
ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

Seconda Facoltà di Ingegneria
Corso di Laurea Magistrale in Ingegneria Informatica

ENGINEERING CONCURRENT AND
EVENT-DRIVEN WEB APPS: AN

AGENT-ORIENTED APPROACH BASED ON
THE SIMPAL LANGUAGE

Tesi in:

Programmazione Concorrente e Distribuita LM

Presentata da:
FRANCESCO FABBRI

Relatore:
Prof. ALESSANDRO RICCI

Co-relatore:
Dott. ANDREA SANTI

ANNO ACCADEMICO 2011–2012
SESSIONE II

ii

Abstract

Web is constantly evolving, thanks to the 2.0 transition, HTML5 new fea-

tures and the coming of cloud-computing, the gap between Web and traditional

desktop applications is tailing off. Web-apps are more and more widespread

and bring several benefits compared to traditional ones. On the other hand

reference technologies, JavaScript primarly, are not keeping pace, so a paradim

shift is taking place in Web programming, and so many new languages and

technologies are coming out. First objective of this thesis is to survey the ref-

erence and state-of-art technologies for client-side Web programming focusing

in particular on what concerns concurrency and asynchronous programming.

Taking into account the problems that affect existing technologies, we finally

design simpAL-web, an innovative approach to tackle Web-apps development,

based on the Agent-oriented programming abstraction and the simpAL lan-

guage.

Keywords: Web 2.0, JavaScript, Dart, Asynchronous programming, Event-

driven programming, Agent-oriented programming, simpAL

iii

iv

Sommario

Il Web è in continua evoluzione, grazie alla transizione verso il 2.0, alle

nuove funzionalità introdotte con HTML5 ed all’avvento del cloud-computing,

il divario tra le applicazioni Web e quelle desktop tradizionali va assottiglian-

dosi. Le Web-apps sono sempre più diffuse e presentano diversi vantaggi

rispetto a quelle tradizionali. D’altra parte le tecnologie di riferimento, JavaScript

in primis, non stanno tenendo il passo, motivo per cui la programmazione Web

sta andando incontro ad un cambio di paradigma e nuovi linguaggi e tecnologie

stanno spuntando sempre più numerosi.

Primo obiettivo di questa tesi è di passare al vaglio le tecnologie di riferimento

ed allo stato dell’arte per quel che riguarda la programmmazione Web client-

side, porgendo particolare attenzione agli aspetti inerenti la concorrenza e la

programmazione asincrona. Considerando i principali problemi di cui soffrono

le attuali tecnologie passeremo infine alla progettazione di simpAL-web, un

approccio innovativo con cui affrontare lo sviluppo di Web-apps basato sulla

programmazione orientata agli Agenti e sul linguaggio simpAL.

Parole chiave: Web 2.0, JavaScript, Dart, Asynchronous programming,

Event-driven programming, Agent-oriented programming, simpAL

v

vi

To my parents,

who taught me what in life

is really important.

vii

viii

Contents

Abstract iii

1 Introduction 1

2 Background 4

2.1 JavaScript . 4

2.1.1 JavaScript drawbacks 5

2.1.2 The JavaScript frameworks ecosystem 7

2.1.3 JavaScript as intermediate language 10

2.2 Toward the next generation of structured Web languages . . . 13

2.2.1 Dart . 14

2.2.2 TypeScript . 16

2.2.3 What’s the future lingua franca for the Web? 18

2.3 Web asynchronous programming 20

2.3.1 Asynchronous programming troubles 23

2.3.2 Futures and Promises 24

2.3.3 JavaScript jQuery Promises 26

2.3.3.1 Deferred and Promise 26

2.3.3.2 Promises and AJAX 27

2.3.3.3 Promises progress 28

2.3.3.4 Promise pipelining 29

2.3.3.5 Combining Promises 31

2.3.4 Dart Futures . 33

2.4 Concurrency in Web applications 34

2.4.1 HTML5 Web Workers 35

ix

2.4.1.1 Dedicated Workers 37

2.4.1.2 Shared Workers 40

2.4.1.3 Web Worker’s event loop 42

2.4.1.4 Mixing Web Workers and asynchronous pro-

gramming . 44

2.4.2 Dart Isolates . 46

2.4.3 Other technologies . 49

2.5 A case study Web-app . 49

2.6 Open issues in reference technologies 52

2.6.1 Asynchronous spaghetti 52

2.6.2 Asynchronous programming and Inversion of Control . 55

2.6.3 Issues inherent the Actor model 55

3 The simpAL language 57

3.1 Main concepts . 58

3.2 Programming agents . 60

3.2.1 Roles and tasks . 61

3.2.2 Agent scripts and plans 62

3.2.2.1 Action rules: events, conditions, actions . . . 63

3.2.2.2 Tasks as first-class entities 65

3.2.3 The agent control loop 66

3.3 Programming artifact-based environments 68

3.3.1 Usage interfaces . 69

3.3.2 Artifact templates . 69

3.4 Defining the organization . 71

3.5 simpAL benefits . 72

3.5.1 Asynchronous programming without Inversion of Control 72

3.5.2 Integration of autonomous and reactive behaviours . . 73

3.5.3 Concurrency . 73

3.5.4 Error checking at compile time 74

4 simpAL-web 75

4.1 Requirements and assumptions 76

x

4.2 Modeling simpAL Web applications 77

4.3 Modeling the Web environment 78

4.3.1 The Web Page artifact 79

4.3.2 The Web Element artifact 81

4.3.3 The Clock artifact . 83

4.3.4 Interaction with Web services 84

4.4 Web programming in simpAL-web 87

4.4.1 Dealing with asynchronous programming 88

4.4.2 Dealing with concurrency 91

4.4.3 Dealing with complex applicazions 94

4.5 About simpAL-web implementation 97

5 Conclusions 100

5.1 Future works . 102

List of Tables 105

List of Figures 106

List of Listings 107

Bibliography 109

A Chapter 2 sources 114

A.1 HTML documents . 114

A.2 JavaScript sources of “What friends most like?” app 116

B Chapter 4 sources 124

B.1 WebPageArtifact implementation 124

B.2 WebElemArtifact implementation 125

B.3 simpAL sources of “Battle of the bands” app 127

B.4 simpAL sources of “Stoppable counter” app 130

B.5 simpAL sources of “What friends most like?” app 131

xi

xii

Chapter 1

Introduction

Since it’s introduction in early 1990s, the World Wide Web has swiftly grown,

driven by ever greater amounts of online information, commerce, entertain-

ment and social networking, and coming pervasively in our every day life.

With the Web 2.0 transition, once static, HTML pages “come to life” thanks

to JavaScript language and AJAX technology enriching the user interaction

and becoming out-and-out Web applications. Well-known examples of pop-

ular Web applications are for instance Google Docs1, an office suite utterly

Web-based which also allows the cooperation among many users, or Google

Mail2, representative of all those Web-based mail clients. The deployment

of these so-called Web apps is an ever more widespread trend and the Web

is becoming the de facto deployment environment for new software systems

mainly thanks to the following factors. First is that all Web languages and

technologies, for instance HTML, CSS, ECMAScript, AJAX, JSON are open

standards, mainly headed by the World Wide Web Consortium (W3C3). Be-

cause of this and given the ubiquity of Web browsers which, except for notable

exceptions comply the standards, leads to the huge benefit for which Web apps

are portable for-free virtually on every platform. Ubiquity is a key aspect es-

pecially in relation to the nowadays increasing spread of mobile devices such

as smartphones and tablets, each one with its own hardware capabilities and

1http://docs.google.com
2http://mail.google.com
3http://www.w3.org

1

http://docs.google.com
http://mail.google.com
http://www.w3.org

operating systems. Considering in addition that besides the mobile platforms,

thanks to the evolution of Web standards, Web applications are able to com-

pete with traditional desktop-based ones, the Web development is definitely

proposed as “Write once, run anywhere” target since it allows to develop ap-

plications regardless from any specific type of operating system, computer or

device. A further strong point concerns mantainability since all the new fea-

tures are implemented on the server and forthwith available to all the users.

Thanks to these benefits, the trend in the software industries is definitely to

move applications, including those desktop-based, to the World Wide Web,

causing a fundamental change in the way people develop, deploy and use soft-

ware, consider for instance the coming of cloud computing and Software as a

Service (SaaS).

As stated before Web technologies are constantly evolving with the aim of

bridging the gap between Web applications and native ones, whether they are

mobile or desktop-based. For example the newer HTML version 5 standard

brings in Web applications fuatures like media playback, Web storage, 3d

graphic and concurrency. On the other side, with the Web 2.0 transition and

the coming of AJAX, it has been introduced the ability to update parts of

the user interface without reloading the entire page each time when something

changes. This made Web applications to behave much like desktop ones, and

often these kinds of applications are denoted as Rich Internet Applications

(RIAs)4. Anyhow to date the gap between Web applications and native ones

persists and it’s measurable mainly in terms of usability, performance and ease

of development. Especially for what concerns the latter aspect the technologies

have not evolved enough yet, so Web applications development mainly suffers

of problems such as the lack of structure, the poorness of software engineer

methodologies and tooling. Furthermore, JavaScript, the standard language

de facto for client-side Web programming has several drawbacks and, as we will

se in the remainder, is particularly inadequate for in-the-large programming.

Objective of the first part of this thesis is therefore to analyze the reference

4Not to be confused with those platforms such as Adobe Flash, Microsoft Silverlight and

Oracle JavaFX which are targeted to Rich Internet Applications development too, but run

in proprietary virtual machines and are typically provided as Web browsers plugins.

2

technologies for client-side Web programming, primarly JavaScript, investigat-

ing for the major issues that afflict the development of Web applications and

ultimately understanding how state of art technologies such as Dart, Type-

Script and JavaScript frameworks tackle some of these issues. However as we

will see some of these issues remain unresolved, in particular those related to

asynchronous programming and concurrency. Taking in account these prob-

lems, in the second part of the thesis we propose a paradigm shift in Web

programming toward the Agent-oriented programming (AOP) paradigm and

the simpAL language in particular. Differently to other Agent-orient lan-

guages introduced in the (Distributed) Artificial Intelligence context, simpAL

is intended to investigate the Agent-oriented as general-purpose programming

approach, extending the Object-oriented programming with a further abstrac-

tion layer to deal with concurrent and distributed systems design and devel-

opment, based on the Human-inspired computing metaphor. For the purpose

to integrate the simpAL language in Web applications we finally design the

simpAL-web platform with which we test the effectiveness of simpAL in deal-

ing with the issues of Web programming.

The reminder of this thesis is organized as follows: in Chapter 2 we firstly

take a survey of the reference and state-of-art languages and technologies in the

current Web scene. Then we focus on two key aspects that is asynchronous

programming and concurrency considering how they are tackled by current

languages and providing several examples. We conclude the chapter taking

some considerations about open issues concerning the aspects described before.

In Chapter 3 we introduce the Agent-oriented programming paradigm and we

make an overview of the simpAL language which we have designated as the

reference language for our investigation for Agent-oriented Web programming.

In Chapter 4 we design the simpAL-web platform and we tackle the issues

identified in the previous chapters with the simpAL language. In Chapter

5 we finally take some considerations about our investigation, on the results

achieved and the future works.

3

Chapter 2

Background

Aim of this first chapter is to provide an overview of state-of-art and most pop-

ular languages and technologies for client-side Web applications programming.

We will consider the paradigm shift that is taking place between unstructured

and untyped languages such ECMAScript, for many reasons unsuitable for

what concerns in-the-large programming, toward structured and optionally

typed ones. We focus in particular to what concerns concurrency and asyn-

chronous programming and how these features are provided in reference lan-

guages namely ECMAScript and Dart. At last, we take some considerations

about several issues that affect the existing technologies and programming

models, which will support the design of our innovative approach, based on

Agent-oriented programming and the simpAL language, that will be treated

in the following chapters.

2.1 JavaScript

According to the Wikipedia definition [27], JavaScript is a prototype-based

scripting language that is dynamic, weakly typed and has first-class functions.

It is a multi-paradigm language, supporting object-oriented, imperative, and

functional programming styles. JavaScript is dynamically typed in the sense

that types are associated with values, not with variables. Objects are ef-

fectively associative arrays, so the dotted notation it’s only syntactic sugar.

4

Prototyping is used as inheritance mechanism instead of classes, a prototype is

an object from which other objects inherit properties. Functions are first-class

entities and they are themselves objects, they can be assigned to variables,

passed as arguments, returned by other functions, and manipulated like any

other object. Functions in addiction to their lexical closures makes JavaScript

a functional language. Nowaday JavaScript is the world’s most ubiquitous

computing runtime and it can be considered the lingua franca of the Web.

It was originally developed in Netscape, by Brendan Eich under the name

Mocha and then introduced as LiveScript in Netscape Navigator 2.0 in Septem-

ber 1995. Due to the widespread success of JavaScript as client-side scripting

language for Web pages and the birth of compatible dialects by competing

vendors, the year later Netscape delivered JavaScript to Ecma International

for standardization so it was formalized in the ECMA-262 specification as

ECMAScript language standard. It quickly reached the 3rd Edition in 1999,

however, because of political differences concerning language complexity dur-

ing the development, the 4th Edition was abandoned and it took ten years

to come to the current 5th Edition. Features proposed for ECMAScript 4

was concerning the introduction of classes, and static types for the purpose

to better support programming in the large. The controversies rose when it

is realized that these new features would made the language backwards in-

compatible “breaking the Web”. Anyway many of semantic and syntactic

innovations proposed in the 4th Edition, introduction of classes first of all,

will be part of the 6th “Harmony” Edition [9].

2.1.1 JavaScript drawbacks

JavaScript is a very powerful language and it boasts several advantages com-

pared to other competitor languages in the Web scene and beyond. JavaScript

is relatively simple to learn and implement, it now runs fastly on client thanks

to browser engines performance improvements. Despite this, one of the most

argued criticism moved to JavaScript is about the language suitability for in-

the-large programming, where for in-the-large programming is intended Web

applications with a big codebase, long development cicle and large teams.

5

With regard to this topic the Web developers community is splitted along two

factions. The firsts claim that it’s possible to tame JavaScript applying a strict

discipline of programming eventually relying on one or many popular frame-

works. Nevertheless an ever growing share of developers and experts in the

field claim instead that JavaScript as-is is not suitable for large-scale Web pro-

gramming. During an interview at the 2012 Lang.NEXT conference1 Microsoft

engineer Anders Hejlsberg states that you can write large-scale Web applica-

tions, but you can not mantain it. It’s widely acknowledged that JavaScript

applications suffer in maintainability primarly due to the lack of structure in

JavaScript code and secondly, for the inadequacy of development tools. The

absence of a static type system leads to be able to identify, only at runtime,

errors identifiable at development time besides the inability to provide modern

development features such as code refactoring, content assist and code navi-

gation. JavaScript is also blamed to violate established software engineering

principles, such as modularity, reusability, scalability and so on. For exam-

ple consider that it is common practice in current Web applications to mix

up user interface and business logic code, violating the separation of concerns

and the Model-View-Controller (MVC) pattern in software engineering that

is known to be helpful for long-term maintainability. In addiction, due to

it’s event-driven programming model, it reintroduces problems concerning the

control flow fragmentation and incomprehensibility just like spaghetti code as

aftermath of the GOTO statement in the 1970s [17].

One of the key issues in JavaScript applications development concerns com-

patibility across multiple browsers. In particular the issue is due to few differ-

ences between the DOM (Document Object Model) interfaces, which are not

part of the ECMAScript standard but are formalized in a multi-level speci-

fication by the W3C2. Despite the first standardization was dated 1997 [25],

API differences still hold over between specific vendor implementations, espe-

cially with elderly browsers. Anyway these inconsistencies must be taken into

account by Web developers in order to guarantee full accessibility and cross-

1http://channel9.msdn.com/Events/Lang-NEXT/Lang-NEXT-2012/

Panel-Web-and-Cloud-Programming
2http://www.w3.org/DOM/DOMTR

6

http://channel9.msdn.com/Events/Lang-NEXT/Lang-NEXT-2012/Panel-Web-and-Cloud-Programming
http://channel9.msdn.com/Events/Lang-NEXT/Lang-NEXT-2012/Panel-Web-and-Cloud-Programming
http://www.w3.org/DOM/DOMTR

browser compatibility to their applications, to this end many approaches could

be adopted. Generally developers could programmatically check for browser

features and give differents behaviours to their applications according to the

availability or not of these features. Things getting harder when for instance

two browsers provide the same feature that behaves in a different way. In this

cases the only solution could be to use browser-detection techniques and give

the application differents behaviours according to the browser vendor and ver-

sion. Nevertheless the cleanest and definitely most used approach is to rely on

frameworks and libraries that wrap access to the DOM entities providing an

abstraction layer from browsers proprietary APIs. This is the case of jQuery

and other frameworks that we will see in the following.

Another JavaScript weak point concerns finally the security, since it’s a

potential infection medium for malicious software gathered from the Web.

User agents (browsers) typically adopt two differents approaches for the pur-

pose to contain risks tied to security. The former consists in running scripts

inside a sandboxed environment in which they are bounded to perform Web-

related operations only, preventing for example that scripts may access file

or spawn processes. The latter is known as same–origin policy restriction

whereby scripts from one domain can not have access to information such as

cookies, usernames or passwords refearing to another domain. This restriction

is intended to avoid the so-called cross-site vulnerabilities which comprise in

turn cross-site scripting and cross-site request forgery. All of these security

vulnerabilities are usually caused by browser leaks or errors in the sandbox

implementation that allows for instance buffer overflows.

2.1.2 The JavaScript frameworks ecosystem

For the purpose to speed up and simplify the development of Web apps, and

to tame some of the drawbacks seen before, so many frameworks and libraries

built on top of JavaScript are available over the Web. Each of these frameworks

have it’s own goals and leads to different benefits, so the common approach

is to combine many of them together and build the Web applications upon

them. The JavaScript frameworks ecosystem is constantly evolving and in

7

Figure 2.1 are shown some of the most popular frameworks on the current

Web landscape.

Figure 2.1: JavaScript frameworks ecosystem

Despite their relative abundance it’s possible to classify frameworks in two

big families according to goals they intended to pursue.

• jQuery and DOM manipulation frameworks

As you can understand from jQuery3 motto, “The Write Less, Do More,

Library”, this set of frameworks have the main purpose to speed up and

simplify the development of JavaScript applications. jQuery is a free,

open source library created in 2006 by John Resig and now it’s used

by over 55% of the 10,000 most visited Web sites [28]. jQuery provides

many functionality in order to navigate and alter the document, freeing

the developer from vendor-specific DOM API implementation, select-

ing and manipulating DOM elements through CSS selectors, simplifying

events and AJAX requests, handling and creating effects and anima-

tions. Furthermore jQuery is cross-compatible and introduces a level of

3http://jQuery.com

8

http://jQuery.com

abstraction for browser low-level interaction that Web-apps built upon it

may exploit in order to be much more portable. While it’s still based on

pure JavaScript, jQuery concise and enrich its syntax primarily thanks

to the dollar sign $ alias. Notice the elegance of the short code in Listing

2.1, in which an “Hello World!” message is shown inside the HTML

element identified by “welcomeDiv” once the document is loaded.

1 $(document).ready(function (){

2 $(’welcomeDiv ’).text(’Hello World!’);

3 });

Listing 2.1: jQuery “Hello World!”

• Backbone.js and MVC frameworks

The latter set of frameworks focus instead on developer friendliness and

try in some way to give a structure to Web applications. The common in-

tention behind most of these frameworks is to take the well known Model-

View-Controller (MVC) pattern from software enginering and bring it

into the Web-app deployment. The separation of concerns introduced

by the MVC pattern is very usefull as soon as applications grow in com-

plexity. Backbone.js4 is representative for this class of frameworks and is

intended to give structure to Web applications by providing models with

key-value binding and custom events, collections with a rich API of enu-

merable functions, views with declarative event handling, and connects

it all to your existing API over a RESTful JSON interface. Backbone.js

allows to represent data as Models, which can be created, validated, de-

stroyed, and saved to the server. The architecture works in a such way

that each time the model is updated by the GUI one or many events are

triggered so all the views that display the model’s state can be notified

of the change and may cause the DOM to update.

4http://backbonejs.org

9

http://backbonejs.org

• Node.js

An other widely used JavaScript framework which deserves to be men-

tioned although it’s a far cry from those seen before and the client-side

Web programming is Node.js5. Created in 2009 by Ryan Dahl for the

purpose to easily building fast, scalable Web servers. Node.js introduces

an event-driven, non-blocking I/O model that makes them lightweight

and efficient. The following example (Listing 2.2) taken from the Node.js

Web site shows in which simple way it’s possible to write a Web server.

1 var http = require(’http’);

2 http.createServer(function (req , res) {

3 res.writeHead (200, {’Content -Type’:

4 ’text/plain’});

5 res.end(’Hello World\n’);

6 }). listen (1337, ’127.0.0.1 ’);

Listing 2.2: Node.js tasting

2.1.3 JavaScript as intermediate language

A totally different, and quite new, approach exploits JavaScript ubiquitousness

in order to engineer Web languages from scratch that compile to it. Under

these conditions JavaScript thus assumes a role of intermediate language, the

Web bytecode. This most comprehensive solution to build a new language

can tackle the drawbacks that affects JavaScript in a more effectively way,

adding on new features or making code easier to write. These new languages

can be built from scratch, by porting of other languages or simply super-set

extensions of JavaScript with which for instance can share the basic syntax.

The Figure 2.2 below shows some of the most popular languages and tools

that exploit the JavaScript compilation.

5http://nodejs.org

10

http://nodejs.org

Figure 2.2: Languages and tools that compile to JavaScript

• CoffeeScript

Designed by Jeremy Ashkenas in 2009 the main CoffeeScript6 goal is to

shrink the JavaScript programming making code more readable and con-

cise, typically 1/3 fewer lines. It introduces syntactic sugar influenced

by Ruby and Python. According to the CoffeeScript Web site it tends to

run as fast or faster than the equivalent handwritten JavaScript. What

should not be forgotten about CoffeeScript is that ”It’s just JavaScript”,

the code compiles one-to-one into the equivalent JavaScript and it’s pos-

sible to use any existing JavaScript library seamlessly from CoffeeScript.

• Google Web Toolkit

Introduced in 2006, main aim of Google Web Toolkit7 (GWT) is to tackle

JavaScript mantainability and reusability issues by building a language

powerful enough and suitable for in-the-large programming. The GWT

compiler compiles a sub-set of Java to JavaScript. Using GWT, develop-

ers can develop and debug Ajax applications in the Java language using

the Java development tools of their choice.

6http://coffeescript.org
7https://developers.google.com/web-toolkit

11

http://coffeescript.org
https://developers.google.com/web-toolkit

• StratifiedJS and TameJS

StratifiedJS8 and TameJS9 are representative for all those languages and

toolkits whose purpose is to discipline the JavaScript asynchronous pro-

gramming model in order to avoid spaghetti codes. StratifiedJS extends

JavaScript with a small number of constructs for asynchronous program-

ming allowing to express asynchronous control flow in a straightforward

sequential style. Taking up somehow the multi-threaded model, Strati-

fiedJS organizes code in logical units they call strata, which differently

to JavaScript are allowed to block at a particular point to be picked up

again later at the same point where it left off. For instance, similarly to

the Thread.sleep() Java statement, StratifiedJS hold() blocks for a given

period of time. While one stratum is blocked, other strata can execute,

but only one stratum is allowed to run at any one time and it’s exe-

cuted atomically up until the point where it either finishes or suspends.

The language provides moreover a set of asynchronous constructs for

combining strata, for instance parallel composition waitfor/and and al-

ternatives composition waitfor/or. Notice the cleanliness of the simple,

self explainable snippet in Listing 2.3 taken from the StratifiedJS Web

site.

1 var news;

2

3 waitfor {

4 news = http.get("http :// news.bbc.co.uk");

5 }

6 or {

7 hold (1000);

8 news = http.get("http :// news.cnn.com");

9 }

10 or {

11 hold (1000*60);

12 throw "sorry , no news. timeout";

13 }

8http://onilabs.com/stratifiedjs
9http://tamejs.org

12

http://onilabs.com/stratifiedjs
http://tamejs.org

14

15 show(news);

Listing 2.3: Tasting StratifiedJS strata

TameJS instead adds two features to JavaScript, namely await and defer.

An await block defines code that won’t return until each asynchronous

task defined with defer has been completed.

• Dart and TypeScript

Two recently further alternatives are the languages Dart10 and Type-

Script11 introduced respectively by Google in 2011 and by Microsoft in

2012. Both can compile to JavaScript and attempt to enforce structure

in Web applications for the purpose to make them scalable in complexity.

We will focus on these technologies in the following paragraphs.

2.2 Toward the next generation of structured

Web languages

Recently an ever more growing share of software industries and Web develop-

ers complain about and accuse JavaScript not to be suitable for what concerns

in-the-large programming, especially for ever more complex and bulky Web ap-

plications. This is largely attributable to JavaScript lack in structuring code.

What developers and people from the industries would like is the support for

constructs and features taken from the Object-Oriented Programming (OOP)

such mudules, classes interfaces and inheritance, that is everything that today,

outside the Web, allows to build robust, reliable, reusable, manteinable and

scalable systems. This should enfasts the deployment of large-scale Web appli-

cations porting the well-known design patterns typical of the OOP. At last this

would promote also the separation of concerns between software components

allowing teams of developers working on the same Web application without

10http://www.dartlang.org
11http://www.typescriptlang.org

13

http://www.dartlang.org
http://www.typescriptlang.org

interferences. The total lack of static typing is a further big handicap for in-

the-large programming primarly for two reasons. Since there aren’t any kind

of checks on types, most of errors which are trappable at development time, are

raised only at runtime. Moreover having a structured language and even only

optionally typed brings the benefit of being able to build modern development

tools which support all the AST-based features like code refactoring, content

assist and code navigation that greatly improve the development experience.

Many new Web languages were designed along this direction, nowadays most

important are surely Google Dart and Micorsoft Typescript. Summarizing,

a paradigm shift is taking place in Web development scene, from the plain,

untyped JavaScript language we are moving to structured, optionally typed,

powerful languages.

2.2.1 Dart

Google proposes the new Dart language with the main purpose to improve the

state of the art of Web programming. According to the language specification

[15] Dart is a class-based, single-inheritance, pure object-oriented program-

ming language. Dart is optionally typed and supports reified generics. Dart

was firstly introduced at the GOTO conference in October 2011 by Google’s

engineers Lars Bak and Gilad Bracha. According to a renowned leaked memo

that summarizes a meeting of Google’s most influent Web teams about the fu-

ture of JavaScript [10] it’s possible to understand the Web leading company’s

designs and reasons behind the Dart language, in the memo named Dash. As

they state the ambitious goal of Dart “is ultimately to replace JavaScript as

the lingua franca of Web development on the open Web platform”. But why

a new language? Why not trying to improve JavaScript? They justify this

schism supporting that in large, complex applications, the kind that Google

specializes in, are struggling against the platform and working with a language

that cannot be tooled and has inherent performance problems. Moreover also

in smaller-scale applications developers have to face a confusing labyrinth of

frameworks and incompatible design patterns. At the same time, however,

Dart should maintain the dynamic nature of Javascript and remains easy to

14

learn and to code with. So the purposes for which Dart is designed to are

mainly: performances, developer usability, ability to be tooled, and security.

For what concerns performances it must be possible to create VMs that do

not suffer of the problems that all EcmaScript VMs have. Regarding developer

usability, a key aspect is covered by the optional typing. Dart programs can

be statically checked. The static checker will report some violations of the

type rules, but such violations do not abort compilation or preclude execu-

tion. Dart still remains therefore a dynamic language. The optional typing

is also foundamental for the ability of the language to be tooled, for large-

scale projects that require code-comprehension features such as refactoring,

code completion, code navigation, and more. Again with a view to large-scale

programming, besides the optional static typing, key features are also classes

and libraries. Dart supports classes as a fundamental structural building block

for libraries and apps. Classes define the structure of an object, and you can

extend them to create more specialized definitions. Libraries instead give mod-

ularity to Dart applications organizing the code in “units of encapsulation”

which may be mutually recursive. The snippet in Listing 2.4 shows a simple

Dart class taken from the Web site, you can notice the named constructor

feature at line 7.

1 import ’dart:math’;

2 class Point {

3 final num x, y;

4

5 Point(this.x, this.y);

6 Point.zero() : x = 0, y = 0;

7

8 num distanceTo(Point other) {

9 var dx = x - other.x;

10 var dy = y - other.y;

11 return sqrt(dx * dx + dy * dy);

12 }

13 }

Listing 2.4: Google Dart sample class

15

Dart is proposed as multiple target language. Must foregone targets are

surely modern Web browser upon which, Google wish, it will be natively sup-

ported by dedicated VMs, such as JavaScript ones. However, ways in a such

direction are harder since to this day no browser vendors have planned to na-

tively support Dart, except for Google Chrome (Dartium browser) and first

it will be adopted by other browsers Dart should become an open standard.

Google is aware that it will be a huge challenge to convince other browser

vendors to take in account a new language. For this purpose, as alternative

way, it was introduced a cross compiler to JavaScript (dart2js, also coded in

Dart) in order to make Dart applications to run over any legacy ECMAScript

platform. Google designs Dart in a such way that a large subset of it can be

compiled to JavaScript and they claim that dart2js is intended to implement

the full Dart language specification and semantics [11]. Maybe Dart is still

work-in-progress, however to this day there still are several semantic differ-

ences between applications executed through the native VM and compiled to

JS, concerning particularly isolates12 13.

The language is moreover targeted to front-end server too, in a similar way

that Node.js works with JavaScript. This will allow large scale applications to

unify on a single language for client and front end code. For this purpose the

Dart project ships libraries for network IO, files and directories and the VM

is designed also to run Dart programs on the server or command line.

2.2.2 TypeScript

More recent, and based on a totally different approach, is instead the Microsoft

TypeScript language. The language development was led by Microsoft’s en-

gineer Anders Hejlsberg and was announced in October 2012. Hejlsberg is a

prominent figure in the field of mainstream programming languages, he worked

in Borland to Turbo Pascal and Delphi and in Microsoft where he has been the

lead architect of the team developing the language C# [23]. Differently from

Dart, TypeScript is an optionally static typed superset of ECMAScript that

12http://code.google.com/p/dart/issues/detail?id=4689
13https://groups.google.com/a/dartlang.org/forum/#!msg/misc/PyWBhl3_lOo/

NQgemdPLS4kJ

16

http://code.google.com/p/dart/issues/detail?id=4689
https://groups.google.com/a/dartlang.org/forum/#!msg/misc/PyWBhl3_lOo/NQgemdPLS4kJ
https://groups.google.com/a/dartlang.org/forum/#!msg/misc/PyWBhl3_lOo/NQgemdPLS4kJ

compiles to clean, plain JavaScript code which runs on any browser, or in any

other ECMAScript3-compatible environment, including Node.js. TypeScript,

in accordance with Microsoft “Embrace & Extend” philosophy, is fully com-

patible with the legacy ECMAScript syntax, every JavaScript program is also

a TypeScript program, so it’s possible to use existing JavaScript code, incor-

porate popular JavaScript libraries, and be called from other JavaScript code.

Microsoft describe TypeScript in the language specification [16] as syntactic

sugar for JavaScript. Besides the compatibility with JavaScript, TypeScript

introduces some features that makes the language suitable for application-scale

development. The main reason behind TypeScript is in fact to meet the needs

of the JavaScript programming teams that build and maintain large Web ap-

plications. TypeScript efforts the large-scale programming introducing on the

one hand OOP constructs and functionalities, and on the other tools that en-

fast ad enrich the developmente experience. TypeScript allows interfaces and

classes declaration, and supports to organize code in dynamical modules, to

help build robust components. The snippet in Listing 2.5 shows the Point

class seen before in Dart implemented in TypeScript.

1 class Point {

2 x: number;

3 y: number;

4

5 constructor(x: number , y: number) {

6 this.x = x;

7 this.y = y;

8 }

9

10 getDist () {

11 return Math.sqrt(this.x * this.x +

12 this.y * this.y);

13 }

14 }

Listing 2.5: Microsoft TypeScript sample class

17

Hejlsberg says TypeScript is actually based on proposed features of EC-

MAScript 6 “Harmony” including classes and modules [5]. TypeScript’s op-

tional type system enables JavaScript programmers to use highly-productive

development tools and practices: static checking, symbol-based navigation,

statement completion, and code re-factoring. Somehow TypeScript pursues

the same intents of the Dart language, but without a radical departure from

JavaScript.

2.2.3 What’s the future lingua franca for the Web?

According to the paradigm shift whose taking place in the Web programming

the possible scenario may mainly consists in pension off JavaScript, or improve

it. These approaches are embodied by Dart on the one hand and by TypeScript

and ECMAScript 6 on the other. So the question naturally arises, what will

be the new lingua franca for the Web?

Let’s start taking some considerations about the languages syntax and se-

mantic [8]. TypeScript is fully compatible with JavaScript extending its syntax

and semantic only for what concerns the new features, that is optional typ-

ing and modules, classes and interfaces support. This is definitely winning

since the effort required to milion of developers who already use JavaScript

is minimal. Dart, on the other hand turns completely away from JavaScript

introducing from scratch a new syntax (as close to the JavaScript one) and

a new clear semantic for the main purpose to finally solve all JavaScript in-

herent issues, that can not be solved simply evolving the language concerning

performances and the semantic. For instance when a Dart application tries to

accede to a property which is not defined inside an object the VM will raise

an exception instead of returning “undefined” such in JavaScript and so in

TypeScript.

For what concerns compatibility with the huge amount of JavaScript frame-

works and libraries, TypeScript being a super-set of JavaScript is fully compat-

ible and interoperable for free with all JavaScript stuff. Dart, on the contrary,

breaking away from JavaScript also loses everything is good. According to

Dart FAQ [11] “moving to a new language will be a very large undertaking.

18

The specifics of how inter-operation with current Javascript would work is still

an open question”.

Considering the support to asynchronous programming and concurrency,

Dart introduce a semantic for Futures and Isolates respectively. However this

leads to issues since arise semantic inconsistences, for instance between Isolates

and HTML5 Web Workers, both mechanisms for actor-based concurrency.

Everything works fine until the Dart code is executed inside the VM, but what

happens when it’s compiled to JavaScript? How Isolates will be mapped onto

Web Workers? Probably things are still work in progress, but to now the Dart

documentation says nothing about and, by the way, when Isolates are compiled

to JavaScript they wont use Web Workers at all, running asynchronously but

sequentially by the main UI worker 14. TypeScript, more shrewdly, does not

alter the semantics delegating matters to HTML5 Web Workers and libraries

such jQuery Promises respectively.

On the other hand TypeScript carries with it all the problems that afflicts

JavaScript including performances. Performances and predictability in perfor-

mances are instead Dart primarly goals, notice, only for browser equiped with

its native VM. Also for what concerns VMs Dart and TypeScript designers

have different visions. Google push for implementig the Dart VM inside every

browser, key aspect in order to take full advantage of Dart power and inno-

vations. However, if other browser vendors should decide not to support Dart

implementing its VM, the language runtime should be installed apart. In this

scenario Dart may be confined to a plugin role, how technologies doomed to

extinction such as Adobe Flash and Microsoft Silverlight, or exploited only as

compile to JavaScript language. Regarding TypeScript instead, Microsoft has

no plans for VM or any type of better support over the proprietary Internet

Explorer platform.

Summing up TypeScript option is relatively low risk and should bring sev-

eral benefits in the short-term compared to Dart. On the other hand Dart

is very innovative language and promises to finally solve all JavaScript issue

so it’s benefits may be many more despite it’s high risk, for the reasons seen

14https://groups.google.com/a/dartlang.org/forum/?fromgroups=#!topic/misc/koee2uTknJk

19

above. Another factor to finally keep an eye on is the ECMAScript 6 “Har-

mony” standardization process which promises among other to bring classes,

a module system and optional typing as well as constructs to tackle Asyn-

chronous spaghetti, namely generators, directly in the JavaScript standard.

Must be said that this process may be very slow, consider that these features,

and more, was already proposed in ECMAScript 4 that takes about ten years

to be then abandoned. Nevertheless, if the new standardization process would

succeed it would bring back JavaScript to its former glory. Sure is that, at least

for many years to come, JavaScript in native or compiled way will unopposed

reign.

2.3 Web asynchronous programming

For asynchronous, or event-driven, programming is intended a paradigm in

which the flow of the program is determined by events. This paradigm is

widely used in graphical user interfaces where for example actions on keyboard

keys or mouse buttons trigger differents behaviours in the application. This

is also the programming paradigm on which Web applications are based on.

In Web applications events mainly concern changes or something happend in

the DOM, notifications from pending AJAX requests or timing occurrences.

Careful not to confuse asynchronous programming with concurrency, events

may be asynchronous but are typically managed by the same control flow

through the so-called event-loop. Each time an event occurs it’s enqueued in

the event-queue, the main control flow is organized as an event loop which

each time picks an event from the event-queue and fires it, or blocking when

the queue is empty, something like the pseudocode snippet in Figure 2.3. The

application code is finally structurized in term of event handlers, also known

as callbacks, attached to the application specific events, and invoked by the

main thread whenever the related event is fired.

20

Figure 2.3: Event loop pseudocode

Events can be therefore queued while code is running, but don’t forget they

can not fire until the main thread is free, this is fundamental. In the following

two examples we will try to better understand how things effectively work. In

the snippet below (Listing 2.6) two callbacks are attached respectively to the

start and stop buttons through the nice jQuery syntax. Through the start

button is activated a loop that increments the value of a globale variable and

prints it on the console, until a flag is setted; the button stop resets this flag.

Once clicked on the start button, what we expect is to see prints on the console

until the stop button will be clicked, however the browser get stuck since the

start callback never returns and the event loop can not proceed in processing

the stop event.

1 var counter = 0;

2 var enabled = false;

3

4 $(’#buttonStart ’). click(function () {

5 enabled = true;

6 while (enabled)

7 console.log(counter ++);

8 });

9

10 $(’#buttonStop ’). click(function () {

11 enabled = false;

12 });

Listing 2.6: Understanding the event loop, first example

In general, considering again the event-loop snippet in Figure 2.3, the

21

loss of responsiveness in the GUI occurs whenever is fired an event to which

are attached callbacks that takes long time or even never terminate. This

is completely analogous to what happens in windowing systems and GUI of

standalone platforms such as Windows Forms and Java AWT with the Event

Dispatcher Thread (EDT). Not to be confused are instead the asynchronous

events as introduced above with the notion of events in mainstream languages

such C# based on the observer pattern.

The latter example (Listing 2.7) taken from [6] focus instead on the behaviour

of a Web application when multiple events are triggered at the same time. In

the snippet the JavaScript function setTimeout is invoked three times schedul-

ing the print of the variable i with a dalay of 0 milliseconds. What we expect

as output in the console is something like “1 2 3”, however the effective result

is “4 4 4”. Despite the timeout event occurs immediatly, because of the 0

milliseconds delay, all three the events are enqueued in the event-queue and

fired as soon as the main thread is free, that is after the for loop is completed

and the value of i is 4.

1 for (var i = 1; i <= 3; i++) {

2 setTimeout(function () {

3 console.log(i);

4 }, 0);

5 };

Listing 2.7: Understanding the event loop, second example

Despite its simplicity, the asynchronous paradigm leads to several issues.

The primarly and most important one is surely the so-called Asynchronous

spaghetti that we will explain in the following section. In general are as well

problematic matters concerning the control flow of asynchronous operations,

for instance lets consider the exception handling of an asynchronous operation

like the one in the snippet below (Listing 2.8) inspired again by [6]. When

the exception is notified at runtime the stack trace reports only an error in

function C, but what happened to functions A and B? As seen before, since the

JavaScript setTimeout() function schedules an asynchronous callback, this is

22

enqueued in the event-queue and then directly executed by the main thread in

the event-loop, after the completion of funtion A and B. Moreover a common

mistake is to put a try-catch block around asynchronous code such in the

snippet in Listing 2.8, where the exception thrown in function C is not trapped

by the try-catch statement.

1 try {

2 setTimeout(function A() {

3 setTimeout(function B() {

4 setTimeout(function C() {

5 throw new Error(’Async error!’);

6 }, 0);

7 }, 0);

8 }, 0);

9 }

10 catch (ex) {

11 console.log(’ASYNC EX:’ + ex);

12 }

Listing 2.8: Exceptions in asynchronous code

Another serious problem, that we will not cover in this thesis, concerns

testing of asynchronous Web applications. A bit like in concurrent program-

ming, asynchronous events can be interleaved in arbitrary order leading to

many different scenarios in the application behaviour.

2.3.1 Asynchronous programming troubles

Despite its simplicity, the asynchronous paradigm leads to several issues. Since

the business logic is splitted between many event handlers, in which the soft-

ware is organazied to, the control flow too is non-linear, fragmented and so

harder to be understood. Given the similarity with problems arising by the use

of the GOTO statement, this effect take the name of Asynchronous spaghetti.

Even more problematic is the situation in which code in event handlers goes

to act on global, shared variables. Asynchronous spaghetti is observable in

23

JavaScript primarly in terms of callback nesting. Callbacks nested in call-

backs is a quite common pattern in JavaScript programs, mainly due to the

ease with which it can be defined anonymous functions, resulting in the so-

called Matryoshka doll programming style [6]. The snippet in Listing 2.9 is

taken by a popular post on the Node.js Google Group15 where a user complains

for the level of nestig in his code.

1 mainWindow.menu("File", function(err , file) {

2 if(err) throw err;

3 file.openMenu(function(err , menu) {

4 if(err) throw err;

5 menu.item("Open", function(err , item) {

6 if(err) throw err;

7 item.click(function(err) {

8 if(err) throw err;

9 mainWindow.getChild(type(’Window ’),

10 function(err) {

11 if(err) throw err;

12 ...

13 });

14 });

15 });

16 });

17 });

Listing 2.9: “I love async, but I can’t code like this”

2.3.2 Futures and Promises

The term Promise can be dated back to 1976 when it was introduced by

Daniel P. Friedman and David Wise16 and made their first appearances in

programming languages such as MultiLisp, E and Act. According to [14]

15http://groups.google.com/group/nodejs/browse_thread/thread/

c334947643c80968
16Friedman, Daniel; David Wise (1976). ”The Impact of Applicative Programming on

Multiprocessing”. International Conference on Parallel Processing, pp. 263-272.

24

http://groups.google.com/group/nodejs/browse_thread/thread/c334947643c80968
http://groups.google.com/group/nodejs/browse_thread/thread/c334947643c80968

“A Promise is a place holder for a value that will exist in the future. It

is created at the time a call is made. The call computes the value of the

Promise, running in parallel with the program that made the call. When

it completes, its results are stored in the Promise and can then be claimed

by the caller”. Therefore they describe an object that acts as a proxy for a

result that is initially unknown, usually because the computation of its value

is yet incomplete [26]. Promises are two states entities: blocked, until the

value is unavailable and, then, ready. Once a Promise is ready it remains

ready from then on and its value never changes again. In common usage, the

terms Promise, Future and Delay are roughly synonymous, however in [14]

it is stated that Promises are strongly typed extensions of Futures. Great

benefit of Promises is that these can be chained to each others enabling the

creation of asynchronous workflows. Named as Promises pipelining, the idea

was still introduced in [14] while they were working to an efficient asynchronous

mechanism for procedure call in alternative to RPC, integrated in the language

Argus. In the Web asynchronous programming we will exploit precisely these

concepts of Promise and Promises pipeline for the purpose to unnest, in most

cases, the Matryoshka doll code results of callbacks handling. According to

Promises and Futures classification, these ones used in Web programming

are explicit and with non-blocking semantic. Explicit Promise are usually

suported by library and expectes that should be the user to call a function in

order to obtain the value. Non-blocking semantic means instead that the value

of the Promise is accessed asynchronously. Another important aspect related

to Promises concerns the read–only views. In several programming languages

and in the libraries that we’ll see in the following, it is possible to obtain a

read–only view of a Future, which allows reading its value when resolved, but

does not permit resolving it. Support for read–only views is based on the Least

Authority principle, according which the ability to set the value of a Future has

to be restricted only to subjects that need to set it. As we will see in jQuery,

Promises are read–only views of Deferreds as in Dard Futures are read–only

views of Completers.

25

2.3.3 JavaScript jQuery Promises

Promises were introduced in the popular jQuery JavaScript library, version

1.5 taking cue from dojo.Deferred17 and the CommonJS Promises/A spec-

ification18 inspired in turn by the Python Twisted framework19. Promises

represent asynchronous tasks with two possible outcomes, success or failure,

and hold callbacks that fire when one outcome or the other has occurred. So

at any time a Promise can be in pending, resolved or rejected state [6]. As

seen above, nested callbacks make the code hard to be understood. Promises

were proposed as ultimate solution to Asynchronous spaghetti in the form of

nested callbacks, in most cases in fact, it’s possible to linearize the flow pri-

marly thanks to the Promise’s pipe mechanism, that we’ll better describe in

the following. Another important benefit introduced by Promises concerns

encapsulation. Let’s think to an application in which for instance the result of

an AJAX request affects several parts of the application behaviour. Common

practice would expect that all the changes that affect the application in all its

parts are made in the AJAX completion callback. However thanks to this new

approach it’s possible to pass around the Promise object so that each part of

the application can register its own callback independently by the others.

2.3.3.1 Deferred and Promise

Deferred and Promise terms are often used interchangeably to refear the same

concept. Formally the difference is that Promises are read–only views of De-

ferreds, so a Deferred is a Promise too with, in addiction, operations such re-

ject() and resolve() that triggers respectively the fail() and done() callbacks.

Notice that Deferred has associated with one and only Promise and shares

with it all the callbacks internally. Therefore differences between Deferred

and Promise are finally for safety purpose, Promises are read–only views of

Deferreds, so the one who create the Deferred object keep it hidden and then

resolve or reject it, sharing with others only Promises. The pseudo UML

17http://dojotoolkit.org/reference-guide/1.8/dojo/Deferred.html
18http://wiki.commonjs.org/wiki/Promises/A
19http://twistedmatrix.com/trac

26

http://dojotoolkit.org/reference-guide/1.8/dojo/Deferred.html
http://wiki.commonjs.org/wiki/Promises/A
http://twistedmatrix.com/trac

class diagram below (Figure 2.4) summarize the API to jQuery Deferred and

Promises.

Figure 2.4: jQuery Promises API

2.3.3.2 Promises and AJAX

In general is therefore always possible to wrap up an asynchronous function

in the Deferred/Promise construct. Particularly convenient is to have AJAX

functionalities working with Promises. In the snippet in Listing 2.10 the func-

tion ajax() wraps an AJAX get request, returning the Promise object which

will be used to retrieve the response in the future. Notice how functionali-

ties such this new one can greatly simplify the code of Web 2.0 applications.

For this reasons libraries such jQuery already provide these AJAX functions

in Deferred way such as jQuery.ajax(), jQuery.get(), jQuery.post() (or simply

$.ajax(), $.get(), $.post()).

1 function ajax(url) {

2 var deferred = new $.Deferred ();

27

3

4 var req = new XMLHttpRequest ();

5 req.addEventListener(’load’, function () {

6 if (req.status == 200)

7 deferred.resolve(req.responseText);

8 else

9 deferred.reject(’AJAX failed: ’

10 + req.status);

11 }, false);

12 req.open(’GET’, url , true);

13 req.send ();

14

15 return deferred.promise ();

16 }

17

18 ajax(’http :// www.google.com’)

19 .done(function(res) {

20 // Do something

21 });

Listing 2.10: Promising AJAX

2.3.3.3 Promises progress

Going back to the diagram in Figure 2.4 it can be noticed that Promises

provides also the progress callback. This feature, introduced later in jQuery

1.7, allows the creator of the Deferred to notify the Promise subscribers with

data related to progress of the asynchronous task. Just like resolve and reject,

notify can take arbitrary arguments. Take a look at the snippet in Listing 2.11

were through setTimeout() and Promises progress feature it’s implemented a

simple countdown.

1 function countDown(s) {

2 var deferred = new $.Deferred ();

3

4 function step(ts) {

5 if (ts > 0) {

28

6 deferred.notify(ts);

7 setTimeout(function () {

8 step(ts -1);

9 }, 1000);

10 }

11 else

12 deferred.resolve ();

13 }

14 step(s);

15

16 return deferred.promise ();

17 }

18

19 countDown (10)

20 .progress(function(t) {

21 log(’-’ + t);

22 })

23 .done(function () {

24 log(’GO’);

25 });

Listing 2.11: JavaScript countdown

2.3.3.4 Promise pipelining

The most important benefit introduced by the Promises is surely the ability to

chaining Promises together in a pipeline fashion. Through the pipe() function

it’s possible to schedule a further asynchronous task, described in term of

Promise, to be started at the completion of a Promise. The pipe() function

retrieves in the same way a Promise that represents a single asynchronous

task, union of all the tasks in the pipeline. The resultant Promise succeed if

all the Promises in the pipeline are resolved, or fails as soon as one Promise is

rejected. This is useful both for attach handler at the end or at the progress

of the whole pipeline but, above all, for a centralized errors handling. In order

to appreciate the benifits given by the pipe mechanism lets consider a dummy

application which must at first query a RESTful Web service, then, perform a

request to an other Web service based on the first response, and finally, display

29

this last response on the Web page. This dummy application is coded in the

Listing 2.12 below.

1 $.ajax({

2 url: ’http :// example.com/serviceA/’ + reqA ,

3 async: true

4 })

5 .pipe(function (e) {

6 var def = new $.Deferred ();

7 var reqB = computeNewRequest(e.data);

8 def.resolve(reqB);

9 return def.promise ();

10 })

11 .pipe(function (reqB) {

12 return $.ajax({

13 url: ’http :// example.com/serviceB/’ + reqB ,

14 async: true

15 });

16 })

17 .done(function (e) {

18 display(e.data);

19 });

20 .fail(function (ex) {

21 console.log(ex);

22 });

Listing 2.12: Asynchronous workflow with pipes

Notice that without Promise pipelining the code of the dummy application

would look like spaghetti in Listing 2.13.

1 $.ajax({

2 url: ’http :// example.com/serviceA/’ + reqA ,

3 async: true

4 })

5 .done(function (e) {

6 var reqB = computeNewRequest(e.data);

7 $.ajax({

30

8 url: ’http :// example.com/serviceB/’ + reqB ,

9 async: true

10 })

11 .done(function (e) {

12 display(e.data);

13 }

14 .fail(function (ex) {

15 console.log(ex);

16 });

17 })

18 .fail(function (ex) {

19 console.log(ex);

20 });

Listing 2.13: Asynchronous workflow without pipes

So, one of the primarly benefits introduced by the Promise pipelining is

to organize linear workflows, untangling spaghetti code caused by callbacks

nesting. However, as we will see in the remainder of the discussion, this is

only partially true since there are many scenario in which the workflow dy-

namically changes on the basis of task’s result in the workflow itself. An other

issue is related to usability, when we build asynchronous workflows through

Promise pipelining, all the tasks part of the workflow have to be handled asyn-

chronously, including those which for themselves would be not. Consider for

instance lines 5 to 10 of Listing 2.12, purpose of this snippet is only to com-

pute the argument of the second request (line 7), anyhow it has to be mapped

as Deferred in order to allow that following tasks can be piped. By the way,

as you can see from the two snippets below, an other great benefit given by

Promises pipelining is to centralize the error handling implementing only a

fail() callback for the whole workflow avoiding the need to handle each task

individually (like in Listing 2.13).

2.3.3.5 Combining Promises

Another powerfull and fundamental Deferred/Promise mechanism, orthogonal

to pipelining, is given by jQuery.when() (or simply $.when()) function that

31

allows to process many asynchronous Promises in parallel and react when

all the Promises are fulfilled. The jQuery.when() function take as input many

Promises and returns a Promise object that represents the parallel execution of

all the Promises. The Promise it generates is resolved as soon as all of the given

Promises are resolved, or rejected as soon as any one of the given Promises is

rejected. In the Listing below 2.14 is shown the JavaScript code for the demo

application called “Battle of the bands” in which, through two asynchronous

AJAX requests the YouTube service is queried in order to retrieve the view

count related to two rock music masterpieces, in order to elect as winner the

most listened one. Thanks to the jQuery.when() function it’s possible to attach

the callback to the completion of both the requests, handled as Futures, and

then determine the winner based on the view counts contained in the responses,

available as arguments of the jQuery.when() callback.

1 function youTubeSearch(search) {

2 return $.ajax({

3 url: ’http :// gdata.youtube.com/feeds/api/videos?’

4 + ’q=’ + encodeURIComponent(search)

5 + ’&orderby=viewCount&max -results =1’

6 + ’&v=2& alt=jsonc’,

7 dataType: ’jsonp’,

8 async: true

9 });

10 }

11

12 var contenders =

13 new Array(’Led Zeppelin Stairway to heaven ’,

14 ’Pink Floyd The wall’);

15

16 var promise1 = youTubeSearch(contenders [0]);

17 var promise2 = youTubeSearch(contenders [1]);

18

19 var winner;

20 $.when(promise1 , promise2).done(

21 function (r1, r2) {

22 winner = (r1[0]. data.items [0]. viewCount >

23 r2[0]. data.items [0]. viewCount ?

32

24 0 : 1);

25 $(’#res’).text(’The winner is: ’

26 + contenders[winner]);

27 }

28);

Listing 2.14: JavaScript “Battle of the bands”

Notice that a very common error, effect of asynchronous programming, is

to access a variable setted by a callback, before that the callback is effectively

performed. To draw on the “Battle of the bands” demo application seen

before, in Listing 2.15 is highlighted the error when accessing the variable

winner outside the $.when() callback.

1 ...

2 var winner;

3 $.when(promise1 , promise2).done(

4 function (r1, r2) {

5 winner = (r1[0]. data.items [0]. viewCount >

6 r2[0]. data.items [0]. viewCount ?

7 0 : 1);

8 }

9);

10 $(’#res’).text(’The winner is: ’ + contenders[winner]);

11 // winner = undefined

Listing 2.15: JavaScript “Battle of the bands” error

Thanks to the JavaScript prototype.apply() function it’s also possible to

pass to jQuery.when() an array of Promises instead of a comma separed pre-

defined set of Promises as arguments.

2.3.4 Dart Futures

Dart in a very similar way provides the Completer/Future mechanism. While

the semantic is practically the same of jQuery Deferred/Promise there are

33

slight differences in syntax. The differences compared with jQuery, as sum-

marized in Table 2.1, are minimal. Compared to Promises, Futures doesn’t

support the progress notification of an asynchronous task, or at least for the

moment. Both Completer and Future bring instead the advantage to be (op-

tionally) generic typed, so the result value produced by the asynchronous task

will be of the type specified in the Future.

jQuery Dart jQuery Dart
Promise Future〈T〉 Deferred Completer〈T〉
done() then() resolve() complete()
fail() handleException() reject() completeException()
progress() - notify() -
always() onComplete() promise() future
then() -
pipe() chain()
stete() isComplete
jQuery.when() Futures.wait()

Table 2.1: Comparison between jQuery Promises and Dart Futures APIs

2.4 Concurrency in Web applications

One of the elements that underlie the gap between Web and desktop-based

native applications surely concerns performances. JavaScript engines are be-

coming increasingly faster and powerful, however this is still not enough. Due

to the gigahertz limit, modern CPUs are even more multi-cored, including

those ones onboard to mobile devices. Even so JavaScript historically suffers

of an important limitation: all its execution process remains inside a unique

thread, therefore failing to fully exploit the underlying hardware. So usually

happens that long-running computations or script that never ends will freeze

the Web page. HTML5 bridge the gap enabling modern Web applications with

concurrency in Actor-like fashion, through the so-called Web Workers. Actors

are computational entities with their own control flow that interact each oth-

ers by asynchronous message passing. For this purpose actors are equipped

with a queue in which incoming messages are stored, and its control flow is

driven by the message-loop, whereby at each step a message is picked from the

34

queue (if any is available) and a proper message handler is selected. Anyway

details about the actor model is outside the scope of this thesis so for further

informations refear to [2] and [1].

Before Web Workers, JavaScript developers try to “mimic” concurrency

exploiting asynchronous techniques such setTimeout() and setInterval() meth-

ods20. Anyway these timing techniques simply schedule functions that will be

enqueued (as seen in the previous section 2.3) and then are executed by the

same main thread in a sequential way. In these terms concurrency was seen

as an hack.

2.4.1 HTML5 Web Workers

Web Workers were introduced in HTML5 and defines an API for spawning

background scripts which communicates each others through message pass-

ing in an Actor-like fashion. Typical scenarios in which Web Workers could

be used for are, for instance, computationally long-running task keeping the

user interface responsive or tasks for background I/O through XmlHttpRe-

quests. Because of their multi-threaded nature, Web Workers are bounded

to use only a subset of JavaScript features. For example the biggest limita-

tion is that Web Workers can not access the Document Object Model (DOM)

because this would not be thread-safe and may leads to race conditions. So

only the so-called main UI worker has the permission to access the DOM

and other workers that want to interact with it must pass by this UI worker.

Web Workers are instead allowed to use XmlHttpRequests, as well as timing

functions such setTimeout()/clearTimeout() and setInterval()/clearInterval(),

import external scripts through the importScripts() method, access the ap-

plication cache and spawning other Web Workers [3]. As seen before, Web

Workers communicate through message passing, which takes place through

ports of which each worker is equipped with. For safety purpose messages are

serialized, typically through JSON, however this leads to performance issues

especially for large messages and heavy data structures. For the purpose to

20http://www.codeproject.com/Articles/271571/Introduction-to-HTML5-Web-Workers-
The-JavaScript-M

35

enhance Web Workers message passing performances, techniques like trans-

ferable objects were proposed, where messages are not serialized but directly

passed (as reference) to the recipient worker transferring the ownership of the

content too. For what concerns errors handling, when an error is thrown inside

a worker an event containing the file name and line number of JavaScript file

where the error occured besides a message that provides a meaningful descrip-

tion of the error itself is fired. Therefore the parent worker by registering the

proper event handler can perceive and react accordingly. Web Workers can

be terminated both from the parent worker through the terminate() method

and by itself calling self.close(). According to the specification [13] when a

worker is terminating the user agent atomically discard any tasks that have

been added to the event-loop’s task queues and set the worker’s closing flag

to prevents any further tasks from being queued. A great benefit from Actor

model in Web Workers concerns the ability of a worker to recursively spawn

child workers in order, for instance, to tackle a complex task exploiting con-

currency. However, according to the W3C specification Web Workers [13] are

relatively heavy-weight, and are intended to be used in small numbers. Gener-

ally, workers are expected to be long-lived, have a high start-up performance

cost, and a high per-instance memory cost. In relation to performances, a key

aspect concerns how workers are mapped onto physical threads. Most browsers

adopt a one-to-one mapping, spawning separate threads (or processes) for each

worker, so it’s easy when the number of workers grow, to see system perfor-

mances degrade. Beside the mapping between workers and physical threads,

several differences subsist in Web Workers implementations and support be-

tween different browsers and the W3C specification, in Table 2.2 main ones are

summarized. The W3C Web Workers specification provides two type of work-

ers which differ mainly in the use: the Dedicated and Shared Web Workers,

that we will be explored in the following paragraphs.

36

C
h
ro
m
e
2
3.
0.
12
7
1

F
ir
ef
ox

1
6
.0
.2

O
p
er
a
1
2
.1
0

S
a
fa
ri

5
.1
.7

In
te
rn
et

E
x
p
lo
re
r
1
0.
0.
10
0
8

Dedicated workers 3 3 3 3 3

Dedicated sub-workers21 5 3 3 5 3

Shared workers 3 5 3 3 5

Transferable objects 3 5 5 5 5

Table 2.2: Browsers compatibilities to HTML5 Web Workers

2.4.1.1 Dedicated Workers

Dedicated workers are created by and linked to their parent workers which are

binded to by an implicit message port, used as communication channel between

the parent worker and the Dedicated worker itself. A Dedicated worker is

created through the Worker() constructor that accepts as only argument the

JavaScript file which contains the code of the worker itself and that usually

must satisfy the same–origin policy. The worker is effectively spawned when

the parent send to it the first message. As seen before dedicated workers act

as if they had an implicit message port associated with them so through the

self.onmessage they can attach a callback that runs when a message is received

from the parent and through the self.postMessage() they can send messages

back to the parent worker.

For the purpose to test concurrency in Web applications we introduce the

demo application called “Stoppable Counter” (see the HTML page in List-

ing A.1) in which through appropriate buttons it’s possible to activate and

stop a concurrent counter that cyclically increments a value displayed in the

page. Since Web Workers behave as actors, it’s not possible to implement a

worker which, when receiving the start message, starts an endless loop that

21Dedicated workers spawned by other dedicated workers, such in Listings 2.17 2.18

37

increments the value, because this would stall the actor’s event loop making it

unresponsive to new messages (see example in Listings 2.21 2.22). So a well-

known possible workaround consists in breaking the loop control flow through

messages sent by the worker to itself for the purpose to keep responsiveness.

However a limitation due to the implicitness of the message port in Dedicated

workers is that the worker can not send messages to itself. So the trick adopted

to implement the above-mentioned application through Dedicated Web Work-

ers is to split the business logic between a couple of workers. The first (Listing

2.17) is responsible for the interaction with the UI main worker (Listing 2.16)

inside the page and the communication with the second worker (Listing 2.18),

which keeps the state of the counter. When the second worker receives a mes-

sage, increments the value and sends it back to the first worker which, in turn,

sends the value back to the UI main worker that displays it and then sends

again a message to the second worker, until the stop message is not received.

1 var worker = new Worker(’workerMaster.js’);

2 worker.onmessage = function (e) {

3 if (e.data.msg == ’ret’)

4 $(’#res’).text(’’ + e.data.val);

5 else if (e.data.msg == ’log’)

6 log(e.data.val);

7 };

8 worker.onerror = function (e) {

9 log(’ERROR: ’ + e.message + ’ @ ’ +

10 e.filename + ’:’ + e.lineno);

11 };

12

13 $(’#buttonStart ’). click(function () {

14 worker.postMessage ({’cmd’:’start’});

15 });

16 $(’#buttonStop ’). click(function () {

17 worker.postMessage ({’cmd’:’stop’});

18 });

Listing 2.16: Dedicated worker counter – main.js

38

1 var subWorker;

2 var enabled = false;

3

4 onmessage = function (e) {

5 if (e.data.cmd == ’start’ && !enabled) {

6 enabled = true;

7

8 subWorker = new Worker(’worker.js’);

9 subWorker.onmessage = function (e) {

10 postMessage(e.data);

11 if (enabled)

12 subWorker.postMessage(’’);

13 };

14 subWorker.postMessage(’’);

15

16 postMessage ({’msg’:’log’,

17 ’val’:’Worker started!’});

18 }

19 else if (e.data.cmd == ’stop’ && enabled) {

20 enabled = false;

21 postMessage ({’msg’:’log’,

22 ’val’:’Worker stopped!’});

23 }

24 };

Listing 2.17: Dedicated worker counter – workerMaster.js

1 var counter = 0;

2

3 onmessage = function (e) {

4 counter = counter + 1;

5 postMessage ({ ’msg’: ’ret’, ’val’: counter });

6 };

Listing 2.18: Dedicated worker counter – worker.js

The limitation introduced by the Dedicated workers implicit port could

be circumvented again by exploiting the asynchronous setTimeout() function

39

instead of the second worker. As will be explained in the next section 2.4.1.3

“Web Worker’s event loop”, thanks to the setTimeout(funct, 0) function it

would be possible in fact to schedule the callback funct to be executed at the

next event-loop step, keeping the worker responsive to new messages too.

Notice that the possibility to dynamically change the self.onmessage han-

dler, also in the callback upon receipt of the message itself, precisely corre-

sponds to the actor became, that is the action whereby an actor designates the

behavior to be used for the next message it receives.

2.4.1.2 Shared Workers

Shared workers, on the other hand, once created are reachable from all the

workers that want to communicate with them, in respect to the same–origin

policy and so inside the same application. For this purpose Shared workers

are named, in a such way that can be referenced by other workers. Shared

workers are therefore created through the SharedWorker() constructor, which

takes as arguments the URL to the JavaScript file that codes it and, eventu-

ally, the name of the worker. The name is useful when, for instance, many

Shared workers are spawn starting from the same JavaScript file. The typical

use case for Shared workers is when you want to provide a common service

inside a Web application in order, for instance, to keep a shared state. Unlike

Dedicated workers, they explicitly have multiple message ports and as many

related message handlers, one for each connection with other workers, so there

are slightly differences in APIs, especially on the worker side. Through the

self.onconnect event the Shared worker is announced when a client worker

spawn or reference it. So then, the Shared worker can retrieve the port ob-

ject used for the communication with the caller worker from the onconnect

event argument and attaches an handler to the port.onmessage event or use

the port.postMessage() to initialize the communication.

In Listings 2.19 2.20 below the above-mentioned “Stoppable counter” ap-

plication is implemented through a single Shared worker exploiting, this time,

the self sending ability of Shared workers.

40

1 var worker = new SharedWorker(’worker.js’);

2 worker.onmessage = function (e) {

3 if (e.data.msg == ’ret’)

4 $(’#res’).text(’’ + e.data.val);

5 else if (e.data.msg == ’log’)

6 log(e.data.val);

7 };

8 worker.onerror = function (e) {

9 log(’ERROR: ’ + e.message + ’ @ ’ +

10 e.filename + ’:’ + e.lineno);

11 };

12

13 $(’#buttonStart ’). click(function () {

14 worker.postMessage ({’cmd’:’start’});

15 });

16 $(’#buttonStop ’). click(function () {

17 worker.postMessage ({’cmd’:’stop’});

18 });

Listing 2.19: Shared worker counter – main.js

1 var counter = 0;

2 var enabled = false;

3 var portUI;

4

5 onconnect = function (ce) {

6 ce.ports [0]. onmessage = function (mgs) {

7 messageHandler(mgs , ce.ports [0]);

8 };

9 };

10

11 var messageHandler = function (e, portSender) {

12 if (e.data.cmd == ’start’ && !enabled) {

13 if (portUI == null)

14 portUI = portSender;

15

16 enabled = true;

17 postInc ();

18 portUI.postMessage ({’msg’:’log’,

41

19 ’val’:’Worker started!’});

20 }

21 else if (e.data.cmd == ’stop’ && enabled) {

22 enabled = false;

23 portUI.postMessage ({’msg’:’log’,

24 ’val’:’Worker stopped!’});

25 }

26 else if (e.data.cmd == ’inc’) {

27 counter = counter + 1;

28 portUI.postMessage ({’msg’:’ret’,

29 ’val’:counter });

30 if (enabled)

31 postInc ();

32 }

33 };

34

35 function postInc () {

36 var sw = new SharedWorker(’worker.js’);

37 sw.port.onmessage = messageHandler;

38 sw.port.postMessage ({’cmd’: ’inc’});

39 }

Listing 2.20: Shared worker counter – worker.js

2.4.1.3 Web Worker’s event loop

Introducing concurrency in Web applications through Web Workers leads to

the conceptual problem to integrate two different programming models that

is the actor model and the JavaScript asynchronous model. Actually, the

integration of the two models is quite simple since both are based on a cyclic

behaviour. In fact the event-loop and event-queue that underlie the JavaScript

asynchronous model are very similar to the receive loop and the message queue

in the actor model. The solution is therefore to unify the two loops in the

Worker’s event loop, enqueuing in the same event-queue events and received

messages. In a similar way to what described in Figure 2.3 the event-loop

cyclically, until the closing flag is not set, waits until the queue is empty, picks

each time an event or a message from the event queue and calls respectively the

42

event handler or the port.onmessage callback. The example in the following

snippets it is significant to understand how the Web Worker’s event loop really

works. The UI main Worker (Listing 2.21) spawn a Dedicated Worker and

sends to it start and stop messages through the related buttons. When the

Dedicated Worker (Listing 2.22) receives the start message it starts a loop

where the variable counter is incremented, until the flag enabled is set. When

it receives the stop message the flag is resetted.

1 var worker = new Worker(’worker.js’);

2 worker.onmessage = function (e) {

3 if (e.data.msg == ’ret’)

4 $(’#res’).text(’’ + e.data.val);

5 else if (e.data.msg == ’log’)

6 log(e.data.val);

7 };

8 worker.onerror = function (e) {

9 log(’ERROR: ’ + e.message + ’ @ ’ +

10 e.filename + ’:’ + e.lineno);

11 };

12

13 $(’#buttonStart ’). click(function () {

14 worker.postMessage ({’cmd’:’start’});

15 });

16 $(’#buttonStop ’). click(function () {

17 worker.postMessage ({’cmd’:’stop’});

18 });

Listing 2.21: Unresponsive counter – main.js

1 var counter = 0;

2 var enabled = false;

3

4 onmessage = function (e) {

5 if (e.data.cmd == ’start’ && !enabled) {

6 enabled = true;

7 postMessage ({’msg’:’log’,

43

8 ’val’:’Worker started!’});

9 while (enabled) {

10 counter ++;

11 postMessage ({’msg’:’ret’, ’val’:counter });

12 }

13 }

14 else if (e.data.cmd == ’stop’ && enabled) {

15 enabled = false;

16 postMessage ({’msg’:’log’,

17 ’val’:’Worker stopped!’});

18 }

19 };

Listing 2.22: Unresponsive counter – worker.js

What we would expect is that, once the start button is pressed, the Ded-

icated Worker will starts increment the counter, until the user will click on

the stop button. However once started the Dedicated Worker will ignore any

later commands, that happens because the increment cicle never yield, so the

Worker’s event loop stalls and the stop command, that effectively is on the

message-queue, will never be processed.

2.4.1.4 Mixing Web Workers and asynchronous programming

Concurrency through Web Workers and asynchronous programming based on

jQuery Deferred/Promises can be mixed in several ways, for instance in order

to retrieve, as Future, the result produced by a computation executed con-

currently through a separate Web Worker. Many approaches are proposed on

the Web, the one that we present in the following is inspired by [7]. In the

example in the snippet below (Listing 2.23) through the $.doAsync() function

is requested to a worker coded in the script adder.js (Listing 2.24) to concur-

rently sum the values stored in the array passed as argument. The result of

the concurrent computation is returned as Future, so it’s possible to attach

callbacks for the completion or the progress of the task, or again to play with

the $.when() function, such in the example, where two concurrent sum tasks

are launched through respective workers and, at the completion of both, it’s

44

printed on the page the overall sum. The $.doAsync() function contains the

business logic needed to spawn the Dedicated worker and manage the inter-

action between the messages exchanged and the Deferred’s resolve(), reject()

and notify() operations, through a predetermined protocol.

1 $.doAsync = function (workerId , workerUrl , args) {

2 var def = new $.Deferred ();

3

4 var worker = new Worker(workerUrl);

5 worker.onmessage = function (event) {

6 if (event.data.progress != null)

7 def.notify ({’workerId ’ : workerId ,

8 ’port’ : worker ,

9 ’data’ : event.data.progress });

10 else if (event.data.ret != null)

11 def.resolve ({’workerId ’ : workerId ,

12 ’data’ : event.data.ret });

13 };

14 worker.onerror = function (ex) {

15 def.reject ({’workerId ’ : workerId ,

16 ’error’ : ex });

17 };

18 worker.postMessage(args);

19 return def.promise ();

20 };

21

22 $(document).ready(function () {

23 var future1 = $.doAsync(’worker1 ’,

24 ’adder.js’,

25 [0,1,2,3,4]);

26 var future2 = $.doAsync(’worker2 ’,

27 ’adder.js’,

28 [5,6,7,8,9]);

29

30 $.when(future1 , future2).done(

31 function (r1, r2) {

32 $(’#res’).text(’The result is: ’

33 + (r1.data+r2.data));

34 });

35 });

45

Listing 2.23: Deferred worker – main.js

1 onmessage = function (e) {

2 var a = e.data

3 var sum = 0;

4

5 for (var i=0; i<a.length; i++)

6 sum = sum + a[i];

7 postMessage ({’ret’ : sum });

8 };

Listing 2.24: Deferred worker – adder.js

2.4.2 Dart Isolates

Also in Dart concurrency is provided in actor-like fashion through the so-called

Isolates, not to be confused with HTML5 Web Workers since the semantic is

slightly different. According to Dart documentation [24], an isolate is a unit of

concurrency and it has its own memory and its own thread of control. Isolates

communicate by message passing and no mutable state is ever shared between

them. For this purpose messages are serialized before received in a such way

to ensure that one isolate cannot directly change the state in another isolate.

In addiction to performance improvements given by concurrency, Isolate were

proposed by Google for security matters too, for example to run third-party

code more securely thanks to the heap separation. Dart Isolates and SendPort

are packaged in the isolates library dart:isolate that has to be imported when

using isolates. An Isolate can be spawned through the spawnFunction() func-

tion that expects as only argument a top-level function or a static method as

entry point and returns a SendPort that can be used in order to communicate

with the newly created Isolate. This entry point function should not expect

46

arguments and should return void. An Isolate can be spawned too starting

from an URI which represents the file that contains the Isolate code, through

the spawnUri() function. Messages are sent and received between Isolates

through ports and they can contain primitive values, data structures such as

lists or maps or instances of SendPort used to refear another Isolate. Before

long it will be possible to pass any object in messages, now this feature is

available only when the application runs in the Dart VM. Ports, that is the

way in which Isolates exchange messages, can be of two types: SendPorts and

ReceivePorts. Messages are sent through the SendPort send() method and re-

ceived attaching callbacks to ReceivePort receive. An isolate, when spawned,

has a default ReceivePort retrievable by the top-level property port. Anyway

it’s possible to instantiate more ReceivePorts for the same Isolate, for the pur-

pose to route messages to different ports and callbacks. An Isolate lives until

it has an open ReceivePort. In addiction to the send() method the SendPort

interface provides also the call() mechanism that embeds a request-response

pattern, providing the response as a Future, returned by the call() invocation.

The snippet in Listing 2.25 shows the demo application introduced for Web

Worker coded in Dart with Isolates.

Notice, from the language documentation [24], that Isolates might run in

a separate process or thread depending on the implementation, or eventually

wrapped by Web Workers when compiled to JavaScript. To date Isolates spec-

ification seems still ongoing, APIs has been refactored many times and several

semantic inconsistencies persits between Isolates compiled to JavaScript and

runned in the native VM22. Between the features removed in the last API refac-

toring there are the so-called LightIsolates that is isolates which can access the

DOM, and are therefore executed by the main UI thread.

1 #import(’dart:html’);

2 #import(’dart:isolate ’);

3

4 void main() {

22See my discussion on Google Groups “About Dart isolates” at https://groups.

google.com/a/dartlang.org/forum/?fromgroups=#!topic/misc/koee2uTknJk

47

 https://groups.google.com/a/dartlang.org/forum/?fromgroups=#!topic/misc/koee2uTknJk
 https://groups.google.com/a/dartlang.org/forum/?fromgroups=#!topic/misc/koee2uTknJk

5 SendPort counterPort = spawnFunction(isolateCounter);

6

7 ReceivePort receiver = new ReceivePort ();

8 receiver.receive ((msg , _) {

9 if (msg["msg"] == "ret") {

10 var n = msg["val"];

11 query("#res"). innerHTML = "$n";

12 }

13 else if (msg["msg"] == "log")

14 log(msg["val"]);

15 });

16

17 query("#btnStart").on.click.add((event) {

18 counterPort.send({"cmd":"start"},

19 receiver.toSendPort ());

20 });

21

22 query("#btnStop").on.click.add((event) {

23 counterPort.send({"cmd":"stop"},

24 receiver.toSendPort ());

25 });

26 }

27

28 void isolateCounter () {

29 var counter = 0;

30 var enabled = false;

31

32 port.receive ((msg , reply) {

33 if (msg["cmd"] == "start" && !enabled) {

34 enabled = true;

35 port.toSendPort (). send({"cmd":"inc"}, reply);

36 reply.send({"msg":"log", "val":"Isolate started!"});

37 }

38 else if (msg["cmd"] == "stop" && enabled) {

39 enabled = false;

40 reply.send({"msg":"log", "val":"Isolate stopped!"});

41 }

42 else if (msg["cmd"] == "inc") {

43 if (enabled) {

44 counter = counter + 1;

45 reply.send({"msg":"ret", "val":counter });

46 port.toSendPort (). send({"cmd":"inc"}, reply);

48

47 }

48 }

49 });

50 }

Listing 2.25: Dart counter

2.4.3 Other technologies

There are several other proposals that intend to extend JavaScript with con-

currency support. One of these is River Trail23 developed since 2011 by Intel

that aims to enhance JavaScript with data parallelism support. It’s strongly

based on the map-reduce programming model, providing ParallelArrays as

immutable data structures processed by five main functions that are map(),

reduce(), scan(), filter(), scatter(). To date only available as prototype through

Mozilla Firefox extension, it’s proposed for inclusion in the next ECMAScript

standard.

2.5 A case study Web-app

For the purpose to apply technologies seens so far to a practical case, and

even to compare these technologies with the programming model that we will

introduce in Chapter 4 we designed a non-trivial demo Web application as

case study, more complex than the examples seen so far. This application

should be representative of all those 2.0 Web applications which, thanks to

AJAX, interact dynamically and in asynchronous way with Web services and

need to exploit concurrency for both performances and responsiveness matters.

Moreover the term Web applications are meant here in the sense of single-paged

Rich Internet Applications (RIAs) as described in the introduction.

Aim of the case study application is to draw up a ranking of what your

Facebook24 friends most likes. Given that the amount of friends may be high,

23https://github.com/RiverTrail/RiverTrail
24http://www.facebook.com

49

https://github.com/RiverTrail/RiverTrail
http://www.facebook.com

and therefore the crawling operation may take long time, the partial top-ten

ranking must be updated in real time while the crawling operation goes by

and, in addiction, the user must be able to pause the process and resume

it at a later time. For this purpose the application will have to connect to

Facebook’s RESTfull services through the Graph API 25 in order to query the

friends list and informations about likes for each friend. The total number

of AJAX requests will be then given by]REQUESTS =]FRIENDS +

1. Since in almost all browsers there are limitations about the maximum

number of asynchronous AJAX requests alive is inconceivable to structure the

whole application in terms of asynchronous programming. A better approach

could involve the use of several Web actors (HTML5 Web Workers or Isolates

in Dart) each one with its responsibilities and tasks. In this direction, the

architecture in Figure 2.5 is proposed, where the application business logic is

mainly splitted between the view actor, responsible for the page displaying

and the interaction with the user and the controller actor responsible for the

out-and-out computation.

Figure 2.5: Case study Web-app architecture

Then, on the controller side, the friends crawling task can be parallelized

splitting the whole work between a pool of sub-workers, according to a master-

25http://developers.facebook.com/docs/reference/api/

50

http://developers.facebook.com/docs/reference/api/

worker architecture, where each sub-worker is responsible for the crawling of

a sub-set of friends. The screenshot in Figure 2.6 below shows instead the

final output produced by the application. The Web page, which represents

the application’s GUI, is built starting from the HTML template shown in

Listing A.2, and it’s used by all the implementations that we will see in the

following.

Figure 2.6: Case study Web-app output

51

We implemented the case study application described above in JavaScript,

since the Dart implementation should be very similar. In the JavaScript imple-

mentation (see Appendix A.2) Dedicated workers are used to implement the

architecture in Figure 2.5. In particular the main UI worker (Listing A.3) is

responsible for the interaction with the DOM and for spawning the controller

worker (Listing A.5), responsible instead for the out-and-out application busi-

ness logic, by using a pool of sub-workers (Listing A.6).

2.6 Open issues in reference technologies

We would conclude this chapter resuming some considerations about prob-

lems underlying the reference technologies. Mainly these problems concerns

asynchronous programming, which is the reference programming model for

(client-side) Web technologies, and the actor model that is the way in which

these technologies provide concurrency.

2.6.1 Asynchronous spaghetti

As seen in section 2.3 one of the major drawbacks in asynchronous program-

ming is the so-called Asynchronous spaghetti, whereby the control flow logic

is fragmented among many event handlers in a way like GOTO statements

did before the coming of structured programming. In JavaScript, and other

reference Web technologies, this is mainly perceived in terms of callbacks nest-

ing in association with anonymous functions, that are used in nesting, with

asynchronous functions such timing and AJAX ones. This is proved to be an

error prone approach (see the example in Listing 2.15) and in general nest

properly callbacks to achieve the workflow desired is a programming discipline

and it is not supported by the language itself. Promises/Futures are proposed

in order to address the Asynchronous spaghetti problem. Through them, espe-

cially thanks to pipe()/chain() functions it’s possible to configure workflows,

made of chained asynchronous tasks, that allows to bypass the callback nest-

ing. As already seen in most cases it’s possible to unnest callbacks through

a Promises/Futures pipeline (see Listings 2.13 2.12). However, this is not al-

52

ways possible, especially with dynamic workflows, that is when is not possible

to pipelining tasks a priori since running or not a task is determined by the

outcome of a previous task, in these cases nesting still the only way. Consider

for example a workflow, more complex than those seen before, represented by

the UML Activity Diagram in Figure 2.7 where the execution of sequences

T2 → ReqC → T3 or ReqD → T4 are conditioned by the outcome of task

T1.

Figure 2.7: UML Activity diagram of a complex workflow

In this case, also the cleanest implementation (see the JavaScript snippet

in Listing 2.26) has at least one level of nesting, at the completion of task T1.

53

1 var futureA = $.ajax({

2 url: ’http :// example.com/serviceA/’ + reqA ,

3 async: true

4 })

5 var futureB = $.ajax({

6 url: ’http :// example.com/serviceB/’ + reqB ,

7 async: true

8 });

9

10 $.when(futureA , futureB)

11 .pipe(function (respA , respB) {

12 var def = new $.Deferred ();

13 var outT1 = computeT1(respA , respB);

14 def.resolve(outT1);

15 return def.promise ();

16 })

17 .done(function (outT1) {

18 if (check(outT1)) {

19 computeT2 ();

20 $.ajax({

21 url: ’http :// example.com/serviceC/’ + reqC ,

22 async: true

23 })

24 .done(function (respC) {

25 computeT3(respC);

26 })

27 }

28 else {

29 $.ajax({

30 url: ’http :// example.com/serviceD/’ + reqD ,

31 async: true

32 })

33 .done(function (respD) {

34 computeT4(respD);

35 })

36 }

37 });

Listing 2.26: Complex workflow JavaScript implementation

Moreover, a further issue related to Promises/Futures and asynchronous

54

workflows concerns the execution model. In fact when coding a Promises/-

Futures pipeline, such as the one in the example above, configuration and

execution are mixed together, so it becomes really difficult to understand how

the workflow is effectively executed, that means which operations are carried

out and at what time.

2.6.2 Asynchronous programming and Inversion of Con-

trol

Besides Asynchronous spaghetti another more general issue that underlies the

event-driven programming paradigm, the so-called Inversion of Control. As

stated in [12], instead of calling blocking operations (typical examples from our

Web context are waiting for user inputs, or for asynchronous requests comple-

tion), a program merely registers its interest to be resumed on the occurrence

of certain events, through event handlers (callbacks) that are installed in the

execution environment and called when the events occur. Anyway, the pro-

gram never calls these event handlers itself, instead the execution environment

dispatches events to the installed handlers. Thus, control over the execution

of program logic results inverted.

2.6.3 Issues inherent the Actor model

As seen in section 2.4 both HTML5 Web Workers and Dart Isolates, that is

the common mechanisms whereby reference technologies provides concurrency,

are based on the Actor model. Actors, as well as objects, are purely reactive

entities, they do something only in reaction to the reception of a message, fur-

thermore they can not block or do long-term computation otherwise the actor

lose responsiveness to new messages. Being purely reactive entities, actors do

not provide native means to effectively integrate also proactive behaviours.

In contrast to actors there are purely proactive, or autonomous, entities rep-

resented for instance by threads or processes. Problems typical arise when

trying to integrate autonomous and reactive behaviours [21]. In this regard

as typical example can be considered the “Stoppable Counter” application de-

55

scribed in section 2.4 where a Web actor has to repeatedly increment a value

and, at the same time, be responsive to the stop message. As seen in all the

implementations of this demo application, a typical workaround to integrate

autonomous behaviour in actors, without sacrificing reactivity, is to fragment

the long-term tasks, interleaving them with self-sended messages. However

this solution suffer of a weak abstraction and modularity [21].

56

Chapter 3

The simpAL language

Due to the coming of multi-core and many-core platforms, and the fundamen-

tal turn of software toward concurrency and distribution, many frameworks

and libraries are developed on top of the mainstream languages and technolo-

gies in order to fully exploit the hardware resources. However, the underlying

programming paradigm is still the Object-oriented one, or a few little exten-

sions, see for instance the Actor-model mentioned in the previous chapter.

Conversely, the simpAL language, introduces a further abstraction layer to

deal with concurrent and distributed systems design and development, based

on the Human-inspired computing metaphor and the Agent-oriented program-

ming paradigm.

Agent-oriented programming has been introduced in the (Distributed) Ar-

tificial Intelligence context, and since then many agent and multi-agent pro-

gramming languages have been proposed in literature. The focus of these works

have been mainly on architectures, theories, languages to program agents and

multi-agent systems in the (D)AI context, with the purpose of find appropri-

ate computation models and architectures to design intelligent software en-

tities exhibiting some level of autonomy in achieving complex goals. The

simpAL language is instead deeply different, and is intended to investigate

Agent-oriented programming as a general-purpose programming approach, as

evolution of the Object-oriented and Actor based ones, focusing on the design

and implementation of concurrent and possibly distributed systems. simpAL

57

has been designed from scratch with software development in mind, for the

purpose to bring robustness, usability and flexibility from mainstream pro-

gramming languages to Agent-oriented ones.

simpAL is a strongly-typed programming language, and extends a pure

Object-oriented layer in the sense that agents and artifacts are meant to be

used as coarse grain abstractions to define the shape of the organization, in

particular of the control part of it, while everything that concerns data struc-

tures representation and purely transformational computation is demanded to

the Object-oriented programming layer, in particular to a subset of Java.

In the remainder of this chapter we will take a concise survey about sim-

pAL, focusing in particular to those aspects related to the objectives of this

thesis. We first outline simpAL main concepts, and then take a deeper look

on agents and artifacts programming, we will conclude taking some consider-

ations about how simpAL can improve the Web programming, especially for

what concerns concurrency and asynchronous programming. Most of the ma-

terial and images are taken from [19] [20] [21] [22], so for more informations

please refer to these papers and to the simpAL SourceForge project1.

3.1 Main concepts

The simpAL language and infrastructure draw inspiration from Human-inspired

computing and the Activity theory, and integrates elements from the the

Agents and Artifacts (A&A) conceptual model [18]. In particular human

organizations are taken as natural high-level metaphor to define the struc-

ture and behavior of (complex) programs, where articulated concurrent and

coordinated activities take place, distributed in time and space [20]. The mem-

bers of simpAL organizations are called agents and, similarly to humans, they

are in charge of performing autonomously some tasks eventually interacting

with other agents and with the environment in which they are situated. Au-

tonomously means in this case that, given a task to do, they pro-actively decide

what are the best actions to perform and when to do them, promptly reacting

1http://sourceforge.net/projects/simpal/

58

http://sourceforge.net/projects/simpal/

to relevant events from their environment and fully encapsulating the control of

their behavior. The other main abstraction, beside agents, is the environment

in which agents are situated. The environment in human organizations plays

a key role, as the context mediating and then supporting members individual

and cooperative tasks, through the use of shared tools and resources. So if

agents are the abstraction meant to model active, task-oriented, autonomous

behaviors, artifacts on the other side are meant to be effective for modeling

non-autonomous components encapsulating and modularizing functionalities

that can be suitably exploited by agents [20]. Agents can use environment ar-

tifacts in the sense that they can request operations provided by an artifact or

perceive its observable properties. Like artifacts in the human case, artifacts

in simpAL can be dynamically created and disposed by agents, and eventually

can be designed to be composed, for the purpose to create complex artifacts by

connecting simpler ones. As mentioned before, like in the human case, agents

can communicate directly with other agents through asynchronous message

passing, in an Actor-like fashion. Alternatively artifacts can be usefull to sup-

port indirect forms of communication and coordination, for instance through

blackboards or tuple spaces. At last a further abstraction is needed to repre-

sent the overall structure and topology of a simpAL program, which can be

distributed, the so-called workspaces. A workspace is a logical container for

agents and artifacts, possibly running on a different node of the network. The

set of all the workspaces is called organization and represents the structure

of a simpAL program as a whole. Summarizing, in Figure 3.1 is represented

the overall structure of a simpAL program. The organization contains a set

of possibly distributed workspaces which in turn contain agents and artifacts.

Agents can use or observe artifacts in its own workspace or in a different one,

or directly comunicate with other agents.

59

observe
use

communicate with
WORKSPACE B

ARTIFACTS

ARTIFACTS

WORKSPACE A

AGENTS

ORGANIZATION

Figure 3.1: simpAL overview

For the purpose to bridge the abstraction gap between design and pro-

gramming and to tackle the development of complex software systems, in a

model-driven perspective, the basic idea behind simpAL is to keep these high-

level abstractions alive from design time to runtime.

3.2 Programming agents

Agents are the simpAL main abstraction, used to model those parts of the

program that are in charge of performing autonomously some tasks eventually

interacting with other agents and with the environment where they are situ-

ated. The agent abstraction mainly includes the following concepts: tasks, to

represent the description of the jobs that agents have to do; plans, encapsulat-

ing the procedural knowledge needed to accomplish the tasks; actions, which

are the moves that agents can do, depending on the environment in which they

are situated, in order to carry on their tasks; percepts, that are the events that

agents asynchronously observe from the environment to which they may need

to react, in order to do such jobs [21]. According to the engineering principle of

separation between interface and implementation, the agent programming in

simpAL involves on the one hand the introduction of roles, which type agents

and describe their interface in terms of tasks that agents are able to do. On

the other hand agent scripts contain the actual implementation for the tasks

in the roles they declare to play, through plans. In the following we analyze

60

more in detail these concepts.

3.2.1 Roles and tasks

The notion of role explicitely defines the type of a simpAL agent as the set

of possible types of tasks that any agent playing that role is able to do. As

interfaces in Object-oriented programming, roles define the agent’s contract

with respect to the environment where it is immersed. A role is identified by

a name and groups the definition of the set of task types [22]. Tasks, as we

will see in the following, are first-class concepts in simpAL, they are typed too

and intended to describe a well-defined unit of work to be done. Each task

is identified by a name and contains a set of predefined optional attributes,

useful to fully describe the task itself. These attibutes allow for example to

specify the task input/output arguments (input-params and output-params

blocks), or to constrain the agent interactions with other agents while the task

is running (understand and talks-about blocks). Agents typing, through roles,

is particularly useful for several purposes, for instance it allows error checking

at compile time, or in the future it will allow to define the well-known notions

of inheritance and polymorphism for agents too. The example in Listing 3.1

shows the role specification for an InteractiveCounter agent, an entity who

repeatedly increment a counter, which has capable of performing the tasks

Boot and Increment. Specifying the input parameters for the latter task

it’s possible to set the increment value besides a threashold value at which the

agent must stop increment. While performing the Increment task other agents

can send messages to the agent which implements this role for the purpose to

start, stop or pause it.

1 role InteractiveCounterRole {

2 task Boot {

3 }

4

5 task Increment {

6 input-params {

7 incrementValue: int;

61

8 maxValue: int;

9 }

10

11 understands {

12 start: boolean;

13 stop: boolean;

14 reset: boolean;

15 }

16 }

17 }

Listing 3.1: Definition of the InteractiveCounter role in simpAL

3.2.2 Agent scripts and plans

While roles provide agent interfaces in terms of tasks, expressing what an

agent have to do, agent scripts on the counterpart specify how to fulfill tasks,

through the so called plans. Again if roles and tasks are intended to specify the

structure of agents, scripts and plans are responsible to define the agents be-

haviour. Scripts therefore represent modules of agent behavior which contain

the set of plans corresponding to tasks in the roles that they declare to play,

and a set of beliefs that can be accessed by all the plans declared into that

script. Beliefs represent the knowledge owned by agents, similarly to variables

in mainstream programming languages they are declared specifying a name,

the type of the information they represent and optionally an initial value. For

the same task an agent script can provide several plans which can be used in

different contexts, on the basis of the agent belief base. By loading a script,

an agent adds to its belief base the beliefs declared in the script and the plans

of the script to its plan library [21]. Analogously to classes in Object-oriented

programming, scripts provide a form of encapsulation and information hiding

in agent implementation: they bundle together beliefs as informational state

and plans as procedural knowledge, making beliefs only accessible internally

to plans. Plans provide instead an explicit mechanism to modularize agent

overall behavior [19].

62

3.2.2.1 Action rules: events, conditions, actions

The procedural knowledge provided by plans is expressed in form of action

rules blocks. Action rules are similar to Event-Condition-Action (ECA) rules

in which the specified action A is performed when the related event E occurs

and the condition C holds. Action rule blocks, denoted by { . . . }, contain a

set of action rules and eventually other nested action rule blocks. Attributes

can be assigned to action rule blocks for the purpose to specify behavioural

properties. Among these the completed-when attribute specifies a condition

that determines the block completion, atomically specifies that the action rule

block must be executed without being interrupted or interleaved with blocks

of other plans in execution, and then using attribute, used to specify a set

of artifacts used or observed inside the block. At runtime, when entering a

block where an artifact is used, automatically the observable properties of the

artifact are continuously perceived and their values is stored in corresponding

beliefs in the agent belief base, updated in the sense stage of the agent control

loop [20]. An action rule block is considered completed as soon as there are

no more action rules that can be triggered or the condition specified in the

completed-when attribute is met.

Events are modeled as changes of some beliefs which belong to the agent

belief base. These events mainly concern percepts received from the environ-

ment, messages received by other agents, notification of completion or failure

of labelled actions and the passing of time. For example it’s possible to react

on the changing of an observable property on an artifact in use through the

syntax changed 〈Belief〉, or react to a message received from another agent

through the syntax told 〈Belief〉. In both cases these beliefs are dynamical

in the sense that the belief on the agent side is automatically added to the

belief base when is needed, for instance when an artifact is used, or a task

that declare the understand attribute is implemented. Through the keywords

when and every-time it’s possible to specify in addiction to react respectively

exactly once, when the event first occurs, or every time it occurs. Conditions

are instead simply specified in terms of boolean expressions over agent beliefs.

Actions in action rules can be either internal, if they affect the internal state

63

of the agent, or external if they affect the environment in which the agent

is situated or concern the comunication with other agents. Internal actions

typically regard the definition and assignment of beliefs, the manipulation of

Java objects and the invocation of methods over them. Also control structure

such as if , for and while constructs are provided as internal actions. External

actions can be instead operations requested to artifacts, artifacts creation or

disposal, agents spawning or termination, comunicative actions toward other

agents, through the tell keyword, or task assignment to an existing agent,

through the do-task keyword. As stated before action rule blocks are the

basic construct for specifying the procedural knowledge in plans. By their

nature, if more than one action rule blocks are provided for a plan, these are

all activated simultaneously. For this reason simpAL provides syntactic sugar

to easy the coding of sequences of actions, if two action rule blocks are separed

by a semicolon the predefined meaning is that the second block can be selected

only after that the first is completed. Furthermore if event and condition are

not specified the action by default can be selected and executed immediatly,

and only once.

The snippet in Listing 3.2 shows an agent script which implements the

InteractiveCounterRole role specified in Listing 3.1. The agent script provides

two plans, one for each task defined in the role. The first plan contains only

one action, with no event and condition, which requests the print() operation

to the artifact console in the workspace main. We will tackle the artifact

programming in more detail in the next sections. The Increment plan spec-

ify istead the main behaviour of the agent: first the agent waits until any

other agent send him the start message (line 10). Once received this message

the action rules block at lines 14-22 is activated, so the agent starts the in-

crease activity, until it will receive a stop message, or the counter exceeds the

threashold value, and the completed-when condition is met (lines 12-13). In

the increase activity the agent repeatedly request the inc() operation to the

counter artifact and then prints the updated value on the console artifact. No-

tice that thanks to the “;” syntactic sugar the print() operation is requested

only when the action before, that is the inc() operation, is completed. At

64

the same time that the repeatedly block is performed, if a reset message is

received the counter is resetted thanks to the every-time block at line 20.

1 agent-script InteractiveCounterAgent

2 implements InteractiveCounterRole

3 in ExampleOrgModel

4 {

5 plan-for Boot using: console@main {

6 print(msg: "InteractiveCounter is booting ...")

7 }

8

9 plan-for Increment {

10 every-time told this-task.start =>

11 using: counter@main

12 completed-when: this-task.stop

13 || value >= this-task.maxValue

14 {

15 repeatedly using: console@main {

16 inc(qty: this-task.incrementValue);

17 print(msg: "" + value)

18 }

19

20 every-time told this-task.reset =>

21 reset()

22 }

23 }

24 }

Listing 3.2: Definition of the InteractiveCounter agent script in simpAL

3.2.2.2 Tasks as first-class entities

As stated before, differently from mainstream languages, simpAL provides

tasks as first-class entities. A rich set of built-in internal actions are in fact

provided for the purpose to directly manipulate tasks and intentions. We

have just seen the do-task action whereby it’s possible to assign a task to an

agent, similarly there are actions to drop, suspend or resume tasks. Through

65

is-ongoing or is-done is instead possible to check if the task corresponding

to a belief is completed or still executing. Again the drop-all-tasks action

drops all the ongoing tasks and the related intentions, but the current one,

while the forget-all-plans removes from the intentions stack all the action rule

blocks except the one at top level. The support of tasks as first-class entities

is particular usefull for the purpose to structure complex plans, splitting the

whole business logic of a complex task among many sub-plans, according to

the modularity principle.

3.2.3 The agent control loop

The agent control architecture, or agent control loop, is a key aspect in sim-

pAL and it’s inspired by the reasoning cycle of Belief–Desire–Intention (BDI)

architectures, in particular it can be regarded as a simplification of AgentS-

peak and Jason [4] ones. It is the foundation for integration of autonomous

and reactive behaviours and, as you can notice in Figure 3.3, it’s characterized

by three conceptual stages which are repeatedly performed: sense, plan, act.

• Sense stage

In the sense stage the belief base of an agent is updated by processing

events from the external event queue, that is those ones coming from the

environment and from other agents, if any are available. These events are

related to changes of the observable properties in artifacts currently used,

incoming messages from other agents, or again notifications of success or

failure for previously executed actions. As seen in the previous sections

these events are all modeled as changes in the so-called agent’s dynamical

beliefs. Changes in agent’s beliefs caused by external events are in turn

modeled as events, enqueued to the internal event queue, which will be

accessed in the next stage.

• Plan stage

Many tasks can be carried on simultaneously by the agent, and for each

ongoing task there is a stack of plans in execution (intentions), since

the execution of a plan may involve the execution of many sub-plans.

66

Figure 3.2: simpAL control loop pseudocode

So, first of all for each new task to do a plan is selected from the agent

plan-library and a new intention is instantiated. Main purpose of this

plan stage is to focus on a task, through a certain scheduling policy, and

to select all the actions amenable to be performed between the action

rules currently available on the top of the intentions stack. Intentions

that have achieved their goal are dropped.

• Act stage

Objective of this act stage is finally to perform all the actions selected

in the plan stage. Internal actions are executed atomically in this stage

while external ones, which typically correspond to operations over arti-

facts are simply started. The outcome of these actions, success or failure,

67

will be possibly perceived as an asynchronous event in one next future

cycle.

SENSE
stage

PLAN
stage

ACT
stage

actions

Belief
Base

Plan
Library

 Ongoing
Plans / Tasks

events
event queue

actions-todo

EXECUTION / CONTROL LOOP

Figure 3.3: simpAL agent architecture

Notice that continuously executing these three stages, conceptually, the

agent control flow is never blocked [19]. Moreover the agent control loop can

be framed as a fine-grained extension of the actor event loop (Figure 2.3), the

main differences are that agents can cycle even if there are no external events

to process and intentions are not meant to be fully executed and completed in

one cicle. [21].

3.3 Programming artifact-based environments

As stated before the environment is constituted by a dynamic set of arti-

facts, grouped in possibly distributed workspaces. Artifacts can be conceived

as passive modules, just like classes or monitors in Object-oriented program-

ming. Each artifact provides a set of observable properties, that the agents

using it may perceive, and a set of operations, requested by agents through

actions. Analogously to the agents case, also for artifacts the definition of

68

artifact functionalities and their concrete implementations are kept separate.

Therefore on the one hand we have artifact models, which define artifact usage

interfaces, while on the other artifact templates, which provide the concrete

implementations for these models.

3.3.1 Usage interfaces

Usage interfaces are identified by a name and characterize an artifact defining

both a set of observable properties and a set of operation signatures. Observ-

able properties, similarly to variables, are declared through a name, a type

and a value. Operations may accept keyword-based parameters, so when an

agent requests an operation with parameters it must specify them in form of

keyword : value, in any order. Many of the operation parameters may be

declared as action feedback (adding the #out keyword to the parameter def-

inition2), that is computed by the operation and returned back to the agent

when the operation is completed, just like output parameters. The snippet in

Listing 3.3 shows the interface definition for the Counter artifact, used in the

previous examples. Notice the declaration of the observable property value

and the artifact operations, with their parameters.

1 usage-interface CounterInterface {

2 obs-prop value: int;

3

4 operation inc(qty: int);

5 operation reset ();

6 }

Listing 3.3: Definition of the Counter artifact interface in simpAL

3.3.2 Artifact templates

Artifact templates provides instead the implementation for artifact operations,

and they can be used to create instances of artifacts, just like classes in Object-

2e.g. operation get(item : int#out)

69

oriented programming. Operations are implemented simply through sequences

of statements, in pure imperative style, using classic control structures and

eventually Java objects in addiction to primitive values. Artifact templates

also provide a form of encapsulation, since they can define somme hidden (not

observable) state variable and internal operations useful for implementig arti-

fact functionalities. Specific primitives are provided for the purpose to shape

the operation execution, for instance the await statement allows to suspend

the operation until the specified condition is met without blocking the artifact,

that is allowing other operations to be executed. The operation execution se-

mantic in simpAL artifacts is similar to monitor procedures ones since only

one operation can be in execution at a certain time and, if many suspended

operation can be resumed, one has to be selected. The snippet in Listing 3.4

shows the concrete implementation of the Counter artifact template, which

implements the CounterInterface specified in Listing 3.3. Notice the imple-

mentation of the operations as simple sequence of statements in pure impera-

tive style besides the init operation which must be provided by each artifact

template.

1 artifact CounterArtifact

2 implements CounterInterface

3 {

4 init (initValue: int) {

5 value = initValue;

6 }

7

8 operation inc(qty: int) {

9 value = value + qty;

10 }

11

12 operation reset() {

13 value = 0;

14 }

15 }

Listing 3.4: Definition of the Counter artifact template in simpAL

70

3.4 Defining the organization

The organization abstraction in simpAL represents the program overall struc-

ture, also for this aspect the model and implementation are kept separate.

The organization model specifies the set of workspaces that constitute the

program. Each workspace is identified by a name and contains the sets of

all roles and usage interfaces related to the agents and artifacts respectively

which will be part of the workspace itself. The snippet in Listing 3.5 shows the

definition of the organization model for the example program described in the

previous sections. The ExampleOrgModel is declared to contain the main

workspace which in turn contains the incrementerAgent agent besides the

counter and console artifacts. Notice that the organization model describes

the entities contained by workspaces in term of interfaces, that is roles and

usage interfaces.

1 org-model ExampleOrgModel {

2 workspace main {

3 counter: CounterInterface

4 console: ConsoleInterface

5

6 incrementerAgent: InteractiveCounterRole

7 }

8 }

Listing 3.5: Definition of the Example organization model in simpAL

The organization defines instead the concrete implementation of the orga-

nization model. It specifies for each workspace the initial set of agents and

artifacts. The initial set means that agents can be dynamical spawned and

terminated by other agents as artifacts can be dynamical created and disposed

at run time. For agents it is specified the agent script to load and possibly

the initial task to perform besides a set of configuration parameters for the

agent script. For artifacts the template is instead specified possibly including

some initialization parameters. At last through a configuration file it’s possi-

71

ble to specify further deployment informations, for instance Internet addresses

in order to distribute the workspaces among an IP network. The snippet in

Listing 3.6 shows at last the concrete definition of the example organization,

implementing the organization model specified in Listing 3.5. Differently from

the organization model the organization defines the effective entities which

compose the simpAL program in terms of agents, for which are provided the

loading script and the initial task, and artifacts for which are instead provided

the template and proper initialization parameters.

1 org ExampleOrg implements ExampleOrgModel {

2 workspace main {

3 counter = CounterArtifact(initValue: 0)

4 console = ConsoleArtifact ()

5

6 incrementerAgent = InteractiveCounterAgent ()

7 init-task: Boot()

8 }

9 }

Listing 3.6: Definition of the Example concrete organization in simpAL

3.5 simpAL benefits

In this conclusive section we take some considerations about benefits that

simpAL introduce, in particular regarding to concurrent and event-driven Web

programming, objective of this thesis.

3.5.1 Asynchronous programming without Inversion of

Control

As seen in the previous chapter a typical problem in asynchronous program-

ming concerns the so-called Inversion of Control that occurs because event-

handlers (callbacks), registered by the program main control flow, are never

72

directly called by the main control flow itself but instead invoked by the ex-

ecution environment when the related events occurs. In client-side Web pro-

gramming, JavaScript in particular, due to the combination of callbacks and

anonymous functions, Inversion of Control is the ordinary. In simpAL instead

there is no Inversion of Control since event handlers are modeled directly by

action rules, which are evaluated and possibly selected and related actions

executed by the same logical control flow, that is the agent control loop.

3.5.2 Integration of autonomous and reactive behaviours

One of the biggest advantages given by Agent-oriented programming and sim-

pAL in particular is definitely the ability to integrate autonomous and reactive

behaviours [21]. This is also one of the most interesting features with regard

to the aims of this thesis. HTML5 Web Workers and Dart Isolates, that is the

mechanisms in which the current generation of Web technologies supports con-

currency are purely reactive and based on the Actor model. From actors they

inherit the limitations too, in particular for what concerns the implementation

of autonomous behaviours, as we have seen in the previous chapter. Thanks

to their architecture, which is in turn inspired by the Belief-Desire-Intention

one, agents, differently from actors as well as objects, are not based on the

reactivity principle and they do something not because they receive a message,

but because they have some tasks to do.

3.5.3 Concurrency

One of the major motivations behind simpAL is to provide a support for

developing concurrent and distributed programs, abstracting from low-level

mechanisms such as those in multi-threaded programming. So in a simpAL

program, agents are executed concurrently, as well as operations on distinct

artifacts; also, for the same agent, the execution of an external action (oper-

ation) is asynchronous with respect to the execution of the agent cycle [21].

Furthermore simpAL, like certain Actor-based languages and frameworks pro-

vide concurrency at a logical level, in the sense that the runtime platform is

73

responsible for effectively map these concurrent entities and activities on phys-

ical OS threads according to the resources available in the system. This makes

it possible to have a large number of agents running concurrently, keeping a

good degree of scalability. This approach may be advantageous in Web pro-

gramming compared to the existing state-of-art technologies which commonly

provide concurrency through Actor-based heavy-weight entities intended to be

used in a small number, consider for instance HTML5 Web Workers analyzed

in the previous chapter. Another great benefit, but which will not deepen

because out of the scope of this thesis, is the fully transparency of simpAL

programs with respect to distribution.

3.5.4 Error checking at compile time

As seen in the previous chapter also typing is a very useful feature, almost

essential in languages targeted to in-the-large programming. simpAL strong

type system allows among other to detect errors at compile time such as in-

compatible assignments, referencing of non existing symbols, redefinition of

symbols in the same context, and so on. Generally error checking in sim-

pAL may be useful to check the compliance between model definitions and

counterpart implementations, for instance to check if an agent script which

implements a certain role provides at least a plan for each task defined in the

role. Moreover the concept of role helps to inspect the behavior of agents aim-

ing at interacting with other agents implementing a certain role, checking that

they would request the accomplishment of only those tasks that are specified

by the role, and that they would send only those messages enlisted in the role

[20]. Usage interfaces are instead helpful to check the corrispondence between

agents actions and artifacts operations as well as errors concerning observable

properties and beliefs whereby agents percieve them.

74

Chapter 4

simpAL-web

Once introduced the simpAL language and outlined the features that may be

useful in Web programming, in this chapter we start focusing on how to con-

ceive a Web application under the new Agent-oriented programming paradigm

exploiting the abstractions provided by the simpAL language. We outline a

basic structure for simpAL Web applications in terms of agents and artifacts

and then we discuss about the design and implementation of the simpAL-

web platform, that is the foundational layer that allows simpAL to become a

Web client-side programming language. It should provide features to handle

Web stuff such as HTML Web documents, AJAX requests and so on. The

simpAL-web platform represents in fact the basic environment of a simpAL

Web program. Key component of this platform will be a custom Web browser,

in charge of displaying the Web documents and managing the interaction with

the user. Once designed the simpAL-web platform, we will be able to try

simpAL in Web programming context, in particular compared to some exam-

ples taken from Chapter 2. We will conclude taking some consideration about

those benefits and innovations that simpAL, and the simpAL-web platform,

bring in design and development of Web applications.

75

4.1 Requirements and assumptions

Since the ultimate objective of the simpAL-web platform is now to enable

simpAL to be tried in Web programming context, what we would design and

implement will be a prototype platform, provided with a subset of all the

features available to current Web applications through the DOM APIs and

other Web standards. For this purpose we make some assumptions and we

narrow the programming of simpAL Web applications to the following aspects:

• Single-page Web applications — As stated in [29] “is a Web application

that fits on a single Web page with the goal of providing a more fluid

user experience akin to a desktop application. Either all necessary code

is retrieved with a single page load, or partial changes are performed

loading new code on demand from the Web server, usually driven by user

actions. The page does not automatically reload during user interaction

with the application, nor does control transfer to another page. Updates

to the displayed page may or may not involve interaction with a server”.

This means that the simpAL Web program acts on a single Web page,

represented by an HTML document loaded when the application starts.

• Elements accessible by id — All the HTML elements inside the page on

which the simpAL Web program may operate must be marked with an

unique identifier, specified through the id HTML attribute.

• Perceive certain events from certain elements — It means that Web

agents should be able to perceive only those events they are interested

in, and for certain elements only.

• Access to element’s content and attributes — Finally, Web agents should

be able to read and update the content and attributes of a certain HTML

element.

76

4.2 Modeling simpAL Web applications

Once defined the features of interest in Web applications for the objectives of

our experimentations we now focus on how to model such applications in sim-

pAL. Differently for standard Web languages, such as JavaScript, where the

business logic of the application is flat and eventually spreaded among several

script files, in simpAL we can organize such business logic by distinguishing

between those active parts, that will be modeled as agents, and those passive

parts which are encapsulated by artifacts and used by agents. So our sim-

pAL Web abblications will be composed at least by one agent – that we will

henceforth call Web agent(s) – which will encapsulate the essential application

business logic purged from all those aspect that concerns low level interactions

which will be demanded to the Web environment. The introduction of many

Web agents will be useful for instance when applying the Master-Worker pat-

tern or in general other techniques of division of labor. A set of built-in arti-

facts will be provided by the simpAL platform in order to allow Web agents to

easily interact with the Web page and elements, abstracting from the specific

logic used to access them. Excluding these artifacts which are standard and

defined by the simpAL platform, first aspect to consider during the design of a

simpAL Web application is to separate functionalities between those ones that

can be provided by artifacts and those others that can be provided by agents.

The main aim is to simplify and clean as much as possible the programming

on the Web agent side. What we propose definitively is a new computational

model in which Web agents are the main entities that implement the essential

business logic of the application by interacting whith other Web agents and

the Web environment. As mentioned before thanks to their architecure such

Web agents can handle in a better way the control flow so as to make easier

aspects such as asynchronous programming and concurrency. In Figure 4.1

is shown the structure of a typical simpAL Web application, anticipating the

next section we can see how many Web agents cooperate together by exchang-

ing messages and by using the artifacts which represents the Web environment.

Some of these artifacts will be provided by the simpAL-web platform and will

be responsible to manage the page display and the interaction with the user,

77

some other artifacts can be instead programmed by the application developers

in order to wrap the interaction with Web services and to model passive parts

of the application.

Figure 4.1: Structure of a simpAL Web application

4.3 Modeling the Web environment

Therefore first of all we focus on the design of the simpAL-web platform,

that is the layer which interface the simpAL runtime with the GUI (simpAL-

web browser) responsible to display Web documents and managing the user

interactions. As stated before this platform can also be conceived as the ba-

sic environment of all simpAL Web programs. Through this layer in fact

simpAL agents must be able to manipulate the Web documents and its ele-

78

ments, to perceive user actions on the browser and to exchange data possibly

asynchronously with Web services, just like current Web 2.0 applications do.

Again as the Document Object Model (DOM) APIs provides an interface for

JavaScript programs, the simpAL-web platform should provide an interface

for simpAL agents. However, since the DOM APIs was conceived with the

Object-oriented paradigm in mind, and designed with the purpose to ease and

provide in the best way dynamical access and update to the content structure

and style of documents, it is not true that this is the best way in Agent-oriented

programming too. In fact as mentioned in Chapter 3 with the Agent-oriented

programming paradigm and simpAL we are at an higher level of abstraction

and what we want is an interface that makes Web programming, on the agents

side, the most simple and natural as possible. Notice that, thanks to the abil-

ity of simpAL to deal with Java objects, it would be theoretically possible

to use the DOM APIs as are, anyway this is definitely not the most natural

approach. What we will do instead is to rethink an interface from scratch,

keeping the Agent-oriented paradigm in mind, and with the aim to make the

programming of Web agents as natural as possible. It is therefore natural to

model this interface in terms of artifacts, that will constitute the environment

in which Web agents will live. In the design of these artifacts we focus essen-

tially on what a Web agent must be able to do on the artifact and what it

must be able to perceive from the artifact itself. Accordingly we will design

the artifact in terms of operations and observable properties respectively.

4.3.1 The Web Page artifact

As stated before we start modeling the Web page artifact, which represents

through an HTML template the GUI for the Web application. Main purpose

of this artifact is to act as a container of those HTML elements which com-

pose the GUI and to easily provide access to these elements, roughly like the

document object in the DOM APIs. To this end the Web page artifact can

be designed by providing a proper mapping between HTML elements and cor-

responding artifacts in the simpAL-web environment. This can be achieved

in several ways, the extreme approaches are the one in which to each HTML

79

element corresponds an element artifact, and the other one in which there

is an only big artifact that provides operations and collects events from all

the HTML elements, that is the Web page. Therefore if on the one side we

have an overhead due to the handling as artifacts of also those HTML ele-

ments that are not of interest for the Web application, on the other having

only one artifact involves a low level of abstraction. The solution we have

chosen is in the middle since we decided to represents each HTML element

with an element artifact but only for those elements which effectively affect

the Web application behaviour, in the sense that they raise events which must

be perceived from Web agents or are able to be manipulated by them. So

the number of element artifacts in the page artifacts will always be less than

or equal to the number of actual HTML elements in the document. To this

end the Web page artifact should provide at least an operation that, given

the identifier of the HTML elements returns as output parameter the Web

element artifact that wraps it. In the WebPageInterface usage interface of

the page artifact this corresponds to the getElement() operation, this may be

requested at any time and by any Web agent, so the concrete implementation

of the Web page artifact will be responsible to dynamically create the new

element artifact and binding it to the HTML element. Furthermore it would

be useful that Web agents were able to perceive events related to the page

loading and closing. The issue is that simpAL currently doesn’t natively pro-

vides a way to model events so, as we shall see in the following, we will have to

represent events as changes of the observable properties states, and so on the

agent side changes in the belief base. For this purpose the WebPageInterface

provides the loaded and closed observable properties as booleans, which are

switched to true when the page, will be loaded and closed respectively. Notice

at last that the WebPageInterface (Listing 4.1) doesn’t provide operations

to specify the URL where to load the Web page since it will be indicated in

WebPageArtifact template init parameters.

1 usage-interface WebPageInterface {

2 obs-prop loaded: boolean;

80

3 obs-prop closed: boolean;

4

5 operation getElement(selector: String,

6 elemArtifact: WebElemInterface #out);

7 }

Listing 4.1: Specification of the Web page artifact interface

4.3.2 The Web Element artifact

The Web Element artifacts as stated before represent instead the pieces of

which the Web page is made of, on which the Web agents will act. It wraps

an HTML element and provides among other functionalities to retrieve and

update the content of the element, operations getContent() and setContent()

respectively, and element attributes, through operations getAttribute() and

setAttribute(). Another purpose of this element artifact is to map events

from the HTML element in changes of the observable properties which may

be perceived by Web agents. Taking a look at the artifact usage interface

WebElemInterface in Listing 4.2, observable properties at lines 2-6 repre-

sent mouse related events: clicks and doubleClicks model the mouse clicks as

the number of times that the mouse was clicked, or double-clicked1; pressed

becomes true when a mouse button is pressed to the element, false when it is

released; similarly focused is true when the cursor enters the element and false

when it leaves it; pointerCoord instead represent the position in coordinates

(x, y) of the cursor while it moves within the element. Similarly the observable

properties at lines 8-9 represent events from the keyboard: keyPressed is true

when a key is pressed on the element and becomes false as soon the key is

released; key represents instead the Unicode corresponding to the last pressed

key.

1Notice that clicks and doubleClicks are declared as integers since the click event is
instantaneous and it’s poorly modeled with changes of boolean states. On the Web agent
side reacting to a click it means specify an action rule like when changed clicks => {} for
clicks as integer, instead of when changed clicked : clicked => {} for clicked as boolean

81

1 usage-interface WebElemInterface {

2 obs-prop clicks: int;

3 obs-prop doubleClicks: int;

4 obs-prop pressed: boolean;

5 obs-prop focused: boolean;

6 obs-prop pointerCoord: simpal.web.PointerCoordinates;

7

8 obs-prop keyPressed: boolean;

9 obs-prop key: int;

10

11 operation getContent(html: String #out);

12 operation setContent(html: String);

13

14 operation getAttribute(attribute: String,

15 value: String #out);

16 operation setAttribute(attribute: String,

17 value: String);

18 }

Listing 4.2: Specification of the Web element artifact interface

Notice that accordingly to this approach all HTML elements are wrapped

uniformly by the element artifact. This is in agreement with the DOM specifi-

cation which provides a set of common methods and standard events2 defined

for almost every elements. However, always with the aim to simplify program-

ming on the agent side it might be useful to have different kinds of element ar-

tifacts on the basis of the specific HTML elements. For instance we would like

to have the observable property text for artifacts related to those elements such

as text inputs and textareas, or the observable property progress for artifacts

which wraps media elements. Therefore would be natural to model these new

element artifacts as a hierarchy where for instance WebTextElemInterface

and WebMediaElemInterface extend the root WebElemInterface inherit-

ing its observable properties and operations and by adding others specific to

the kind of HTML element they wrap. Anyway since simpAL does not sup-

port yet inheritance for agents and artifacts and these new artifacts are not

2http://www.w3schools.com/jsref/dom_obj_event.asp

82

http://www.w3schools.com/jsref/dom_obj_event.asp

significant for the following tests about simpAL and Web programming they

will not be provided in this prototype version of the simpAL-web platform.

4.3.3 The Clock artifact

Timing functionalities similarly to JavaScript setInterval() are provided in

simpAL through the built-in clock artifact. From the usage interface in Listing

4.3 you can see that are provide operations to enable and disable it besides

to set its clock rate. On the agent side the passing of time can be perceived

through the time observable property which is updated by the clock artifact at

the pre-defined rate. The bottom of Listing 4.3 (lines 11-20) shows the snippet

of a simple application which periodically displays on the Web page the current

time. Notice that while in JavaScript setInterval() and setTimeout() functions

are often used to emulate concurrency besides to tricks on the event-loop, in

simpAL Web applications the clock artifact is intended to be used for timing

purposes only.

1 usage-interface ClockInterface {

2 obs-prop time: long;

3

4 operation switchOn ();

5 operation switchOff ();

6 operation setRate(rate: int);

7 }

8

9 ...

10

11 using: clock@main {

12 dateFormat : java.text.DateFormat

13 = new java.text.SimpleDateFormat("HH:mm:ss")

14

15 switchOn ()

16

17 every-time changed time => using: divOut {

18 date: java.util.Date = new java.util.Date ();

19 setContent(html: dateFormat.format(date))

20 }

83

21 }

Listing 4.3: Specification of the Clock artifact interface and sample usage

4.3.4 Interaction with Web services

Like AJAX requests in traditional Web 2.0 applications, also simpAL-web

requires mechanisms to enable the applications to interact with (RESTful)

Web services, possibly asynchronously. A trivial approach would have been

to introduce an artifact which provides operations that wrap HTTP actions

such as get and post, just like the XMLHttpRequest object does in JavaScript.

Anyway once again this is definitely not the most natural approach on the

agent side programming. Since simpAL provides an higher level of abstraction

what we would like is ad-hoc artifacts that wrap in a proper way Web services

functionalities, possibly even regardless to HTTP actions, for the purpose to

ease the use on the agent side. So it will be responsibility of the artifact to

actually interface to the Web service, performing the proper HTTP requests,

and providing the outcome through operations or observable properties to

Web agents. Therefore besides the programming of agents, the programming

of service wrapper artifacts is demanded to the Web application developer too.

In order to simplify the development of these artifacts many Java libraries are

provided in order to handling HTTP requests (package simpal.web.http) and

JSON serialization/deserialization (package simpal.web.json). It’s possible to

conceive these artifacts mainly in two ways.

• Artifacts as requests to Web services

In some cases it may be useful to simply conceive the artifact itself as

a request to a Web service. Similarly to how jQuery AJAX operations

work, according to this approach the artifact acts as the “future” of a

request to the Web service, whose completion will be notified to Web

agents typically in form of status change of an observable property. Un-

der these conditions this kind of artifacts are one-time usable because

related to a specific request.

84

• Artifacts as Web service proxies

However in general it is preferable an approach at higher level of abstrac-

tion so the artifact no longer models the request to the Web service but

the service itself, always for the purpose of making simple and clean as

much as possible the programming on the Web agent side. For instance

we would like to handle the Facebook Web service as it was the Face-

book homepage, in which newer feeds are updated real time and through

proper operations we may pubblish a new status or upload a picture. So

this new kind of artifacts will provide a set of operations to act on the

service, and a set of observable properties, updated upon status changes

in the distributed service. In the simplest case the artifact can wrap

the functionalities of the Web service through proper operations which

eventually return some informations. Consider to this end the artifact

interface in Listing 4.4 that through the queryV iewCount() operation

requests to the YouTube REST APIs the number of visualizations for the

first item that match the search criteria and returns the result through

the count output paramenter.

1 operation queryViewCount(search: String,

2 count: long #out);

3 }

Listing 4.4: simpAL-Web YouTube service artifact

In general anyhow is possible to structure the proxy artifact without

being constrained by the structure of the Web service itself, in some

cases even regardless to the nature of the HTTP protocol. There may

be several services for which we would like to be able to exploit the fact

that certain distributed informations or events may be perceived by Web

agents as state changes of observable properties. Consider for instance

a Web application whose objective is to display and keep updated the

newest feed posted on your wall. Since, by its nature, the HTTP proto-

col does not support a server-side push action, the typical approach in

85

JavaScript would be to program a script which poll on the Web service

scheduling periodical AJAX requests through the timer object. In a such

way however in some sense the logic of the script is dirty because the log-

ical flow responsible for the periodical requests interleave the application

main control flow. Conversely in simpAL it is possible to separate the

concerns by making the proxy artifact (Listing 4.5) responsible to per-

form the periodical requests to the service, by periodically executing an

internal operation which update the status of an observable properties.

So the Web agent (Listing 4.6), whose task is to display the latest feed

from the Facebook service, delegates the entire logic needed to interact

with the service to the artifact, and it provide only the behaviour to re-

act on the updating of the observable property which represent the latest

feed. In a such way, on the Web agent side, is as if the Web service would

provide a push action and all the complexity due to the interaction with

the service is concealed behind the artifact. Again in a such way we can

conceive the artifact as a “sensor” or a connection to the outside world.

1 usage-interface FacebookInterface {

2 obs-prop lastFeed: String;

3 }

Listing 4.5: simpAL-web Facebook artifact interface

1 agent-script FeedRefreshAgent

2 implements FeedRefreshRole

3 in FBLastFeedOrgModel

4 {

5 plan-for Refresh using: page@main {

6 when loaded => {

7 divOut: WebElemInterface

8 getElement(selector: "divResult",

9 elemArtifact: divOut);

10

11 using: fb@main {

86

12 every-time changed lastFeed =>

13 using: divOut

14 {

15 setContent(html: lastFeed)

16 }

17 }

18 }

19 }

20 }

Listing 4.6: simpAL-web Facebook last feed updater agent

4.4 Web programming in simpAL-web

Once introduced the simpAL-web platform and all the elements needed to

enable simpAL to work in a Web environment, in this section we explain

how to program simpAL Web applications. For this purpose we will provide

several examples, some of which are taken from the Chapter 2. According

these examples we also take some considerations about the benefits and draw-

backs brought by the simpAL Agen-oriented programming paradigm and the

simpAL-Web platform.

First of all we consider a typical “Hello world” application where the

GreetingAgent, whose behaviour is specified by the agent script in Listing

4.7, once the appropriate Web page is loaded (line 6), first retrieves the ele-

ment artifact which corresponds to the div element in the page identified by

divResult (lines 7-9), and then sets its content displaying the “Hello World”

message (lines 11-13). Notice that the setContent() operation may not be re-

quired to the element artifact divOut until the reference to the artifact itself

was not obtained through the getElement() operation on the page artifact.

This justifies the semicolon at the end of line 9 which forces the sequence

between the action rule blocks at line 8-9 and at lines 11-13. From this first

example we can see the basic behaviour of the main Web agent which in gen-

eral should wait that the page was loaded and should request, through the

getElement() operation, the references to those artifacts which represent the

87

HTML elements that are used or observed by the main agent itself. So far

the simpAL Web application is very similar to the corresponding JavaScript

or Dart implementation.

1 agent-script GreetingAgent

2 implements GreetingRole

3 in HelloWorldOrgModel

4 {

5 plan-for Greet using: page@main {

6 when loaded => {

7 divOut: WebElemInterface

8 getElement(selector: "divResult",

9 elemArtifact: divOut);

10

11 using: divOut {

12 setContent(html: "Hello World!")

13 }

14 }

15 }

16 }

Listing 4.7: simpAL-web Hello World

4.4.1 Dealing with asynchronous programming

The second example we introduce is a slight variation of the “Hello world”

above in which the message is displayed upon the div element only once that

the user clicks on a button. Through this second example we can taste for the

first time how to tackle asynchronous programming in simpAL-web, that is

what in JavaScript we would have handled through callbacks. Differently from

the previous example now the GreetingAgent2 requests to the page artifact the

reference to the buttonGreet too, which will be observed in the following action

rule block (lines 16-20) in order to react when the button was clicked. Notice

that while in JavaScript we should provide a function, even if anonymous, to

be attached as callback to the button onclick event, compared to the previous

88

example in simpAL the changes to the code are minimal. Besides in JavaScript

the logic flow is broken because of the callback while in simpAL it is like the

when pressed action rule (line 17) would block the control flow, and none of

the actions inside the block would be activated until the button was pressed.

Actually the when condition does not have the effect of blocking the control

flow as for instance would do a wait statement on a Java thread, but simply

prevents that the action body of the action rule would be performed until the

press event is not occurred, according to the simpAL Agent architecture in

3.2.3. So a great benefit is that simpAL supports asynchronous programming

keeping the control flow intact and linear. Besides, as mentioned in the pre-

vious chapter, simpAL also solves the Inversion of Control issue thanks to the

Agent architecture which fully encapsulate its control logic.

1 agent-script GreetingAgent2

2 implements GreetingRole

3 in HelloWorldOrgModel

4 {

5 plan-for Greet using: page@main {

6 when loaded => {

7 buttonGreet: WebElemInterface

8 divOut: WebElemInterface

9

10 {

11 getElement(selector: "buttonGreet",

12 elemArtifact: buttonGreet)

13 getElement(selector: "divOutput",

14 elemArtifact: divOut)

15 };

16

17 using: buttonGreet {

18 when pressed using: divOut {

19 setContent(html: "Hello World!")

20 on divOut

21 }

22 }

23 }

24 }

89

25 }

Listing 4.8: simpAL-web Hello World 2

Another example related to asynchronous programming is given by the one

in Listing 4.9 which resume the ”Battle of the bands” application by providing

the simpAL implementation. Once the page was loaded and the reference to

the output div element was obtained the YouTube service is queried through

the wrapper artifact YouTubeServiceArtifact (Listing B.5) about the number

of visualizations of two song entries (provided as task input parameters in

the organization definition B.7). Since no semicolons are specified the two

operations queryViewCount() are requested to the YouTubeServiceArtifact si-

multaneously and can be carried out possibly concurrently by the artifact3.

Notice again that labeling the queryViewCount() operations (lines 15 and 17)

we can react when both the requests are completed, thanks to the simpAL’s

built-in function is-done that checks if an action rule block or a task is succes-

fully completed, in order to display the winner. Once again simpAL compared

for instance to the JavaScript solution based on Promises and JQuery.when()

in Listing 2.14 brings the benefit to natively provide functions to manage tasks

and action rule blocks as first class entities, besides the integrity of the control

flow seen before.

1 agent-script RefereeAgent

2 implements RefereeRole

3 in BattleOfBandsOrgModel

4 {

5 plan-for Play using: page@main {

6 when loaded => {

7 divOut: WebElemInterface

8 getElement(selector: "divResult",

9 elemArtifact: divOut);

10

11 using: youTube@main {

3Notice that in the actual implementation of the YouTubeServiceArtifact, as by default
in the artifact semantic, the requests are serialized

90

12 viewCount1: long

13 viewCount2: long

14

15 queryViewCount(search: this-task.contender1,

16 count: viewCount1) #req1

17 queryViewCount(search: this-task.contender2,

18 count: viewCount2) #req2

19

20 when is-done req1 && is-done req2 =>

21 using: divOut {

22 if (viewCount1 > viewCount2) {

23 setContent(html: "The winner is: "

24 + this-task.contender1

25 + " (" + viewCount1 + ")")

26 }

27 else {

28 setContent(html: "The winner is: "

29 + this-task.contender2

30 + " (" + viewCount2 + ")")

31 }

32 }

33 }

34 }

35 }

36 }

Listing 4.9: simpAL-web ”Battle of the bands”

4.4.2 Dealing with concurrency

In the next example we resume instead the “Stoppable counter” application

we have used to introduce concurrency in Web programming through HTML5

Web Workers and Dart Isolates. In order to understand if simpAL deals better

for this aspect too in Listing 4.10 we provide the script of the main Web agent.

Resuming what the application should do, the Web page provides two buttons

used by the user to start and stop a counter which repeatedly increments a

value and displays it on an output div. Clearly should be handled the fact

that clicks on start and stop buttons have an effect only if the counter was

91

in idle or running status respectively. Furthermore the main requirement is

responsiveness, this means that as soon the user will click on the start button

the counter will start increment, and vice versa as soon as the stop button will

be clicked the counter must stop too. The essential behaviour of the applica-

tion is specified among lines 20-30, through the action rule at line 21 the agent

reacts first when the buttonStart is pressed by activating the repeatedly block

which request the inc() operation to the counter artifact and then through

the setContent() operation it displays the value, corresponding to the name-

sake observable property, on the output div. The stop condition is given by

the completed-when clause at line 23 which means that while performing the

repeatedly block as soon as the buttonStop is pressed it terminates the whole

block in execution. Notice that this is consistent with the semantic given for

the application in the sense that when the counter is in the idle status the agent

can react only to the pressure of buttonStart (line 21) so state changes on the

buttonStop artifact will be ignored as vice versa when the counter is running

(repeatedly block) only the pressure of buttonStop is perceived (line 23) since

the action rule block corresponding to every-time pressed for the buttonStart

artifact is at a lower level on the intentions stack. Notice that the disambigua-

tions for the pressed observable property (line 23) and for the setContent()

operation (line 27) are necessary since three artifacts of the same type We-

bElemInterface are used inside the same block. For what concerns concurrency

as mentioned in the previous chapter simpAL brings several benefits, in partic-

ular considering this example compared to the JavaScript solutions (Listings

2.17, 2.18, 2.20) and Dart ones (Listing 2.25). The main aspect surely concerns

the ability of simpal to integrate autonomous and reactive behaviours as you

can see in Listing 4.10 in fact the Web agent is able to iteratively increase the

counter but being reactive to the pressure of buttonStop too, aspect impossi-

ble to achieve with Web actors seen in Chapter 2 except for tricks. Besides

while in Actor-based solutions we had to design the protocol through which

the main actor and the counter actor exchange messages, in simpAL the agent

script StoppableCounterAgent fully encapsulates the whole application logic.

92

1 agent-script StoppableCounterAgent

2 implements StoppableCounterRole

3 in StoppableCounterOrgModel

4 {

5 plan-for UpdateCounter using: page@main {

6 when loaded => {

7 buttonStart: WebElemInterface

8 buttonStop: WebElemInterface

9 divOut: WebElemInterface

10

11 {

12 getElement(selector: "buttonStart",

13 elemArtifact: buttonStart)

14 getElement(selector: "buttonStop",

15 elemArtifact: buttonStop)

16 getElement(selector: "divResult",

17 elemArtifact: divOut)

18 };

19

20 using: buttonStart {

21 every-time pressed =>

22 using: buttonStop, divOut, counter

23 completed-when: pressed in buttonStop

24 {

25 repeatedly {

26 inc ();

27 setContent(html: "" + value)

28 on divOut

29 }

30 }

31 }

32 }

33 }

34 }

Listing 4.10: simpAL-web ”Stoppable counter”

93

4.4.3 Dealing with complex applicazions

In the last example we tackle with simpAL-web the case study Web application

introduced in 2.5 which should be representative for all those applications in

the real world that is more complex than the examples seen so far and mix as-

pects related to concurrency and asynchronous programming besides involving

aspects related to in-the-large programming. For demonstration purposes the

application is structured according to a Master-Worker architecture where the

agent scripts in Listings 4.11 and 4.12 implement respectively the behaviour

for the master agent and a worker agent. Aim of the master agent is, once

the page was loaded, to query the Facebook service in orger to get the list

of friends and to assign a slice of it to each workers (two for instance in our

organization B.20) in such a way that they can examine then what friends like.

Since the master agent’s behaviour is fairly complex we exploit the modularity

mechanism provided by simpAL that allows to organize the whole behaviour

in several tasks which will be handled by as many plans. So once the page was

loaded through the do-task action the master agent schedule two new tasks

(lines 17-18) which will be performed concurrently. The former is responsi-

ble to load the friends from the Facebook account and to assign them to the

workers, by using the assign-task action which schedule a new task to be ex-

ecuted by a certain agent (lines 22-43). The latter instead is responsible to

display on the Web page the report containing what friend most like at the

same time it is built by workers by observing the htmlOutput property of the

ReportBuilderArtifact (lines 45-51).

1 agent-script MasterAgent

2 implements MasterRole

3 in FBTopLikesOrgModel

4 {

5 buttonStop: WebElemInterface

6 divOut: WebElemInterface

7

8 plan-for Boot using: page@main {

9 when loaded => {

94

10 {

11 getElement(selector: "buttonStop",

12 elemArtifact: buttonStop)

13 getElement(selector: "divResult",

14 elemArtifact: divOut)

15 };

16

17 do-task new-task LoadFriends ()

18 do-task new-task DisplayOutput ()

19 }

20 }

21

22 plan-for LoadFriends {

23 using: fb@main {

24 friendIds: java.util.List

25 length: int

26 halfLength: int

27

28 queryFriends(friendIds: friendIds);

29 length = friendIds.size ();

30 halfLength = length / 2;

31

32 {

33 assign-task

34 new-task LoadLikes(friendIds:

35 friendIds.subList (0, halfLength))

36 to: worker1@main

37 assign-task

38 new-task LoadLikes(friendIds:

39 friendIds.subList(halfLength, length))

40 to: worker2@main

41 }

42 }

43 }

44

45 plan-for DisplayOutput {

46 using: reportBuilder@main {

47 every-time changed htmlOutput => using: divOut {

48 setContent(html: htmlOutput)

49 }

50 }

51 }

95

52

53 task LoadFriends {}

54 task DisplayOutput {}

55 }

Listing 4.11: simpAL-web ”What friends most like?” MasterAgent script

On the other side, the worker agent will be activated when the master re-

quest to it a LoadLikes task so it implements the logic needed to query the

like data for each friend and to populate the report through the ReportBuilder-

Artifact. As you can notice the simpAL implementation of this last example

does not provide a mechanism to suspend and restart the like crawling, like

instead the JavaScript implementation did. However, thanks to simpAL abil-

ity to manage tasks as first class entities, this would be easy to implement

for instance by using the built-in suspend-task and resume-task actions. This

last example shows how in general it is possible in simpAL to modularize be-

haviours through tasks and plans to deal with complex and large-scale Web

applications. This is applicable to both programming of a single agent or agent

architectures.

1 agent-script WorkerAgent

2 implements WorkerRole

3 in FBTopLikesOrgModel

4 {

5 plan-for LoadLikes {

6 i: int = 0

7 while (i < this-task.friendIds.size ())

8 using: fb@main, reportBuilder@main

9 {

10 tid: String = (String) this-task.friendIds.get(i);

11 tlikes: java.util.List;

12

13 queryLikes(friendId: tid, likes: tlikes);

14 addLikes(newLikes: tlikes);

15 i++

16 }

17 }

96

18 }

Listing 4.12: simpAL-web ”What friends most like?” WorkerAgent script

4.5 About simpAL-web implementation

In this last section we will provide further details about the actual implementa-

tion of the simpAL-web platform, we have built to experience our trials. Core

component and essential for the platform itself is the Web browser, responsi-

ble for retrieving, rendering and showing HTML pages besides managing the

interaction between the user and the Web page. Such browser should then be

somehow interfaced to simpAL-web artifacts which will act on it. To this end

the Web browser should also be programmatically accessible, possibly in Java,

by the artifacts in order to inspect and manipulate the page DOM and catch

the user inputs. Since it’s unthinkable to design and develop a Web browser

from scratch we were looking for existing technologies and frameworks that

met our requirements. The decision was between extending an open-source

Web browser (such Mozilla Firefox or Google Cronium), using Java applets

that are supported by most browsers, or relying on the JavaFX platform which

provides an embedded browser. Finally, we settled for the JavaFX option since

it offers several advantages compared to other alternatives, that is it natively

provides API to full access and manipulate DOM elements and it is completely

based and programmable in Java. Furthermore being based on the WebKit4

engine it supports all the new HTML5 features. For the purpose to inter-

face the simpAL runtime and the JavaFX application which function as Web

browser the architecture described by the UML diagram in Figure 4.2 has been

realized. Notice on the left side the JFXBrowser class which wraps the JavaFX

application composed essentially of a WebEngine and a WebView components

which together form the browser. On the right side there are instead the sim-

pAL WebPageArtifact and WebElemArtifact artifacts used by the Web agents

as part of the simpAL Web application. The middleware which interconnects

4http://www.webkit.org/

97

http://www.webkit.org/

Figure 4.2: UML diagram of the simpAL-web architecture

these two sides should therefore provides the following functionalities: enable

the artifacts to access and manipulate the DOM elements of the Web page

displayed in the browser, for instance to set the html content of an element,

or to retrieve the element that correspond to a given id; and notify the arti-

facts about the events that occur on the browser side. For this purpose the

Browser and Element classes wrap the browser functionalities which are used

by artifacts respectively to act on the Web page and elements. Conversely the

BrowserAdapter and ElementAdapter are instantiated by the artifacts and are

responsible to notify them events respectively from the Web page and ele-

ments updating their observable properties by calling “internal” pre-defined

operations on the artifacts. BrowserAdapter and ElementAdapter classes im-

plements respectively the IBrowserListener and IElementListener interfaces in

order to be notified by the JFXBrowser component and extend the OSAdapter

class of the simpAL runtime which provide mechanisms to call artifacts “inter-

98

nal” operations. For further details about the platform implementation you

can take a look at the actual simpAL-web codes for WebPageArtifact and

WebElemArtifact in Listings B.1 and B.2 respectively.

99

Chapter 5

Conclusions

Main objective of this thesis was to tackle client-side Web application pro-

gramming especially for what concerns concurrency and asynchronous pro-

gramming, starting from existing reference and state-of-art technologies and

finally by promoting a new approach based on the Agent-oriented program-

ming paradigm and the simpAL language. In conclusion we would take some

considerations about our work by summarizing strengths and weaknesses of

Web programming in simpAL compared to reference technologies. In particu-

lar the main problems we have identified in reference technologies typically re-

sult from lack in the abstraction level of which instead simpAL does not suffer.

From our analysis and experiments made through the simpAL-web platform

we found simpAL and Agent-oriented Web programming convenient, com-

pared to traditional technologies, under several aspects which can be grouped

into the three following main categories:

• Asynchronous programming

Since the JavaScript language as well as Dart and all other nowaday lan-

guages are not natively designed to support asynchronous programming,

in the meaning that they not provide primitives to handle events, this

feature is typically supported through callbacks. The callback mecha-

nism is the actual main issue of current technologies since it implicitly

involves fragmentation of the control logic resulting in Asynchronous

spaghetti. As in most cases Promises/Futures make it possible to mit-

100

igate the problem, as demonstrated in section 2.6.1 in other cases the

problem still remains. Conversely the simpAL conceptual model natively

supports asynchronous programming in a such way that agents can re-

act to the occurrence of events, which correspond to state changes in

artifacts observable properties or messages between agents, through the

action rule’s Event-Condition-Action mechanism which is the fundamen-

tal building block for the agent’s behaviour. So we can say that in a sense

action rules in simpAL enforce structure in asynchronous programming.

As mentioned before another issue due to the callback mechanism is the

so-called Inversion of Control. In this case simpAL solves the problem

since, according to the agent architecture, the whole control logic of an

agent is carried on by the same logical control flow that is the agent’s

control loop.

• Concurrency

Also for what concerns concurrency simpAL, thanks to its higher layer

of abstractions, allows to address problems that plague current technolo-

gies. In simpAL agents are executed concurrently, as well as operations

on distinct artifacts so primarly it allows to abstract from low-level mech-

anisms such as those in multi-threaded programming. Besides simpAL

provides concurrency at a logical level, in the sense that several agents

may be running on a single phisical thread. This leads to a good de-

gree of scalability compared for instance to HTML5 Web Workers which

are mapped one-by-one to OS threads. The greatest benefit of simpAL

agents in this context is surely the ability to mix autonomous and re-

active behaviours since both HTML5 Web Workers and Dart Isolates,

being based on the Actor-model, are pure reactive entities so they do

something only in reaction to the reception of a message and they can

not block or do long-term computations. Moreover differently to current

technologies where only the “main” Web actor (Web Worker or Isolate)

can interact with the DOM, thanks to the atomic execution of operations

on artifacts, all the agents of a simpAL Web application can act on the

artifacts which wraps the Web page and its elements.

101

• Software engineering and in-the-large programming

Separation between interfaces and implementations (roles and agent scripts,

usage-interfaces and artifact templates, org-model and org) besides sepa-

ration between application active and passive parts, agents and artifacts

respectively, and modularity through tasks and plans are all elements of

simpAL inspired by software engineering principles and preparatory for

in-the-large programming. Another important aspect for this purpose

is the ability to do error checking at compile time, thanks to simpAL

strong type system. Again simpAL Web applications would be more

maintainable in the sense that adding a new behaviour to an applica-

tion, possibly concurrent to other existing behaviours, thanks to tasks,

action rule blocks and in general simpAL higher level abstractions would

be easier than in the corresponding JavaScript application where for in-

stance the implementation of the new feature may require modifying

several parts of the application code.

However, also our approach has some weaknesses, for example the simpAL

strong type system may be too invasive while developing small-scale applica-

tions or prototypes, where for instance the JavaScript dynamic typing might

be preferable. To this end the best choice would be to adopt an optional static

typing just like in Dart and TypeScript languages.

5.1 Future works

Ultimate goal of this work was to provide a foundation to explore how issues

related to Web programming can be tackled and partially adressed through

the Agent-oriented programming paradigm and the simpAL language in par-

ticular. Notice first that all considerations done so far including the benefits

identified are bound by the assumptions made at the beginning of Chapter

4, so future explorations may be directed to extend the analysis of this ap-

proach to Web programming in general. simpAL too is an early technology

and several issues are still work in progress such as for instance mechanisms

like sub-typing and inheritance for agents and artifacts in order to better sup-

102

porting extensibility and reuse besides the linkability between artifacts. Both

these aspects might be useful to better engineering the simpAL-web platform

for example to model hierarchies of elements artifacts. For example we would

like text input and textarea element artifacts would provide the text observable

property in addition to all those inherited from the default element artifact.

Another important aspect totally neglected because beyond the scope of

this thesis concerns performance. Future works could focus on measuring

simpAL-web performances compared to mainstream reference technologies.

In addiction, to the current state simpAL-web still remains a prototype

platform, so future works may be directed to improve robustness and integra-

tion. To these ends it might be interesting and useful to deploy simpAL virtual

machines as extensions of most used Web browser, such as Google Chrome and

Mozilla Firefox.

103

104

List of Tables

2.1 Comparison between jQuery Promises and Dart Futures APIs 34

2.2 Browsers compatibilities to HTML5 Web Workers 37

105

List of Figures

2.1 JavaScript frameworks ecosystem 8

2.2 Languages and tools that compile to JavaScript 11

2.3 Event loop pseudocode . 21

2.4 jQuery Promises API . 27

2.5 Case study Web-app architecture 50

2.6 Case study Web-app output 51

2.7 UML Activity diagram of a complex workflow 53

3.1 simpAL overview . 60

3.2 simpAL control loop pseudocode 67

3.3 simpAL agent architecture . 68

4.1 Structure of a simpAL Web application 78

4.2 UML diagram of the simpAL-web architecture 98

106

List of Listings

2.1 jQuery “Hello World!” . 9

2.2 Node.js tasting . 10

2.3 Tasting StratifiedJS strata . 12

2.4 Google Dart sample class . 15

2.5 Microsoft TypeScript sample class 17

2.6 Understanding the event loop, first example 21

2.7 Understanding the event loop, second example 22

2.8 Exceptions in asynchronous code 23

2.9 “I love async, but I can’t code like this” 24

2.10 Promising AJAX . 27

2.11 JavaScript countdown . 28

2.12 Asynchronous workflow with pipes 30

2.13 Asynchronous workflow without pipes 30

2.14 JavaScript “Battle of the bands” 32

2.15 JavaScript “Battle of the bands” error 33

2.16 Dedicated worker counter – main.js 38

2.17 Dedicated worker counter – workerMaster.js 39

2.18 Dedicated worker counter – worker.js 39

2.19 Shared worker counter – main.js 40

2.20 Shared worker counter – worker.js 41

2.21 Unresponsive counter – main.js 43

2.22 Unresponsive counter – worker.js 43

2.23 Deferred worker – main.js . 45

2.24 Deferred worker – adder.js . 46

2.25 Dart counter . 47

107

2.26 Complex workflow JavaScript implementation 54

3.1 Definition of the InteractiveCounter role in simpAL 61

3.2 Definition of the InteractiveCounter agent script in simpAL . 65

3.3 Definition of the Counter artifact interface in simpAL 69

3.4 Definition of the Counter artifact template in simpAL 70

3.5 Definition of the Example organization model in simpAL . . . 71

3.6 Definition of the Example concrete organization in simpAL . . 72

4.1 Specification of the Web page artifact interface 80

4.2 Specification of the Web element artifact interface 82

4.3 Specification of the Clock artifact interface and sample usage . 83

4.4 simpAL-Web YouTube service artifact 85

4.5 simpAL-web Facebook artifact interface 86

4.6 simpAL-web Facebook last feed updater agent 86

4.7 simpAL-web Hello World . 88

4.8 simpAL-web Hello World 2 . 89

4.9 simpAL-web ”Battle of the bands” 90

4.10 simpAL-web ”Stoppable counter” 92

4.11 simpAL-web ”What friends most like?” MasterAgent script . . 94

4.12 simpAL-web ”What friends most like?” WorkerAgent script . 96

108

Bibliography

[1] G. Agha. Actors: a model of concurrent computation in distributed sys-

tems. MIT Press, Cambridge, MA, USA, 1986.

[2] G. Agha and C. Hewitt. Concurrent programming using actors: Exploit-

ing large-scale parallelism. Technical report, Cambridge, MA, USA, 1985.

[3] E. Bidelman. The basics of web workers — HTML5 Rocks. http://www.

html5rocks.com/en/tutorials/workers/basics/, Jul. 2010.

[4] R. H. Bordini, M. Wooldridge, and J. F. Hübner. Programming Multi-

Agent Systems in AgentSpeak using Jason (Wiley Series in Agent Tech-

nology). John Wiley & Sons, 2007.

[5] P. Bright. Microsoft typescript: the javascript we need, or a solu-

tion looking for a problem? http://arstechnica.com/information-

technology/2012/10/microsoft-typescript-the-javascript-we-need-or-a-

solution-looking-for-a-problem/, Oct. 2012.

[6] T. Burnham. Async JavaScript. Leanpub, 2012.

[7] J. Cardy. Combining jquery deferred with the html5 web workers

api — codeproject. http://www.codeproject.com/Articles/168604/

Combining-jQuery-Deferred-with-the-HTML5-Web-Worke, Mar. 2011.

[8] Channel 9. Anders Hejlsberg and Lars Bak: TypeScript, JavaScript,

and Dart. http://channel9.msdn.com/Shows/Going+Deep/

Anders-Hejlsberg-and-Lars-Bak-TypeScript-JavaScript-and-Dart,

Oct. 2012.

109

http://www.html5rocks.com/en/tutorials/workers/basics/
http://www.html5rocks.com/en/tutorials/workers/basics/
http://www.codeproject.com/Articles/168604/Combining-jQuery-Deferred-with-the-HTML5-Web-Worke
http://www.codeproject.com/Articles/168604/Combining-jQuery-Deferred-with-the-HTML5-Web-Worke
http://channel9.msdn.com/Shows/Going+Deep/Anders-Hejlsberg-and-Lars-Bak-TypeScript-JavaScript-and-Dart
http://channel9.msdn.com/Shows/Going+Deep/Anders-Hejlsberg-and-Lars-Bak-TypeScript-JavaScript-and-Dart

[9] ECMA TC39 committee. Draft specification for es.next (ecma-

262 edition 6). http://wiki.ecmascript.org/doku.php?id=harmony:

specification_drafts, Sept. 2012.

[10] Google. ”Future of Javascript” doc from our internal ”JavaScript Sum-

mit”. https://gist.github.com/1208618, Nov. 2010.

[11] Google. Dart — frequently asked questions (faq). http:

//www.dartlang.org/support/faq.html?utm_source=site&utm_

medium=footer&utm_campaign=homepage#why-dart, Feb. 2012.

[12] P. Haller and M. Odersky. Event-based programming without inversion

of control. In Proceedings of the 7th joint conference on Modular Pro-

gramming Languages, JMLC’06, pages 4–22, Berlin, Heidelberg, 2006.

Springer-Verlag.

[13] I. Hickson. Web workers. Technical report, W3C, May 2012. http:

//www.w3.org/TR/workers/.

[14] B. Liskov and L. Shrira. Promises: linguistic support for efficient

asynchronous procedure calls in distributed systems. SIGPLAN Not.,

23(7):260–267, June 1988.

[15] The Dart Team — Google. The dart programming language

specification. http://www.dartlang.org/docs/spec/latest/

dart-language-specification.pdf, Oct. 2012.

[16] Microsoft. Typescript language specification. http://

www.typescriptlang.org/Content/TypeScript%20Language%

20Specification.pdf, Oct. 2012.

[17] T. Mikkonen and A. Taivalsaari. Web applications - spaghetti code for the

21st century. In Proceedings of the 2008 Sixth International Conference

on Software Engineering Research, Management and Applications, SERA

’08, pages 319–328, Washington, DC, USA, 2008. IEEE Computer Society.

110

http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
https://gist.github.com/1208618
http://www.dartlang.org/support/faq.html?utm_source=site&utm_medium=footer&utm_campaign=homepage#why-dart
http://www.dartlang.org/support/faq.html?utm_source=site&utm_medium=footer&utm_campaign=homepage#why-dart
http://www.dartlang.org/support/faq.html?utm_source=site&utm_medium=footer&utm_campaign=homepage#why-dart
http://www.w3.org/TR/workers/
http://www.w3.org/TR/workers/
http://www.dartlang.org/docs/spec/latest/dart-language-specification.pdf
http://www.dartlang.org/docs/spec/latest/dart-language-specification.pdf
http://www.typescriptlang.org/Content/TypeScript%20Language%20Specification.pdf
http://www.typescriptlang.org/Content/TypeScript%20Language%20Specification.pdf
http://www.typescriptlang.org/Content/TypeScript%20Language%20Specification.pdf

[18] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the a&a meta-model

for multi-agent systems. Autonomous Agents and Multi-Agent Systems,

17(3):432–456, Dec. 2008.

[19] A. Ricci and A. Santi. Designing a general-purpose programming language

based on agent-oriented abstractions: the simpal project. In Proceed-

ings of the compilation of the co-located workshops on DSM’11, TMC’11,

AGERE!’11, AOOPES’11, NEAT’11, & VMIL’11, SPLASH ’11

Workshops, pages 159–170, New York, NY, USA, 2011. ACM.

[20] A. Ricci and A. Santi. Agent-oriented programming in simpal. Technical

report, University of Bologna, 2012.

[21] A. Ricci and A. Santi. Programming abstractions for integrating au-

tonomous and reactive behaviors: An agent-oriented approach. Technical

report, University of Bologna, Oct. 2012.

[22] A. Ricci and A. Santi. Typing multi-agent programs in simpal. Technical

report, University of Bologna, Giu. 2012.

[23] S. Somasegar. Typescript: Javascript development at application

scale. http://blogs.msdn.com/b/somasegar/archive/2012/10/01/

typescript-javascript-development-at-application-scale.aspx,

Oct. 2012.

[24] K. Walrath. Dart Up and Running. Oreilly & Associates Inc, 2012.

[25] Wikipedia. Document object model — wikipedia, the free ency-

clopedia. http://en.wikipedia.org/w/index.php?title=Document_

Object_Model&oldid=518651562, 2012.

[26] Wikipedia. Futures and promises — wikipedia, the free encyclo-

pedia. http://en.wikipedia.org/w/index.php?title=Futures_and_

promises&oldid=519425800, 2012.

[27] Wikipedia. Javascript — wikipedia, the free encyclopedia. http://en.

wikipedia.org/w/index.php?title=JavaScript&oldid=519072745,

2012.

111

http://blogs.msdn.com/b/somasegar/archive/2012/10/01/typescript-javascript-development-at-application-scale.aspx
http://blogs.msdn.com/b/somasegar/archive/2012/10/01/typescript-javascript-development-at-application-scale.aspx
http://en.wikipedia.org/w/index.php?title=Document_Object_Model&oldid=518651562
http://en.wikipedia.org/w/index.php?title=Document_Object_Model&oldid=518651562
http://en.wikipedia.org/w/index.php?title=Futures_and_promises&oldid=519425800
http://en.wikipedia.org/w/index.php?title=Futures_and_promises&oldid=519425800
http://en.wikipedia.org/w/index.php?title=JavaScript&oldid=519072745
http://en.wikipedia.org/w/index.php?title=JavaScript&oldid=519072745

[28] Wikipedia. Jquery — wikipedia, the free encyclopedia. http://en.

wikipedia.org/w/index.php?title=JQuery&oldid=517526755, 2012.

[29] Wikipedia. Single-page application — wikipedia, the free encyclopedia,

2012.

112

http://en.wikipedia.org/w/index.php?title=JQuery&oldid=517526755
http://en.wikipedia.org/w/index.php?title=JQuery&oldid=517526755

113

Appendix A

Chapter 2 sources

A.1 HTML documents

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>Stoppable counter </title >

5 <meta charset="utf -8" />

6 <script type="text/javascript">

7 function log(msg) {

8 var fragment = document.createDocumentFragment ();

9 fragment.appendChild(document.createTextNode(msg));

10 fragment.appendChild(document.createElement(’br ’));

11 document.querySelector("#log"). appendChild(fragment);

12 }

13 </script >

14 <script type="text/javascript" src="main.js"></script >

15 </head>

16 <body>

17 <h1>Stoppable counter </h1>

18 <h3>A demo app for concurrency </h3>

19

20

21 <button type="button" id="buttonStart">Start</button >

22 <button type="button" id="buttonStop">Stop</button >

23

114

24

25 <div id="res" style="background -color: Aqua">?

26 </div>

27

28 <div id="log">Log:

29 </div>

30 </body>

31 </html>

Listing A.1: HTML of ”Stoppable counter” app

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>Facebook top likes </title>

5 <meta charset="utf -8" />

6

7 <script type="text/javascript" src="jquery.js"></script >

8 <script type="text/javascript" src="common.js"></script >

9 <script type="text/javascript" src="main.js"></script >

10 </head>

11 <body>

12 <h1>Facebook top likes</h1>

13 <h3>Find what your friends most like ...</h3>

14

15 <div id="cmd" style="background -color :# f2f2f2;

16 width :70%; padding :2px;">

17 <button id="buttonPause" type="button">

18 Pause

19 </button >

20 <p id="status" style="display:inline;">

21 0/? friends crawled!

22 </p>

23 </div>

24

25

26 <div id="res" style="background -color :# d8dfea;

27 width :70%;">

28 </div>

115

29

30 <div id="log">Log:
</div>

31 </body>

32 </html>

Listing A.2: HTML of ”What friends most like?” app

A.2 JavaScript sources of “What friends most like?”

app

1 var controllerWorker;

2

3 function spawnController () {

4 controllerWorker = new Worker(’controllerWorker.js’);

5 controllerWorker.onmessage = function (msg) {

6 if (msg.data.ret)

7 $("#res").html(msg.data.ret);

8 else if (msg.data.status)

9 $("#status").html(msg.data.status);

10 else if (msg.data.log)

11 log(msg.data.log);

12 };

13 controllerWorker.onerror = function (ex) {

14 log(’ERROR: ’ + ex.message + ’ @ ’

15 + ex.filename + ’:’ + ex.lineno);

16 };

17 controllerWorker.postMessage ({’op’:’start ’});

18 }

19

20 function pause() {

21 $(’#buttonPause ’).text(’Resume ’);

22 controllerWorker.postMessage ({’op’:’pause ’});

23 }

24

25 function resume () {

26 $(’#buttonPause ’).text(’Pause’);

116

27 controllerWorker.postMessage ({’op’:’resume ’});

28 }

29

30 $(document).ready(function () {

31 $("#buttonPause"). click(function () {

32 if ($("#buttonPause").text (). indexOf(’Pause’) >= 0)

33 pause ();

34 else

35 resume ();

36 });

37

38 spawnController ();

39 });

Listing A.3: main.js

1 function log(msg) {

2 var fragment = document.createDocumentFragment ();

3 fragment.appendChild(document.createTextNode(msg));

4 fragment.appendChild(document.createElement(’br’));

5 document.querySelector("#log"). appendChild(fragment);

6 }

Listing A.4: common.js

1 var WORKERS_POOL_SIZE = 4;

2 var subworkers;

3

4 var nFriendsDone = 0, nFriendsTot;

5

6 onmessage = function (msg) {

7 if (msg.data.op == ’start’)

8 onSetup ();

9 else if (msg.data.op == ’resume ’)

10 onResume ();

11 else if (msg.data.op == ’pause ’)

117

12 onPause ();

13 };

14

15 function onSetup () {

16 importScripts(’worker_common.js’);

17 var securityToken = requestFBAccessToken ();

18

19 ajaxGet(’https :// graph.facebook.com/me/friends ’

20 + ’?access_token=’ securityToken ,

21 true ,

22 function (resp) {

23 var friendsData = [];

24 for (var i = 0; i < resp.data.length; i++) {

25 var fid = resp.data[i].id;

26 friendsData.push(’https :// graph.facebook.com/’

27 + fid

28 + ’/likes?access_token=’

29 + securityToken);

30 }

31 spawnSubworkers(friendsData);

32

33 nFriendsTot = friendsData.length;

34 postMessage ({’status ’:produceHtmlStatus ()});

35 }

36);

37 }

38

39 function onResume () {

40 for (var i=0; i<WORKERS_POOL_SIZE; i++)

41 subworkers[i]. postMessage ({’enabled ’:’on’});

42 postMessage ({’log’:’Controller resumed!’});

43 }

44

45 function onPause () {

46 for (var k in subworkers)

47 subworkers[k]. postMessage ({’enabled ’:’off’});

48 postMessage ({’log’:’Controller paused!’});

49 }

50

51 function spawnSubworkers(urls) {

52 var part = computeTaskPartitioning(urls.length);

53 subworkers = [];

118

54 for (var i=0; i<WORKERS_POOL_SIZE; i++) {

55 var subworker = new Worker(’likesLoaderWorker.js’);

56 subworkers[i] = subworker;

57

58 subworker.onmessage = function (msg) {

59 if (msg.data.log)

60 postMessage(msg.data);

61 else {

62 mergeResult(msg.data.data);

63 subworkers[msg.data.id]. postMessage(’’);

64 }

65 };

66 subworker.onerror = function (ex) {

67 throw ’ERROR: ’ + ex.message + ’ @ ’

68 + ex.filename + ’:’ + ex.lineno;

69 };

70 var data = urls.slice(part[i].from , part[i].to);

71 subworker.postMessage ({’id’:i, ’data’:data });

72 subworker.postMessage ({’enabled ’:’on’});

73 }

74 }

75

76 function computeTaskPartitioning(len) {

77 var partition = [];

78 var ntxw = Math.floor(len / WORKERS_POOL_SIZE);

79 var rest = len % WORKERS_POOL_SIZE;

80

81 var k = 0;

82 for (var i=0; i<WORKERS_POOL_SIZE; i++) {

83 var qty = ntxw + (rest == 0 ? 0 : 1);

84 if (rest > 0)

85 rest --;

86

87 partition.push({’from’:k, ’to’:k+qty });

88 k = k+qty;

89 }

90 return partition;

91 }

92

93 function requestFBAccessToken () {

94 // Facebook Graph API Explorer temporary token

95 return ’AAACEdEose0cBAEGzvRO9W15JL7K04I7vfYZCZCZAFZCwy ’ +

119

96 ’ZAXQ7dDTPtk5tJAN6GpIkwOjcM4O2vUPTG0T0Iy8uhs4ln ’ +

97 ’haGPusJAWZAXNiH4XXZCj34YJn82 ’;

98 }

99

100 var likesMap = new Array ();

101 var likesIdToName = new Array ();

102

103 function mergeResult(data) {

104 for (var lid in data) {

105 if (likesMap[lid] != null)

106 likesMap[lid]++;

107 else {

108 likesMap[lid] = 1;

109 likesIdToName[lid] = data[lid];

110 }

111 }

112

113 nFriendsDone ++;

114 postMessage ({’ret’:produceHtmlSummary ()});

115 postMessage ({’status ’:produceHtmlStatus ()});

116 }

117

118 function produceHtmlSummary () {

119 var summaryEntriesLimit = 10;

120 var ids = new Array ();

121

122 var max = 0;

123 for (var lid in likesMap)

124 if (likesMap[lid] > max)

125 max = likesMap[lid];

126

127 outer: for (var i = max; i > 0; i--) {

128 for (var lid in likesMap) {

129 if (likesMap[lid] == i) {

130 ids.push(lid);

131 if (ids.length >= summaryEntriesLimit)

132 break outer;

133 }

134 }

135 }

136

137 var summary = ’<table >’;

120

138 for (var i = 0; i < ids.length; i++)

139 summary = summary + ’<tr ><td>’ + (i + 1) + ’</td >’ +

140 ’<td>’ + ’<img src="https :// graph.facebook.com/’ +

141 ids[i] + ’/picture "/></td>’ +

142 ’<td><a href="https ://www.facebook.com/’ + ids[i] +

143 ’">’ + likesIdToName[ids[i]] + ’
’ +

144 likesMap[ids[i]] + ’ x <img

145 src="http ://img.shopping.com/jfe/bb/promos/’ +

146 ’2011 -11 -10/FB -like40px.png" width ="20px">’ +

147 ’
</td ></tr>’;

148 summary = summary + ’</table >’

149 return summary;

150 }

151

152 function produceHtmlStatus () {

153 var status = ’’ + nFriendsDone + ’/’

154 + nFriendsTot + + ’ friends crawled!’

155 }

Listing A.5: controllerWorker.js

1 var urlQueue;

2 var enabled = false;

3

4 onmessage = function (msg) {

5 if (msg.data.data) {

6 importScripts(’worker_common.js’);

7 id = msg.data.id;

8 urlQueue = msg.data.data;

9 }

10 else {

11 if (msg.data.enabled)

12 enabled = (msg.data.enabled == ’on’);

13 if (enabled)

14 doNextTask ();

15 }

16 }

17

18 function doNextTask () {

121

19 var url = urlQueue.pop ();

20 ajaxGet(url ,

21 false ,

22 function (resp) {

23 var likesData = [];

24 for (var i = 0; i < resp.data.length; i++)

25 likesData[resp.data[i].id]

26 = resp.data[i].name;

27 postMessage ({’id’:id, ’data’:likesData });

28 }

29);

30 }

Listing A.6: likesLoaderWorker.js

1 function ajaxGet(url , async , okFunct , failFunct) {

2 var req = new XMLHttpRequest ();

3 req.addEventListener(’load’, function () {

4 if (req.status == 200)

5 okFunct(JSON.parse(req.responseText));

6 else

7 throw ’XMLHttpRequest for url ’ + url +

8 ’ failed: ’ + req.status;

9 }, false);

10 req.open(’GET’, url , async);

11 req.send ();

12 }

Listing A.7: worker common.js

122

123

Appendix B

Chapter 4 sources

B.1 WebPageArtifact implementation

1 artifact WebPageArtifact

2 implements WebPageInterface

3 {

4

5 browser: simpal.web.Browser;

6

7 init (url: String, title: String) {

8 loaded = false;

9 closed = false;

10

11 browser = new simpal.web.Browser(title);

12 browserAdapter: simpal.web.adapters.BrowserAdapter =

13 new simpal.web.adapters.BrowserAdapter(me, korg);

14 browserAdapter.bind(browser);

15 korg.registerAdapter(browserAdapter);

16

17 browser.navigate(url);

18 }

19

20

21 operation getElement(selector: String,

22 elemArtifact: WebElemInterface #out) {

23 elem: simpal.web.Element =

124

24 browser.getElementById(selector);

25 elemArtifactId : simpal.runtime.ArtifactId =

26 simpal.web.adapters.ElementAdapter

27 .createArtifactForElement(elem, korg);

28 elemArtifact = cast-obj-to-simpal-type

29 WebElemInterface elemArtifactId;

30 }

31

32

33 // Adapters operations

34

35 operation adapterLoad () {

36 loaded = true;

37 }

38

39 operation adapterExit () {

40 closed = true;

41 }

42 }

Listing B.1: simpAL-web WebPageArtifact implementation

B.2 WebElemArtifact implementation

1 artifact WebElemArtifact implements WebElemInterface {

2

3 elem_id: String;

4 elem: simpal.web.Element;

5

6 init (id: String, element: simpal.web.Element) {

7 elem_id = id;

8 elem = element;

9

10 clicks = 0;

11 doubleClicks = 0;

12 pressed = false;

13 focused = false;

125

14 pointerCoord = new

15 simpal.web.PointerCoordinates (0, 0);

16

17 keyPressed = false;

18 key = 0;

19

20 elemAdapter: simpal.web.adapters.ElementAdapter =

21 new simpal.web.adapters.ElementAdapter(me, korg);

22 elemAdapter.bind(elem);

23 korg.registerAdapter(elemAdapter);

24 }

25

26

27 operation getContent(html: String #out) {

28 html = elem.getContent ();

29 }

30

31 operation setContent(html: String) {

32 elem.setContent(html);

33 }

34

35 operation getAttribute(attr: String, value: String #out) {

36 value = elem.getAttribute(attr);

37 }

38

39 operation setAttribute(attr: String, value: String) {

40 elem.setAttribute(attr, value);

41 }

42

43

44 // Adapters operations

45

46 operation adapterMouseClick () {

47 clicks ++;

48 }

49

50 operation adapterMouseDblClick () {

51 doubleClicks ++;

52 }

53

54 operation adapterMouseDown () {

55 pressed = true;

126

56 }

57

58 operation adapterMouseUp () {

59 pressed = false;

60 }

61

62 operation adapterMouseEnter () {

63 focused = true;

64 }

65

66 operation adapterMouseLeave () {

67 focused = false;

68 }

69

70 operation adapterMouseMove(x: int, y: int) {

71 pointerCoord = new simpal.web.PointerCoordinates(x, y);

72 }

73

74

75 operation adapterKeyDown () {

76 keyPressed = false;

77 }

78

79 operation adapterKeyUp () {

80 keyPressed = true;

81 }

82

83 operation adapterKeyPress(k: int) {

84 key = k;

85 }

86 }

Listing B.2: simpAL-web WebElemArtifact implementation

B.3 simpAL sources of “Battle of the bands” app

1 role RefereeRole {

127

2 task Play{

3 input-params {

4 contender1: String;

5 contender2: String;

6 }

7 }

8 }

Listing B.3: RefereeRole.simpal

1 usage-interface YouTubeServiceInterface {

2 operation queryViewCount(search: String,

3 count: long #out);

4 }

Listing B.4: YouTubeServiceInterface.simpal

1 artifact YouTubeServiceArtifact

2 implements YouTubeServiceInterface

3 {

4 init () {

5 }

6

7 operation queryViewCount(search: String,

8 count: long #out) {

9 encodedSearch : String =

10 java.net.URLEncoder.encode(search, "UTF-8");

11

12 result : simpal.web.json.JSONObject =

13 simpal.web.http.HTTPClient.getJSON(

14 "http: // gdata.youtube.com/feeds/api/videos?q="

15 + encodedSearch

16 + "&orderby=viewCount&max-results=1"

17 + "&v=2&alt=jsonc");

18

19 count = result.getJSONObject("data")

128

20 .getJSONArray("items")

21 .getJSONObject (0)

22 .getLong("viewCount");

23 }

24 }

Listing B.5: YouTubeServiceArtifact.simpal

1 org-model BattleOfBandsOrgModel {

2 workspace main {

3 page: WebPageInterface

4 youTube: YouTubeServiceInterface

5

6 refereeAgent: RefereeRole

7 }

8 }

Listing B.6: BattleOfBandsOrgModel.simpal

1 org BattleOfBandsOrg

2 implements BattleOfBandsOrgModel

3 {

4 workspace main {

5 page = WebPageArtifact(url: "testpage.htm",

6 title: "Battle Of The Bands")

7 youTube = YouTubeServiceArtifact ()

8

9 refereeAgent = RefereeAgent ()

10 init-task: Play(contender1:

11 "Led Zeppelin Stairway to heaven",

12 contender2:

13 "Pink Floyd The wall")

14 }

15 }

Listing B.7: BattleOfBandsOrg.simpal

129

B.4 simpAL sources of “Stoppable counter” app

1 role StoppableCounterRole {

2 task UpdateCounter {}

3 }

Listing B.8: StoppableCounterRole.simpal

1 usage-interface CounterInterface {

2 obs-prop value: long;

3

4 operation inc();

5 }

Listing B.9: CounterInterface.simpal

1 artifact CounterArtifact

2 implements CounterInterface

3 {

4 init() {

5 value = 0;

6 }

7

8 operation inc() {

9 value = value + 1;

10 }

11 }

Listing B.10: CounterArtifact.simpal

1 org-model StoppableCounterOrgModel {

130

2 workspace main {

3 counter: CounterInterface

4 page: WebPageInterface

5

6 counterAgent: StoppableCounterRole

7 }

8 }

Listing B.11: StoppableCounterOrgModel.simpal

1 org StoppableCounterOrg

2 implements StoppableCounterOrgModel

3 {

4 workspace main {

5 counter = CounterArtifact ()

6 page = WebPageArtifact(url: "testpage.htm",

7 title: "Stoppable Counter")

8

9 counterAgent = StoppableCounterAgent ()

10 init-task: UpdateCounter ()

11 }

12

13 }

Listing B.12: StoppableCounterOrg.simpal

B.5 simpAL sources of “What friends most like?”

app

1 role MasterRole {

2 task Boot {

3 }

4 }

131

Listing B.13: MasterRole.simpal

1 role WorkerRole {

2 task LoadLikes {

3 input-params {

4 friendIds: java.util.List;

5 }

6 }

7 }

Listing B.14: WorkerRole.simpal

1 usage-interface FacebookInterface {

2 operation queryFriends(friendIds: java.util.List #out);

3 operation queryLikes(friendId: String,

4 likes: java.util.List #out);

5 }

Listing B.15: FacebookInterface.simpal

1 artifact FacebookArtifact

2 implements FacebookInterface

3 {

4 accessToken: String = "AAACEdEose0cBAEdvFeZBQ4GCs5YTvG"

5 + "vwyyqL9gvE9KwerOwRWkCQqjpfqmvhb"

6 + "CFZBMd4rKaBKMrtpC8y91dzOHkisMmC"

7 + "z5hrUVZCbQyW06YNMfTwnOk";

8

9 init {

10 }

11

12 operation queryFriends(friendIds: java.util.List #out) {

132

13 result : simpal.web.json.JSONObject =

14 simpal.web.http.HTTPClient.getJSON(

15 "https: //graph.facebook.com/me/friends"

16 + "?access_token=" + accessToken);

17

18 friendIds = new java.util.ArrayList ();

19 i: int = 0;

20

21 while (i < result.getJSONArray("data"). length ()) {

22 friendIds.add("" + result.getJSONArray("data")

23 .getJSONObject(i). getLong("id"));

24 i++;

25 }

26 }

27

28 operation queryLikes(friendId: String,

29 likes: java.util.List #out) {

30 result : simpal.web.json.JSONObject =

31 simpal.web.http.HTTPClient.getJSON(

32 "https: //graph.facebook.com/" + friendId +

33 "/likes?access_token=" + accessToken);

34

35 likes = new java.util.ArrayList ();

36 i: int = 0;

37

38 while (i < result.getJSONArray("data"). length ()) {

39 current : simpal.web.json.JSONObject =

40 result.getJSONArray("data"). getJSONObject(i);

41 likes.add(new fbtoplikes.LikeEntry(

42 current.getString("id"),

43 current.getString("name"),

44 "https: //graph.facebook.com/" +

45 current.getString("id") + "/picture"));

46 i++;

47 }

48 }

49 }

Listing B.16: FacebookInterface.simpal

133

1 usage-interface ReportBuilderInterface {

2 obs-prop htmlOutput: String;

3

4 operation addLikes(newLikes: java.util.List);

5 }

Listing B.17: ReportBuilderInterface.simpal

1 artifact ReportBuilderArtifact

2 implements ReportBuilderInterface

3 {

4 likeCache: fbtoplikes.LikeCache;

5

6 init {

7 likeCache = new fbtoplikes.LikeCache ();

8 }

9

10 operation addLikes(newLikes: java.util.List) {

11 likeCache.put(newLikes);

12 htmlOutput = likeCache.getHtmlOutput ();

13 }

14 }

Listing B.18: ReportBuilderArtifact.simpal

1 org-model FBTopLikesOrgModel {

2 workspace main {

3 fb: FacebookInterface

4 reportBuilder: ReportBuilderInterface

5 page: WebPageInterface

6

7 master: MasterRole

8 worker1: WorkerRole

9 worker2: WorkerRole

10 }

11 }

134

Listing B.19: FBTopLikesOrgModel.simpal

1 org FBTopLikesOrg

2 implements FBTopLikesOrgModel

3 {

4 workspace main {

5 fb = FacebookArtifact ()

6 reportBuilder = ReportBuilderArtifact ()

7 page = WebPageArtifact(url: "testpage.htm",

8 title: "Facebook top likes")

9

10 master = MasterAgent () init-task: Boot()

11 worker1 = WorkerAgent ()

12 worker2 = WorkerAgent ()

13 }

14 }

Listing B.20: FBTopLikesOrgModel.simpal

135

	Abstract
	Introduction
	Background
	JavaScript
	JavaScript drawbacks
	The JavaScript frameworks ecosystem
	JavaScript as intermediate language

	Toward the next generation of structured Web languages
	Dart
	TypeScript
	What's the future lingua franca for the Web?

	Web asynchronous programming
	Asynchronous programming troubles
	Futures and Promises
	JavaScript jQuery Promises
	Deferred and Promise
	Promises and AJAX
	Promises progress
	Promise pipelining
	Combining Promises

	Dart Futures

	Concurrency in Web applications
	HTML5 Web Workers
	Dedicated Workers
	Shared Workers
	Web Worker's event loop
	Mixing Web Workers and asynchronous programming

	Dart Isolates
	Other technologies

	A case study Web-app
	Open issues in reference technologies
	Asynchronous spaghetti
	Asynchronous programming and Inversion of Control
	Issues inherent the Actor model

	The simpAL language
	Main concepts
	Programming agents
	Roles and tasks
	Agent scripts and plans
	Action rules: events, conditions, actions
	Tasks as first-class entities

	The agent control loop

	Programming artifact-based environments
	Usage interfaces
	Artifact templates

	Defining the organization
	simpAL benefits
	Asynchronous programming without Inversion of Control
	Integration of autonomous and reactive behaviours
	Concurrency
	Error checking at compile time

	simpAL-web
	Requirements and assumptions
	Modeling simpAL Web applications
	Modeling the Web environment
	The Web Page artifact
	The Web Element artifact
	The Clock artifact
	Interaction with Web services

	Web programming in simpAL-web
	Dealing with asynchronous programming
	Dealing with concurrency
	Dealing with complex applicazions

	About simpAL-web implementation

	Conclusions
	Future works

	List of Tables
	List of Figures
	List of Listings
	Bibliography
	Chapter 2 sources
	HTML documents
	JavaScript sources of ``What friends most like?'' app

	Chapter 4 sources
	WebPageArtifact implementation
	WebElemArtifact implementation
	simpAL sources of ``Battle of the bands'' app
	simpAL sources of ``Stoppable counter'' app
	simpAL sources of ``What friends most like?'' app

