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Abstract 

Titolo: Sistemi di Sicurezza per Piccoli Satelliti in Fase di Tombolomento 

L’argomento di questo lavoro di tesi riguarda lo studio e la simulazione di nuove 

soluzioni per il sottosistema di determinazione e controllo d’assetto (ADCS) del 

micro-satellite ALMASat-EO in fase di progetto da parte di una collaborazione tra il 

laboratorio di microsatelliti e microsistemi spaziali dell’Università di Bologna e 

ALMASpace S.r.l.. 

In particolare, ci si è concentrati su una delle fasi di missione più critiche per un 

satellite che è la fase successiva al rilascio dal lanciatore fino alla stabilizzazione del 

satellite. Tale fase detta di tombolamento risulta particolarmente critica se il satellite si 

trova a ruotare con una velocità angolare elevata dovuta a separazioni non nominali dal 

lanciatore. Pertanto è stato studiato un sistema passivo di smorzamento delle velocità 

angolari che utilizza l’effetto di isteresi magnetica di barre realizzate in lega NiFe ad 

alta percentuale di Ni; un filtro di Kalman esteso (EKF) di stima della velocità 

angolare che fa uso delle letture di piccole celle solari posizionate su ogni faccia del 

satellite e un filtro di Kalman multi-rate per combinare tutte le misure disponibili per 

ricostruire in modo accurato (come da specifiche di missione) l’assetto del satellite. 

Il sistema passivo di smorzamento è stato largamente studiato e validato tramite 

simulazioni nel lavoro di preparazione alla tesi e in questo lavoro è stato individuato il 

materiale specifico delle barre, contattando anche i fornitori, e sono state svolte 

ulteriori analisi su una possibile interazione magnetica con il sistema magnetico di 

controllo attivo. Gli algoritmi di stima della velocità angolare e dell’assetto sono 

invece stati implementati e sviluppati interamente in questo lavoro. Inoltre sono stati 

introdotti nel simulatore, sviluppato in ambiente MATLAB/Simulink, i modelli delle 

celle solari e del giroscopio a tre assi. Diverse simulazioni sono state poi eseguite per 

validare le nuove soluzioni introdotte nel ADCS e avere un’indicazione 

sull’accuratezza dei filtri di stima.  
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1. Introduction 

Non-nominal separation from the launcher or failures during the mission can 

lead the satellite to tumble with high angular velocity. In this case the available 

electric power can be limited since the solar arrays do not work properly and the 

batteries are the only source of power. 

Thus, the aim of this work is to find safety systems in case of non-nominal 

separations. In order to achieve this goal, new solutions for the satellite Attitude 

Determination and Control Subsystem (ADCS) are considered. This field has been 

thoroughly explored since the dawn of the space age but new solutions are 

continuously studied and proposed in order to best achieve the several spacecraft 

mission goals. In order to investigate and validate the ADCS, several simulations 

are performed in MATLAB/Simulink. MATLAB is used in numerous institutions 

and space agencies and companies in order to model and analyze the real systems. 

The Simulink interface for MATLAB gives the ADCS designers a graphical 

interface to the simulation platform, and it is well suited for implementing easy-to-

use simulation toolboxes.  

The ADCS is designed for ALMASat-EO which is a satellite developed by the 

Microsatellite and Space Microsystems Laboratory of the University of Bologna in 

Forlì and the commercial spin-off of the same laboratory named ALMASpace S.r.l. 

ALMASat-EO belongs to micro-satellite class and it has 35	݇݃ of mass and 

30 × 30 × 60	ܿ݉ of volume. 

1.1. Background and Motivation 

 In February, 13th 2012, ALMASat-1, the first satellite of ALMASat family, was 

released in orbit by the VEGA launcher in its maiden flight. A non-nominal 

separation occurred due to a problem in the satellite separation mechanism leading 

the satellite to tumble with an unexpected high angular velocity. Then, due to the 

presence of maximum peak power trackers (MPPT) for power control and 

regulation, the solar arrays need to be illuminated for a few seconds before they 
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can supply electric power. Thus, ALMASat-1 could only be powered by batteries 

and it was switched to stand-by mode to save the limited available power. Two 

magnetic coils per axis were mounted on ALMASat-1 but they could not be used 

to damp the overall angular velocity since there was no sufficient power. The 

atmosphere drag torque can be considered the only way to dissipate the rotation 

kinetic energy. However this also leads to the satellite orbital decay. Thus, new 

solutions for the next micro-satellite ALMASat-EO ADCS need to be studied. 

 

1.2. Thesis outline 
 The thesis is organized as follows: 

Chapter 2. ALMASat-EO. ALMASat-EO mission goals and the satellite design is 

described. Then a description of attitude sensors as well as solar cells is given. 

Chapter 3. Simulator. In order to study and analyze the satellite mission, a simulator 

tool is needed. Thus, in this section, the MATLAB/Simulink based simulation tool is 

described, with particular attention to some toolboxes.  

Chapter 4. Hysteresis rods. The passive magnetic angular rate damping system, 

studied in the previous work, is briefly described and new considerations are 

developed. 

Chapter 5. Rate estimation using solar cells. A new solution to estimate the satellite 

angular rate during tumbling motion is investigated and statistically validated by 

means of Monte Carlo simulations. A non-conventional arrangement of the solar cells 

is also studied and fully validated by means of Monte Carlo simulations.   

Chapter 6. Attitude determination. Here, the attitude determination subsystem is 

studied. A multi-rate Kalman filter which combines all the available measurements is 

implemented in the simulator to test its performance and statistically validated by 

means of Monte Carlo simulations.  

Chapter 7. Conclusion. Summary of the thesis with concluding remarks and 

recommendations for future work. 
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2. ALMASat-EO 

Through the collaboration between the Microsatellite and Space Microsystems 

Laboratory of the University of Bologna in Forlì and the commercial spin-off of the 

same laboratory named ALMASpace S.r.l, in 2007 the ALMASat-EO microsatellite 

project started. The main goal of the mission is the manufacturing of a spacecraft for 

Earth Observation in particular to satisfy the increasing demand of weather monitoring 

and surveillance. 

The main structure and orbital parameters are reported in Table 1: 

ALMASat-EO Value Unit 

Dimensions 30 × 30 × 60	 ܿ݉ 

Mass 35	 ݇݃ 

Inertia matrix ݀݅ܽ݃([0.951	0.97	0.946]) ݇݃݉ଶ 

Orbital height 686 ݇݉ 

Orbital eccentricity 0 ° 

Orbital RAAN −23.5 ° 

Orbital inclination 98.161 ° 

Table 1. ALMASat-EO main structure and orbital parameters. 

The main payload mounted on board ALMASat-EO is the optical system, able to take 

images of the Earth’s surface with an area of about 150 km2. The camera will be 

placed in a tray-based structure where the upper 6-trays will contain the main on-board 

equipment and the remaining portion will be equipped with the technological payloads. 

The Attitude and Orbit Determination and Control System (AODCS), the 

communication system and the On-Board computer and Data Handling (OBDH) 

represent the main subsystems, necessary to the guarantee spacecraft control and to 

accomplish the mission purposes. 

The need to obtain images of the Earth requires observing the sub-satellite point under 

optimal lighting conditions. This is why the AODCS sub-system requirements are 

mainly due to the characteristics of the installed optical payload and its own working 

mode. 
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ALMASat-EO AODCS will include two pairs of sun sensors, two redundant three-axis 

magnetometers and one Earth sensor as spacecraft attitude sensors system, three pairs 

of orthogonal magnetic coils, and a set of four redundant momentum/reaction wheels 

as attitude control actuators. In addition, a cold-gas micro-propulsion system will be 

mounted on-board in order to modify the launch vehicle orbit and insert ALMASat-EO 

into its nominal orbit. 

The on-board attitude sensors and actuators are managed by digital electronic boards 

entirely developed by the team. The AODCS is implemented in the On-Board 

Computer and will handle both the attitude reconstruction (by using the sensor 

readings) and attitude control functions (by controlling the actuators) [1]. Motivated by 

these challenging needs, a MATLAB/Simulink-based simulation tool has been 

developed in order to test the ADCS. 

 

Figure 1. ALMASat-EO 
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2.1. Sensors 

All presented attitude sensors, except the gyroscope, are reference sensors. 

Reference sensors give a vector to some object which position is known. The rotation 

between the local body frame, and the frame in which the known vector is given, can 

then be computed. With only a single measurement, the rotation around the measured 

vector is unknown. It is therefore necessary either to have two different measurements 

at least, or to use information from the past. The most common way to incorporate 

measurement history, is to combine the measurements in a Kalman filter [2]. In this 

case, the estimation of the angular velocity is required to propagate the attitude 

forward in time. It can be obtained using a three-axis gyroscope which is an inertial 

sensor. In Table 2, a summary of typical satellite sensors is reported. Sensors have 

continued to improve in performance while getting smaller and less expensive [3]. 

Sensor Accuracy  

(deg) 

Weight 

(kg) 

Power 

(W) 

Pros Cons 

Gyroscope 

(IMU) 

0.003/hr to 1/hr 1 to 15 10 to 200 high 

bandwidth 

expensive, 

drifts with 

time 

Sun sensor 0.005 to 3 0.1 to 2 0 to 3 cheap, simple, 

reliable 

no 

measurement 

in eclipse 

Star sensor 0.0003 to 0.01 2 to 5 5 to 20 very accurate expensive, 

heavy 

complex 

Horizon 

sensor 

0.1 to 1 (scanner) 

0.1 to 0.25 

(static) 

1 to 4 

0.5 to 3.5 

5 to 10 

0.3 to 5 

accurate orbit 

dependent, 

poor in yaw 

Magnetometer 0.5 to 3 0.3 to 1.2 < 1 cheap, 

continuous 

coverage 

low altitude 

only 

Table 2. Typical ADCS Sensors. 
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2.1.1. Magnetometer 

Magnetometers are widely used as spacecraft attitude sensors for a variety of 

reasons: they are vector sensors, providing both the direction and magnitude of 

magnetic field; they are reliable, lightweight, and have low power requirements; they 

operate over a wide temperature range and they have no moving parts. However, 

because the Earth’s magnetic field strength decreases with distance from Earth as 1/

 .݇݉ [4]	ଷ, the use of magnetometers is generally limited to spacecraft below 1000ݎ

The magnetometer consists of three orthogonal sensor elements which measure the 

Earth’s magnetic field in three axes in the sensor frame. If the magnetometer is aligned 

with the satellites axes, or the rotation between the body and sensor frame is known, 

the magnetic field in the body frame is obtained. The accuracy of the magnetometer is 

limited mainly by three factors: disturbance fields due to spacecraft electronics, 

modeling errors in the IGRF model and external disturbances such as ionospheric 

currents [2]. 

The mostly used magnetometers are induction magnetometers which are based on 

Faraday’s law of magnetic inductance. An electromotive force, ܧ is induced in a 

conducting coil placed in a time-varying magnetic flux, ݀߶஻/݀ݐ such that the line 

integral of ܧ along the coil is the voltage, ܸ: 

ܸ = රܧ ∙ ݈݀ = −
݀߶஻
ݐ݀  

The two types of induction magnetometers are search-coil and fluxgate 

magnetometers. In a search-coil magnetometer, a solenoidal coil of ܰ turns surrounds 

a ferromagnetic core with magnetic permeability ߤ, and cross-sectional area ܣ. The 

produced voltage is given by: 

ܸ =  (ݐ݀/ୄܤ݀)ߤܰܣ−

where ୄܤ is the field component along the solenoidal axis [4]. 

The fluxgate magnetometer is a transducer which converts a magnetic field into an 

electric voltage. Fluxgates are configured with windings through which a current is 

applied. If there is no component of the magnetic field along the axis of the winding, 

the flux change detected by the winding is zero. If there is a field component present, 
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the flux in the core changes from a low level to a high level when the material goes 

from one saturation level to another. From Faraday’s law, a changing flux produces a 

voltage at the terminals of the winding proportional to the rate of change of the flux 

[2]. 

 

Figure 2. ALMASat-EO magnetometer 

 

2.1.2. Sun sensor 

Sun sensors are the most widely used sensor type for attitude determination. The 

Sun sensor owes its versatility to several factors [4]. Unlike the Earth, the angular 

radius of the Sun is nearly orbit independent and sufficiently small (0.267° at 1	ܷܣ ≅

1.5 ∙ 10଼	݇݉) that for most applications a point-source approximation is valid. 

Moreover, the Sun is sufficiently bright to permit the use of simple, reliable equipment 

with minimal power requirements. Lastly, Sun sensors measurements are also used to 

protect sensitive equipment, to provide a reference for on-board attitude control, and to 

position solar power arrays. Sun sensors requires a clear field-of-view and thus, they 

are usually mounted near the ends of the spacecraft to obtain an unobstructed filed-of-

view. Obviously, Sun sensor measurements are not available during eclipse and this is 

the only drawback of this sensor. There are three basic classes of Sun sensors: analog 

sensors, Sun presence sensors and digital sensors. 

Analog sensors are frequently called cosine detectors because they are based on the 

sinusoidal variation of the output current of a silicon solar cell with Sun angle. 

However, for high incidence angles, the output current is not accurately described by a 
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sinusoidal function. Thus, sensor calibration is required to obtain an accurate relation 

between the Sun angle and the output current. Moreover, these sensors are affected by 

temperature variations and albedo effect. 

Digital sensors provide an encoded, discrete output which is a function of the Sun 

angle. The Sun image is refracted by a material of index of refraction ݊, which may be 

unit, and illuminates a pattern of slits. The slits are divided into a series of rows with a 

photocell beneath each row. The orientation of the Sun is provided using a Gray code. 

The accuracy of these sensors depends on the number of bits. 

Sun presence detectors do not provide a Sun angle measurement, they only provide a 

constant output signal whenever the Sun is in the field-of-view of the sensor. 

The Sun sensor used for ALMASat mission is an analogic Sun sensor providing a 

digital output (see Figure 3). It has a large filed-of-view (130°) and it is realized using 

commercial components and hence, it is a low-cost sensor. 

 

Figure 3. ALMASat-EO Sun sensor 

 

2.1.3. Earth horizon sensor 

Earth horizon sensors determine where the Earth is relative to the spacecraft. Since, 

to a near Earth satellite, the Earth covers up to 40% of the sky, detecting only the 

presence of the Earth is normally insufficient; thus, they are designed to locate the 

Earth’s horizon. The majority of these sensors are infrared devices that detect the 

contrast between the cold of deep space and the heat of the Earth’s atmosphere, 

exploiting the narrow 14−  CO2 band. They are unaffected by night or by the ݉ߤ	16
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presence of terminator, they avoid reflection problems and the Sun interference 

problems are also reduced in the infrared. However, albedo sensors have some 

advantages over the infrared sensors, including lower cost, faster response time and 

higher signal-to-noise ratio because the radiated intensity is higher in the visible 

spectrum than in the infrared. 

Most horizon sensors consist of four basic components: a scanning mechanism, an 

optical system, a radiance detector and signal processing electronics [4]. They are 

normally categorized by the scanning mechanism: there are body-mounted horizon 

sensors and scanning horizon sensors. The former, also called static horizon sensors, 

are simple narrow field-of-view fixed-head types, used on spinning spacecraft to 

measure Earth phase and chord angles which, together with orbit and mounting 

geometry, define two angles to the nadir vector. 

Scanning horizon sensors use a rotating mirror or lens to replace the spinning 

spacecraft body [3]. The optical system of a horizon sensor consists of a filter to limit 

the observed spectral band and a lens to focus the target image on the radiance 

detector. Radiance detectors used to detect the presence of a horizon and they are 

based on the operating principles of the thermistor, like a bolometer, thermocouple, 

like a thermopile, or pyroelectric crystal, like pyroelectric detectors. 

The sensor field-of-view scans across the Earth disc and gives outputs corresponding 

to the Earth-to-space and space to Earth discontinuities. An automatic threshold 

detection circuit, wherein the threshold of edge detection is kept at an optimum 

percentage of the peak signal, is used to minimize the errors in the measurement of the 

scanned Earth chord width. The measurements given by the Earth horizon sensor are 

based on the following equations: 

cosߩ = cosγ cosη + sin γ sin η cos(Ω/2) 

Ω = ௅ைௌݐ)߱ −  (஺ைௌݐ

where ߩ is the Earth angular radius, γ is the sensor mounting angle, η is the nadir 

angle, ߱ is the sensor spin rate, ݐ௅ைௌ and ݐ஺ைௌ are the measured loss-of-signal (i.e. 

light-to-dark transition) and acquisition-of-signal (i.e. dark-to-light transition) time, 

respectively. 
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Figure 4. ALMASat-EO FLIR TAU thermal sensor 

 

2.1.4. Gyroscope 

Gyroscope is an inertial sensor that measures angular rotation about its input axis 

with respect to inertial space. The sensing of such motion could utilize the angular 

momentum of a spinning rotor, the Coriolis effect on a vibrating mass, or the Sagnac 

effect on counter-propagating light beams in a ring laser or an optical fiber-coil [5].  

Recently, due to the improving performance of Micro-ElectroMechanical Systems 

(MEMS) sensors, there has been increased interest in using MEMS gyroscopes in 

ADCS systems. MEMS technologies provide a mean to interface the digital electronic 

world, dominated by the integrated-circuit, IC, with the analog physical world. MEMS 

gyroscopes have advantages of being low-cost, light mass, and low power 

consumption. In the case of employing MEMS gyroscopes in ADCS, several 

challenges arise. Significant scale factors, nonlinearities, misalignment, noise and 

temperature varying biases currently limits use for high precision applications. Thus, 

precisely modeling and compensating for these errors is very important. 

 

2.2. Solar cell 

Solar cells functioning is based on the photovoltaic effect, consisting in an energy 

conversion process which generates electrical energy from light energy. The 
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explanation relies on ideas from quantum theory. Light is made up of packet of energy, 

called photons, whose energy depends only upon the frequency, or color, of the light. 

The energy of visible photons is sufficient to excite electrons, bound into solids, up to 

higher energy levels where they are more free to move. The solar cell contacts (bus 

bar) drive the excited electrons through an external circuit before they can relax. 

The solar cell can be considered as a two terminal device which conducts like a diode 

in the dark and generates a voltage (photovoltage) when charged by the Sun. It is a thin 

slice of semiconductor material and the surface is treated to reflect as little visible light 

as possible and hence, it appears dark blue or black. A pattern of metal contacts is 

imprinted on the surface to make electrical contact (fingers). 

The photocurrent generated by a solar cell under illumination at short circuit is 

dependent on the incident light. To relate the photocurrent density, ܬ௦௖, to the incident 

spectrum, we need the cell’s quantum efficiency, ܳ(ܧ)ܧܳ .ܧ is the probability that an 

incident photon of energy ܧ will deliver one electron to the external circuit. Then: 

௦௖ܬ =  ܧ݀(ܧ)ܧܳ(ܧ)නܾ௦ݍ

where ܾ௦(ܧ) is the incident spectral photon flux density, ܳܧ is the number of photons 

of energy in the range ܧ to ܧ +  ݍ which are incident on unit area in unit time and ܧ݀

is the electronic charge. ܳܧ depends upon the absorption coefficient of the solar cell 

material, the efficiency of charge separation and the efficiency of charge collection in 

the device but it does not depend on the incident spectrum. Figure 5 shows a Gallium-

Arsenide (GaAs) solar cell ܳܧ spectrum in comparison with the spectrum of solar 

photons. ܳܧ and spectrum can be given as functions of either photon energy or 

wavelength, ߣ. Energy is a more convenient parameter for the physics of solar cells 

[6]. The relationship between ܧ and ߣ is defined as: 

ܧ =
ℎܿ
ߣ  

where ℎ = 6.626 ∙ 10ିଷସ	ܬ is the Planck’s constant and ܿ = 2.9979 ∙  is the ݏ/݉	10଼

speed of light in vacuum.  
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Figure 5. Quantum efficiency of GaAs cell compared to the solar spectrum. The vertical scale is in arbitrary 
units, for comparison. The short circuit photocurrent is obtained by integrating the product of the photon 
flux density and QE over photon energy. It is desirable to have a high QE at wavelengths where the solar flux 
density is high [6]. 

The solar cell can be modeled as a current generator in parallel with an ideal diode and 

series and shunt resistances (see Figure 6) to take into account power dissipation 

through the resistance of the contacts and through leakage currents around the sides of 

the device (see [7] and [8]). 

 

Figure 6. Equivalent circuit of a solar cell 

This equivalent circuit can be simplified by neglecting the shunt resistor (see [9] and 

[10]). In [10], an improved model of a solar cell that make use only of parameters 

provided by manufacturers datasheets and, moreover, does not require any numerical 

methods, is developed. The current is given by the difference between the short circuit 
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current, ܫ௦௖, and the dark current, ܫௗ௔௥௞ , which can be expressed as a function of the 

voltage, ܸ: 

ܫ = ௦௖ܫ − (ܸ)ௗ௔௥௞ܫ = ௦௖ܫ ቈ1 − ܿଵ ቆ݁
௏

௖మ௏೚೎ − 1ቇ቉ 

Conversely, the voltage can be expressed as a function of the current as: 

ܸ = ܿଶ ௢ܸ௖݈݊ ൮1 +
ቀ1− ܫ

௦௖ܫ
ቁ

ܿଵ
൲ 

where ௢ܸ௖ is the open circuit voltage and ܿଵ and ܿଶ are coefficients: 

ܿଵ = ൬1 −
ெ௉௉ܫ
௦௖ܫ

൰ ݁ି
௏ಾುು
௖మ௏೚೎  

ܿଶ = ൬ ெܸ௉௉

௢ܸ௖
− 1൰ /݈݊ ൬1 −

ெ௉௉ܫ
௦௖ܫ

൰ 

where ܫெ௉௉ and ெܸ௉௉ are the maximum power point current and voltage respectively. 

The solar cell power, ܲ, is given by: 

ܲ = ܫ ∙ ܸ 

ܲ reaches a maximum at the cell’s maximum power point. This occurs at voltage ெܸ௉௉ 

and current ܫெ௉௉ as shown in Figure 7. The fill factor, ܨܨ, is defined as the ratio: 

ܨܨ =
ெ௉௉ܫ ெܸ௉௉

௦௖ܫ ௢ܸ௖
 

and it describes the ‘squareness’ of the ܫ − ܸ curve. 



14 
 

 

Figure 7. Solar cell current voltage (red) and power voltage (cyan) characteristics. Power reaches the 
maximum at VMPP The maximum power is given by the area of the inner rectangle. The outer rectangle has 
an area equal to ISCVOC. If the fill factor was equal to 1, the current voltage curve would follow the outer 
rectangle. 

The efficiency, ߟ, of the cell is the ratio between the maximum power generated by the 

solar cell and the solar flux normal to the cell, ܧ, times the surface area, ܵ: 

ߟ =
ெ௉௉ܫ ெܸ௉௉

ܧ ∙ ܵ  

Solar cells convert radiant flux to electrical power and can be used to estimate the 

angle between the normal vector to the cell plane and the Sun line of sight (LOS) 

vector, by measuring the intensity per area on the solar cell surface, which is related to 

the angle of incident irradiance: 

(ߙ)ܲ = ܧܵߟ cosߙ 

where ܲ(ߙ) is the electrical power generated by the solar cell, ߟ is the solar cell 

efficiency, ܵ is the solar cell surface area, ܧ is the incident irradiance and ߙ is the 

angle of incident irradiance. 

Solar cells are typically mounted such that measurements are available in six directions 

which are opposite facing in pairs. Typically a minimum of six solar cells are used, 

looking in the positive and negative directions of each axis in the body reference 

frame. 
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Figure 8. Projections of the sun LOS vector measured by solar cells mounted in opposite looking directions 
along three orthogonal axes. 

Figure 8 shows the geometry of the Sun LOS vector ̂ݎௌ௨௡ in a configuration, where six 

solar cells are mounted in pairs in opposite directions and along three orthogonal axes. 

The solar cells are represented by the normal vectors ො݊ௌௌ௜ of each cell SS1 through 

SS6. 

Two solar cells used as coarse Sun sensor will be mounted on each ALMASat-EO 

face. They are 28% triple junction GaAs solar cell produced by AzurSpace. The 

datasheet is reported in Appendix A and the main parameters used in the simulator for 

solar cells are reported in Table 3. 

Solar cell Value Unit 

Average Short Circuit Current ܣ݉ 441.1 ࢉ࢙ࡵ 

Short Circuit Current Temperature Gradient ઢࢉ࢙ࡵ/ઢࢀ	  ℃/ܣ݉ 0.28 ↑

Reference Temperature 28  ࢌࢋ࢘ࢀ	 ℃ 

Calibrated Irradiance 1367 ࢒ࢇࢉࡱ	 ܹ/݉ଶ 

Surface Area  26.31	 ܿ݉ଶ 

Table 3. ALMASat-EO solar cell main parameters. They refer to beginning of life (BOL). Properties 
degradation due to aging are reported in the datasheet. 

Solar cells are characterized by the current-voltage, ܫ − ܸ and power-voltage, ܲ − ܸ 

curves. These curves are then parameterized by angle of the incident irradiance (see 
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Figure 9), temperature (see Figure 10) and aging (see Figure 11) of the solar cell. In 

fact, solar cell performance is degraded by space radiation made up of high energy 

particles which hit the solar cells reducing their efficiency. Figure 9 clearly shows the 

decrease of short circuit current, ܫ௦௖, when the angle of incidence increases. Figure 10 

shows the slight increase of ܫ௦௖ with temperature and the decrease of open circuit 

voltage, ௢ܸ௖, with temperature. Thus, choosing solar cells in short circuit mode reduces 

the solar cell output dependence on temperature. Finally, Figure 11 shows the solar 

cell ܫ − ܸ curve at beginning of life (BOL) and at end of life (EOL). 

 

Figure 9. Solar cell current voltage curve dependence on angle of incident irradiance.  
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Figure 10. Solar cell current voltage curve dependence on temperature. 

 

Figure 11. Solar cell current voltage curve dependence on aging. 
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3. Simulator 

The simulator is MATLAB/Simulink-based software and several mathematical 

models are implemented in order to simulate the space environment. Also, a numerical 

integrator is used to propagate the orbital motion and to predict the ALMASat-EO 

attitude. The simulator events are managed by a finite state machine and each state 

represents a mission event.  

The attitude dynamics is described by Euler’s equation and the kinematic equation for 

the quaternion. The former is used to calculate the true satellite angular velocity, ߱: 

̇߱ܬ = ௘௫௧ܯ −
݀ℎ
ݐ݀ − ߱ × ߱ܬ) + ℎ) 

where ܯ௘௫௧ is the total amount of external torques acting on the satellite (gravity 

gradient, aerodynamic, magnetic and solar radiation pressure torque), ℎ is the net 

angular momentum due to the rotation of the reaction or momentum wheels relative to 

the spacecraft and ܬ is satellite inertia matrix. 

The kinematic equation for the quaternion ݍ describes the satellite attitude: 

ݍ̇ =
1
2Ωݍ 

where Ω is a 4 × 4 matrix containing the satellite angular velocity components in the 

inertial reference frame: 

Ω = ൦

0 ݎ ݍ− ݌
ݎ− 0 ݌ ݍ
ݍ ݌− 0 ݎ
݌− ݍ− ݎ− 0

൪ 

with ߱ =   .[ݎ	ݍ	݌]

On-board orbit propagation is performed by SGP4 model (see [11]). It was developed 

by Ken Cranford in 1970 and is used for near-Earth satellites (the orbital period of 

ALMASat-EO is around 98 minutes). Simplified perturbations models are a set of five 

mathematical models (SGP, SGP4, SDP4, SGP8 and SDP8) used with two-line mean 

element (TLE) sets, produced by NORAD, to compute satellite orbital position and 

velocity. Simplified General Perturbations (SGP) models apply to near earth objects 
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with an orbital period of less than 225 minutes; conversely, Simplified Deep Space 

Perturbations (SDP) models apply to objects with an orbital period greater than 225 

minutes. These models consider secular and periodic variations due to Earth 

oblateness, solar and lunar gravitational effects, gravitational resonance effects, and 

orbital decay using a drag model. 

The numerical integrator characterizes the analysis output in terms of accuracy and 

precision. A 4th-order Runge-Kutta (RK4) method has been selected in the 

MATLAB/Simulink-based simulator. A fixed-step size solver has been used in 

simulations in order to limit the step-size and improve the accuracy of the results 

during the mission in order to fully describe the orbital dynamics and the attitude 

motion of ALMASat-EO. 

 

Figure 12. ALMASat-EO simulator 

 

3.1. Reference systems 

Three main reference systems are employed [1]: 

 an ECI (Earth Centered Inertial) reference system (C1, C2, C3), with: C1, C2 in 

the equatorial plane and C3 parallel to the Earth’s spin axis; 
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 an orbital reference system (τ, ℎ, ݎ) where: the angular momentum, ℎ = ݎ ×  is ݒ

directed along the positive orbit normal, ݎ is the radial direction from the centre 

of the Earth to the spacecraft and τ is defined as ℎ ×  in the orbital plane, in the ,ݎ

same direction of the velocity vector ݒ for circular orbits (and of the velocity 

vector at perigee and apogee for eccentric orbits); 

 a body-fixed reference system on ALMASat-EO, so that ܺ is the longitudinal 

axis aligned to the satellite velocity for a circular orbit, ܻ is aligned to the orbit 

normal and ܼ is aligned to the nadir. 

The rotation matrix between the reference systems 1 and 2 aforementioned is 

immediate once the spacecraft centre of mass position is known by numerical 

integration of the equations of motion. The rotation matrix between the reference 

systems 2 and 3 assumes that if the ALMASat-EO body axes are aligned to the orbital 

axes, the rotation matrix reduces to the unity matrix (ܺ ≡ ߬, ܻ ≡ ℎ and ܼ ≡  By .(ݎ

introducing the Euler angles 1-2-3 (Roll =	߮, Pitch = ߴ and Yaw = ߰) one can 

represent all rotations of ALMASat-EO with respect to the orbital reference frame. 

 

3.2. Earth magnetic field model 

The Earth magnetic field, ܤ can be expressed as the gradient of a scalar potential, 

ܸ: 

ܤ = −∇ܸ 

where ܸ can be conveniently expressed in spherical harmonics as [4]: 

(߶,ߠ,ݎ)ܸ = ܽ෍ቀ
ܽ
ቁݎ

௡ାଵ
෍ (݃௡௠ cos݉߶ + ℎ௡௠ sin݉߶) ௡ܲ

௠(ߠ)
௡

௠ୀ଴

௞

௡ୀଵ

 

where ܽ is the equatorial radius of the Earth; ݃௡௠ and ℎ௡௠ are called Gaussian 

coefficients; ݎ,  and ߶ are the geocentric distance, co-elevation, and east longitude ߠ

from Greenwich; and ௡ܲ
௠(ߠ) are the associated Legendre functions. The ݊ = 1 terms 

are called dipole; the ݊ = 2 terms are called quadrupole and so on. One set of 
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Gaussian coefficients to degree ݊ = 8 and order ݉ = 8 comprises the International 

Geomagnetic Reference Field (IGRF). 

 

3.3. Magnetometer model 

The magnetometer model takes the Earth’s magnetic field vector, computed from 

IGRF model and rotated in the body reference frame by the attitude matrix, and adds 

noise to create a realistic measure, ܤ෨௕. A bias vector term due to the presence of 

permanent magnets or possible magnetic fields created by on-board electronics can be 

considered. The output noise level of the magnetometer in root mean square (rms) is 

given by the datasheet and modeled by a zero-mean Gaussian random noise with the 

specified variance. The misalignment and scale factor (given in the datasheet) 

inaccuracies are added with a gain block which is ܫଷ×ଷ +  where the diagonal values ,ܩ

of ܩ are the percent error in scale factor and the off-diagonal values of ܩ are the 

percent error of misalignment. A saturation block is used to limit the dynamic range of 

the magnetometer. Temperature dependency should not be included in the model, if 

the chosen sensor has internal temperature compensation. 

 

3.4. Sun position propagator 

In order to compute on-board the Sun direction vector in an inertial reference frame 

for attitude estimation, a less computational burdensome solution than a Keplerian 

propagator is required. For small eccentricities, the true anomaly, ߥ may be expressed 

directly as a function of the mean anomaly, ܯ by a power series expansion derived by 

Ruppe [4]: 

ߥ = ܯ + 2݁ sinܯ +
5
4 ݁

ଶ sin ܯ2 + ࣩ(݁ଷ) 

This expression is derived combining Kepler’s equation: 

ܯ = ܧ − ݁ sinܧ 
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with Gauss’ equation: 

tan ቀ
ߥ
2ቁ = ൬

1 + ݁
1 − ݁൰

ଵ/ଶ

tan ൬
ܧ
2൰ 

where ܧ is the eccentric anomaly. 

 

3.5. Eclipse model 

In order to model properly the satellite mission conditions, determining the period 

when the spacecraft is in eclipse is essential. In fact, during this period Sun sensor 

readings are not available, the solar cells and arrays output currents are zero and the 

satellite temperature drops. Thus, eclipse can influence attitude and angular rate 

estimation and batteries are the only power source. 

To determine the conditions under which eclipse occurs, first the length ܥ of the 

shadow cone for the Earth is computed as: 

ܥ =
ܴ⨁ ∙ ܵ

(ܴ⨀ − ܴ⨁) = 1.385 ∙ 10଺	݇݉ 

where ܴ⨁ = 6378.140	݇݉ is the mean radius of the Earth, ܴ⨀ = 6.9599 ∙ 10ହ	݇݉ is 

the radius of the photosphere (i.e. the visible surface) of the Sun and ܵ = ܷܣ	1 ≅ 1.5 ∙

10଼	݇݉ is the distance from the Earth to the Sun. 

To develop specific eclipse conditions, let ݎ⨀ be the versor from the spacecraft to the 

center of the Sun and ܦ⨀ the corresponding distance and let ݎ⨁ be the versor from the 

spacecraft to the center of the Earth and ܦ⨁ the corresponding distance. The angular 

radius of the Sun, ߩ⨀, the angular radius of the Earth, ߩ⨁, and the angular separation, 

 :between the Sun and the Earth as viewed from the spacecraft, are given by ,ߠ

⨀ߩ = sinିଵ(ܴ⨀/ܦ⨀) 

⨁ߩ = sinିଵ(ܴ⨁/ܦ⨁) 

ߠ = cosିଵ(ݎ⨀ ∙  (⨁ݎ

The total eclipse condition can be then expressed as [4]: 
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ܵ < ⨀ܦ		or		⨀ܦ 	< ܵ + ⨁ߩ		and		ܥ − ⨀ߩ >  ߠ

 

3.6. Sun sensor model 

The Sun sensor model takes the Sun position vector in the inertial reference system 

calculated by the Sun position propagator and it is rotated in the body reference system 

by the attitude matrix: 

ܵ௕ = ௕௜ܣ ௜ܵ 

Then the Sun position vector in the body reference system is rotated again in the sun 

sensor lens –fixed system. Now it is possible to calculate the azimuth ݖܣ and co-

elevation ݈݁݋ܥ as a function of the Sun position vector components from the following 

relations [12]: 

ܵ௫
௝௜ = − sin ௝௜݈݁݋ܥ cosݖܣ௝௜ 

ܵ௬
௝௜ = cos݈݁݋ܥ௝௜ 

ܵ௭
௝௜ = sin ௝௜݈݁݋ܥ sinݖܣ௝௜ 

where the superscript ݆݅ denotes the Sun sensor. There are four Sun sensors which are 

located as illustrated in Figure 13. 

 

Figure 13. Sun sensors location 
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The Sun is in the field-of-view of the Sun sensor if ݈݁݋ܥ௝௜ ≤ 65°. Then the standard 

deviation ߪఌ of the noise which will be added to the Sun position vector to simulate a 

real measurement is calculated as [12]: 

ఌೕ೔ߪ = ܽ +  ௝௜݈݁݋ܥܾ

with ܽ = 0.01° and ܾ = 0.09°/50°. This comes from the assumption that the noise is a 

linear function depending only on the co-elevation. Then, the noise is added to the 

angles ݖܣ௝௜  and ݈݁݋ܥ௝௜: 

௝௜ݖሚܣ = ௝௜ݖܣ +  ௝௜ߝ

௝௜݈݁݋ሚܥ = ௝௜݈݁݋ܥ +  ௝௜ߝ

where ߝ௝௜ is a zero-mean Gaussian random noise with the variance ߪఌೕ೔
ଶ . The Sun 

sensor measurements are then calculated using the equations reported above. The 

measurement vectors of each Sun sensor are rotated again in the spacecraft reference 

system and the Sun position measurement vector is given by a weighted mean of the 

four Sun sensors readings. Obviously, a measurement from each Sun sensor is 

considered valid if the Sun is in the sensor field-of-view and the spacecraft is not in 

eclipse. 

 

3.7. Earth horizon sensor model 

The Earth horizon sensor model takes as input the position of the satellite along its 

orbit, computed by integration of the equations of orbital motion with the initial 

condition defined by the orbital parameters. Then it is rotated in the body reference 

system by the attitude matrix, and noise is added to create a realistic measure of the 

nadir vector, ܧ෨௕ . Measurement of the nadir vector, involves various types of errors 

which can be classified generally as random and systematic errors. Random errors 

come from the noise of the detector, amplifier and processing electronics, change in 

the alignment of sensor axis and drifts in the amplifiers due to aging or environmental 

changes. Systematic errors are due to seasonal Earth horizon variations, variations in 

height of CO2 band and Earth oblateness. The output noise of the Earth horizon sensor 
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is modelled adding a zero-mean Gaussian random noise with the variance given in the 

datasheet. The simulated measurement can be considered valid if the Earth is in the 

field-of-view (FOV) of the sensor. From geometric considerations, the condition is 

satisfied if: 

 

ߙ < ߚ +  2/ܸܱܨ

 

where ߙ is the angle between the normal to the satellite face where the Earth horizon 

sensor is placed (−ܼ in ALMASat-EO) and the nadir vector in the body reference 

frame, ܸܱܨ is the Earth horizon sensor field-of-view, which is equal to 37° for 

ALMASat-EO Earth horizon sensor, and ߚ is half of the Earth cone angle with respect 

to the spacecraft orbital position and it is defined as: 

 

ߚ = sinିଵ ቆ
ܴ⨁

ܴ⨁ + ℎቇ = 64.5° 

 

where ܴ⨁ = 6378.140	݇݉ is the Earth mean radius and ℎ = 686	݇݉ is the orbit 

height. 

 

3.8. Solar cell model 

The model is based on the cosine law which describes the ratio between the solar 

cell measured current ܫ௠௘௔௦,௜ and the maximum current ܫ௠௔௫,௜ generated when the 

incident light hits the solar cell orthogonally: 

௠௘௔௦,௜ܫ

௠௔௫,௜ܫ
= cosα୧ 

The standard algorithm of estimating the Sun LOS vector ̂ݎௌ௨௡ா௦௧ is: 
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௜௡௖ܧ
௖௔௟ܧ

ௌ௨௡ா௦௧ݎ̂ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
௠௘௔௦,ଵܫ

௠௔௫,ଵܫ
−
௠௘௔௦,ଶܫ

௠௔௫,ଶܫ
௠௘௔௦,ଷܫ

௠௔௫,ଷܫ
−
௠௘௔௦,ସܫ

௠௔௫,ସܫ
௠௘௔௦,ହܫ

௠௔௫,ହܫ
−
௠௘௔௦,଺ܫ

௠௔௫,଺ܫ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

where ܧ௜௡௖  is the incident irradiance, equal to 1353	ܹ/݉ଶ in space, and ܧ௖௔௟ is the 

calibrated irradiance. This algorithm is error-prone when the Earth albedo induces 

current in the solar cells. Earth albedo is the main source of error in solar cell 

measurements; conversely, digital Sun sensors are mostly insensitive to this 

phenomenon. The amount of solar irradiance reflected by the Earth towards the 

satellite, influences the power generated by solar cells. Moreover, due to the geometry 

of the Earth, the albedo irradiance is multi-directional, unlike the solar irradiance 

which may be assumed to be anti-parallel to the Sun LOS vector. This assumption 

holds because the distance to the Sun is large relative to the Sun radius for Earth 

orbiting satellites. Earth albedo can be modeled using the Earth’s reflectivity data 

measured by the Earth Probe satellite for the Total Ozone Mapping Spectrometer 

(TOMS) project or it can be directly measured using albedo sensors. Earth albedo 

induced currents can be compensated assuming that the solar cell which generates the 

highest current is illuminated by solar irradiance only. The maximum current 

algorithm is based on this assumption and it is given by [13]: 

 

௜௡௖ܧ
௖௔௟ܧ

ௌ௨௡ா௦௧,ଵݎ̂ =

⎩
⎪
⎨

⎪
௠௘௔௦,ଵܫ⎧

௠௔௫,ଵܫ
		if		

௠௘௔௦,ଵܫ

௠௔௫ܫ ,ଵ
>
௠௘௔௦,ଶܫ

௠௔௫,ଶܫ

−
௠௘௔௦,ଶܫ

௠௔௫,ଶܫ
		otherwise

 

௜௡௖ܧ
௖௔௟ܧ

ௌ௨௡ா௦௧,ଶݎ̂ =

⎩
⎪
⎨

⎪
௠௘௔௦,ଷܫ⎧

௠௔௫,ଷܫ
		if		

௠௘௔௦,ଷܫ

௠௔௫ܫ ,ଷ
>
௠௘௔௦,ସܫ

௠௔௫,ସܫ

−
௠௘௔௦,ସܫ

௠௔௫,ସܫ
		otherwise

 

௜௡௖ܧ
௖௔௟ܧ

ௌ௨௡ா௦௧,ଷݎ̂ =

⎩
⎪
⎨

⎪
௠௘௔௦,ହܫ⎧

௠௔௫,ହܫ
		if		

௠௘௔௦,ହܫ

௠௔௫ܫ ,ହ
>
௠௘௔௦,଺ܫ

௠௔௫,଺ܫ

−
௠௘௔௦,଺ܫ

௠௔௫,଺ܫ
		otherwise
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In order to model these measured currents, the true Sun position in the body reference 

frame is needed to calculate both the temperature and the current on each face. It is 

given by a Sun position propagator (see 3.4) and then it is rotated in the body reference 

frame using the attitude matrix ܣ௕௜ which describes the orientation of the satellite with 

respect to the inertial reference frame: 

ܵ௕௢ௗ௬ = ௕௜ܣ ௜ܵ௡௘  

Then the position of the Sun with respect to each solar cell, mounted on each 

spacecraft face can be described using the director cosines: 

α௜ = cosିଵ൫ܵ௕௢ௗ௬ ∙ ො݊௜൯ 

where ො݊௜ is the versor normal to each face. Now, the output measured from each solar 

cell can be calculated applying the current cosine law and knowing the maximum 

current, which is the short circuit current when α௜ = 0°. In order to improve the 

modeling of the solar cells current outputs, a temperature dependence is considered. 

The temperature correction on the current is given by the following relation: 

்ܫ = ܫ +
ܫ݀
݀ܶ

൫ ෨ܶ − ௥ܶ௘௙൯ 

where ்ܫ is the solar cell current considering the temperature effect, ݀ܫ/݀ܶ is the short 

circuit current variation with respect to temperature variations, ෨ܶ  is the measured 

temperature on the solar cell and ௥ܶ௘௙ is the reference temperature. Both ݀ܫ/݀ܶ and 

௥ܶ௘௙ can be found in the solar cell datasheet (see Appendix A and Table 3). The 

current temperature is measured by a temperature sensor which can be modeled as: 

෨ܶ = ܶ +  ߥ

where ܶ is the true temperature and ߥ is a zero-mean Gaussian noise which satisfies: 

{ߥ}ܧ = 0 

{்ߥߥ}ܧ =  ଷܫଶߪ

where the standard deviation 3ߪ = ±2	℃. The true temperature is calculated by a 

thermal model as described in 3.9. 
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Noises should also be added to these modeled measured currents to simulate real solar 

cell’s current output: 

ሚ்ܫ = ்ܫ +  ߥ

where ߥ is a zero-mean Gaussian noise defined as before with 3ߪ =  .ܣ݉	±0.104

Small errors due to the inaccuracy of the cosine model approximation when α୧ is close 

to ±90° should also be taken into account. In fact, when α୧ approaches to ±90°, half 

the Sun has sunk below the solar cell and does not produce electrical current, and half 

the Sun is shining on the solar panel producing current. However, experiments made 

on solar cells showed that when ߙ௜ > ±85° the measured currents are very low. Thus, 

it is assumed that if ߙ௜ > 85° (the opposite value is not taken into account since the 

arccosine function output is defined in the range [0, 180°]) then ߙ௜ = 90° so that a 

zero current is modeled in this case. Lastly, Sun eclipse should also be incorporated in 

this model because solar cell measurements are not available during this period (see 

3.5). 

 

3.9. Temperature model 

Once in space, the satellite is subjected to direct sunlight, sunlight reflected off of 

the Earth (albedo) and infrared (IR) energy emitted from Earth’s atmosphere. Thus, the 

equation of heat balance for the satellite can be expressed as [14]: 

݉ܿ
݀ܶ
ݐ݀ = ܳ௜௡௦ + ܳூோ,ா௔௥௧௛ + ܳ௔௟௕௘ௗ௢ −ܳ௢௨௧ 

where ݉ is the satellite mass, ܿ is the specific heat capacity, ݀ܶ/݀ݐ is the variation of 

satellite temperature with time, ܳ௜௡௦ , ܳூோ,ா௔௥௧௛  and ܳ௔௟௕௘ௗ௢  are the incoming heat flows 

due to direct sunlight, Earth albedo and Earth IR radiation and ܳ௢௨௧ is the outgoing 

heat flow due to radiation. They can be expressed as: 

ܳ௜௡௦ = ௦௔௧ܣ⨀߶ߙ cosߠ 
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where 0 ≤ ߙ ≤ 1 is the solar absorptivity coefficient, ߶⨀ = 1353	ܹ/݉ଶ is the solar 

heat flux, ܣ௦௔௧ is the satellite surface hit by radiation and ߠ is the angle between the 

normal to the surface and the Sun direction with respect to the same surface; 

ܳூோ,ா௔௥௧௛ =  ௦௔௧,ா௔௥௧௛ܨ௦௔௧ܣ⨁߶ߙ

where ߶⨁ = 236	ܹ/݉ଶ is the mean Earth heat flux and: 

௦௔௧,ா௔௥௧௛ܨ =
1
2 ቎1 −

ඨ1 − ቆ
ܴ⨁

ܴ⨁ + ℎቇ
ଶ

቏ 

is the view factor of the satellite with respect to the Earth; 

ܳ௔௟௕௘ௗ௢ =  ௦௔௧,ா௔௥௧௛ܽܨ௦௔௧ܣߙ0.3

where 0 ≤ ܽ ≤ 1 is a multiplicative factor which takes into account the illumination of 

the Earth surface; 

ܳ௢௨௧ = )ߪ௦௔௧ܣߝ ௦ܶ௔௧
ସ − ଴ܶ

ସ) 

where 0 ≤ ߝ ≤ 1 is the emissivity factor, ߪ = 5.67051 ∙ 10ି଼	ܹ/݉ଶܭସ is the Stefan 

Boltzmann’s constant, ௦ܶ௔௧ is the satellite temperature and ଴ܶ =  is the deep space ܭ°	4

temperature. 

In order to consider also the heat exchange between the spacecraft surfaces, the 

satellite has been modeled using ten nodes: six of them are located in the middle of 

each face and the other four nodes are placed in the middle of each solar panel [11]. 

Then the heat exchange between nodes due to radiation and conduction are calculated 

as: 

ܳ௜௥௥ = ෍ߝ௝ܣ௝ܨ௝௫ߪ൫ ௫ܶ
ସ − ௝ܶ

ସ൯
௫

 

ܳ௖௢௡ௗ = ෍
௝௫ܣ݇
௝݀௫௫

൫ ௫ܶ − ௝ܶ൯ 
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where ݆ is the considered node, ݔ are the other nodes, ݇ is the material thermal 

conductivity, ܣ௝௫ and ௝݀௫ are respectively the surface and the distance between node ݆ 

and node ݔ. 

Then, this model accepts as inputs, the orbital parameters and the satellite orbital 

propagation calculated by the simulator (see Simulator) and it integrates the heat 

balance equation starting from a guess value (typically ܶ =  .(ܭ°	300

 

3.10. Gyroscope model 

The gyroscope model takes the angular velocity, ߱ computed from the integration 

of the Euler’s equation of motion and adds noise to create a realistic measured, ෥߱. Two 

types of noise are added to the signal, Angle Random Walk (ARW) and bias drift. 

ARW is the high frequency noise term that have correlation time much shorter than the 

sample time and it causes random error in angle with distribution, which is 

proportional to the square root of the elapsed time. It is modelled as a zero-mean 

Gaussian random noise with a variance given by the manufactures datasheet or 

determined by Allan variance technique. The Allan variance, an accepted IEEE 

standard for gyroscope specifications, is a time domain analysis technique that can be 

used to find the characteristics of the noise processes in an instrument. The Allan 

variance technique uses a clustering method. It divides the data into clusters of specific 

length and averages the data in each cluster. It then computes the variance of each 

successive cluster average to form the Allan variance. Each noise source has a 

different correlation time. By choosing the correct correlation time or cluster length, 

the desired noise source variance can be calculated [15]. The bias drift is modeled as 

the integration of a white noise called Rate Random Walk (RRW) with a variance 

given by the datasheet or determined by Allan variance technique. The integrator is 

initialized at the initial bias of the hardware. These terms can be seen in mathematical 

model of the gyro: 

෥߱ = ߱ + ߚ + ௦௙ߦ + ξ୫ୟ + η୴ 

ߚ̇ = ௨ߟ  
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where ߚ is the bias drift, ߦ௦௙  is the gyro scale factor error, ξ୫ୟ is the gyro 

misalignment error, ߟ௩ is the ARW and ߟ௨ is the RRW. As stated above, ߟ௩ and ߟ௨ are 

independent zero-mean Gaussian white-noise processes with: 

[η୴(t)η୴୘(τ)]ܧ = ݐ)ߜ௩ଶߪ −  ଷ×ଷܫ(߬

[η୳(t)η୳୘(τ)]ܧ = ݐ)ߜ௨ଶߪ −  ଷ×ଷܫ(߬

where ܧ[	] denotes expectation and ݐ)ߜ − ߬) is the Dirac delta function. 

Scale factor is the ratio of the change in output to the input. It is generally evaluated as 

a slope of the straight line that can be fit by the least square method to the input-output 

data. Axes misalignment is the error from the imperfection of mounting the sensors. It 

often results in a non-orthogonality of the axes. As a result, each axis is affected by 

measurements of the other two axes in the body frame. Since axes misalignments are a 

manufacturing imperfection can therefore easily be detect and compensated by 

calibration [5]. 

The equations above are implemented in Simulink to model the gyroscope. The gyro 

noise sources are scaled by ௦ܶ
ି଴.ହ as suggested in literature. The sample time, ௦ܶ is used 

to correct the units of ARW ൫°/√ݏ൯ and RRW ൫°/√ݏଷ൯ to °/ݏ and °/ݏଶ respectively. 

The misalignment inaccuracies are added with a gain block in the model. The gain is 

ଷ×ଷܫ +  are the percent error in scale factor and the ܩ where the diagonal values of ,ܩ

off-diagonal values of ܩ are the percent error of misalignment [15]. The dynamic 

range of the gyroscope hardware is modeled by a saturation block. The gyroscope 

Simulink model illustrated in Figure 14. A three-axis gyro ADIS16400 is considered 

for simulations and its complete datasheet is reported in Appendix A. The main 

parameters values are reported in Table 4: 

Gyroscope Value Unit 

Dynamic Range ±75, ±150,  ݏ/° ±300

Scale Factor 0.05, 0.025,  ݏ/° 0.0125

Initial Bias Error ±3 °/ݏ 

Bias Stability 0.007 °/ݏ 

ARW 2 °/√ℎݎ 

3 dB Bandwidth 330 Hz 
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Dimensions 23 × 23 × 23 ݉݉ 

Mass 16 ݃ 

Power 0.35 ܹ 

Table 4. Three-axis gyroscope ADIS16400 main parameters 

 

Figure 14. Three-axis gyroscope Simulink model 
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4. Passive magnetic system for angular rate damping 

In [16], a passive magnetic attitude control system for high angular velocity 

damping was studied by means of simulations performed in the MATLAB/Simulink-

based simulator for ALMASat missions. The system consists of hysteresis rods placed 

along all three axes to dissipate the high rotation kinetic energy caused by a non-

nominal separation from the launcher. A preliminary study was carried on in [16] and 

then the manufacturer was selected and contacted. 

The selected soft magnetic material is MUMETALL, also called Permalloy, available 

at SISRAM S.p.A., the Italian distributor of VACUUMSCHMELZE (VAC). 

MUMETALL belongs to the category NiFe alloys with high percentage of Ni (72-83 

% Ni). The alloys in this group are currently the softest magnetic materials available. 

They are characterized by high initial and maximum permeability and low coercivity 

but have relatively low saturation polarization. The low coercivity is strongly required 

since it makes the material easily magnetized by the Earth magnetic field. 

This material is available for small amounts in shape of strips with thickness, ݐ =

1	݉݉ and width, ݓ = 150	݉݉. The most important magnetic, mechanical, physical 

properties and the chemical composition of this Nickel Iron alloy are reported in Table 

5 and Table 6: 

Magnetic properties Saturation induction ܤ௦ = 0.8	ܶ 

Coercivity force ܪ௖ =  ݉/ܣ	1.5

Mechanical properties Young modulus ܧ =  ܽܲܩ	170

Physical properties Density ߩ = 8.7	݃/ܿ݉ଷ 

Curie Temperature ஼ܶ = 400	℃ 

Table 5. MUMETALL properties 

 Ni Cu Mo Fe others 

MUMETALL 76.6	% 4.5	% 3.3	% 14.7	% Mn, Si 

Table 6. MUMETALL chemical composition in weight percentage 
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MUMETALL is characterized by a S-shaped hysteresis loop, which is illustrated in 

Figure 15 for the typical magnetic field range [−40,  during ALMASat-EO ݉/ܣ	[40

mission. 

 
Figure 15. MUMETALL ideal hysteresis loop in the range [-40, 40] A/m 

The soft magnetic material need to be subjected to a final heat treatment to set the 

optimum magnetic properties. This final magnetic heat treatment step takes place after 

final shaping. The high temperature annealing for MUMETALL takes from 2 to 5 

hours at 1000− 1100	°C and the cooling in furnace should arrive to < 300	°C. The 

heat treatment should be done in H2 atmosphere. In fact, hydrogen is the preferred 

protective gas. It prevents scaling and interacts chemically with the metal, for instance 

removing impurities. Alternatively, nitrogen can be used but the magnetic quality is 

generally lower when compared to heat treatments under hydrogen although it is 

cheaper. 

Now, the magnetic interaction of the hysteresis rods on the active magnetic 

attitude control system is studied starting from the conclusions reached in [16]. The 

magnetic interaction was studied by means of Monte Carlo simulations, starting from a 
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random distribution of the initial angular velocity norm on the three components and 

considering the time needed to reach a specific satellite condition. In particular three 

scenarios were investigated. In the first scenario, the interaction between the magnetic 

control law –Bdot, performed by magnetic coils, and the effect of the hysteresis rods 

during the detumbing motion is studied. Then, in the second scenario the interaction 

between the magnetic control law -Bdot and the effect of the hysteresis rods during the 

satellite spin up is investigated. Finally, in the third scenario, the interaction between 

the magnetic coils and the hysteresis rods during the satellite stabilization up to the 

three-axis control state is studied. The results, in terms of time, obtained considering 

an attitude control system with and without hysteresis rods were compared in order to 

find out a possible magnetic interaction between the hysteresis rods and the active 

magnetic attitude control system. The results showed that the hysteresis rods effect is 

negligible in the first and in the second scenario. The results obtained for the third 

scenario are analyzed in this work. 

Further investigations showed that the large time difference between the configuration 

with and without hysteresis rods in three-axis control is due to an error in the 

estimation of ܿ(ߠ)ݏ݋, where ߠ is the pitch angle. This variable is generally estimated 

using the attitude matrix computed by the TRIAD algorithm used for attitude 

determination in ALMASat-1. However, when the measured sun vector and the 

measured geomagnetic vector are aligned or the satellite is in eclipse, the computed 

attitude matrix becomes singular and ܿ(ߠ)ݏ݋ cannot be estimated in this way. In this 

case, the attitude determination subsystem estimates ܿ(ߠ)ݏ݋ supposing that the angle ߰ 

between the satellite y-axis and the versor normal to the orbital plane is small. Using 

this hypothesis, it is possible to estimate ܿ(ߠ)ݏ݋ by using only the geomagnetic vector 

measurements since the z-x plane in the body frame and in the reference frame are 

supposed to be parallel and rotated by ߠ. If the hypothesis on ߰ is not true, then the 

estimation of ܿ(ߠ)ݏ݋ is slightly inaccurate. Since one of the conditions for three-axis 

control is cosߠ ≥ 0.99, where ߠ is the estimated pitch angle, the inaccuracy in the 

estimation of ܿ(ߠ)ݏ݋, during the verification of the conditions before the three-axis 

control, leads to a time delay in three-axis control engagement. Thus, the large time 

difference between the two configurations is due to this attitude estimation problem 

which may be solved using more attitude sensors measurements (Sun sensor, 
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magnetometer, Earth horizon sensor, solar cells and gyroscopes) combined in a multi-

rate Kalman filter for attitude estimation in all conditions (two vectors alignment and 

eclipse period). The small time differences between the two configurations are due to 

hysteresis rods but they are of order of few minutes and hence, negligible. 

Figure 16 shows that the estimated ܿ(ߠ)ݏ݋ is smaller than 0.99 (see first data tip in 

Figure 16) then the three-axis control does not act on the satellite at that time. This is 

due to the error in the hypothesis of small ߰. In fact, although the estimated pitch angle 

ߠ = tanିଵ൫(ߠ)ݏ݋ܿ/(ߠ)݊݅ݏ൯, where (ߠ)݊݅ݏ and ܿ(ߠ)ݏ݋ are functions of geomagnetic 

vector measurements, passes through zero, the estimated ܿ(ߠ)ݏ݋ is smaller than 0.99. 

The three-axis control acts on the satellite only if the condition ܿ(ߠ)ݏ݋ > 0.99 is 

fulfilled (see second data tip in Figure 16). In conclusion, considering the results 

reported in [16] and what stated above, the influence of the hysteresis rods on the 

active magnetic control system is negligible. 

 

Figure 16. Time history of the cosine of the estimated pitch angle (top), the estimated pitch angle (middle) 
and the true angle ࣒ between the satellite y-axis and the versor normal to the orbital plane (bottom) during 
three-axis stabilization requirements check.  
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5. Angular rate estimation using solar cells 

Solar cells in short circuit mode can be used as simple Sun sensors which work by 

measuring the current output. They are lower price, mass and power consumption than 

digital Sun sensors. Thus, they can be used for coarse three-axis attitude determination 

in safety mode [13]. Moreover, they can be used for angular rate estimation in the 

event of an unexpected gyroscope failure or when the gyroscopes are saturated by high 

angular rate of the spacecraft. For instance, in [17], the problem of estimating the 

angular rate of a satellite in tumbling motion, based on sequential measurements of a 

single directional vector (Sun direction measurement), is solved by a deterministic 

algorithm that provides a coarse angular velocity estimate used to initialize an 

extended Kalman filter (EKF). In [18], an algorithm for angular rate determination 

using varying solar array currents over an entire orbital period is implemented to 

graphically determine an average spin frequency. By taking the current data over the 

given time period and converting it to the frequency domain, a clear spike represents 

the most frequently occurring rate. In this work, the angular rate estimation of a 

tumbling spacecraft in safety mode (when low power consumption is required) is 

performed by an EKF, as described in [19], using sequential readings of solar cells 

instead of Earth’s magnetic field. This filter has been already implemented for 

ALMASat-1 mission as the only solution to estimate the angular velocity using 

sequential readings of Earth’s magnetic field since no gyroscopes were mounted on 

board. Furthermore, in case of failure of digital Sun sensors, sequential readings of 

solar cells can be used for attitude determination together with magnetometer data 

using a single-point algorithm like TRIAD, implemented for ALMASat-1 mission, or 

filtering algorithms like an EKF or an unscented Kalman filter (UKF) where the 

uncertainty of the measurement can be incorporated. 

 

5.1. Extended Kalman filter for angular rate estimation 

In this section, a summary of the extended Kalman filter implemented to estimate 

the satellite angular velocity using sequential sensor readings is reported. 
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The satellite is assumed to be in tumbling motion, such that there are no internal 

torques acting on the satellite. Because the attitude matrix is assumed unknown, the 

external disturbance torques are represented in the mathematical model by a zero mean 

stationary process noise. The Euler’s equation describing the rigid body dynamics can 

be written as: 

߱̇ = ߱−)ଵିܬ × (߱ܬ +  ߦ

where ߱ is the satellite angular velocity, ܬ is the inertia matrix and ߦ is a zero-mean 

Gaussian process noise with power spectral density ܳ. 

The relation between the satellite angular velocity and the measurements variation is 

given by the filter observation model: 

ܾ݀
ݐ݀ =

߲ܾ
ݐ߲ + ߱ × ܾ 

where the left hand side (lhs) of the equation is the temporal derivative of the 

measurement vector and the right hand side (rhs) is the measurement time variation in 

a body-fixed frame. 

For most orbits, the lhs, which is generated only by the change in position of the 

satellite (minimal during the short sampling interval) and by the slow Earth rotation, is 

negligible relative to both terms on the rhs of that equation. Therefore, we can set 

ݐ݀/ܾ݀ ≅ 0 which yields: 

߲ܾ
ݐ߲ ≈ −߱ × ܾ = [ܾ ×]߱ 

where [ܾ ×] is the cross product matrix. The proposed estimator is an extended 

Kalman filter. The filter’s state vector ݔ௞ consists of the three satellite angular velocity 

vector components in the inertial reference frame: 

௞ݔ = ൣ߱௫ 	߱௬	߱௭൧
்

 

The state propagation is performed by the following non linear state equation, 

assuming a sampling interval Δݐ = ௞ାଵݐ −  :௞ݐ

௞ାଵݔ = Φ௞ݔ௞ +  ௞ݑ
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where Φ௞  is the linearized dynamics state transition matrix and ݑ௞ is the stationary 

zero-mean process white noise. The time propagation of the state estimate can be 

performed via numerically integrating Euler’s equations between consecutive sampling 

times. However this method requires a high computation effort. This is why the 

linearized dynamics state transition matrix is used. It can be approximated by : 

Φ௞ = ܫ +  ݐ௞Δܨ

where ܫ is the 3 × 3 identity matrix and the Jacobian matrix ܨ௞ is computed as: 

௞ܨ =
߲݂
ฬ௫ୀ௫ොݔ߲

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 0

൫ܬ௬௬ − ොଷݔ௭௭൯ܬ
௫௫ܬ

൫ܬ௬௬ − ොଶݔ௭௭൯ܬ
௫௫ܬ

௭௭ܬ) − ොଷݔ(௫௫ܬ
௬௬ܬ

0
௭௭ܬ) − ොଵݔ(௫௫ܬ

௬௬ܬ
൫ܬ௫௫ − ොଶݔ௬௬൯ܬ

௭௭ܬ
൫ܬ௫௫ − ොଵݔ௬௬൯ܬ

௭௭ܬ
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

The sensor reading vector at time ݐ௞  is related to the known reference vector via: 

෨ܾ௞ = ܾ௞ + ௞ߥ  

where ߥ௞  is the sensor stationary measurement noise: 

 (ଶߪ,0)ܰ~௞ߥ

where ߪଶ is the variance of the measurement noise. To derive the filter’s measurement 

equation, the body-referenced temporal derivative is approximated using a first-order 

backward finite difference, computed using two successive sensor readings. Thus, the 

observation equation is written as: 

௞ݖ = ௞ݔ௞ܪ + ݊௞ 

where ܪ௞ = ൣ ෨ܾ௞ ×൧Δݐ is the time-varying observation matrix, ݖ௞ = ෨ܾ௞ − ෨ܾ௞ାଵ is the 

effective measurement vector, and ݊௞ = ௞ߥ −  .௞ିଵ is the effective measurement noiseߥ
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5.2. Simulations 

First, the model of solar cells is validated comparing the Sun position estimated 

using the solar cells current outputs to the true Sun position in the body reference 

frame computed by the Sun position propagator. Then the satellite angular velocity is 

estimated using the extended Kalman filter (EKF), described in [19] and summarized 

in 5.1, where the magnetometer readings are replaced by the solar cells measurements 

sampled at a frequency of 2	ݖܪ. 

The satellite is in detumbling motion with a random initial angular velocity norm 

ranging from 0°/ݏ to 100°/ݏ randomly distributed between the three vector 

components. Eclipse is also taken into account to investigate its effects on the angular 

velocity estimation filter. During the eclipse, the filter is switched off in order to avoid 

divergence. In order to consider different eclipse period lengths, a random orbital right 

ascension of the ascending node (RAAN) is chosen. Moreover, to consider different 

eclipse period starting time instants, the satellite initial position along its orbit is 

randomly chosen, considering a random epoch time ߬: 

߬ = launch	date + ݀݊ܽݎ ∙ ௢ܶ௥௕ 

where ݀݊ܽݎ is a random number between 0 and 1. 

Each simulation lasts one orbital period, ௢ܶ௥௕, plus an initialization time period equal 

to 2000	ݏ in order to ensure solar cells temperature convergence. The orbital period is 

given by: 

௢ܶ௥௕ = ඨߨ2
ܽଷ

ߤ = ݏ	5908.6 ≅ 98.5	minutes 

where ܽ = 7064	݇݉ is the orbital semi-major axis and ߤ = 398600.44150	݇݉ଷ/ݏଶ is 

the Earth gravity constant. 

The estimated angular velocity is compared to the true angular velocity computed by 

integration of the rigid body dynamics equation in order to check the filter 

performance. To improve the filter convergence, which is very important in real-time 

estimation, a high initial covariance matrix ଴ܲ is considered. Since the initial angular 
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velocity estimation is ෝ߱଴ =  and the maximum initial angular velocity ݏ/݀ܽݎ	[0	0	0]

norm is equal to 100°/ݏ =  :the initial covariance matrix ଴ܲ is ,ݏ/݀ܽݎ	1.7453

଴ܲ = 1.7453ଶ	݀ܽݎଶ/ݏଶ ∙  ଷ×ଷܫ

The process noise covariance matrix ܳ௞  and the measurement noise covariance matrix 

ܴ௞  values come from filter tuning considerations. In particular, they are chosen equal 

to: 

ܳ௞ = 10ିହ	݀ܽݎଶ/ݏଶ ∙  ଷ×ଷܫ

ܴ௞ = 10ିଷ ∙  ଷ×ଷܫ

Monte Carlo simulations are run in order to statistically validate the filter performance. 

The analysis statistic over the 1000 simulations of the estimated angular velocity is 

performed considering the mean and the standard deviation of the error on each 

angular velocity component. Moreover, in order to have a statistical parameter which 

describes the error on the angular velocity norm, the root sum square of the standard 

deviation of the error on each component is considered: 

Σ௘௥௥௢௥ = ටߪ௫ଶ + ௬ଶߪ +  ௭ଶߪ

 

5.3. Results of simulations 

In this section the results of Monte Carlo simulations and investigations on 

results are reported.                                                                                                                                                                                                                    
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Figure 17. Mean of the error in Monte Carlo simulations 

 

Figure 18. Standard deviation of the error in Monte Carlo simulations 
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Figure 19. Root sum square of the standard deviation of the error in Monte Carlo simulations 

In Figure 17 the mean of the error over 1000 simulations is shown. Most of the points 

are concentrated around zero, which means that a good performance of the estimation 

filter is achieved. However in the top panel of Figure 17, where the mean of the error 

of the angular velocity on x-component is illustrated, some relatively large values can 

be identified. This is due to slow filter convergence after an eclipse period. Thus, a 

filter re-initialization is needed to ensure a fast filter convergence which is essential in 

real-time estimation. The initial state vector estimate is chosen equal to the state vector 

estimated before the eclipse since it is the best available guess. The result is shown in 

Figure 20. The filter converges rapidly (in 20	ݏ) after the eclipse period (between 

ݐ ≅ ݐ and ݏ	3100 ≅  illustrated in Figure 20 by the shaded region, thanks to ,(ݏ	5200

the re-initialization of the error covariance matrix ௞ܲ. 
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Figure 20. Angular velocity estimation after an eclipse period. The shaded region illustrates the eclipse 
period. 

By looking at the y-axis scale in Figure 17, it is possible to notice that the mean of the 

error of the angular velocity on the y-component and z-component are larger than 

those on the x-component. This difference is due to ALMASat-EO inertia matrix (see 

Table 1) and to the smaller accuracy of filter estimation for high angular velocity. A 

spacecraft can tumble with a predominant high angular velocity around the maximum 

and minimum principal axis of inertia for stability considerations (see [4]). Thus, since 

ALMASat-EO y-axis is the maximum principal axis of inertia and z-axis is the 

minimum, ALMASat-EO cannot tumble with a predominant high angular velocity 

around the x-axis. Moreover, since the measurements sampling frequency is 2	ݖܪ, the 

filter estimation is not very accurate for high angular velocities but it is still acceptable 

for our purposes. A larger sampling frequency, in the order of 5	ݖܪ or 10	ݖܪ, leads the 

filter to diverge, as tested by means of simulations, because the measurement noise is 

too high. Other Monte Carlo simulations showed that the difference in terms of mean 

of error along the components does not occur if a spacecraft with all three equal 

principal axes of inertia is considered, as expected. Figure 21 and Figure 22 show the 
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angular velocity estimation for two simulations where the mean of the error along the 

y-component and z-component is larger than the average. 

 

Figure 21. Angular velocity estimation for high angular velocity on y-axis. The shaded region illustrates the 
eclipse period. 
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Figure 22. Angular velocity estimation for high angular velocity on z-axis. The shaded region illustrates the 
eclipse period. 

By looking at the particular cases highlighted by the standard deviation of the error in 

Figure 18, where the obtained values are much higher than the average (see the red 

rectangle on the y-component panel), one can conclude that this is due to a particular 

combination between the Sun position in body axes and the angular motion of the 

satellite. Solar cell measurements cannot estimate accurately the Sun position if the co-

elevation angle of the Sun rays on the solar cells is larger than 85° since the cosine 

current law is not valid and the output current cannot be disentangled from the noise, 

as explained in 3.8. In the considered simulation, two of the Sun line-of-sight (LOS) 

vector components (x and z-component) are estimated to be zero in the time range 

ݏ	3300 ≤ ݐ ≤  due to this problem. This means that the measured LOS unity ݏ	4700

vector x and z-component are constant and equal to zero and the y-component is equal 

to one due to the unity norm constraint (see Figure 23). In this case, it is better not to 

normalize the Sun LOS vector, so that an accurate Sun LOS vector y-component can 

be estimated (see Figure 24).  



47 
 

 

Figure 23. Sun LOS unity vector y-component. The estimation is not accurate due to the unity norm 
constraint. 

 

Figure 24. Sun LOS vector y-component. The estimation is accurate since the unity norm constraint is not 
applied. 

However the filter is not able to correctly estimate the angular velocity (see Figure 25). 

This can be simply explained considering a satellite spinning around the y-body-axis. 

In this case, the time-varying measurement of the Sun LOS vector component on the x 

or z-axis is needed in order to estimate this angular velocity. From a mathematical 

point of view, this can be seen in the filter observation model: in fact, if the 

measurement is constant in time, we have: 
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߲ܾ
ݐ߲ = [ܾ ×]߱ = 0 

which leads after few iterations to a null innovation ݅௞ vector and thus the estimate ݔ௞ 

is constant: 

݅௞ = ௞ݖ −  ௞ିݔ௞ܪ

௞ݔ = ௞݅௞ܭ +  ௞ିݔ

where ݖ௞ is the measurement vector, ܪ௞  is the observation matrix, ݔ௞ି is the previous 

estimate and ܭ௞ is the Kalman gain. 

 

Figure 25. Angular velocity estimation failure in case of constant measurement values 

In order to avoid this unacceptably large estimation errors, the filter is switched off 

when Sun LOS vector components cannot be correctly estimated. Adding this 

condition, the result is much better, as shown in Figure 26. 



49 
 

 

Figure 26. Angular velocity estimation in case of constant measurement values 

Finally, in order to reduce the measurement noise on the reconstruction of the Sun 

position in the body-fixed frame using the solar cells outputs, the unity norm constraint 

can be considered: 

ฮ መܵฮ = ට መܵ௫ଶ + መܵ௬ଶ + መܵ௭ଶ = 1 

The smallest component of the unity vector መܵ is obtained by the smallest current of the 

currents given by the solar cells and hence, it is more influenced by the noise. Thus, it 

can be calculated from the equation above to reduce the noise influence. The sign 

ambiguity is solved knowing which of the six solar cells are illuminated by the Sun. 

Obviously, this method can be used if three of the six solar cells are hit by the Sun. For 

instance, let us consider the case when ห መܵ௫ห is smaller than ห መܵ௬ห and ห መܵ௭ห, then: 

መܵ௫ = ±ට1− መܵ௬ଶ − መܵ௭ଶ 

where the positive sign is considered if the Sun hits the solar cell placed on the +ݔ 

semi-axis and the negative sign is used if the Sun hits the solar cell placed on the −ݔ 
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semi-axis. The values መܵ௫, መܵ௬ and መܵ௭ are calculated in 3.8 and indicated as ̂ݎௌ௨௡ா௦௧,ଵ, 

 .ௌ௨௡ா௦௧,ଷ respectivelyݎ̂ ௌ௨௡ா௦௧,ଶ andݎ̂

Implementing the improvements suggested by these Monte Carlo simulations, the 

estimation error ranges from 0.05	°/ݏ, when the angular velocity norm is small, to 

‖߱‖) when the angular velocity norm is high ݏ/°	10 =  .(ݏ/°	100

 

5.4. New solution 

In this section, a new arrangement of the solar cells on the satellite faces is studied 

in order to be able to correctly estimate the Sun position in all conditions. In fact, as 

widely explained in 5.3 and 3.8, the Sun position cannot be accurately estimated when 

the Sun LOS unity vector, መܵ is almost perpendicular to a unity vector normal to the 

solar cells, ො݊ that is when: 

መܵ௕௢ௗ௬ ∙ ݊పෝ < cosߙ௧ 

The threshold value of the co-elevation angle, ߙ௧ = 5° is approximated and it will be 

confirmed by new tests on solar cells. The possibility to correctly estimate the Sun 

position by solar cells output currents have benefits both for the angular rate 

estimation, as discussed in 5.3, and for attitude determination (see 6). Thus, new 

arrangements of the solar cells have been studied and a final solution is presented. In 

order to overcome this problem, two solar cells mounted on two inclined planes are 

considered on each satellite face (see Figure 27 and Figure 28). In this case, there are 

12 solar cells on the satellite for Sun position estimation plus other 12 cells for 

redundancy. The inclination of the planes is opposed to each other and it is small but 

larger than ߙ௧ to avoid the shadowing of the solar panels and to ensure the validity of 

the current cosine law at the same time. Considering this new configuration, the Sun 

hits, at each time instant, a minimum of four solar cells to a maximum of six cells 

(leaving out the redundant cells) with an elevation angle larger than ߙ௧. The orientation 

of the solar cells in the body-fixed frame can be mathematically described by the unity 

vectors normal to the cells: 
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ො݊ଵ = [cos ݅ 	0	 sin ݅]  

ො݊ଶ = [cos ݅ 	0	 −sin ݅] 

ො݊ଷ = [sin ݅	 cos ݅ 	0	] 

ො݊ସ = [−sin ݅	 cos ݅ 	0] 

ො݊ହ = [	0	 sin ݅ 	cos ݅] 

ො݊଺ = [0	 −sin ݅ 	cos ݅] 

ො݊଻ = [−cos ݅ 	0	 sin ݅] 

ො଼݊ = [−cos ݅ 	0	 −sin ݅] 

ො݊ଽ = [sin ݅	 − cos ݅ 	0] 

ො݊ଵ଴ = [−sin ݅	 − cos ݅ 	0] 

ො݊ଵଵ = [0	 sin ݅ 	−cos ݅] 

ො݊ଵଶ = [0− sin ݅ 	−cos ݅] 

where ݅ is the inclination of the cells with respect to each satellite face. In order to 

arrange these solar cells on ALMASat-EO, the surface area is reduced and 

consequently the short circuit current given by each cell is smaller. This leads to a 

lower signal-to-noise ratio (SNR) but the short circuit current at high co-elevation 

angles is still acceptable (see Table 7). As shown in Figure 27, each solar cell used as 

coarse sun sensor is cut leaving two electrical contacts to ensure redundancy.  

Solar cell Value Unit 

Short Circuit Current ࢉ࢙ࡵ at ࢻ = ૙° 121.4 ݉ܣ 

Short Circuit Current ࢉ࢙ࡵ at ࢻ = ૡ૞° 10.6 ݉ܣ 

Inclination  11	 ° 

Surface Area  7.24	 ܿ݉ଶ 

Table 7. Solar cells main parameters in new configuration 
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Figure 27. Solar cells used as coarse Sun sensor 

 

Figure 28. Solar cells arrangement on ALMASat-EO 

 To estimate the Sun LOS unity vector, መܵ௕௢ௗ௬  in the body-fixed frame, a new algorithm 

is implemented for this new configuration. The algorithm is based on the cones 

intersections. In fact, if the Sun hits a solar cell with a co-elevation angle, ߙ௜ then the 

Sun lies along a circle which is the intersection of the cone (defined around the unity 

vector normal to the cell, ො݊௜ and with the angle equal to the arc-length separation, ߙ௜ 
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between the Sun and ො݊௜) with the unity celestial sphere. That is to say the circle is the 

locus of possible Sun position corresponding to the angle measurement ߙ௜. 

Considering another circle generated by the intersection between the unity celestial 

sphere and the cone defined around the unity vector, ො݊௝ normal to another solar cell 

illuminated by the Sun, two intersections between the circles on the unity sphere are 

defined. They are the two possible Sun positions, መܵଵ and መܵଶ on the unity sphere as 

shown in Figure 29. 

 

Figure 29. The two possible Sun positions on the unity celestial sphere.  

 As stated above, at least four solar cells are illuminated by the Sun. Thus, we can 

define a third circle, generated by the intersection between the unity celestial sphere 

and the cone defined around the unity vector, ො݊௞ normal to a third solar cell 

illuminated by the Sun, to solve the ambiguity between the two possible Sun LOS 

unity vectors. This geometrical problem is specified by three simultaneous equations in 

three unknowns (ܵ௫, ܵ௬ , ܵ௭): 

መܵ௕௢ௗ௬ ∙ ො݊௜ = cosߙ௜ 

መܵ௕௢ௗ௬ ∙ ො݊௝ = cosߙ௝ 

መܵ௕௢ௗ௬் ∙ መܵ௕௢ௗ௬ = 1 
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The first two equations define the cones angles and the last one describes the unity 

norm constraint of the Sun LOS vector. These three equations may be solved using the 

following technique due to Grubin [1977]. Let: 

ݔ ≡
cosߙ௜ − ො݊௜ ∙ ො݊௝ cosߙ௝

1 − ൫ො݊௜ ∙ ො݊௝൯
ଶ  

ݕ ≡
cosߙ௝ − ො݊௜ ∙ ො݊௝ cosߙ௜

1 − ൫ ො݊௜ ∙ ො݊௝൯
ଶ  

ݖ ≡ ±ඨ
1− ݔ cosߙ௜ − ݕ cosߙ௝

1 − ൫ ො݊௜ ∙ ො݊௝൯
ଶ  

ܥ = ො݊௜ × ො݊௝ 

Then, the solutions for መܵ௕௢ௗ௬ are given by: 

መܵ௕௢ௗ௬ = ݔ ො݊௜ + ݕ ො݊௝ +  ܥݖ

This equation gives the two possible ambiguous Sun LOS unity vector solutions. The 

ambiguity is solved repeating this routine considering a third cone. If the radicand in 

the equation for ݖ is negative, then no real solutions exists; i.e., the cones do not 

intersect. However, in our problem there are always three intersecting cones which 

defines a unique solution. 

In the real case problem, noise on the output currents should be taken into account. 

This is simulated as described in 3.8. In order to reduce the noise influence on the Sun 

position estimation, the algorithm takes into account that the highest solar cell output 

current corresponds to the most reliable co-elevation angle measurement since the 

SNR is the highest. 

 

5.5. Results of simulations for the new solution 

To test the effectiveness of this new proposed arrangement of the solar cells and 

the corresponding algorithm to estimate the Sun LOS unity vector, the scenario, 

described in 5.3, when the angular rate estimation was problematic (see Figure 25) is 
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considered. The angular velocity estimation in this scenario is shown in Figure 30. The 

filter performance are good over the entire orbital period differently from the case 

described in 5.3. The error slightly increases to a maximum of 1.5	°/ݏ in a small time 

interval when the Sun position variation in body axes is very close to zero. Comparing 

Figure 25 to Figure 30, the benefits of this new proposed solution for solar cells 

arrangement in angular velocity estimation is clearly proved.  

 

Figure 30. Angular velocity estimation using the new proposed solution 

In order to statistically validate the angular rate estimation using the new solution 

described in 5.4, which consists of a new arrangement of the solar cells on the satellite 

and a new algorithm to estimate the Sun LOS vector, Monte Carlo simulations are 

performed. These simulations are run using the same parameters described in 5.2. The 

filter re-initialization after the eclipse period is also considered as suggested from the 

results previously obtained.  
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Figure 31. Mean of the error in Monte Carlo simulations for the new solution 

.  

Figure 32. Standard deviation of the error in Monte Carlo simulations for the new solution 
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Figure 33. Root sum square of the standard deviation of the error in Monte Carlo simulations for the new 
solution 

Figure 31, Figure 32 and Figure 33 show respectively the mean of the estimation error, 

the standard deviation of the estimation error and the root sum square of the standard 

deviation of the estimation error, Σ௘௥௥௢௥ (see 5.2)  for the Monte Carlo simulations. 

Comparing Figure 31 with Figure 17 and Figure 32 with Figure 18 and Figure 33 with 

Figure 19, one can state that the angular rate estimation is more accurate using the new 

proposed solution. 

By looking at the y-axis scale in Figure 31, it is possible to notice that the mean of the 

error of the angular velocity on the y-component and z-component are larger than 

those on the x-component. As described in 5.3 this is due to ALMASat-EO inertia 

matrix. The larger values in Figure 31 are still due to the smaller accuracy of filter 

estimation for high angular velocity while the larger values in Figure 32 are still due to 

the convergence time at the beginning and after the eclipse period. These values are 

smaller than those ones shown in Figure 18 thanks to the filter re-initialization.   
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6. Attitude determination 

The problem of attitude determination (AD) from vector observations is to specify 

the orientation of the axes of a Cartesian coordinates system B, fixed to a rigid body 

(e.g. the satellite), in a given Cartesian coordinates system of reference R. The on-

board attitude estimation represents a major task of the attitude and orbit determination 

and control subsystem (AODCS) as it is necessary to guarantee the spacecraft pointing 

accuracy as prescribed by the mission requirements. Several algorithms for spacecraft 

attitude estimation can be found in the literature and they are mainly divided into two 

categories: 

 Single-point algorithms 

 Filtering algorithms 

Single-point algorithms sample the attitude hardware once and provides an estimate of 

the attitude at the time of sampling. Filters continuously sample the sensors and 

incorporate dynamic models of the attitude, in order to give an attitude estimate based 

on a weighted average of the predicted measurement and sensor data. 

The single-point algorithms are based on the least square’s problem published in 1965 

by Wahba. The problem formulation is known as Wahba’s problem, and the optimal 

solution is the attitude which minimizes Wahba’s cost function: 

(ܣ)ܬ =
1
2෍ܽ௜‖ ௜ܾ − ௜‖ଶݎܣ

௡

௜ୀଵ

 

where ܣ is the attitude matrix, ௜ܾ is the measurement vector in the body-fixed frame, ݎ௜ 

is the reference vector in the reference frame and ܽ௜ are proper weights. The principle 

of attitude determination by Wahba’s problem formulation is based on vector 

observations: it requires that two or more vectors can be measured in a spacecraft-

fixed frame, and the same vectors must be known in a reference frame as well. By 

comparing the vector observations in reference and body-fixed frames, the attitude of 

the satellite may be estimated. Since Wahba formalized the problem in 1965, 

numerous solutions to Wahba’s problem have been published. The TRIAD algorithm 

is a simple solution to Wahba’s problem based on two vector observations. The 
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simplicity of the TRIAD algorithm still makes it attractive for on-board 

implementations as for ALMASat-1 mission. Davenport’s Q-Method algorithm uses 

the quaternion attitude representation to parameterize Wahba’s problem, which is 

formulated as an eigenvector problem. The Quaternion Estimator (QUEST) algorithm 

is an extension to Davenport’s Q-Method algorithm, developed by Shuster in 1981, 

which avoids solving the eigenvalue problem, and instead formulates Wahba’s 

problem as a characteristic equation. In 1988, Markley published an algorithm which 

solves Wahba’s problem, in its original formulation using the attitude matrix (or direct 

cosine), by applying the Singular Value Decomposition (SVD) Method. This algorithm 

evolved into the Fast Optimal Attitude Matrix (FOAM) algorithm, published in 1993 

by Markley, and is comparable to the QUEST algorithm in computational speed. In 

1998, Mortari published the EULER-Q algorithm which solves Wahba’s problem in 

terms of Euler angle and axis. In [20] an accurate description of several single-point 

algorithms can be found and in [21] several simulation results are illustrated. 

Several extensions of the single-point algorithms exist, which make use of multiple 

sensor samples in order to improve the attitude estimates. The Filter QUEST, [Shuster, 

1989], the Recursive Quaternion Estimator (REQUEST), [Bar-Itzhack, 1996] and its 

optimized version (OPTIMAL REQUEST), include past measurements that require 

accurate knowledge of the angular velocity in order to propagate the attitude between 

sample times. A filtering algorithm, which include multiple samples and dynamical 

descriptions of the system, was presented by Rudolph E. Kalman in 1960. From a 

statistical description of the system dynamics and measurements, the Kalman filter 

produces an optimal estimate of the state of the system. However, some extension to 

the Kalman filter is necessary in order to apply the filter in attitude determination. The 

problem is that the general used attitude parameters, the attitude matrix and the 

quaternion, are constrained parameters, which must be taken into account when 

calculating estimates. In 1985, Bar-Itzhack and Oshman derived an Extended Kalman 

Filter (EKF), which assumes an additive correction. The EKF linearizes a non-linear 

system around the current estimate of the system state and applies the linear Kalman 

filter equations on the linearized system. In 1997, Julier and Uhlmann published a new 

algorithm, known as the UKF. This algorithm is gaining recognition throughout the 

attitude determination research community, even though the EKF has been the 
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preferred ADCS algorithm for more than two decades. The EKF may experience 

problems with non-convergence, due to first order approximations of the system 

linearization. The improvement of the EKF has been branched in two direction, the 

Iterated Extended Kalman Filter (IEKF), and the UKF. The IEKF uses multiple 

iterations of the EKF in order to ensure convergence. The UKF works on the premise 

that approximating a Gaussian distribution is easier than approximating a non-linear 

function. The unscented transformation (UT) uses a set of samples, or sigma points 

that are determined from the previous estimate error covariance, process noise 

covariance and the previous state estimate of the state. Sigma points are then 

propagated through the nonlinear system in order to obtain the a priori error covariance 

and the a priori state estimate. The UKF has been adapted to attitude determination by 

Crassidis and Markley in 2003. The advantage of the UKF over the EKF is the fact 

that calculation of the first order Jacobians of the non-linear system models are 

avoided. In [21] an accurate description of some filtering algorithms is given and 

performance analysis of filtering algorithms can be found in [21] and [1]. 

 

6.1. Federated Unscented Kalman Filter 

The filtering algorithms used for spacecraft attitude estimation are mainly 

centralized algorithms which do not satisfy requirement of multi-rate information 

synthesis, fault tolerance and system modularity. Thus, in this work, a distributed 

multi-sensor fusion architecture is considered in order to satisfy the aforementioned 

requirements. In particular, a federated version of the unscented Kalman filter (FUKF) 

is implemented in ALMASat-EO attitude determination subsystem and tested through 

simulations. The FUKF algorithm is preferred to the federated extended Kalman filter 

(FEKF) for its better precision and faster convergence speed [22]. 

Federated filtering consists of two parts: local filters (LF) and the master filter (MF). 

The LFs are UKFs parallel processed and independent of each other, and their 

estimated results are fused in the MF. In each LF, a local estimate is obtained using the 

measurement of local sensors. The MF uses the estimates of the LFs to update the 

global state estimate in a fusion process, and this result is used for the initialization of 



61 
 

LFs [23]. A scheme of the FUKF implemented for ALMASat-EO ADCS is illustrated 

in Figure 34: 

 
Figure 34. ALMASat-EO Federated Unscented Kalman Filter scheme 

In this work, a multi-rate sampling and not periodical fusion system is considered since 

the sampling periods of sensors can be quite random and asynchronous. Sometimes, 

certain sensors may get out of their field of view during certain time spans. For 

example, when the spacecraft went into the shadow of the Earth, the sun sensor and the 

solar cells could not take part in the fusion process. This is also the case when the 

Earth is not in the FOV of the Earth horizon sensor. In addition, when fault occurred, 

the pertaining LF should be isolated [22]. For this purpose, a fault detection and 

isolation (FDI) algorithm is implemented before the MF. Fault detection usually 

requires continuous careful monitoring of the measured output data. In a normal case, 

the output data follow known patterns of evolution with limited random disturbance 

and measurement noise. However, the measured output data change their nominal 

evolution pattern when sensor failures occur. General fault detection algorithms are 

based on considering these differences between the evolution patterns and the 

measured output data [23].  

In this approach, the global sampling period is supposed to be the same as the 

reference system, i.e. the gyroscopes, which is also the most rapid sensor in the 

system. Due to the on-board computer limited power, algorithm computational burden 
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should be considered. Hence, sigma points are only produced and propagated for those 

LFs whose dedicated sensor had new measurement. If there had no sensor sampled in 

the system, then the FUKF only propagates forward in time the state and its covariance 

without measurement correction, and sigma points are not calculated reducing the 

computation burden. This technique is called information-sharing process. At the 

beginning of each global sampling step, every LF is checked to acknowledge whether 

there is new measurement in its dedicated sensor and share fractions ߚ௠, ݉ = 1, 2, … ݈, 

where ݈ is the number of LFs, are calculated: 

௧௘௠௣ߚ
௠ = ൜0			if	local	sensor	݉	did	not	sample

sampled	݉	sensor	local	if			଴௠ߚ  

௠ߚ = ௧௘௠௣ߚ
௠ / ෍ ௧௘௠௣ߚ

௠
௟

௠ୀଵ

 

where ߚ଴௠ represents the precision of the ݉-th LF and the following law of 

conservation of information should be fulfilled: 

෍ ଴௠ߚ = 1
௟

௠ୀଵ

 

The information-sharing process can be written as: 

( ௞ܲ
௠)ିଵ = )௠ߚ ௞ܲ)ିଵ, (ܳ௞௠)ିଵ =  ௠(ܳ௞)ିଵߚ

where ௞ܲ is the covariance matrix and its inverse is known as the information matrix 

and ܳ௞  is the process noise covariance matrix. According to [26], this matrix can be 

calculated as: 

ܳ௞ =
ݐ∆
2 ቎൬ߪ௩

ଶ −
1
௨ߪ6

ଶ∆ݐଶ൰ ଷ×ଷܫ 0ଷ×ଷ

0ଷ×ଷ ଷ×ଷܫ௨ଶߪ

቏ 

where ∆ݐ is the gyroscope sampling time, ߪ௩ଶ is the variance of the Rate Random Walk 

(RRW) noise term and ߪ௨ଶ is the variance of the Angular Rate Walk (ARW) noise 

term. 
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Assuming that all local estimates are uncorrelated, the global estimate of the 

covariance matrix and error state, ݔ௞ is given by the following optimal fusion: 

( ௞ܲ)ିଵ = ෍ ( ௞ܲ
௠)ିଵ

௟

௠ୀଵ

 

௞ݔ = ௞ܲ ෍ ( ௞ܲ
௠)ିଵݔ௞௠

௟

௠ୀଵ

 

Now it is possible to define the sensitivity factor ܵ௠ used for the FDI algorithm: 

ܵ௠ = ௞௠ݔ) − )்(௞ݔ ௞ܲ
௠ + ௞ܲ)ିଵ(ݔ௞௠ −  (௞ݔ

When ܵ௠ is smaller than a threshold value, then the ݉-th sensor is considered to be 

working well, and therefore its output can be used in the optimal fusion. However, if 

ܵ௠ is larger than a threshold value, then the ݉-th sensor could be having some 

problems. In this case, global estimates should be obtained without using the output of 

the ݉-th sensor. The threshold value can be selected based on a Chi-square distribution 

and optimized in the experiment for the particular application [24]. 

For convenience, the UKF implemented in each LF is summarized below [26]: 

1. Initialization 

Determine the set of associated weights for the UKF algorithm: 

଴ܹ
௠ =

ߣ
ߣ + ݊ , ଴ܹ

௖ =
ߣ

ߣ + ݊ + (1− ଶߙ + ,(ߚ ௜ܹ
௠ = ௜ܹ

௖ =
1

ߣ)2 + ݊) , ݅ = 1, … , 2݊ 

where ݊ is the dimension of the error state vector, ߣ = ݊)ଶߙ + (ߢ − ݊ is a scaling 

parameter, ߙ determines the spread of the sigma points around the error state and is 

usually set to a small positive value between 10ିସ ≤ ߙ ≤ 1 (e.g. 10ିଷ as suggested in 

[22] and [25]), ߢ is a secondary scaling parameter which is set to 3− ݊ minimizing the 

mean-squared-error up to the fourth order [26] or it is set to 0 (see [22] and [25]) 

avoiding negative values of ߢ which can lead to a possibility that the predicted 

covariance become non-positive semi-definite, and ߚ is used to incorporate prior 
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knowledge of the distribution of the error state (for Gaussian distributions, ߚ = 2 is 

optimal) [25]. 

Then initialize the attitude quaternion ݍ଴ା, the error state vector ݔ଴ା = ଴ା݌ߜൣ
் 	ܾ଴ା

்൧
்

 and 

the system covariance ଴ܲ
ା. If no initial attitude quaternion estimate is available, the 

identity quaternion is chosen: 

଴ାݍ = [0	0	0	1]் 

The error state vector consists of a three-component attitude error vector, represented 

using a generalized Rodrigues parameters, and gyro bias estimates. The initial attitude 

error vector is set to zero: ݌ߜ଴ା = 0. The system covariance is a 6 × 6 matrix, where 

the upper 3 × 3 partition corresponds to attitude error angles and the lower 3 × 3 

partition corresponds to gyro error bias. 

2. Information-sharing and sigma points calculation 

First, check new measurements and calculate information-share fractions, then apply 

Cholesky decomposition to ௞ܲതതത = ௞ܲ + ܳ௞  to get ௞ܰ ( ௞ܲതതത = ௞ܰ ௞ܰ
்) and calculate sigma 

points sharing information among new sampled LFs: 

(݅)௞௠ߪ = )௜݈݋ܿߛ ௞ܰ)/ඥߚ௠, ݅ = 1, 2, … , ݊ 

(݅)௞௠ߪ = )௜ି௡݈݋ܿߛ− ௞ܰ)/ඥߚ௠, ݅ = ݊ + 1,݊ + 2, … ,2݊ 

߯௞(0) =  ௞ାݔ

߯௞௠(݅) = (݅)௞௠ߪ + ݅ ,௞ାݔ = 1	,2, … ,2݊ 

where ߛ = √݊ +  Note that the better the precision of the ݉-th LF, the larger the .ߣ

share factor ߚ௠, the lower the dispersion degree of sigma points ߯௞௠(݅). Moreover, 

note that the Cholesky factorization is applied to ௞ܲതതത and not to ௞ܲതതത
௠ reducing the 

computation burden. Since the next steps of the algorithm are the same for each LF, 

the superscript ݉ is omitted.  

Now the vector ߯௞(݅) is partitioned into: 
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߯௞(݅) = ቈ߯௞
ఋ௣(݅)
߯௞௕(݅)

቉ 

where ߯௞
ఋ௣ is from attitude-error part and ߯௞ఋ௕ is from the gyro bias part. The error 

quaternion corresponding to the sigma points ݍߜ௞ା(݅) = ቂߩߜ௞ା
ସ௞ݍߜ	(݅)்

ା(݅)ቃ
்

is 

calculated using the inverse transformation from ݌ߜ to ݍߜ: 

qସ௞ାߜ (݅) =
−ܽฮ߯௞

ఋ௣(݅)ฮ
ଶ

+ ݂ට݂ଶ + (1− ܽଶ)ฮ߯௞
ఋ௣(݅)ฮ

ଶ

݂ଶ + ฮ߯௞
ఋ௣(݅)ฮ

ଶ  

(݅)q௞ା୘ߜ = ݂ିଵ[ܽ + qସ௞ାߜ (݅)]߯௞
ఋ௣(݅), ݅ = 1, 2, … ,2݊ 

with ܽ = 1 and ݂ = 2(ܽ + 1). The sigma point quaternion, generated by multiplying 

the error quaternion by the current estimate, is given by: 

௞ା(0)ݍ =  ௞ାݍ

(݅)௞ାݍ = ,ො௞ାݍ⊗(݅)௞ାݍߜ ݅ = 1,2, … ,2݊ 

3. Time propagation 

Sigma-point quaternions are propagated forward in time using the following equation: 

௞ାଵିݍ (݅) = Ω[߱௞
ା(݅)]ݍ௞ା(݅), ݅ = 0, 1, … , 2݊ 

with:  

Ω(߱௞
ା) = ቈ

ܼ௞ ߰௞ା

−߰௞ା୘ cos(0.5‖߱௞
ା‖∆ݐ)

቉ 

ܼ௞ = cos(0.5‖߱௞
ା‖∆ݐ) ଷܫ − [߰௞ା ×] 

߰௞ା = sin(0.5‖߱௞
ା‖∆ݐ)߱௞

ା/‖߱௞
ା‖ 

where ∆ݐ is the sampling interval of the gyro and ߱௞
ା(݅) are the estimated angular 

velocities: 

߱௞
ା(݅) = ෥߱௞ − ߯௞௕(݅), ݅ = 0, 1, … , 2݊ 
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Then, the propagated error quaternions are determined using the following equation: 

௞ାଵିݍߜ (݅) = ௞ାଵିݍ (݅)⊗ ௞ାଵିݍ] (0)]ିଵ, ݅ = 0, 1, … , 2݊ 

where ିݍଵ = ்݌−]  ସ]் is the inverse quaternion. Finally, the attitude error part of theݍ	

propagated sigma points are given by: 

߯௞ାଵ
ఋ௣ (0) = 0 

߯௞ାଵ
ఋ௣ (݅) = ݂

p௞ାଵିߜ (݅)
ܽ + qସೖశభߜ

ି (݅) , ݅ = 1, 2, … , 2݊ 

with ݍߜ௞ାଵି (݅) = p௞ାଵି୘ߜൣ qସೖశభߜ		(݅)
ି (݅)൧

୘
 and the gyro bias part of the propagated 

sigma points are given by: 

߯௞ାଵ௕ (݅) = ߯௞௕(݅), ݅ = 0, 1, … , 2݊ 

assuming that the gyro bias is constant during the time interval Δݐ = ௞ାଵݐ − ௞ݐ . 

In the same time, the observation estimation is calculated as: 

݃௞ାଵ(݅) = ௞ାଵିݍ]ܣ (݅)] ∙ ,௞ାଵݎ ݅ = 0, 1, … , 2݊ 

where ݎ௞ାଵ is the known reference vector at time ݐ௞ାଵ and ܣ is the attitude matrix in 

terms of the attitude quaternion: 

(ݍ)ܣ = Ξ்(ݍ)Ψ(ݍ) 

with: 

Ξ(ݍ) = ൤
ଷܫସݍ + ߩ] ×]

்ߩ− ൨ , Ψ(ݍ) = ൤
ଷܫସݍ − ߩ] ×]

்ߩ− ൨	 

The predicted mean error state, mean observation and covariance are given 

respectively by: 

௞ାଵିݔ = ෍ ௜ܹ
௠߯௞ାଵ(݅)

ଶ௡

௜ୀ଴
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௞ାଵିݕ = ෍ ௜ܹ
௠݃௞ାଵ(݅)

ଶ௡

௜ୀ଴

 

௞ܲାଵ
ି = ෍ ௜ܹ

௖[߯௞ାଵ(݅)− ௞ାଵିݔ ][߯௞ାଵ(݅)− ௞ାଵିݔ ]் + ܳ௞

ଶ௡

௜ୀ଴

 

4. Measurement update 

When new measurements came from the ݉-th sensor, the innovation can be calculated 

as: 

௞ାଵݒ = ෤௞ାଵݕ − ௞ାଵିݕ  

where ݕ෤௞ାଵ is the new attitude measurement in the body frame: 

෤௞ାଵݕ = ௞ାଵݎ(௞ାଵݍ)ܣ +  ௞ାଵߥ

where ߥ௞ାଵ is the measurement noise vector which satisfies: 

{ߥ}ܧ = 0 

{்ߥߥ}ܧ =  ଷܫଶߪ

Then the innovation covariance, the cross-correlation covariance and the Kalman gain 

are given respectively by: 

௞ܲାଵ
௩௩ = ෍ ௜ܹ

௖[݃௞ାଵ(݅)− ௞ାଵିݕ ]
ଶ௡

௜ୀ଴

[݃௞ାଵ(݅)− ௞ାଵିݕ ]் + ܴ௞ାଵ 

௞ܲାଵ
௫௬ = ෍ ௜ܹ

௖[߯௞ାଵ(݅)− ௞ାଵିݔ ][݃௞ାଵ(݅)− ௞ାଵିݕ ]்
ଶ௡

௜ୀ଴

 

௞ାଵܭ = ௞ܲାଵ
௫௬ ( ௞ܲାଵ

௩௩ )ିଵ 

where ܴ௞ାଵ is the measurement noise covariance matrix and it is given by: 

ܴ௞ାଵ =  ௭ଶ൧ߪ	௬ଶߪ	௫ଶߪൣ݃ܽ݅݀
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where ߪ௫  ௭ are the standard deviations on each component of sensor measurementߪ,௬ߪ,

noise vector. Finally, the error state vector and the covariance matrix are updated: 

௞ାଵାݔ = ௞ାଵିݔ +  ௞ାଵݒ௞ାଵܭ

௞ܲାଵ
ା ௞ାଵܭ—= ௞ܲାଵ

௩௩ ௞ାଵ்ܭ  

5. Fault detection and isolation (FDI) 

Each LF output is checked for fault detection using the FDI algorithm reported above. 

In case of fault of the ݉-th sensor, the corresponding LF is isolated and its output is 

not used in the optimal fusion.  

6. Optimal fusion of covariance matrix and error state vector 

The updated error state vectors and covariance matrices coming from each LF are 

fused in the MF using the equations reported above. 

7. Attitude quaternion update and error state reset 

The attitude quaternion is updated using the following equation: 

௞ାଵାݍ = ௞ାଵାݍߜ ௞ାଵିݍ⊗ (0) 

where ݍߜ௞ାଵା = ρ௞ାଵߜൣ
ା୘ qସೖశభߜ		

ା ൧
୘

 is represented by: 

qସೖశభߜ
ା =

−ܽ‖δp୩ାଵା ‖ଶ + ݂ට݂ଶ + (1− ܽଶ)ฮδp୩ାଵା ฮଶ

݂ଶ + ฮδp୩ାଵା ฮଶ
 

q௞ାଵାߜ = ݂ିଵൣܽ + qସೖశభߜ
ା ൧δp୩ାଵା  

with ݔ௞ାଵା = ൣδp୩ାଵା୘ 		b୩ାଵା୘ ൧୘. 

Finally, the attitude error part of the error state vector, δp୩ାଵା  is reset to zero for the 

next propagation. 
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6.2. Filter Tuning 

To get a good performance of the filter, it has to be tuned appropriately. The 

tuning factors of the filter include initial state error covariance ଴ܲ, process noise 

covariance ܳ, and measurement noise covariance ܴ. Each tuning factor has its role in 

the filtering process. ଴ܲ determines how fast the estimator converges initially and has 

no responsibility for the filter performance in the steady state. ܳ and ܴ determines the 

tradeoff between the rapid tracking the state variations under the disturbance noise and 

the filtering of the measurement noise. In addition, ܳ and ܴ also determines the filter 

stability in the steady state. The convergence speed is one of many factors that are used 

in evaluation of the filter performance in real-time. To make a filter converge rapidly, 

଴ܲ or ܳ have to be set large compared to ܴ. However, ܳ and ܴ affects the steady state 

performance of the filter [27]. Also the parameters ߚ,ߙ	and	ߢ can be considered as 

tuning parameters. Thus, several simulations are required to properly hand-tune the 

filter for best performance. An adaptive FUKF is not considered because of the limited 

on-board computational power. 

 

6.3. Simulations 

Simulations are performed to validate the effectiveness of the proposed algorithm. The 

sampling frequency of the sensors are reported in Table 8. 

Sensor Sampling frequency  

Gyroscope 10	ݖܪ 

Magnetometer 1	ݖܪ 

Sun sensor 5	ݖܪ 

Earth horizon sensor 1	ݖܪ 

Solar cells 2	ݖܪ 

Table 8. Sensors’s sampling frequency 

The four attitude sensor measurements are considered asynchronous and the 

information sharing factors are chosen according to sensors’ precision and considering 

the constraint that the sum is equal to one. In Table 9, the filter tuning parameters and 
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matrices values are used in simulations are reported. ALMASat-EO orbital parameters 

are considered in these simulation and they were reported in Table 1. 

Simulation Parameters Value 

Covariance matrix P = diag([100ଶIଷ×ଷ	Iଷ×ଷ]) 

Process noise covariance matrix ܳ =  ([ଷ×ଷܫ10ିହ	ଷ×ଷܫ0.005])݃ܽ݅݀

Measurement noise matrix ܴ௦௨௡ = ݀݅ܽ݃([0.0005ଶ	0.0017ଶ	0.0017ଶ]) 

ܴ௘௔௥௧௛ = ݀݅ܽ݃([0.0012ଶ	0.0017ଶ	0.0014ଶ]) 

ܴ௠௔௚ = ݀݅ܽ݃([0.0021ଶ 	0.0030ଶ	0.0026ଶ	]) 

ܴ௖௘௟௟ = ݀݅ܽ݃([0.0138ଶ	0.0253ଶ	0.0143ଶ]) 

UKF parameters ߙ = 10ିଷ, ߚ = ߢ ,2 = 0 

Table 9. FUKF tuning parameters 

The Sun sensor is switched on only when the satellite is three-axis stabilized; the 

magnetometer measurement is always available; the Earth horizon reading is available 

if the Earth is in the sensor’s FOV (see 3.7 and Figure 36) and the solar cells readings 

are available if the satellite is not in eclipse (see Figure 35). 

 
Figure 35. Eclipse periods. The satellite is in eclipse when the value is equal to zero. 
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Figure 36. Earth in the horizon sensor FOV. The value is equal to one when the Earth is in the sensor FOV 

First simulations showed that the filter estimation diverges when the magnetometer 

reading is the only available attitude measurement. This is the case when the Earth is 

not in the horizon sensor’s FOV and the satellite is in eclipse. Thus, in these time 

periods, the attitude estimation filter is switched off to avoid a wrong attitude 

estimation reading by the ADCS. Since ALMASat-EO is a nadir pointing satellite, the 

Earth is always in the horizon sensor’s FOV when the satellite is stabilized (see Figure 

36); hence, in this mission phase the attitude is always correctly estimated. Other 

simulations suggested not to consider solar cells measurements, once the satellite is 

stabilized. In fact, during this phase, the attitude estimation is required to be very 

accurate and solar cells give a coarse estimation. Moreover, Sun sensors measurements 

are available and they are much more accurate than solar cells readings. However, in 

this phase, solar cells can be used as a back-up solution in case of Sun sensors failure. 

 

6.4. Results of simulations 

 In this section the results of simulations to test the effectiveness of the new 

attitude determination system are reported in terms of quaternions and Euler angles 
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(see Appendix B). In particular, the accuracy of attitude estimation is investigated 

when the satellite is three-axis stabilized. Figure 37 and Figure 38 show the error in the 

attitude estimation performed by the FUKF in terms of quaternion components and 

Euler angles. The mean and standard deviation of the error in terms of Euler angles, 

once the satellite is completely three-axis stabilized are reported in Table 10. 

 

Figure 37. FUKF, attitude quaternion error. The shaded region illustrates the eclipse period. 
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Figure 38. FUKF, Euler angles error. The shaded region illustrates the eclipse period. 

Euler angles ࢒࢒࢕ࡾ	઴ ࢎࢉ࢚࢏ࡼ	દ ࢝ࢇࢅ	શ 

Mean of the Error 0.0003	° −0.0560	° −0.0149	° 

Standard deviation of the Error 0.1066° 0.1013	° 0.2404	° 

Table 10. FUKF estimation accuracy in terms of Euler angles 

The results show that a good accuracy in attitude estimation is achieved using the 

FUKF. The angular error is larger for the yaw angle but it is still bounded between 

−1° and 1°. Moreover, the eclipse does not significantly affect the attitude estimation 

accuracy. 

In order to fully validate the new attitude determination system, Monte Carlo 

simulations are performed. 300 simulations are run randomly varying the launch date 

over the year 2013. The statistical analysis consists of calculating the mean of the 

estimation error and the standard deviation of the error in terms of the attitude 

quaternion components (ߪଵ,ߪଶ,ߪଷ,ߪସ) and the corresponding Euler angles (ߪథ ఏߪ,  .(టߪ,

Moreover, in order to have a statistical parameter which takes into account all four 
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components of the quaternion and all three Euler angles, the following parameters are 

calculated: 

Σ௘௥௥௢௥
௤ = ටߪଵଶ + ଶଶߪ + ଷଶߪ +  ସଶߪ

Σ௘௥௥௢௥
௔௡௚௟௘ = ටߪథଶ + ఏଶߪ +  టଶߪ

The statistical analysis is performed once the satellite is completely three-axis 

stabilized and each simulation lasts two orbital periods, ௢ܶ௥௕. The results are plotted in 

Figure 39, Figure 40 and Figure 41, in terms of attitude quaternion, and in Figure 42, 

Figure 43 and Figure 44, in terms of Euler angles. 

 

Figure 39. FUKF, Mean of the error in terms of quaternion in Monte Carlo simulations 
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Figure 40. FUKF, Standard deviation of the error in terms of quaternion in Monte Carlo simulations 

 

Figure 41. FUKF, Root sum square of the standard deviation of the error in terms of quaternion in Monte 
Carlo simulations 
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Figure 42. FUKF, Mean of the error in terms of Euler angles in Monte Carlo simulations 

 

Figure 43. FUKF, Standard deviation of the error in terms of Euler angles in Monte Carlo simulations 
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Figure 44. FUKF, Root sum square of the standard deviation of the error in terms of quaternion in Monte 
Carlo simulations 

The results show the good performance of the FUKF in attitude estimation. The values 

obtained in Monte Carlo simulations are in the same order of magnitude as those 

reported in Table 10. By looking at the y-axis scale in Figure 43, it is possible to notice 

that the standard deviation of the error in yaw angle, ߰ is larger than the standard 

deviation of the error in roll and pitch angle, ߶ and ߠ. This difference is due to the fact 

that the Earth horizon sensor is poor in yaw, as stated in Table 2. Furthermore, by 

looking at the particular cases highlighted by the root sum square of the standard 

deviation of the error in Figure 41 and Figure 44 and by the standard deviation of the 

error in yaw angle in the bottom panel of Figure 43, where the obtained values are 

much higher than the average (see the points marked by a rectangle), one can conclude 

that this is due to alignment between the measured  nadir vector and the measured 

magnetic field vector. Figure 45 shows the time history of the angle, ߙ between the 

measured nadir vector in body frame, ܧ෨௕  and the measured magnetic field vector in 

body frame, ܤ෨௕. During the eclipse period, they are the only available attitude 

reference measurements. Thus, if the corresponding measured vectors are aligned (see 

Figure 45 in the time range 1.3	ℎ < ݐ < 1.4	ℎ), the attitude estimation is less accurate 
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(see Figure 46). This is the worst-case for attitude estimation. In this case the estimated 

yaw angle is not accurate enough for three-axis attitude control. 

 

Figure 45. Time history of the angle between the measured nadir vector in body frame and the measured 
magnetic field vector in body frame 

 

Figure 46. Time history of the error in the yaw angle, ૐ. The shaded region illustrates the eclipse period. 
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7.  Conclusion and future work 

The results from the simulations clearly show that the mission requirements can 

be fulfilled in terms of angular rate and attitude estimation using the proposed 

solutions. 

 Monte Carlo verification of the EKF for angular rate estimation using solar cells 

output currents offered important indications for software and hardware 

implementations. They have been tested by means of simulations and showed the 

benefits on angular rate estimation. A first arrangement of the solar cells on the 

satellite has been designed.  

The utility in fusing the various sensors measurements to estimate the attitude has been 

demonstrated by simulating the performance of the FUKF using ALMASat-EO orbital 

parameters. Monte Carlo simulations are also performed to fully validate the FUKF. 

The MATLAB/Simulink simulation model has been improved by adding the solar 

cells, gyroscope and hysteresis rods model.  

In order to have an accurate result of the solar cells performance used to 

estimate the satellite angular velocity, they need to be tested. In this way a calibration 

curve of the current versus the angle of incidence of solar rays can be obtained. 

Moreover, testing the current readings, the minimum value of short-circuit current that 

can be distinguished from the noise can be defined. 

An experimental characterization is also required to check the performance of the 

gyroscope. A method to cancel out the initial gyro bias error needs to be identified and 

tested to reach the expected accuracy in angular rate measurement. 

Hysteresis rods need to be experimentally tested as described in [16] to calculate 

accurately their magnetic parameters and influence on the overall satellite system. 

The ultimate goal could be to implement the FUKF and the algorithm to reconstruct 

the Sun position using solar cell measurements on a microcontroller and running the 

algorithms in hardware-in-the-loop simulation to have more realistic performance 

information. 
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Appendix B 
The parameterization of the attitude is used to describe the orientation of a 

body-fixed reference system frame with respect to an orbital reference system or an 

ECI reference system. 

Let us consider an orthogonal, right-handed triad ݑො, ݒො, ݓෝ of unit vectors fixed in the 

body reference system, such that: 

ොݑ × ොݒ =  ෝݓ

It is clear that specifying the components of ݑො, ݒො, ݓෝ along the three axes of the orbital 

or ECI reference system will fix the orientation completely. This requires nine 

parameters which can be regarded as the elements of a 3 × 3 matrix, ܣ, called attitude 

matrix: 

ܣ = ൥
ଵݑ ଶݑ ଷݑ
ଵݒ ଶݒ ଷݒ
ଵݓ ଶݓ ଷݓ

൩ 

Each of these elements is the cosine of the angle between a body unit vector and a 

reference axis; ݑଵ, for example, is the cosine of the angle between ݑො and the reference 

1-axis. For this reason, ܣ is also referred as the direction cosine matrix (DCM). The 

elements of DCM are not all independent. For example, the fact that ݑො is a unit vector 

requires: 

ොଵଶݑ + ොଶଶݑ + ොଷଶݑ = 1 

and the orthogonality of ݑො and ݒො means that: 

ଵݒଵݑ + ଶݒଶݑ + ଷݒଷݑ = 0 

These relationships can be summarized by the statement that the product of ܣ and its 

transpose is the identity matrix: 

்ܣܣ = 		ܫ → ଵିܣ		 =  ்ܣ

This means that ܣ is a real orthogonal matrix. Also, the determinant of ܣ is defined as: 

det(ܣ) = ොݑ ∙ ොݒ) ×  (ෝݓ
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and since ݑො, ݒො, ݓෝ is a right-handed triad, det(ܣ) = 1. Thus, ܣ is a proper real 

orthogonal matrix which maps vectors from the reference frame to the body frame 

preserving the lengths of vectors and the angles between them, and hence, it represents 

a rotation. 

It can be also shown that ܣ has at least one eigenvector with eigenvalue unity. That is, 

there exists a unit vector, ݁̂ that is unchanged by ܣ: 

̂݁ܣ = ݁̂ 

The vector ݁̂ has the same components along the body axes and the reference axes. 

Thus, ݁̂ is a vector along the axis of rotation. The existence of ݁̂ demonstrates the 

Euler’s theorem: the most general displacement of a rigid body with one point fixed is 

a rotation about some axis. 

Other parameterization, as summarized in Table 11 [4], may be more convenient than 

the DCM for specific applications. In the simulator, the attitude is described and 

propagated using the Euler symmetric parameters, also known as quaternions, which 

are also used for attitude estimation. Euler angles are also used, especially during the 

three-axis spacecraft control. 

Parameterization Notation Advantages  Disadvantages Common 

Applications 

Direction 

Cosine 

Matrix 

 No singularities ܣ

No trigonometric 

functions 

Convenient product 

rule 

for successive rotations 

Six redundant 

parameters 

In analysis, to 

transform 

vectors from one 

reference 

frame to another 

Euler axis/angle ݁̂, Φ Clear physical 

interpretation 

One redundant 

parameter 

Axis undefined when 

sinΦ = 0  

Trigonometric functions 

Commanding slew 

maneuvers 
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Euler symmetric 

parameters 

(Quaternion) 

 ,ଶݍ ,ଵݍ

 ସݍ ,ଷݍ

 |ݍ|

No singularities 

No trigonometric 

functions 

Convenient product 

rule 

for successive rotations 

One redundant 

parameter 

No obvious physical 

interpretation 

Onboard inertial 

navigation 

Gibbs vector ݃ No redundant 

parameters 

No trigonometric 

functions 

Convenient product 

rule 

for successive rotations 

Infinite for 180° rotation Analytic studies 

Euler angles ߶, ߠ, ߰ No redundant 

parameters 

Physical interpretation 

is clear in some cases 

Trigonometric functions 

Singularity at some 

angle value 

No convenient product 

rule 

for successive rotations 

Analytic studies 

Input/Output onboard 

attitude control of 3-

axis stabilized 

spacecraft 

Table 11. Alternative Representations of Three-Axis Attitude 

A parameterization of the DCM in terms of quaternion has proved to be quite useful in 

spacecraft work. Quaternions were first devised by William Rowan Hamilton, a 19th 

century Irish mathematician. They are defined in terms of Euler axis/angle as: 

ݍ = ൦

ଵݍ
ଶݍ
ଷݍ
ସݍ

൪ = ቂ
݌
ସቃݍ = ൦

݁ sin
Φ
2

cos
Φ
2

൪ 

The quaternion components are not independent but they satisfy the constraint 

equation of unit norm: 

ଶ‖ݍ‖ = ்ݍݍ = ଵଶݍ + ଶଶݍ + ଷଶݍ + ସଶݍ = 1 

The DCM can be expressed in terms of quaternion as: 

ܣ = ቎
qଵଶ − qଶଶ − qଷଶ + qସଶ 2(qଵqଶ + qଷqସ) 2(qଵqଷ − qଶqସ)

2(qଵqଶ − qଷqସ) −qଵଶ + qଶଶ − qଷଶ + qସଶ 2(qଶqଷ + qଵqସ)
2(qଵqଷ + qଶqସ) 2(qଶqଷ − qଵqସ) −qଵଶ − qଶଶ + qଷଶ + qସଶ

቏ = 

= ସଶݍ) − ܫ(ଶ݌ + ்ݍݍ2 − ݍ]ସݍ2 ×] 
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Conversely, the quaternion components can be expressed in terms of the DCM 

elements as: 

௜ଶݍ4 = 1 + ௜௜ܣ − ݆݆ܣ − ௞௞ܣ = 1 − trA +  ௜௜ܣ2

ସଶݍ4 = 1 + ௜௜ܣ + ௝௝ܣ + ௞௞ܣ = 1 − trܣ+ 2trܣ 

௝ݍ௜ݍ4 = ௜௝ܣ −  ௝௜ܣ

ସݍ௜ݍ4 = ௝௞ܣ −  ௞௝ܣ

where {݅, ݆,݇} is a cyclic permutation of {1, 2, 3} and trA denotes the trace of the 

DCM. The equations above, represent all the four ways to calculate the quaternion 

components from the DCM. In fact, to minimize numerical inaccuracy, Shepperd’s 

algorithm first compares the rhs of the first two equations to see which of the 

quaternion components is the largest and then calculates the other components using 

the other two equations [25]. The sign ambiguity is not a problem because ݍ and –ݍ 

represents the same attitude since they lead to the same DCM. 

Successive rotations can be represented by a simple quaternion multiplication: 

ᇱᇱݍ = ݍ⊗ᇱݍ =

⎣
⎢
⎢
⎡ ସݍ

ᇱ ଷᇱݍ ଶᇱݍ− ଵᇱݍ

ଷᇱݍ− ସᇱݍ ଵᇱݍ ଶᇱݍ
ଶݍ ଵᇱݍ− ସᇱݍ ଷᇱݍ
ଵᇱݍ− ଶᇱݍ− ଷᇱݍ− ସᇱݍ ⎦

⎥
⎥
⎤
൦

ଵݍ
ଶݍ
ଷݍ
ସݍ

൪ 

The residual rotation of ݍᇱᇱ with respect to ݍᇱ, or error quaternion, ݍߜ, is obtained such 

as: 

ݍߜ = ᇱᇱݍ ⊗  ଵି(ᇱݍ)

where (ݍᇱ)ିଵ = ଵݍ−] 	− ଶݍ 	−  .ସ]  is the inverse quaternionݍ		ଷݍ

In the simulator control block, Euler angles are also computed from the DCM in order 

to perform a three-axis stabilization control. The DCM is the result of a rotation 

sequence which can be expressed as the product of three rotation matrices, with the 

first rotation matrix on the right and the last on the left: 

ܴଶଷଵ(߶,߰, (ߠ = ܴଶ(ߠ)ܴଷ(߰)ܴଵ(߶) = 
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= ൥
߰ܿߠܿ ߶ܿ߰ݏߠܿ + ߶ݏߠݏ ߶ݏ߰ݏߠܿ − ߶ܿߠݏ
߰ݏ− ܿ߰ܿ߶ ߶ݏ߰ܿ
߰ܿߠݏ ߶ܿ߰ݏߠݏ − ߶ݏߠܿ ߶ݏ߰ݏߠݏ + ߶ܿߠܿ

൩ 

where ܿ and ݏ indicate the cosine and the sine function respectively. The three rotation 

matrices are defined as: 

ܴଵ(߶) = ൥
1 0 0
0 ܿ߶ ߶ݏ
0 ߶ݏ− ܿ߶

൩ 

ܴଶ(ߠ) = ൥
ߠܿ 0 ߠݏ−
0 1 0
ߠݏ 0 ߠܿ

൩ 

ܴଷ(߰) = ൥
ܿ߰ 0 ߰ݏ−
0 1 0
߰ݏ 0 ܿ߰

൩ 

The subscript denotes the rotation axis and ߶,  are the roll, pitch and yaw angle ߰,ߠ

respectively. These angles can be calculated from the DCM in the following way: 

߶ = tanିଵ
ଶଷܣ
ଶଶܣ

 

ߠ = tanିଵ
ଷଵܣ
ଵଵܣ

 

߰ = − sinିଵ  ଶଵܣ

Other sequences of Euler angles rotations are possible. Since two successive rotations 

about a single axis are not allowed, because the product of these rotations is equivalent 

to a single rotation about this axis, there are only 12 possible axis sequences.  
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