+08 1.2687¢e
1.1125e+08 | 1.2078e+08| 1.2640e+0¢ 1.0631e+08  1.1687e
1.1125e+08 | 1.2078e+08| 1.2641e+0¢ 1.0631e+08  1.1687e
1.1125e+08 | 1.2078e+08| 1.2641e+0¢ 1.0631e+08  1.1687e
1.1125e+08 | 1.2079e+08| 1.2641e+0¢ 1.0631e+08  1.1688e
1.1125e+08 | 1.2079e+08| 1.2642e+0¢ 1.0631e+08  1.1688e
1.1124e+08 1.2080e+08 1.2642e+0¢ 1.0630e+08 1.3688e
1.1124e+08 | 1.2080e+08| 1.2643e+0¢ 1.0630e+08  1.1688e

Table 2: First receiver phases on the L1 frequéacthe first 5 satellites (9 epochs)
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19 20 22 28 32
1.1176e+08 1.2000e+08 1.2208e+0¢4 1.2694e+08 1.1084e
1.1177e+08 1.2000e+08 1.2208e+0¢4 1.2694e+08 1.13084e
1.1177e+08 1.2000e+08 1.2208e+0¢4 1.2693e+08 1.1083e
1.1177e+08 1.2000e+08 1.2209e+0¢4 1.2693e+08 1.1083e
1.1177e+08 1.1999e+08 1.2209e+0¢4 1.2693e+08 1.1083e
1.1178e+08 1.1999e+08 1.2209e+0¢4 1.2693e+08 1.1083e
1.1178e+08 1.1999e+08 1.2209e+0¢4 1.2693e+08 1.1083e
1.1178e+08 1.1998e+08 1.2210e+04 1.2693e+08 1.1082¢
1.1178e+08 1.1998e+08 1.2210e+04 1.2693e+08 1.12082¢

Table 3: First receiver phases on the L1 frequdocthe others 5 satellites (9 epochs)

Dual-frequency capability is not the sole advantafjligh-end receivers. The
probably largest tradeoff for cheaper hardware,dbst receiver clock, causes
problems. Although the receiver clock biases cadaehg double differencing,

the measurement epochs are not necessarily pgrigatichronized between
receivers. Naturally the receiver’s sensitivity aflity to maintain phase lock
affect RTK performance. Frequent cycle slips arecadirse unfavorable for
carrier phase positioning.

Only the satellites tracked by both the referemkraver receivers can be

used in differential positioning, so the receiveowdd be able to acquire and

track as many satellites as possible.
As we said in Chapter 3, we try to choose the l#at&lith the highest elevation

angle in order to as the base satellite for thebboudlifference, because the

signal coming from higher elevations travel a shortime through the
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atmosphere and therefore are less plagued by ibeaspand tropospheric

errors. Itis also less prone to multipath.

We transform the coordinates of the satellites INEBD system coordinates,
Nord, East and Down, and then calculate the apigédevation, also called the
altitude, determined by first finding the compassaiting on the horizon relative
to true north, and then measuring the angle betwesnpoint and the object,
from the reference frame of the observer. Elevatiogles for objects above the
horizon range from O (on the horizon) up to 90 degr (at the zenith).
Sometimes the range of the elevation coordinagatisnded downward from the
horizon to -90 degrees (the nadir). This is usefuén the observer is located at
some distance above the surface, such as in amafairEigure 12 shows the

elevation angle.

zenith

Figure 12: Elevation angle
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Elevation angleéd can be calculated (in degrees) as:

—NEDg,n . 180
norm(NED)" «

9° = arcsin (

Where:

» arcsin is the inverse of the sin function;
* NEDg,,,n is the third component of the NED coordinatesacfatellite, or
rather the down component;

« norm(NED) is the norm of the NED coordinates of a satellite;

In our test the results are:

Theta 9°) Satellite
51.435432679421858 1
28.993728674215742
16.686907535583959
72.060670142940268
39.828897/730343051
57.011048271965080 19

7
6
0
7

28.31002701556837
25.85077649854554
18.52218230596112
55.94775312588218

Table 4: Elevation angle of the satellites
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Since the satellite 11 has the major elevationgngke have taken it as the

reference one for the double difference implemenat

4.3 Experimental results

The sampling rate was 1 Hz in all measurementsc¢lwhbuffices for detecting
such motion. For more accurate trajectory reconstm, a higher sampling

frequency would be beneficial.

All computations were carried out in post-procegsmode. This enabled a
priori verification of the data to be cycle slipe& No runtime cycle slip
detection was attempted. The verification was dbgehand and was not
rigorous, so basically small cycle slips could bespnt in the data. However, no

evident a posteriori signs of cycle slips were obse.

Using two separate antennas decorrelates multipathe figure below is show
the difference between the computed position aedctdculate one( baseline
slightly less than 100 meters), and the errorsdf &econds of sample. The
antennas were not located in very multipath-praetions, so the resulting
multipath error is not expected to be large.. Tlsehne solutions do not
coincide with the reference baseline computed thatdiscrepancies are in
centimeter level in the horizontal plane and a t®ugf centimeters in the

vertical direction.
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Figure 13: Computed and calculated baseline insE@dnds
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Figure 14: Baseline component error for static test
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Figure 14 shows the evolution of the baseline ardi00 seconds. The average
error is 0,92083 m, and could be consider a godkinate for our purpose,
considering the Pro Pak features and our simplifrediel. (No cycle slips, no

multipath errors).

The errors of the NED component, Nord, Est and Davenshown below.

Nord baseline component error

N

Error Nord [m]
o o © = = = =
£ » [e0) [ N £ » [e0)

©
N
T
|

10 20 30 40 50 60 70 80 90 100
time [S]

o

Figure 15: Nord component error
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Error Est [m]

Error Down [m]

Est baseline component error

1.4}

-1.6

-1.8+

10 20 30 40 50 60 70 80 90
time [S]

100

Figure 16: Est component error

1.8
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1.2

0.8+

0.6

0.4+

0.2+

Down baseline component error
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Figure 17: Down component error
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Figures show that in 100 seconds of samples, théiumeerrors for the 3

components are:

Nord medium error [m] 0,689724017
Est medium error [m]| -0,6824275994
Down medium error [m] | 0,3941270872

NJ

Tabella 5: Medium error component

The next figure show the grapich of the Nord anel Bst component, and the
difference between the computed and the calcutated

N-E components of the baseline

-46 T T

*  N-E calculated
-46.5 - O N-E computed ||

A7 - -

-47.5| ]

Nord[m]

-48.5 - O n

49 i

-49.5 | .

50 \ \ ! \ ! \ \ ! \
82 822 824 826 828 83 83.2 834 836 838 84

Est[m]

Figure 18: Computed and calculated N-E grapich
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Another important parameter to be estimated isstia@dard deviation of the

baseline. This parameter will give us the goodieésise valuation.

In statistics and probability theofgMS, root mean square (represented by the
symbol sigmag) shows how much variation or "dispersion" exiginf the
average (mean, or expected value). A low RMS indgdhat the data points
tend to be very close to the mean; high RMS indidhat the data points are

spread out over a large range of values.

The RMS of arandom variable, statistical populatidata set, or probability
distribution is the square the square root ofvisiance. It is algebraically
simpler through practically less robust than therage absolute deviation, and a
useful property of standard deviation is that mlike variance, it is expressed in

the same units as the data.

In the case wherX takes random values from a finite data x3tx,,....xy,

with each value having the same probability, theSRi§I

0'_\/ Zl (x5 — Where.u__ZL 1Xi

In our test, RMS resulteg = 0,0763 m. This means that most baseline solutions
have a length within 0,0763 m in of the mean (98,00.
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CHAPTER 5

CONCLUSIONS

In this thesis the positioning techniques were iedrrout through phase
measurements processing, using the LAMBDA approach.
Double-differenced baseline solutions were preeisé mostly consistent with
the reference baselines. Only high-quality recasivevere used in these
measurements. Using low-cost receivers for RTK mnegsents as well would
have been natural, but could not be carried outtdurardware problems. Thus,
the effect of asynchronous measurements and highse were not studied.

The LAMBDA-method is capable of correctly estimagtinthe integer
ambiguities very fast and efficiently. The resuttghis paper show that in order
to successfully estimate the integer ambiguitiesa af only a short time span
are required. The method therefore enables instaats precise navigation and

very rapid static surveying.

The double-difference positioning implementationswalso post-processing
only and for stationary baselines. Therefore, #mmt‘real-time kinematic” does
not directly apply to it. However, neither datanfrduture epochs nor post-
processed precise ephemerides or other correatieresused, so in principle the

algorithm would have worked in real-time as well.

A relatively high number of satellites was neededbtain a reliable integer
ambiguity fix. The baseline computations were dasag ten satellites. This

may become a problem if the rover and referenceivers do not have that
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many common satellites in track. However, most ivere have at least 12
tracking channels which should be enough for neddfiti short baselines, but
with the number of available GPS’s and satellitesangng in the future, more
channels may be necessary to make sure both rezethmose the same
satellites to track.

The test results show that centimeter-level pregiss attainable using double
frequency measurements only with relatively singdtprithms.

As no pre-surveyed reference baselines were aljlasolute accuracies

could not be assessed rigorously.

The discrepancies from the reference computatimpdyi that some inaccuracy
IS present, but in most cases the errors werentingeter magnitude.

Once the measurement information relaying issseliged by some standard,
RTK is expected to bring the positioning performaattained using consumer-

level equipment to centimeter level.

Logically, further developments consider:

(i)  include better dynamics in the estimation process;

(i)  a better filter tunning for carrier phase measurésje

(i) add other measurements combination, widelane canbim
(iv) validate ambiguities after resolving;

(v) cycle slips detection and correction;
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Appendix

Following, the Matlab file of the software.

clc

clear

close all
format long

%%%%%% Script di definizione variabili %%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%
GPSdefns; % Definizione dei parametri numerici

%0%%%%% Analisi files di testo
%%%%%%0%% %% %% %0%0% %% % %% %0%0 % %% %% %0 %% %% % %% %% % %% %% %% % %

reply = input( 'Vuoi ricavare i dati dai files di testo originali? [y/mn]" ,
's' ); % Richiesta per I'estrazione di nuovi dati dai file s di testo
if reply== y'

% Nominativi files di testo RANGE+EPHEM da leggere
fileinput = [ 'prova_sl.txt' ; 'prova_s2.txt' 1;

% Creazione files di testo SOLO RANGE da riempire
range =[ ‘'range2.txt' ; ‘range3.txt' 1;

% Creazione files di testo SOLO EPHEM da riempire
gpsephem =[ ‘'gpsephem2.txt' ; 'gpsephem3.txt’ 1;

% Inserimento dei dati forniti da ogni stazione (3) nei corrispondenti
files RANGE/EPHEM (2x3)

for i=1:2
fileinput_temp = fileinput(i,:);
range_temp = range(i,:);
gpsephem_temp = gpsephem(i,:);
Text_Split(fileinput_temp,range_temp,gpsephem_t emp);
end;

%%%%% Creazione matrici range e ephem %%%%%%%%%%% % %% %%%%%%% %% %% %% %% %% %% % %%

% Lettura dati dal file RANGE + EPHEM delle stazion i e creazione di una
matrice 3D (t_range x 32 x 11)

range2 = ‘range2.txt' ;

RANGE2 = Lettura_OBS(range2);
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range3 = ‘range3.txt’ ;
RANGES = Lettura_OBS(range3);
ephem2 = ‘gpsephem?2.ixt' ;
EPHEM2 = Lettura_ EPHEM(ephem?2);
ephem3 = ‘'gpsephem3.txt' ;
EPHEM3 = Lettura_ EPHEM(ephem3);

save( 'range_ephem.mat' , 'EPHEM2', 'EPHEM3', 'RANGE2', 'RANGES3');

else load( 'range ephem.mat' );

end;

%%%%%% Matrici comuni %%%%%%%%%%%%%%%%%%%%
%%%%%%

%%%%%%% %% %% %% %

% Individuazione delle matrici RANGE comuni (in bas e ai tempi assoluti di
campionamento) fra le tre stazioni

[comunel, comune2, comune3] = Matrici_Comuni(RANGE2 , RANGE2, RANGE3);
%%%%%% Elaborazione posizione satelliti e sincroniz zazione con OBS %%%%%%%%
% Calcolo posizioni satelliti rilevati dalle stazio ne e sincronizzazione

con misurazioni di pseudodistanza
[OBS2, XYZ_SAT2] = Info_Satellitiicomune2, EPHEM2);
[OBS1, XYZ_SAT1] = Info_Satellitiicomune3,EPHEM3);

[tempi,sat,parametri]=size(comune3);

%Stazione 3: terrazzo ingegneria( coordinate R1);
%Stazione 2: locale pompe (coordinate R2);

%Matrice contenente le misure di fase misurate sull a portante L1 per la
stazione 3

z=1,
for j=1:sat
if (comune3(1,j,3)~=0)

FASI1D(1,2)=j;
FASI1D(2:tempi+1,z)=comune3(1:tempi,j,3 )i
z=z+1,

else
end
end

%Matrice contenente le misure di fase misurate sull a portante L1 per la
stazione 2
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I=1;
for j=1:sat
if (comune2(1,j,3)~=0)

FASI2D(1,1)=j;
FASI2D(2:tempi+1,l)=comune2(1:tempi,j,3
I=1+1,

else
end
end

%Matrice contenente le misure di fase misurate sull
stazione 3

z=1,
for j=1:sat
if (comune3(1,j,5)~=0)

FASI1D_2(1,z)=j;
FASI1D_ 2(2:tempi+1,z)=comune3(1l:tempi,j
z=z+1,

else
end
end

%Matrice contenente le misure di fase misurate sull
stazione 2

z=1,
for j=1:sat
if (comune2(1,j,5)~=0)

FASI2D 2(1,2)=j;
FASI2D_2(2:tempi+1,z)=comune2(1:tempi,j
z=z+1,

else
end
end
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%~Calcolo posizioni dei satelliti visti dalla stazio
tempi nulli

for j=1:32

if (XYZ_SAT2(1,,1)~=0)
XYZ_SAT2D_1(1:tempi,m,1:3)=XYZ_SAT2(
m=m+1;

else
end
end

for i=1:tempi

if (XYZ_SAT2D 1(i,;,1)~=0)
XYZ_SAT2D(k,:,1:3)=XYZ_SAT2D_1(i,:;,1:
k=k+1;

else

end
end

%Calcolo posizione dei satelliti visti dalla stazio
tempi nulli

m=1;
for j=1:32
if (XYZ_SAT1(1,j,1)~=0)
XYZ_SAT1D_ 1(1:tempi,m,1:3)=XYZ_SATL(
m=m-+1;

else
end
end

for i=1:tempi

if (XYZ_SAT1D_1(i,:;,1)~=0)
XYZ_SAT1D(k,:,1:3)=XYZ_SAT1D_1(i,:;,1:
k=k+1;

else
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end
end

nsat=size(FASI2D,2);
R1=[4478920.0484;957152.4415;4424113.3286];

R2vera = [4478933.3172; 957241.0112; 4424076.216
R2=R1; Posizione iniziale del ricevitore R2 per la lineari
theta=zeros(nsat,1);

%Calcolo del satellite con la maggior elevazione e
%di quest ultimo sulla prima colonna

for t=1:nsat

pos_sat(1,1)=XYZ_SAT1D(1,t,1);

pos_sat(2,1)=XYZ_SAT1D(1,,2);

pos_sat(3,1)=XYZ_SAT1D(1,t,3);

NED_sat= Trasf ECEF_to NED(pos_sat,R1,1);

theta(t,1)=asin(-NED_sat(3,1)/norm(NED_sat))*180
end

for i=l:nsat
FASI1ID_mod(:,i)=FASI1D(:,i);
FASI2D_mod(:,i)=FASI2D(:,i);
FASI1D_mod2(:,i)=FASI1D_2(,i);
FASI2D_mod2(:,i)=FASI2D_2(:,i);
XYZ_SAT2D_mod(:,i,:)=XYZ_SAT2D(.,i,);

end

FASI1D_mod(;,1)=FASI1D(:,4);
FASI1D_mod(;,4)=FASI1D(;,1);

FASI2D_mod(;,1)=FASI2D(:,4);
FASI2D_mod(;,4)=FASI2D(:,1);

FASI1D_mod2(;,1)=FASI1D_2(: 4);
FASI1D_mod2(;,4)=FASI1D_2(:,1);

FASI2D_mod2(;,1)=FASI2D_2(:,4);
FASI2D_mod2(;,4)=FASI2D_2(;,1);

XYZ_SAT2D_mod(:,1,)=XYZ_SAT2D(:4,);
XYZ_SAT2D_mod(:,4,:))=XYZ_SAT2D(;,1,));
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%Procedura per il calcolo della posizione col metod o delle doppie
differenze

DDphi_L1=zeros(nsat-1,100);
DDphi_L2=zeros(nsat-1,100);
S1 R1=zeros(3,100);
S1 _R2=zeros(3,100);

for q=1:100

for t=2:nsat
DDphi_L1(t-1,9)=(FASI2D_mod(q+1,t)-FASI2D_mo d(g+1,1)-
FASI1D mod(g+1,t)+FASI1D_mod(q+1,1))*lambda_ 1;
DDphi_L2(t-1,9)=(FASI2D_mod2(g+1,t)-FASI2D_m 0d2(q+1,1)-
FASI1ID_ mod2(g+1,t)+FASI1D_mod2(g+1,1))*lambd a 2;

end

S1_R1(1,q)=XYZ_SAT2D_mod(q,1,1);
S1_R1(2,q)=XYZ_SAT2D_mod(q,1,2);
S1_R1(3,9)=XYZ_SAT2D_mod(q,1,3);

S1_R2(1,q)=XYZ_SAT2D_mod(q,1,1);
S1_R2(2,q)=XYZ_SAT2D_mod(q,1,2);
S1_R2(3,9)=XYZ_SAT2D_mod(q,1,3);

end

Gl=zeros(nsat-1,3);
tt=1,;
Sk_R1=zeros(3,100);
Sk_R2=zeros(3,100);

ml = nsat-1;

N = zeros(3+2*m1,3+2*m1);

rs=zeros(3+2*m1,100);
%X=zeros(3+2*m1,100);

DDPhi=zeros(2*(nsat-1),100);

DDRho=zeros(2*(nsat-1),100);

X=zeros(3+2*(nsat-1),100);
for g=1:100

for t=2:nsat

for tt=1:3
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Sk _R2(1,q)=XYZ_SAT2D_mod(q,t,1);
Sk_R2(2,q)=XYZ_SAT2D_mod(q,t,2);
Sk_R2(3,q)=XYZ_SAT2D_mod(q,t,3);

G1(t-1,t)=[((-R2(tt)+XYZ_SAT2D_mod(q,t,tt))
(-R2(tt)+XYZ_SAT2D_mod(q,1,tt))/norm(R2-S1_R

DDrho(t-1,q)=norm(S1_R2(:,q)-R1)-norm(S1_R2(
norm(Sk_R2(;,q)-R1)+norm(Sk_R2(:,q)-R1);
end
end
% Creazione matrice di covarianza delle doppie diff
D =[ones(m1,1) -eye(m1) -ones(m1,1) eye(ml)];
Sigma =D*D;

A_modi = eye(ml);
A_modi(:,1)=-ones(m1,1);

A_aug = [G1 lambda_1*A_ maodi 0*eye(m1);G1 O*eye(
DDPhi(:,q)=[DDphi_L1(:,q);DDphi_L2(:,q)];
DDRho(:,q)=[DDrho(:,q);DDrho(:,q)];

N = A_aug™*kron(eye(2),Sigma)*A_aug;

rs(:,q) = rs(:,q)+A_aug*kron(eye(2),Sigma)*(DD

PP = pinv(N);

% X contiene le the componenti float della baseline

X(:,q9)= PP*rs(;,q);

[a,sgnorm,Sigma_afixed,Z] = lambda(X(4:4+2*m1-1,
1,4:4+2*m1-1));

% Correzione vettore baseline come conseguenza d
Ambiguita da float a fisse

X(1:3,9) = X(1:3,9)-PP(1:3,4:4+2*m1-1)*inv(PP(4

/norm(R2-Sk_R2(:,q)))-(
20,9))I;

5q)-R1)-

erenze

m1) A_modi*lambda_2];

Phi(:,q)-DDRho(;,q));

e le ambiguita reali

q),PP(4:4+2*m1-

el cambio delle

4+2*m1-1,4:4+2*m1-

1)*(X(4:4+2*m1-1,q9)-a(:,1)); %primo set di candidati
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X(4:4+2*m1-1,0) = a(;,1);

end

%Calcolo della baseline media(media fra tutti gli i stanti di tempo)

X_tot=zeros(3,1);

norm_tot=0;
for i=1:100
X_tot=X_tot+X(1:3,i);
norm_tot=norm_tot+norm(X(1:3,i));
end

X_medio=X_tot/100
norm_media=norm_tot/100;
X_vero=R2vera-R1

%Calcolo dell' RMS(root mean square) e della deviaz ione standard (St_dev)
B=0;
T=0;
for n=1:100
B=B+(norm(X(1:3,n))-norm_media)"2;
T=T+(norm(X(1:3,n)))"2;
end

St_dev=sqrt(B/100);
RMS=sqrt(T/100);

%Grafico 1 di come varia la norma di X in funzione del tempo
Y=zeros(1,100);

for i=1:100

Y (1,i)=norm(X(1:3,i));

end

X_vero=norm(R2vera-R1)*ones(1,100);

hold on

figure(1);

plot(1:100,Y,1:100,X_vero, linewidth’ 2);
title( '‘Baseline norm’ , 'fontsize' ,16);
xlabel( 'time [s]' , 'fontsize' ,16);
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ylabel( "Norm [m]' , 'fontsize' ,16);

legend( 'Calculated baseline' , 'Computed baseline'

axis([ 1 100 95 97])

figure(2);

plot(1:100,X_vero-Y, ', 'linewidth’ 2);
title( '‘Baseline error' , 'fontsize' ,16);
xlabel( 'time [s]' , 'fontsize' ,16);

ylabel( "Error [m]' , 'fontsize' ,16);

%Trasformazione baseline in coordinate NED e grafic

for i=1:100
S2(1:3,i)=X(1:3,)+R1;
end

for i=1:100
NED(1:3,i) = Trasf_ECEF_to_NED(S2(1:3,i),R1,1);
end

Nord=zeros(1,100);

Est=zeros(1,100);

Down=zeros(1,100);
for i=1:100
Nord(1,i))=NED(1,i);
Est(1,i)=NED(2,i);
Down(1,i)=NED(3,i);
end

L=0;
NED _tot=0;
for i=1:100

L=L+NED(1:3,i);
NED_tot=NED_tot+norm(NED(1:3,i));
end

NED_medio=L/100

E_NED=NED_tot/100;

NED_vero = Trasf ECEF_to_NED(R2vera,R1,1)

Est vero=NED_vero(2,1)*ones(1,100);
Nord_vero=NED_vero(1,1)*ones(1,100);

%Grafico 3 N-E
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figure(3)

plot(Est,Nord, D

title( ‘N-E components of the baseline' , 'fontsize' ,16);
axis([ 82 84 -50 -46));

xlabel( 'Estim]' , ‘fontsize’ ,16);

ylabel( ‘Nord[m]" , ‘fontsize' ,16);

hold on

plot(Est_vero,Nord_vero, o' );

legend( 'N-E calculated' , 'N-E computed' );

figure(4);

plot(1:100,[(Est-Est(1))' (Nord-Nord(1))' (Down-

Down(1))], 'linewidth' ,2);

title( ‘Differential Position Estimates From Phase

Observations' , 'fontsize' ,16);

ylabel( '‘Corrections to Initial Position [m]’ , 'fontsize'
xlabel( 'Epochs [1 s interval]' , 'fontsize' ,16);

legend( ‘'East’ , 'North" ,'Down' );

set(gca, ‘fontsize' ,16);

legend;

error=zeros(1,100);
for i=1:100

error_N(1,i))=NED(Z1,i)-NED_vero(1,1);
error_E(1,))=NED(2,i))-NED_vero(2,1);

error_D(1,)=NED(3,i)-NED_vero(3,1);

end
figure(5)
plot(1:100,error_N, g+’ )
axis([1 100 0 2]);
title( ‘Nord baseline component error' , 'fontsize' ,16);
xlabel(  ‘time [s]' , 'fontsize' ,16);
ylabel(  'Error Nord [m]' , 'fontsize' ,16);
figure(6)
plot(1:100,error_E, b+ )
axis([1 100 -2 Q));
title( ‘Est baseline component error’ , 'fontsize' ,16);
xlabel(  ‘time [s]' , 'fontsize' ,16);
ylabel(  'Error Est [m]' , 'fontsize' ,16);
figure(7)
plot(1:100,error_D, T+ )
axis([1 100 0 2]);
title( ‘Down baseline component error' , 'fontsize' ,16);
xlabel(  ‘time [s]' , 'fontsize' ,16);
ylabel(  'Error Down [m]' , 'fontsize' ,16);
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