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Abstract

Titolo: Sistemi di Sicurezza per Piccoli Satelliti in Fase di Tombolomento

L’argomento di questo lavoro di tesi riguarda lo studio e la simulazione di nuove
soluzioni per il sottosistema di determinazione e controllo d’assetto (ADCS) del
micro-satellite ALMASat-EO in fase di progetto da parte di una collaborazione tra il
laboratorio di microsatelliti e microsistemi spaziali dell’Universita di Bologna e
ALMASpace S.r.l..

In particolare, ci si € concentrati su una delle fasi di missione piu critiche per un
satellite che ¢ la fase successiva al rilascio dal lanciatore fino alla stabilizzazione del
satellite. Tale fase detta di tombolamento risulta particolarmente critica se il satellite si
trova a ruotare con una velocita angolare elevata dovuta a separazioni non nominali dal
lanciatore. Pertanto € stato studiato un sistema passivo di smorzamento delle velocita
angolari che utilizza I’effetto di isteresi magnetica di barre realizzate in lega NiFe ad
alta percentuale di Ni; un filtro di Kalman esteso (EKF) di stima della velocita
angolare che fa uso delle letture di piccole celle solari posizionate su ogni faccia del
satellite e un filtro di Kalman multi-rate per combinare tutte le misure disponibili per
ricostruire in modo accurato (come da specifiche di missione) I’assetto del satellite.

Il sistema passivo di smorzamento é stato largamente studiato e validato tramite
simulazioni nel lavoro di preparazione alla tesi e in questo lavoro é stato individuato il
materiale specifico delle barre, contattando anche i fornitori, e sono state svolte
ulteriori analisi su una possibile interazione magnetica con il sistema magnetico di
controllo attivo. Gli algoritmi di stima della velocita angolare e dell’assetto sono
invece stati implementati e sviluppati interamente in questo lavoro. Inoltre sono stati
introdotti nel simulatore, sviluppato in ambiente MATLAB/Simulink, i modelli delle
celle solari e del giroscopio a tre assi. Diverse simulazioni sono state poi eseguite per
validare le nuove soluzioni introdotte nel ADCS e avere un’indicazione

sull’accuratezza dei filtri di stima.
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1. Introduction

Non-nominal separation from the launcher or failures during the mission can
lead the satellite to tumble with high angular velocity. In this case the available
electric power can be limited since the solar arrays do not work properly and the
batteries are the only source of power.

Thus, the aim of this work is to find safety systems in case of non-nominal
separations. In order to achieve this goal, new solutions for the satellite Attitude
Determination and Control Subsystem (ADCS) are considered. This field has been
thoroughly explored since the dawn of the space age but new solutions are
continuously studied and proposed in order to best achieve the several spacecraft
mission goals. In order to investigate and validate the ADCS, several simulations
are performed in MATLAB/Simulink. MATLAB is used in numerous institutions
and space agencies and companies in order to model and analyze the real systems.
The Simulink interface for MATLAB gives the ADCS designers a graphical
interface to the simulation platform, and it is well suited for implementing easy-to-
use simulation toolboxes.

The ADCS is designed for ALMASat-EO which is a satellite developed by the
Microsatellite and Space Microsystems Laboratory of the University of Bologna in
Forli and the commercial spin-off of the same laboratory named ALMASpace S.r.l.
ALMASat-EO belongs to micro-satellite class and it has 35 kg of mass and

30 x 30 % 60 c¢m of volume.
1.1. Background and Motivation

In February, 13™ 2012, ALMASat-1, the first satellite of ALMASat family, was
released in orbit by the VEGA launcher in its maiden flight. A non-nominal
separation occurred due to a problem in the satellite separation mechanism leading
the satellite to tumble with an unexpected high angular velocity. Then, due to the
presence of maximum peak power trackers (MPPT) for power control and

regulation, the solar arrays need to be illuminated for a few seconds before they



can supply electric power. Thus, ALMASat-1 could only be powered by batteries
and it was switched to stand-by mode to save the limited available power. Two
magnetic coils per axis were mounted on ALMASat-1 but they could not be used
to damp the overall angular velocity since there was no sufficient power. The
atmosphere drag torque can be considered the only way to dissipate the rotation
kinetic energy. However this also leads to the satellite orbital decay. Thus, new
solutions for the next micro-satellite ALMASat-EO ADCS need to be studied.

1.2. Thesis outline

The thesis is organized as follows:

Chapter 2. ALMASat-EO. ALMASat-EO mission goals and the satellite design is
described. Then a description of attitude sensors as well as solar cells is given.

Chapter 3. Simulator. In order to study and analyze the satellite mission, a simulator
tool is needed. Thus, in this section, the MATLAB/Simulink based simulation tool is
described, with particular attention to some toolboxes.

Chapter 4. Hysteresis rods. The passive magnetic angular rate damping system,
studied in the previous work, is briefly described and new considerations are
developed.

Chapter 5. Rate estimation using solar cells. A new solution to estimate the satellite
angular rate during tumbling motion is investigated and statistically validated by
means of Monte Carlo simulations. A non-conventional arrangement of the solar cells

is also studied and fully validated by means of Monte Carlo simulations.

Chapter 6. Attitude determination. Here, the attitude determination subsystem is
studied. A multi-rate Kalman filter which combines all the available measurements is
implemented in the simulator to test its performance and statistically validated by

means of Monte Carlo simulations.

Chapter 7. Conclusion. Summary of the thesis with concluding remarks and

recommendations for future work.



2. ALMASat-EO

Through the collaboration between the Microsatellite and Space Microsystems
Laboratory of the University of Bologna in Forli and the commercial spin-off of the
same laboratory named ALMASpace S.r.l, in 2007 the ALMASat-EO microsatellite
project started. The main goal of the mission is the manufacturing of a spacecraft for
Earth Observation in particular to satisfy the increasing demand of weather monitoring
and surveillance.

The main structure and orbital parameters are reported in Table 1:

ALMASat-EO Value Unit
Dimensions 30 x 30 x 60 cm
Mass 35 kg
Inertia matrix diag([0.9510.97 0.946]) kgm?
Orbital height 686 km
Orbital eccentricity 0 °
Orbital RAAN —235 °
Orbital inclination 98.161 °

Table 1. ALMASat-EO main structure and orbital parameters.

The main payload mounted on board ALMASat-EO is the optical system, able to take
images of the Earth’s surface with an area of about 150 km?. The camera will be
placed in a tray-based structure where the upper 6-trays will contain the main on-board
equipment and the remaining portion will be equipped with the technological payloads.
The Attitude and Orbit Determination and Control System (AODCS), the
communication system and the On-Board computer and Data Handling (OBDH)
represent the main subsystems, necessary to the guarantee spacecraft control and to
accomplish the mission purposes.

The need to obtain images of the Earth requires observing the sub-satellite point under
optimal lighting conditions. This is why the AODCS sub-system requirements are
mainly due to the characteristics of the installed optical payload and its own working

mode.



ALMASat-EO AODCS will include two pairs of sun sensors, two redundant three-axis
magnetometers and one Earth sensor as spacecraft attitude sensors system, three pairs
of orthogonal magnetic coils, and a set of four redundant momentum/reaction wheels
as attitude control actuators. In addition, a cold-gas micro-propulsion system will be
mounted on-board in order to modify the launch vehicle orbit and insert ALMASat-EO
into its nominal orbit.

The on-board attitude sensors and actuators are managed by digital electronic boards
entirely developed by the team. The AODCS is implemented in the On-Board
Computer and will handle both the attitude reconstruction (by using the sensor
readings) and attitude control functions (by controlling the actuators) [1]. Motivated by
these challenging needs, a MATLAB/Simulink-based simulation tool has been
developed in order to test the ADCS.
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Figure 1. ALMASat-EO



2.1. Sensors

All presented attitude sensors, except the gyroscope, are reference sensors.

Reference sensors give a vector to some object which position is known. The rotation

between the local body frame, and the frame in which the known vector is given, can

then be computed. With only a single measurement, the rotation around the measured

vector is unknown. It is therefore necessary either to have two different measurements

at least, or to use information from the past. The most common way to incorporate

measurement history, is to combine the measurements in a Kalman filter [2]. In this

case, the estimation of the angular velocity is required to propagate the attitude

forward in time. It can be obtained using a three-axis gyroscope which is an inertial

sensor. In Table 2, a summary of typical satellite sensors is reported. Sensors have

continued to improve in performance while getting smaller and less expensive [3].

Sensor Accuracy Weight Power Pros Cons
(deg) (kg) (W)
Gyroscope 0.003/hr to 1/hr 1to15 10to 200 high expensive,
(IMU) bandwidth drifts with
time
Sun sensor 0.005t0 3 0.1to2 Oto3 cheap, simple, no
reliable measurement
in eclipse
Star sensor 0.0003 to 0.01 2t05 5to 20 Very accurate expensive,
heavy
complex
Horizon 0.1 to 1 (scanner) 1lto4 5t0 10 accurate orbit
sensor 0.1t00.25 05t035 0.3to5 dependent,
(static) poor in yaw
Magnetometer 0.5t03 0.3to1.2 <1 cheap, low altitude
continuous only
coverage

Table 2. Typical ADCS Sensors.



2.1.1. Magnetometer

Magnetometers are widely used as spacecraft attitude sensors for a variety of
reasons: they are vector sensors, providing both the direction and magnitude of
magnetic field; they are reliable, lightweight, and have low power requirements; they
operate over a wide temperature range and they have no moving parts. However,
because the Earth’s magnetic field strength decreases with distance from Earth as 1/
r3, the use of magnetometers is generally limited to spacecraft below 1000 km [4].
The magnetometer consists of three orthogonal sensor elements which measure the
Earth’s magnetic field in three axes in the sensor frame. If the magnetometer is aligned
with the satellites axes, or the rotation between the body and sensor frame is known,
the magnetic field in the body frame is obtained. The accuracy of the magnetometer is
limited mainly by three factors: disturbance fields due to spacecraft electronics,
modeling errors in the IGRF model and external disturbances such as ionospheric
currents [2].

The mostly used magnetometers are induction magnetometers which are based on
Faraday’s law of magnetic inductance. An electromotive force, E is induced in a
conducting coil placed in a time-varying magnetic flux, d¢g/dt such that the line

integral of E along the coil is the voltage, V:

dg
dt

VZfE-dIZ—

The two types of induction magnetometers are search-coil and fluxgate
magnetometers. In a search-coil magnetometer, a solenoidal coil of N turns surrounds
a ferromagnetic core with magnetic permeability u, and cross-sectional area A. The

produced voltage is given by:
V = —ANu(dB, /dt)

where B, is the field component along the solenoidal axis [4].

The fluxgate magnetometer is a transducer which converts a magnetic field into an
electric voltage. Fluxgates are configured with windings through which a current is
applied. If there is no component of the magnetic field along the axis of the winding,
the flux change detected by the winding is zero. If there is a field component present,



the flux in the core changes from a low level to a high level when the material goes
from one saturation level to another. From Faraday’s law, a changing flux produces a
voltage at the terminals of the winding proportional to the rate of change of the flux

[2].

Figure 2. ALMASat-EO magnetometer

2.1.2. Sun sensor

Sun sensors are the most widely used sensor type for attitude determination. The
Sun sensor owes its versatility to several factors [4]. Unlike the Earth, the angular
radius of the Sun is nearly orbit independent and sufficiently small (0.267° at 1 AU =
1.5-108 km) that for most applications a point-source approximation is valid.
Moreover, the Sun is sufficiently bright to permit the use of simple, reliable equipment
with minimal power requirements. Lastly, Sun sensors measurements are also used to
protect sensitive equipment, to provide a reference for on-board attitude control, and to
position solar power arrays. Sun sensors requires a clear field-of-view and thus, they
are usually mounted near the ends of the spacecraft to obtain an unobstructed filed-of-
view. Obviously, Sun sensor measurements are not available during eclipse and this is
the only drawback of this sensor. There are three basic classes of Sun sensors: analog
sensors, Sun presence sensors and digital sensors.

Analog sensors are frequently called cosine detectors because they are based on the
sinusoidal variation of the output current of a silicon solar cell with Sun angle.

However, for high incidence angles, the output current is not accurately described by a



sinusoidal function. Thus, sensor calibration is required to obtain an accurate relation
between the Sun angle and the output current. Moreover, these sensors are affected by
temperature variations and albedo effect.

Digital sensors provide an encoded, discrete output which is a function of the Sun
angle. The Sun image is refracted by a material of index of refraction n, which may be
unit, and illuminates a pattern of slits. The slits are divided into a series of rows with a
photocell beneath each row. The orientation of the Sun is provided using a Gray code.
The accuracy of these sensors depends on the number of bits.

Sun presence detectors do not provide a Sun angle measurement, they only provide a
constant output signal whenever the Sun is in the field-of-view of the sensor.

The Sun sensor used for ALMASat mission is an analogic Sun sensor providing a
digital output (see Figure 3). It has a large filed-of-view (130°) and it is realized using

commercial components and hence, it is a low-cost sensor.

Figure 3. ALMASat-EO Sun sensor

2.1.3. Earth horizon sensor

Earth horizon sensors determine where the Earth is relative to the spacecraft. Since,
to a near Earth satellite, the Earth covers up to 40% of the sky, detecting only the
presence of the Earth is normally insufficient; thus, they are designed to locate the
Earth’s horizon. The majority of these sensors are infrared devices that detect the
contrast between the cold of deep space and the heat of the Earth’s atmosphere,

exploiting the narrow 14 — 16 um CO, band. They are unaffected by night or by the



presence of terminator, they avoid reflection problems and the Sun interference
problems are also reduced in the infrared. However, albedo sensors have some
advantages over the infrared sensors, including lower cost, faster response time and
higher signal-to-noise ratio because the radiated intensity is higher in the visible
spectrum than in the infrared.

Most horizon sensors consist of four basic components: a scanning mechanism, an
optical system, a radiance detector and signal processing electronics [4]. They are
normally categorized by the scanning mechanism: there are body-mounted horizon
sensors and scanning horizon sensors. The former, also called static horizon sensors,
are simple narrow field-of-view fixed-head types, used on spinning spacecraft to
measure Earth phase and chord angles which, together with orbit and mounting
geometry, define two angles to the nadir vector.

Scanning horizon sensors use a rotating mirror or lens to replace the spinning
spacecraft body [3]. The optical system of a horizon sensor consists of a filter to limit
the observed spectral band and a lens to focus the target image on the radiance
detector. Radiance detectors used to detect the presence of a horizon and they are
based on the operating principles of the thermistor, like a bolometer, thermocouple,
like a thermopile, or pyroelectric crystal, like pyroelectric detectors.

The sensor field-of-view scans across the Earth disc and gives outputs corresponding
to the Earth-to-space and space to Earth discontinuities. An automatic threshold
detection circuit, wherein the threshold of edge detection is kept at an optimum
percentage of the peak signal, is used to minimize the errors in the measurement of the
scanned Earth chord width. The measurements given by the Earth horizon sensor are
based on the following equations:

COSp =C0Sycosn + sinysinncos(Q/2)
Q = w(tyos — taos)

where p is the Earth angular radius, y is the sensor mounting angle, n is the nadir
angle, w is the sensor spin rate, t;, o5 and t,os are the measured loss-of-signal (i.e.
light-to-dark transition) and acquisition-of-signal (i.e. dark-to-light transition) time,
respectively.



Figure 4. ALMASat-EO FLIR TAU thermal sensor

2.1.4. Gyroscope

Gyroscope is an inertial sensor that measures angular rotation about its input axis
with respect to inertial space. The sensing of such motion could utilize the angular
momentum of a spinning rotor, the Coriolis effect on a vibrating mass, or the Sagnac
effect on counter-propagating light beams in a ring laser or an optical fiber-coil [5].
Recently, due to the improving performance of Micro-ElectroMechanical Systems
(MEMS) sensors, there has been increased interest in using MEMS gyroscopes in
ADCS systems. MEMS technologies provide a mean to interface the digital electronic
world, dominated by the integrated-circuit, IC, with the analog physical world. MEMS
gyroscopes have advantages of being low-cost, light mass, and low power
consumption. In the case of employing MEMS gyroscopes in ADCS, several
challenges arise. Significant scale factors, nonlinearities, misalignment, noise and
temperature varying biases currently limits use for high precision applications. Thus,
precisely modeling and compensating for these errors is very important.

2.2. Solar cell

Solar cells functioning is based on the photovoltaic effect, consisting in an energy
conversion process which generates electrical energy from light energy. The

10



explanation relies on ideas from quantum theory. Light is made up of packet of energy,
called photons, whose energy depends only upon the frequency, or color, of the light.
The energy of visible photons is sufficient to excite electrons, bound into solids, up to
higher energy levels where they are more free to move. The solar cell contacts (bus
bar) drive the excited electrons through an external circuit before they can relax.

The solar cell can be considered as a two terminal device which conducts like a diode
in the dark and generates a voltage (photovoltage) when charged by the Sun. It is a thin
slice of semiconductor material and the surface is treated to reflect as little visible light
as possible and hence, it appears dark blue or black. A pattern of metal contacts is
imprinted on the surface to make electrical contact (fingers).

The photocurrent generated by a solar cell under illumination at short circuit is
dependent on the incident light. To relate the photocurrent density, /., to the incident
spectrum, we need the cell’s quantum efficiency, QE. QE(E) is the probability that an

incident photon of energy E will deliver one electron to the external circuit. Then:

Jie = [ b(EYQE(E)aE

where b, (E) is the incident spectral photon flux density, QE is the number of photons
of energy in the range E to E + dE which are incident on unit area in unit time and g
is the electronic charge. QE depends upon the absorption coefficient of the solar cell
material, the efficiency of charge separation and the efficiency of charge collection in
the device but it does not depend on the incident spectrum. Figure 5 shows a Gallium-
Arsenide (GaAs) solar cell QE spectrum in comparison with the spectrum of solar
photons. QE and spectrum can be given as functions of either photon energy or
wavelength, A. Energy is a more convenient parameter for the physics of solar cells

[6]. The relationship between E and A is defined as:

where h = 6.626 - 1073% J is the Planck’s constant and ¢ = 2.9979- 108 m/s is the
speed of light in vacuum.
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QE of gallium arsenide cell

Solar photon flux density
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Figure 5. Quantum efficiency of GaAs cell compared to the solar spectrum. The vertical scale is in arbitrary
units, for comparison. The short circuit photocurrent is obtained by integrating the product of the photon
flux density and QE over photon energy. It is desirable to have a high QE at wavelengths where the solar flux
density is high [6].

The solar cell can be modeled as a current generator in parallel with an ideal diode and
series and shunt resistances (see Figure 6) to take into account power dissipation
through the resistance of the contacts and through leakage currents around the sides of
the device (see [7] and [8]).

RS l
MN —
A
Iph D RSH V
ID iRsh

Figure 6. Equivalent circuit of a solar cell
This equivalent circuit can be simplified by neglecting the shunt resistor (see [9] and
[10]). In [10], an improved model of a solar cell that make use only of parameters
provided by manufacturers datasheets and, moreover, does not require any numerical

methods, is developed. The current is given by the difference between the short circuit
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current, I, and the dark current, I,,,,, Which can be expressed as a function of the

voltage, V:

V
I = Isc = lgark )= Isc ll —C (eCZVOC - 1)]

Conversely, the voltage can be expressed as a function of the current as:
V=cVclnl 1+
where V. is the open circuit voltage and c; and c, are coefficients:

I _Ympp
1 = <1 - MPP) e C2Voc

ISC

V I
C, = ( MPP _ 1)/ln (1 - I;lpp)

I/OC sc

where I,pp and Vy,pp are the maximum power point current and voltage respectively.
The solar cell power, P, is given by:

P=1IV

P reaches a maximum at the cell’s maximum power point. This occurs at voltage Vypp

and current I,,pp as shown in Figure 7. The fill factor, FF, is defined as the ratio:

IuppV;
FF = -MPP/MPP
ISCI/OC

and it describes the ‘squareness’ of the I — V' curve.
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The efficiency, n, of the cell is the ratio between the maximum power generated by the

solar cell and the solar flux normal to the cell, E, times the surface area, S:

— IMPPVMPP
E-S
Solar cells convert radiant flux to electrical power and can be used to estimate the
angle between the normal vector to the cell plane and the Sun line of sight (LOS)
vector, by measuring the intensity per area on the solar cell surface, which is related to
the angle of incident irradiance:

P(a) =nSE cosa

where P(a) is the electrical power generated by the solar cell, n is the solar cell
efficiency, S is the solar cell surface area, E is the incident irradiance and « is the
angle of incident irradiance.

Solar cells are typically mounted such that measurements are available in six directions
which are opposite facing in pairs. Typically a minimum of six solar cells are used,
looking in the positive and negative directions of each axis in the body reference

frame.
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Figure 8. Projections of the sun LOS vector measured by solar cells mounted in opposite looking directions
along three orthogonal axes.

Figure 8 shows the geometry of the Sun LOS vector 7, in a configuration, where six
solar cells are mounted in pairs in opposite directions and along three orthogonal axes.
The solar cells are represented by the normal vectors figs; of each cell SS1 through
SS6.

Two solar cells used as coarse Sun sensor will be mounted on each ALMASat-EO
face. They are 28% triple junction GaAs solar cell produced by AzurSpace. The
datasheet is reported in Appendix A and the main parameters used in the simulator for
solar cells are reported in Table 3.

Solar cell Value Unit

Average Short Circuit Current I, 4411 mA

Short Circuit Current Temperature Gradient AI,./AT T 028 mA/°C

Reference Temperature T,..¢ 28 °C
Calibrated Irradiance Eq; 1367 W/m?
Surface Area 2631 cm?

Table 3. ALMASat-EO solar cell main parameters. They refer to beginning of life (BOL). Properties
degradation due to aging are reported in the datasheet.

Solar cells are characterized by the current-voltage, I —V and power-voltage, P — V

curves. These curves are then parameterized by angle of the incident irradiance (see
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Figure 9), temperature (see Figure 10) and aging (see Figure 11) of the solar cell. In
fact, solar cell performance is degraded by space radiation made up of high energy
particles which hit the solar cells reducing their efficiency. Figure 9 clearly shows the
decrease of short circuit current, I;., when the angle of incidence increases. Figure 10
shows the slight increase of I, with temperature and the decrease of open circuit
voltage, V,., with temperature. Thus, choosing solar cells in short circuit mode reduces
the solar cell output dependence on temperature. Finally, Figure 11 shows the solar
cell I —V curve at beginning of life (BOL) and at end of life (EOL).

Solar Cell |-V Characteristic
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Figure 9. Solar cell current voltage curve dependence on angle of incident irradiance.
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Figure 10. Solar cell current voltage curve dependence on temperature.
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Figure 11. Solar cell current voltage curve dependence on aging.
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3. Simulator

The simulator is MATLAB/Simulink-based software and several mathematical
models are implemented in order to simulate the space environment. Also, a numerical
integrator is used to propagate the orbital motion and to predict the ALMASat-EO
attitude. The simulator events are managed by a finite state machine and each state
represents a mission event.

The attitude dynamics is described by Euler’s equation and the kinematic equation for

the quaternion. The former is used to calculate the true satellite angular velocity, w:

. dh
](1) = Mext__

dt—w><(/w+h)

where M., is the total amount of external torques acting on the satellite (gravity
gradient, aerodynamic, magnetic and solar radiation pressure torque), h is the net
angular momentum due to the rotation of the reaction or momentum wheels relative to
the spacecraft and J is satellite inertia matrix.

The kinematic equation for the quaternion g describes the satellite attitude:

=20
=35

where Q is a 4 x 4 matrix containing the satellite angular velocity components in the

inertial reference frame:

0 r —q p
|- 0 p ¢
{1 = q -p 0 r
-p —q -r O

withw =[pqr].

On-board orbit propagation is performed by SGP4 model (see [11]). It was developed
by Ken Cranford in 1970 and is used for near-Earth satellites (the orbital period of
ALMASat-EO is around 98 minutes). Simplified perturbations models are a set of five
mathematical models (SGP, SGP4, SDP4, SGP8 and SDP8) used with two-line mean
element (TLE) sets, produced by NORAD, to compute satellite orbital position and
velocity. Simplified General Perturbations (SGP) models apply to near earth objects
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with an orbital period of less than 225 minutes; conversely, Simplified Deep Space
Perturbations (SDP) models apply to objects with an orbital period greater than 225
minutes. These models consider secular and periodic variations due to Earth
oblateness, solar and lunar gravitational effects, gravitational resonance effects, and
orbital decay using a drag model.

The numerical integrator characterizes the analysis output in terms of accuracy and
precision. A 4M-order Runge-Kutta (RK4) method has been selected in the
MATLAB/Simulink-based simulator. A fixed-step size solver has been used in
simulations in order to limit the step-size and improve the accuracy of the results
during the mission in order to fully describe the orbital dynamics and the attitude
motion of ALMASat-EO.

Click the buttons below to define
of load the mission satellite parameters
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Figure 12. ALMASat-EO simulator

3.1. Reference systems

Three main reference systems are employed [1]:
e an ECI (Earth Centered Inertial) reference system (C1, C2, C3), with: C1, C2 in
the equatorial plane and C3 parallel to the Earth’s spin axis;
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e an orbital reference system (t, h, r) where: the angular momentum, h =r X v is
directed along the positive orbit normal, r is the radial direction from the centre
of the Earth to the spacecraft and t is defined as h x r, in the orbital plane, in the
same direction of the velocity vector v for circular orbits (and of the velocity
vector at perigee and apogee for eccentric orbits);

e a body-fixed reference system on ALMASat-EO, so that X is the longitudinal
axis aligned to the satellite velocity for a circular orbit, Y is aligned to the orbit
normal and Z is aligned to the nadir.

The rotation matrix between the reference systems 1 and 2 aforementioned is
immediate once the spacecraft centre of mass position is known by numerical
integration of the equations of motion. The rotation matrix between the reference
systems 2 and 3 assumes that if the ALMASat-EO body axes are aligned to the orbital
axes, the rotation matrix reduces to the unity matrix (X =t, Y =h and Z =r). By
introducing the Euler angles 1-2-3 (Roll = ¢, Pitch = 9 and Yaw = 1)) one can
represent all rotations of ALMASat-EO with respect to the orbital reference frame.

3.2. Earth magnetic field model

The Earth magnetic field, B can be expressed as the gradient of a scalar potential,

B=-VV

where V can be conveniently expressed in spherical harmonics as [4]:

k 1
V(r,6e,¢)= az (%)

where a is the equatorial radius of the Earth; gn* and h)' are called Gaussian

n
(g™ cosme + hsinmae) B (6)
0

m=

coefficients; r,0 and ¢ are the geocentric distance, co-elevation, and east longitude
from Greenwich; and B*(6) are the associated Legendre functions. The n = 1 terms

are called dipole; the n =2 terms are called quadrupole and so on. One set of
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Gaussian coefficients to degree n = 8 and order m = 8 comprises the International
Geomagnetic Reference Field (IGRF).

3.3. Magnetometer model

The magnetometer model takes the Earth’s magnetic field vector, computed from
IGRF model and rotated in the body reference frame by the attitude matrix, and adds
noise to create a realistic measure, B,. A bias vector term due to the presence of
permanent magnets or possible magnetic fields created by on-board electronics can be
considered. The output noise level of the magnetometer in root mean square (rms) is
given by the datasheet and modeled by a zero-mean Gaussian random noise with the
specified variance. The misalignment and scale factor (given in the datasheet)
inaccuracies are added with a gain block which is I5.5; + G, where the diagonal values
of G are the percent error in scale factor and the off-diagonal values of G are the
percent error of misalignment. A saturation block is used to limit the dynamic range of
the magnetometer. Temperature dependency should not be included in the model, if

the chosen sensor has internal temperature compensation.

3.4. Sun position propagator

In order to compute on-board the Sun direction vector in an inertial reference frame
for attitude estimation, a less computational burdensome solution than a Keplerian
propagator is required. For small eccentricities, the true anomaly, v may be expressed
directly as a function of the mean anomaly, M by a power series expansion derived by
Ruppe [4]:

. 5 .
v = M+2esmM+Ze25|n2M+0(e3)

This expression is derived combining Kepler’s equation:

M=E—esSinE
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with Gauss’ equation:

tan (K) _ <1 + 6)1/2 o <€)
2 l1-e 2

where E is the eccentric anomaly.

3.5. Eclipse model

In order to model properly the satellite mission conditions, determining the period
when the spacecraft is in eclipse is essential. In fact, during this period Sun sensor
readings are not available, the solar cells and arrays output currents are zero and the
satellite temperature drops. Thus, eclipse can influence attitude and angular rate
estimation and batteries are the only power source.

To determine the conditions under which eclipse occurs, first the length C of the
shadow cone for the Earth is computed as:
Rg-S

C=—"—<=1385-10%km
(Ro —Rg)

where Rg = 6378.140 km is the mean radius of the Earth, Rp = 6.9599 - 10° km is
the radius of the photosphere (i.e. the visible surface) of the Sunand S =1 AU = 15-
108 km is the distance from the Earth to the Sun.

To develop specific eclipse conditions, let ¢, be the versor from the spacecraft to the
center of the Sun and D¢, the corresponding distance and let g be the versor from the
spacecraft to the center of the Earth and Dg the corresponding distance. The angular
radius of the Sun, pg, the angular radius of the Earth, pg, and the angular separation,

0, between the Sun and the Earth as viewed from the spacecraft, are given by:
po = sin"*(Ry/Dg)
pg = sin"*(Rg/Dg)
0 =cos  (rg - 1g)

The total eclipse condition can be then expressed as [4]:
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§<Dg or D <S+C and pg — pg > 06

3.6. Sun sensor model

The Sun sensor model takes the Sun position vector in the inertial reference system
calculated by the Sun position propagator and it is rotated in the body reference system
by the attitude matrix:

Sp = ApiSi

Then the Sun position vector in the body reference system is rotated again in the sun
sensor lens —fixed system. Now it is possible to calculate the azimuth Az and co-
elevation Coel as a function of the Sun position vector components from the following
relations [12]:

SJ' = —sin Coel/! cos Azt
Sy’ = cos Coel’t
SJ' = sin Coel/tsin AzJt

where the superscript ji denotes the Sun sensor. There are four Sun sensors which are
located as illustrated in Figure 13.

SSa

552

5SS

SSu

Figure 13. Sun sensors location
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The Sun is in the field-of-view of the Sun sensor if Coel/t < 65°. Then the standard
deviation o, of the noise which will be added to the Sun position vector to simulate a
real measurement is calculated as [12]:

o.ji = a+ bCoelt

with a = 0.01° and b = 0.09°/50°. This comes from the assumption that the noise is a
linear function depending only on the co-elevation. Then, the noise is added to the

angles Azt and Coel/t:
A7t = Azt + gt
Coellt = Coel’t + &t

where &/t is a zero-mean Gaussian random noise with the variance aj,-i. The Sun

sensor measurements are then calculated using the equations reported above. The
measurement vectors of each Sun sensor are rotated again in the spacecraft reference
system and the Sun position measurement vector is given by a weighted mean of the
four Sun sensors readings. Obviously, a measurement from each Sun sensor is
considered valid if the Sun is in the sensor field-of-view and the spacecraft is not in

eclipse.

3.7. Earth horizon sensor model

The Earth horizon sensor model takes as input the position of the satellite along its
orbit, computed by integration of the equations of orbital motion with the initial
condition defined by the orbital parameters. Then it is rotated in the body reference
system by the attitude matrix, and noise is added to create a realistic measure of the
nadir vector, E,. Measurement of the nadir vector, involves various types of errors
which can be classified generally as random and systematic errors. Random errors
come from the noise of the detector, amplifier and processing electronics, change in
the alignment of sensor axis and drifts in the amplifiers due to aging or environmental
changes. Systematic errors are due to seasonal Earth horizon variations, variations in

height of CO, band and Earth oblateness. The output noise of the Earth horizon sensor
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is modelled adding a zero-mean Gaussian random noise with the variance given in the
datasheet. The simulated measurement can be considered valid if the Earth is in the
field-of-view (FOV) of the sensor. From geometric considerations, the condition is
satisfied if:

a<f+FOV/2

where « is the angle between the normal to the satellite face where the Earth horizon
sensor is placed (—Z in ALMASat-EO) and the nadir vector in the body reference
frame, FOV is the Earth horizon sensor field-of-view, which is equal to 37° for
ALMASat-EO Earth horizon sensor, and g is half of the Earth cone angle with respect

to the spacecraft orbital position and it is defined as:

R
=gjn~1 _® = °
B =sin ( Rg + h) 64.5

where Rq = 6378.140 km is the Earth mean radius and h = 686 km is the orbit
height.

3.8. Solar cell model

The model is based on the cosine law which describes the ratio between the solar
cell measured current I,,.,5; and the maximum current I,,,; generated when the

incident light hits the solar cell orthogonally:

Imeas,i = oS a;

Imax,i

The standard algorithm of estimating the Sun LOS vector fg,,,gs: 1S:
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_Imeas,l Imeas,z_

Imax,l Imax,z

Einc # _ Imeas,3 Imeas,4
SunEst — -

Ecal Imax,3 Imax,4

Imeas,S _ Imeas,6

L Imax,S Imax,6 g

where Ej,. is the incident irradiance, equal to 1353 W/m? in space, and E.,; is the
calibrated irradiance. This algorithm is error-prone when the Earth albedo induces
current in the solar cells. Earth albedo is the main source of error in solar cell
measurements; conversely, digital Sun sensors are mostly insensitive to this
phenomenon. The amount of solar irradiance reflected by the Earth towards the
satellite, influences the power generated by solar cells. Moreover, due to the geometry
of the Earth, the albedo irradiance is multi-directional, unlike the solar irradiance
which may be assumed to be anti-parallel to the Sun LOS vector. This assumption
holds because the distance to the Sun is large relative to the Sun radius for Earth
orbiting satellites. Earth albedo can be modeled using the Earth’s reflectivity data
measured by the Earth Probe satellite for the Total Ozone Mapping Spectrometer
(TOMS) project or it can be directly measured using albedo sensors. Earth albedo
induced currents can be compensated assuming that the solar cell which generates the
highest current is illuminated by solar irradiance only. The maximum current

algorithm is based on this assumption and it is given by [13]:

rImeas,l - Imeas,l > Imeas,z
Eincf_ _{ Imax,l Imax,l Imax,z
SunEst,1 —
Ecal umes Imeas,z :
— otherwise
\ max,2
rImeas,3 - Imeas,3 > Imeas,4
Eincf_ _{ Imax,3 Imax,3 Imax,4
SunEst,2 —
Ecal umes Imeas,4 :
— otherwise
\ max,4
rImeas,S . Imeas,S = Imeas,6
Eincf_ _{ Imax,S Imax,S Imax,6
SunEst,3 —
Ecal unes Imeas,6 -
— otherwise
\ max,6
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In order to model these measured currents, the true Sun position in the body reference
frame is needed to calculate both the temperature and the current on each face. It is
given by a Sun position propagator (see 3.4) and then it is rotated in the body reference
frame using the attitude matrix A,; which describes the orientation of the satellite with

respect to the inertial reference frame:
Sbody = AbiSine

Then the position of the Sun with respect to each solar cell, mounted on each

spacecraft face can be described using the director cosines:
— -1 A~
a; = €05~ (Spoay * Ay)

where #; is the versor normal to each face. Now, the output measured from each solar
cell can be calculated applying the current cosine law and knowing the maximum
current, which is the short circuit current when a; = 0°. In order to improve the
modeling of the solar cells current outputs, a temperature dependence is considered.
The temperature correction on the current is given by the following relation:

dl .
Iy =1+d—T(T—TTef)

where I is the solar cell current considering the temperature effect, dI/dT is the short
circuit current variation with respect to temperature variations, T is the measured
temperature on the solar cell and T,..f is the reference temperature. Both dI/dT and
Trer can be found in the solar cell datasheet (see Appendix A and Table 3). The

current temperature is measured by a temperature sensor which can be modeled as:
T=T+v
where T is the true temperature and v is a zero-mean Gaussian noise which satisfies:
E{v}=0
E{wT} =0o%L;

where the standard deviation 30 = +2 °C. The true temperature is calculated by a

thermal model as described in 3.9.
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Noises should also be added to these modeled measured currents to simulate real solar

cell’s current output:
Iy=I+v

where v is a zero-mean Gaussian noise defined as before with 3¢ = £0.104 mA.
Small errors due to the inaccuracy of the cosine model approximation when «o; is close
to +£90° should also be taken into account. In fact, when a; approaches to £90°, half
the Sun has sunk below the solar cell and does not produce electrical current, and half
the Sun is shining on the solar panel producing current. However, experiments made
on solar cells showed that when a; > +85° the measured currents are very low. Thus,
it is assumed that if a; > 85° (the opposite value is not taken into account since the
arccosine function output is defined in the range [0,180°]) then a; = 90° so that a
zero current is modeled in this case. Lastly, Sun eclipse should also be incorporated in
this model because solar cell measurements are not available during this period (see
3.5).

3.9. Temperature model

Once in space, the satellite is subjected to direct sunlight, sunlight reflected off of
the Earth (albedo) and infrared (IR) energy emitted from Earth’s atmosphere. Thus, the
equation of heat balance for the satellite can be expressed as [14]:

mca = Qins + QIR,EaTth + Qalbedo - Qout

where m is the satellite mass, c is the specific heat capacity, dT/dt is the variation of
satellite temperature with time, Q;,.s, Qrr garen ANd Qgipeqo are the incoming heat flows
due to direct sunlight, Earth albedo and Earth IR radiation and Q,,; is the outgoing
heat flow due to radiation. They can be expressed as:

Qins = a¢©Asat cos6

28



where 0 < @ < 1 is the solar absorptivity coefficient, ¢ = 1353 W/m? is the solar
heat flux, Ay, IS the satellite surface hit by radiation and 6 is the angle between the
normal to the surface and the Sun direction with respect to the same surface;

QIR,Earth = a¢®Asathat,Earth

where ¢g = 236 W/m? is the mean Earth heat flux and:

1 Re \
Fsat,EaTthzil_ 1- R€B+h

is the view factor of the satellite with respect to the Earth;

Qalbedo = O-saAsathat,Eartha

where 0 < a < 1 is a multiplicative factor which takes into account the illumination of

the Earth surface;
Qout = EAsato-(TsALat - T(;L)

where 0 < ¢ < 1 is the emissivity factor, o = 5.67051- 1078 W/m?K* is the Stefan
Boltzmann’s constant, T, is the satellite temperature and T, = 4 °K is the deep space
temperature.

In order to consider also the heat exchange between the spacecraft surfaces, the
satellite has been modeled using ten nodes: six of them are located in the middle of
each face and the other four nodes are placed in the middle of each solar panel [11].
Then the heat exchange between nodes due to radiation and conduction are calculated
as:

Qurr = ) &AiF (T = T7)

X

kA;
Qcona = Z ,]x (Tx - T])
djx

X
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where j is the considered node, x are the other nodes, k is the material thermal
conductivity, A;, and d;, are respectively the surface and the distance between node j
and node x.

Then, this model accepts as inputs, the orbital parameters and the satellite orbital
propagation calculated by the simulator (see Simulator) and it integrates the heat

balance equation starting from a guess value (typically T = 300 °K).

3.10. Gyroscope model

The gyroscope model takes the angular velocity, w computed from the integration
of the Euler’s equation of motion and adds noise to create a realistic measured, @. Two
types of noise are added to the signal, Angle Random Walk (ARW) and bias drift.
ARW is the high frequency noise term that have correlation time much shorter than the
sample time and it causes random error in angle with distribution, which is
proportional to the square root of the elapsed time. It is modelled as a zero-mean
Gaussian random noise with a variance given by the manufactures datasheet or
determined by Allan variance technique. The Allan variance, an accepted IEEE
standard for gyroscope specifications, is a time domain analysis technique that can be
used to find the characteristics of the noise processes in an instrument. The Allan
variance technique uses a clustering method. It divides the data into clusters of specific
length and averages the data in each cluster. It then computes the variance of each
successive cluster average to form the Allan variance. Each noise source has a
different correlation time. By choosing the correct correlation time or cluster length,
the desired noise source variance can be calculated [15]. The bias drift is modeled as
the integration of a white noise called Rate Random Walk (RRW) with a variance
given by the datasheet or determined by Allan variance technique. The integrator is
initialized at the initial bias of the hardware. These terms can be seen in mathematical
model of the gyro:

w:w+.8+$sf+zma+nv

B =y
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where £ is the bias drift, &, is the gyro scale factor error, &, is the gyro

misalignment error, n,, is the ARW and n,, is the RRW. As stated above, n,, and n,, are

independent zero-mean Gaussian white-noise processes with:
EMynT (D] = 28(t — 1)I3x3

E[ﬂu(t)nE(T)] = 0-1%5(1t - T)13><3

where E[ ] denotes expectation and §(t — 7) is the Dirac delta function.

Scale factor is the ratio of the change in output to the input. It is generally evaluated as
a slope of the straight line that can be fit by the least square method to the input-output
data. Axes misalignment is the error from the imperfection of mounting the sensors. It
often results in a non-orthogonality of the axes. As a result, each axis is affected by
measurements of the other two axes in the body frame. Since axes misalignments are a
manufacturing imperfection can therefore easily be detect and compensated by
calibration [5].

The equations above are implemented in Simulink to model the gyroscope. The gyro
noise sources are scaled by T, %> as suggested in literature. The sample time, T, is used
to correct the units of ARW (°/+/s) and RRW (°/v/s3) to °/s and °/s? respectively.
The misalignment inaccuracies are added with a gain block in the model. The gain is
I;x3 + G, where the diagonal values of G are the percent error in scale factor and the
off-diagonal values of G are the percent error of misalignment [15]. The dynamic
range of the gyroscope hardware is modeled by a saturation block. The gyroscope
Simulink model illustrated in Figure 14. A three-axis gyro ADIS16400 is considered
for simulations and its complete datasheet is reported in Appendix A. The main
parameters values are reported in Table 4:

Gyroscope Value Unit
Dynamic Range 75, +150,+300 °/s
Scale Factor 0.05,0.025,0.0125 °/s

Initial Bias Error +3 °/s

Bias Stability 0.007 °/s
ARW 2 °/\hr

3 dB Bandwidth 330 Hz
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Dimensions 23 x 23 %23 mm
Mass 16 g
Power 0.35 w

Table 4. Three-axis gyroscope ADIS16400 main parameters

Angle Random ¥Walk

cotrection
factor

¥

omega

(D)

omega_gyro

eye(3)+H3g" vec

Scale factor and misalignment

carrection

Saturation factar

Rate Random Walk

w]—

Bias o

GYRO_Bias

Figure 14. Three-axis gyroscope Simulink model
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4. Passive magnetic system for angular rate damping

In [16], a passive magnetic attitude control system for high angular velocity
damping was studied by means of simulations performed in the MATLAB/Simulink-
based simulator for ALMASat missions. The system consists of hysteresis rods placed
along all three axes to dissipate the high rotation Kkinetic energy caused by a non-
nominal separation from the launcher. A preliminary study was carried on in [16] and
then the manufacturer was selected and contacted.

The selected soft magnetic material is MUMETALL, also called Permalloy, available
at SISRAM S.p.A., the Italian distributor of VACUUMSCHMELZE (VAC).
MUMETALL belongs to the category NiFe alloys with high percentage of Ni (72-83
% Ni). The alloys in this group are currently the softest magnetic materials available.
They are characterized by high initial and maximum permeability and low coercivity
but have relatively low saturation polarization. The low coercivity is strongly required
since it makes the material easily magnetized by the Earth magnetic field.

This material is available for small amounts in shape of strips with thickness, t =
1 mm and width, w = 150 mm. The most important magnetic, mechanical, physical
properties and the chemical composition of this Nickel Iron alloy are reported in Table
5 and Table 6:

Magnetic properties  Saturation induction B; = 0.8 T

Coercivity force H. = 1.5 A/m

Mechanical properties  Young modulus E = 170 GPa
Physical properties Density p = 8.7 g/cm?

Curie Temperature T, = 400 °C

Table 5. MUMETALL properties

Ni Cu Mo Fe others
MUMETALL 766% 45% 33% 147% Mn,Si

Table 6. MUMETALL chemical composition in weight percentage
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MUMETALL is characterized by a S-shaped hysteresis loop, which is illustrated in
Figure 15 for the typical magnetic field range [—40,40] A/m during ALMASat-EO
mission.

Hysteresis loop
0.8

=
b
T

Magnetic flux B (T)
T

=
b
T

B

08 . 1 1 \ 1 L 1

-40 -30 =20 -10 n] 10 20 30 40
Magnetic field H (A/m)

Figure 15. MUMETALL ideal hysteresis loop in the range [-40, 40] A/m

The soft magnetic material need to be subjected to a final heat treatment to set the
optimum magnetic properties. This final magnetic heat treatment step takes place after
final shaping. The high temperature annealing for MUMETALL takes from 2 to 5
hours at 1000 — 1100 °C and the cooling in furnace should arrive to < 300 °C. The
heat treatment should be done in H, atmosphere. In fact, hydrogen is the preferred
protective gas. It prevents scaling and interacts chemically with the metal, for instance
removing impurities. Alternatively, nitrogen can be used but the magnetic quality is
generally lower when compared to heat treatments under hydrogen although it is
cheaper.

Now, the magnetic interaction of the hysteresis rods on the active magnetic
attitude control system is studied starting from the conclusions reached in [16]. The

magnetic interaction was studied by means of Monte Carlo simulations, starting from a
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random distribution of the initial angular velocity norm on the three components and
considering the time needed to reach a specific satellite condition. In particular three
scenarios were investigated. In the first scenario, the interaction between the magnetic
control law —Bdot, performed by magnetic coils, and the effect of the hysteresis rods
during the detumbing motion is studied. Then, in the second scenario the interaction
between the magnetic control law -Bdot and the effect of the hysteresis rods during the
satellite spin up is investigated. Finally, in the third scenario, the interaction between
the magnetic coils and the hysteresis rods during the satellite stabilization up to the
three-axis control state is studied. The results, in terms of time, obtained considering
an attitude control system with and without hysteresis rods were compared in order to
find out a possible magnetic interaction between the hysteresis rods and the active
magnetic attitude control system. The results showed that the hysteresis rods effect is
negligible in the first and in the second scenario. The results obtained for the third
scenario are analyzed in this work.

Further investigations showed that the large time difference between the configuration
with and without hysteresis rods in three-axis control is due to an error in the
estimation of cos(@), where 6 is the pitch angle. This variable is generally estimated
using the attitude matrix computed by the TRIAD algorithm used for attitude
determination in ALMASat-1. However, when the measured sun vector and the
measured geomagnetic vector are aligned or the satellite is in eclipse, the computed
attitude matrix becomes singular and cos(8) cannot be estimated in this way. In this
case, the attitude determination subsystem estimates cos(8) supposing that the angle ¥
between the satellite y-axis and the versor normal to the orbital plane is small. Using
this hypothesis, it is possible to estimate cos(@) by using only the geomagnetic vector
measurements since the z-x plane in the body frame and in the reference frame are
supposed to be parallel and rotated by 6. If the hypothesis on y is not true, then the
estimation of cos(8) is slightly inaccurate. Since one of the conditions for three-axis
control is cos@ > 0.99, where 6 is the estimated pitch angle, the inaccuracy in the
estimation of cos(8), during the verification of the conditions before the three-axis
control, leads to a time delay in three-axis control engagement. Thus, the large time
difference between the two configurations is due to this attitude estimation problem

which may be solved using more attitude sensors measurements (Sun sensor,
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magnetometer, Earth horizon sensor, solar cells and gyroscopes) combined in a multi-
rate Kalman filter for attitude estimation in all conditions (two vectors alignment and
eclipse period). The small time differences between the two configurations are due to
hysteresis rods but they are of order of few minutes and hence, negligible.

Figure 16 shows that the estimated cos(8) is smaller than 0.99 (see first data tip in
Figure 16) then the three-axis control does not act on the satellite at that time. This is
due to the error in the hypothesis of small . In fact, although the estimated pitch angle
6 = tan~'(sin(8)/cos(8)), where sin(8) and cos() are functions of geomagnetic
vector measurements, passes through zero, the estimated cos(8) is smaller than 0.99.
The three-axis control acts on the satellite only if the condition cos(8) > 0.99 is
fulfilled (see second data tip in Figure 16). In conclusion, considering the results
reported in [16] and what stated above, the influence of the hysteresis rods on the
active magnetic control system is negligible.
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Figure 16. Time history of the cosine of the estimated pitch angle (top), the estimated pitch angle (middle)
and the true angle 1 between the satellite y-axis and the versor normal to the orbital plane (bottom) during
three-axis stabilization requirements check.
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5. Angular rate estimation using solar cells

Solar cells in short circuit mode can be used as simple Sun sensors which work by
measuring the current output. They are lower price, mass and power consumption than
digital Sun sensors. Thus, they can be used for coarse three-axis attitude determination
in safety mode [13]. Moreover, they can be used for angular rate estimation in the
event of an unexpected gyroscope failure or when the gyroscopes are saturated by high
angular rate of the spacecraft. For instance, in [17], the problem of estimating the
angular rate of a satellite in tumbling motion, based on sequential measurements of a
single directional vector (Sun direction measurement), is solved by a deterministic
algorithm that provides a coarse angular velocity estimate used to initialize an
extended Kalman filter (EKF). In [18], an algorithm for angular rate determination
using varying solar array currents over an entire orbital period is implemented to
graphically determine an average spin frequency. By taking the current data over the
given time period and converting it to the frequency domain, a clear spike represents
the most frequently occurring rate. In this work, the angular rate estimation of a
tumbling spacecraft in safety mode (when low power consumption is required) is
performed by an EKF, as described in [19], using sequential readings of solar cells
instead of Earth’s magnetic field. This filter has been already implemented for
ALMASat-1 mission as the only solution to estimate the angular velocity using
sequential readings of Earth’s magnetic field since no gyroscopes were mounted on
board. Furthermore, in case of failure of digital Sun sensors, sequential readings of
solar cells can be used for attitude determination together with magnetometer data
using a single-point algorithm like TRIAD, implemented for ALMASat-1 mission, or
filtering algorithms like an EKF or an unscented Kalman filter (UKF) where the
uncertainty of the measurement can be incorporated.

5.1. Extended Kalman filter for angular rate estimation

In this section, a summary of the extended Kalman filter implemented to estimate

the satellite angular velocity using sequential sensor readings is reported.
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The satellite is assumed to be in tumbling motion, such that there are no internal
torques acting on the satellite. Because the attitude matrix is assumed unknown, the
external disturbance torques are represented in the mathematical model by a zero mean
stationary process noise. The Euler’s equation describing the rigid body dynamics can

be written as:
@ =] (~wx]w)+§

where w is the satellite angular velocity, J is the inertia matrix and ¢ is a zero-mean
Gaussian process noise with power spectral density Q.

The relation between the satellite angular velocity and the measurements variation is
given by the filter observation model:

db _ b

E_E-FwXb

where the left hand side (lhs) of the equation is the temporal derivative of the
measurement vector and the right hand side (rhs) is the measurement time variation in
a body-fixed frame.

For most orbits, the lhs, which is generated only by the change in position of the
satellite (minimal during the short sampling interval) and by the slow Earth rotation, is
negligible relative to both terms on the rhs of that equation. Therefore, we can set
db/dt = 0 which yields:

db b= bx]
ot = ¢ - @

where [b x] is the cross product matrix. The proposed estimator is an extended
Kalman filter. The filter’s state vector x;, consists of the three satellite angular velocity

vector components in the inertial reference frame:
_ T
Xy = [wx Wy wz]

The state propagation is performed by the following non linear state equation,

assuming a sampling interval At = tj,,; — t:

Xier1 = Ppxp +uy
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where @, is the linearized dynamics state transition matrix and wu; is the stationary
zero-mean process white noise. The time propagation of the state estimate can be
performed via numerically integrating Euler’s equations between consecutive sampling
times. However this method requires a high computation effort. This is why the

linearized dynamics state transition matrix is used. It can be approximated by :
®, =1+ F At

where [ is the 3 x 3 identity matrix and the Jacobian matrix F; is computed as:

[ 0 (]yy _122)23 (]yy _]zz)fz_
]xx ]xx
af (/zz _]xx)£3 (/zz _]xx)fl
= — =" - 0 a2 ‘A7 -
Fle 0xly=z Iyy Iyy
(]xx _]yy)fz (]xx _]yy)fl 0
L Jzz Jzz

The sensor reading vector at time t;, is related to the known reference vector via:
by = by + vy

where vy, is the sensor stationary measurement noise:
v,~N(0,02)

where a2 is the variance of the measurement noise. To derive the filter’s measurement
equation, the body-referenced temporal derivative is approximated using a first-order
backward finite difference, computed using two successive sensor readings. Thus, the
observation equation is written as:

z = Hyxy +ny

where H, = [b, x]|At is the time-varying observation matrix, z; = by, — by, is the

effective measurement vector, and n, = v, — vj_; is the effective measurement noise.
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5.2. Simulations

First, the model of solar cells is validated comparing the Sun position estimated
using the solar cells current outputs to the true Sun position in the body reference
frame computed by the Sun position propagator. Then the satellite angular velocity is
estimated using the extended Kalman filter (EKF), described in [19] and summarized
in 5.1, where the magnetometer readings are replaced by the solar cells measurements
sampled at a frequency of 2 Hz.

The satellite is in detumbling motion with a random initial angular velocity norm
ranging from 0°/s to 100°/s randomly distributed between the three vector
components. Eclipse is also taken into account to investigate its effects on the angular
velocity estimation filter. During the eclipse, the filter is switched off in order to avoid
divergence. In order to consider different eclipse period lengths, a random orbital right
ascension of the ascending node (RAAN) is chosen. Moreover, to consider different
eclipse period starting time instants, the satellite initial position along its orbit is

randomly chosen, considering a random epoch time :
7 = launch date + rand - Ty,

where rand is a random number between 0 and 1.

Each simulation lasts one orbital period, T,,,, plus an initialization time period equal
to 2000 s in order to ensure solar cells temperature convergence. The orbital period is
given by:

3
Torp = 211\/% = 5908.6 s = 98.5 minutes

where a = 7064 km is the orbital semi-major axis and u = 398600.44150 km3/s? is
the Earth gravity constant.

The estimated angular velocity is compared to the true angular velocity computed by
integration of the rigid body dynamics equation in order to check the filter
performance. To improve the filter convergence, which is very important in real-time

estimation, a high initial covariance matrix P, is considered. Since the initial angular

40



velocity estimation is @, = [0 0 0] rad/s and the maximum initial angular velocity

norm is equal to 100°/s = 1.7453 rad/s, the initial covariance matrix P, is:
Py = 174532 rad?/s? - I35

The process noise covariance matrix Q; and the measurement noise covariance matrix
R, values come from filter tuning considerations. In particular, they are chosen equal

to:
Qx = 1075 rad?/s? - I3x3
Rk = 10_3 * I3><3

Monte Carlo simulations are run in order to statistically validate the filter performance.
The analysis statistic over the 1000 simulations of the estimated angular velocity is
performed considering the mean and the standard deviation of the error on each
angular velocity component. Moreover, in order to have a statistical parameter which
describes the error on the angular velocity norm, the root sum square of the standard
deviation of the error on each component is considered:

— ’ 2 2 2
2error_ 0x+0y+az

5.3. Results of simulations

In this section the results of Monte Carlo simulations and investigations on
results are reported.
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Figure 17. Mean of the error in Monte Carlo simulations
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Figure 18. Standard deviation of the error in Monte Carlo simulations
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Figure 19. Root sum square of the standard deviation of the error in Monte Carlo simulations

In Figure 17 the mean of the error over 1000 simulations is shown. Most of the points
are concentrated around zero, which means that a good performance of the estimation
filter is achieved. However in the top panel of Figure 17, where the mean of the error
of the angular velocity on x-component is illustrated, some relatively large values can
be identified. This is due to slow filter convergence after an eclipse period. Thus, a
filter re-initialization is needed to ensure a fast filter convergence which is essential in
real-time estimation. The initial state vector estimate is chosen equal to the state vector
estimated before the eclipse since it is the best available guess. The result is shown in
Figure 20. The filter converges rapidly (in 20 s) after the eclipse period (between
t = 3100 s and t = 5200 s), illustrated in Figure 20 by the shaded region, thanks to

the re-initialization of the error covariance matrix P;.
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Figure 20. Angular velocity estimation after an eclipse period. The shaded region illustrates the eclipse
period.

By looking at the y-axis scale in Figure 17, it is possible to notice that the mean of the
error of the angular velocity on the y-component and z-component are larger than
those on the x-component. This difference is due to ALMASat-EO inertia matrix (see
Table 1) and to the smaller accuracy of filter estimation for high angular velocity. A
spacecraft can tumble with a predominant high angular velocity around the maximum
and minimum principal axis of inertia for stability considerations (see [4]). Thus, since
ALMASat-EO y-axis is the maximum principal axis of inertia and z-axis is the
minimum, ALMASat-EO cannot tumble with a predominant high angular velocity
around the x-axis. Moreover, since the measurements sampling frequency is 2 Hz, the
filter estimation is not very accurate for high angular velocities but it is still acceptable
for our purposes. A larger sampling frequency, in the order of 5 Hz or 10 Hz, leads the
filter to diverge, as tested by means of simulations, because the measurement noise is
too high. Other Monte Carlo simulations showed that the difference in terms of mean
of error along the components does not occur if a spacecraft with all three equal
principal axes of inertia is considered, as expected. Figure 21 and Figure 22 show the
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angular velocity estimation for two simulations where the mean of the error along the

y-component and z-component is larger than the average.

Angular velocity estimation
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Figure 21. Angular velocity estimation for high angular velocity on y-axis. The shaded region illustrates the
eclipse period.

45



Angular velocity estimation
T

80 T T T T

— o, true — o, true — 0, true o, estimate — o, estimate — oR estimate

Angular velocity (°/s)

\ i i
-100
] 1000 2000 3000 4000 5000 6000

Time (s)

Figure 22. Angular velocity estimation for high angular velocity on z-axis. The shaded region illustrates the
eclipse period.

By looking at the particular cases highlighted by the standard deviation of the error in
Figure 18, where the obtained values are much higher than the average (see the red
rectangle on the y-component panel), one can conclude that this is due to a particular
combination between the Sun position in body axes and the angular motion of the
satellite. Solar cell measurements cannot estimate accurately the Sun position if the co-
elevation angle of the Sun rays on the solar cells is larger than 85° since the cosine
current law is not valid and the output current cannot be disentangled from the noise,
as explained in 3.8. In the considered simulation, two of the Sun line-of-sight (LOS)
vector components (x and z-component) are estimated to be zero in the time range
3300s <t <4700 s due to this problem. This means that the measured LOS unity
vector x and z-component are constant and equal to zero and the y-component is equal
to one due to the unity norm constraint (see Figure 23). In this case, it is better not to
normalize the Sun LOS vector, so that an accurate Sun LOS vector y-component can
be estimated (see Figure 24).
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Figure 23. Sun LOS unity vector y-component. The estimation is not accurate due to the unity norm

constraint.
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Figure 24. Sun LOS vector y-component. The estimation is accurate since the unity norm constraint is not

applied.

However the filter is not able to correctly estimate the angular velocity (see Figure 25).

This can be simply explained considering a satellite spinning around the y-body-axis.

In this case, the time-varying measurement of the Sun LOS vector component on the x

or z-axis is needed in order to estimate this angular velocity. From a mathematical

point of view, this can be seen in the filter observation model: in fact,

measurement is constant in time, we have:
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which leads after few iterations to a null innovation i;, vector and thus the estimate x;,

is constant:
ik = Zy — Hkx,:
Xk = Kkik + x;

where z, is the measurement vector, H,, is the observation matrix, x; is the previous

estimate and K, is the Kalman gain.
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Figure 25. Angular velocity estimation failure in case of constant measurement values

In order to avoid this unacceptably large estimation errors, the filter is switched off
when Sun LOS vector components cannot be correctly estimated. Adding this
condition, the result is much better, as shown in Figure 26.
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Figure 26. Angular velocity estimation in case of constant measurement values

Finally, in order to reduce the measurement noise on the reconstruction of the Sun

position in the body-fixed frame using the solar cells outputs, the unity norm constraint

= f§,§+§§+§§:1

The smallest component of the unity vector S is obtained by the smallest current of the

can be considered:

P

S|

currents given by the solar cells and hence, it is more influenced by the noise. Thus, it
can be calculated from the equation above to reduce the noise influence. The sign
ambiguity is solved knowing which of the six solar cells are illuminated by the Sun.
Obviously, this method can be used if three of the six solar cells are hit by the Sun. For

instance, let us consider the case when |S, | is smaller than [S, | and ||, then:

P P

2
y

Se==%[1-

NN

where the positive sign is considered if the Sun hits the solar cell placed on the +x

semi-axis and the negative sign is used if the Sun hits the solar cell placed on the —x
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semi-axis. The values S, S, and S, are calculated in 3.8 and indicated as fsy,gst 1,

Tsungst2 and Tsynpse 3 respectively.
Implementing the improvements suggested by these Monte Carlo simulations, the
estimation error ranges from 0.05 °/s, when the angular velocity norm is small, to

10 °/s when the angular velocity norm is high (||w|| = 100 °/s).

5.4. New solution

In this section, a new arrangement of the solar cells on the satellite faces is studied
in order to be able to correctly estimate the Sun position in all conditions. In fact, as
widely explained in 5.3 and 3.8, the Sun position cannot be accurately estimated when
the Sun LOS unity vector, S is almost perpendicular to a unity vector normal to the

solar cells, 7 that is when:
Shoay * T, < COS at;

The threshold value of the co-elevation angle, a; = 5° is approximated and it will be
confirmed by new tests on solar cells. The possibility to correctly estimate the Sun
position by solar cells output currents have benefits both for the angular rate
estimation, as discussed in 5.3, and for attitude determination (see 6). Thus, new
arrangements of the solar cells have been studied and a final solution is presented. In
order to overcome this problem, two solar cells mounted on two inclined planes are
considered on each satellite face (see Figure 27 and Figure 28). In this case, there are
12 solar cells on the satellite for Sun position estimation plus other 12 cells for
redundancy. The inclination of the planes is opposed to each other and it is small but
larger than a, to avoid the shadowing of the solar panels and to ensure the validity of
the current cosine law at the same time. Considering this new configuration, the Sun
hits, at each time instant, a minimum of four solar cells to a maximum of six cells
(leaving out the redundant cells) with an elevation angle larger than a,. The orientation
of the solar cells in the body-fixed frame can be mathematically described by the unity

vectors normal to the cells:
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Ai; = [cosi O sini]
A, = [cosi O —sini]
fiy = [sini cosi 0]
A, = [—sini cosi 0]
fis = [0 sini cosi]

e = [0 —sini cosi]

>

A, = [—cosi 0 sini]
fig = [—cosi O —sin ]
flg = [sini —cosi 0]
flyo = [—sini — cosi 0]
fi;; = [0 sini —cosi]

fi;, = [0 —sini —cosi]

where i is the inclination of the cells with respect to each satellite face. In order to
arrange these solar cells on ALMASat-EO, the surface area is reduced and
consequently the short circuit current given by each cell is smaller. This leads to a
lower signal-to-noise ratio (SNR) but the short circuit current at high co-elevation
angles is still acceptable (see Table 7). As shown in Figure 27, each solar cell used as

coarse sun sensor is cut leaving two electrical contacts to ensure redundancy.

Solar cell Value Unit

Short Circuit Current I, ata = 0° 1214 mA

Short Circuit Current I, at « = 85° 10.6 mA
Inclination 11 °

Surface Area 724  cm?

Table 7. Solar cells main parameters in new configuration
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Figure 28. Solar cells arrangement on ALMASat-EO

To estimate the Sun LOS unity vector, §body in the body-fixed frame, a new algorithm
is implemented for this new configuration. The algorithm is based on the cones
intersections. In fact, if the Sun hits a solar cell with a co-elevation angle, a; then the
Sun lies along a circle which is the intersection of the cone (defined around the unity

vector normal to the cell, 7i; and with the angle equal to the arc-length separation, «;
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between the Sun and 7;) with the unity celestial sphere. That is to say the circle is the
locus of possible Sun position corresponding to the angle measurement «;.
Considering another circle generated by the intersection between the unity celestial
sphere and the cone defined around the unity vector, #; normal to another solar cell
illuminated by the Sun, two intersections between the circles on the unity sphere are
defined. They are the two possible Sun positions, $; and S, on the unity sphere as

shown in Figure 29.

ni ol

i nj

Sz

Figure 29. The two possible Sun positions on the unity celestial sphere.
As stated above, at least four solar cells are illuminated by the Sun. Thus, we can
define a third circle, generated by the intersection between the unity celestial sphere
and the cone defined around the unity vector, 7, normal to a third solar cell
illuminated by the Sun, to solve the ambiguity between the two possible Sun LOS
unity vectors. This geometrical problem is specified by three simultaneous equations in

three unknowns (S, Sy, S,):
Spoay " fli = COS @;
Spoay " fij = COS a;
S\‘ZT)wody ’ S:body =1
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The first two equations define the cones angles and the last one describes the unity
norm constraint of the Sun LOS vector. These three equations may be solved using the
following technique due to Grubin [1977]. Let:

cosa; — ;- 1 COS a;

X = R
1- (- 7y)
__Cosa; —f; - A;jcosa;
y= 2
1 - (- 7y)
z==

1—-xcosa; —ycosa;
~ A \2
1 - (- 7y)

C=ni><nj

Then, the solutions for S, are given by:
S'body = xf; + yf; +zC

This equation gives the two possible ambiguous Sun LOS unity vector solutions. The
ambiguity is solved repeating this routine considering a third cone. If the radicand in
the equation for z is negative, then no real solutions exists; i.e., the cones do not
intersect. However, in our problem there are always three intersecting cones which
defines a unique solution.

In the real case problem, noise on the output currents should be taken into account.
This is simulated as described in 3.8. In order to reduce the noise influence on the Sun
position estimation, the algorithm takes into account that the highest solar cell output
current corresponds to the most reliable co-elevation angle measurement since the
SNR is the highest.

5.5. Results of simulations for the new solution

To test the effectiveness of this new proposed arrangement of the solar cells and
the corresponding algorithm to estimate the Sun LOS unity vector, the scenario,
described in 5.3, when the angular rate estimation was problematic (see Figure 25) is
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considered. The angular velocity estimation in this scenario is shown in Figure 30. The
filter performance are good over the entire orbital period differently from the case
described in 5.3. The error slightly increases to a maximum of 1.5 °/s in a small time
interval when the Sun position variation in body axes is very close to zero. Comparing
Figure 25 to Figure 30, the benefits of this new proposed solution for solar cells

arrangement in angular velocity estimation is clearly proved.
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Figure 30. Angular velocity estimation using the new proposed solution

In order to statistically validate the angular rate estimation using the new solution
described in 5.4, which consists of a new arrangement of the solar cells on the satellite
and a new algorithm to estimate the Sun LOS vector, Monte Carlo simulations are
performed. These simulations are run using the same parameters described in 5.2. The
filter re-initialization after the eclipse period is also considered as suggested from the

results previously obtained.
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Figure 31. Mean of the error in Monte Carlo simulations for the new solution
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Figure 32. Standard deviation of the error in Monte Carlo simulations for the new solution

56



Root Sum Square (/s)

I

%

+
+

#

¥

+*

*

w
1
*
*
*

* 4 * 4
+ :
E o4 **t *, ¥
*** gk L oA
+ ** * ¥ F
* W **5**1

* *+ : K #
*, + +

# T
. aHe %
# 4& ? #* +
& 4 ** *** £ * » *# *E**W ﬁ"k*j_& g W *** T oAk "
*%f-**; ﬂﬁ% e a;#* Ly g&* *af*' ’fﬁ; wt #? g ;P 4%‘* ¥ iy ;
o W*ﬂ#w b #Wﬁf* ****%* iy *%’*& I** N ‘ﬁw#f e RO o
1 DD 200 300 ADD SDD GO0 700 800 900 1000
Simulations

*+
wF
o

*
**

+%

Figure 33. Root sum square of the standard deviation of the error in Monte Carlo simulations for the new
solution

Figure 31, Figure 32 and Figure 33 show respectively the mean of the estimation error,
the standard deviation of the estimation error and the root sum square of the standard
deviation of the estimation error, Z.,..,- (see 5.2) for the Monte Carlo simulations.
Comparing Figure 31 with Figure 17 and Figure 32 with Figure 18 and Figure 33 with
Figure 19, one can state that the angular rate estimation is more accurate using the new
proposed solution.

By looking at the y-axis scale in Figure 31, it is possible to notice that the mean of the
error of the angular velocity on the y-component and z-component are larger than
those on the x-component. As described in 5.3 this is due to ALMASat-EO inertia
matrix. The larger values in Figure 31 are still due to the smaller accuracy of filter
estimation for high angular velocity while the larger values in Figure 32 are still due to
the convergence time at the beginning and after the eclipse period. These values are
smaller than those ones shown in Figure 18 thanks to the filter re-initialization.
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6. Attitude determination

The problem of attitude determination (AD) from vector observations is to specify
the orientation of the axes of a Cartesian coordinates system B, fixed to a rigid body
(e.g. the satellite), in a given Cartesian coordinates system of reference R. The on-
board attitude estimation represents a major task of the attitude and orbit determination
and control subsystem (AODCYS) as it is necessary to guarantee the spacecraft pointing
accuracy as prescribed by the mission requirements. Several algorithms for spacecraft
attitude estimation can be found in the literature and they are mainly divided into two
categories:

e Single-point algorithms

e Filtering algorithms

Single-point algorithms sample the attitude hardware once and provides an estimate of
the attitude at the time of sampling. Filters continuously sample the sensors and
incorporate dynamic models of the attitude, in order to give an attitude estimate based
on a weighted average of the predicted measurement and sensor data.

The single-point algorithms are based on the least square’s problem published in 1965
by Wahba. The problem formulation is known as Wahba’s problem, and the optimal
solution is the attitude which minimizes Wahba’s cost function:

n
1
JA) =35 ailib; = Aril?
i=1

where A is the attitude matrix, b; is the measurement vector in the body-fixed frame, r;
is the reference vector in the reference frame and a; are proper weights. The principle
of attitude determination by Wahba’s problem formulation is based on vector
observations: it requires that two or more vectors can be measured in a spacecraft-
fixed frame, and the same vectors must be known in a reference frame as well. By
comparing the vector observations in reference and body-fixed frames, the attitude of
the satellite may be estimated. Since Wahba formalized the problem in 1965,
numerous solutions to Wahba’s problem have been published. The TRIAD algorithm

is a simple solution to Wahba’s problem based on two vector observations. The

58



simplicity of the TRIAD algorithm still makes it attractive for on-board
implementations as for ALMASat-1 mission. Davenport’s Q-Method algorithm uses
the quaternion attitude representation to parameterize Wahba’s problem, which is
formulated as an eigenvector problem. The Quaternion Estimator (QUEST) algorithm
is an extension to Davenport’s Q-Method algorithm, developed by Shuster in 1981,
which avoids solving the eigenvalue problem, and instead formulates Wahba’s
problem as a characteristic equation. In 1988, Markley published an algorithm which
solves Wahba’s problem, in its original formulation using the attitude matrix (or direct
cosine), by applying the Singular Value Decomposition (SVD) Method. This algorithm
evolved into the Fast Optimal Attitude Matrix (FOAM) algorithm, published in 1993
by Markley, and is comparable to the QUEST algorithm in computational speed. In
1998, Mortari published the EULER-Q algorithm which solves Wahba’s problem in
terms of Euler angle and axis. In [20] an accurate description of several single-point
algorithms can be found and in [21] several simulation results are illustrated.

Several extensions of the single-point algorithms exist, which make use of multiple
sensor samples in order to improve the attitude estimates. The Filter QUEST, [Shuster,
1989], the Recursive Quaternion Estimator (REQUEST), [Bar-ltzhack, 1996] and its
optimized version (OPTIMAL REQUEST), include past measurements that require
accurate knowledge of the angular velocity in order to propagate the attitude between
sample times. A filtering algorithm, which include multiple samples and dynamical
descriptions of the system, was presented by Rudolph E. Kalman in 1960. From a
statistical description of the system dynamics and measurements, the Kalman filter
produces an optimal estimate of the state of the system. However, some extension to
the Kalman filter is necessary in order to apply the filter in attitude determination. The
problem is that the general used attitude parameters, the attitude matrix and the
quaternion, are constrained parameters, which must be taken into account when
calculating estimates. In 1985, Bar-ltzhack and Oshman derived an Extended Kalman
Filter (EKF), which assumes an additive correction. The EKF linearizes a non-linear
system around the current estimate of the system state and applies the linear Kalman
filter equations on the linearized system. In 1997, Julier and Uhlmann published a new
algorithm, known as the UKF. This algorithm is gaining recognition throughout the

attitude determination research community, even though the EKF has been the
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preferred ADCS algorithm for more than two decades. The EKF may experience
problems with non-convergence, due to first order approximations of the system
linearization. The improvement of the EKF has been branched in two direction, the
Iterated Extended Kalman Filter (IEKF), and the UKF. The IEKF uses multiple
iterations of the EKF in order to ensure convergence. The UKF works on the premise
that approximating a Gaussian distribution is easier than approximating a non-linear
function. The unscented transformation (UT) uses a set of samples, or sigma points
that are determined from the previous estimate error covariance, process noise
covariance and the previous state estimate of the state. Sigma points are then
propagated through the nonlinear system in order to obtain the a priori error covariance
and the a priori state estimate. The UKF has been adapted to attitude determination by
Crassidis and Markley in 2003. The advantage of the UKF over the EKF is the fact
that calculation of the first order Jacobians of the non-linear system models are
avoided. In [21] an accurate description of some filtering algorithms is given and
performance analysis of filtering algorithms can be found in [21] and [1].

6.1. Federated Unscented Kalman Filter

The filtering algorithms used for spacecraft attitude estimation are mainly
centralized algorithms which do not satisfy requirement of multi-rate information
synthesis, fault tolerance and system modularity. Thus, in this work, a distributed
multi-sensor fusion architecture is considered in order to satisfy the aforementioned
requirements. In particular, a federated version of the unscented Kalman filter (FUKF)
is implemented in ALMASat-EO attitude determination subsystem and tested through
simulations. The FUKF algorithm is preferred to the federated extended Kalman filter
(FEKF) for its better precision and faster convergence speed [22].

Federated filtering consists of two parts: local filters (LF) and the master filter (MF).
The LFs are UKFs parallel processed and independent of each other, and their
estimated results are fused in the MF. In each LF, a local estimate is obtained using the
measurement of local sensors. The MF uses the estimates of the LFs to update the
global state estimate in a fusion process, and this result is used for the initialization of
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LFs [23]. A scheme of the FUKF implemented for ALMASat-EO ADCS is illustrated

in Figure 34:
Reference system Time Fusion
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Figure 34. ALMASat-EO Federated Unscented Kalman Filter scheme

In this work, a multi-rate sampling and not periodical fusion system is considered since
the sampling periods of sensors can be quite random and asynchronous. Sometimes,
certain sensors may get out of their field of view during certain time spans. For
example, when the spacecraft went into the shadow of the Earth, the sun sensor and the
solar cells could not take part in the fusion process. This is also the case when the
Earth is not in the FOV of the Earth horizon sensor. In addition, when fault occurred,
the pertaining LF should be isolated [22]. For this purpose, a fault detection and
isolation (FDI) algorithm is implemented before the MF. Fault detection usually
requires continuous careful monitoring of the measured output data. In a normal case,
the output data follow known patterns of evolution with limited random disturbance
and measurement noise. However, the measured output data change their nominal
evolution pattern when sensor failures occur. General fault detection algorithms are
based on considering these differences between the evolution patterns and the
measured output data [23].

In this approach, the global sampling period is supposed to be the same as the
reference system, i.e. the gyroscopes, which is also the most rapid sensor in the
system. Due to the on-board computer limited power, algorithm computational burden
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should be considered. Hence, sigma points are only produced and propagated for those
LFs whose dedicated sensor had new measurement. If there had no sensor sampled in
the system, then the FUKF only propagates forward in time the state and its covariance
without measurement correction, and sigma points are not calculated reducing the
computation burden. This technique is called information-sharing process. At the
beginning of each global sampling step, every LF is checked to acknowledge whether
there is new measurement in its dedicated sensor and share fractions ™, m = 1,2, ... [,

where [ is the number of LFs, are calculated:

gm = {O if local sensor m did not sample
temp = | g if local sensor m sampled

l
B™ = Bllup! ) By
m=1

where Bg* represents the precision of the m-th LF and the following law of
conservation of information should be fulfilled:

The information-sharing process can be written as:
(P~ =™ (P) 1 (@) = p"(Q) ™

where Py, is the covariance matrix and its inverse is known as the information matrix
and Qy is the process noise covariance matrix. According to [26], this matrix can be

calculated as:
1
At <0-3 - Eo-iAtz) 13><3 O3><3
O3x3 0513><3

where At is the gyroscope sampling time, o2 is the variance of the Rate Random Walk
(RRW) noise term and o2 is the variance of the Angular Rate Walk (ARW) noise

term.
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Assuming that all local estimates are uncorrelated, the global estimate of the

covariance matrix and error state, x; is given by the following optimal fusion:

l
(P =) (B

l
X :Pk Z(Plzn)—lx;(rl
m=1

Now it is possible to define the sensitivity factor S™ used for the FDI algorithm:
™= (gt = x )T (P + P) T — xy)

When S™ is smaller than a threshold value, then the m-th sensor is considered to be
working well, and therefore its output can be used in the optimal fusion. However, if
S™ is larger than a threshold value, then the m-th sensor could be having some
problems. In this case, global estimates should be obtained without using the output of
the m-th sensor. The threshold value can be selected based on a Chi-square distribution
and optimized in the experiment for the particular application [24].

For convenience, the UKF implemented in each LF is summarized below [26]:

1. Initialization
Determine the set of associated weights for the UKF algorithm:

1
W = W= (L a? + W = W= i=1..2n
A+n A+n ' o 2(A+n)

where n is the dimension of the error state vector, A = a?(n + k) — n is a scaling
parameter, a determines the spread of the sigma points around the error state and is
usually set to a small positive value between 10™* < a < 1 (e.g. 1073 as suggested in
[22] and [25]), k is a secondary scaling parameter which is set to 3 — n minimizing the
mean-squared-error up to the fourth order [26] or it is set to O (see [22] and [25])
avoiding negative values of k which can lead to a possibility that the predicted

covariance become non-positive semi-definite, and £ is used to incorporate prior
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knowledge of the distribution of the error state (for Gaussian distributions, g = 2 is
optimal) [25].

T
Then initialize the attitude quaternion gZ, the error state vector x¢ = [6p¢” b¢']| and

the system covariance P;. If no initial attitude quaternion estimate is available, the
identity quaternion is chosen:

qs =[0001]"

The error state vector consists of a three-component attitude error vector, represented
using a generalized Rodrigues parameters, and gyro bias estimates. The initial attitude
error vector is set to zero: §pg = 0. The system covariance is a 6 < 6 matrix, where
the upper 3 x 3 partition corresponds to attitude error angles and the lower 3 x 3
partition corresponds to gyro error bias.

2. Information-sharing and sigma points calculation

First, check new measurements and calculate information-share fractions, then apply
Cholesky decomposition to P, = P, + Q, to get Ny, (P, = NN and calculate sigma

points sharing information among new sampled LFs:
ot(i) = ycoli(Nk)/\/ﬁ_m, i=12...n
ot(i) = —ycoli_n(Nk)/\/ﬁ_m, i=n+1n+2..2n
xk(0) = x;¢
@ =@ +xfi=12,..2n

where y =+/n + 1. Note that the better the precision of the m-th LF, the larger the
share factor p™, the lower the dispersion degree of sigma points y;*(i). Moreover,
note that the Cholesky factorization is applied to P, and not to P_km reducing the
computation burden. Since the next steps of the algorithm are the same for each LF,
the superscript m is omitted.

Now the vector y, (i) is partitioned into:
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N — X @
xe(i) l){fc’(i)

p

where )(,f is from attitude-error part and y2? is from the gyro bias part. The error

T
quaternion corresponding to the sigma points Gq;(i):[Gp;T(i) 5q4;(i)] is

calculated using the inverse transformation from dp to éq:

O + 17+ @ -l Ol

2+ @

805, (D) =

8qET(0) = fa + 6qh (DIxP(), i =1,2,...2n

with a =1 and f = 2(a + 1). The sigma point quaternion, generated by multiplying
the error quaternion by the current estimate, is given by:

qi(0) = q}
gr()=6¢;()®qF, i=12..2n

3. Time propagation
Sigma-point quaternions are propagated forward in time using the following equation:

Qe (D = Qo (D)]1gi@), i=0,1,..,2n

with:

Zy i
—iT  cos(0.5]|lwf ||At)

QUw}) =
Z, = cos(0.5]|wj 1At) I; — [yi <]
Y& = sin(0.5]|wf [|AL) wi/lwil

where At is the sampling interval of the gyro and wj (i) are the estimated angular
velocities:

wi@) =@, —x2@), i=0,1,..,2n
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Then, the propagated error quaternions are determined using the following equation:

851 (D) = qier1 (D) R [97,, O], i=01,...2n

where g~ = [-pT q,]" is the inverse quaternion. Finally, the attitude error part of the
propagated sigma points are given by:

lef-l(o) =0

P41 (D)
Sp [\ k+1 -
Xier1 (D) _f—a+5q2k+1(i)’ i=12,..,2n

with 8qj,, (i) = [6pxT, () <Sq;k+1(i)]T and the gyro bias part of the propagated

sigma points are given by:

xR @D =x2G@), i=01,...2n

assuming that the gyro bias is constant during the time interval At = ¢, — ty.

In the same time, the observation estimation is calculated as:

gk+1(i) = A[q}:+1(l)] "Tk+1, i=01,..,2n

where 1., Is the known reference vector at time t, ., and A is the attitude matrix in

terms of the attitude quaternion:

A(q) = ET(q)¥ ()

with:

2(q) = [q413 + gp X]], W(q) = [q413 —Ip X]]

—p —pT

The predicted mean error state, mean observation and covariance are given

respectively by:

2n
Xiy1 = Z VVika+1(i)
i=0
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2n
Vi+1 = Z W™ gie+1 ()
i=0

2n
P = Z W D1 (D) = 2y 1 101 () = x5 11" + Qi
i=0

4. Measurement update

When new measurements came from the m-th sensor, the innovation can be calculated

as:
Vie1r = Ve+1 — Vi1
where ¥, Is the new attitude measurement in the body frame:
Pre+1 = AQrs1)The1 + Vierr
where v, ., is the measurement noise vector which satisfies:
E{v}=0
E{wT} =021

Then the innovation covariance, the cross-correlation covariance and the Kalman gain

are given respectively by:

2n

PlY, = ZW [9k+1(D) = Yics1] [Grs1 () — Yk+1] + Ryyq

i=0
kxfl = ZW Dtie+1 () = X1 1 0gr41 () — yiaad”

Ki1 = k+1( k+1) !

where R, is the measurement noise covariance matrix and it is given by:

Ris1 = diag|o? o o?]
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where oy, 0, g, are the standard deviations on each component of sensor measurement

noise vector. Finally, the error state vector and the covariance matrix are updated:
Xir1 = Xipr + Kier1Vpss
Pi1 =—Kis1 PR, K4y
5. Fault detection and isolation (FDI)

Each LF output is checked for fault detection using the FDI algorithm reported above.
In case of fault of the m-th sensor, the corresponding LF is isolated and its output is
not used in the optimal fusion.

6. Optimal fusion of covariance matrix and error state vector

The updated error state vectors and covariance matrices coming from each LF are
fused in the MF using the equations reported above.

7. Attitude quaternion update and error state reset
The attitude quaternion is updated using the following equation:

q;c-+1 = 5q;+1 X QI:+1(O)

+T

where 8q;,, = [5pk+1

T .
8q%,,.] is represented by:

—alldpicy I1* + fsz + (- a?)|fap |
2
£2+ [3picl

80y, =

801 =71 [a + 5q1k+1]8p1t+1
st — [sntT T 1T
with x;y, = [Spk+1 bk+1] :
Finally, the attitude error part of the error state vector, 3p;.,, is reset to zero for the

next propagation.
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6.2. Filter Tuning

To get a good performance of the filter, it has to be tuned appropriately. The
tuning factors of the filter include initial state error covariance P,, process noise
covariance Q, and measurement noise covariance R. Each tuning factor has its role in
the filtering process. P, determines how fast the estimator converges initially and has
no responsibility for the filter performance in the steady state. Q and R determines the
tradeoff between the rapid tracking the state variations under the disturbance noise and
the filtering of the measurement noise. In addition, Q and R also determines the filter
stability in the steady state. The convergence speed is one of many factors that are used
in evaluation of the filter performance in real-time. To make a filter converge rapidly,
P, or Q have to be set large compared to R. However, Q and R affects the steady state
performance of the filter [27]. Also the parameters «, 8 and k can be considered as
tuning parameters. Thus, several simulations are required to properly hand-tune the
filter for best performance. An adaptive FUKF is not considered because of the limited

on-board computational power.

6.3. Simulations

Simulations are performed to validate the effectiveness of the proposed algorithm. The
sampling frequency of the sensors are reported in Table 8.

Sensor Sampling frequency
Gyroscope 10 Hz
Magnetometer 1Hz
Sun sensor S5Hz
Earth horizon sensor 1Hz
Solar cells 2Hz

Table 8. Sensors’s sampling frequency

The four attitude sensor measurements are considered asynchronous and the
information sharing factors are chosen according to sensors’ precision and considering

the constraint that the sum is equal to one. In Table 9, the filter tuning parameters and
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matrices values are used in simulations are reported. ALMASat-EO orbital parameters
are considered in these simulation and they were reported in Table 1.

Simulation Parameters Value
Covariance matrix P = diag([100215x3 lI3x3])
Process noise covariance matrix Q = diag([0.00515x3 10™°I553])

Measurement noise matrix Rsun = diag([0.0005% 0.0017% 0.00172])
Rearen, = diag([0.00122 0.00172 0.00142])
Rinag = diag([0.00212 0.00302 0.00262 ])
Reen = diag([0.01382 0.02532 0.01432])
UKF parameters a=10"3,=2k=0

Table 9. FUKF tuning parameters

The Sun sensor is switched on only when the satellite is three-axis stabilized; the
magnetometer measurement is always available; the Earth horizon reading is available
if the Earth is in the sensor’s FOV (see 3.7 and Figure 36) and the solar cells readings
are available if the satellite is not in eclipse (see Figure 35).

Eclipse period
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Figure 35. Eclipse periods. The satellite is in eclipse when the value is equal to zero.
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Figure 36. Earth in the horizon sensor FOV. The value is equal to one when the Earth is in the sensor FOV

First simulations showed that the filter estimation diverges when the magnetometer
reading is the only available attitude measurement. This is the case when the Earth is
not in the horizon sensor’s FOV and the satellite is in eclipse. Thus, in these time
periods, the attitude estimation filter is switched off to avoid a wrong attitude
estimation reading by the ADCS. Since ALMASat-EO is a nadir pointing satellite, the
Earth is always in the horizon sensor’s FOV when the satellite is stabilized (see Figure
36); hence, in this mission phase the attitude is always correctly estimated. Other
simulations suggested not to consider solar cells measurements, once the satellite is
stabilized. In fact, during this phase, the attitude estimation is required to be very
accurate and solar cells give a coarse estimation. Moreover, Sun sensors measurements
are available and they are much more accurate than solar cells readings. However, in
this phase, solar cells can be used as a back-up solution in case of Sun sensors failure.

6.4. Results of simulations

In this section the results of simulations to test the effectiveness of the new

attitude determination system are reported in terms of quaternions and Euler angles
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(see Appendix B). In particular, the accuracy of attitude estimation is investigated
when the satellite is three-axis stabilized. Figure 37 and Figure 38 show the error in the
attitude estimation performed by the FUKF in terms of quaternion components and
Euler angles. The mean and standard deviation of the error in terms of Euler angles,
once the satellite is completely three-axis stabilized are reported in Table 10.
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Figure 37. FUKF, attitude quaternion error. The shaded region illustrates the eclipse period.
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Figure 38. FUKF, Euler angles error. The shaded region illustrates the eclipse period.

Euler angles Roll ® Pitch © Yaw W
Mean of the Error 0.0003 = —-0.0560 < -—-0.0149 <

Standard deviation of the Error 0.1066<  0.1013 < 0.2404 =

Table 10. FUKF estimation accuracy in terms of Euler angles

The results show that a good accuracy in attitude estimation is achieved using the
FUKF. The angular error is larger for the yaw angle but it is still bounded between
—1° and 1°. Moreover, the eclipse does not significantly affect the attitude estimation
accuracy.

In order to fully validate the new attitude determination system, Monte Carlo
simulations are performed. 300 simulations are run randomly varying the launch date
over the year 2013. The statistical analysis consists of calculating the mean of the
estimation error and the standard deviation of the error in terms of the attitude
quaternion components (o, 0, 03, 94) and the corresponding Euler angles (o, gg, ay,).

Moreover, in order to have a statistical parameter which takes into account all four
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components of the quaternion and all three Euler angles, the following parameters are
calculated:

q —_ 2 2 2 2
2error - \[01 + 0, + 03 + Oy

angle __ ’ 2 2 2
2error - qu + 09 + Gz/;

The statistical analysis is performed once the satellite is completely three-axis
stabilized and each simulation lasts two orbital periods, T,,.,. The results are plotted in
Figure 39, Figure 40 and Figure 41, in terms of attitude quaternion, and in Figure 42,
Figure 43 and Figure 44, in terms of Euler angles.
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Figure 39. FUKF, Mean of the error in terms of quaternion in Monte Carlo simulations
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Figure 40. FUKF, Standard deviation of the error in terms of quaternion in Monte Carlo simulations
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Figure 42. FUKF, Mean of the error in terms of Euler angles in Monte Carlo simulations
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Figure 43. FUKF, Standard deviation of the error in terms of Euler angles in Monte Carlo simulations

76



sl : : : : : .

o
I
T
|

Root Sum Square (°)

T

*:

*
*
+
S
+
*
*
"
+

0asld i i i i
0 50 100 150 20 20 30

Simulations

Figure 44. FUKF, Root sum square of the standard deviation of the error in terms of quaternion in Monte
Carlo simulations

The results show the good performance of the FUKEF in attitude estimation. The values
obtained in Monte Carlo simulations are in the same order of magnitude as those
reported in Table 10. By looking at the y-axis scale in Figure 43, it is possible to notice
that the standard deviation of the error in yaw angle, 1y is larger than the standard
deviation of the error in roll and pitch angle, ¢ and 8. This difference is due to the fact
that the Earth horizon sensor is poor in yaw, as stated in Table 2. Furthermore, by
looking at the particular cases highlighted by the root sum square of the standard
deviation of the error in Figure 41 and Figure 44 and by the standard deviation of the
error in yaw angle in the bottom panel of Figure 43, where the obtained values are
much higher than the average (see the points marked by a rectangle), one can conclude
that this is due to alignment between the measured nadir vector and the measured
magnetic field vector. Figure 45 shows the time history of the angle, a between the
measured nadir vector in body frame, £, and the measured magnetic field vector in
body frame, B,. During the eclipse period, they are the only available attitude
reference measurements. Thus, if the corresponding measured vectors are aligned (see
Figure 45 in the time range 1.3 h <t < 1.4 h), the attitude estimation is less accurate
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(see Figure 46). This is the worst-case for attitude estimation. In this case the estimated
yaw angle is not accurate enough for three-axis attitude control.

1
1 11 12 13 1.4 15 16 1.7 18 19 2

Time (h)

Figure 45. Time history of the angle between the measured nadir vector in body frame and the measured
magnetic field vector in body frame

10 T T T

Worr ()

0 1 1 1 1 1 1 1 1 1

1 1.1 12 13 1.4 14
Time (h)

Figure 46. Time history of the error in the yaw angle, y. The shaded region illustrates the eclipse period.
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7. Conclusion and future work

The results from the simulations clearly show that the mission requirements can
be fulfilled in terms of angular rate and attitude estimation using the proposed
solutions.

Monte Carlo verification of the EKF for angular rate estimation using solar cells
output currents offered important indications for software and hardware
implementations. They have been tested by means of simulations and showed the
benefits on angular rate estimation. A first arrangement of the solar cells on the
satellite has been designed.

The utility in fusing the various sensors measurements to estimate the attitude has been
demonstrated by simulating the performance of the FUKF using ALMASat-EO orbital
parameters. Monte Carlo simulations are also performed to fully validate the FUKF.
The MATLAB/Simulink simulation model has been improved by adding the solar

cells, gyroscope and hysteresis rods model.

In order to have an accurate result of the solar cells performance used to
estimate the satellite angular velocity, they need to be tested. In this way a calibration
curve of the current versus the angle of incidence of solar rays can be obtained.
Moreover, testing the current readings, the minimum value of short-circuit current that
can be distinguished from the noise can be defined.

An experimental characterization is also required to check the performance of the
gyroscope. A method to cancel out the initial gyro bias error needs to be identified and
tested to reach the expected accuracy in angular rate measurement.

Hysteresis rods need to be experimentally tested as described in [16] to calculate
accurately their magnetic parameters and influence on the overall satellite system.

The ultimate goal could be to implement the FUKF and the algorithm to reconstruct
the Sun position using solar cell measurements on a microcontroller and running the
algorithms in hardware-in-the-loop simulation to have more realistic performance

information.
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Appendix A

AZURSFPALCE

SO0LAR POWER GMBEH

28% Triple Junction GaAs Solar Cell

Type: TJ Solar Cell 3G28C
More than 1 million 3G28C cells delivered

This cell type is a GalnP/GaAs/Ge on Ge substrate triple juncticn solar cell (efficiency class 28%)
The cell is equipped with an integrated bypass diode, which protects the adjacent cell in the string.

3G28C

I 15501

&

Space
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28% Triple Junction GaAs Solar Cell

Type: TJ Solar Cell 3G28C

_ﬁ Design and Mechanical Data
Base Material

AR-coating

Dimensicns

Cell Area

Avarage Weight

Thickness {without caontacts)

Contact Metallization Thickness (Ag/au)

GalnPiGaAsiGe on Ge substrate
TiOAL Oy

40 x B0 mm £ 0.1 mm

30018 em®

= 86 mglem?

150 £ 20 ymi

4 —10 pm

Grid Design Grid system with 3 contact pads

,g BOL 25614 EE14 1E15
Average Open Circuit Vo [mv] 2867 2560 2534 2480
Average Short Circult Ly [k 6.0 5008 500.9 485.8
Valtage at max. Powar Vo, [miv] 237 2276 2239 2205
Current al max, Power b, [rma] 487.0 4821 4724 457.8
Avarage Eficiency Mo (1367 Wim') [ 280 26,6 255 24.5
Average Effickency Mua 1353 Wim') [3] 28.3 26.9 25.8 247

Stardard: CASOLEA J008 (08-20MY1, alc); Spectrum: AMO WRE = 1357 Wims T = 2050

Waltage Yoy 2300 mv
Min, average current lop ag @ Yoy 485 mA  (higher |o, on demand)
Men. individual current lg mn @ Ve 455 maA,
Integrated pratection diode Vizowara (605 mA) £ 2.5V
T= 254 4 86 hruarse (2.8 V) = 10004
Temperature Gradients (25°c - 8o°c)

n BOL 25E14 SE14 1E15
Open Circuit Voltage AV AT i) -&0 -6.4 -6.2 -B.3
Short Circuit Current Ble /ATT  ImASC) 0.32 0,33 0.3 0.39
Voltage at max. Power MV IATT  Imving) =61 -6.8 - 6.3 - 6.4
Current at max. Power Bl AATT  ImASG] 0.28 0.36 020 028

r Thre
]
e

= 0.91 (with CMX 100 AR)

Pull Test > 1.6 N atl 45" welding test {with 12.5um Ag stripes)
agiie dae: ﬁUR QPACE Solar Power GmbH -
2012.04-17 arasmn_slr. 2 MAARENTY
74072 Heilbrann @g
phone: +48 7131 67 2603 Y
HNR 0002490-00-02 telefax; +49 7131 7 2727 B 5 00012000
Fage duf2 a-mall: info@lazurspace. com OHELS  EBIOI 1

Copyriahl ® 3010 AZUR SPACE Solar Power GembH

wabsile: www azurspace.com
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ANALOG
DEVICES

Triaxial Inertial Sensor
with Magnetometer

ADIS16400/ADIS16405

FEATURES
Triaxial, digital gyroscope with digital range scaling
+75°(sec, £150%/sec, £300°/sec settings
Tight orthogonal alighment, <0.05°
Triaxial, digital accelerometer, +18 g
Triaxial, digital magnetometer, £2.5 gauss
Autonomous operation and data collectien
No external configuration commands required
220 ms start-up time
4 ms sleep mode recovery time
Factory-calibrated sensitivity, bias, and axial alignment
ADIS16400 calibration temperature: +25°C
ADI516405 calibration temperature range: =40°C to +85°C
SPl-compatible serial interface
Embedded temperature sensor
Programmable operation and control
Automatic and manual bias correction controls
Bartlett-window FIR length, number of taps
Digital 1/0: data-ready, alarm indicator, general-purpose
Alarms for condition monitoring
Sleep mode for power management
DAC output voltage
Enable external sample clock input up to 1.2 kHz
Single-command self-test
Single-supply operation: 4.75V to 5.25V
2000 g shock survivability
Operating temperature range: —40°C to +105°C

GEMERAL DESCRIPTION

The ADIS16400/ ADIS16405 iSensor® products are complete
inertial systems that include a triaxal gyroscope, a triaxial
accelerometer, and a triaxial magnetometer. The ADIS16400/
ADIS16405 combine industry-leading iMEMS® technology with
signal conditioning that optimizes dynamic performance. The
factory calibration characterizes each sensor for sensitivity, bias,
alignment, and linear acceleration (gyroscope bias). As a result,
each sensor has its own dynamic compensation for correction
formulas that provide accurate sensor measurements over a
temperature range of —40°C to +85°C, The magnetometers employ
a self-correction function to provide accurate bias performance
over temperature, as well.

The ADIS16400/ ADNS 16405 provide a simple, cost-effective
method for integrating accurate, multi-axis inertial sensing into
industrial systems, especially when compared with the

Rev. B

srished by Aralog D bx Iratn Howetver, ia
responsibility is sssumed by Arcdog Devices for its use, ror for any infringements of patents or ather
Aighits. of third parties that mary result from it use, Specifications sulbject o dhamge without notios. No
mbwwmwu&wwh:uduwp.tdmﬂdﬂﬁdmm

o prop L
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APPLICATIONS
Unmanned aerial vehicles
Platform control
Digital compassing
Navigation
FUNCTIONAL BLOCK DIAGRAM
AUX_ A
ADC DAC
o—0
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DIGITAL
SELF-TEST CONTROL

ADIS16405

GHD

RST DIO1 DIOT DIO3 Dol
CLKIN

L]

Figure 1.

complexity and investment associated with discrete designs. All
necessary motion testing and calibration are part of the production
process at the factory, greatly reducing system integration time,
Tight orthogonal alignment simplifies inertial frame alignment
in navigation systems. An improved serial peripheral interface
[SPI) and register structure provide faster data collection and
configuration control, By using a compatible pinout and the
same package as the ADIS1635x and ADIS1636x families,
upgrading to the ADIS16400/ADIS 16405 requires only firmware
changes to accommodate additional sensors and register map
updates.

These compact modules are approximately 23 mm % 23 mm =
23 mm and provide a flexible connector interface that enables
multiple mounting orientation options.

One Technology Way, P.O. Box 3106, Norwood, MA 02062-9106, U.S.A,
Tel: 781.329.4700 www.analog.com
Fax: TE1.461.3113 ©2009 Analog Devices, Inc. All rights reserved.




ADIS16400/ADIS16405

SPECIFICATIONS

Ta = —40°C to +85°C, VCC = 5.0V, angular rate = 0°/sec, dynamic range = £300%/sec, +1 g, unless otherwise noted.

Table 1.
Parameter Test Conditions Min Typ Max Unit
GYROSCOPES
Dynamic Range +300 +350 “fsec
Initial Sensitivity Dynamic range = £300°/sec 0.0495 0.05 0.0505 “sec/LSE
Dynamic range = £150°/sec 0.025 “fsec/LSB
Dynamic range = £75%5ec 00125 “Ysec/LSE
Sensitivity Temperature Coefficient ADIS16400; —40°C = Ta = +85°C +250 epm/eC
ADIS16405: —40°C = Ta = +85°C +40 ppm/~C
Misalignment Axis-to-axis, & = 907 ideal +0.05 Degrees
Axis-to-frame (package) +0.5 Degrees
Mornlinearity Best fit stralght line 0.1 % of FS
Initial Bias Error Ta +3 “isec
In-Rumn Bias Stability 1@, SMPL_PRD = 0x01 0.007 “fsec
Angular Random Walk 1 a, SMPL_PRD = 0x01 20 =iyhr
Bias Temperature Coefficient ADNS16400; —40°C = Ta = +85°C +0.025 “fsec/”C
ADIS16405: —40°C = Ta = +85°C +0.01 “Ysec/'C
Linear Acceleration Effect on Blas Any axis, 1 g (MSC_CTRL Bit7=1) 0.05 “seclg
Bias Woltage Sensitivity VCC =475V o525V 032 “Ysec
Output Moise +300% 'sec range, no filtering 0.9 “fsec rms
Rate Noise Density f = 25 Hz, £300%sec, no filtering 0.05 *fseefHz rms
3 dB Bandwidth 330 Hz
ACCELEROMETERS
Dynamic Range +18 a
Initial Sensitivity 3.285 333 338 mg/LSE
Sensitivity Temperature Coefficient ADNS16400: —40°C = Ta = +85°C 120 PpmieC
ADIS16405: —40°C = Ta = +85°C +50 ppm/C
Misalignment Axis-to-axis, 4 = 907 ideal 0.2 Degrees
Aucis-to-frarme (package) +0.5 Degrees
MNornlinearity Best fit straight line, £17 g 01 % of FS
Imitial Bias Error 1a +50 mg
In-Run Bias Stability 1a 0.2 mg
Velocity Random Walk 1a 0.2 misec/yhr
Bias Temperature Coefflcient ADIS16400; —40°C = Ta = +85°C +1.35 mg/“C
ADIS16405: —40°C = Ta = +85°C +0.3 g/ C
Bias Woltage Sensitivity VCC=475V 10525V 25 mg/V
Output Molse Mo filtering 9 mg rms
Maise Density Mo filtering 0.5 mg/Hz rms
3 dB Bandwidth 330 Hz
MAGMETOMETER
Dynamic Range +2.5 +3.5 gauss
Initial Sensitivity 25'C 049 05 0.51 mgauss/L58
Sensitivity Temperature Coefficient 253°C1a 00 ppmi°C
Ao Monorthogonality 25°C, axis-to-axis 0.25 Degrees
Axis Misalignment 25°C, axis-to-base plate and guide pins 0.5 Degrees
Monlinearity Best fit straight line 0.5 % of F5
Initial Bias Error 25°C, 0 gauss stimulus +4 mgauss
Bias Temperature Coefficient 0.5 mgaussC
Output MNoise 25°C, na filkering 1.25 Mgauss rms
Moise Density 25°C, no fikkering, rms 0.065 mgaussiyHz
3 dB Bandwidth 1540 Hz
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Appendix B

The parameterization of the attitude is used to describe the orientation of a
body-fixed reference system frame with respect to an orbital reference system or an
ECI reference system.

Let us consider an orthogonal, right-handed triad #@, ¥, w of unit vectors fixed in the
body reference system, such that:

~

Uxv=w
It is clear that specifying the components of &, ¥, w along the three axes of the orbital
or ECI reference system will fix the orientation completely. This requires nine
parameters which can be regarded as the elements of a 3 < 3 matrix, A, called attitude
matrix:

A=|V1 VUV V3

Wy Wy, Wi

U, Uy u3]

Each of these elements is the cosine of the angle between a body unit vector and a
reference axis; u,, for example, is the cosine of the angle between # and the reference
1-axis. For this reason, A is also referred as the direction cosine matrix (DCM). The
elements of DCM are not all independent. For example, the fact that @ is a unit vector

requires:

and the orthogonality of &i and ¥ means that:
U v +Uyv, +usvs =0

These relationships can be summarized by the statement that the product of A and its

transpose is the identity matrix:
AAT =1 - At =4T

This means that A is a real orthogonal matrix. Also, the determinant of A is defined as:



~ ~

and since 4, ¥, w is a right-handed triad, det(4) = 1. Thus, A is a proper real
orthogonal matrix which maps vectors from the reference frame to the body frame
preserving the lengths of vectors and the angles between them, and hence, it represents

a rotation.

It can be also shown that A has at least one eigenvector with eigenvalue unity. That is,

there exists a unit vector, é that is unchanged by A:
Aé=¢

The vector é has the same components along the body axes and the reference axes.
Thus, é is a vector along the axis of rotation. The existence of & demonstrates the
Euler’s theorem: the most general displacement of a rigid body with one point fixed is
a rotation about some axis.

Other parameterization, as summarized in Table 11 [4], may be more convenient than
the DCM for specific applications. In the simulator, the attitude is described and
propagated using the Euler symmetric parameters, also known as quaternions, which
are also used for attitude estimation. Euler angles are also used, especially during the
three-axis spacecraft control.

Parameterization Notation Advantages Disadvantages Common
Applications
Direction A No singularities Six redundant In analysis, to
. No trigonometric arameters transform
Cosine . .
. functions vectors from one
Matrix :
Convenient product reference
rule frame to another

for successive rotations
) Clear physical One redundant Commanding slew

>

Euler axis/angle
interpretation parameter maneuvers

Axis undefined when
sin® =0

Trigonometric functions
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Euler symmetric
parameters
(Quaternion)

Gibbs vector

Euler angles

q1, 92,
q3, 44
lql

¢.6,9

No singularities
No trigonometric
functions
Convenient product
rule
for successive rotations
No redundant
parameters
No trigonometric
functions
Convenient product
rule
for successive rotations
No redundant
parameters
Physical interpretation
is clear in some cases

One redundant
parameter
No obvious physical
interpretation

Infinite for 180° rotation

Trigonometric functions
Singularity at some
angle value
No convenient product
rule

Onboard inertial
navigation

Analytic studies

Analytic studies
Input/Output onboard
attitude control of 3-

axis stabilized

spacecraft

for successive rotations

Table 11. Alternative Representations of Three-Axis Attitude

A parameterization of the DCM in terms of quaternion has proved to be quite useful in
spacecraft work. Quaternions were first devised by William Rowan Hamilton, a 19"
century Irish mathematician. They are defined in terms of Euler axis/angle as:

q1 . @
.= q, _[p]: €S|n§
qs 4, o
qa COSE

The quaternion components are not independent but they satisfy the constraint

equation of unit norm:

gl = qq” = qf + g5 + q5 + q% =

The DCM can be expressed in terms of quaternion as:

2(0103 — 0204)
2(0,03 +0104) | =
—qf — 05+ 05+

2(9192 +030,)
—qf +05 — 05 + 0
2(d2093 — 0104)

a9 — 95— +0a;
2(9192 — 9304)
2(0103 + 0204)

A=

= (q% —p*)I +2qq" — 2q,[q <]
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Conversely, the quaternion components can be expressed in terms of the DCM

elements as:
4qi :1+A11—A]]—Akk:1—trA+2Au

4q;q; = Aij — Ay

4qi9s = Aji — Ax;j

where {i,j, k} is a cyclic permutation of {1,2,3} and trA denotes the trace of the
DCM. The equations above, represent all the four ways to calculate the quaternion
components from the DCM. In fact, to minimize numerical inaccuracy, Shepperd’s
algorithm first compares the rhs of the first two equations to see which of the

quaternion components is the largest and then calculates the other components using

the other two equations [25]. The sign ambiguity is not a problem because g and —q
represents the same attitude since they lead to the same DCM.
Successive rotations can be represented by a simple quaternion multiplication:

!

[ @ —% @G|[:

|-q: a2 @1 q2]|92
143 — ! ® — , p p
1 729~ 42 —91 4 q3| q3
l—qi —q; —q3 qLJ 4

The residual rotation of g with respect to g, or error quaternion, &q, is obtained such
as:

6q=q" ®(q)"
where (¢)"* =[—q; — q, — q5 q4] is the inverse quaternion.

In the simulator control block, Euler angles are also computed from the DCM in order
to perform a three-axis stabilization control. The DCM s the result of a rotation
sequence which can be expressed as the product of three rotation matrices, with the
first rotation matrix on the right and the last on the left:

R31(¢,,0) = Ry(6)Rs ()R, () =
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=|—s¥ cee s

cOcyp cOsypcep + sOs¢p cOsPsp — sOco
sOcy sOsPcep — cOs¢p sOsYPse + c9cq§]

where ¢ and s indicate the cosine and the sine function respectively. The three rotation

matrices are defined as:

1 0 0
R (¢p)=|0 <o sqb]
0 —s¢p co
[cd 0 —s6
R,(6)=[0 1 © ]
s 0 cO
cp 0 —sy
R;(y)=|{0 1 O ]
sy 0 «cy

The subscript denotes the rotation axis and ¢, 8,1 are the roll, pitch and yaw angle
respectively. These angles can be calculated from the DCM in the following way:

Az
¢ =tan"1-—=
A22
A
6 = tan~1 22
All

11[) = - Sin_l A21

Other sequences of Euler angles rotations are possible. Since two successive rotations
about a single axis are not allowed, because the product of these rotations is equivalent
to a single rotation about this axis, there are only 12 possible axis sequences.

88



Bibliography

[1] M. Bosco, V. Fabbri, P. Tortora, ‘ALMASat-EO Attitude Determination
Algorithms: Evaluation, Implementation And Numerical Simulation’, 8" International

ESA Conference on Guidance, Navigation & Control Systems, June 2011.

[2] K. Svartveit, “Attitude Determination of the NCUBE satellite’ Department of
Engineering Cybernetics, June 2003.

[3] J. R. Wertz, W. J. Larson, ‘Space Mission Analysis and Design’, Third Edition,
Microcosm press, Springer, New York USA, 1999.

[4] J. R. Wertz, ‘Spacecraft Attitude Determination and Control’, Kluwer Academic
Publishers, The Netherlands, 1978.

[5] Claudia C. Meruane Naranjo, ‘Analysis and Modeling of MEMS based Inertial
Sensors’, KTH, Stockholm, 2008.

[6] Nelson J., “The Physics of Solar Cells’, Imperial College Press, U.K., May 2003.

[7] Liu S., Dougal R. A., ‘Dynamic Multiphysics Model for Solar Array’, IEEE Trans.
on Energy Conversion, Vol. 17, No. 2, June 2002.

[8] Sera S., Teodorescu R. Rodriguez P., PV panel model based on datasheet values’,
IEEE International Symposium on Industrial Electronics, ISIE 2007, 4-7 June 2007.

[9] Xiao W., Dunford W.G., Capel A., ‘A novel modeling method for photovoltaic
cells’, IEEE Power Electronics Specialists Conference, Aachen, Germany, 2004.

[10] Bellini A., Bifaretti S., lacovone V., Cornaro C., ‘Simplified Model of a
Photovoltaic Module’, IEEE, September 20009.

[11] F. R. Hoots, R. L. Roehrich, T. S. Kelso, ‘Spacetrack Report No. 3’, Celestrack,
31 December 1988.

[12] V. Fabbri, “Sistema di determinazione d’assetto S/W Determinatore’, ALMASat-1
project, Microsatellites and Space Microsystems Laboratory, Il Faculty of
Engineering, University of Bologna, April 2012.

89



[13] Bhanderi D., *Spacecraft Attitude Determination with Earth Albedo Corrected
Sun Sensor Measurements’ Ph.D. Thesis, August 2005.

[14] Palli A., *Analisi Termica del MicroSatellite ALMASat’, Elaborato Finale di
Laurea, Il Faculty of Engineering, University of Bologna, 2005.

[15] Jason Tuthill, “Design and Simulation of a Nano-Satellite Attitude Determination
System’, Thesis, Naval Postgraduate School, Monterrey (California), December 2009.

[16] M. Bosco, “Passive Magnetic Attitude Control System’ Relazione di Preparazione
alla Tesi, 1l Faculty of Engineering, University of Bologna, 2012.

[17] Oshman Y., Dellus F., *Spacecraft Angular Velocity Estimation Using Sequential
Observations of a Single Directional Vector’ Journal of Spacecraft and Rockets, Vol.
40, No. 2, March-April 2003.

[18] Viscito L., Cerise M. C., ‘Rate and Attitude Determination Using Solar Array
Currents’ AIAA.

[19] Tortora P., Oshman Y., Santoni F., ‘Spacecraft Angular Rate Estimation from
Magnetometer Data Only Using an Analytic Predictor’ Journal of Guidance, Control
and Dynamics, Vol. 27, No. 3, May-June 2004.

[20] M. Bosco, “‘Algoritmi per la determinazione d’assetto’, Relazione di Tirocinio, Il
Faculty of Engineering, University of Bologna, 2010.

[21] M. Bosco, “Studio e Simulazione di Algoritmi di Determinazione d’Assetto per il
Microsatellite ALMASat-EQ’, Elaborato Finale di Laurea, Il Faculty of Engineering,
University of Bologna, 2010.

[22] C. Fan, Z. Meng, G. Zhang, Z. You, ‘Federated Sigma Point Filter for Multi-
Sensor Attitude and Rate Estimation of Spacecraft’, Proceedings of SPIE, Vol. 7129
712929, 2008.

[23] J. Bae, Y. Kim, *Attitude Estimation for Satellite Fault Tolerant System Using
Federated Unscented Kalman Filter’, IJASS 11 (2), 80-86 (2010).

90



[24] J. Bae, S. Yoon, Y. Kim ‘Fault-Tolerant Attitude Estimation for Satellite Using
Federated Unscented Kalman Filter’, Advances in Spacecraft Technologies, Dr J. Hall
(Ed.)

[25] M. llyas, J. K. Lim, J. G. Lee, C. G. Park, ‘Federated Unscented Kalman Filter
Design for Multiple Satellites Formation Flying in LEO’, International Conference on
Control, Automation and Systems 2008.

[26] J.L. Crassidis, F.L. Markley ‘Unscented Filtering for Spacecraft Attitude
Estimation’, Journal of Guidance, Control, and Dynamics, Vol. 26, No. 4, July-August
2003.

[27] S.-W. Kim, M. Abdelrahman, S.-Y. Park, K.-H. Choi, ‘Unscented Kalman
Filtering for Spacecraft Attitude and Rate Determination using Magnetometer’, J.
Astron. Space Sci. 26 (1), 31-46 (2009).

[28] Markley F. L., “‘Unit Quaternion from Rotation Matrix’, Journal of Guidance,
Control and Dynamics, Vol. 31, No. 2, March-April 2008.

91



Acknowledgments

I would like to acknowledge Professor Paolo Tortora, the head of the
Microsatellite and Space Microsystems Laboratory at the 11 Faculty of Engineering of
the University of Bologna, for his support.

I express my gratitude to MSc Valentino Fabbri, AODCS and GNC engineer at
ALMASpace S.r.l., for sharing his knowledge, giving fruitful comments and for the
time during my BSc and MSc thesis work.

Furthermore | want to show appreciation to the members of the ALMASat
team, especially Alessandro Tambini for the suggestions and the discussions.

Un ringraziamento particolare va inoltre ai miei genitori per il loro supporto

economico e morale durante tutto il periodo dei miei studi.

Infine, un riconoscimento va a tutti coloro che hanno incoraggiato le mie scelte

universitarie.

92



