
Alma Mater Studiorum · Università di Bologna

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI

Corso di Laurea Magistrale in Informatica

STRUCTURED P2P VIDEO
STREAMING

AND

COLLABORATIVE FAILURE
DETECTION

Tesi di Laurea in Sistemi Distribuiti

Relatore:

Chiar.mo Prof.

VITTORIO GHINI

Presentata da:

PASQUALE PUZIO

Sessione II

Anno Accademico 2011/2012

1

Contents

1 Introduction 9

1.1 Benefits of P2P Video Streaming . 9

1.2 Requirements for P2P Streaming . 10

1.3 P2P Streaming Taxonomy . 11

1.4 Performance Criteria for P2P Live Streaming 15

1.5 Challenges and Issues . 16

2 Objectives 19

3 System Architecture 21

3.1 Hypercube Data Structure . 21

3.2 Dissemination Rule . 23

3.3 Adaptation of Hypercube . 26

3.4 Framework for P2P Streaming . 28

3.4.1 Software Entities . 29

3.4.2 File Organization . 31

3.4.3 Data Structures . 32

3.4.4 Data Structures for Failure Detection 38

3.4.5 UDP Packet Format . 41

3.4.6 Block Types . 43

3.5 UDP Encapsulation/Decapsulation and Proxy-like Behavior 53

2

4 Population Variation 55

4.1 Departures . 55

4.2 Arrivals . 58

5 Failure Detection 61

5.1 Detection Strategy . 64

5.1.1 Implementation Details . 68

5.1.1.1 Piggyback . 68

5.1.1.2 Functions for Failure Detection Implementation . . . 69

5.2 Recovery Strategy . 74

6 Simulations and Experiments 76

6.1 Experiments on PlanetLab . 76

6.2 Experiments for Failure Detection . 80

7 Summary of Work Done 82

8 Conclusions 84

9 Future Work 85

3

Acknowledgements

I would like to sincerely thank my supervisor, Patrick Brown, for the wonderful

chance to work at Orange Labs and the constant support he gave me. It was a

pleasure to work with him and spend much time discussing together on several

aspects of my internship. I really liked his approach to research and his friendly

way to interact with me. At the same time, he also managed to provide a great

guidance and strong motivations which have been fundamental for the achievement

of all objectives declared at the beginning of the internship.

Thanks to this experience, I found out my taste for research, so I can surely say

that it has been the most important experience I have ever had in my professional

life. I will keep for ever good memories of good times I spent at Orange Labs.

I have to thank also my parents for giving me all the necessary support to make

my own choices and pursue this important goal.

Last but not the least, I would like to thank also my classmates and teachers for

making the Ubinet Master a great learning experience.

4

Abstract

Il video streaming in peer-to-peer sta diventando sempre più popolare e utiliz-

zato. Per tali applicazioni i criteri di misurazione delle performance sono:

• startup delay: il tempo che intercorre tra la connessione e l’inizio della ripro-

duzione dello stream (chiamato anche switching delay),

• playback delay: il tempo che intercorre tra l’invio da parte della sorgente e la

riproduzione dello stream da parte di un peer,

• time lag: la differenza tra i playback delay di due diversi peer.

Tuttavia, al giorno d’oggi i sistemi P2P per il video streaming sono interessati da

considerevoli ritardi, sia nella fase di startup che in quella di riproduzione [8]. Un

recente studio [5] su un famoso sistema P2P per lo streaming, ha mostrato che

solitamente i ritardi variano tra i 10 e i 60 secondi. Gli autori hanno osservato anche

che in alcuni casi i ritardi superano i 4 minuti! Si tratta quindi di gravi inconvenienti

se si vuole assistere a eventi in diretta o se si vuole fruire di applicazioni interattive.

Alcuni studi hanno mostrato che questi ritardi sono la conseguenza della natura

non strutturata di molti sistemi P2P [3, 4]. Ogni stream viene suddiviso in bloc-

chi che vengono scambiati tra i peer. A causa della diffusione non strutturata del

contenuto, i peer devono continuamente scambiare informazioni con i loro vicini

prima di poter inoltrare i blocchi ricevuti. Queste soluzioni sono estremamente re-

sistenti ai cambiamenti della rete, ma comportano una perdita notevole in termini di

prestazioni, rendendo complicato raggiungere l’obiettivo di un broadcast in realtime.

In questo progetto abbiamo lavorato su un sistema P2P strutturato per il video

streaming che ha mostrato di poter offrire ottimi risultati con ritardi molto vicini

a quelli ottimali. In un sistema P2P strutturato ogni peer conosce esattamente

quale blocchi inviare e a quali peer. Siccome il numero di peer che compongono il

sistema potrebbe essere elevato, ogni peer dovrebbe operare possedendo solo una

5

conoscenza limitata dello stato del sistema. Inoltre il sistema è in grado di gestire

arrivi e partenze, anche raggruppati, richiedendo una riorganizzazione limitata della

struttura.

Infine, in questo progetto abbiamo progettato e implementato una soluzione

personalizzata per rilevare e sostituire i peer non più in grado di cooperare. Anche

per questo aspetto, l’obiettivo è stato quello di minimizzare il numero di informazioni

scambiate tra peer.

6

Abstract

P2P broadcasting of video streams is increasingly popular. Important perfor-

mance criteria on such applications are related to:

• startup delay: delay before start of playback when connecting to the stream

(also called switching delay),

• playback delay: delay between source transmission time and peer playback,

• time lag: differences in playback delays between two peers.

However today’s most popular P2P live streaming systems suffer from long startup

and playback delays [8]. A recent measurement study [5] over a popular P2P stream-

ing system shows that typical startup and playback delays vary from 10 to 60 sec-

onds. The authors also observe that, for most streams, some playback delays exceed

4 minutes! These are serious drawbacks for watching realtime events or using these

applications for interactive streams.

Some studies have shown that these delays are a consequence of the mesh or

unstructured nature of these P2P systems [3], [4]. A stream is divided into chunks

that peers exchange. As a consequence of the unstructured dissemination, peers

must constantly exchange information with their neighbors before forwarding the

stream. These solutions are extremely resistant to network changes, but at the cost

of losing their initial realtime broadcasting objective.

In this project we consider a structured P2P streaming system which has shown

to offer great results with delays very close to the optimal ones. In a structured

P2P system each peer knows exactly what block to send and to which peer. As

population size may be very large, each peer should know what to do with a limited

knowledge of the system. In addition, the system allows for arrivals and departures,

even grouped, with limited reorganizations.

7

Furthermore, in this project we designed and implemented a custom solution to

detect non-collaborative peers and replace them. Even for this aspect, the aim is to

minimize the amount of packets exchanged between peers.

8

Chapter 1

Introduction

Peer-to-Peer (P2P) video streaming is a software-based solution that allows users to

distribute data to a larger audience without using a single or limited set of central

servers.

1.1 Benefits of P2P Video Streaming

P2P video streaming is extremely useful when the goal is to avoid system overload

due to the high and unexpected number of simultaneous requests. In order to

support an extremely large population, a large number of servers is needed, and in

case the population increases more than we could expect, the system is not able to

fulfill all the requests. Ideally, a P2P system is supposed to be able to scale and

adapt its capacity to current requirements.

Furthermore, the population of a streaming system may be highly dynamic over

the time, this means that if we use a centralized system, most of the time there will

be a waste of resources due to the inactivity of some servers. A P2P system is much

more efficient because every peer collaborates for content distribution, so there is

no point in the system that allocates resources without using them at all.

We can clearly deduce that a P2P allows to dramatically reduce the cost for

broadcast and make much simpler for any user to globally distribute a content

9

globally without any dedicated infrastructure.

More generally, P2P solutions are increasingly used by enterprises to provide

high-quality and reliable services, especially for streaming, that can efficiently deal

with limits of their infrastructures.

1.2 Requirements for P2P Streaming

In order to deploy a P2P system for streaming, there are some requirements that

need to be fulfilled in order to make the system working in the proper way:

• Time Constraint: each piece of content we want to transmit, called block

or chunk, has a playback deadline by which it has to be delivered to the

destination peer. This means that a P2P system must meet a set of real-time

requirements. In other words, if a peer receives a block after the maximum

allowed time, that block can be considered lost because it is not useful anymore

(not playable in case of video streaming).

• Scalability: potentially, a live streaming system may have a very high number

of peers interested in transmitted content. A P2P system is ideally able to

deal with very large populations without affecting the quality of the service

achieved by connected peers.

• Heterogeneity: in the real world, it is very unlikely to have a set of peers

with a homogeneous capacity, in terms of computational power, upload and

download bandwidth, etc. A P2P system is thus supposed to be able to

provide the best quality of service possible despite to the heterogeneity of

peer resources.

• Grouped Arrivals and Departures: usually, it happens very often that

a large number of peers wants to join (or leave) the system simultaneously.

10

This phenomena must not affect the normal working of the system. More

practically, connected peers must not experience any additional delay or loss.

• Decentralized Architecture: any P2P streaming, according to its defini-

tion, is supposed to be resistant to multiple failures, so there must not be any

possibility to have a single point failure or a bottleneck situation.

1.3 P2P Streaming Taxonomy

There are two main factors that characterize P2P systems:

• Topology: the structure, if any, adopted to organize the overlay network and

create relations between peers.

• Delivery strategy: the way the system distributes pieces of content among

peers. Each peer thus forwards pieces of content according to rules defined by

the delivery strategy.

Nowadays, two approaches can be considered the starting point to design any other

approach:

• Tree-based or Structured: in this approach, peers are organized according

to a predefined structure and each peer has a precise position in that structure.

Content is pushed from parent to child. Even relations and communication

with other peers depend on the position of the peer in the structure. Generally,

in this kind of systems there is an entry point which is in charge of placing a

just joined peer into the structure.

• Mesh-based or Unstructured: in this approach, there is no predefined

structure, peers establish relations and communicate by only exchanging in-

formation with each other. As we can easily imagine, a larger amount of data

needs to be exchanged compared to structured P2P systems, in order to keep

peers synchronized.

11

Generally, tree-based approaches prove to be scalable because they can easily handle

very large populations, but they suffer from several factors. Indeed, they prove to

be not robust in case of failures or nodes with poor resources. Indeed, the basic

problem affecting tree-based approaches is the need of expensive re-structuring in

case a peer stops cooperating or his upload capacity gets worse. Re-structuring

may force peers to close ongoing connections with neighbors and run once again the

procedure to get in the structure and change position. This could require to get

aware of their new neighborhood and establish connections with new neighbors. We

can state that the most important requirement for a structured P2P system is to

repair the structure, in case of a peer churn, as efficiently as possible. In this case,

efficient means minimizing both bandwidth and time.

Furthermore, they prove to be also not fair because a free-rider can easily make

worse the quality of service provided to other peers and keep achieving a good

quality for himself. However, they allow to achieve an interesting advantage: the

implementation usually is much simpler.

Tree-based approaches can also adopt multiple trees. Peers belong to multiple

trees at the same time but they can be internal nodes in at most one tree, in all

the others they are leaves. In this kind of systems the stream is encoded in multiple

sub-streams in order to ensure a minimum service quality even if some packets are

lost. This helps also to handle bandwidth heterogeneity among peers. Another

reason why multi-trees approach has been designed is to maximize cooperation and

fairness between peers. Indeed, in a classic single-tree approach, peers in the last

level (leaves) do not cooperate at all, they just receive content without collaborating

for its distribution. To the best of our knowledge, there is no commercial system

based on a tree-based structure.

In mesh-based approaches peers receive content by sending request packets to

their neighbors. Each peer maintains a limited and random set of peers. In a pure

12

Figure 1.1: An example of tree-based P2P system

Figure 1.2: An example of multi-tree P2P system

13

Figure 1.3: An example of mesh-based P2P system

mesh-based approach each peer selects a random set of peers and sends to them

all the available blocks. Unfortunately, this approach generates a high waste of

bandwidth because of duplicates. Indeed, it is very common that a peer receives a

given block more than once.

Clearly, mesh-based approaches prove to be much more robust and adaptive

compared to structured approaches. Differently from structured systems, a mesh-

based system is completely based on cooperation, that is the reason why peers ideally

have the tendency to create groups according to their capability to cooperate for

global content distribution. This means that stronger peers with a high capacity

(for both upload and download) will achieve a higher quality.

On the other hand, as in mesh-based P2P systems there is no structure and

no specific rules for content distribution, peers need to continuously exchange syn-

chronization packets (in some systems they are called request packets) in order to

14

efficiently distribute content. The most important task of a peer is to download

(pull) blocks as quickly as possible from multiple neighbors. Both peer selection

and piece selection has to be performed in such a kind of system.

1.4 Performance Criteria for P2P Live Streaming

Nowadays, most popular P2P live streaming systems suffer from extremely high de-

lays. The most important performance criteria that characterize a P2P live stream-

ing system are the following:

• Startup Delay: it is the time interval starting from the moment in which

a peer connects to a online stream until the first piece of content has been

received and is usable. In case of a video streaming system, the startup delay is

considered as the interval between the connection request and the reproduction

of the first video frame. In structured P2P topologies, this happens especially

because when a peer asks to join the system, he needs to be assigned a position

in existing structure and as soon as he gets one, he sends to other peers

(neighbors) his coordinates and other information.

• Video Switching Delay: A peer who is already connected to a stream may

want to switch to another channel. The time elapsed from the switching

request until the moment in which the user can actually watch the first frame

of new video stream is called video switching delay. Differently from what we

could suppose, this delay could be even higher than than the startup delay.

Indeed, before switching to the new video stream, the peer is asked to unjoin

the previous stream, and this could take some additional time.

• Playback Delay: The playback delay is the exact difference between the

time at which a block has been sent from the source of the stream and the

time at which that frame is actually played by a peer. In structured P2P

15

systems, peers that are farther in structure from the source will experience

increasingly long playback delays. What can happen here is that a block

might be received after the maximum allowed threshold, this can cause some

noises in the reproduction like small freezings or long disruptions.

• Time Lags or Display Lags: The difference between playback delays expe-

riences by two peers. This could be very annoying if two users are very close

from a geographical point of view, but one gets the video stream couple, or

even more, of seconds before the other one. What would happen if the video

stream is a live sport event?

As we said in the introduction, these delays can reach very high values. More

precisely, according to measurements made by [5], typically startup and playback

delays vary from 10 to 60 seconds, which is a very long time if we consider that

during that time the user is forced to wait until the reproduction of the first video

frame.

1.5 Challenges and Issues

As we all know, any user connected to a real wide network, especially the Internet,

always experiences some issues. A P2P streaming system has to deal with these

issues and minimize the impact of any kind of sudden and unpredictable event.

Generally, issues and challenges of a P2P streaming system can be summarized

as follows:

• Delays and ordering: usually in the Internet, there is no warranty for maxi-

mum delays or ordering, so any application must take into account these issues

and provide a efficient way to solve them keeping the quality of service good

enough. In case of a P2P video streaming system, another critical requirement

is to minimize disruptions or freezings during the playback.

16

• Free riders and incentive mechanisms: in a P2P system the cooperation

between peers is fundamental in order to achieve a good quality for all peers

connected to the system. If even just one peer stops cooperating, the quality

can dramatically decrease for many peers. This means that a P2P system

must provide incentive mechanisms, in other words, when a peer does not

cooperate anymore, or keeps cooperating but below the minimum threshold,

also the quality of service achieved has to be decreased or, if necessary, that

peer has to be forced to unjoin the system.

• NATs and Firewalls: this issue, compared with the two above, is less critical.

Indeed, many P2P or client-server systems just ignore this issue. However, an

efficient P2P system should provide a way to bypass this kind of issues and

keep providing a sufficient quality of service.

• Node Failures or Misbehaviors: unfortunately, it can happen that a node

(peer) fails unpredictably or starts misbehaving. In case of a failure, the system

has to adopt an efficient (and possibly fast) strategy for failure detection and

recovery. Instead, in case of misbehavior, the system should be able to detect

the misbehavior of a peer and expel him. As we can imagine, handling failures

is less complex, indeed several detection algorithms have been developed and

deployed. On the contrary, misbehaviors are more complex to detect and

need a careful analysis. As we will se later, we designed and implemented a

basic but pretty good solution for failure detection and recovery, specialized

for structured P2P systems.

• Dynamic Bandwidth and Limited Upload Capacity: as we said above,

cooperation is fundamental in a P2P system. If the cooperation of a peer goes

below the minimum allowed threshold or, even worse, a peer stops cooperating,

many peers are going to achieve a lower quality of service, probably lower

than the minimum required to keep the service suitable. Unfortunately, as

17

we know, the bandwidth achieved by a peer can vary over the time, and the

upload capacity generally is limited. The goal of a P2P streaming system is to

deal with these limitations, maximize the quality of service achieved by each

peer and keep it as stable as possible.

18

Chapter 2

Objectives

The primary objectives of my internship can be summarized as follows:

• Improving stability and efficiently handling population variation: in

any P2P system, especially in Live Video Streaming, peers connected to the

system can quickly vary, both in terms of number and identity. For instance,

it is quite common to observe a fast increase of the population during the

initial phase of the transmission, and a fast decrease during the final phase.

In addition, during the transmission, it can happen very often that peers

connected from a very short time, get disconnected. This phenomenon is also

known as zapping.

• Detecting and recovering failed or non-collaborative peers: for any

P2P system, it is fundamental to adopt an efficient strategy for failure detec-

tion and recovery. In addition, the system should be able to detect and fix

not only peer crashes, but also other kinds of issues, for instance peers that

cannot correctly cooperate anymore because their upload capacity is not large

enough.

As we said above, in a structured P2P system reorganizing the structure could

be tricky and cause a domino-effect for several peers. In fact, both the design

and the development phase have been driven by the same goal: to minimize the

19

information to be exchanged in case of a change in the structure and limit the need

to be aware of a change to a limited set of peers. Structure reorganization is a very

common event in structured P2P systems, which can be triggered by either a new

arrival or a departure. In particular, a departure is considered spontaneous when a

peer correctly unjoins the system by himself, and forced when a peer is expelled or

crashed.

Clearly, we can imagine that structure reorganization has to be handled as effi-

ciently as possible. In other words, not only the amount of data and the time have

to be taken into account, but also the additional delay caused by a change in the

structure, which should be as close as possible to zero.

A secondary objective of this internship was to create a porting for Windows.

This has been achieved by using some specific precompiling instructions in order to

include or exclude some snippets of code depending on the target architecture.

20

Chapter 3

System Architecture

In this section we will describe the strategy and the structure adopted for dissem-

ination. In addition, we will explore the architecture of the system from a more

technical point of view and we will analyze closely the components of the system

and their roles.

3.1 Hypercube Data Structure

The structure on which our system is based is hypercube [6]. Hypercube is a mul-

tidimensional structure in which every node corresponds to a vertex. For instance,

if the number of dimensions is 3, the structure can host up to 8 nodes. Each node

can be univocally identified through an ID, which is composed by a sequence of 0

and 1.

There are several reasons for which we can state that a hypercube is a suitable

and efficient structure for P2P streaming:

• Simple enough to not require a large amount of packets to be exchanged in

order to keep the structure consistent.

• Each peer knows exactly his position and his neighbors in the structure just

by looking at his ID. This allows a peer to operate in the system without being

21

Figure 3.1: Hypercube Structure

aware of any additional information. In other words, once a peer gets the list

of his neighbors and their coordinates, he can easily infer peers from whom he

is going to receive blocks and peers to whom he is going to send blocks.

• Time required for global transmission is proved to be optimal: log2 N . This

allows to achieve shorter dissemination delays and a faster startup delay.

• Highly scalable: number of peers is equal to 2 power number of dimensions.

This means that if population size increases very fast, we can double the

maximum number of peers we can host in the system, by just increasing the

dimension by 1.

Before proceeding and explaining dissemination rules, we need to introduce a couple

of concepts that are fundamental for a good comprehension of the working mecha-

nism of our system:

• Neighbor: Peer A is a neighbor of peer B if A’s ID has just one bit different

than B’s ID. As we said above, any peer knows his neighbors by just performing

basic operations on his own ID. This means that no matter what the context

is, a given peer will always have the same set of neighbors.

• Level: Given a peer A and his ID, the level of A is equal to the number of

22

1 in A’s ID. Level is a fundamental property for a peer. Indeed, as we will

se later, the behavior of peer and his dissemination strategy depend on his

current level.

An important issue occurs if peers are structured as a hypercube: a hypercube is

supposed to be complete, in other words, every vertex should correspond to a node

(peer). Formally, a hypercube is complete when, given a number of dimensions n,

the number of peers is 2n. Unfortunately, it is very unlikely that the population of a

system is so stable to host for all the transmission the same number of peers. As we

know, users of streaming systems can get disconnected in any moment, even after

just a couple of seconds from their connection.

3.2 Dissemination Rule

Our aim is to design an efficient P2P system for live streaming. In this case, efficient

means that the system should disseminate content as fast as possible and with the

least waste of bandwidth. Ideally, each peer should not receive the same block twice

but on the other hand losses have to be minimized even in presence of continuous

and massive population variations.

Fairness is another important principle which has been adopted in the design of

our system. Our dissemination rules provide a fair mechanism that equally share

available bandwidth among peers.

In this section we will explain in detail the dissemination rule over a complete

hypercube. In the next section we will explain the strategy we adopted in order to

adapt the structure when the hypercube is not complete.

Two peers can exchange blocks if and only if they are neighbors, so we assume

there is a relation one-to-one between peers such that it creates edges that link peers

to each other. Blocks are thus exchanged along these edges.

We adopt the following notations:

23

• n is the number of dimensions;

• an identifier is defined in binary notation as a sequence of bits: bn�1 . . . b1b0

with bi 2 {0, 1} for i = 0, . . . , n� 1;

• let ek be the n-length binary number with all zeroes except in position k modulo

n. Note that ek+n = ek. We denote the exclusive OR (or XOR operation) on

two n-length identifiers, a and b, the identifier c = a� b, with ci = ai � bi for

all i, where � is the exclusive OR operator for bits. Two peers may exchange

stream blocks if and only if their identifiers, a and b, differ by one bit (in

binary notation);

• we denote peer b � ek = bn�1 . . . bk . . . b0 as the kth neighbor of peer b =

bn�1 . . . bk . . . b0 (where bk is NOT bk in binary logic). In this definition k is

considered modulo n so that neighbors k and k + n of a given node represent

the same peer.

As an example in an n = 5 dimension hypercube, the peer with identifier 18 has the

binary representation b = 01001 and has the n hypercube neighbors (starting from

neighbor 0 to neighbor n� 1): 01000; 01011; 01101; 00001; 11001.

The source of the stream, i.e. the node with identifier 0, transmits stream blocks

the following way: 0 transmits blocks numbered k to peer 0+ ek. For example with

n = 5 the source will transmit blocks 3; 8; 13; ... to peer 01000.

To recursively describe the system we must explain how blocks received by a

peer are retransmitted to its neighbors. The retransmitting rule is slightly different

from the block generating rule used by the source.

A peer with identifier b, receiving a block numbered k, will perform the following

algorithm.

I f :

bk = 0 : then do not ret ransmit ,

24

bk = 1 : then re t ransmi t chunk k to :

a l l k’� th ne ighbors such that b i=0 f o r a l l i=k ’ , . . . , k � 1

the k�th neighbor .

Note that indices are always considered modulo n. Also the retransmission should

start with the smallest possible index k0 and continue by increasing the index until

reaching k.

These rules define a hypercube network and a broadcasting algorithm over this

network. We will refer to them globally as the hypercube rule. They provide an

optimal dissemination algorithm in terms of number of block retransmissions before

reception by peers.

As an example, we can suppose that our identifier is 9 which in binary format

is 01001. We suppose also that the number of dimensions is 5. As we can see in

Figure 3.2, we are going to retransmit only blocks 0 and 3. Once again, we recall

that indexes of blocks are considered always modulo n, where n is the number of

dimensions. In the case of block number 0, we first apply the second part of the

dissemination rule, which says that since the bit in position 0 is 1, we have to forward

the block to 0

th neighbor. To obtain the identifier of 0th neighbor we have just to to

invert the value of the bit in position 0. Now we try to apply the first part of the

rule, which says that we have to retransmit the block to every neighbor such that

in his identifier we can find a sequence of zeroes starting from any position until

position k� 1, where k is the block number modulo n. Sequences that wrap around

are accepted too. In this case, we find one sequence that meets this condition, the

one composed by only the bit in position 4. After applying the two rules, we know

that we are going to forward that blocks to two peers: 11001 and 01000.

25

Figure 3.2: An example of application of dissemination rules

3.3 Adaptation of Hypercube

As we said in the previous section, the hypercube rule provides an optimal dissem-

ination algorithm. However, it is very unlikely that a P2P system can manage to

build a complete hypercube structure, so we need to design a solution in order to

guarantee an efficient and optimal dissemination also in the presence of an incom-

plete hypercube.

In addition, we need also to slightly adapt dissemination rules. Indeed, if we just

apply the rules defined above, it is very likely that identifiers corresponding to some

neighbors are not allocated yet. This happens because the system is incomplete and

some positions are still empty.

Our solution changes just a limited portion of the peer organization and keeps

meeting our main design principles: fairness, limited and local knowledge and limited

reorganization. This solution is based on the notion of levels, in particular, the only

levels affected by the change of dissemination rules are the ones that belong to either

second-last level or last level.

Previous solutions that have already been proposed to structure the diffusion

for different values of N . But they are either limited to particular population sizes

26

Figure 3.3: An example of descendant list in last level

[9, 10, 7] or the solution results in much longer delays [2].

Peer identifiers in level l may by classified in
⇣
n�1
l�1

⌘
subsets Sj, where l is the

number of levels, so l is the last level, and n is the number of dimensions. Each

subset is associated to one of the
⇣
n�1
l�1

⌘
identifiers, sj for j = 1, ,

⇣
n�1
l�1

⌘
as

defined above. We recall that sj0 = 1 and l � 1 of the other n � 1 bits are equal to

one. Let b be the identifier of a peer in the last level l. Let k be the position of its

first non zero bit starting from the right (i.e. bk = 1 and bi = 0 for i = 0, . . . , k� 1).

Then b belongs to the subset Sj such that one obtains the identifier sj by rotating b,

k times to the right. Note that sj belongs to Sj. As an example, if l = 4 is the last

level of system with dimension n = 8, and if sj = 00011001, then Sj is composed of

identifiers:

• 00011001,

• 00110010,

• 01100100,

• 11001000.

Alternatively, the subset associated with identifier 10011001 contains only that iden-

tifier. The identifiers belonging to in any subset Sj may be arbitrarily ordered so that

Sj forms a list. We assume this is the case. A possibility is to order the identifiers

27

by increasing value. (In that case sj is the first identifier in the list Sj.) The routing

rules used by a peer in level l are the following. When a peer receives a block k, it

looks in the list Sj it belongs to, for the next peer in the list present in the system.

If one is present it forwards the block to the next peer. If none is present it forwards

the block k to the unique peer in the previous level l�1 to which peer sl would have

sent it to according to explanation above The routing rules used by a peer in level

l� 1 to retransmit a block k destined to the next level l are the following. The peer

identifies the peer sl it would send the block to according explanation above. Then

it looks for the first peer present in the list Sj associated to sl. If one is present

in the system, it forwards a copy of the block to it. If none is present, it forwards

a copy to its corresponding peer (for block k) in the same level l � 1 as defined in

sub-section ’complete last level’. The order in which the identifiers are attributed

in the last level is not important. Peers not present in a list Sj are skipped. Peers

are allowed to leave the last level without requiring the reorganization of the upper

levels, the departing peer has just to notify the upcoming change to his successor

and predecessor in the list.

As we said above, even if the order in which identifiers are assigned in the last

level does not matter, we need to define a precise rule to build descendant lists. In

other words, we need to define an order for descendant lists, which must be different

than the chronological one. Also in this case, we decided to keep things simple and

use the easiest possible order: peers are ordered just by their identifiers. This means

that the peer associated to the smallest identifier will be the head of the descendant

list, and the one associated to the biggest identifier will be the tail.

3.4 Framework for P2P Streaming

Before analyzing closely details of our implementation, it is worth giving some tech-

nical details concerning the development environment in which this system has been

28

developed. Moreover, the system has been developed keeping in mind that peer

can have serious heterogeneity in processing power and memory. Thus efforts were

put-in to make the computational and memory requirement as low as possible. The

result of these efforts allowed us to run simultaneously on the same machine more

than 1000 peers.

Some general details are the following:

• Programming language used is C

• IDE we used is Eclipse

• Operating system used is Linux (kubuntu distribution)

• Shell scripting is used to do get useful information from log files such as losses,

delays, etc.

• UDP sockets have been used instead of TCP sockets for network connections.

The reason why we decided to use UDP connections over TCP connections, despite

to reliability and congestion-aware mechanisms provided by TCP are the following:

• Generally, operating systems have constraints that limit the rate to accept new

TCP connections and number of concurrent TCP connections. This means

that if we adopted TCP connections, we would have restricted the size of P2P

hypercube system that we can build and simulate on a single local machine.

• Another reason that supported our choice of using UDP connections is that

the TCP protocol usually takes longer to establish a connection and this could

generate more delay, which does not meet our main design principles.

3.4.1 Software Entities

At execution time, our system is composed by three entities: a source, a server and

several clients.

29

Figure 3.4: Entities of the system

Source: as his name suggests, the source is supposed to be the entity in charge

of producing content and sending it to the server. Differently from the original idea,

the source process does not produce any content actually. Indeed, he just reads

a UDP stream incoming from a specific port, segments UDP packets into custom

blocks, and forwards them to the server in order to proceed with the dissemination.

In our implementation, source assigns to every block a unique identifier in order to

make both server and clients able to treat blocks.

Server: the server process does not generate any content. Indeed, the role of

the server is to keep track of the current status of the hypercube structure, relations

between peers and coordinates of peers (IP address and port number). Furthermore,

the server process is also in charge of supporting peers for some special operations

that we will explain in next sections. The server is also the entry point of the system.

When a new peer wants to join the system, he first has to send a request to the server

in order to get a unique identifier. If the server replies by sending a positive answer,

then the joining peer contacts all the peers (ancestors, neighbors, descendants, etc.)

contained in the list attached to the answer block. The aim of this procedure is to

30

allow a joining peer to safely get in the structure and start cooperating for content

dissemination.

Client: Finally, client is the name given to the entity that implements a peer.

From our point of view, there is no difference between a client and a peer, so we

will use these two names alternatively. Each user who wants to watch the video

stream, has to run an instance of this executable. The only parameters required are

coordinates of server: his IP address and the port number on which he is waiting for

new requests. Once the client gets an identifier from the server, he has to perform

the procedure we mentioned before in order to get in the structure and receive

blocks. We recall that client is the most important entity of our system, which is

quite obvious since we are describing a P2P system. Indeed, as we will see in next

sections, each peer maintains several data structures which are used for storing the

current status of the peer.

3.4.2 File Organization

The idea behind creation and organization of different header files and source files

is to separate the network level communication from the implementation of the

hypercube structure. The organization of files is as follows (see Figure 3.5).

The header files for server and client (i.e. server.h and client.h) contain all

declarations of functions and variables that are required by peers to communicate

with each other. This involves functions to establish and close UDP connections,

read from an entity (client, server or source), write to an entity (server or source)

and some particular declarations and adaptations for the target architecture in order

to finally make communication possible.

The header files with name starting with diffusion (i.e. diffusion.h and diffu-

sion_client.h) basically contain all variables, data structures and functions neces-

sary to create, run and manage the hypercube structure. File block.h contains the

definition of data structure used for messages, that is Block. This is the basic mes-

31

Figure 3.5: File organization

sage format that is used for data as well as control packets. File named block.h also

contains all the functions that are used to manipulate and display a block.

File named failure_detection.h contains the declaration and the implementation

of all the functions and variables intended for our failure detection solution.

3.4.3 Data Structures

In this section we show the most important data structures used by a client. We thus

ignore data structures used by source and server since they are not very significative

for our purposes.

Data structures used by clients are the following:

32

• id: this variable contains the current ID of the peer;

• primary_id: this variable contains the main id of the peer. It is worth

pointing out that there is an important difference between primary_id and

id. Indeed, id represents the current id used by the peer during a single

retransmission phase. The reason why they can be different is that just after

a replacement, some previous neighbors could be not up-to-date and still send

packets to the replacing peer. In order to avoid losses or disruptions due to

some delays in the delivery of updating packets, the replacement peer has to

keep disseminating content also as he would do in the previous position. We

will clarify this aspect in next sections;

• secondary_id: this variable contains the previous main id of the peer. If a

peer has replaced another peer in the past, secondary_id is set to his previous

id;

• dim, last, level: this variables respectively contain values of dimension, last

level and level to which the peer belongs;

• pacsent[dim]: it is an array of dimension ’dim’ and contains information

to know which data block number must be sent at each time slot. pacsent is

computed by each peer by just looking at his identifier which has been assigned

by the server. For example a peer with identifier 01010 will have pacsent =

{1,3,3,1,1}. This means that data block sent at time slot 0 is 1, 1 at time slot

1, 3 at time slot 2, 3 at time slot 3 and 1 at time slot 4. It is worth noticing

that data block number and time slot are always treated as modulo dim. as

an example, if block number is 20 then it corresponds to 20 modulo 4 (i.e. dim

-1) which is 0;

• pacr[dim]: it is an array of dimension ’dim’ and allows a peer to know in

advance each data block it is going to receive at each time slot. We recall

33

that a peer can compute this information by just looking at his identifier.

For example a peer with identifier 01010 will have pacr[] = {4,1,2,3,0}. By

checking out values of pacr[], a peer can realize that at time slot 6 he is going

to receive data block number 8 and at time slot 9 he is going to receive block

number 9;

• times_sent[dim]: this structure is different from pacsent and pacr, from

a . times_sent gives information regarding how many times a data block is

suppose to be sent by a peer. For example, a peer with an identifier 00010,

will send data block 1 five times and never sends all the other block (i.e. 0,

2, 3, 4). Thus for peer 00010, times_sent[] = {0,0,0,5,0}. Just to explain

the difference between times_sent and the other data structures, we can look

at the example we showed in the description of pacsent & pacr i.e. 01010.

times_sent for this peer is {0,2,0,3,0} which means that this peer sends block

1 three times, data block 3 twice and never sends the other blocks;

• neighbour[dim]: in this array we store identifiers, and corresponding coordi-

nates, of all hypercube neighbors of a given peer. It is worth noticing pointing

out that in this data structure we store only formal neighbors, which are those

neighbors that meet the rule we defined in the section 3.1. We recall that a

hypercube neighbor’s identifier vary with identifier of given peer by only one

bit. For peer 01010, the neighboring peer will be 01011, 01000, 01110, 00010

and 11010.

Before introducing the next data structure, a little background is required. As we

mentioned before, we adopt a special strategy in order to adapt both the hypercube

structure and dissemination rules in case the number of peers in the system is lower

than the maximum allowed, in other words, when the hypercube is incomplete.

The only levels affected by this adaptation are the second-last and the last one.

Peers in the last level are grouped in multiple descendant lists. Every descendant

34

Figure 3.6: An example of descendant list

list is associated to a different ancestor, who is a peer belonging to the second-last

level. Once ancestors receive a block, they forward that block to the corresponding

descendant list. Indeed, also descendant lists are built according to identifiers. Each

ancestor needs to keep just the identity of the head of each descendant list, which is

the peer with the lowest id. It is worth saying that, for stability reasons, descendant

lists are maintained also by peers that do not belong to the last or second-last level.

The main reason why we decided to do so is mainly due to the very likely event in

which the number of levels change during the transmission. Indeed, in that case we

would need to rebuild descendant lists, this task could take some time and generate

delays, resulting in worse performance.

Data structures used for managing descendant lists are the following:

• descendants[dim][dim]: this data structure is a two dimensional array; first

35

dimension holds descendant list associated with each bit position and second

dimension holds details of peers in that list. As we can see in 3.6, peer 0011

has total four possible descendant lists out of which only two are not empty.

Thus descendants[3][] and descendants[2][] are both empty. Instead, descen-

dants[1][3] = details of {1110, 0111, 0110} and descendants[0][2] = details of

{1011, 1010};

• ancestors[dim]: for peers in the last level, ancestors structure holds details

of peers in second-last level that are supposed to send blocks to the head of

the descendant list he belongs to. As we can see in 3.6, ancestors of peer 0111

are peer 0011, 0110, 1001 and 1100 as they send blocks to peer 1110, which is

also the head of the descendant list to which he belongs;

• same_level_ancestors[dim]: this data structure helps peers at second-last

level to hold details of the peer who are their ancestors but belong to the same

level. As we can see in 3.6, same level ancestors of peer A = 0101 are 0110

and 1001 as both of them send blocks to descendant list of which peer A is

the last descendant;

• same_level_last_descendant[dim]: this data structure contains, for each

descendant list, a peer belonging to our same level, who is the next member

of the ancestor chain for a given block descendant list. This structure can

be used in two different ways during the transmission phase: the first one is

to communicate to descendants the identity of the next ancestor to whom to

retransmit when the block reaches the last peer, the second one is to send a

block directly to him in case the corresponding descendant list is empty;

• vote_list[], repair_list[]: these data structures allow to maintain a set

of peers, belonging to the last level, that could be potential replacements in

case the current wants to leave the system. We will go into more detail in the

section focused on management of arrival and departures;

36

• send_to_desc[] (secondary_send_to_desc[]): this data structure is

maintained by every peer belonging to a level which is not the last one. In-

deed, as we mentioned before, descendant lists are maintained even when it

is not required, in order to be prepared in case the number of levels changes.

However, this data structure is actually used by only peers in the second-last

level and contains the identity of the first member of each descendant list.

Instead, secondary_send_to_desc is used for retransmitting blocks received

after a replacement and still pointing to our previous identifier;

• send_to_succ (secondary_send_to_succ): this variable contain coor-

dinates of our successor in the descendant list. As for send_to_desc[], sec-

ondary_send_to_succ is used only for blocks still pointing to our previous

identifier;

• receive_from_succ: this variable contains coordinates of our predecessor

in the descendant list;

• my_id_location: by checking the value of this variable, we know if we are

the last peer in our descendant list or not. Because of historical reasons, the

name of this variable does not match exactly its actual meaning;

• head_of_the_list: by checking the value of this variable, we know if we

are the first peer in our descendant list or not;

• replacing: this is a special variable used only when we are replacing a peer

who has been expelled from the system. If it set to 1 then the departure is

not spontaneous (the departing peer has crashed or whatever), otherwise the

departure is spontaneous (the departing peer has autonomously decided to

leave the system);

• receive_from: each peer in the system stores the details of peer from whom

he has just received a block. Even though it is declared as an array, currently

37

only the first position of receiver_from is being used. This information is used

for several purposes such as replying to an explicit request from a given peer,

etc.

• tableFrames[]: this array keeps track of which data blocks have been re-

ceived by a peer. This structure helps to:

– ensure if all the data blocks are received by a peer or not,

– find out the data blocks that have not been received,

– retransmit data blocks that a peer has received but one of its related

peers did not.

• nbFrames: this variable stores the highest block number that has been re-

ceived by a peer.

3.4.4 Data Structures for Failure Detection

In this section we explain the meaning of some special data structures used for

failure detection purposes.

First of all, we need to point out that our solution is to piggyback information

about blocks received or lost, by attaching it to standard data blocks.

In order to do so, we defined two new data types:

typede f s t r u c t {

uint32_t concern ingpeer ;

uint32_t frompeer ;

uint32_t throughput [REPORT_WINDOW] ;

uint32_t l o s s e s [REPORT_WINDOW] ;

uint32_t nsent ;

s t r u c t t imeva l last_time_sent ;

}

38

Report_History ;

where

• concerningpeer and frompeer represent contain identifiers of two different

peers,

• nsent is a counter where we store the number of reports received,

• throughput[] and losses[] contain a sequence of values which are used by

the peer in order to decide if concerningpeer is not cooperating sufficiently. If

so, the peer starts the procedure to expel concerningpeer from the system,

• last_time_sent store the timestamp of the last time a given report has been

sent by the peer,

• REPORT_WINDOW is a constant which defines how many reports can

be stored. Of course, reports are stored according to their chronological or-

der, this means that if the current size of the report window exceeds RE-

PORT_WINDOW, the oldest report is discarded,

and

typede f s t r u c t {

double_t throughput ;

double_t l o s s e s ;

C l i en t c l i e n t ;

uint32_t nrepor t s ;

} Average_Report ;

where

• throughput and losses store the averaged values of throughput and losses

piggybacked with blocks,

39

• client is a data structure which contains information about the client associ-

ated to that report,

• nreports is a counter that keeps count of how many reports have been sent.

Data structures used for managing reports are the following:

• leader_reports[dim][dim]: this data structure is maintained only by those

peers that are the designated leader of one or more peers. It is worth remarking

that the designated leader of a given peer is always one of his hypercube

neighbors. It is a bidimensional array because the first dimension is intended

to individuate reports concerning a given peer, and the second dimension is

intended to individuate reports sent by a given peer;

• route_reports[dim][dim]: this data structure is maintained by every peer.

The aim of this structure is to store reports piggybacked with blocks received

by a given peer. In this case, the meaning of the two dimensions is inverted:

the first dimension is intended to individuate reports sent by a given peer, and

the second dimension is intended to individuate reports concerning a given

peer;

• average_reports[dim][dim]: this data structure is maintained only by lead-

ers. The aim of this structure is to compute mean throughput and losses

achieved by several peers from a given peer. This way, a leader is able to

correctly detect a failed peer and expel him from the system. We recall that a

peer is considered as failed when either he crashed or the level of cooperation

that he is offering is not sufficient anymore.

We will go into more detail in the section focused on failure detection, where we will

extensively explain every detail on our solution for failure detection and recovery.

40

3.4.5 UDP Packet Format

As we mentioned in previous sections, we use UDP as transport protocol. More

precisely, we defined a custom UDP packet format in order to transmit both data

blocks and info blocks. We recall that info blocks differ from data blocks because

they do not contain any piece of content, they are used only for exchanging infor-

mation required to build or maintain the hypercube structure. We will give a wide

explanation of all existing block types and their use in the next section.

In order to treat our custom UDP packet format, we defined a C data structure,

which is composed by the following fields:

• uint32_t type: a unique identifier for each block type;

• uint32_t blknb: a unique identifier for each data block. It is incremented

by the source;

• uint32_t trmnb: number of times each data block has been retransmitted

within the hypercube structure;

• uint32_t id: the identifier of the sender;

• uint32_t dim: current dimension of the hypercube structure. Possibly, the

system should be able to dynamically vary the dimension according to current

needs. Currently the system does not manage yet this kind of event but,

ideally, this operation should not be very complex;

• uint32_t last: current last level of the hypercube;

• uint32_t nb_neigh: total number of peers in cl list. That list is used

for several block types. Its aim is to attach to any block (not only the ones

containing data) a set of peers, and their respective coordinates, which have

to be used by the receiving peer;

41

• uint32_t c_anc: in origin this field was used for storing the number of

ancestors in the cl list. Currently, it is used to for storing sender’s id;

• uint32_t c_desc: in origin this field was used for storing the number of

descendants in the cl list. Currently, it is used for storing receiver’s id;

• uint32_t ack: this fields is is used by sender to store the number of the last

received block. In other words, a sender uses this fields to tell the receiver

the number of the last block received from him. This way, each neighbor can

figure out if a packet was lost and, if necessary, resend it;

• Client cl[MAX_DIM]: as we mentioned before, this array contains a set

of clients and their coordinates. It is used for every block type that needs to

communicate to the receiver one or more coordinates of one or more peers;

• Report_network reports[2]: this array contains two data structures used

in the context of failure detection. We will analyzing closely this data structure

in the section focused on our solution for failure detection;

• StreamPackets streamPackets: this field is the one that actually contains

data. More precisely, this fields encapsulates UDP/RTP packets sent by the

stream source by wrapping them with fields we just showed. We recall that

the stream source is not the same process that operates as source for our P2P

system. Indeed, the stream source just generates the stream to disseminate

over the system, instead the the source process is the process in charge of

encapsulating the stream packets in our custom UDP block format.

Data structures used for failure detection will be studied more deeply in next sec-

tions. Instead, we now show the fields that compose StreamPackets data structure:

• size_t sizes[1]: this array contains the size of each UDP/RTP packet encap-

sulated in our custom UDP block;

42

• char data[10000]: as we its name suggests, this array of bytes is the fields

that actually encapsulates packets generated by the stream source. It is defined

as an array of chars because this is the best way to declare a field as a sequence

of bytes. Of course, 10000 bytes is just the maximum allowed size of the

encapsulated content. Indeed, the size of packet can vary depending on the size

of the encapsulated content. This means that there is no waste of bandwidth.

It is worth pointing out that our UDP block format can potentially encapsulate

even more than one single packet. This can be achieved by just increasing the size

of sizes array and put every packet one after another in data array.

There are two important things that are worth pointing out:

• any significant property of the hypercube structure is piggybacked with data

blocks;

• the total size of each data block does not exceed the recommended UDP mes-

sage size, which is less than 1500 bytes. The choice of this value depends on

the maximum allowed size of a IP datagram. Technically, the maximum UDP

message size is 65507, but we want to avoid the unfortunate event in which

the entire UDP datagram is considered lost or corrupted because of a single

lost IP datagram. This means that the safest size of a UDP message is equal

to the maximum IP payload size.

3.4.6 Block Types

In this section we draw up the list of all block types currently used in our system.

TYPE SENDER RECEIVER PROCESSING NOTES

1a Any peer who

wants to join

the system

Server Server returns a unique

identifier for the new peer

43

TYPE SENDER RECEIVER PROCESSING NOTES

1b Server A peer who

has sent a

joining

request and

is waiting for

an identifier

The cl list attached to this

block contains coordinates

of neighbors, ancestors,

descendants, same level

descendants and same level

ancestors. The new peer

also uses his identifier to

compute identifiers of

neighbors in the hypercube

and populate data

structures.

Receiving peer sends block

type 2 to all the peers in

the cl list and block type

25 to ancestor[0] in order

to join his descendant list.

11 Any peers

who joins the

system

Server Server marks the id of the

sender as assigned.

2 Any peer Any peer who

is related to

the sender

(neighbor,

descendant,

ancestor,

successor or

predecessor

in the

descendant

list, etc.)

Receiving peer updates

coordinates corresponding

to sender.

44

TYPE SENDER RECEIVER PROCESSING NOTES

12 Any peer in a

descendant

list

Any peer in a

descendant

list, except

the head of

the list

receiving peer updates

coordinates of ancestor[0].

When a peer receives an

update (block type 2) from

ancestor[0], he updates also

all the members of his

descendant list.

4 A peer,

belonging to

the last level,

who is

leaving the

system

Server and

predecessor

in the

descendant

list

Server marks sender’s id as

not assigned anymore, so it

is available. Predecessor

updates his successor, if

any.

For this block type, server

uses the cl list in order to

store coordinates of his

current successor. If he is

the last peer in the

descendant list, the cl list

is empty.

14 A peer who is

the head of

the list and is

leaving the

system or

changing

position (re-

placement).

Every

ancestor of

the leaving

peer.

Ancestors that receive this

block, update

send_to_desc data

structure.

45

TYPE SENDER RECEIVER PROCESSING NOTES

24 A peer (not

head of the

list) who is

leaving the

system or

changing

position.

Successor Receiving peer updates

coordinates of his

predecessor in the

descendant list.

34 A head of the

list who is

leaving the

system or

changing

position.

Successor Receiving peer becomes the

new head of the list.

For this block type, cl list

is used for storing

coordinates of ancestors.

15 A head of the

list who is

leaving the

system or

changing

position.

Ancestors Ancestors update

send_to_desc data

structure.

46

TYPE SENDER RECEIVER PROCESSING NOTES

25 A peer who

wants to join

a descendant

list. He could

be a peer

who just

joined the

system or a

replacement.

Ancestor[0] Ancestor[0] retrieves the

descendant list to which

joining peer is supposed to

belong. After that, he

checks if the descendant

list is empty. If so, he

sends a block type 16 to

the sender, otherwise he

sends a block type 6.

6 Any peer in a

descendant

list.

Any peer in a

descendant

list.

Every peer that receives

this block type checks if he

has a successor or if

successor’s id is greater or

equal than joining peer’s

id. If so, he updates his

successor, otherwise he just

forwards the block.

47

TYPE SENDER RECEIVER PROCESSING NOTES

16 Ancestor[0] New head of

the list.

After receiving a block type

25, ancestor[0] checks if the

new peer will be the head

of the list. If so, he sends

to him a block type 16. We

recall that peers are

ordered by their identifier

(from the lowest to the

highest), this means that

even if a descendant list is

not empty, a joining peer

can become head of the list.

46 A peer in a

descendant

list.

A peer in the

same

descendant

list.

A peer that just joined a

descendant list, sends this

block type to his successor

in order to make him aware

of his presence.

48

TYPE SENDER RECEIVER PROCESSING NOTES

8a A departing

peer

A peer

belonging to

the last level

who has been

chosen as

replacement

for the

departing

peer.

The departing peer chooses

a replacement from his

repair_list and sends to

him a replacement request

by attaching to the block

coordinates of his

neighbors. We recall that

neighbors mean not only

hypercube neighbors but

also all those peers with

whom the peers

communicates, such as

descendants, ancestors, etc.

8b A

replacement

who has

taken the

place of a

departing

peer

Server If a candidate for

replacement has taken the

place of a departing peer,

he sends a special block to

the server in order to make

him aware of new

coordinates corresponding

to a given identifier.

49

TYPE SENDER RECEIVER PROCESSING NOTES

18 A

replacement

candidate

who has

accepted a

replacement

request

Departing

peer or

Server

The aim of this block type

is to send a positive

acknowledgement to the

departing peer. If a

departing receives this

block he can safely leave

the system. In case of a

non-spontaneous departure,

the replacement procedure

is started by the server, so

it is the server that receives

the acknowledgement.

This block type shows the

reason why each peer

maintains a repair list

which is a set of peers

belonging to the last level.

Indeed, if a peer refuses to

replace a peer who is going

to depart, the departing

peer resends the same

request to the next peer in

repair_list. If repair_list is

empty or all the peers

refused the replacement

request, the departing

peers sends a block type 88

to the server.

50

TYPE SENDER RECEIVER PROCESSING NOTES

28 A

replacement

candidate

who has

refused a

replacement

request

Departing

peer or

Server

The aim of this block type

is to send a negative

acknowledgement to the

departing peer. If a

departing receives this

block he has to choose a

new replacement before

leaving the system. As for

positive acknowledgements,

also the server can receive

this block type.

88 A departing

peer who has

no available

peer in his

repair list

Server Server builds a set of

potential candidates for

replacement by picking

some peers from the last

level.

102 A leader that

detects a

non-

collaborative

peers and

decides to

expel him

from the

system

Server Server acts as a departing

peer would do. So it

creates a block and

attaches to it the set of

neighbors of the departing

peer.

The only difference

between the cl list of block

type 81 and the one of

block type 8 is the presence

of coordinates of successor

peer. Since departing peer

has failed, replacement has

to take his place but he

needs to know coordinates

of his successor. Clearly,

server is the only entity

that can deduce this

information.
51

TYPE SENDER RECEIVER PROCESSING NOTES

81 Server A peer

belonging to

the last level

who has been

chosen as

replacement

for the

departing

peer.

The peer chosen as

candidate for replacement

acts exactly as for block

type 8.

9 Departed

peer

Neighbor of

departed peer

It can happen that one or

more neighbors of a

departed peer are not

aware of his departure due

to some lost blocks. The

departed thus stays alive

for a while in order to

detect if all his neighbors

are aware of his departure.

If not, he sends this special

update block.

101 Server Any peer By receiving this block

peer a peer is asked to

safely leave the system.

This block type is used for

simulations in order to

simulate spontaneous

departures.

52

TYPE SENDER RECEIVER PROCESSING NOTES

0 Server and

peers

Any peer Block type 0 is used only

for data blocks, that are

those blocks that actually

contain content to be

played.

As we can see, a pretty large set of block types is currently used. This way we

can easily understand the behavior of peers by just looking at block types sent and

received. Indeed, this choice helped us also during the debugging and testing phase.

3.5 UDP Encapsulation/Decapsulation and Proxy-

like Behavior

Most of streaming P2P systems currently in production are coupled to a specific

video format or communication protocol. Instead, our system is able to deal with

any format and protocol. The only assumption we make is that the communication

protocol is an extension or specialization of UDP, which is an acceptable assumption

since several streaming or real-time systems use UDP as protocol.

The mechanism we used in order to achieve so, is UDP encapsulation/decapsula-

tion. The first component of the transmission chain is the source process, which can

potentially receive content from any kind of multimedia source. The source process

encapsulates each UDP packet generated by the multimedia source into a custom

UDP packet format and transmits it over the system. Each peer can decode and

reproduce the original stream by just decapsulating the UDP packet encapsulated

by the source process at the beginning of the transmission. Once a peer decapsulates

the original stream, he can send it to a video player.

53

Figure 3.7: System Architecture

From this brief description we can deduce that our system works more or less like

a proxy: it creates a bridge between the source of a media stream and several clients

who want to reproduce that stream. Indeed, the last component of the transmission

chain, in other words the software that reproduces the stream, is not aware of the

dissemination strategy adopted by peers.

54

Chapter 4

Population Variation

In this section we will show how our system handles population variation, that is

departures and arrivals. As we all know, in any system for video streaming, no

matter to which taxonomy it belongs, population tends toward fast variation and

high dynamicity. This means that any system has to efficiently manage departures

and arrivals, even if they are grouped. Grouped means that there are several arrivals

and departures simultaneously. This issue is highly amplified in a structured P2P

system, where two of the most important requirement are stability and consistency.

4.1 Departures

In this section we deeply study the behavior of the system in case of a departure.

In this section we assume that departures are strictly spontaneous, instead in the

next section we will study how forced departures due to the presence of a non-

collaborative peer are managed.

Every departure starts from a peer that decides to leave the system. As we

mentioned in previous sections, before leaving the system a peer has to choose a

replacement from his repair list. The replacement must be one of peers in the last

level, this allows us to minimize changes required in the structure and the amount

of signaling blocks to be exchanged.

55

Before showing in detail our departure strategy, it is worth pointing out that it

is used only for non-last levels. Indeed, departing peers from last level do not need

any replacement, they just have to safely unjoin their descendant list.

We now explain the departure procedure by showing an algorithm for both de-

parting peer and replacement peer.

Departing peer

1 : I f r e p a i r l i s t i s empty then

Ask s e r v e r f o r a r e pa i r l i s t by sending a 88 block

Wait f o r an answer from the s e r v e r and populate your

r e pa i r l i s t

2 : Pick a replacement from the r e pa i r l i s t and send to him a

8 block

3 : Wait f o r an answer from the po t e n t i a l replacement

4 : I f answer i s p o s i t i v e then

unjo in descendant l i s t

El se

I f r e p a i r l i s t i s s t i l l non�empty then

Go to step 2

Else

Go to step 1

5 : do not l eave system as long as the re are some pee r s that

are not up�to�date

Replacement peer

I f peer i s in l a s t l e v e l and did not accept yet any

replacement r eque s t then

send a 18 block (p o s i t i v e ack)

unjo in descendant l i s t

send a 4 block to s e r v e r in order to d e a l l o c a t e

56

Figure 4.1: Spontaneous Departure: Phase 1

prev ious ID

send a 8 block to s e r v e r in order to update

coo rd ina t e s

r e s e t and i n i t i a l i z e a l l data s t r u c t u r e s

send a block type 2 to a l l new ne ighbors

j o i n new descendant l i s t

El se

send a 28 block (negat ive ack)

As we can see our strategy to handle departure requires just a few changes in

the hypercube structure. We recall that the only levels affected by a departure are

the last one and the one in which departing peer is, so there is no domino-effect.

This characteristic of our strategy allows to keep the number of blocks to exchange

between peers as low as possible, resulting in good performance. Indeed, in a video

streaming service, an user expects the system to be as stable as possible, regardless

of what happens in background during the playback phase.

Another point that is worth highlighting is that a departed peer does not leave

57

Figure 4.2: Spontaneous Departure: Phase 2

immediately the system but keeps active for a while, in order to check if every

neighbor is aware of the arrival of the replacement. Indeed, if departed peer still

receives some blocks after leaving the system, he sends to sender a 9 block containing

coordinates of replacement. This way we can safely handle massive and grouped

departures and keep the structure stable and consistent. We also avoid to lose

blocks during replacement procedures since peers that are not up-to-date yet could

still retransmit blocks to departed peer, in that case departed peer takes care of

retransmitting received blocks.

4.2 Arrivals

Even arrivals are managed in a way that is intended to be efficient and minimize the

number of changes in the hypercube structure. We recall that a new peer is always

assigned an identifier belonging to last level.

The algorithm executed by a peer during the arrival phase can be summarized

as follows:

58

Figure 4.3: Arrival

1 : Send a block type 1 to s e r v e r and wait f o r an answer

2 : I f we r e c e i v e an answer then :

i n i t i a l i z e data s t r u c tu r e accord ing to dimension and

as s i gned id

send a block type 2 to every neighbor conta ined in

c l l i s t o f answer block (b lock type 1)

j o i n descendant l i s t

send a p o s i t i v e ack to s e r v e r (b lock type 11)

Else (timeout has exp i red)

s l e e p f o r a whi l e and resend a j o i n r eque s t

At this point we have information enough to notice that the way we handle

arrivals and departures is intended to favour peers that are connected to the system

from longer. Indeed, it is very likely that a peer in last level will be eventually

chosen as replacement for a peer in a upper level, resulting in lower delays and

better performance. Moreover, users that stay connected to the system for a short

time, for instance those users who switch from a channel to another very often, do

59

not affect quality of service achieved by users connected from longer. Generally,

peers in upper levels are not aware of changes in last level. From some point of

view, last level can be seen as a temporary container for just joined peers, who can

be promoted to upper levels if they keep connected to the system for long enough.

60

Chapter 5

Failure Detection

As we mentioned in previous sections, in every peer-to-peer system there is the need

to deal with sudden failures of peers. Usually a peer is considered as failed in two

cases:

• he has suddenly crashed;

• he is affected by a network issue so he is completely isolated and cannot com-

municate with other peers.

In our case, we extended the definition of failure in order to include the case in which

a peer is still active but no longer able to properly cooperate. In simpler words,

peer’s upload capacity is above the minimum threshold. This can happen because

of several (and sometime unpredictable) reasons such as a high computational of the

machine on which the client process is running, some interferences along the wireless

channel, etc.

We also did some experiments in order to know exactly which is the minimum

threshold for a video stream. We assume that the quality of service achieved is

not sufficient anymore if during the playback, noises become very frequent. During

experiments we ran two VLC processes on two different machines located in the

same LAN, the first one was the source and the second one was the destination. We

thus created a video stream one the first machine by using built-in features of VLC.

61

Instead, the VLC process running on the second machine was listening to a given

port in order to reproduce the video stream. The transmission rate was varying

between 300 and 400 kb per second and the encapsulation format was MPEGTS.

We used the linux tool netem in order to inject artificial losses and delays.

The measurements obtained through these experiments can be summarized as

follows:

DELAY

TYPE

DELAY

RANGE

LOSS

TYPE

LOSSES

PER-

CENT-

AGE

QOS

Random 20-150 Ms No Loss OK

Random 20-150 Ms Random 1% OK (Some Little Noises

Affecting Mainly Audio)

Random 20-150 Ms Random 3% OK (Some Little Noises

Affecting Mainly Audio)

Random 20-150 Ms Random 5% OK (Some Little Noises

Affecting Mainly Audio)

Random 20-150 Ms Random 10% OK (More Noises, Not

Suitable To Watch A

Movie)

Random 20-150 Ms Random 15% NO (Too Many Noises)

Random 20-150 Ms Burst 1% OK (Some Little Noises)

Random 20-150 Ms Burst 3% OK (Some Little Noises)

Random 20-150 Ms Burst 5% OK (Some Little Noises)

Random 20-150 Ms Burst 10% OK (More Noises, Still

Suitable To Watch A

Movie)

62

Random 20-150 Ms Burst 15% OK (More Noises, Not

Suitable To Watch A

Movie)

Random 20-150 Ms Burst 20% NO (Too Many Noises)

Random 150-400 Ms Burst No Loss OK

Random 150-400 Ms Burst 1% OK (Some Little Noises)

Random 150-400 Ms Burst 3% OK (Some Little Noises)

Random 150-400 Ms Burst 5% OK (Some Little Noises)

Random 150-400 Ms Burst 10% OK (More Noises, Not

Suitable To Watch A

Movie)

Random 150-400 Ms Burst 20% NO (Too Many Noises)

Rows highlighted in red correspond to those experiments in which the quality of

service was not good enough.

As we can deduce from the table above, generally, a percentage of losses equal to

10% can be considered as the maximum threshold for losses. During our experiments

we noticed that in some cases highly variable delays affect QoS even more than

losses. In addition, we noticed also that random can have worse effect compared

to consecutive losses. This can be explained by observing that packets generated

by streaming protocols differ by each other, depending on the importance of the

packet. Indeed, there are some kinds of packets that can be considered less crucial

than the others. Clearly, consecutive losses will have a higher probability to involve

also crucial packets.

63

5.1 Detection Strategy

We are now ready to deeply study our detection strategy. Our system model is

partially inspired from the one introduced in [11]. In particular, our approach can

be classified as follows (according to the taxonomy introduced in [11]):

• Sharing information: our approach is based on sharing information. In

other words, the detection process is supported by information continuously

shared between peers during transmission. This approach is supposed to be

faster in terms of detection time, since the first peer that detects the failure

can announce this to everyone else. Concerning announcements, our approach

is slightly different than usual.

• Negative vs Positive information: our approach can be seen as a mix of

these two approaches. Indeed, in our system we use a special data structure

called report which can contain, depending on concerning peer, either positive

or negative information.

Our approach does not adopt any keep-alive mechanism. The main reason why we

made this decision is that we do not need to receive any update from our neighbors

since we are supposed to constantly receive blocks from them. If we do not receive

blocks enough or at all from a given neighbor, then that neighbor is marked as

suspected.

In our approach, each peer is associated to a leader, who is also one of his

neighbors. A leader is a special peer who is in charge of collecting reports concerning

a given neighbor and deciding if he must be forced to leave the system or not. Even in

this case, the leader assigned to each peer is computed by just looking at identifiers.

Thus, we do not need any additional information that depends on the current state

of the system.

For each peer, all his neighbors keep track of data blocks received and non-

received in order to compute a report. The report is a special data structure which

64

contains 4 fields:

• id of frompeer (neighbor of concerning peer);

• id of concerningpeer (neighbor of leader);

• throughput;

• # losses.

Throughput and losses can both assume vales between 0 and 10. In particular,

threshold shows how many blocks have been received during a given time slot,

instead losses shows how many packets are missing. It is worth specifying that a

block is considered lost only if a peer has received both the previous one and the

next one.

When a peer receives a data block, he checks if some reports have been piggy-

backed. If so, he stores the report and then decides if the concerning peer of that

report must leave the system or not. As we mentioned above, a given peer is forced

to unjoin the system if and only if his cooperation level is lower than the minimum

threshold.

A leader receives reports concerning a given peer, from one of his neighbors,

who can thus be seen as a router. The router peer is also chosen according to his

identifier. In fact, if a peer F wants to send reports concerning a given neighbor C,

he first computes the id of his leader L, then he retrieves the id of the only peer

who can function as router R, that is the second neighbor in common between peers

F and L. At each time slot, peer R checks if there are some reports to send to the

destination peer. If so, he attaches to the data block the report with the highest

priority, in order to deliver it to the leader. In 5.1 we show relations between peers

F (frompeer), C (concerningpeer), R (router) and L (leader) and how a report is

actually delivered to a leader.

We recall that neighbors’ identifiers differ by only one bit and accordingly, the

identifier of a neighbor of a neighbor differs by two bits. In this case, if peer F wants

65

Figure 5.1: How reports are delivered to a leader

66

to deliver a report concerning peer C to peer L, he has to use peer R as router.

Clearly, he cannot use peer C as router since peer C could fail and not to deliver

reports anymore.

It is worth pointing out that in our system reports are not delivered by sending

a special block type but they are piggybacked with data blocks, this avoids to add

additional overhead. In addition, this choice allows to exploit the neighborhood

relation between peers. In other words, if two peers are neighbors, they periodically

exchange data blocks which can be used also to send further information about the

current status of the transmission.

As we mentioned above, when a leader receives a report, he stores it into a special

data structure, which is called average_reports. Throughput and losses values of an

average report are computed taking into account not only last received report but

also previous reports. In order to do so, we defined the following formulas:

THR = ↵ · (NEWTHR� THR) + THR

LOS = ↵ · (NEWLOS � LOS) + LOS

where ↵ is a coefficient used for assigning a weight to information just received

and NEWTHR and NEWLOS are respectively throughput and losses values just

received.

At this point, we can finally define the rule that each leader implements in order

to decide if a peer has to be expelled from the system. Once a leader receives a new

report, he stores it and then he checks if throughput provided by concerning peer

is lower than the minimum threshold for at least two block numbers. It is worth

noticing that we consider block numbers instead of single peers. The goal of this

choice is to make our failure detection system resilient to false negatives. Indeed, it

can happen that a peer A retransmits data blocks corresponding to a given block

67

number N to multiple peers, for instance peers B and C. If the source S of block

number N has failed, peer A will never retransmit block number N, thus both B

and C will never receive it. If we just considered peers instead of block numbers,

leader of peer A would decide to expel peer A from the system since he will certainly

receive negative reports by both B and C.

5.1.1 Implementation Details

We now show some technical details on the implementation of piggyback mechanism

and functions specifically intended for failure detection.

5.1.1.1 Piggyback

A special function called piggyback_Reports is called every time we retransmit a

data block. This function can be divided into two parts: the first decides how to fill

the position available for reports, the second one fills the second position. The first

position has to contain a report for which we function as router, so the destination

is supposed to be a leader for that report. On the other hand, the second position

has to contain a report for which we function as frompeer, so the destination is

supposed to be a router for that report. It can happen that for a given leader, we

have multiple reports that should be attached, in this case we compute the priority

of each report and we thus attach the one with the highest priority.

The implementation of the function to compute report priority is the following:

1 s t a t i c double_t get_repor t_pr io r i ty (Report_History ⇤ r h i s t o r y)

2 {

3 s t r u c t t imeva l now , sub ;

4

5 gett imeofday(&now , NULL) ;

6 t imersub(&now , &(rh i s t o ry�>last_time_sent) , &sub) ;

7 double_t ms = sub . tv_sec ⇤1000 + (sub . tv_usec /1000) ;

68

8

9 re turn (ms/(rh i s t o ry�>nsent+1)) ⇤ (rh i s t o ry�>l o s s e s [

get_last_report_index (r h i s t o r y)] + 1) ;

10 }

where rhistory correponds to a an element in route_reports array.

Priority computation of those reports sent as frompeer is slightly different since

information about losses and throughput are stored in another data structure and

can be computed locally. The function intended to compute priority of local reports

is the following:

1 double_t get_loca l_repor t_pr io r i ty (Report_host ⇤hreport , s t r u c t

t imeva l ⇤ timestamps , uint32_t l o s s e s)

2 {

3 double_t p r i o r i t y ;

4 s t r u c t t imeva l now , sub ;

5

6 gett imeofday(&now , NULL) ;

7 t imersub(&now , &(timestamps [hreport�>concern ingpeer]) , &sub) ;

8 double_t ms = sub . tv_sec ⇤1000 + (sub . tv_usec /1000) ;

9 p r i o r i t y = ms ⇤ (l o s s e s + 1) ;

10

11 re turn p r i o r i t y ;

12 }

where timestamps is an array where we store the exact time at which a report

has been sent.

5.1.1.2 Functions for Failure Detection Implementation

We now show the implementation of three very important functions for failure our

failure detection system.

69

Leader

As we can easily deduce, this function is intended to compute the identifier of

the leader associated to a given peer. As we can see, leader’s id is computed by just

changing the kth of peer_id, where k is the result of the modulo operation between

peer_id and dim. Once again, no additional information are required to the role of

each peer.

s t a t i c uint32_t l e ade r (uint32_t peer_id , uint32_t block_number ,

uint32_t dim)

{

// we compute the modulo between peer_id and dim and we

change the value o f that b i t

i n t modulo = peer_id % dim ;

uint32_t l e ade r = peer_id ^ (1 << modulo) ;

r e turn l e ade r ;

}

Leave

Leave function is executed by a leader in order to decide if the with identifier

equal to peer_id must be expelled or not.

s t a t i c i n t l e ave (uint32_t leader_id , uint32_t peer_id ,

Average_Report ⇤⇤ r epor t s , i n t dim)

{

// STRATEGY:

// f o r each neighbor o f peer_id (except ou r s e l v e s)

// we check i f we have r e c e i v ed r epo r t s such that throughput

i s l e s s than 90% (5)

// f o r at l e a s t two d i f f e r e n t block numbers

i n t miss ing_blocks = 0 ;

i n t i i , pos ;

uint32_t s h i f t e d = 1 ;

70

uint32_t xored_id ;

i n t f i r s t_ index , second_index ;

i n t block_numbers [MAX_DIM] ;

memset (block_numbers , 0 , s i z e o f (i n t) ⇤MAX_DIM) ;

// we compute the index o f peer_id

// in order to a c c e s s the data s t r u c tu r e

xored_id = leader_id ^ peer_id ;

nb_bits (xored_id , dim , &f i r s t_ index , &pos) ;

f o r (i i = 0 ; i i < dim ; i i ++)

{

i n t blk_nmb = �1;

// neighbor ’ s id

uint32_t neighbor_id = peer_id ^ s h i f t e d ;

// i f the ne ighbor i s not ou r s e l v e s

i f (neighbor_id != leader_id)

{

second_index = i i ;

Average_Report ⇤ average_report = &(r epo r t s [

f i r s t_ index] [second_index]) ;

i f (average_report�>nrepor t s >= MIN_REPORTS &&

((long i n t) average_report�>throughput) <

THROUGHPUT_THRESHOLD)

{

blk_nmb = neighbors_block_numbers (neighbor_id ,

peer_id , dim) ;

block_numbers [blk_nmb]++;

}

71

}

// next ne ighbor

s h i f t e d <<= 1 ;

}

// now we check i f the r e are at l e a s t two block numbers

// f o r which the throughput i s lower than the th r e sho ld

f o r (i i = 0 ; i i < dim ; i i ++)

{

i f (block_numbers [i i] > 0) miss ing_blocks++;

}

// to f o r c e a peer to l eave the system , we need to meet one

o f the f o l l ow i n g cond i t i on s :

// 1) at l e a s t two pee r s do not ach i eve a good QoS from

peer_id

// 2) the suspected peer has only one b i t equal to 1 and

pee r s that r e c e i v e b locks from peer_id

// do not ach i eve a good QoS

i f (miss ing_blocks >= FAILURE_THRESHOLD | | (miss ing_blocks >

0 && number_of_ones (peer_id , dim) < FAILURE_THRESHOLD))

re turn 1 ;

e l s e

re turn 0 ;

}

Route

This function is intended to compute the identifier of the router peer that our_id

is going to use in order to deliver a report to peer_id. As we can see, there is

an additional parameter called peer_to_skip which is used in order to avoid that

72

concerning peer is used as router to deliver reports to his own leader.

s t a t i c uint32_t route (uint32_t our_id , uint32_t peer_id , uint32_t

peer_to_skip , uint32_t dim)

{

// i f we want to reach ou r s e l v e s

i f (peer_id == our_id) re turn peer_id ;

// we want to f i nd a peer such that i s a ne ighbor o f peer_id

// in order to do so , we should know the po s i t i o n o f the b i t s

that are d i f f e r e n t

i n t i i , lpos , rpos ;

uint32_t xored_id = our_id ^ peer_id ;

nb_bits (xored_id , dim , &lpos , &rpos) ;

uint32_t bridge_peer ;

uint32_t s h i f t e d ;

s h i f t e d = 1 << lpos ;

bridge_peer = our_id ^ s h i f t e d ;

i f (br idge_peer == peer_to_skip) {

s h i f t e d = 1 << rpos ;

bridge_peer = our_id ^ s h i f t e d ;

}

re turn bridge_peer ;

}

73

5.2 Recovery Strategy

After deciding if a peer is failed or not, the next task to accomplish is to find a

replacement candidate and start the procedure to safely replace him in the structure.

At design time, we thought about several possible solutions, at the end we decided

to keep the procedure for a forced departure as simple as possible and as similar

possible to the one for spontaneous departures.

In order to achieve so, the leader sends a special request to the server (block type

102) which means that leader is asking server to create a block of type 81, which is a

slight variation of block type 8. Indeed, the only difference between a 8 block and a

81 block is the first element of the cl list attached to the block. In block of type 81,

server adds coordinates of future successor in the descendant list. The reason why

server needs to add this information is that if replacement peer will just join the

new descendant list as usual, his future predecessor will put him exactly between

himself and the failed peer, instead of isolating the failed peer. On the other side,

future predecessor has not a clue what coordinates of successor of failed peer are, so

he just cannot give this information to replacement peer.

After receiving a block of type 102, server computes identifiers of neighbors of

failed peer and fill the cl list. We recall that server can easily retrieve these infor-

mation since he constantly is up-to-date on the status of the hypercube structure,

especially on their coordinates. The most important advantage of our approach is

that even if the block type we use has a different type, the behavior of replace-

ment peer does not change compared to block type 8. Indeed, the behavior slightly

changes only during the joining phase, in which instead of setting successor’s co-

ordinates to values attached to the cl list of block 6 or 16, replacement peer uses

coordinates attached to the block received from the server.

In Figure 5.2 we can see what actually happens when a leader decides to expel a

peer from the system. In Figure 5.3 we can see what replacement peer does in order

to safely replace failed peer.

74

Figure 5.2: Forced departure: Phase 1

Figure 5.3: Forced departure: Phase 2

75

Chapter 6

Simulations and Experiments

6.1 Experiments on PlanetLab

Some of our experiments have been performed on PlanetLab. PlanetLab is a global

research network that supports the development of new network services. PlanetLab

can be used by researchers in order to develop new technologies for several network

services including peer-to-peer systems. PlanetLab currently consists of 1128 nodes

at 544 sites. Most of the machines composing PlanetLab network are hosted by

research institutions, although some are located in co-location and routing centers

(e.g., on Internet2’s Abilene backbone). All of these machines are connected to the

Internet.

The reasons why we chose PlanetLab for testing are the following:

• we can have access to a large set of geographically distributed machines.

• We can run our experiments in a realistic network substrate that experiences

congestion, failures, and diverse link behaviors. As we will show in Section

6.3, in PlanetLab it is very common for a peer to experience losses and delays

as well as failures.

• As PlanetLab’s machines host several processes (belonging to other users) at

76

Figure 6.1: CDF of block delays

the same time, peers can experience a quite realistic and unpredictable client

workload.

Thanks to all these features, PlanetLab has proved to be the best solution to al-

low to make realistic measurements, especially in terms of network and performance

constraints. The environment provided by PlanetLab is pretty stringent and results

obtained over it would be realistic enough to validate our P2P framework.

The first results are presented in 6.1. There are 480 peers connected to a hy-

percube structure of dimension 10. The machines hosting peer processes were dis-

tributed over North and South America, Asia, Australia, and Europe. Despite of

the inherent randomness, we noticed that 97% of reception delays were under one

second!

Second experiment was performed in order to test grouped arrivals while the

streaming was being transmitted. 6.2 presents the peer population as function of

77

Figure 6.2: CDF of block delays before, during, and after grouped arrivals

time. The population is initially composed of 70 peers which means we created 70

peers, attributed then position in hypercube and then started source that generates

stream. At time 80 sec a group of 70 more peers arrives. The population stabilizes

at time 100 sec and then stays stable for the rest of the test. We present in 6.2

the distribution of delays observed before the grouped arrivals (i.e. before time 80

sec), during the arrival (i.e. time 80 sec to 100 sec), and after the arrivals. During

the entire time streaming was on. We note that even during the arrival period, the

reorganization results in 90% of the delays being below 1 sec. After the grouped

arrivals the delays return to their previous value with a very large majority of block

delays below one second.

The last experiment concerned grouped departures. A total of 130 peers were

created and positioned in hypercube after streaming was started . Then 16 peers

were asked to leave the system. In 6.3, we can see the delays before group departure

takes off and while it is taking place. Notice that the performance are not impacted

78

Figure 6.3: CDF of block delays before and during grouped departures

79

by departures.

6.2 Experiments for Failure Detection

In this section we show results concerning our solution for failure detection. In

particular, we did three experiments in order to simulate the following scenarios:

1. in the first experiment we just kill one of the processes in order to simulate a

sudden crash;

2. in the second experiment, we used netem in order to simulate an unstable who

was experiencing a loss rate equal to 20% and highly variable delays between

1500ms and 300ms;

3. in the last experiment, we used again netem in order to simulate an unstable

peer who was experiencing a loss rate equal to about 40% .

Experiment Loss rate Delays Lost Blocks Sent Blocks

1 100% < 10ms 4

2 20% 300-1500ms 3 20

3 40% < 10ms 4 15

As we can see from the table, in all the experiments the system was able to

correctly detect the failure fast enough, losing not more than 4 data blocks. This

result can be considered quite good since 4 losses do not generate many noises in

the playback. Moreover, in the second and the third experiment, the total number

of data blocks received in the interval between the first and the last loss, is at most

20. The mean number of data blocks exchanged in one second of transmission for a

stream of medium quality is about 30, this means that the system is able to correctly

80

detect the failure in less than one second.

81

Chapter 7

Summary of Work Done

The duration of the internship was five months and a half. The first part of the

internship was focused on studying the state of the art in the field of P2P live

streaming, performance criteria, main issued and so on. During the first part of

my internship I studied also the work done by my predecessor, Anshuman Kalla.

This first part of the internship took about one month. The next three months were

focused on several tasks including debugging and experiments. However, the main

activities were the following:

• implementing the new approach to manage descendant lists, departures and

arrivals;

• implementing the new system architecture in order to make the system able to

carry a RTP/UDP stream without manipulating or being aware of the content.

The last period was thus focused on studying the failure detection problem and

designing, and then implementing, our solution for detection and replacement of

non-collaborative peers.

Finally, I spent the last week of the internship doing several experiments on

PlanetLab (see [1]).

In Figure 7.1 there is an approximate measure of the time of the internship

focused on debugging and experiments, development and research.

82

Figure 7.1: A summary of my internship

83

Chapter 8

Conclusions

The current status of this project is much better than it was before my internship.

We indeed managed to fix plenty of bugs and dramatically improve stability and

reliability of both peers and the entire system. We also managed to radically change

the way peers manage descendant lists resulting in a system constantly consistent

and more stable, where stable means that consistency of system is not even affected

by massive departures and arrivals. Even the implementation of the mechanism to

carry a RTP/UDP stream was an important part of my internship. However, the

most important task of my internship was the one focused on failure detection and

recovery. Indeed, that part was really interesting and challenging, especially because

of the high number of issues to face and solve.

In the end, we can be very proud of progresses we did during my internship since

the system has considerably improved and we managed to achieve even more than

what we planned at the beginning of our work.

84

Chapter 9

Future Work

Before making the system actually suitable for real users, there still are a couple of

improvements that need to be achieved:

• our failure detection solution efficiently deals with non-collaborative peers in

intermediate levels, but it is does not work perfectly in case of non-collaborative

peers belonging to last level;

• at the present time, peers inside the hypercube who do not want to cooperate

(free riders) can be expelled from the system. Unfortunately, those peers can

still try to rejoin the system and could result in a consistent free riding attack;

• with the change in number of peers in our P2P system, it might be necessary

to decrease or increase the dimension of the hypercube structure. This means

that if the number of peers grows beyond the current handling capacity of

a hypercube then it is necessary to increase somehow the dimension of the

structure. Alternatively, if the number of peers reduces then one might take

decision to merge two existing hypercubes into single hypercube. This issue

requires careful thinking and development;

• peers with better resources (especially in terms of upload capacity) should be

placed at top levels of the hypercube since contribution offered by peers in top

85

levels is more critical. In order to achieve so, a contribution-aware policy could

be used. By using such policies the system can know which peers participate

actively and thus can move them to top levels of hypercube. In other words,

peers with better resources and high age could be moved to top levels;

• at the present time, the system does not provide any authentication system.

This means that the access to the structure, as well as the exchange of blocks

is totally insecure, resulting in a high vulnerability to external attacks. Also

block signing and encryption mechanism could be used in order to avoid video

corruption attacks. This must be done keeping in mind time constraints of

video streaming;

• finally, in order to make the system suitable for real users, a graphical user

interface should be developed.

86

List of Figures

1.1 An example of tree-based P2P system 13

1.2 An example of multi-tree P2P system 13

1.3 An example of mesh-based P2P system 14

3.1 Hypercube Structure . 22

3.2 An example of application of dissemination rules 26

3.3 An example of descendant list in last level 27

3.4 Entities of the system . 30

3.5 File organization . 32

3.6 An example of descendant list . 35

3.7 System Architecture . 54

4.1 Spontaneous Departure: Phase 1 . 57

4.2 Spontaneous Departure: Phase 2 . 58

4.3 Arrival . 59

5.1 How reports are delivered to a leader 66

5.2 Forced departure: Phase 1 . 75

5.3 Forced departure: Phase 2 . 75

6.1 CDF of block delays . 77

6.2 CDF of block delays before, during, and after grouped arrivals 78

6.3 CDF of block delays before and during grouped departures 79

87

7.1 A summary of my internship . 83

88

Bibliography

[1] Planetlab website.

[2] S. Khuller A. L. Chow, L. Golubchik and Y. Yao. On the tradeoff between play-

back delay and buffer space in streaming. In Parallel and Distributed Processing

Symposium, volume 0, pages 1–12, 2009.

[3] C. Feng and B. Li. Understanding the performance gap between pull-based

mesh streaming protocols and fundamental limits. INFOCOM 2009, IEEE,

pages 891 –899, 2009.

[4] N. Hegde, F. Mathieu, and D. Perino. Size does matter (in p2p live streaming).

In CoRR, volume abs/0909.1713, 2009.

[5] X. Hei, Y. Liu, and K. Ross. Inferring network-wide quality in p2p live stream-

ing systems. Selected Areas in Communications, IEEE Journal, 25(9):1640

–1654, December 2007.

[6] S.L. Johnsson. Optimum broadcasting and personalized communication in hy-

percubes. Computers, IEEE Transactions, 38(9):1249–1268, Sep 1989.

[7] H. Katseff. Incomplete hypercubes. In IEEE Transactions, editor, Computers,

volume 37, pages 604–608, 1988.

[8] Y. Liu. On the minimum delay peer-to-peer video streaming: how realtime can

it be? In MULTIMEDIA 07, Proceedings of the 15th international conference

on Multimedia, pages 127–136. ACM, 2007.

89

[9] Jenn-Yang Tien, Ching-Tien Ho, and Wei-Pang Yang. Broadcasting on incom-

plete hypercubes. IEEE Transactions on Computers, 42(0018-9340):1393–1398,

1993.

[10] N.-F. Tzeng and H. Kumar. Traffic analysis and simulation performance of

incomplete hypercubes. In IEEE Transactions, editor, Parallel and Distributed

Systems, volume 7, pages 740–754, jul 1996.

[11] Shelley Q. Zhuang, Dennis Geels, Ion Stoica, and Randy H. Katz. On failure

detection algorithms in overlay networks. In IN IEEE INFOCOM, 2003.

90

	Introduction
	Benefits of P2P Video Streaming
	Requirements for P2P Streaming
	P2P Streaming Taxonomy
	Performance Criteria for P2P Live Streaming
	Challenges and Issues

	Objectives
	System Architecture
	Hypercube Data Structure
	Dissemination Rule
	Adaptation of Hypercube
	Framework for P2P Streaming
	Software Entities
	File Organization
	Data Structures
	Data Structures for Failure Detection
	UDP Packet Format
	Block Types

	UDP Encapsulation/Decapsulation and Proxy-like Behavior

	Population Variation
	Departures
	Arrivals

	Failure Detection
	Detection Strategy
	Implementation Details
	Piggyback
	Functions for Failure Detection Implementation

	Recovery Strategy

	Simulations and Experiments
	Experiments on PlanetLab
	Experiments for Failure Detection

	Summary of Work Done
	Conclusions
	Future Work

