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ABSTRACT 

 
 
L’oggetto del presente elaborato di tesi è costituito dal progetto preliminare di 

un sistema GPS per il calcolo del posizionamento relativo fra un utilizzatore 

mobile(o fisso) e una stazione fissa, di cui sono note le coordinate.  

L’accuratezza associata alle misure di fase GPS, sia per il modello relativo alle 

“singole differenze”, sia per quello relativo alle “doppie differenze”, può essere 

sfruttata per ottenere una stima della posizione relativa tra i ricevitori, solo dopo 

aver risolto il problema delle ambiguità iniziali associate alle misure stesse.  

Questo aspetto rappresenta l’aspetto più critico delle misure di fase, perché nel 

caso l’aggancio del segnale di un satellite venga perso, l’ambiguità intera 

corrispondente, precedentemente individuata, perde di significato, e deve essere 

determinata nuovamente una volta ripristinato l’aggancio. 

Una prima parte della trattazione è quindi incentrata a evidenziare l’aspetto 

teorico delle equazioni implementate dall’algoritmo, in particolare il modello 

delle doppie differenze e il metodo LAMBDA, utilizzato per risolvere le 

ambiguità. 

Una seconda parte è invece dedicata ai dati sperimentali ottenuti e al progetto 

del software in ambiente Matlab. 
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CHAPTER 1 
 
SCOPE 

 

1.1   Aim 
 

Differential GPS carrier phase measurements have much lower noise and 

multipath error than that of pseudorange measurements. However, the 

measurement of the carrier phase has a constant unknown integer ambiguity. 

Several technical issues are related to solving the integer ambiguity correctly.  

In this report , the full procedure for parameter estimation based on the model of 

double difference GPS observations is reviewed. The LAMBDA method will be 

used for the integer ambiguity estimation, even if we will not focus our attention 

on the theoretical and mathematical aspects of the method. 

Using the double difference technique, we have develop the relative position 

between two receivers, called baseline.  

Moreover, if the location of one of the receivers, further referred to as the 

reference receiver, is known to some accuracy, the position of the other receiver, 

the rover receiver, can be computed at the same accuracy or at the accuracy of 

the baseline estimate. This positioning technique is called real-time kinematic 

positioning (RTK). 

The Matlab implementation has been made with  two fixed receivers(static 

mode), but in general there are no difficulties if one is mobile. 
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1.2   Work organization 
 

This thesis concentrates on precise positioning using dual signal frequency. 

The goal is to examine the precision attainable using double-frequency GPS 

receivers. A method for precise positioning is studied. The method  expected to 

be capable of achieving centimeter-level precision but with its respective 

restricting conditions. Field experiments using authentic GPS data are conducted 

to assess if these methods could provide good positioning performance.  

The thesis is organized as follows: the history and background of satellite 

positioning with the fundamental equations and measurement are discussed in 

Chapter  2.   

Chapter 3 deals with the LAMBDA method, and a brief  paragraph is also 

dedicated to the least squares and weighted least squares estimation. These 

chapters are summaries of already existing knowledge that is available in the 

literature.  

Experimental results and test setup are presented in Chapter 4 and conclusions 

are summarized and discussed in Chapter 5. 
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CHAPTER 2 
 

GPS SYSTEM AND OBSERVABLES 

 

2.1  GPS 
 

NAVSTAR, the Global Positioning System—commonly known as GPS—was 

developed for military purposes, by the United States. It is controlled by the 

U.S. Department of Defense (DOD) and became fully operational in 1995. 

GPS positioning is based on trilateration, i.e. computing the receiver position 

when distances to some reference points (here, the satellites) are known. The 

atomic clocks of all GPS satellites are mutually synchronized1 and thus the 

satellites (also referred to as space vehicles, SV) are able to transmit time 

synchronized ranging signals. 

Currently, GPS signals are transmitted in the L-band at two frequencies: the 

Link 1 (L1) signal at 1575.42 MHz and Link 2 (L2) at 1227.60 MHz. However, 

the L2 signal is encrypted and only available for those authorized by DOD. 

Some highend receivers are able to measure some parts of the L2 signal, but 

unfortunately those receivers are too expensive for mass-market. Initially, the 

civil-use L1 signal was intentionally distorted by dithering the satellite clocks. 

This interference, called Selective Availability (SA), was switched off by a 

presidential order in May 2000. 

The GPS satellite constellation consists of about 32 satellites with orbits of 

radius 26000 kilometers. The period for this radius is a few minutes less than 12 

                                      
1 In the ideal case. The clocks are however subject to drifts due to e.g relativistic effects 
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hours. During one pass, a satellite is visible to a stationary receiver for a few 

hours . A GPS user is usually able to get a position fix in about one minute. 

 

2.2  Coordinate Frames 
 

In order to express locations, a coordinate frame must be defined. For terrestrial 

positioning, a natural choice is a system where the origin lies at the center of the 

Earth. There are two approaches to this: 

 

Earth-Centered Earth-Fixed (ECEF) : The axes are fixed to some points on 

the Earth and the frame rotates. 

 

Earth-Centered Inertial (ECI)   The frame retains its directions with respect to 

some fixed celestial bodies despite the rotation of the Earth. 

 

For personal positioning, ECEF is the obvious choice because it retains the 

coordinates of objects stationary with respect to the Earth time-invariant. 

However, ECI is useful in some position computations, especially in inertial 

navigation systems because Newton’s laws of motion do not apply in ECEF 

frames due to the rotation. 

From this point on, ECEF frames are considered unless otherwise mentioned. 
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Figure 1: ECEF coordinate system 

 

The coordinate frame needs to be fixed on the surface of the Earth. The 

conventional way of doing this is to fix the z-axis along the axis of rotation of 

the Earth, the x-axis along the equatorial plane to some reference meridian and 

to define the y-axis such that it completes the frame to a right-handed Cartesian 

coordinate system. 

This principle is depicted in Fig 1. Actually, the axis of rotation of the 

Earth varies within time. Therefore, the z-axis can be chosen to pass through the 

Conventional Terrestrial Pole which is an average estimate of the North Pole 

between 1900 and 1905. A frame defined this way is called a Conventional 

Terrestrial Reference Frame (CTRF) . 

 
Cartesian coordinates are inconvenient for expressing locations on the Earth. 

Therefore, the positions are usually expressed to the user in the latitude-

longitude-altitude (LLA) coordinate system. However, to express altitude, the 

surface of the Earth must be modeled. Conventionally, this is done by modeling 

the Earth as an oblate ellipsoid. For example, the WGS84 reference ellipsoid is 

defined to have semi-major axis 6356.7523142 km and squared eccentricity 

0.00669437999014. Zero eccentricity would correspond to a sphere. 

 
In relative positioning, where the goal is to compute the baseline vector from a 
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reference point to the user, the most convenient way to express the baseline is 

the local east-north-up (ENU) frame. A point x in the ECEF frame is transferred 

to the local ENU frame of the reference point  by rotating the baseline vector 

according to the latitude λ and longitude φ of x0: 

 

                    x��� = � −sinφ cosφ 0−sinλ cosφ −sinλ sinφ cosλcosλ cosφ cosλ sinφ  sinλ�( x- x0 ) 

 
 
The coefficient matrix is the product of two direction cosine rotation matrices. 

The transformation from ECEF to LLA is nontrivial but the inverse 

transformation can be computed in closed form. Algorithms for these 

transformations can be found in e.g. [7]. 

 

 

2.3   Signals 
 
The signals consist of three essential parts: a carrier wave, a ranging code, and a 

navigation message.. These are discussed in detail in the following subsections. 

The structure of the Gps signal is show in Figure 2. 

 

2.3.1  Carrier Wave 
 

The signals are modulated on a sinusoidal carrier wave. The modulation type 

depends on the GNSS. GPS uses binary phase shift key modulation (while 

GALILEO signals are modulated by binary offset code modulation). Even 

though the carrier wave might seem to serve only for propagating the signal, 

measurements based on it are actually the key to centimeter-level precision as 

will be seen in Chapter 4. 
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2.3.2  Ranging Code 

 
 

Measuring the distance from the receiver to the satellite transmitting the signal is 

done by observing the phase of the ranging code. 

Definition 2.1. The correlation of two sequences x and y with y delayed by d 

samples is 

������, �, �� = � �������  

 

 

Ranging codes are binary sequences satisfying the following correlation 

properties: 

1- Autocorrelation:  The code does not correlate with a delayed or advanced 

copy of itself unless the delay or advance is equal to 0, i.e. ������, �, �� ≈ 

0 when d ≠ 0. 

2- Cross-correlation: The code does not correlate with the code of another 

satellite with any delay, i.e. ������, �, �� ≈ 0 when x ≠ y. 

 

These properties are required to ensure that the satellites can be correctly 

identified from the code and that two copies of the same code can be uniquely 

aligned by maximizing the correlation. Identifying the satellites by the code 

sequence constitutes a code division multiple access (CDMA) system.  

Property 2 does not hold for GLONASS because GLONASS satellites are 

identified by their carrier frequency, not the code which is actually the same for 

all GLONASS satellites. Thus, GLONASS is a frequency division multiple 

access (FDMA) system. Due to the properties 1 and 2, ranging codes are called 

pseudo-random noise (PRN). 

Typically, Gold codes are used as ranging codes. They can easily be generated 
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using simple linear feedback shift registers, and they do satisfy both of the 

desired properties. Gold codes are maximum length sequences, i.e., the length of 

a Gold code is 2n−1 where n is the length of the shift register used to generate 

the code.  

For example, the GPS 1023-bit coarse acquisition (C/A) codes, used on the 

unencrypted L1 signal, are produced using 10-bit shift registers. 

 

To measure the range, the receiver generates a replica of the ranging code of 

the desired satellite and aligns it with the one received by the antenna. Then, the 

receiver compares the transmission time tag of the signal and the time of arrival 

estimated by the receiver’s clock. The delay needed to align the codes is the  

 

estimated range divided by the propagation speed of the signal which is equal to 

the speed of light c. However, since the receiver clock cannot be synchronized 

with the satellites, the bias in the clock introduces an offset to the range 

measurements. These biased range measurements are called pseudoranges. The 

offset is common to all pseudoranges measured by the receiver and therefore can 

be solved for as an additional unknown. 

The magnitude of the noise in code measurements depends on the duration of 

one code bit (chip). The receiver can measure the delay by some fractions of one 

chip. E.g. the GPS C/A code chipping rate is 1.023 MHz. Thus, one chip 

corresponds to approximately 300 meters in distance. Typically, the noise in 

these measurements is in the order of decimeters,  which corresponds to a 

thousandth of a chip. 
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2.3.3  Navigation Message 

 

The third component in the signal is the navigation message. It contains the data 

necessary to compute the receiver position, such as satellite ephemerides, 

satellite clock and atmospheric corrections, and the almanac (approximate 

ephemerides for determining which satellites should be in view). 

 

To compute the receiver position, ephemeris information for few satellites must 

be available. In GPS, the ephemeris and satellite clock data is broadcast every 

30 seconds. In other systems, this data is broadcast often as well. The whole 

navigation message takes 12.5 minutes to broadcast on GPS . In an Assisted 

GPS (AGPS) system, it may be possible to obtain the necessary navigation data 

from another, faster link to decrease the time needed to compute the receiver 

position, i.e. the time to first fix (TTFF). 

 

 

Broadcast ephemerides are usually accurate to some meters. If the positioning 

is carried out in post-processing mode, post-computed precise ephemerides can 

be used to enhance the solution. 
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Figure 2: GPS signal structure 
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2.4  Measurement models 

In this chapter, the basic GNSS measurements, i.e. code and carrier phase, are 
discussed. Error sources and the effect of satellite geometry on the solution 

accuracy are also reviewed. 

 

2.4.1  Code phase observable 
 

The purpose of the code phase measurement is to determine the distance 

between the satellite and the receiver. The pseudorange measurement is derived 

from the code phase. The pseudorange  ρ for satellite i is the difference between 

the time of transmission � ��� and time of arrival �!���, shifted by the receiver clock 

bias "� and satellite clock bias "����. 
The parenthesized superscripts refer to satellite ID’s and are not exponents. This 

time difference is scaled to meters by the speed of light c and distorted by the 

measurement errors #���: 
 $��� = � � �!��� + "� − � ��� − "����) + #��� 

 

The error term #��� contains some mutually independent components: 

atmospheric effects and unmodelable errors. The atmospheric effects for GNSS 

signals mainly occur in two atmospheric layers: the ionosphere and the 

troposphere. The ionosphere contains ions which affect electromagnetic 

radiation propagating through it. This results in a delay to the ranging code 

phase. The magnitude of the ionospheric delay depends on the amount of free 

electrons in the ionosphere. It is at its maximum in the afternoon when solar 

radiation has ionized molecules in the ionosphere and at its minimum during the 

night when the ions have recombined to molecules. The ionospheric effect is 
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dispersive, i.e. the magnitude of the delay depends on the frequency of the 

signal. Thus, a dual-frequency receiver is able to estimate the ionospheric delay. 

Ionospheric delay corrections are also broadcast in the GPS navigation message. 

The troposphere is the atmospheric layer where weather phenomena occur. 

Signal propagation speed through rain is slower than that during clear weather 

conditions because water has a higher refractive index than air. The tropospheric 

delay is not dispersive, therefore it can only be estimated by using some 

tropospheric model. 

 

 
Figure 3: Multipath Propagation 

 

 
 
Expanding the error term, the pseudorange  $�& can be modeled as: 
 
       '�(� − �&�)+�*� − �&�) + �+� − ,&�) + � ∙ .& + � ∙ .� + /� + 0� + 1�& + 2�& 
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Where: 
 

• $�& is the pseudorange calculated by the receiver r from the satellite i  

• (�  , *�  , +�  are the components, in the ECEF system, of the vector position 

of the satellite i (obtained from the ephemeris data) 

• �& , �& , ,& are the components, in the ECEF system, of the vector position 

of the receiver r 

• � is the speed of light in the vacuum 

• .& is the receiver bias 

• .�   is the satellite bias 

• /� is the ionospheric delay 

• 0� is the tropospheric delay 

• 1�& is the multipath error 

• 2�& is the measurement error of the receiver 

 

 

Using at least four pseudorange measurements, the unknowns (three components 

of  receiver position and the receiver clock bias ) can be estimated. Since the 

pseudorange equation  is nonlinear with respect to receiver position, it is 

traditionally solved by linearization and least-squares methods even though 

closed-form solutions exist. ( See Chapter 3). 
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2.4.2  Ionospheric delay 
 

The ionosphere is the zone of the terrestrial atmosphere that extends itself from 

about 60 km until more than 2.000 km in high. As it name says, it contains a 

partially ionised medium, as result of the X and UV rays of Solar Radiation and 

the incidence of charged particles. 

The propagation speed of the GNSS electromagnetic signals in the ionosphere 

depends on its electron density (see below), which is typically driven by two 

main processes: during the day, sun radiation causes ionisation of neutral atoms 

producing free electrons and ions. During the night, the recombination process 

prevails, where free electrons are recombined with ions to produce neutral 

particles, which leads to a reduction in the electron density. 

A medium where the angular frequency ω and the wave number k are not 

proportional, is a dispersive media (i.e., the wave propagation speed and thence, 

the refractive index depends on the frequency). This is the case with the 

ionosphere where ω and k are related, in a first approximation, by2 : 

3) = �)4) + 3 5)    (1) 

where3 : 

35 = 2785   with   85 = 8.98'<=       in Hz     (2) 

 

being <=  the electron density (in e − / m3). A complete derivation of this 

relationship can be found in [Davies, 1989] and the updated higher order terms 

in [McCarthy,D. and Petit,G., 2009], typically less than 0.1% of the total delay. 

 

                                      
2 Crawford, 1968 
3 Davies, 1989 
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The previous equation is named the Relation of Dispersion of the ionosphere, 

and 35 is called the critical frequency of the ionospheric plasma, in the sense 

that signals with ω < 35 will be reflected and signals with ω > 35  will cross 

through the plasma. 

 

The electron density in the ionosphere changes with the height having a 

maximum of  1011 – 1012  on 300-500 km. Thence, according to the expression, 

electromagnetic signals with 8 >  85 ~ 10A Hz will be able to cross the 

ionosphere. This is the case of GNSS signals which frequencies are at the order 

of 1 GHz = 109 Hz. Radio signals with frequencies under 85  will be reflected in 

the ionosphere. 

 

From equation (1), and taking into account that ω = 2πf  and the definition 
of phase and group velocity 

 

25B = 34               2C& = �3�4         �3� 

 

it follows: 25B = �
E1 − F858 G)         �4� 

 
 

Thence,4 

 I5B = �25B         IC& = �2C&        �5� 

 

                                      
4 [Hernandez-Pajares et al., 2007] Hernandez-Pajares, M., Juan, J. and Sanz, J.,2007. Second-order ionospheric 
term in GPS: Implementation and impact on geodetic estimates . Journal of Geophysical Research. 112, pp. 1-16. 
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the phase refractive index of the ionosphere can be approximated by: 
 
 

I5B = E1 − K858 L) ~ 1 − 12 K858 L) = 1 − 40.38) <=       �6� 

 
 

 

At the frequency of GNSS signals, the previous approximation  accounts for 

more than the 99.9% of the refractivity (first order ionospheric effect). That is, 

with less than a 0.1% of error, it can be assumed: 

I5B = 1 − 40.38) <=       �7� 

 

Differentiating the equation (1) with respect to k  and taking into account (3), (5) 

and the approximation  done  before , yields the group refractive index: 

IC& = 1 + 40.38) <=      �8�  
 

Finally, the error on the pseudorange estimate is obtained integrating,  along the 

path  L of the signal in the ionosphere, the difference between the refractive 

index (8) and the the refractive index of the speed of light in the vacuum,1. 

 /� = OPIC& − 1Q�R = 40.38) O <= �R = 40.38) · 0TU 

 

Total electron content (or TEC) is an important descriptive quantity for 

the ionosphere of the Earth. TEC is the total number of electrons present along a 

path between two points, with units of electrons per square meter, where 

1016 electrons/m² = 1 TEC unit (TECU). 
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TEC is significant in determining the scintillation and group delay of a radio 

wave through a medium. Ionospheric TEC is characterized by observing 

carrier phase delays of received radio signals transmitted from satellites located 

above the ionosphere, often using Global Positioning System satellites. TEC is 

strongly affected by solar activity. 

 

Figure 4: Ionospheric delay 

 

 

2.4.3   Carrier Phase observable 

 

We now introduce the carrier phase observable, which is used for high precision 

applications. 

We start with the basic concepts, starting with the meaning of “phase”. We then 

go on to describe the process of observing the carrier phase, and develop an 

observation model. Fortunately, most of the model can be reduced to what we 

have learned so far for the pseudorange. Unlike most textbooks, we take the 

approach of presenting the model in the “range formulism”, where the carrier 
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phase is expressed in units of metres, rather than cycles. However, there are 

some fundamental differences between the carrier phase and the pseudorange 

observables, as we shall see when we discuss “phase ambiguity” and the 

infamous problem of “cycle slips”. 

 

The Meaning of Phase and Frequency 

 

“Phase” is simply “angle of rotation,” which is conventionally in units of 

“cycles” for GPS analysis. Consider a point moving anti-clockwise around the 

edge of a circle, and draw a line from the centre of the circle to the point. As 

illustrated in Figure 5, the “phase” ϕ(t)  at any given time t can be defined as the 

angle through which this line has rotated. 

Phase is intimately connected with our concept of time, which is always based 

on some form of periodic motion, such as the rotation of the Earth, the orbit of 

the Earth around the Sun (“dynamic time”), or the oscillation of a quartz crystal 

in a wristwatch (“atomic time”). Even our reprentation of time is often based on 

rotation, such as the angle of the hands on the face of a clock. Angles of rotation 

give us our measure of “time.” In this way, phase can be thought of as a measure 

of time (after conversion into appropriate units). We can write this 

formally as: 

 0��� = 4� V��� − VW� 

 

• T is the time according to our clock at time t (whatever the clock may be) 

• VW = V�0� is so that the clock reads zero when t = 0 

• 4  is a calibration constant , converting units of cycles into units of 

seconds 
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Indeed, we can take the above equation as the definition of clock time. Whether 

of not this clock time is useful depends on the constancy of rate of change of 

phase. This brings us to the concept of frequency. 

The “frequency,” expressed in units of “cycles per second,” is the number of 

times the line completes a full 360o rotation in one second (which of course, is 

generally a fractional number). This definition is somewhat lacking, since it 

seems to assume that the rotation is steady over the course of one second. One 

can better define frequency instantaneously as the first derivative of phase with 

respect to time; that is, the angular speed. 

 

8 = �V�����  

 

We chose to treat phase as a fundamental quantity, and frequency as a derived 

quantity. For example, we can say that frequency is a constant, if we observe the 

phase as changing linearly in time. Constant frequency is the basis of an ideal 

clock. If the frequency can be written as a constant, 8W, then we can write the 

phase of an ideal clock as: V��=XY = 8W� + VW 

therefore  0��=XY = 48W� 

Since we want our a clock second to equal a conventional second (0��=XY=t), we 

see that an appropriate choice for the calibration constant is 4 = 1 8W⁄ , where 8W 

is the nominal frequency of the oscillator. Going back to our original equation 

for clock time, we can now define clock time as: 

 

0��� =  V��� − VW8W  
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Figure 5: The meaning of phase 

 

At time t, the height of point [��� above the centre of the circle in figure 5 is 

given by: 

[��� = [Wsin �27V���� 

Where [W is the radius of the circle. Since the concept of phase is often applied 

to periodic signals, we can call [��� the “signal” and [W the “amplitude of the 

signal”.  

For example, in the case of radio waves [��� would be the strength of the 

electric field, which oscillates in time as the wave passes by. Inverting the above 

formula, we can therefore determine the phase V���� if we measure the signal [��� (and similarly, we could infer the clock time). 

 

Note that, for an ideal clock, the signal would be a pure sinusoidal function of 

time: [��=XY = [Wsin �27V��=XY�             = [W sin�2π8W� + 27VW�             = �[Wcos�27VW�� sin �2π8W�� + �[Wsin�27VW��cos�2π8W��              = [W] sin�3W�� + [Ŵ cos�3W�� 
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where the “angular frequency” 3W = 278W� has units of radians per second. For 

a real clock, the signal would the same sinusoidal function of its own “clock 

time,” (but would generally be a complicated function of true time): 

 [�0� = [W] sin�3W0� + [Ŵ cos�3W0� 

 

 

We note that the nominal GPS signal takes on the above form, except that the 

signal is modulated by “chips”, formed by multiplying the amplitudes [W]  (for 

C/A code) and [Ŵ (for P code) by a pseudorandom sequence of +1 or -1. The 

underlying sinusoidal signal is called the “carrier signal.” It is the phase of the 

carrier signal that gives us precise access to the satellite clock time; therefore we 

can use this phase for precise positioning. 

 

The carrier beat signal 

 

The GPS carrier signal G(t) from the satellite is “mixed” (multiplied) with the 

receiver’s own replica carrier signal R(t). The result of this mixing is shown in 

Figure 6. 

 
Figure 6: Producing a beat signal by mixing the carrier and replica signals 
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Mathematically, one can show that one would expect the result to be the 

difference between a low frequency signal and a high frequency signal: 

 _��� ⊗ a��� = aWsin �27Vb���� × _Wsin �27Vd���� 
                         = aW_W2 e��f27PVd��� − Vb���Q − ��f27PVd��� + Vb���Qg 
 

The high frequency component can be easily filtered out by the receiver 

electronics, leaving only the carrier beat signal. h��� = ijR�#�k_��� ⊗ a���l 
                         = aW_W2 ��f27PVd��� − Vb���Q 

   = hW��f27PVm���Q 

                                                

where we have introduced the carrier beat phase Vm���, which is defined to be 

equal to the difference in phase between the replica signal and the GPS signal. 

 Vm��� = Vd��� − Vb��� 

By differentiating the above equation with respect to time, we find that the “beat 

frequency” is equal to the difference in frequencies of the two input signals. 

8m = �Vm�� = 8d − 8b 

 

We note that the above formulas apply even when the carrier phase is modulated 

with codes, provided the replica signal is also modulated (because the values of -

1 will cancel when multiplying the two signals). If the codes are not known, it is 

possible to square both the incoming signal and the replica signal prior to 

mixing. The problem with this is that squaring amplifies the noise, thus 

introducing larger random measurement errors. 
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Origin of  the Phase Ambiguity 

 

Our model of carrier beat phase not a complete picture, since we can arbitrarily 

add an integer number of cycles to the carrier beat phase, and produce exactly 

the same observed beat signal. 

Suppose we only record the fractional phase of the first measurement. We would 

have no way of telling which integer N to add to this recorded phase so that it 

really did equal the difference in phase between the replica signal and the GPS 

signal. This is fundamentally because we have no direct measure of the total 

phase of the incoming GPS signal. We can express this as follows: 

 n + < = Vd − Vb 

 

where we use a capital Greek symbol n to emphasise that it represents the phase 

value actually recorded by the receiver. Provided the receiver does keep track of 

how many complete signal oscillations there have been since the first 

measurement, it can attach this number of cycles to the integer portion of the 

recorded beat phase. However, there will still be an overall ambiguity < that 

applies to all measurements. That is, we can model < as being the same 

(unknown) constant for all measurements. If the receiver looses count of the 

oscillations (e.g., because the signal is obstructed, or because of excessive 

noise), then a new integer parameter must be introduced to the model, starting at 

that time. This integer discontinuity in phase data is called a “cycle slip.” 
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Interpretation of Phase Ambiguity 

 

The reader might also be wondering if there is some kind of geometrical 

interpretation for <. It turns out that there is, but it does require some 

oversimplified assumptions. By definition, the unknown value of < can be 

written as: < = �integer portion of  Vd − Vb� − �integer portion of  n� 

 

The second term is completely arbitrary, and depends on the receiver firmware. 

For example, some receivers set this value to zero for the first measurement. Let 

us assume this is true, and drop this term. For the sake of interpretation, let us 

now assume that the receiver and satellite clocks keep perfect time. Under these 

circumstances, the first term would equal the integer portion of the number of 

signal oscillations that occur in the receiver from the time the signal was 

transmitted to the time the signal was received. We can therefore interpret < as 

equal to the number of carrier wavelengths between the receiver (at the time it 

makes the first observation), and the satellite (at the time it transmitted the 

signal). Of course, we made assumptions about perfect clocks and the particular 

nature of the firmware; so we must beware not to take this interpretation too 

literally. 

 

 

2.4.4  The Carrier Phase Observation Model 
 

We now move towards a more rigorous treatment of the carrier beat phase 

observable, building on our concepts of phase and signal mixing. Our notation 

will change slightly in preparation for further development. 

The carrier phase  can be modeled as: 
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 PVu& + <u&Qv = �u& + � ∙ .& + � ∙ .u − /u + 0u + wu& + xu& 

 

Where  

• Vu&  is the phase given from the receiver ; 

• <u& is the initial integer ambiguity; 

• v  is the carrier wavelength; 

• �u& is the geometric distance between the satellite j and the receiver r; 

• wu& is the multipath error; 

• xu& is the measurement error of the receiver 

 

This measurement is significantly more precise than code phase measurements. 

Typical noise levels in code and carrier phase measurements are compared in 

Figure 7. The measurements shown in the figure were logged using a 

stationary consumer-grade receiver. 

However, only the phase can be measured, not the number of full carrier cycles. 

The unknown integer number of carrier cycles is commonly known as the 

integer ambiguity. As long as the receiver tracks the signal uninterruptedly and 

remains locked to it, the integer ambiguity remains constant. Thus, subtracting 

two consecutive carrier phase measurements to the same satellite cancels the 

integer ambiguity and gives a precise estimate of the change in pseudorange 

between these measurements. 

This idea is discussed further in Chapter 3. The difference of two consecutive 

carrier phase measurements is also known as the delta range, and the carrier 

phase itself is sometimes referred to as accumulated delta range. 

The carrier phase measurement is corrupted by the same error sources as the 

code phase. However, while code phase is delayed in the ionosphere, the carrier 
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phase is advanced. Also, carrier phase measurements are shifted by satellite and 

receiver clock drifts (frequency biases), not the time biases. 

 

 

 

 

 
 

Figure 7: Noise in code and carrier phase measurements. Only differences between 
consecutive measurement are shown, not absolutely measurements. The carrier phase were 
scaled to meters by the signal wavelength for easier comparison 
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CHAPTER 3 
 
 NAVIGATION SOLUTION 

 

3.1  Problem formulation 
 

In this chapter, a simple method for positioning using carrier phase 

measurements is presented and discussed. The method provides information on 

the user position relative to the receiver location at some instant . 

The major problem in using the carrier phase measurements for positioning is 

the integer ambiguity present in the measurement. However, it is known that the 

ambiguity remains constant as long as the receiver continuously tracks the signal 

maintaining phase lock. Therefore, the ambiguity can be cancelled by forming 

differences of two measurements by the same receiver to the same satellite at 

different epochs of time provided that no cycle slips have occurred, i.e., the 

tracking truly has been continuous. The difference of two carrier phase 

measurements yields a precise estimate of the change in range between the 

receiver and the satellite during the time between the measurements. 

In addition to canceling out the integer ambiguity term, the effect of other time 

and/or location correlated error sources is reduced but not totally canceled their 

derivatives remain present. Thus, atmospheric and satellite clock and orbit errors 

are diminished. Since the derivatives of these are still present in the solution, the 

accuracy of the time-differenced measurements will degrade with time. 

Fortunately, these errors do not change rapidly in time, compared to, e.g., the 

clock dithering caused by SA, which was a strong motivation for the 

development of differential positioning methods but fortunately is deactivated at 



36 
 

the moment. Therefore, the trajectory of the receiver can be computed for some 

short time interval. 

 

3.2  Single Difference 
 

The purpose of “single differencing” is to eliminate satellite clock bias. The 

model is based on differencing the phase measurements between two 

receivers,(the first one is fixed and the coordinates are known), relative to the 

same satellite at the same epoch: if the baseline is short (less than 30 km), the 

common errors like ionospheric and tropospheric delay can be delete. 

 

 

 

Figure 8: Single differencing geometry 
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Considering the phase model (2.4.4),  indicating with F the measurements taking 

by the fixed receiver and with M the measurements by the mobile (or fixed) one, 

for the j-satellite the single difference model could be write as: PVuy + <uyQv = �uy + � ∙ .y + � ∙ .u − /u + 0u + wuy + xuy 

 PVuz + <uzQv = �uz + � ∙ .z + � ∙ .u − /u + 0u + wuz + xuz 

 �∆Vu + ∆<u�v = PVuz + <uzQv − PVuy + <uyQv               = �uz + � ∙ .z + wuz + xuz − ��uy + � ∙ .y + wuy + xuy�                            = �uz − �uy + � ∙ �.z − .y� + Pwuz − wuyQ + �xuz − xuy�                            = �uz − �uy + � ∙ ∆. + ∆wu + ∆xu 

where  

• ∆Vu = �Vuz − Vuy� 

• ∆<u = �<uz − <uy� 

• ∆. = .z − .y 

• ∆wu = wuz − wuy 

• ∆xu = xuz − xuy 

 

An assumption has been made, that the satellite clock bias is effectively 

identical at the slightly different times that the signal was transmitted to F and to 

M. The difference in transmission time could be as much as a few milliseconds, 

either because the imperfect receiver clocks have drifted away from GPS time 

by that amount, or because the stations might be separated by 1,000 km or more. 

Since selective availability is typically at the level of 10-9 (variation in frequency 

divided by nominal frequency), over a millisecond (10-3s) the 

satellite clock error will differ by 10-12s. This translates into a distance error of 

10-12c, or 0.3 mm, a negligible amount under typical S/A conditions (however, it 
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may not be negligible if the level of S/A were increased; but this effect could in 

principle be corrected if we used reference receivers to monitor S/A). Another 

point worth mentioning, is that the coordinates of the satellite at transmission 

time can easily be significantly different for receiver F and M. 

 

The atmospheric delay terms are now considerably reduced, and vanish in the 

limit that the receivers are standing side by side. The differential troposphere 

can usually be ignored for horizontal separations less than approximately 30 km, 

however differences in height should be modelled. The differential ionosphere 

can usually be ignored for separations of 1 to 30 km, depending on ionospheric 

conditions. Due to ionospheric uncertainty, it is wise to calibrate for the 

ionosphere using dual-frequency receivers for distances greater than a few km. 

 

Although the single difference has the advantage that many error sources are 

eliminated or reduced, the disadvantage is that only relative position can be 

estimated (unless the network is global-scale). Moreover, the receiver clock bias 

is still unknown, and very unpredictable. This takes us to “double differencing”. 

 

 

3.3  Double Difference 
 

The purpose of “double differencing” is to eliminate receiver clock bias. 

Consider  the single differenced observation equations for two receivers R and 

M observing satellites j and k: 

 

 P∆Vu + ∆<uQv = �uz − �uy + � ∙ ∆. + ∆wu + ∆xu 
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�∆V| + ∆<|�v = �|z − �|y + � ∙ ∆. + ∆w| + ∆x| 

 

 

The double difference phase is defined as the difference between these two: 

 �∇∆Vu| + ∇∆<u|�v = P∆Vu + ∆<uQv − �∆V| + ∆<|�v                                     = �uz − �uy + ∆wu + ∆xu − ��|z − �|y + ∆w| + ∆x|�                                     = �uz − �uy−�|z + �|y + P∆wu − ∆w|Q + �∆xu − ∆x|�                                     = �uz − �uy−�|z + �|y + ∇∆wu| + ∇∆xu|   

 

where 

• ∇∆Vu| = ∆Vu − ∆V| 

• ∇∆<u| = ∆<u − ∆<| 

• ∇∆wu| = ∆wu − ∆w| 

• ∇∆xu| = ∆xu − ∆x| 

 

As more than one double difference is needed at each measurement epoch for 

computing a position fix, the between-satellite differences can be constructed in 

many satellite combinations.  

If there are k single differences available, only k -1double differences can be 

constructed without redundancy.  

One of the satellites is chosen as the base (or reference) satellite. All double 

differences are formed with respect to this satellite, i.e. between satellites (1, 2), 

(1, 3), . . . , (1, k). 

Usually, the satellite with the highest elevation angle is chosen as the base 

satellite because signals coming from higher elevations travel a shorter time 

through the atmosphere and therefore are less plagued by ionospheric and 

tropospheric errors. They are also less prone to multipath. The evident drawback 
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of all measurements depending on one satellite is that if the base satellite signal 

is lost, all double differences and their possibly resolved integer ambiguities will 

be lost.  

 

3.4  Baseline estimation process 
 

We now deal exclusively with double difference carrier phase measurement 

currently available. The carrier phase measurement at L1 from ~ satellites give ~ − 1  double difference equations at each epoch. A dual-frequency receiver 

would provide another set of  ~ − 1  equations from the measurement at L2. 

While the phase tracking is continuous, three new unknowns (new position 

coordinates) are introduced at each epoch if the user is in motion, and none if the 

user is stationary. Consider static initialization. 

There are [ 3 + �~ − 1� ] unknowns for single frequency measurements and 

[ 3 + 2�~ − 1� ] unknowns for dual-frequency measurements and, over time, 

many more equations. 

We expect the estimation process to be helped by redundant measurements, 

good satellite geometry, dual-frequency measurements, and significant change 

in satellite geometry over the observation period. Unmodeled errors would hurt. 

The errors generally grow with the baseline length, but significant multipath at 

either station can pose a challenge. 

Double difference equations is linear in the integers, but nonlinear in the 

position coordinates. In order to estimate these parameters, we will try to form 

an over determined system of linear equations and solve it using the least 

squares criterion and the LAMBDA method. 
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3.4.1  Linear Model for position estimation 
 

The position of the stationary reference station F is known, and we are 

interesting in estimating the position of the user (M) relative to the reference 

station.  

 

Consider a generic double difference equation for carrier phase. For a short 

baseline, we can delete the multipath error. 

 P∇∆Vu| + ∇∆<u|Qv = �uz − �uy−�|z + �|y + ∇∆xu|   

 

For obtaining an estimate of the vector �z, the relative position between the two 

receiver, we can linearize the equation of double difference ,given an initial 

estimate of the relative position �zW. 

 

Linearazing in a neighbourhood of the vector �zW the model descending is:  

 P∇∆Vu| + ∇∆<u|Qv ≈ �uzW − �uy−�|zW + �|y + Pℎuz − ℎ|zQ ∙ ��z − �zW� + #  

 

Where 

 

• �z is the vector of  relative position between the two receivers; 

• �zW is the reference vector for the linearization; 

 

�z = ���z��z��z � = � (z − (y*z − *y +z − +y �       �zW = ���zW��zW��zW� = � (zW − (y*zW − *y +zW − +y �    
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�uzW = ��(u − �(y − ��zW��)+�*u − �*y − ��zW��) + �+u − �+y − ��zW��) 

 ℎuz = �∇����uz� ��    
        =  ��(y − ��zW� − (u�uzW        P*y − ��zWQ − *u�uzW        �+y − ��zW� − +u�uzW       � 
 # = ∇∆xu|   

 

This equation constitutes the measurement model to be considered for solving 

the problem. Therefore, the application of double difference method performs a 

relative positioning, because permits a baseline estimation. 

 

Chosen the satellite 1 as the reference, writing n as the number of visible 

satellite,we regrouping terms and defining : 

 

���� = �v∇∆V)� − �)zW + �)y + ��zW − ��y⋮v∇∆V�� − ��zW + ��y + ��zW − ��y� 
 

a��� = �ℎ)z − ℎ�z⋮ℎ�z − ℎ�z� 
 

< = �∇∆<�)⋮∇∆<��� 
 

� = �∇∆x)�  ⋮∇∆x��  � 
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 "f = �z��� − �zW��� 

 

 

The linear equation derived from the double difference model is 

 ���� = a��� ∙ "f + v ∙ < + v ∙ ���� 

 

We can combine all such linear equations obtained from single or dual 

frequency measurements at measurement epoch ti into a generic vector matrix 

representation 

 ��j� = a�j� ∙ "f + v ∙ < + v ∙ ��j�         (3.1) 

where 

• ��j� denotes the difference between the measured and computed carrier 

phase double differences for the initial position estimate; 

• a�j� is the observation matrix characterizing the double difference user-

reference station satellite geometry; 

• "f is the error in the initial position estimate; 

• < is the vector of double difference integer ambiguities to be estimated; 

 

If there are ~ double difference measurements, a�j� is a ~ × 3 matrix and < is 

a  ~ vector. (~= n-1 for single frequency measurements, and  ~= 2∙(n-1) for 

dual frequency measurements, where n is the number of satellites in view). 

 

Consider a simple case of stationary user, the next measurement epoch brings 

additional ~ equations  
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 ��j + 1� = a�j + 1� ∙ "f + v ∙ < + v ∙ ��j + 1�         (3.2) 

 

 

We can combine  (3.1)  and   (3.2)  as: 

 

� ��j���j + 1�� = � a�j�a�j + 1�� ∙ "f + v �//� ∙ < + � ��j� ��j + 1� �        (3.3) 

 

For a general case of measurements , perhaps for multiple epochs, we can write 

(3.3) as: 

 � = a ∙ "f + [ ∙ < + v ∙ � 

 

Using the least squares criterion, we look for a real-valued "f 3-vector and a ~ 

vector of integers < which minimize the cost function 

 ��"f, <� = ║� − a ∙ "f − [ ∙ <║)
        (3.4) 

 

The cost function is simply the sum of the lengths of residual vectors squared. In 

a kinematic case, "f would change from one measurement epoch to next. There 

is no difficulty, however, in formulating the problem as above. Note also that if 

we have a basis for assigning different weights to the measurements, we can 

formulate  (3.4) as a weighted least squares problem. We’ll revisit this issue 

below. 

 

Minimization of  (3.4)  would be straightforward  were it not for the constraint 

that each element of  < be an integer. We have an integer least-squares 

problem. We could disgregard the constraint to make the problem routine and, in 
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fact, this approach is commonly used. An alternative is to limit the estimates to a 

set of integers, and then ‘search’ this set for the best solution. In principle, we 

can obtain  the solution with measurements form single epoch. 

 

3.4.2    Least Squares  
 

The method of least squares assumes that the best-fit curve of a given type is the 

curve that has the minimal sum of the deviations squared (least square error) 

from a given set of data. 

 The “estimated residuals” are defined as the difference between the actual 

observations and the new, estimated model for the observations.  

Consider a generic linearised equation 

 . = h ∙ � + 2 

Where 

 

• . is the residual observation (observed minus computed observations) 

• � is the vector of the unknown 

• h is the observation matrix of the unknown 

• 2 is the matrix column vector contains all the noise terms, which are also 

unknown at this point 

 

Let us consider a solution for the linearised observation equations, denoted  ��. 

Using it, we can write the estimated residuals as 

 2� = . − h ∙ �� 

 



46 
 

The “least squares” solution can be found by varying the value of � until the 

following functional is minimised: 

 

���� = � 2�) =�
��� 2�2 = �. − h ∙ ����. − h ∙ �� 

 

That is, we are minimising the sum of squares of the estimated residuals. If we 

vary � by asmall amount, then ���� should also vary, except at the desired 

solution where it is stationary (since the slope of a function is zero at a minimum 

point). The following illustrates the application of this method to derive the least 

squares solution.The minimum of the sum of squares is found by setting 

the gradient to zero: 

                                                                                                            "����� = 0                                                                     "k�. − h ∙ �����. − h ∙ ���l = 0                     "�. − h ∙ �����. − h ∙ ��� + �. − h ∙ ����"�. − h ∙ ��� = 0          �−h ∙ "�����. − h ∙ ��� + �. − h ∙ �����−h ∙ "��� = 0                                                       �−2h ∙ "�����. − h ∙ ��� = 0                                                           �"��� ∙ h���. − h ∙ ��� = 0                                                                "����h�. − h�h��� = 0                                                                                              h�h�� = h�. 

 

The last line is called the system of “normal equations”. The solution to the 

normal equations is therefore: 

 �� = �� ���¡� ¢ 
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This assumes that the inverse to h�h exists. For example, m≥ 4 is a necessary 

(but not sufficient) condition. Problems can exist if, for example, a pair of 

satellites lie in the same line of sight, or if the satellites are all in the same orbital 

plane. In almost all practical situations, m ≥ 5 is sufficient. Alternatively, one 

parameter could be left unestimated (e.g., the height could be fixed to sea-level 

for a boat). 

 

 

3.4.3  Correlations among the double difference measurements 
 

We have assumed the measurements(both code and carrier) from the satellites in 

view to be uncorrelated. In particular, the covariance of the carrier phase 

measurements at an instant is modeled as 

 ∑¥ = ¦¥)/ 
 

 

where ¦¥ is the standard deviation of the phase measurements, and / is the 

identity matrix. We make this simplifying assumption in the absence of a 

simple, truer model. In this section, we examine the correlations among the 

single and double differences. 

 

 

The single differences corresponding to a pair of satellites can be written in 

matrix notation as 

�V§&|V§&Y � = �10  −10   01  0−1� ©̈©©
ªV§|V&|V§YV&Y «¬¬

¬ 
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The covariance matrix of this pair of single difference is 

 

∑]� = �10  −10   01  0−1� ©̈©©
ª¦¥) 0 0 00 ¦¥) 0 00 0 ¦¥) 00 0 0 ¦¥)«¬

¬¬
 ® 1 0−1 00 10 −1¯ 

                                 = 2¦¥)/ 
 

We, therefore, conclude that if the measurement are uncorrelated, so are their 

single differences. The common variance of the single differences is twice that 

for the carrier phase measurements, as we had noted previously. 

 

Now, on to the double differences. Taking satellite R as the reference, we can 

write a pair of double differences corresponding to satellites 4, R and w as 

 

�V§&|YV§&�Y� = �1 −1 00 −1 1� �V§&|V§&YV§&� � 

 

The covariance matrix for this pair of  double differences is  

 

∑�� = 2¦¥) �2 11 2� 
 

The double differences are correlated even if the original measurements are not. 

For I satellites ,the covariance matrix of double difference will be a �I − 1� ×�I − 1�  matrix. 
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3.5  The LAMBDA  method 
 

 

LAMBDA method (Least-squares AMBiguity Decorrelation Adjustment) is a 

procedure for integer ambiguity estimation in carrier phase measurements. After 

applying a decorrelating transformation, a sequential conditional adjustment is 

made upon the ambiguities. As a result, integer least-squares estimates for the 

ambiguities are obtained. 

We reformulate the problem as one of estimating  °�, a 3-vector of real 

numbers, and ±, a vector of integers, which are solutions of  

 � = a ∙ "� + [ ∙ < + v ∙ � 

 

given that the covariance of  � is ∑��. In other words,find "� and < which 

minimize a revised cost function 

 ��"�, <� = ║� − a ∙ "� − [ ∙ <║²)                                                          = �� − a ∙ "� − [ ∙ <��³�� − a ∙ "� − [ ∙ <� 

 

which uses the inverse of the noise covariance matrix ³ = ∑���� to give different 

weights to the contributions of the residuals. The algorithm implementation 

comprises 3 steps. 
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3.5.1    Step 1 
 

The first step is obtain float solutions: disgregard the constraint of the 

ambiguities and obtain solutions for "� and < which minimizie the cost 

function. We now use the weighted least squares criterion to account for the 

correlations among the double differences. 

In LAMBDA this is only the first step, which ends with the float solutions for 

the position and ambiguities and their covariance matrix . We now show the 

mathematical process of this first step. 

 

Let the vector °� contains the three components of  the baseline and the vector ± contain ambiguities for the L1 frequency and possibly for the L2 frequency. 

The double differenced observations are collected in the vector ́. 

 µa [¶ �"�< � = � + #����f 

 

 

We shall not not derive the weighted least squares estimator here,but for 

completeness, the solution is given here: 

 �� = �� ∑���¡� ∑¢ 

 

where ∑ is the covariance matrix of the residual. 

If 

• h = µa [¶ 
• �� = �"�·<̧ � 
• . = � 
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Applying this result to our method, the formal solution is  

 

�"�·<̧ � = ��a�[� � ∑��µa [¶ ��� ∙ �a�[� � ∙ ∑�� ∙ � 

           = �a�∑��a a�∑��[[�∑��a [�∑��[��� ∙ �a�∑��[�∑�� � ∙ � 

                                         = � ¹º�· ¹º�,· »̧¹º�,· »̧� ¹»̧ � ∙ �a�∑��[�∑�� � ∙ �         (3.5) 

 

Where 

• �"�·<̧ � is the float solution, ¹º�·  and ¹»̧ the corresponding covariance 

matrices; 

• ¹º�,· »̧ gives the cross-correlations between the two. 

 

 

3.5.2   Step 2 
 

In the second step we have to find the integer vector < which minimize the cost 

function 

 ��<� = P< − <̧Q�³»P< − <̧Q               (3.6) 

 

where <̧ is the float solution from step 1 and the weight matrix ³» is the inverse 

of its covariance matrix ³» = ¹»̧��. 

Step 2 is the heart of LAMBDA method. The measure of distance of an integer 

vector <̧ is given by (3.6). The contour of points with a constant value of the 

cost function is an ellipse in two dimensions and an ellipsoid in higher 
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dimensions, centered at  <̧. The search space is delimited by selecting the size of 

the ellipsoid to be searched via a parameter value � > 0. The inequality 

 P± − ±̧Q ¼±P± − ±̧Q ≤ � 

 

defines the integer vectors ± which are candidates for the solution. The search 

space consists of the integer grid points inside an ellipsoid. 

Clearly, this search space must be large enough to contain the right answer and 

small enough to be searched quickly. 

 

In practice, the constant-cost ellipsoids can be very elongated, longer by orders 

of magnitude in one direction that in another, This is specially the case when the 

measurements are limited to a single epoch or only few epochs. 

The result is that points which appear much farther away from  ±̧ may have 

lower values of the cost function than those which appear nearby. 

Brute force search, therefore, would be inefficient. 

What’s needed is a change of variable which would turn the elongated ellipsoid 

into a sphere so that the search can be limited to the neighbors of  ±̧. 

 

If the weight matrix  ¼± is diagonal, the minimization of the cost function is 

trivial. The best estimate of the integer ambiguity is the corresponding float 

estimate rounded off  to the nearest integer. 

A diagonal ¼± would mean that the integer ambiguity estimates in the float 

solution are all uncorrelated. In general, ¼± would not be diagonal, and the 

objective of step 2 is to introduce a change of variables so that the resultant 

correlation matrix is diagonal. 
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¼± is a positive semi-definite matrix and it would appear that diagonalizing it 

would not be a problem. We can use the matrix of its eigenvectors to transform 

the variables. Actually, this approach will not work here because the 

transformation will not preserve the integer nature of ambiguities. We have to 

restrict the transformations to those that take integers into integers. Actually, the 

inverse transformation must do the same, too, so that we can find the solution of 

the original problem. The required transformation ¾ must satisfy the following 

conditions 

 

• ¾  must have integer entries; 

• ¾  must be invertible; 

• ¾�¡ must have integer entries 

 

These conditions ensure that there is a one-to-one relationship between integers 

in the original and transformed spaces.  

Consider a hypothetical transformation ¾ in this restricted class of 

transformations which diagonalizes  ¼±. Let 

 ¿ = ¾±    ÀI�     ¿̧ = ¾±̧ 

 

 

The cost function in the transformed space is 

 P¿ − ¿̧Q �¾� ¼±¾�¡��¿ − ¿̧� 

 

Since  ¾� ¼±¾�¡ is diagonal, we find the solutions for ¿ right away by 

rounding off  each element of  ¿̧. We now transform the problem back and find ±  from 
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± = ¾�¡¿ 

 

LAMBDA would be a simple algorithm if  ¼± could be diagonalized using our 

restricted class of transformations. Unfortunately, that’s almost never the case 

and the integer ambiguities are not decorrelated fully. LAMBDA involves many 

subtle steps to transform ¼± into a matrix that is nearly diagonal as possible 

[Teunissen(1996)]. 

 

For a mathematical procedure of the method see5. 

 

 
Figure 9: The confidence ellipse for two double differences 

 

 

 

 
 

                                      
5 Paul de Jonge and Christian Tiberius(1996). The LAMBDA method for integer ambiguity 
estimation:implementation aspects. 
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3.5.3 Step 3 
 

After the integer solution <Á is found, we substitute it for <̧. Consequently, the 

solution "�·  changes to "�Â . In order to determine "�Â we multiply the lower block 

in (3.5) by  ¹º�,· »̧¹»̧��, and subtract from the upper block. 

Calling _ = a�∑���           Ã = [�∑���            
 

equation  (3.5)  became: 

 

1. "�· = ¹º�· _ + ¹º�,· »̧Ã              <̧ = ¹º�,· »̧�_ + ¹»̧Ã 

2. "�· = ¹º�· _ + ¹º�,· »̧Ã ¹º�,· »̧¹»̧��<̧ = ¹º�,· »̧¹»̧��¹º�,· »̧�_ + ¹º�,· »̧¹»̧��¹»̧Ã 

 

Remebering that ¹»̧��¹»̧ = / and subtracting ,we obtained 

 "�· − ¹º�,· »̧¹»̧��<̧ = P¹º�· − ¹º�,· »̧¹»̧��¹º�,· »̧�Q_ 

 

Rewriting the expression for <Á and "�Â  

 "�Â − ¹º�,· »̧¹»̧��<Á = P¹º�· − ¹º�,· »̧¹»̧��¹º�,· »̧�Q_ 

 

Subtracting each other, 

 "�· − ¹º�,· »̧¹»̧��<̧ − P"�Â − ¹º�,· »̧¹»̧��<ÁQ = 0 
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°�Â = °�· − Ä°�,· ±̧Ä±̧�¡�±̧ − ±Á� 

 

The right side is known, and  "�Â  is quickly found. 
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CHAPTER 4 
 
EXPERIMENTAL TEST 

 

4.1  Setup description and equipment used 
 

The field tests were done using one kind of receiver. The time-difference 

method was evaluated using a commercial-grade ProPak-V3 receiver. Double-

differenced solutions were computed from data measured by a pair of dual-

frequency capable NovAtel ProPak-V3 receivers . 

 

 

 
Figure 10:  Novatel ProPak-V3 
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NovAtel's ProPak-V3 is a durable, triple-frequency GNSS receiver that tracks 

GPS + GLONASS as well as L-Band and SBAS. When combined with one of 

NovAtel’s rugged GPS-700 series antennas, the ProPak-V3 provides superior 

tracking performance, positioning accuracy and reliability. It also supports USB 

communications and Inertial Measurement Unit (IMU) technology .We take up 

next the ProPak V-3 main aspects. 

Features 

• L1, L2, L5, L-Band and SBAS tracking 

• GPS only for GPS + GLONASS 

• Rt-2™, RT20®, ALIGN®, API, GL1DE® and 50 Hz firmware options  

• Aluminum enclosure 

 

 

Benefits 

• Multi-constellation tracking yields higher solution availability and 

reliability 

• Durable metal enclosure ensures reliable positioning in harsh 

environments and EMI conditions 

• Same easy-to-use interface as the ProPak-G2 plus 

• Upgradeable receiver firmware ensures easy upgrading to future signals 

as soon as they are available 

• Supported by industry’s highest level of customer service  
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Attributes 

 

System type Enclosed  

General info Length (mm) 185.00 

 Width/diameter (mm) 160.00 

 Height (mm)   71.00 

 Weight (g) 1000.00 

 Typical power consumption (W) 2.80 

Constellation GPS  

 GLONASS  

Tracking Max Num of Frequency Triple 

 L-Band  

 SBAS  

Performance Accuracy RMS 

 Single Point L1 1.5 m 

 Single Point L1/L2 1.2 m 

 SBAS 0.6 m 

 DGPS 0.4 m 

 

Table 1: Novatel attributes 
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Measurement Precision  
  

                                                      GPS        GLO 

L1 C/A Code                                4 cm        15 cm 

L1 Carrier Phase                      0.5 mm      1.5 mm 

L2 P(Y) Code                               8 cm           8 cm 

L2 Carrier Phase                       1.0 mm      1.5 mm 

 

Advanced multipath mitigation 

The ProPak-V3 provides superior multipath rejection close to the antenna and in 

high multipath environments. 

 

Supports NovAtel SPAN Technology 

A single cable from the ProPak-V3 to an IMU creates a robust GNSS/INS 

system that provides continuous 3D position, velocity and attitude, even during 

periods when satellite signals are blocked. The system delivers measurements at 

100 Hz data rate. 

 

 

The test was a static one, in which both receivers remain stationary at precisely 

known positions, to verify the quality of the proposed algorithm. 

Data, as said before, were collected by two ProPak V-3 receivers, with 1 Hz of 

sampling rate. 

Base receiver was placed on a reference landmark with coordinates 44°  
12’0.36’’N, 12°3'45.72"E and [4478920.0484 m; 957152.4415 m; 

4424113.3286 m] in ECEF system; 
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The user receiver, has coordinates  44°11’58.92’’N ,  12° 3'49.68"E, and 

[4478933.3172 m; 957241.0112 m; 4424076.2166 m] in ECEF system; 

 

Differencing the two ECEF coordinates of the user and the receiver we can 

estimate the baseline ECEF coordinates  between the two. 

 

�4478933.3172 m  957241.0112 m4424076.2166 m� − �4478920.0484 m  957152.4415 m4424113.3286 m� = � 13.2688 m  88.5697 m−37.1119 m� 
 

The norm of the baseline is the distance ,in meter, between the two receivers. 

I��w Ç� 13.2688 m  88.5697 m−37.1119 m�È = 96.9430 w 

 

 
Figure 11: Google Earth image of the receivers position 
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The solution was attained through a least-squares method with a priori 

information . The standard deviation for phase measurement was set to 0.001 m. 

Baseline components were calculated epoch by epoch with LAMBDA 

methodology, described in Chapter 3, using float ambiguity values from 

measurement processing in each epoch by least-squares.  

 

 

4.2   Test analysis 
 

The data were collected in tridimensional matrix, called OBS2 (data for the GPS 

receiver 2) and OBS1( data for the GPS receiver 1). The characteristic of the 

observation matrix are 

 

OBS= time × satellites × parameters 

 

 

Where 

 

• time is the number of epochs of samples; 

• satellites is the number of GPS satellites (32); 

• parameters are 11 data recording by the GPS receiver: in our tests, the 

only parameters that we use are the 3rd  and the 5th ,respectively, the phase 

on the L1 frequency and the phase on the L2 frequency; 
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In our test the observations matrix were  

 

OBS1=1117 × 32 × 11 

OBS2=1117 × 32 × 11 

 

Clearly, at the moment ,not all the 32 satellites were in view, so we try to built 

up a 2D matrix for the carrier phase. In fact, if the time column has a 0 on the 

first epoch, the satellite is clearly not in view. The result was that both the 

receivers were observed 10 satellites. We eliminate (see Matlab code) the zero 

value sample epochs, and obtain four phase matrix, two for the L1, and two for 

the L2,for both receivers. The first row is the number of the satellite. 

 

1 3 6 11 14 

1.1126e+08 1.2077e+08 1.2640e+08 1.0631e+08 1.1637e+08 

1.1126e+08 1.2077e+08 1.2640e+08 1.0631e+08 1.1637e+08 

1.1125e+08 1.2078e+08 1.2640e+08 1.0631e+08 1.1637e+08 

1.1125e+08 1.2078e+08 1.2641e+08 1.0631e+08 1.1637e+08 

1.1125e+08 1.2078e+08 1.2641e+08 1.0631e+08 1.1637e+08 

1.1125e+08 1.2079e+08 1.2641e+08 1.0631e+08 1.1638e+08 

1.1125e+08 1.2079e+08 1.2642e+08 1.0631e+08 1.1638e+08 

1.1124e+08 1.2080e+08 1.2642e+08 1.0630e+08 1.1638e+08 

1.1124e+08 1.2080e+08 1.2643e+08 1.0630e+08 1.1638e+08 

 

Table 2: First receiver phases on the L1 frequency for the first 5 satellites (9 epochs) 
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19 20 22 28 32 

1.1176e+08 1.2000e+08 1.2208e+08 1.2694e+08 1.1044e+08 

1.1177e+08 1.2000e+08 1.2208e+08 1.2694e+08 1.1044e+08 

1.1177e+08 1.2000e+08 1.2208e+08 1.2693e+08 1.1043e+08 

1.1177e+08 1.2000e+08 1.2209e+08 1.2693e+08 1.1043e+08 

1.1177e+08 1.1999e+08 1.2209e+08 1.2693e+08 1.1043e+08 

1.1178e+08 1.1999e+08 1.2209e+08 1.2693e+08 1.1043e+08 

1.1178e+08 1.1999e+08 1.2209e+08 1.2693e+08 1.1043e+08 

1.1178e+08 1.1998e+08 1.2210e+08 1.2693e+08 1.1042e+08 

1.1178e+08 1.1998e+08 1.2210e+08 1.2693e+08 1.1042e+08 

 

Table 3: First receiver phases on the L1 frequency for the others 5 satellites (9 epochs) 

 

 

Dual-frequency capability is not the sole advantage of high-end receivers. The 

probably largest tradeoff for cheaper hardware cost, the receiver clock, causes 

problems. Although the receiver clock biases cancel during double differencing, 

the measurement epochs are not necessarily perfectly synchronized between 

receivers. Naturally the receiver’s sensitivity and ability to maintain phase lock 

affect RTK performance. Frequent cycle slips are of course unfavorable for 

carrier phase positioning. 

Only the satellites tracked by both the reference and rover receivers can be 

used in differential positioning, so the receiver should be able to acquire and 

track as many satellites as possible. 

 

As we said in Chapter 3, we try to choose the satellite with the highest elevation 

angle in order to as the base satellite for the double difference, because the 

signal coming from higher elevations travel a shorter time through the 
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atmosphere and therefore are less plagued by ionospheric and tropospheric 

errors. It is  also less prone to multipath. 

 

We transform the coordinates of the satellites into NED system coordinates, 

Nord,  East and Down, and then calculate the angle of elevation, also called the 

altitude, determined by first finding the compass bearing on the horizon relative 

to true north, and then measuring the angle between that point and the object, 

from the reference frame of the observer. Elevation angles for objects above the 

horizon range from 0 (on the horizon) up to 90 degrees (at the zenith). 

Sometimes the range of the elevation coordinate is extended downward from the 

horizon to -90 degrees (the nadir). This is useful when the observer is located at 

some distance above the surface, such as in an aircraft. Figure 12 shows the 

elevation angle. 

 

 

 

 
Figure 12: Elevation angle 
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Elevation angle É can be calculated (in degrees) as: 

 

É∘ = arcsin � −<TÌ�ÍÎ�I��w�<TÌ�� ∙ 1807  

 

Where: 

 

• arcsin is the inverse of the sin function; 

• <TÌ�ÍÎ� is the third component of the NED coordinates of  a satellite, or 

rather the down component; 

• I��w�<TÌ� is the norm of the NED coordinates of a satellite; 

 

 

In our test the results are: 

 

 

Theta ( É∘� Satellite 

51.435432679421858 1 

28.993728674215742 3 

16.686907535583959 6 

72.060670142940268 11 

39.828897730343051 14 

57.011048271965080 19 

28.310027015568377 20 

25.850776498545546 22 

18.522182305961120 28 

55.947753125882187 32 

 

                                   Table 4: Elevation angle of the satellites 
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Since the satellite 11 has the major elevation angle, we have taken it as the 

reference one for the double difference implementation. 

 

4.3  Experimental results 
 

The sampling rate was 1 Hz in all measurements, which suffices for detecting 

such motion. For more accurate trajectory reconstruction, a higher sampling 

frequency would be beneficial. 

 

All computations were carried out in post-processing mode. This enabled a 

priori verification of the data to be cycle slip free. No runtime cycle slip 

detection was attempted. The verification was done by hand and was not 

rigorous, so basically small cycle slips could be present in the data. However, no 

evident a posteriori signs of cycle slips were observed. 

 

 Using two separate antennas decorrelates multipath. In the figure below is show 

the difference between the computed position and the calculate one( baseline 

slightly less than 100 meters), and the errors in 100 seconds of sample. The 

antennas were not located in very multipath-prone locations, so the resulting 

multipath error is not expected to be large.. The baseline solutions do not 

coincide with the reference baseline computed  but the discrepancies are in 

centimeter level in the horizontal plane and a couple of centimeters in the 

vertical direction. 
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Figure 13: Computed and calculated baseline in 100 seconds 

 

 

 
Figure 14: Baseline component error for static test 
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Figure 14 shows the evolution of the baseline error in 100 seconds. The average 

error is 0,92083 m, and could be consider a good estimate for our purpose, 

considering the Pro Pak features and our simplified model. (No cycle slips, no 

multipath errors). 

 

The errors of the NED component, Nord, Est and Down are shown below. 

 

 

Figure 15: Nord component error 
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Figure 16: Est component error 

 
Figure 17: Down component error 
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Figures show that in 100 seconds of samples, the medium errors for the 3 

components are: 

 

Nord medium error    [m]  0,689724017 

Est medium error       [m] -0,6824275994 

Down medium error   [m] 0,3941270872 

 

Tabella 5: Medium error component 

 

The next figure show the grapich of the Nord and the Est component, and the 

difference between the computed and the calculated one. 

 

Figure 18: Computed and calculated N-E grapich 
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Another important parameter to be estimated is the standard deviation of the 

baseline. This parameter will give us the goodness of the valuation. 

 

In statistics and probability theory, RMS, root mean square (represented by the 

symbol sigma, ¦) shows how much variation or "dispersion" exists from the 

average (mean, or expected value). A low RMS indicates that the data points 

tend to be very close to the mean; high RMS indicates that the data points are 

spread out over a large range of values. 

The RMS of a random variable, statistical population, data set, or probability 

distribution is the square  the square root of its variance. It is algebraically 

simpler through practically less robust than the average absolute deviation, and a 

useful property of standard deviation is that it, unlike variance, it is expressed in 

the same units as the data. 

 

In the case where X  takes random values from a finite data set  ��, �),….�», 

with each value having the same probability, the RMS is 

 

¦ = ��» ∑ ��� − x�)»���       where  x = �» ∑ ��»���  

 

In our test, RMS results  ¦ = 0,0763 m. This means that most baseline solutions 

have a length within 0,0763 m in of the mean (96,022 m). 
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CHAPTER 5 
 

CONCLUSIONS 

 

 

In this thesis the positioning techniques were carried out through phase 

measurements processing, using the LAMBDA approach. 

Double-differenced baseline solutions were precise and mostly consistent with 

the reference baselines. Only high-quality receivers were used in these 

measurements. Using low-cost receivers for RTK measurements as well would 

have been natural, but could not be carried out due to hardware problems. Thus, 

the effect of asynchronous measurements and higher noise were not studied. 

The LAMBDA-method is capable of correctly estimating the integer 

ambiguities very fast and efficiently. The results in this paper show that in order 

to successfully estimate the integer ambiguities, data of only a short time span 

are required. The method therefore enables instantaneous precise navigation and 

very rapid static surveying.  

 

The double-difference positioning implementation was also post-processing 

only and for stationary baselines. Therefore, the term “real-time kinematic” does 

not directly apply to it. However, neither data from future epochs nor post-

processed precise ephemerides or other corrections were used, so in principle the 

algorithm would have worked in real-time as well. 

 

A relatively high number of satellites was needed to obtain a reliable integer 

ambiguity fix. The baseline computations were done using ten satellites. This 

may become a problem if the rover and reference receivers do not have that 
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many common satellites in track. However, most receivers have at least 12 

tracking channels which should be enough for relatively short baselines, but 

with the number of available GPS’s and satellites growing in the future, more 

channels may be necessary to make sure both receivers choose the same 

satellites to track.  

The test results show that centimeter-level precision is attainable using double 

frequency  measurements only with relatively simple algorithms.  

As no pre-surveyed reference baselines were available, absolute accuracies 

could not be assessed rigorously. 

 

The discrepancies from the reference computations imply that some inaccuracy 

is present, but in most cases the errors were in centimeter magnitude.  

Once the measurement information relaying issue is solved by some standard, 

RTK is expected to bring the positioning performance attained using consumer-

level equipment to centimeter level. 

 

Logically, further developments consider:  

 

(i) include better dynamics in the estimation process; 

(ii)  a better filter tunning for carrier phase measurements;  

(iii)  add other measurements combination, widelane combination;  

(iv) validate ambiguities after resolving;  

(v) cycle slips detection and correction; 
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Appendix 
 

Following, the Matlab file of the software. 

 

clc      
clear   
close all  
format long  
  
%%%%%% Script di definizione variabili %%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%% 
  
GPSdefns;      % Definizione dei parametri numerici  
  
%%%%%% Analisi files di testo 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
reply = input( 'Vuoi ricavare i dati dai files di testo originali?  [y/n] ' , 
's' ); % Richiesta per l'estrazione di nuovi dati dai file s di testo  
if  reply == 'y'  
  
  
% Nominativi files di testo RANGE+EPHEM da leggere  
fileinput = [ 'prova_s1.txt' ; 'prova_s2.txt' ];  
  
% Creazione files di testo SOLO RANGE da riempire  
range = [ 'range2.txt' ; 'range3.txt' ];  
  
% Creazione files di testo SOLO EPHEM da riempire  
gpsephem = [ 'gpsephem2.txt' ; 'gpsephem3.txt' ];      
  
% Inserimento dei dati forniti da ogni stazione (3)  nei corrispondenti 
files RANGE/EPHEM (2x3) 

 
for  i=1:2  
    fileinput_temp = fileinput(i,:);  
    range_temp = range(i,:);  
    gpsephem_temp = gpsephem(i,:);  
    Text_Split(fileinput_temp,range_temp,gpsephem_t emp);    
end ;  
  
%%%%% Creazione matrici range e ephem %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Lettura dati dal file RANGE + EPHEM delle stazion i  e creazione di una 
matrice 3D (t_range x 32 x 11)  
range2 = 'range2.txt' ;  
RANGE2 = Lettura_OBS(range2);  
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range3 = 'range3.txt' ;  
RANGE3 = Lettura_OBS(range3);  
ephem2 = 'gpsephem2.txt' ;  
EPHEM2 = Lettura_EPHEM(ephem2);  
ephem3 = 'gpsephem3.txt' ;  
EPHEM3 = Lettura_EPHEM(ephem3);  
  
save( 'range_ephem.mat' , 'EPHEM2' , 'EPHEM3' , 'RANGE2' , 'RANGE3' );  
  
else  load( 'range_ephem.mat' );  
  
end ;  
  
%%%%%% Matrici comuni %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%  
  
% Individuazione delle matrici RANGE comuni (in bas e ai tempi assoluti di 
campionamento) fra le tre stazioni  
[comune1, comune2, comune3] = Matrici_Comuni(RANGE2 , RANGE2, RANGE3);   
  
%%%%%% Elaborazione posizione satelliti e sincroniz zazione con OBS %%%%%%%% 
  
% Calcolo posizioni satelliti rilevati dalle stazio ne  e sincronizzazione 
con misurazioni di pseudodistanza  
[OBS2, XYZ_SAT2] = Info_Satelliti(comune2,EPHEM2);  
[OBS1, XYZ_SAT1] = Info_Satelliti(comune3,EPHEM3);  
  
  
 [tempi,sat,parametri]=size(comune3);  
     
    %Stazione 3: terrazzo ingegneria( coordinate R1); 
    %Stazione 2: locale pompe (coordinate R2); 

 
    %Matrice contenente le misure di fase misurate sull a portante L1 per la   
    stazione 3  
     
    z=1;  
    for  j=1:sat  
         if  (comune3(1,j,3)~=0)  
              
            FASI1D(1,z)=j;   
            FASI1D(2:tempi+1,z)=comune3(1:tempi,j,3 );  
            z=z+1;  
              
         else  
              end  
    end  
     
    %Matrice contenente le misure di fase misurate sull a portante L1 per la  
    stazione 2  
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     l=1;  
     for  j=1:sat  
         if  (comune2(1,j,3)~=0)  
              
            FASI2D(1,l)=j;   
            FASI2D(2:tempi+1,l)=comune2(1:tempi,j,3 );  
            l=l+1;  
              
         else  
              end  
     end  
     
    
 
 %Matrice contenente le misure di fase misurate sull a portante L2 per la  
 stazione 3 

 
     
    z=1;  
    for  j=1:sat  
         if  (comune3(1,j,5)~=0)  
              
            FASI1D_2(1,z)=j;   
            FASI1D_2(2:tempi+1,z)=comune3(1:tempi,j ,5);  
            z=z+1;  
              
         else  
              end  
    end  
     
 %Matrice contenente le misure di fase misurate sull a portante L2 per la  
 stazione 2  
     
    z=1;  
    for  j=1:sat  
         if  (comune2(1,j,5)~=0)  
              
            FASI2D_2(1,z)=j;   
            FASI2D_2(2:tempi+1,z)=comune2(1:tempi,j ,5);  
            z=z+1;  
              
         else  
              end  
    end  
     
     
    m=1;  
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%Calcolo posizioni dei satelliti visti dalla stazio ne 2 ed eliminazione 
tempi nulli  
     
       for  j=1:32  
           if  (XYZ_SAT2(1,j,1)~=0)  
               XYZ_SAT2D_1(1:tempi,m,1:3)=XYZ_SAT2( 1:tempi,j,1:3);  
               m=m+1;  
              
         else  
         end  
       end  
    
       i=1;  
       k=1;  
        
      for  i=1:tempi  
           
          if  (XYZ_SAT2D_1(i,:,1)~=0)  
              XYZ_SAT2D(k,:,1:3)=XYZ_SAT2D_1(i,:,1: 3);  
              k=k+1;  
          else  
               
               
          end  
      end  
        
       
       
%Calcolo posizione dei satelliti visti dalla stazio ne 3 ed eliminazione 
tempi nulli 

 
    m=1;  
    for  j=1:32  
           if  (XYZ_SAT1(1,j,1)~=0)  
               XYZ_SAT1D_1(1:tempi,m,1:3)=XYZ_SAT1( 1:tempi,j,1:3);  
               m=m+1;  
              
         else  
         end  
       end  
    
       i=1;  
       k=1;  
        
      for  i=1:tempi  
           
          if  (XYZ_SAT1D_1(i,:,1)~=0)  
              XYZ_SAT1D(k,:,1:3)=XYZ_SAT1D_1(i,:,1: 3);  
              k=k+1;  
          else  
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             end  
      end  
       
    
    
   nsat=size(FASI2D,2);  

   R1=[4478920.0484;957152.4415;4424113.3286];  

   R2vera = [4478933.3172; 957241.0112; 4424076.216 6];  

   R2=R1; Posizione iniziale del ricevitore R2 per la lineari zzazione  

   theta=zeros(nsat,1);  

    
   %Calcolo del satellite con la maggior elevazione e spostamento dei dati  
   %di quest ultimo sulla prima colonna 

 
   for  t=1:nsat  
        
   pos_sat(1,1)=XYZ_SAT1D(1,t,1);  
   pos_sat(2,1)=XYZ_SAT1D(1,t,2);  
   pos_sat(3,1)=XYZ_SAT1D(1,t,3);  
   NED_sat= Trasf_ECEF_to_NED(pos_sat,R1,1);  
   theta(t,1)=asin(-NED_sat(3,1)/norm(NED_sat))*180 /pi;  
   end  
     
   for  i=1:nsat  
        
       FASI1D_mod(:,i)=FASI1D(:,i);  
       FASI2D_mod(:,i)=FASI2D(:,i);  
       FASI1D_mod2(:,i)=FASI1D_2(:,i);  
       FASI2D_mod2(:,i)=FASI2D_2(:,i);  
       XYZ_SAT2D_mod(:,i,:)=XYZ_SAT2D(:,i,:);  
        
   end  
    
   FASI1D_mod(:,1)=FASI1D(:,4);  
   FASI1D_mod(:,4)=FASI1D(:,1);  
    
   FASI2D_mod(:,1)=FASI2D(:,4);  
   FASI2D_mod(:,4)=FASI2D(:,1);  
    
   FASI1D_mod2(:,1)=FASI1D_2(:,4);  
   FASI1D_mod2(:,4)=FASI1D_2(:,1);  
    
   FASI2D_mod2(:,1)=FASI2D_2(:,4);  
   FASI2D_mod2(:,4)=FASI2D_2(:,1);  
    
   XYZ_SAT2D_mod(:,1,:)=XYZ_SAT2D(:,4,:);  
   XYZ_SAT2D_mod(:,4,:)=XYZ_SAT2D(:,1,:);  
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%Procedura per il calcolo della posizione col metod o delle doppie 
differenze  
    
   DDphi_L1=zeros(nsat-1,100);  
   DDphi_L2=zeros(nsat-1,100);  
   S1_R1=zeros(3,100);  
   S1_R2=zeros(3,100);  
    
  
   for  q=1:100  
     for  t=2:nsat  
       DDphi_L1(t-1,q)=(FASI2D_mod(q+1,t)-FASI2D_mo d(q+1,1)- 
       FASI1D_mod(q+1,t)+FASI1D_mod(q+1,1))*lambda_ 1;  
       DDphi_L2(t-1,q)=(FASI2D_mod2(q+1,t)-FASI2D_m od2(q+1,1)- 
       FASI1D_mod2(q+1,t)+FASI1D_mod2(q+1,1))*lambd a_2;  
     end  
        
    
   S1_R1(1,q)=XYZ_SAT2D_mod(q,1,1);  
   S1_R1(2,q)=XYZ_SAT2D_mod(q,1,2);  
   S1_R1(3,q)=XYZ_SAT2D_mod(q,1,3);  
    
     
   S1_R2(1,q)=XYZ_SAT2D_mod(q,1,1);  
   S1_R2(2,q)=XYZ_SAT2D_mod(q,1,2);  
   S1_R2(3,q)=XYZ_SAT2D_mod(q,1,3);  
      
   end  
    
    
   G1=zeros(nsat-1,3);  
   tt=1;  
   Sk_R1=zeros(3,100);  
   Sk_R2=zeros(3,100);  
    
    
   m1 = nsat-1;  
   N = zeros(3+2*m1,3+2*m1);       
   rs=zeros(3+2*m1,100);  
   %X=zeros(3+2*m1,100);  
   DDPhi=zeros(2*(nsat-1),100);  
   DDRho=zeros(2*(nsat-1),100);  
   X=zeros(3+2*(nsat-1),100);  
   for  q=1:100  
        
   for  t=2:nsat  
        
       for  tt=1:3  
        
        



84 
 

        
       Sk_R2(1,q)=XYZ_SAT2D_mod(q,t,1);  
       Sk_R2(2,q)=XYZ_SAT2D_mod(q,t,2);  
       Sk_R2(3,q)=XYZ_SAT2D_mod(q,t,3);  
        
       G1(t-1,tt)=[((-R2(tt)+XYZ_SAT2D_mod(q,t,tt)) /norm(R2-Sk_R2(:,q)))-( 
       (-R2(tt)+XYZ_SAT2D_mod(q,1,tt))/norm(R2-S1_R 2(:,q)))];  
      
       DDrho(t-1,q)=norm(S1_R2(:,q)-R1)-norm(S1_R2( :,q)-R1)- 
       norm(Sk_R2(:,q)-R1)+norm(Sk_R2(:,q)-R1);  
       end  
   end  
    
           
    % Creazione matrice di covarianza delle doppie diff erenze  
     
    D = [ones(m1,1) -eye(m1) -ones(m1,1) eye(m1)];  
    Sigma =D*D';  
    A_modi = eye(m1);  
    A_modi(:,1)=-ones(m1,1);  
     
     
    A_aug = [G1 lambda_1*A_modi 0*eye(m1);G1 0*eye( m1) A_modi*lambda_2];  
    DDPhi(:,q)=[DDphi_L1(:,q);DDphi_L2(:,q)];  
    DDRho(:,q)=[DDrho(:,q);DDrho(:,q)];  
      
    N = A_aug'*kron(eye(2),Sigma)*A_aug;  
    rs(:,q) = rs(:,q)+A_aug'*kron(eye(2),Sigma)*(DD Phi(:,q)-DDRho(:,q));  
    
  
    PP = pinv(N);     
     
    
  % X contiene le the componenti float della baseline  e le ambiguità reali  
     
    X(:,q)= PP*rs(:,q);  
     
       
     
   [a,sqnorm,Sigma_afixed,Z] = lambda(X(4:4+2*m1-1, q),PP(4:4+2*m1- 
   1,4:4+2*m1-1));  
     
   
   % Correzione vettore baseline come conseguenza d el cambio delle 
   Ambiguità da float a fisse  
 

  
    X(1:3,q) = X(1:3,q)-PP(1:3,4:4+2*m1-1)*inv(PP(4 :4+2*m1-1,4:4+2*m1- 
    1))*(X(4:4+2*m1-1,q)-a(:,1));  %primo set di candidati  
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    X(4:4+2*m1-1,q) = a(:,1);  
     
     
   end  
    
    
%Calcolo della baseline media(media fra tutti gli i stanti di tempo)  
 
   X_tot=zeros(3,1);  
   norm_tot=0;  
   for  i=1:100  
       X_tot=X_tot+X(1:3,i);  
       norm_tot=norm_tot+norm(X(1:3,i));  
   end  
    
   X_medio=X_tot/100  
   norm_media=norm_tot/100;  
   X_vero=R2vera-R1  
    
    
    
  %Calcolo dell' RMS(root mean square) e della deviaz ione standard (St_dev)  
   B=0;  
   T=0;  
   for  n=1:100  
       B=B+(norm(X(1:3,n))-norm_media)^2;  
       T=T+(norm(X(1:3,n)))^2;  
   end   
    
   St_dev=sqrt(B/100);  
   RMS=sqrt(T/100);  
    
   %Grafico 1 di come varia la norma di X in funzione del tempo 

 
   Y=zeros(1,100);  
   
    
   for  i=1:100  
       Y(1,i)=norm(X(1:3,i));  
        
   end  
    
   X_vero=norm(R2vera-R1)*ones(1,100);  
    
    
   hold on 
   figure(1);  
   plot(1:100,Y,1:100,X_vero, 'linewidth' ,2);  
   title( 'Baseline norm' , 'fontsize' ,16);  
   xlabel( 'time [s]' , 'fontsize' ,16);  
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   ylabel( ' Norm [m]' , 'fontsize' ,16);  
   legend( 'Calculated baseline' , 'Computed baseline' );  
   axis([ 1 100 95 97])  
    
      
   figure(2);  
   plot(1:100,X_vero-Y, 'r' , 'linewidth' ,2);  
   title( 'Baseline error' , 'fontsize' ,16);  
   xlabel( 'time [s]' , 'fontsize' ,16);  
   ylabel( ' Error [m]' , 'fontsize' ,16);  
   
    
    
   %Trasformazione baseline in coordinate NED e grafic i N-E  
    
   for  i=1:100  
       S2(1:3,i)=X(1:3,i)+R1;  
   end  
    
    
   for  i=1:100  
   NED(1:3,i) = Trasf_ECEF_to_NED(S2(1:3,i),R1,1);  
   end  
         
   Nord=zeros(1,100);  
   Est=zeros(1,100);  
   Down=zeros(1,100);  
   for  i=1:100  
       Nord(1,i)=NED(1,i);  
       Est(1,i)=NED(2,i);  
       Down(1,i)=NED(3,i);  
   end  
   
    
  
  L=0;  
  NED_tot=0;  
  for  i=1:100  
       L=L+NED(1:3,i);  
       NED_tot=NED_tot+norm(NED(1:3,i));  
   end  
   NED_medio=L/100  
   E_NED=NED_tot/100;  
   NED_vero = Trasf_ECEF_to_NED(R2vera,R1,1)  
    
   Est_vero=NED_vero(2,1)*ones(1,100);  
   Nord_vero=NED_vero(1,1)*ones(1,100);  
       
   %Grafico 3 N-E  
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  figure(3)  
  plot(Est,Nord, '*' );  
  title( 'N-E components of the baseline' , 'fontsize' ,16);  
  axis([ 82 84 -50 -46]);  
  xlabel( 'Est[m]' , 'fontsize' ,16);  
  ylabel( 'Nord[m]' , 'fontsize' ,16);  
  hold on 
  plot(Est_vero,Nord_vero, 'ro' );  
  legend( 'N-E calculated' , 'N-E computed' );  
   
   
  figure(4);  
  plot(1:100,[(Est-Est(1))' (Nord-Nord(1))' (Down-  
  Down(1))'], 'linewidth' ,2);  
  title( 'Differential Position Estimates From Phase 
  Observations' , 'fontsize' ,16);  
  ylabel( 'Corrections to Initial Position [m]' , 'fontsize' ,16);  
  xlabel( 'Epochs [1 s interval]' , 'fontsize' ,16);  
  legend( 'East' , 'North' , 'Down' );  
  set(gca, 'fontsize' ,16);  
  legend;  
    
  error=zeros(1,100);  
  for  i=1:100  
     
    error_N(1,i)=NED(1,i)-NED_vero(1,1);  
     
    error_E(1,i)=NED(2,i)-NED_vero(2,1);  
     
    error_D(1,i)=NED(3,i)-NED_vero(3,1);  
     
  end  
  
 figure(5)  
 plot(1:100,error_N, 'g+' )  
 axis([1 100 0 2]);  
 title( 'Nord baseline component error' , 'fontsize' ,16);  
 xlabel( 'time [s]' , 'fontsize' ,16);  
 ylabel( 'Error Nord [m]' , 'fontsize' ,16);  
  
 figure(6)  
 plot(1:100,error_E, 'b+' )  
 axis([1 100 -2 0]);  
 title( 'Est baseline component error' , 'fontsize' ,16);  
 xlabel( 'time [s]' , 'fontsize' ,16);  
 ylabel( 'Error Est [m]' , 'fontsize' ,16);  
  
 figure(7)  
 plot(1:100,error_D, 'r+' )  
 axis([1 100 0 2]);  
 title( 'Down baseline component error' , 'fontsize' ,16);  
 xlabel( 'time [s]' , 'fontsize' ,16);  
 ylabel( 'Error Down [m]' , 'fontsize' ,16);  
 


