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dell'uomo e del suo destino 

devono sempre costituire 

l'interesse principale di tutti 

gli sforzi tecnici. Non 

dimenticatelo mai in mezzo a 

tutti i vostri diagrammi e alle 

vostre equazioni." 

 

A. Einstein 
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Abstract 

Over the 2000-2010 decade, insulated concrete form (ICF) construction, has been 

growing in popularity in most all over Northern countries Europe (mainly in 

Germany, Austria, Belgium, U.S.A. and Canada). ICF is an innovative macro-

category comprehensive of several type of walling system. Starting in residential 

house construction, this building method has now also started to expand into high 

density urban areas in the form of multi-story commercial and residential structures. 

Typically, Insulated concrete form walls (ICF) are characterized by the presence of 

different layers: one for structural purposes typically made of plain or reinforced 

concrete , combined with one or more insulating prefabricated layers for thermal 

and sound barriers purposes.  

One of the ICF emerging structural systems that addresses sustainability from the 

structural and construction point of view have been the insulated concrete form 

grid walls, the object of this thesis,  which are built using prefabricated stay-in-

place formwork that provide improved thermal insulation over conventional 

methods, thereby reducing the energy requirements throughout the life of the 

building.  

 

 
Figure a) – The shuttering kit formwork 

 

The constructive system is composed of formwork blocks (or, “shuttering”) in 

mineralized wood (a mix of compressed crushed mineralized wood with water and 

cement slurry) that are properly assembled and filled with polystyrene for sound-
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insulation purpose and of reinforced concrete as can be seen in Figure a). After 

curing of the concrete, the structure that is obtained (referred to in the following as 

the “structural concrete formation”) is a concrete bearing wall with horizontal and 

vertical steel reinforcement mesh. The structural components of the grid walls so 

obtained consist of horizontal and vertical reinforced concrete cores, as can be seen 

in the following in Figure b). 

 

 

Figure b)– Grid type shear wall system 

  

As before mentioned, ICF grid walls, are a little subset of ICF, that provides 

enhancements of ICF by using up to 40% less concrete respect to typical r.c. walls, 

and by near elimination of temporary formwork through the use modular erection 

methods based on the use of wood-concrete hollow blocks . Moreover the 

prefabricated blocks can be made from recycled materials, further enhancing the 

green building component of their use.  

Building structures which make use of structural systems obtained filling with wood-

concrete hollow bricks from the structural point of view can be seen as of grid type 

shear wall systems that are “historically” rearranged as “Large Lightly 

Reinforced Concrete Walls” (LLRCW, as defined in both Eurocode 2 and 

Eurocode 8) to best fit with Building Codes and to recall a more “design oriented”, 

consolidated and simplified theory.   

It 'important to underline that even if walling systems provide high performances 

from structural point of view this type of wall does not come directly from a structural 
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requirement, but to improve the performance of buildings in terms of thermal 

insulation and to reduce the construction time. 

Currently the use of Large Lightly Reinforced concrete walls(“pareti estese 

debolmente armate” in NTC 2008) placed on the perimeter of the building is 

spreading in Italy, introduced for small and medium size buildings with few floors, in 

a European Normative context that from 2021 will oblige all new building to be 

energetically-certified and to be characterized from high standards of energetic 

saving because, as a matter of fact, the innovative feature of these type of walling 

system is to provide high level of thermal insulation with a consequent energetic 

saving. An American brand producer ICF, provided the following Energy costs: 

 

 

Figure c) Energy costs  

 

 In Europe the issue has been introduced by the Directive 2010/31/CE: among 

the EU countries all the Public buildings should be made with “almost zero energy 

criteria” from 2019, while from 2021 the requirement will cover all buildings, without 

making any distinctions. The “almost zero energy buildings” definition, covers all 

buildings whose energy requirement – very low or almost null – is predominantly 

covered by renewable sources.   

 For this reason the demand for green buildings construction is growing from 

commercial multi-story buildings to condominiums and single family houses, also 

because the most advanced Governments incentive for LEED certified buildings. 

The primary advantages are the occupancy-energy- savings with requirements of 

40% less energy to heat/cool, and a significantly quieter inside environment than 

frame construction. To provide one example of this application connected with 
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LEED certifications the new center of Oregon University in 2007 can be mentioned 

[2]. 

Another important aspect must be introduced. The catastrophic seismic event of 

l’Aquila 2009 unfortunately emphasized  how quite recent buildings  

suffered severe structural damages (and some cases even structural collapses), 

despite of the presence of reinforced concrete frames; moreover the expulsions of  

in-fill wall due to the lack of connection between the secondary and primary 

structure, caused  the inaccessibility of the buildings and in some cases even 

deaths. 

 

Figure d – Typical in-fill wall 

 

For what concerns Italy the need of implementation of official formulation brought 

in July 2011 to development of the “Linee guida per sistemi costruttivi a pannelli 

portanti basati sull’impiego di blocchi cassero e calcestruzzo debolmente armato” 

promoted by Consiglio Superiore dei Lavori Pubblici.  

In this context a producing company di wood-concrete shuttering blocks 

commissioned to C.I.R.I (Centro Interdipartimentale di Ricerca Industriale Edilizia e 

Costruzioni), an experimental campaign to test their Structural reliability and the 

effective performances of their grid type shear walls systems. 
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Introduction 

In the present work the structural behavior of shear type grid wall system was 

investigated, in a first instance through experimental tests aimed at carrying-out the 

characteristics of the equivalent continuous wall, in a second phase thanks to non-

linear simulations able to correctly simulate the experimental tests for an indeep 

understanding of the collapse phase, of the stress-strain distribution inside the grid-

wall and of the coactive state between steel and concrete. 

For the numerical simulation the program ABAQUS was used. 

The blocks and the related grid-walls considered were of two type: block 25/18 

related to 14 cm width grid-walls, and blocks 30/22 related to 18 cm width grid-walls. 

 

The structure of this thesis can be divided into two main parts: Chapters 1, 2, 3 

concern the description and the elaboration of the experimental results. Chapters 4, 

5, 6, 7 are completely focused on the numerical modeling theory and 

implementation in ABAQUS.  

In the following a list of the subjects treated in the Chapters: 

 

Chapter 1: The Grid-wall Systems were introduced defining their main 

characteristics, their construction phases and inserting them in the Italian and 

worldwide normative context with particular attention to American scenario. 

Chapter 2: The formwork blocks and the set of experimental results aimed at the 

characterization of the two main materials, concrete and steel-bars, used for the 1x1 

m Grid Walls object of the Experimental campaign were described. Moreover a brief 

report of the  compression tests (centered and diagonal), as suggested by CSLP 

Italian Guidelines, was provided. 

Chapter 3: The Load-Vertical ΔL graphs and the Shear-γ curves  were outlined and 

exploited to define  the correction-factors α and β to be applied on mechanical 

properties E and G that define the grid-wall system response. The equivalent 

continuous wall thicknesses  seg were defined. The goal was to model, in the design 

phase, the grid wall as a continuous elastic element. Two simple numerical proofs 

were conceived to have the confirmations on the reliability of these results. 

Chapter 4: The primary objective of this chapter was to provide the complete 

framework in the definition of the non-linear constitutive model used, with the goal to 
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describe the behavior of the concrete for a better matching between numerical 

model and experimental proof. The theoretical framework for concrete rely on Kent 

and Park [23] and  Cornellissen et al. [26] formulations. The damaged plasticity 

model (CDP) used considers Lee and Fenves[20] formulation. 

Chapter 5: The bond-slip interaction between steel bars and concrete was 

introduced so as reported in CEB-FIP2000. A numerical pull-out test was 

implemented in Abaqus for a better understanding of bond behavior simulation, with 

the aim to insert in the RC wall model,  the best modeling techniques available in 

Abaqus. 

Chapter 6: A finite element model which could correctly simulate the experimental 

test conducted on 1 m x 1 m grid-wall subjected to compression, for an in deep 

understanding of the collapse phase was developed. The experimental test chosen 

to be reproduced was the CC14_02 because it shown the most reliable data of the 

experimental campaign. All the steps to build the model are presented. 

Chapter 7: The numerical results obtained are analyzed in order to compare the 

output-data of the model with experimental observations and measurements 

obtained during the investigation performed at the Laboratory of CIRI-Building 

Department of the  University of Bologna. All the output of the numerical model are 

reported. 

 

Chapter 8: the results, the conclusions and the recommendations for future study 

are depicted. 
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Chapter 1  
 

The r.c. grid-wall system: 
national and international 

normative context and 
background 
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Object 

The object of this Chapter is to introduce the Grid-wall Systems, defining their main 

characteristics, the construction phases and inserting them in the worldwide 

normative context with particular attention to American scenario. 

 

1.1 The grid-wall system 

 

The grid-wall-system object of this thesis can be categorized in the family of 

Insulated Concrete Formwork building technique. 

The ICF construction systems consist of  formwork of  insulating material that 

produce both structural performance of the walls and the functional currency of the 

building. The market offers a variety of these systems that can be divided into three 

main categories: 

 

- Formwork-to lose -systems of insulating material  and partially prepared 

reinforcement, in which to cast concrete; 

 

-  Sandwich  systems in which the insulating material is inserted between two  

layers of reinforced concrete; this solution can be achieved with prefabricated 

panels or by applying filling with concrete the sides of an insulating panel  with 

prepared reinforcement; 

 

- Formwork blocks made of material with good thermal insulation properties 

incremented adding additional filling materials, in which the reinforcement is 

predisposed to make the concrete casting; the blocks are shaped in order to ensure 

horizontal and vertical continuity of the casting and of the steel. 

 

The above solutions do not present all the same problems and the same structural 

behavior, but certainly the only one that can be completely assimilated to the Large 

Lightly Reinforced Concrete Wall as will be better explained in the following, is one 

in which adopt the formwork of insulating material. 
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1.1.1. The construction technique 

The wall elements tested in the experimental campaign, were obtained using the 

specific construction techniques described in the following. The constructive system 

is composed of formwork blocks (or, “shuttering”) in mineralized wood (a mix of 

compressed crushed mineralized wood with water and cement slurry) which are 

currently produced in conformity with EU standard PrEN 15498:2006 (see Figure a). 

This material provide high levels of acoustic and thermal insulation. When the 

hollows of the blocks are filled with appropriate (a) steel reinforcement and (b) 

concrete, it is possible to obtain a reinforced concrete grid walls (also referred to as 

“concrete formation”) of various characteristics, depending upon the type of blocks, 

reinforcement and concrete used in the construction.  

Different brands proposes different but similar shuttering-kit-blocks. In U.S.A. for 

example there are three different families of this blocks said “flat”, ”waffle grid”, 

“screen grid” that are conceived more slim in the main parts(column and 

beams)respect to the European ones :  

 

Figure.1.1a – Most common shuttering kit formwork in U.S.A.- “Flat” and “Waffle” 

Grid Type 

 

Figure.1.1b – Most common shuttering kit formwork in U.S.A – Screen Grid Type 



 

Grid type wall system 

 

 

22 

 

These particular type of blocks, once well posed, reinforced with horizontal and 

vertical bars, and filled with concrete, bring to the formation of a particular type of 

wall: grid-type shear walls, of which are reported some pictures in Figure 1.2: 

 

 

                       Fig.1.2(a) USA Waffle-Grid     Fig.1.2(b)USA  Screen Grid scheme 

 

                              Fig.1.2(c)                                Fig.1.2(d)USA  Screen Grid 

Figure 1.2 – The Grid walls after the removal of insulating layers 

 

The typical construction sequence can be summarized as follows: 

- after the completion of each horizontal layer of blocks, the basic horizontal 

reinforcement is inserted in the system by placing a single or double horizontal bars 

of relatively small diameter (Φ8÷Φ10) at the bottom of half moon indent of the 

blocks. 
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- after all the blocks are assembled together (to create the complete formwork) the 

basic vertical reinforcement is inserted in the system by placing a single or double 

vertical bar of relatively small diameter (Φ 8÷Φ12) in each vertical hole (each block 

is characterized by two vertical holes as shown in Figure a). 

 

 

Figure 1.3 – Shear Type grid walls during construction phase 

 

- after the insertion of all reinforcing bars (in addition to the “basic” reinforcement, 

typically additional bars are inserted around the openings and at both panel ends) 

the formwork thus obtained is filled with concrete of appropriate characteristics 

(typically concrete with Rck >  25 N/mm2). 

 

 

Figure 1.4 – Concrete casting phase 

 

After curing, the structure obtained (referred to in the following as the “structural 

concrete formation”) is a concrete bearing wall with (horizontal and vertical) steel 
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reinforcement mesh  characterized by a regular pattern of small horizontal holes 

(see Figure 1.2 ). All bearing walls are joined together with appropriate re-bars in 

order to obtain a cellular network of structural walls capable of allowing a “box 

behavior” of the structural system (i.e. all horizontal actions can be taken by each 

wall through an “in plane” action). For this reason, the theoretical framework 

presented in the following focuses mainly on in plane bending and shear strength of 

a single concrete formation panel. 

In general, the constructive system is characterized by: (1) the insertion of a large 

amount of horizontal reinforcement to prevent shear failure, and (2) a rigid self 

imposed limitation upon the maximum vertical stress in the concrete, in order to 

prevent the brittle failure of the concrete in compression, even under bending. The 

“standard” vertical and horizontal re-bars lead to an area reinforcement ratio (w.r.t. 

the effective section of concrete) varying between 0,13 % and 0,3 %, or, in terms of 

weight, to about 0,25 ÷ 0,35 KN of steel per cubic meter of concrete. This classify 

the concrete formation as “concrete structures with small amount of reinforcement” 

or “lightly reinforced concrete structures” (according to EC). 

1.1.2 The structural behavior in ETAG009 (2002) 

The European Guideline ETAG009, concerning " Non load-bearing permanent 

shuttering kits/systems based on hollow blocks or panels of insulating materials and 

sometimes concrete" in Annex B offers a "Design Method for Grid-Type Shear wall" 

subjected to horizontal shear forces Hsd. 

Three load bearing models may be applied according to the presence of 

reinforcement: frame model(a) or continuous strut model(b) for plain concrete or a 

beam model(c) for reinforced concrete. 

 

Fig. 1.5 Load bearing models in European Guideline ETAG009 
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The first observation is that in Italy for example is not allowed the use of plain 

concrete.(See Par. 1.3.1); it means that only "Beam model" can be conceived. 

The design resistance Hrd according to the beam model. can be determined with the 

help of the design rules valid for reinforced concrete beams; the links are 

represented by horizontal bars passing along the connectors. A sufficient end 

anchorage of the horizontal bars – e.g. by hoop reinforcement – has to be verified. 

The design resistance can be simply calculated as: 

 

Hrd=Ash fyd 

 

where Ash is the horizontal reinforcing bar section and fyd the design strength of 

steel. The guidelines suggest also that under a combined design action of horizontal 

and vertical loads the columns have to remain in stage Ι i.e. no tensile stress should 

occur, otherwise tensile vertical reinforcing bars in the columns have to be used by 

the designer (mandatory in Italy). 

Another reference for a better understanding of the structural behavior of the grid-

wall-system is  [17 ] where the connector beams are simply conceived and designed 

with strut and tie model. The Load P on the wall generates a Shear force T on the 

connector beam and so a compression Nc on the compressed strut of concrete 

equal to Nc= T/(sin α) where the angle α is the inclination of the compressed strut 

respect to the horizontal. The shear T also induces a tensile stress in the steel equal 

to T cot α. The experimental results on which the author relied also suggested a 

collapse of the joists for achievement of yield strength of steel.  
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1.2 The U.S. background 

The efficient use of shear walls in residential construction subjected to wind and 

seismic loading is of great interest to designers and builders of homes in high 

hazard areas. Shear walls are the primary lateral force resisting system in 

residential construction. There has been considerable research aimed at optimizing 

the design of light-framed shear walls (wood and cold-formed steel) in recent years 

[4]. For relatively new types of wall systems, such as Insulating Concrete Form 

(ICF) wall construction, the technical information available is limited. There is a need 

to confirm or improve the use of traditional concrete shear wall design methods 

particularly in the context of ICF systems and residential construction practices. 

Thus, inefficiencies that result in conservative (uneconomical) or unconservative 

(unsafe) applications may be avoided. 

Reinforced concrete shear walls can resist a large portion of the shear due to lateral 

loads on buildings. However, failures of reinforced concrete walls are not 

necessarily dominated by shear deformations. The balance between shear and 

flexure loading has a very significant role in overall deformation and strength 

characteristics. Walls with a height-to-length aspect ratio of more than about 2.0 

possess flexure dominated deformational characteristics while walls with aspect 

ratios less than 2.0 are influenced more by the presence of high shear loads [5]. 

However, this rule may not apply to lightly reinforced concrete walls as found even 

in different codes [6] [7].  

The use of reinforced concrete structural walls is common for resisting lateral loads 

imposed by wind and earthquakes. In practice there are two different types of 

structural concrete walls: cantilever shear walls and framed shear walls. Cantilever 

shear walls act as cantilever beams and are connected to the rest of the structure 

by floor diaphragms through which horizontal forces are transmitted to the wall. The 

design of cantilever shear walls is usually governed by flexural behavior. The design 

philosophy is to ensure a ductile flexural failure where the tensile steel in the 

boundary element reaches yielding before the web fails in shear.  

The framed shear wall panel is considered to be an element that stiffens the shear 

resistance of a plane frame (enlightened respect to the case in which r.c frame is 

the sole structure). A framed shear wall is considered as part of the overall frame 

system except that it receives a larger portion of the shear loads due to its greater 
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stiffness. However, it is not considered to receive a large overturning moment as in 

the cantilever shear wall because it is constrained by the surrounding frame. It is 

essentially an in-fill wall that is designed to resist shear. Consequently, the framed 

shear wall behaves differently than does a cantilever wall – the predominant action 

is shear [8]. The grid-wall object of this thesis are conceived all around the World as 

framed shear wall panel.  

The ultimate strength capacity of an individual shear wall element is a function of 

the material strengths, the applied loading, and the geometry of the wall, including 

the amount of reinforcement and the reinforcement detailing. Failure modes 

resulting from in-plane loads include shear friction, diagonal shear cracking, flexural 

reinforcement yielding, and web crushing. Other less desirable failure modes 

include reinforcement pullout (reinforcement development length failure) or concrete 

failure as a result of overturning tensile forces. 

In the shear friction mode, the wall responds linearly until a horizontal crack forms, 

typically at the base of the wall, parallel to the applied load. At this point, the wall 

rotates as a rigid body, causing the reinforcing steel to yield. Because of the 

progressive yielding, when the loading is reversed, sliding displacement occurs 

along the horizontal crack. For this mode of failure to occur, a horizontal crack must 

form at the base of the wall before diagonal shear cracking forms. This mode 

typically controls the capacity of lightly reinforced low-rise shear walls [9]. 

Shear forces caused by lateral loads are accompanied by a moment applied in the 

plane of the wall. The presence of these moments requires that a flexural failure 

mode also be examined. The failure mode can result in either a crushing of the 

compression zone concrete (if the wall is heavily reinforced or constrained from 

overturning) or yielding of the tension bars. Typically, crushing of the concrete in the 

web is not considered because the percentages of reinforcement are kept below a 

balanced design value ensuring that the tension reinforcement will yield before 

crushing can occur [10]. To assess the strength of a shear wall, the capacity to 

withstand these various failure modes must be evaluated using mechanics-based 

expressions that have been empirically validated or modified.  

Relatively little testing has been done to evaluate the performance of reinforced 

concrete walls with openings. Current building codes, such as the Uniform Building 

Code [11], include provisions for the design of symmetrical and unsymmetrical solid 
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concrete walls; however, it is often necessary to provide openings in the walls for 

doors and windows. If the openings are small relative to the wall dimensions, it may 

be reasonable to neglect the effects of the openings [12]. In many cases, the 

opening is relatively large or is located in a critical region where inelastic 

deformations are expected. In such cases, the influence of the opening on the 

overall wall behavior must be evaluated.  

Since all the current codes do not provide exact design guidelines for walls with 

openings, considerable engineering judgment is required. In general, the influence 

of the opening on the flexural and shear strength, as well as the design 

requirements, should be considered. If the opening is near the middle of the wall, it 

will decrease the moment capacity of the wall only slightly; however, the shear 

strength may be significantly reduced. In contrast, an opening near a wall boundary 

may impact both the moment and shear strengths. Research conducted by Ali and 

Wight on one-quarter scale slender walls with staggered openings revealed the 

walls were vulnerable to shear compression failure in the narrow wall segment when 

the opening at the base was near the wall boundary [13]. One specimen was tested 

without openings and excellent behavior at large drift ratios was observed, even 

though only moderate detailing of the boundary zones was provided compared with 

ACI 318-95 requirements [13]. This improved behavior was explained using a 

displacement design approach [14]. Recently published research on the behavior of 

slender walls has shown that a displacement design approach provides a versatile 

design methodology [12] [14]. The procedure involves comparing the strain capacity 

of the wall with the estimated strains imposed on the wall as a result of a design 

earthquake. In general, providing additional transverse boundary reinforcement can 

increase the strain capacity of a wall. Thus, rather than providing an arbitrary 

amount of confining reinforcement at the wall boundaries, confinement is selected 

based on the deformation or strain demand. However, this method is not considered 

an efficient design approach for residential construction due to the increased 

complexity of reinforcement details required at the boundary elements.  

Taylor et al. conducted two one-quarter scale tests to determine the effects of 

openings at the base of slender reinforced concrete walls [12]. The walls were 3.66 

m high by 1.22 m long resulting in a height-to-length aspect ratio of 3.  A 508 mm 

high by 229 mm long opening was provided at the base of each specimen located 

89 mm from the edge of the wall. One specimen had a rectangular cross section 
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and one had a barbell cross-section. A constant axial load of approximately 0.1 f’c Ag 

was applied to the walls for the duration of each test. This level of axial load was 

used to represent the dead load in a typical moderate-rise building. The research 

concluded that slender structural walls with openings can exhibit stable behavior 

and significant ductility, even for cases when the opening is in the flexural 

compression zone. The large opening at the base did not significantly influence the 

behavior or strength of the wall compared to the walls without openings. Vertical 

cracks above the door opening indicate that the reinforcement in this location was 

effective in providing a load path around the opening. 

Lefas et al. tested 13 reinforced concrete shear walls with a constant thickness and 

a height-to-length aspect ratio ranging between 1 and 2. The vertical and horizontal 

reinforcement consisted of high tensile strength deformed bars. Additional horizontal 

reinforcement in the form of stirrups confined the wall edges. Three levels of 

constant axial load were applied in the testing program; they corresponded to 0.0 f’c 

Ag, 0.1 f’c Ag, and 0.2 f’c Ag. These load levels were considered to represent the 

amount of axial load at the base of the wall of a single story, a medium-height, and 

a high-rise building, respectively [15]. Failure of the walls occurred due to the nearly 

vertical splitting of the compression zone in the region of the inclined or deepest 

flexural crack, followed by splitting of the whole compressive zone. The failure 

region was more extensive with decreasing height-to-length aspect ratio and 

increasing axial load [15].  

The ultimate shear capacity of the specimens with axial loads equal to 0.1 f’c Ag, and 

0.2 f’c Ag  was higher than that of the walls subjected to shear load only by about 25 

and 30 percent, respectively. The axial load also reduced the value of the horizontal 

displacement at peak load. Differences in compressive concrete strength as high as 

35 percent resulted in almost negligible variation in wall strength. This may indicate 

that strength and deformation characteristics of the walls are not significantly 

affected by variability in concrete strength [15].  

The observed maximum shear capacity sustained by the walls substantially 

exceeded the calculated flexural and shear capacities defined by ACI 318. Although 

ACI 318 provisions indicated a ductile flexural failure mode, the specimens actually 

exhibited a shear failure mode while remaining ductile. Specimens that utilized 

about half of the horizontal web reinforcement required by ACI 318 to safeguard 

against a non-ductile shear failure also failed by shear in a ductile manner. Such 
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behaviors indicated that significant reductions in the horizontal web reinforcement 

does not have a significant effect on shear capacity [15]. 

 

 

1.2.1 Design  of Grid-wall in U.S.A 

 

The current design of concrete shear walls for parallel (in-plane) shear follows the 

provisions outlined in ACI 318 – 99 Section 11.10 [6]. The equations below from 

Section 11.10 are used to check parallel (in-plane) shear. All vertical cores, both 

reinforced and unreinforced, are assumed to resist parallel wall shear. Dimensions 

are often simplified for waffle-grid and screen-grid wall systems that have complex 

cross sectional geometries. Generally, the web thickness (or effective web 

thickness) is not considered when evaluating the parallel shear resistance of ICF 

walls with non-uniform cross sections. 

 

Vu > ΦVn 

 

where Vu= Factored shear force at section,  Φ= Shear strength reduction factor = 

0.85 per ACI 9.3.2.,  Vn= Nominal shear strength per ACI 11.2. defined as follows: 

 

Vn = Vc + Vs 

 

where Vc= Nominal shear strength of concrete per ACI 11.10.5  Vs= Nominal shear 

strength of shear reinforcement per ACI 11.10.9: 

 

Vs = 
         

  
    when    Vu > ΦVc 

 

Vc=           

 

Av= Area of horizontal shear reinforcement within a distance, s2, and a distance, d, 

per ACI 11.10; considering that s2 is the Spacing of horizontal shear reinforcement 

and 

d=0.8 lw 
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where lw= Length of reinforced segment. 

According to ACI-318, a larger value of d, equal to the distance from the extreme 

compression fiber to the center of force of all reinforcement in tension, is permitted 

when determined by strain compatibility analysis.  

Where the factored shear force Vu exceeds shear strength ΦVc, horizontal shear 

reinforcement shall be provided. The ratio of horizontal shear reinforcement area to 

gross concrete area of the vertical section shall not be less than 0.0025. According 

to ACI 318, spacing of horizontal reinforcement, s2, shall not exceed lw/5, 3h, nor 

457 mm.  

Due to the number and size of wall openings in residential construction, particularly 

on the street facing side of houses, there may be segments with height-to-length 

aspect ratios greater than or equal to 4:1. In such cases, the behavior of these 

segments may be dominated by flexural behavior rather than shear behavior. 

Therefore, the flexural response of such segments in ICF walls should be evaluated 

using the equations below in accordance with ACI Chapter 10. The amount of 

tensile reinforcing steel is limited such that it will yield before the concrete reaches 

its ultimate compressive strength as required by ACI 318 [6]. 

 

Mu ≤  Φ Mn 

 

where Mu= moment induced by factored design loads, Φ= the strength reduction 

factor of 0.9 for flexure per ACI 9.3.2, Mn= nominal moment strength evaluated as: 

 

Φ Mn  ≤ Φ As fy     
 
  

 

As= area of tensile reinforcing steel, d= distance from extreme compression zone 

(top of beam or toe of wall) to centroid of tensile reinforcement , a= depth of 

equivalent rectangular stress block equal to: 

 

  
     

           
 

 

Regardless of the design conditions, ACI 318 requires a minimum amount of tensile 

reinforcing steel determined by the greater of the following equations: 

       
           

  
        ACI 318-99 Equation 10-3 
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In practice, most design applications involve the use of multiple concrete shear wall 

segments to comprise a building wall line. In residential construction, the 

configuration and size of these segments (i.e., aspect ratio and wall opening 

dimensions) can vary significantly. This condition demands the consideration of 

stiffness of individual wall segments in determining the capacity of a wall line that 

may be comprised of segments with very different stiffness characteristics. Yet, the 

current approach favored in residential and low-rise concrete construction 

determines the capacity of a concrete (or masonry) shear wall by assuming that all 

solid portions of a wall, regardless of how far separated or to what degree they are 

coupled, act as a solid concrete wall of equal length. With this approach, only in 

cases with extremely scant amounts of solid wall (i.e., more representative of a 

concrete frame) does flexural capacity control the design solution. This questionable 

approach is represented in current code documents as well as the general 

engineering practice [14].  

In the Prescriptive Method [1], a more conservative approach was used whereby 

wall bracing amounts in the prescriptive tables were controlled by limiting in-plane 

flexural capacity of the segments in the wall line in order to determine the required 

minimum percentage of wall length. An iterative process was used, whereby the 

length of the flexural elements were varied from 0.61 m to 2.4 m depending on the 

amount of solid wall length required. 
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1.3 The Italian and European Normative context 

for Design purposes 

The followings considers some important hypothesis on the use and behavior of grid 

type shear walls: 

-the grid type shear walls are ascribable to Large Lightly Reinforced Concrete Walls 

as mentioned in the Eurocodes  

-the grid type shear walls are conceived to be designed in seismic zone. 

 

The purpose of this paragraph is to provide a comparison between the most 

important design formulations existing in Italy and the Eurocode. The normative 

context referred to the design of this particular building system is not unified:  

different codes proposes similar but not equal provisions. 

 

For what concerns Italy noteworthy are: 

-NTC 2008 

-Guidelines “Linee guida per sistemi costruttivi a pannelli portanti basati 

 sull’impiego di blocchi cassero e calcestruzzo debolmente armato” promoted by 

 Consiglio Superiore dei Lavori Pubblici (CSLP Luglio 2011 Guidelines). 

 

-CNR 10024/84 “Istruzioni per il progetto, l’esecuzione ed il controllo delle strutture 

prefabbricate in conglomerato cementizio e per le strutture costruite con sistemi 

industrializzati” 

 

In a wider context here are reported:  

-EC2 / EC 8 
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1.3.1 Definitions: 

The definition of “Lightly Reinforced Concrete” in Italian code is (4.1.11) strictly 

related to the quantity of reinforcement: 

 

“Il calcestruzzo a bassa percentuale di armatura è quello per il quale la percentuale di armatura messa 

in opera è minore di quella minima necessaria per il calcestruzzo armato o la quantità media in peso 

di acciaio per metro cubo di calcestruzzo è inferiore a 0,3 kN.” 

 

The CSLP Guidelines (Par. 7.8) instead suggest the quantity of reinforcement, but 

in order to ensure correct behavior with respect  to the serviceability  and ultimate 

limit states and towards local and global instability and it states that: 

 

ρv ≥ 0.20% 

ρ0 ≥ 0.20% 

 

where ρv and ρO are the percentages obtained by dividing respectively the  

geometric area of vertical and horizontal reinforcement bars, for the area of 

concrete section.  

In the Italian code NTC 2008 the Large Lightly Reinforced concrete walls are 

instead defined on the basis of geometrical requires and dynamical behavior: 

“Una struttura a pareti è da considerarsi come struttura a pareti estese debolmente armate se, nella 

direzione orizzontale d’interesse, essa ha un periodo fondamentale, calcolato nell’ipotesi di assenza di 

rotazioni alla base, non superiore a TC, e comprende almeno due pareti con una dimensione 

orizzontale non inferiore al minimo tra 4,0m ed i 2/3 della loro altezza, che nella situazione sismica 

portano insieme almeno il 20% del carico gravitazionale. Se una struttura non è classificata come 

struttura a pareti estese debolmente armate, tutte le sue pareti devono essere progettate come 

duttili.” 

 

As here reported the Italian code seems to distinguish the LLRC walls from ductile 

walls even if, as it will be better explained, provide the same base behavior factor. 

 

1.3.2 Normal and shear stresses 

Italian code NTC2008 provide also precise performance limits concerning “Lightly 

Reinforced Concrete” (4.1.11): 

1- It is necessary to neglect the traction resistance  
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2- The compression stresses that raise under rare combination of load should be 

limited to: 

σc ≤ 0.3 fck 

 

That means to allow a reduction factor more or less equal to 3  respect to the 1.5 of 

normal reinforced concrete in the evaluation of fcd. 

3- The shear stresses that raise under rare combination of load should be limited to: 

τc ≤ 0.25 fctk 

The CSLP Guidelines instead furnish similar limits making a difference between two 

sides or one way reinforcement in the width of the panel(7.3): 

 

nsd≤ 0,4 (fcd  Ac,eff)        Two layers of reinforcement 

 

nsd≤ 0,25 (fcd  Ac,eff)        One layer of reinforcement(centered) 

 

It can be noticed how 0.3 of the NTC2008 is an average value between 0.25 and 

0.4 suggested by CSLP Guidelines. 

For what concerns shear, CSLP doesn’t provide explicitly any formulas, but it states 

that the Shear strength should be carried out with reference to the equivalent 

thickness and in accordance with the provisions in the Technical Standards 

considering different failure modes: 

 

- Shear-compression; 

- Shear-traction; 

- Shear and sliding. 

In the CNR 10024/84 in the paragraph C.2.3.1.4 an interesting formulation of the N-

V interaction is reported. If s is the width of the wall, Vd the shear action for unit of 

length and if: 
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The condition that should be satisfied is: 

 
         

 
       

For important shear actions(seismic forces, differential settlements..)is suggested to 

verify that the Mohr circle build starting from σ and τ, remains inside the intrinsic 

curve of the material. 

More information about shear action can be found in EC8(Par 5.4.2.5) where it’s 

suggested to increase the shear force V’Ed  to ensure that flexural yielding precedes 

attainment of the ULS in shear. In order to obtain ductile crisis VEd can be calculated 

from the shear force V’Ed from the analysis, in accordance with the following 

expression: 

 

        
 

   

 
 

 

This is strictly connected to the  to the Capacity Design concept:  both the Italian 

and the European codes confirm the need to amplify the Shear action in analogy 

with the design procedure for the walls designed in CD "B". 
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1.3.3 Behavior factor: 

 

In this paragraph a comparison between NTC 2008, EC8 and CSLP Guidelines was 

reported. The NTC 2008 and EC8 Guidelines provide  the same  base-behaviour-

factor, that must be multiplied for some coefficients (that takes into account the 

characteristic of regularity and the type of  structure) smaller than 1 to reach the 

design behaviour factor. As will be better explained the only difference between the 

two Codes is in the difference in conceiving this system as ductile or not. 

The CSLP 2011 Guidelines provide smaller value of base behaviour factor but the 

coefficients over mentioned are now defined bigger than 1. 

Very interesting is the Research conducted by Pecce, Bibbò [16] that studied  a 

building made of LLRC walls with a rectangular plant 20mx30m large and 3-storey 

3m height ;  the structure was made of a perimeter panels with a  thickness of 15 

cm, and by pillars of section  30cmx30cm on all three levels arranged with a 

distance of 5 m in both direction as can be seen in Fig.1.6. 

 

 
 

Figure 1.6  LLRC wall building 

 

With reference to LLRCW system type in NTC 2008, and so to ductility class B, the 

design behavior factor was assumed to be equal to 1.50, once the shape factor of 

the walls kw have been evaluated with reference to the size of the perimeter 

walls in absence of holes. The Reserchers performed a static non-linear analysis 

that revealed an effective behaviour factor of 2.5. This number is of course closer to 

the design behaviour factor provided by CSLP Guidelines for grid-wall systems. 
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To enter into much more details the  Italian code clearly distinguishes Large Lightly 

Reinforced Concrete Wall from Ductile walls,  

 

..”Se una struttura non è classificata come struttura a pareti estese debolmente armate, tutte le 

sue pareti devono essere progettate come duttili.” 

 

nevertheless NTC 2008 allow to use the same base behavior factor, assuming 

equal ductility for both, as will be better explained following. 

The EC8 instead furnishes clear indications about building details to guarantee the 

presence of fuses in the extremities of the sections in which concentrate flexural 

resistance and to guarantee a certain amount of ductility . 

In favor of  the assumption of the same behavior factor both for LLRCW and Ductile 

R.C Walls, are the research conducted in [1] where experimentally determined 

force/displacement envelope curves indicate that the panels tested were 

characterized by high level of kinematic ductility (the specimen developed maximum 

horizontal displacement corresponding to a kinematic ductility in the range between 

8 and 10). Cause of the results the authors suggested to use, as reduction factor 

(for design purposes) for the structural system, the same reduction factor coefficient 

(“q0 = 3”) proposed by the Eurocode 8 for concrete wall buildings or even bigger if 

validated by additional experiments. 

A different approach is suggested in the Italian Guidelines CSLP 2011, the 

guidelines for building system based on the use of shuttering-wood-blocks and 

lightly reinforced concrete casted in situ that in the paragraph concerning 

“Provisions for structural design in seismic zone” propose a different structural 

behavior: 

 

 “... Poiché i meccanismi di collasso delle strutture in oggetto sono prevalentemente legati ai 

meccanismi di rottura per taglio o taglio-flessione, tali strutture si devono considerare appartenenti 

ad una classe di bassa duttilità.” 

 

To be consistent with the above mentioned, in  the paragraph 7.1 it states that for 

the building system under examination the base behavior factor q0 must be 

assumed always smaller or equal than 2.0. 

The design behavior factor q will be expressed as follows: 

 

q=q0 Ks Kr 
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where Ks=αu/αl is the over-resistance factor that is absence of analytical 

formulations can be assumed equal to 1.2 for in plane regular structures and equal 

to 1.1 for irregular ones and Kr is the reducing factor connected to elevation 

irregularity that is equal to 1 for building regular in elevation, equal to 0.8 for 

irregular ones. That means that Italian Guidelines C.s.l.p 2011 suggests for a 

building regular both in plane and in elevation a design behaviour factor of 2.4.  

Bigger values of base behavior factor q0 are admitted only if justified by 

experimental results obtained by experimental studies and supported by a 

consistent numerical analysis. Nevertheless the value of the base behavior factor q0 

should never exceed values bigger than 3.0 .  

For what concern the behavior factor for LLRC walls, the indications in NTC2008 

and EC8 coincide, because the base  behavior factor q0 to be considered is the one 

of of the “strutture a pareti non accoppiate di classe B”,(par.7.4.3.2 NTC2008) which 

assumes values equal to 3. 

The “Class B” is connected to the level of Dissipative Capacity or Ductility 

Classes(CD): 

- High Ductility Class (CD”A”); 

- Low Ductility Class (CD”B”). 

The difference between the two classes lies in the extent of plasticization that is 

decided during the design stage; for both classes, in order to ensure to the structure 

a dissipative and ductile behavior avoiding brittle fractures and the formation of 

unstable unexpected mechanisms, it is possible to resort to the procedures typical 

of the hierarchy of strength. 

Both in NTC 2008 and in EC8 the base behavior factor q0 have to be corrected  

by a coefficient kw: 

         

 

Where kw evaluated as follows: 
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The coefficient α0 is the value assumed by the ratio between the heights and the 

bases of the walls. In the event that the coefficients  α0 of the walls aren’t 

significantly different, α0  can be evaluated once for the whole, assuming the height 

as the sum of the heights of the different walls, and the base as the sum of all the 

bases. That means that α0 has a value of  ¾, the design behavior factor q will be 

1.75. 

 

For what concern the Energy dissipation the EC8 (in 5.11.1.3.2) state that in precast 

concrete structures the prevailing energy dissipation mechanism should be through 

plastic rotations within critical regions. Besides energy dissipation through plastic 

rotations in critical regions, precast structures can also dissipate energy through 

plastic shear mechanisms along joints, provided that both of the following conditions 

are satisfied: 

a) the restoring force should not degrade substantially during the seismic action; 

and 

b) the possible instabilities should be appropriately avoided. 

For this purpose the EC8 in section 5.4.3.5.3  provide some specifics for the local 

ductility of LLRC walls: 

 

1- Vertical bars necessary for the verification of the ULS in bending with axial force, 

or for the satisfaction of any minimum reinforcement provisions, should be engaged 

by a hoop or a cross-tie with a diameter of not less than 6 mm or one third of the 

vertical bar diameter, dbL. Hoops and cross-ties should be at a vertical spacing of 

not more than 100 mm or 8dbL, whichever is less. 

 

2- Vertical bars necessary for the verification of the ULS in bending with axial force 

and laterally restrained by hoops and cross-ties in accordance with (1) of this 

subclause should be concentrated in boundary elements at the ends of the cross-

section. These elements should extend in the direction of the length lw of the wall 

over a length not less than bw or 3bwσcm/fcd, whichever is greater, where σcm is the 

mean value of theconcrete stress in the compression zone in the ULS of bending 

with axial force. Thediameter of the vertical bars should not be less than 12 mm in 

the lower storey of the building, or in any storey where the length lw of the wall is 

reduced over that of the storey below by more than one-third of the storey height hs. 

In all other storeys the diameter of vertical bars should not be less than 10 mm. 
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3- To avoid a change in the mode of behaviour from one controlled by flexure to 

another controlled by shear, the amount of vertical reinforcement placed in the wall 

section should not unnecessarily exceed the amount required for the verification of 

the ULS in flexure with axial load and for the integrity of concrete. 

 

(4) Continuous steel ties, horizontal or vertical, should be provided: (a) along all 

intersections of walls or connections with flanges; (b) at all floor levels; and (c) 

around openings in the wall. As a minimum, these ties should satisfy EN 1992-1-

1:2004, 9.10. 

 

The Eurocode 8 provide explicitly the "Detailing for local ductility" for LLRC walls, 

NTC2008 in contrast, stresses the difference between the ductile walls and the 

Lightly Reinforced one, which shows that the armor should not comply with 

regulatory guidance aimed at achieving  high ductility, as explicitly suggested in 

CSLP Guidelines. 

  



 

Grid type wall system 

 

 

42 

 

  



 

Grid type wall system 

 

 

43 

 

 
Chapter 2 

 
Experimental 

 tests 
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Object 

The object of this Chapter was to introduce the set of experimental results aimed at 

the characterization of the two materials, concrete and steel-bars, used for the 1x1 

m Grid Walls object of the Experimental campaign. Moreover a brief description of 

the  compression tests was provided. 
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2.1 The blocks object of the experimental 

campaign 

The Laboratory tests carried out, were performed on  1mx1m walls constructed with 

the deployment of formwork blocks of 2  different sizes, the characteristics of which 

are listed below. These specimen are conceived for internal infill wall with structural 

capacity. 

Formwork block 25/18 

External Dimensions:  length 50 cm 

                                    height 25 cm 

                                     width 25 cm 

Width of the wood-concrete: external 4 cm 

                                               internal 3.5 cm 

Width of the insulating material:  1.5 cm (foam polystyrene) 

Width of concrete: 14 cm 

Weight of the block: 0.64 kN/m2 

Use of concrete: 118 lt/m2 

Weight of the finite wall: 3.05 kN/m2(w/o plaster) 

A scheme and a figure of the block 25/18 is here reported in Figure 2.1 . 

 

Fig.2.1  Scheme of formwork block of 25/18 used in the Lab.Tests 
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Formwork block 30/22 

External Dimensions:  length 50 cm 

                                    height 25 cm 

                                     width 30 cm 

Width of the wood-concrete: external 4.5 cm 

                                               Internal 4 cm 

Width of the insulating material:  1.5 cm (foam polystyrene) 

Width of concrete: 18 cm 

Weight of the block: 0.67 kN/m2 

Use of concrete: 151 lt/m2 

Weight of the finite wall: 4.24 kN/m2(w/o plaster) 

A scheme of the block 30/22 is reported in the following Figure 2.2. 

 

 

Fig.2.2  Scheme of formwork block of 30/22 used in the Lab.Tests 
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Fig.2.3  Formwork block of 25/18 used in the Lab.Tests 

 

 

Fig.2.4  Disposition of the blocks for the creation of the grid-wall of the Lab.Tests 

  



 

Grid type wall system 

 

 

48 

 

2.2 Mechanical characterization of the 

materials: concrete and steel 

The structural skeleton of the grid walls object of this thesis is made or reinforced 

concrete. In order to obtain the strength-characteristics of the steel and of the 

concrete of which the  grid-walls are made, a set of traction tests on φ 8 mm bars, 

and different compression tests on 15 cm x 15 cm concrete cubes were performed.   

2.2.1 Compression tests on concrete cubic specimen  

Following the Italian code, to verify the compliance of the casted concrete with 

respect to the one established by the project and experimentally verified in the 

preliminary assessment, the so-called “controls acceptance” must be performed. 

In our case the acceptance check is of type A, and it concerns quantities of 

homogeneous mixture not greater than 300 cm3 with the removal of 3 concrete 

specimens at least. 

In this type of control two inequalities must be checked: 

 1) R1 ≥ Rck - 3.5 

 2) Rm ≥ Rck + 3.5  

with R1 = lower resistance value of the samples (N/mm2) 

 Rm = average resistance of the samples (N/mm2)  

The specimens subjected to the experimental tests, with dimensions 1x1 m, have 

been casted in two different days:  

1) the samples to be subjected to diagonal test  were casted in August 3rd, 2011; 

 2)  the compression specimens were casted in  September 23rd, 2011.  

For each day of casting were collected 8 cubic concrete specimens, 4 of which have 

been tested in different days. 

As described in the ASTM standard, on the same day of the test, it is necessary to 

measure the compressive  resistance of the concrete  with which the wall was built. 
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This resistance is measured on 4 of the 8 samples of concrete casted  the same 

day of the wall, and aged in special cubic molds  15 cm x 15 cm x 15 cm long. 

The concrete cubes are subjected to an axial compression by means of a press in 

load control condition. A sort of smoothing of the upper and bottom surfaces is 

performed in order to reduce as much as possible the irregularities that would distort 

the results. From compression tests  is measured the mean compression resistance 

Rcm , in N/mm2 that will be used in the numerical model to define the constitutive 

compression model. 

For compression numerical test a peak compressive resistance of 31.3 Mpa was 

considered. 

In the following Table all the results on compression tests cubic specimen are 

reported.  
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Table 2.1 Result of compressive test  on concrete cubic specimen 



 

Grid type wall system 

 

 

51 

 

2.2.2 Traction test on reinforcing steel bars  

The walls with dimensions 1m x1 m presented the following  steel rebars:  

- 2 Φ 8 for each concrete column (for each mt of wall there are 4 columns with a  

transversal sections 15x18 cm or 15x14 cm); 

- 2 Φ 8 for each joist, which in the construction phase are leaned on each course of 

blocks( with an height of 14 cm ). 

 For each wall, then, there are eight Φ 8 vertical bars and eight  Φ 8 horizontal  

bars, the disposition of which can be observed in Figure 2.5. 

 

Fig.2.5  Disposition of the steel inside the block 

 

Three different traction proofs were performed in the CIRI laboratory to have the 

real σ-ε trend of the steel bars. The proof provided step by step the force applied 

and the correlated strain. 

In each proof an extensimeter to provide the ΔL was posed, and then removed after 

the hardening phase. The laboratory equipment works in load control with a gradient 

load of 2.01204 e+11  N/(mm2 sec) providing a force as output. To obtain the 

stresses, the forces has been divided for the nominal area of a  Φ 8. Alternatively 

one could divide the force produced by the “fair-heavy” area: the 1 m long bars were 

weighted before each proof, to provide an equivalent diameter that resulted slightly 
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different from the nominal one. The comparison of the two methods emphasized the 

substantial equivalence of the two methods: the differences resulted negligible. 

The result is represented in Fig.2.6 and reported in the numerical implementation 

phase as reported in Tab.2.1. 

 

 

Fig.2.6  Experimental results of the 3 steel traction proofs on ϕ8 bars 

The trend of Young's Modulus over the elastic branch is also reported in Fig.2.7 

 

Fig.2.7  Young Modulus evaluation 
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The reference curve remain the one provided by the Italian Guidelines NTC 2008: 

 

Fig.2.8.  Constitutive law from Italian Guidelines NTC 2008 

The Graph σ-ε implemented in the numerical models (that will be presented in 

Chapter 6 ) considered a mean trend among the 3 different traction tests: 

Sigma[Mpa] Eps 

0 0 

500 0.0025 

550 0.01 

Table.2.1  Constitutive law of steel implemented in Abaqus 

 

Fig.2.9  Graph σ-ε implemented in Abaqus 
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2.3 The compressive tests on 1mx1m walls 
 
The mandatory tests, aimed at the characterization of the construction system, are 

imposed by the Italian Guidelines CSLP 2011. The 8 different proofs that are 

reported in this Thesis (Chapter 3) are part of  TYPE 1 TEST( "Prove di tipo 1" ) that 

must be conducted on panels of 1m x 1m long. 

The load-application under monotonic and pseudo-static conditions must be of two 

types: axial centered compression and diagonal compression. 

These tests are officially conceived to evaluate the longitudinal and transversal 

modules of elasticity, and to determine the relationship between the Secant stiffness 

evaluated at the maximum load and Secant stiffness to 30% of the maximum load. 
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2.3.1The compression centered tests 
 
In the Centered compression test the specimen is subjected to a uniform and 

vertical pressure through the work of a Load-equipment that works in load control 

conditions. 

 

 
 

Figure 2.10 The Experimental set-up of compression tests 
 

The presence of 4 LVDT allowed the measurement of vertical shortening of the 

specimen and of the horizontal expansion. 

 

 
 

Figure 2.11 The LVDT measurement device 
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2.3.2 The diagonal tests 
 
The diagonal compression test requires that the Load-equipment applies the 

pressure on one edge of the specimen, which must then be rotated 45 ° with 

respect to the position of the samples subjected to centered compression (because 

the press acts only in vertical direction). 

To distribute the pressure in the most efficient way possible, and to limit the 

confinement of the specimen that would distort the test, the use of special "loading 

shoes" are recommended, as suggested by International ASTM E519 [18] 

The measurements of the relative displacements of the specimen are measured by 

4 LVDT. Each device, which length was in the range of 74 cm, was installed on 

each diagonal of each side in a centered position. 

 

 

Figure 2.12 The diagonal experimental set-up with the LVDT measurement device 
 
To ensure a more regular contact between the "loading-shoe" and the specimen, 

the latter is adjusted on the two loaded edges, by means of two L shape steel plates 

fixed with  a high strength mortar. 
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Chapter 3 
 

Evaluation of the 
equivalent continuous 

wall 
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Background 

During the preliminary design phases  there' s the need of simple tools for an 

immediate and effective global elastic analysis. In order to design a real structure 

making use of the grid-walls object of this thesis, it turns out to be useful the 

definition of equivalent continuous  walls. This expedient allows both a simplification 

during the dimensioning/ modeling phase and to recall the Large Lightly reinforced 

concrete wall scheme of Eurocodes also called  "Pareti estese debolmente armate" 

in Italian Guidelines NTC 2008. 

 

Object 

The object of this chapter is the definition of the correction-factors to be applied to 

geometric and mechanical properties that define the system formwork block, in 

order to model, in the design phase, the grid wall as a continuous elastic element.  

 

Introduction 

This chapter includes, as required by the Italian Guidelines " Linee Guida per 

sistemi costruttivi a pannelli portanti basati sull’impiego di blocchi cassero e 

calcestruzzo debolmente armato in opera"  issued by the Consiglio Superiore dei 

Lavori Pubblici (August 2011), the elaborations and numerical modeling  

consequent to compression and diagonal centered tests conducted by CIRI Building 

and Construction Department of the Alma Mater Studiorum of Bologna. The 

experimental tests included: 

1) No. 2 Centered Compression tests on r.c. panels 14 cm width called: 

 "CC14_01" and "CC14_02" 

2) No. 2 Centered Compression tests on r.c. panels 18 cm width called: 

 "CC18_01" and "CC18_02" 

3) No. 2 Diagonal Compression tests on r.c. panels 14 cm width called: 

 "CD14_01" and "CD14_02" 

4) No. 2 Diagonal Compression tests on r.c. panels 18 cm width called: 

 "CD18_01" and "CD18_02" 
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 3.1 Characteristics of materials 

The materials used for the centered compression tests and diagonal compression 

are those already described in the previous chapter, the characteristics  of are 

briefly reported in Table 3.1. 

 

 

 

 

 

 

 

Table 3.1. Materials characteristics 

The Young's modulus E results from the formula provided by NTC 2008 once the 

mean compressive strength fcm was evaluated from the compressive tests reported 

in Table 2.1 Chapter 2. 

  

Characteristics Materials CC 

Concrete Steel 

Rcm 37.7 (MPa) 

 

fym 500 (MPa) 

fcm 31.3 (MPa) 

 

ftm 550 (MPa) 

fck 23.3 (MPa) 

 

Es 200000 (MPa) 

fctm 2.9 (MPa) 

   

  

Ecm 30978 (MPa)         

Characteristics Materials CD 

Concrete Steel 

Rcm 43.5 (MPa) 

 

fyk 450 (MPa) 

fcm 35.4 (MPa) 

 

ftm 550 (MPa) 

fck 28.1 (MPa) 

 

Es 200000 (MPa) 

fctm 3.2 (MPa) 

    Ecm 32336 (MPa)         
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3.2 Analysis of the results on 14 cm width 

panels 

3.2.1 Equivalent thickness seg and Mean Axial Stiffness ΔK14 of the continuous 

wall 14 cm width (Block 25/18) 

The generic panel is composed of vertical pillars and horizontal beams. The 

collaborating geometrical area of each pillar, defined as the continuous vertical 

member from the lower to the upper base, is equal to 245 cm2. In Fig. 3.1 is 

reported one of the wall tested: it can be noticed how the concrete pillars are not 

continuous due to the fitting procedure that foresee staggered blocks. In Fig. 3.2 

instead, are reported the effective dimensions of the typical 1 m cross-section.   

 

Fig.3.1 Geometry of the wall tested( 1mx1m ) 

First of all is necessary to evaluate the geometrical concrete area A geom: 

 

Fig.3.2 Cross-section of panel 14 cm width 
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In the case of wall 14 the concrete area per meter is: 

A25/18=980 cm2/m 

The goal is to identify the continuous panel of equal cross section Area.  According 

to the following expression the equivalent thickness of the panel can be defined: 

cm9.8
100

980

b

A
s

effc,

eg   

 

This definition completely rely on geometrical considerations. The equivalent 

geometrical thickness seg is the one to be used in the modeling phases, for the 

evaluation of the actions on the different elements. 

 

3.2.2 Results of centered compression tests on panels 14 cm width: CC14_01 

and CC14_02 

Here below in Figure 3.3 - Figure 3.4 and in Table 3.2  and Table 3.3 summarizes 

the results of experimental tests carried out in the laboratory. 

 

 

Figure 3.3.  Load-Vertical Shortening  graph of the centered compression test Panel 

CC14_01. 
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Figure 3.4. Load-Vertical Shortening graph of a centered compression test Panel 

CC14_02. 

In the Table 3.2 and Table 3.3  are reported the values of the load P and vertical 

shortening Δl corresponding to the maximal Load Pmax and to the 30% of Pmax . 

These data were used to evaluate the secant stiffness of the panel in the two 

different load steps. It was evaluated also the ratio ΔK between the secant stiffness 

at 30% of Pmax and Pmax himself, in accordance with the Italian Guidelines " Linee 

Guida per sistemi costruttivi a pannelli portanti basati sull’impiego di blocchi cassero 

e calcestruzzo debolmente armato in opera"  issued by the Consiglio Superiore dei 

Lavori Pubblici (August 2011). 

 

CC14_01 CC14_02 

    P30% PMax     P30% PMax 

                

P (kN) 711.9 2373 P (kN) 749 2497 

 (mm) 0.144 0.755  (mm) 0.189 1.17 

K (kN/mm) 4943 3143 K (kN/mm) 3962.96 2135 

        

 
K 0.64 

  
K 0.53874 

  

Table 3.2. Panels CC14_01 and CC14_02 . results of Centered Compression tests 

on 14 cm panels 
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CC14_01 - CC14_02 

Valore Medio 

    P30%   

K (kN/mm) 4452.98   

 

Table 3.3. Mean value of the axial stiffness of the 14 cm panels.  

 

3.3 Interpretation of the compression tests on 

14 cm width panels 

3.3.1 Equivalent Young Modulus E' of the continuous wall with seg=9.8 cm 

Starting from the experimental results and making use of the equivalent geometric 

thickness defined in Par 3.2.1, we want to find the value of fictitious Young modulus 

E' able to match the experimental axial stiffness measured in linear elastic behavior. 

In particular, the fictitious elastic modulus is defined starting from the elastic 

modulus of concrete modified by a suitable correction coefficient α. 

E’= α E 

This coefficient α takes into account that the wall build with formwork blocks is not 

continuous but presents a two-dimensional structure composed of vertical and 

horizontal elements. In accordance with the linear-elastic continuum model, the 

relation Force-Displacement can be expressed by the classical formulation: 

KF   

where the axial stiffness is equal to: 

l

AE
K

'
  

Starting from the experimental curves Load- Δl shown above, an average value of 

the secant stiffness (at 30% strength) of the panels tested was evaluated equal to K 

= 4453 kN / mm. The inversion of the last equation, provides the dependence of the 

elastic modulus of such fictitious parameter according to the expression: 
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A

Kl
E '

 

from which, substituting into it the value of stiffness obtained experimentally, the 

cross-section area A = 980 cm2 and the length l = 74 cm of the measurement base 

of the transducers, can be obtained a value of fictitious elastic modulus E '= 33 625 

MPa . The correction coefficient α results to be equal to: 

09.1
30978

33625'
14 

E

E


 

 

3.3.2 Results of compressive diagonal tests on panels 14 cm width: CD14_01 

and CD14_02 

Considering the Standards ASTM E519 "Standard Test Method for Diagonal 

Tension (Shear) in Masonry Assemblages", the shear-slip curve has been 

reconstructed for each test, by defining the following quantities: 

- T= shear force acting on the generic section of the connector beams equal to: 

 45cosPT  

   where P is the loading force. 

- γ = slide defined by the ratio 

g

v 0



  

where δv is the measured vertical shortening of the specimen, δ0 is the horizontal 

elongation and g is the is the basis of measurement (the length of measurement 

bar) used in the test, equal to 76.4 cm an can be seen in Fig.3.5. 
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Figure 3.5.  Experimental set-up 

All these quantities can be visualized in the following Figure 3.6. 

 

Figure 3.6. Diagonal test Scheme   

In the test conducted in the CIRI laboratory α was equal to 45 degrees. 
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3.3.3 Equivalent Elastic Tangential Modulus G' of the continuous wall 

Starting from the experimental results, and making use of the equivalent geometric 

thickness defined in paragraph 3.2.1,  the goal of this paragraph is the definition of 

the value of fictitious shear modulus G' able to match the tangential stiffness 

measured during the tests on the grid-wall, with the one related to a continuous 

linear elastic model . In particular, the fictitious shear modulus G' was defined 

starting from the shear modulus of the concrete modified by a suitable correction 

coefficient β , according to the expression: 

G'=β G 

This β coefficient takes into account that the wall built with formwork blocks is not 

continuous, but has a discrete two-dimensional structure composed of vertical and 

horizontal elements. In accordance with the linear-elastic continuum model the 

relation T- γ can be expressed by the classical expression: 

,A'GT   

where T can be evaluated as the Vertical Load P that the loading-machine impress 

on the upper corner of the wall, multiplied for cos45° to obtain the shear T on the 

joists; G' is the fictitious shear modulus, A is the geometrical cross section of the 

panel and γ is the slide. The shear elastic modulus of the concrete instead was 

defined starting from the Young's modulus according to the classic expression: 

)1(2 
 cmE

G  

 

where a Poisson's coefficient of 0.2 was considered, obtaining G=13473.3 MPa 

considering a Ecm=32336 MPa as Young's modulus. 
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In the following, the results of compressive diagonal test conducted on 14 cm grid-

wall are reported. 

 

Fig.3.7  (T- γ) graph of CD14_01 test 

 

 

Fig.3.8  (T- γ) graph of CD14_02  test 

 

From these two experimental curves was evaluated in the tangential stiffness G'A, 

which coincides with the inclination of the first section of the elastic part of the 

diagram T-γ. 
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Diagonal test(14) G’A 

  (kN) 

CD14_01 575785 

CD14_02 610359 

Mean 593072 
 

Table.3.4  Shear stiffness measured on diagonal tests on 14 cm specimen 

 

In Table 3.4 are reported the tangential stiffness values evaluated. In order to obtain 

the coefficient β able to match the theoretical tangential stiffness connected to the 

concrete continuum theory with the experimental one related to the grid-wall, the 

following equation was imposed: 

45.0
980003.13473

593072000)'( exp





GA

AG
  

where the stiffness in the numerator is the mean value measured experimentally 

while in the denominator the concrete shear modulus and the effective cross section 

of the panel 14 cm width are reported. 
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3.4 Analysis of the results on 18 cm width 

panels 

3.4.1 Equivalent thickness seg and Mean Axial Stiffness ΔK18 of the continuous 

wall 18 cm width (Block 32/22) 

The generic panel made  is composed of vertical pillars and horizontal beams. The 

collaborating geometrical area of each pillar, defined as the continuous vertical 

member from the lower to the upper base, is equal to 297 cm2. In Fig. 3.9 is 

reported one of the wall tested: it can be noticed how the concrete pillars are not 

continuous due to the fitting procedure that foresee staggered blocks. In Fig.3.10 

instead, are reported the effective dimensions of the typical 1 m cross-section.   

 

Fig.3.9 Geometry of the wall tested( 1mx1m ) 

First of all is necessary to evaluate the geometrical concrete area A geom: 

 

Fig.3.10 Cross-section of panel 18 cm width 
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In the case of wall 18 the concrete area per meter is: 

A30/22=1188 cm2/m 

The goal is to identify the continuous panel of equal cross section Area.  According 

to the following expression the equivalent thickness of the panel can be defined: 

cm.8811
100

1188

b

A
s

effc,

eg   

 

This definition completely rely on geometrical considerations. The equivalent 

geometrical thickness seg is the one to be used in the modeling phases, for the 

evaluation of the actions on the different elements. 

 

3.4.2 Results of centered compression tests on panels 18 cm width: CC18_01 

and CC18_02 

Here below in Figure 3.11 - Figure 3.12 and in Table 3.5  and Table 3.6 summarizes 

the results of experimental tests carried out in the laboratory. 

 

 

Figure 3.11.  Load-Vertical Shortening graph of the centered compression test 

Panel CC18_01. 



 

Grid type wall system 

 

 

71 

 

 

Figure 3.12. Load-Vertical Shortening graph of a centered compression test Panel 

CC18_02. 

In the Table 3.5 and Table 3.6  are reported the values of the load P and vertical 

shortening Δl corresponding to the maximal Load Pmax and to the 30% of Pmax . 

These data were used to evaluate the secant stiffness of the panel in the two 

different load steps. It was evaluated also the ratio ΔK between the secant stiffness 

at 30% of Pmax and Pmax himself, in accordance with the Italian Guidelines " Linee 

Guida per sistemi costruttivi a pannelli portanti basati sull’impiego di blocchi cassero 

e calcestruzzo debolmente armato in opera"  issued by the Consiglio Superiore dei 

Lavori Pubblici (August 2011). 

 

CC18_01 CC18_02 

    P30% PMax     P30% PMax 

                

P (kN) 845 2818 P (kN) 754 2515 

 (mm) 0.209 1.704  (mm) 0.101 0.721 

K (kN/mm) 4044 1654 K (kN/mm) 7497 3486 

        

 
K 0.41 

  
K 0.47 

  

Table 3.5. Panels CC18_01 and CC18_02 . results of Centered Compression tests 

on 18 cm panels 
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CC18_01 - CC18_02 

Mean value 

    P30%   

K (kN/mm) 5770.5   

 

Table 3.6. Mean value of the axial stiffness of the 18 cm panels.  

 

3.5 Interpretation of the centered compression 

tests on 18cm width panels 

3.5.1 Equivalent Young Modulus E' of the continuous wall with seg=11.88 cm 

Starting from the experimental results and making use of the equivalent geometric 

thickness defined in Par. 3.4.1, we want to find the value of fictitious Young modulus 

E able to match the experimental axial stiffness measured in linear elastic behavior. 

In particular, the fictitious elastic modulus is defined starting from the elastic 

modulus of concrete modified by a suitable correction coefficient α. 

E’= α E 

This coefficient α takes into account that the wall build with formwork blocks is 

constituted not only by concrete pillars but presents a two-dimensional structure 

composed of vertical and horizontal elements. In accordance with the linear-elastic 

continuum model, the relation Force-Displacement can be expressed by the 

classical formulation: 

KF   

where the axial stiffness is equal to: 

l

AE
K

'
  

Starting from the experimental curves Load- Δl shown above, an average value of 

the secant stiffness (at 30% strength) of the panels tested was evaluated equal to K 

=5770.5 kN / mm. The inversion of the last equation, provides the dependence of 

the elastic modulus of such fictitious parameter according to the expression: 
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A

Kl
E '

 

 

from which, substituting into it the value of stiffness obtained experimentally, the 

cross-section area A = 1188 cm2 and the length l = 73.6 cm of the measurement 

base of the transducers, can be obtained a value of fictitious elastic modulus E '= 

35749 MPa . The correction coefficient α results to be equal to: 

15.1
30978

35749'
18 

E

E

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3.5.2 Results of compressive diagonal tests on panels 18 cm width: CD18_01 

and CD18_02 

Considering the Standards ASTM E519 "Standard Test Method for Diagonal 

Tension (Shear) in Masonry Assemblages", the shear-slip curve has been 

reconstructed for each test, by defining the following quantities: 

- T= shear force acting on the generic section of the joists equal to: 

 45cosPT  

   where P is the loading force. 

- γ = slide defined by the ratio 

g

v 0



  

where δv is the measured vertical shortening of the specimen, δ0 is the horizontal 

elongation and g is the is the basis of measurement (the length of measurement 

bar) used in the test, equal to 76.4 cm an can be seen in Fig.xxx. 

 

3.5.3 Equivalent Elastic Tangential Modulus G' of the continuous wall 

Starting from the experimental results, and making use of the equivalent geometric 

thickness defined in paragraph 3.4.1,  the goal of this paragraph is the definition of 

the value of fictitious shear modulus G' able to match the tangential stiffness 

measured during the proof on the grid-wall, with the one related to a continuous 

linear elastic model. In particular, the fictitious shear modulus G' was defined 

starting from the shear modulus of the concrete modified by a suitable correction 

coefficient β , according to the expression: 

G'=β G 

This β coefficient takes into account that the wall built with formwork blocks is not 

continuous, but has a discrete two-dimensional structure composed of vertical and 

horizontal elements. In accordance with the linear-elastic continuum model the 

relation T- γ can be expressed by the classical expression: 

AGT '  
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where T can be evaluated as the Vertical Load P that the machine impress on the 

upper corner of the wall, multiplied for cos45° to obtain the shear T on the joists; G' 

is the fictitious shear modulus, A is the geometrical cross section of the panel and γ 

is the slide. The shear elastic modulus of the concrete instead was defined starting 

from the Young's modulus according to the classic expression: 

)1(2 
 cmE

G  

 

where a Poisson's coefficient of 0.2 was considered, obtaining G=13473.3 MPa 

considering a Ecm=32336 MPa as Young's modulus. 

In the following, the results of compressive diagonal test conducted on 18 cm grid-

wall are reported. 

 

Fig.3.13  (T- γ) graph of CD18_01 test 
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Fig.3.14  (T- γ) graph of CD18_02  test 

From these two experimental curves was evaluated in the tangential stiffness G'A, 

which coincides with the inclination of the first section of the elastic part of the 

diagram T-γ. 

Diagonal test(18) G’A 

  (kN) 

CD18_01 853262 

CD18_02 800519 

Mean 826890.5 
 

Table.3.7  Shear stiffness measured on diagonal tests on 18 cm specimen 

In Table 3.7 are reported the tangential stiffness values evaluated. In order to obtain 

the coefficient β able to match the theoretical tangential stiffness connected to the 

concrete continuum theory with the experimental one related to the grid-wall, the 

following equation was imposed: 

51.0
1188003.13473

826890500)'( exp





GA

AG
  

where the stiffness in the numerator is the mean value measured experimentally 

while in the denominator the concrete shear modulus and the effective cross section 

of the panel 18 cm width are reported. 
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3.6 Summary 

The experimental test, conducted on Large Lightly Reinforced Concrete Wall build 

with formwork block object of this Thesis, followed the  n.1 typology the Italian 

Guidelines "Linee Guida per sistemi costruttivi a pannelli portanti basati sull’impiego 

di blocchi cassero e calcestruzzo debolmente armato in opera"  issued by the 

Consiglio Superiore dei Lavori Pubblici (August 2011) on compression tests and 

diagonal compression tests. From the experimental tests some mechanical 

parameters identifying the elastic response of the grid-wall were defined. These 

parameters should be used during the design phase as a simplifying tool to build 

elastic continuum models. 

A procedure which involves the use of corrective factors α and β was developed: it 

consist on multiplying respectively the values of the longitudinal elastic modulus E 

and transversal G, in order to model the r.c. grid-walls as continuous walls, devoid 

of holes,  and characterized by a equivalent geometric thickness seg calculated as a 

function of the net area of concrete. 

The results are listed below. 

 

3.6.1 Definition of equivalent geometric thickness seg  

The equivalent geometric thickness is defined as the net resistant area (the area of 

concrete casted on site) per unit length of the wall, divided by the length L. 

Proceeding in this way, the effective area of concrete Ac,eff of the equivalent 

continuous wall suggested by Italian Guidelines, can be obtained according to the 

formula: 

 

Ac,eff = seg L 

 

For the two different typologies of blocks 25/18 ( width 14 cm) and 30/22 ( width 18 

c), the equivalent geometrical thicknesses are evaluated as reported in Table 3.8. 

  
Width of 

panel Equivalent continuous width  

  ( cm ) (cm) 

Block 25/18 14 9.8 

Block 30/22 18 11.88 
 

Table 3.8 Values of the equivalent geometrical thickness to be considered in the 

design phase for the two different type of blocks 
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3.6.2 Correction coefficient α and β 

The mechanical behavior of the grid walls can be compared to the behavior of a 

continuous wall, with the same length L and thickness coincident with the equivalent 

geometric one seg (defined according to the Guidelines). During the modeling and 

calculation phases the equivalent values E '=α E and G'=βG must be used, using 

the correction coefficients indicated in Table 3.9: 

 

  E G α β 

Panel 14 

from 
Guidelines 

from 
Guidelines 

1.09 0.45 

Panel 18 

from 
Guidelines 

from 
Guidelines 

1.15 0.51 

 

Table 3.9 Values of the correction factors to be applied during modeling phase to 

continuous equivalent wall 
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3.7 Equivalent continuous numerical models 

Considering the result obtained and making reference to the Table 3.8 and Table 

3.9 some simple numerical models able to test the reliability and effectiveness of the 

corrective coefficient obtained can be build. The F.E. program chosen to reproduce 

the equivalent wall was Abaqus, that will be used in the second part of this thesis for 

the micro-modeling attempt. 

Both panels 14 cm and 18 cm were checked. 

In both cases a continuous element were build. The dimensions are simply 1m x 1 

m x seg as evaluated for the two cases in the previous paragraph and reported in 

Table 3.8. The mesh ( characteristic dimension of 2 cm), the boundary conditions 

and the load used are reported in Figure 3.15. 

  

 

 

 

 

 

 

 

Fig.3.15 (a) The mesh and spy-nodes        Fig.2.15 (b) The load and the B.C.   

Fig.3.15  Continuous model for checking purpose 

 

Four spy-nodes were introduced in each model to make a check between numerical 

Load-vertical shortening graph and experimental one. Abaqus elastic editor 

requests the Young's modulus E and the Poisson coefficient ν.  

For what concern the Young modulus the corrected E' inserted following the over 

mentioned formula: 

E'=α E 
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For what concern the Poisson coefficient a corrected ν' was inserted. The new 

Poisson coefficient was evaluated as follows: 









 2

'

2

1
'

G

E
  

 

 

3.7.1 Implementation and results on continuous wall 14 

In Table 3.10 the results on the elastic parameters implemented to reproduce the 

equivalent continuous wall 14 are reported. 

 

Eq.wall_14   

E 30978 

α_14 1.09 

E'_14 33766.02 

ν 0.2 

G 12907.5 

β_14 0.45 

G' 5808.375 

ν' 0.308 

 

Table.3.10  Parameters considered for continuous numerical wall14 

 

 

 

Fig.3.16  Abaqus material editor for continuous numerical wall14 
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The comparison with the experimental elastic part of the curve Load-Vertical ΔL 

shows good results. The numerical continuous wall implemented, falls perfectly in 

between the two experimental curves CC14_01 and CC14-02. 

 

 

Fig.3.17 Comparison between numerical and experimental Load-Vertical ΔL curves  

for continuous wall14 

 

3.7.2 Implementation and results on continuous wall 18 

In Table 3.11 the results on the elastic parameters implemented to reproduce the 

equivalent continuous wall 18 are reported. 

 

Eq.wall_18 

E 30978 

α_18 1.15 

E'_18 35624.7 

ν 0.2 

G 12907.5 

β_18 0.51 

G' 6582.83 

ν' 0.38 

 

Table.3.11  Parameters considered for continuous numerical wall14 
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Fig.xx  Abaqus material editor for continuous numerical wall18 

 

The comparison with the experimental elastic part of the curve Load-Vertical ΔL 

shows good results. The numerical continuous wall implemented, falls perfectly in 

between the two experimental curves CC18_01 and CC18_02. 

 

Fig.3.18  Comparison between numerical and experimental Load-Vertical ΔL curves  

for continuous wall18 
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Chapter 4 
 

Constitutive laws for 
modeling purposes 
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Background 

For a better and in-deep understanding of complex phenomena non-linear analysis 

is often used, especially in seismic design and collapse analysis. The non-linearity 

of the analysis introduce elements of complexity, but is the only way to capture the 

micro-behavior close to the collapse or, more in general, the phase after the elastic 

one. In practical design the use of sophisticated micro-modeling process is not 

used, cause of the unavoidable time-consuming problems connected with strong 

non-linearity. 

  In classical formulations two types of non-linearity are considered: the geometrical 

and the constitutive one. The constitutive non-linearity is the one used in the present 

thesis. The theoretical formulations available in literature are referred to 

experimental campaign on concrete behavior conducted by Kent and Park [23] , 

Cornellissen et al. [24]. 

The use of advanced “Arch-Length method” and the correct choice of the 

advancement-step is the only way to grant the convergence of this type of 

problems. 

 

Object 

The primary objective of this chapter was to provide the complete framework in the 

definition of the non-linear constitutive model used, with the goal to describe the 

behavior of the concrete for a better matching between numerical model and 

experimental proof. 

Introduction 

The definition of the constitutive model of the two material is one of the most 

important and tricky aspect of this study. In FE linear elastic analysis the definition 

of elastic parameters ( Young's modulus E , Poisson ratio ν ) and of the peak 

strength values is sufficient to ensure reliable and conservative solutions. In the 

non-linear analysis the definition of the σ-ε evolution-law, both in the pre-peak and 

moreover during the post-peak behavior is crucial for both convergence and 

accuracy aspects. Other important parameters concerns the flow rule and the yield 

function. All these laws must be well calibrated; that's imply that the more 
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experimental data are available the more the calibration process can be focused of 

the best fitting of a few number of parameters. For this purpose Chapter 2 in which 

experimental data are provided will be often recalled. 

 

4.1 Experimental behavior of concrete 

4.1.1 Concrete subjected to uniaxial compression 

The typical compressive stress-strain curve of the concrete is reported in Fig.4.1. 

Three different phases can be observed: the linear-elastic phase, the non elastic 

phase and the phase of the localization of the deformation. The first phase grows 

until a compression stress that is almost 30% of f'c, the cylindrical compressive 

uniaxial strength. For bigger values, is observed a second phase, the non-linear 

response that becomes more evident close to the peak value f'c beyond which the 

descending branch starts, in which  the deformation decreases with increasing 

stress until rupture crushing. If the material is subjected to cyclic loading  a residual 

strain and a degradation of stiffness can be observed. 

 

Fig. 4.1 Stress-strain curve for uniaxial cyclic proof  (Chen[21]) 

 

Experimental observations show that in the after-peak phase, the deformation is no 

longer uniform, but tends to be localized in a section. In this phase a correct 

representation of the behavior must be done in terms of stress-displacements rather 

than stress-strain. This experimental evidence has been supported by studies 
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conducted by Van Mier [22] on the dependence of the stress-strain branch on the 

geometry element. The results are illustrated in Fig.4.3  

It is noted that before the peak, the curves are identical. On the other hand after the 

peak, decreasing the height of the specimen there is a decrease in the slope of the 

stress-strain graph. On the contrary, if the same results are represented in terms of 

stress-displacement, the difference in the response of the samples disappears. 

 

Fig. 4.2: Dependence of the stress-strain curve of the size of the specimen 

(Van Mier [22]) 

 

 

Fig. 4.3: Independence of the stress-displacement curve of the size of the specimen 

(Van Mier [22]) 
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4.1.2 Concrete subject to uniaxial tension 

The typical stress-elongation curve for a concrete subject to uniaxial tension is 

illustrated in Figure 4.4. 

 

Fig. 4.4: Curve stress-elongation for uniaxial traction test 

 

It is noted that the concrete has a nearly linear behavior up to the ultimate strength. 

Once reached the peak value, it is observed the formation of a crack. The stress, 

however, is not reduced instantaneously to zero as in brittle materials like glass, but 

decreases with increasing elongation. This phenomenon is known as traction 

softening. In this phase the deformation is no longer homogeneous in the specimen, 

but is localized in an area called "fracture zones", while the rest of the structure is 

discharged. The total deformation is composed of two distinct parts: the elastic 

deformation of the concrete between the microcracks and the deformation 

associated with the release of tension that acts over a width equal to the width of 

the fracture zones .   

It has been shown experimentally that the stress-strain relationship depends on the 

size of the element. It is therefore appropriate to describe the cracking behavior with 

a stress-crack opening as shown in Fig 4.6 . The area under this curve represents 

the specific energy of tensile fracture Gf, defined as the amount of energy required 

to create the unit area of a continuous crack. Since Gf is considered a property of 

the material, the energy dissipated at collapse is constant, and in this way we obtain 

a description of the material response independent of the element size. 
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Fig. 4.5: Decomposition of the traction strain 

 

 

Fig. 4.6: Correlation stress-crack opening 

 

4.1.3 Behavior of concrete subjected to a biaxial state of stress 

The concrete subjected to biaxial compression exhibits a resistance and a stress-

strain response different from the uniaxial loading conditions. Figure xx  shows the 

failure surface biaxial proposed by Kupfer. For biaxial compression the concrete 

shows an increase of the resistance which is higher by 25% compared to the 

resistance uniaxial when σ1/σ2=0.5 and of the 16% when σ1/σ2=1. In the case of 

biaxial tensile strength is almost the same as the uniaxial tensile strength. In the 

case of traction-compression, the compressive strength decreases almost linearly 

with increasing of the principal tensile stress. The relationship between the principal 
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stresses σ1/σ2 also affects the ductility and expansion, that is, the increase of 

inelastic volume close to the breaking of concrete, as shown in Fig 4.8. 

 

Fig. 4.7: Kupfer's failure surface 

 

Fig. 4.8: Volumetric strain in a biaxial compression test (Kupfer et al. [ ]) 
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4.1.4 Behavior of concrete subject to a state of triaxial state of stress 

Figure 4.9  illustrates the stress-strain curve for a triaxial compression test. These 

curves show that the concrete, as a function of the lateral stress applied, can 

behave as a brittle material, plastic and plastic hardening. The lateral pressure 

produces an increase of the compressive strength and in general an increase in the 

ductility of the element (Fig. 4.10). 

 

Fig. 4.9: Stress-strain relationship for a triaxial compression (Chen [21]) 

 

Fig. 4.10: Stress-strain relationship for a triaxial compression (Chen [21]) 
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4.2 Constitutive models for concrete 

In recent years many analytical models able to accurately predict the behavior of 

reinforced concrete structures have been developed. Most of models available in 

literature are part of one of this three categories: plastic models, models with 

damage and plastic model coupled with damage. The "plasticity" of concrete is 

strictly connected with the experimental results obtained in triaxial tests (Chen [21]). 

 

               (a)Model with damage                         (b)Plastic model  

 

 

c)Plastic model with damage  

Fig. 4.11: Material behavior 

The characteristic of a plastic material is the accumulation of irreversible 

deformation when it exceeds the yielding point. The previous paragraph introduced 

how the concrete exhibits plastic deformation when subjected to compression. For 

this reason, the classical theory of plasticity, originally developed for the description 

of the behavior of metals, is now widely used to model the non-linear behavior of the 

concrete. It is of course different the nature of the irreversibility of deformation, due 

to the movement of dislocations in metals and to the development of cracks in the 
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concrete. The proposed models are differentiated by the choice of the yield surface, 

which limits the elastic domain, the hardening law, which defines the evolution of the 

yield surface and of the flow rule, which determines the orientation of the plastic 

deformation, which can be associated, therefore normal to the yielding surface of or 

not-associated.  

Even if the plastic models describe very well the collapse conditions and the 

development of irreversible deformation, are not capable of representing the 

degradation of stiffness due to the growth of micro-cracking . The models based on 

damage mechanics are relatively recent. They are able to reproduce both the 

stiffness and the strength degradation, but do not describe the accumulation of 

permanent deformations. The development of these models requires the definition 

of a damage law that characterizes the orientation and the rate at which damage 

accumulates. Finally, the most recent models, models with damage criteria, couple 

both theories catching both the irreversible deformation and the stiffness 

degradation. Examples of coupled models are those of Lubliner et al.[19], Lee and 

Fenves [20].  

The most critical aspect in the description of the behavior of reinforced concrete 

structures with the finite element method is the definition of a constitutive model for 

concrete. One of the most critical is that the model should represent the crack 

formation. The crack onset implies the presence of a free surface inside the 

structure, which causes a redistribution of the stress state and a change in the 

stiffness of the element. The constitutive model should be able to predict the onset 

and evolution of the crack. The modeling is based on fracture mechanics, and it 

analyze the bond stress - strain derived from the identification of possible plans of 

cracking and the definition of the size of the "fracture zones". In the finite element 

method, there are basically two methods to model the cracks: the discrete crack 

model ("discrete crack model") and the spread crack model ('smeared crack model 

").The "discrete crack model" is the method closer to reality. The formation of the 

crack is represented with two free surfaces, obtained by separating the nodes of the 

mesh of the finite element model. Obviously, the variation of the mesh, and then the 

redefinition of the stiffness matrix, results in large computational effort, so this 

method is not suitable for problems with diffused crack formation. In the "smeared 

crack model" the cracks are modeled by reducing the principal tensile stress 

according to a constitutive law of concrete tight. Instead of representing a single 
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opening, distributed cracks perpendicular to the principal direction of traction are 

represented. This approximation is quite realistic for concrete, in which the cracking 

process is preceded by a micro-cracking phase of the material. 

 

4.3 Constitutive models in Abaqus: Concrete 

Damaged Plasticity model(CDP) 

Recently, modeling of failure and fracture  became one of the fundamental issues in 

structural mechanics. The "concrete damaged plasticity" (CDP) model provides a 

general capability for modeling concrete and other quasi-brittle materials in all types 

of structures. This model uses concepts of isotropic damaged elasticity in 

combination with isotropic tensile and compressive plasticity to represent the 

inelastic behavior of concrete. The CDP model is based on the assumption of scalar 

(isotropic) damage and is designed for applications in which the concrete is 

subjected to arbitrary loading conditions, including cyclic loading. The model takes 

into consideration the degradation of the elastic stiffness induced by plastic straining 

both in tension and compression. It also accounts for stiffness recovery effects 

under cyclic loading.  

 

 

4.3.1 The main features of CDP model 

To correctly implement a concrete damage plasticity model four main ingredients 

must be defined: 

 

- Stress–strain relationship 

- Damage and stiffness degradation 

- Yield function 

- Flow rule 

 

As will be better explained in the following paragraphs the input parameters 

requested in Abaqus are devoted to the definition of these four laws. 
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4.3.2 Strain rate decomposition 

A strain rate decomposition is assumed for the rate-independent model: 

 

where  is the total strain rate,  is the elastic part of the strain rate, and  is the 

plastic part of the strain rate. It’s important to underline this aspect also because 

Abaqus command request as an input only the inelastic part  of strain. 

4.3.3 Stress-strain relations 

The stress-strain relations are governed by scalar damaged elasticity: 

 

where  is the initial (undamaged) elastic stiffness of the 

material;  is the degraded elastic stiffness; and d is the scalar 

stiffness degradation variable, which can take values in the range from zero 

(undamaged material) to one (fully damaged material). Damage associated with the 

failure mechanisms of the concrete (cracking and crushing) therefore results in a 

reduction in the elastic stiffness. Within the context of the scalar-damage theory, the 

stiffness degradation is isotropic and characterized by a single degradation 

variable, d. Following the usual notions of continuum damage mechanics, the 

effective stress is defined as 

 

 

4.3.4 Postfailure stress-strain relation in traction 

In reinforced concrete the specification of post-failure behavior generally means 

giving the post-failure stress as a function of cracking strain, . The cracking 

strain is defined as the total strain minus the elastic strain corresponding to the 

undamaged material; that is, , where , as illustrated in  

Figure 4.12. To avoid potential numerical problems, Abaqus enforces a lower limit 

on the post-failure stress equal to one hundred of the initial failure 

stress: . 
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Figure 4.12 Illustration of the definition of the cracking strain  used for the 

definition of tension stiffening data. 

Tension stiffening data are given in terms of the cracking strain, . When 

unloading data are available, the data are provided to Abaqus in terms of tensile 

damage curves, , as discussed below. Abaqus automatically converts the 

cracking strain values to plastic strain values using the relationship 

 

Abaqus will issue an error message if the calculated plastic strain values are 

negative and/or decreasing with increasing cracking strain, which typically indicates 

that the tensile damage curves are incorrect. In the absence of tensile 

damage . 

The "damage" dt was defined as: 
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In cases with little or no reinforcement, the specification of a post-failure stress-

strain relation introduces mesh sensitivity in the results, in the sense that the finite 

element predictions do not converge to a unique solution as the mesh is refined 

because mesh refinement leads to narrower crack bands. This problem typically 

occurs if cracking failure occurs only at localized regions in the structure and mesh 

refinement does not result in the formation of additional cracks. If cracking failure is 

distributed evenly (either due to the effect of rebar or due to the presence of 

stabilizing elastic material, as in the case of plate bending), mesh sensitivity is less 

of a concern. 

In practical calculations for reinforced concrete, the mesh is usually such that each 

element contains rebars. The interaction between the rebars and the concrete tends 

to reduce the mesh sensitivity, provided that a reasonable amount of tension 

stiffening is introduced in the concrete model to simulate this interaction. This 

requires an estimate of the tension stiffening effect, which depends on such factors 

as the density of reinforcement, the quality of the bond between the rebar and the 

concrete, the relative size of the concrete aggregate compared to the rebar 

diameter, and the mesh. A reasonable starting point for relatively heavily reinforced 

concrete modeled with a fairly detailed mesh is to assume that the strain softening 

after failure reduces the stress linearly to zero at a total strain of about 10 times the 

strain at failure. The strain at failure in standard concretes is typically 10–4, which 

suggests that tension stiffening that reduces the stress to zero at a total strain of 

about 10–3 is reasonable. This parameter should be calibrated to a particular case. 

The choice of tension stiffening parameters is important since, generally, more 

tension stiffening makes it easier to obtain numerical solutions. Too little tension 

stiffening will cause the local cracking failure in the concrete to introduce temporarily 

unstable behavior in the overall response of the model. Few practical designs 

exhibit such behavior, so that the presence of this type of response in the analysis 

model usually indicates that the tension stiffening is unreasonably low. 

4.3.5 Fracture energy cracking criterion 

When there is no reinforcement in significant regions of the model, the tension 

stiffening approach described above will introduce unreasonable mesh sensitivity 

into the results. However, it is generally accepted that Hillerborg's (1976) fracture 

energy proposal is adequate to allay the concern for many practical purposes. 
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Hillerborg defines the energy required to open a unit area of crack, , as a 

material parameter, using brittle fracture concepts. With this approach the 

concrete's brittle behavior is characterized by a stress-displacement response 

rather than a stress-strain response. Under tension a concrete specimen will crack 

across some section. After it has been pulled apart sufficiently for most of the stress 

to be removed (so that the undamaged elastic strain is small), its length will be 

determined primarily by the opening at the crack. The opening does not depend on 

the specimen's length. 

This fracture energy cracking model can be invoked by specifying the postfailure 

stress as a tabular function of cracking displacement, as shown in Figure 4.13. 

 

Figure 4.13 Post-failure stress-displacement curve. 

Alternatively, the fracture energy, , can be specified directly as a material 

property; in this case, define the failure stress, , as a tabular function of the 

associated fracture energy. This model assumes a linear loss of strength after 

cracking, as shown in Figure 4.14. 

 

Figure 4.14. Postfailure stress-fracture energy curve. 
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The cracking displacement at which complete loss of strength takes place is, 

therefore, . Typical values of  range from 40 N/m for a typical 

construction concrete (with a compressive strength of approximately 20 MPa ), to 

120 N/m for a high-strength concrete (with a compressive strength of approximately 

40 MPa). 

If tensile damage, , is specified, Abaqus automatically converts the cracking 

displacement values to “plastic” displacement values using the relationship 

 

where the specimen length, , is assumed to be one unit length,  

 

4.3.6 Defining compressive behavior: σc_inel-ε c_inel; damage variable dc 

It is of course possible to define the stress-strain behavior of plain concrete in 

uniaxial compression outside the elastic range. Compressive stress data must be 

provided as a tabular function of inelastic (or crushing) strain, , and, if desired, 

strain rate, temperature, and field variables. Positive (absolute) values should be 

given for the compressive stress and strain. The stress-strain curve can be defined 

beyond the ultimate stress, into the strain-softening regime. 

Hardening data are given in terms of an inelastic strain, , instead of plastic 

strain, . The compressive inelastic strain is defined as the total strain minus the 

elastic strain corresponding to the undamaged material, , 

where , as illustrated in Figure 4.15.  
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Figure 4.15 -  Definition of the compressive inelastic (or crushing) strain  used for 

the definition of compression hardening data. 

Unloading data are provided to Abaqus in terms of compressive damage 

curves, , as discussed below. Abaqus automatically converts the inelastic 

strain values to plastic strain values using the relationship 

 

Abaqus will issue an error message if the calculated plastic strain values are 

negative and/or decreasing with increasing inelastic strain, which typically indicates 

that the compressive damage curves are incorrect. In the absence of compressive 

damage .  

The choice of the damage properties is important since, generally, excessive 

damage may have a critical effect on the rate of convergence. It is recommended to 

avoid using values of the damage variables above 0.99, which corresponds to a 

99% reduction of the stiffness. 
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The "damage" dc was defined as: 

      
         

   
 

4.3.7 Hardening variables 

Damaged states in tension and compression are characterized independently by 

two hardening variables,  and , which are referred to as equivalent plastic 

strains in tension and compression, respectively. The evolution of the hardening 

variables is given by an expression of the form 

 

as described later in this section. Microcracking and crushing in the concrete are 

represented by increasing values of the hardening variables. These variables 

control the evolution of the yield surface and the degradation of the elastic stiffness. 

They are also intimately related to the dissipated fracture energy required to 

generate micro-cracks. 

 

4.3.8 Yield condition 

The plastic-damage concrete model uses a yield condition based on the yield 

function proposed by Lubliner et al. [ ] and incorporates the modifications proposed 

by Lee and Fenves [ ] to account for different evolution of strength under tension 

and compression. In terms of effective stresses the yield function takes the form: 

 

Equation 1 

where  and  are dimensionless material constants; 

 

is the effective hydrostatic pressure; 
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is the Mises equivalent effective stress; 

 

is the deviatoric part of the effective stress tensor ; and  is the algebraically 

maximum eigenvalue of . The function  is given as 

 

where  and  are the effective tensile and compressive cohesion stresses, 

respectively. 

In biaxial compression, with ,  Equation 1 reduces to the well-known 

Drucker-Prager yield condition. The coefficient   can be determined from the initial 

equibiaxial and uniaxial compressive yield stress,  and , as 

 

Typical experimental values of the ratio  for concrete are in the range from 

1.10 to 1.16, yielding values of  between 0.08 and 0.12 (Lubliner et al. [19]). 

The coefficient  enters the yield function only for stress states of triaxial 

compression, when  This coefficient can be determined by comparing 

the yield conditions along the tensile and compressive meridians. By definition, 

the tensile meridian (TM) is the locus of stress states satisfying the 

condition  and the compressive meridian (CM) is the locus 

of stress states such that , where , , and  are the 

eigenvalues of the effective stress tensor. It can be easily shown 

that  and , along the tensile and 

compressive meridians, respectively. With  the corresponding yield 

conditions are 
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Let  for any given value of the hydrostatic pressure 

 with ; then 

 

The fact that  is constant does not seem to be contradicted by experimental 

evidence (Lubliner et al. [19]).. The coefficient  is, therefore, evaluated as 

 

A value of , which is typical for concrete, gives  

If , the yield conditions along the tensile and compressive meridians 

reduce to: 

 

 

Let  for any given value of the hydrostatic pressure 

 with ; then 

 

Typical yield surfaces are shown in Figure 4.16  in the deviatoric plane and in Figure 

4.17  for plane-stress conditions. 
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Fig.4.16 Yield surfaces in the deviatoric plane, corresponding to different values 

of . 

 

Fig.4.17 Yield surface in plane stress. 
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4.3.9 The flow rule 

The plastic-damage model assumes non-associated potential flow, 

 

The flow potential G chosen for this model is the Drucker-Prager hyperbolic 

function: 

 

where  is the dilation angle measured in the p–q plane at high confining 

pressure;  is the uniaxial tensile stress at failure; and  is a parameter, referred 

to as the eccentricity, that defines the rate at which the function approaches the 

asymptote (the flow potential tends to a straight line as the eccentricity tends to 

zero). This flow potential, which is continuous and smooth, ensures that the flow 

direction is defined uniquely. The function asymptotically approaches the linear 

Drucker-Prager flow potential at high confining pressure stress and intersects the 

hydrostatic pressure axis at 90° as can be seen in the Fig. 4.18. 

 

Fig. 4.18: Family of hyperbolic flow potentials in the p–q plane 

 

Because plastic flow is non-associated, the use of the plastic-damage concrete 

model requires the solution of non-symmetric equations. 
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4.4 Definition of "plasticity" parameters of CDP 

From the menu bar in the Edit Material dialog box, select Mechanical Plasticity

Concrete Damaged Plasticity. 

Enter the following data in the Data table: 
1. Dilation Angle 

Dilation angle, , in the p–q plane. Enter the value in degrees.36° 

2. Eccentricity 

Flow potential eccentricity, . The eccentricity is a small positive number that 

defines the rate at which the hyperbolic flow potential approaches its asymptote. 

The default is . 

3. fb0/fc0 

, the ratio of initial equibiaxial compressive yield stress to initial uniaxial 

compressive yield stress. The default value is  

4. K 

, the ratio of the second stress invariant on the tensile meridian, , to that 

on the compressive meridian, , at initial yield for any given value of the 

pressure invariant p such that the maximum principal stress is negative, . 

It must satisfy the condition . The default value is . 

 

5. Viscosity Parameter 

Viscosity parameter, , used for the visco-plastic regularization of the concrete 

constitutive equations in Abaqus/Standard analyses. This parameter is ignored in 

Abaqus/Explicit. The default value is . (Units of .) 

  

http://rita-pc:2080/v6.11/books/popups/usb-int-iconventions-unitsym.html
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4.5 Concrete compression behaviour: Kent-
Park formulation 
 
From the compression test mentioned in Chaper 2, it was possible to define the 

peak compression strength. The whole trend of the σ-ε curve remained unknown. 

To overcome this obstacle the Kent-Park [23] formulation was introduced. 

The strain at the maximum stress will be assumed to be ε0 = 0.002. This is a 

commonly accepted assumption for unconfined concrete. Confinement and the 

presence of strain gradient may increase the strain at maximum stress but as this 

may be accompanied by a small increase in stress-strain curve will pass close to 

the assumption point. 

Therefore for the first part of the curve can be assumed the following trend: 

 

       
    

  
    

   

  
 

 

     

 

in which ε0 = 0.002 and     is the maximum compression strength. 

The falling branch of the curve will be assumed to be linear and its slope will be 

specified determining when the concrete stress has fallen to 0.5 of maximum stress. 

It is well known that for unconfined concrete the slope of the falling branch 

increases rapidly with increase in concrete strength.   

Fig. shows a plot of the maximum stress, f'c, and the strain at 0.5f'c of the falling 

branch for unconfined concrete, ε50u . For short-term loading rates the experimental 

points conform reasonably close to  

     
            

     
    

 

in which f'c is expressed in pounds per square inch. 

The inclination of the descendant branch is dependent on the presence of 

confinement. 
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Fig. 4.19: Kent-Park σ-ε formulation 
 

 
4.6 Concrete traction behavior implemented 
 

4.6.1 Cornelissen’s  theoretical formulation on the post peak traction behavior 

of concrete(1986) 

 
The post peak traction behaviour of concrete can be expressed in Abaqus or in 

"stress-stain" terms or in "crack opening- stress" terms.  

In general Tensile-strain softening of concrete is defined by the tensile strength of 

concrete ft, the area under the softening curve that represents the fracture energy of 

concrete Gf ( that should control the ultimate strain ε0 or the ultimate crack opening 

w0) and the shape of the descending branch, as shown in Fig. 4.20. 

 

 

Fig. 4.20: Stress- crack opening displacement 
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Cornelissen et al. (1986) [24,26] conducted several deformation controlled uniaxial 

tension tests on normal-weight and lightweight concrete specimens, to determine 

the actual stress-strain softening characteristics. 

For the normalweight concrete, river gravel with a maximum grain size of 8 mm was 

used, and sintered expanded clay was used for the lightweight concrete. It was 

concluded that there is a unique relationship between crack opening and ultimate 

stress for a given concrete; this relationship is not affected by stress or strain 

history. 

The following exponential mathematical model was proposed: 

 

 

  
          

 

  
            

 

where ft is the maximal tensile strength and f (w) = a displacement function given 

by: 

           
   

  
 

 

         
   

  
   

 
where w = the crack-opening displacement; w0 = the crack opening at which stress 

can no longer be transferred; and c1 and c2 = material constants (for normal-weight-

concrete; c1=1.0 and c2= 5.64; for lightweight concrete; c1=3.0 and c2= 6.93). This 

model fit the data points of the tensile-strain softening diagram for both type of 

concrete satisfactorily. 

For what concern stress-strain formulations Reinhard and Cornellissen(1986) 

proposed: 

 

 

  
      

   

  
 

 

        

 

  
  

 
 
where c1 = a material constant = 9.0; and c2 = a material constant = 5.0; this 

formulation was subsequent to Reinhard's proposal(1984): 
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where k = 0.31; σ = the tensile stress normal to the crack; ε = the strain in the 

direction of the normal stress; and ε0 = the ultimate strain of the strain-softening 

branch. 

An important  relation exist between Fracture Energy Gf and ultimate crack width w.  

The crack-opening displacement w is represented by a crack strain acting over the 

crack band width h within the finite element. Therefore, w is the accumulated crack 

displacements, as shown in Fig. kkk.  The optimum value for h was determined by 

Bazant and Oh (1983) as 3 times the maximum aggregate size. By assuming that 

the microcracks are uniformly distributed over the crack band width [Fig. 3(b)], w 

can be expressed as: 

w= h ε 

 

maximum tensile stress. Since the fracture energy Gf is defined per unit of area of a 

continuous crack, it is independent of the finite-element mesh size. Gf is released 

over the full crack band width. The fracture energy of concrete is equal to the area 

under  the stress-crack-opening softening diagram.  Gf  can therefore be expressed 

as: 

 

               
  

 

 

 

where gf = the area under the stress-strain softening diagram, as shown in Fig. 

4.21(b). 

 

 
a) 
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b) 
 

Fig. 4.21: Tensile Stress versus a)crack opening displacement , 

b)crack strain 

 
 
Since the fracture energy and the tensile strength are material properties of the 

concrete, it is important to predict the relationship between these material properties 

and the ultimate crack opening w0 at which stress can no longer be 

transferred(Morcos and Bjorhovde 1992b). By using the Reinhardt (1984) 

mathematical model and substituting in the last integral equation: 

 

             
 

  
 

    

    
  

 

 

 

By performing the integration and substituting for the limits, it is found that 

 

                     

 

and the relationship between the ultimate crack opening, the fracture energy, and 

the tensile strength is: 
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The ultimate crack opening is therefore linearly related to the material properties of 

concrete. w0 can be determined from the equation above for any concrete mix, 

provided that the tensile strength and the fracture energy are known. 

By using the Cornelissen et al.(1986) exponential mathematical model, the same 

development leads to the expression 
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4.6.2 Experimental results on traction proof on plain concrete specimen 
 
In the previous paragraph the theoretical tools to define the traction behaviour of 

concrete were provided. All that formulations rely on the definition of 2 important 

values: 

 

- the maximal tensile stress ft 

-the ultimate strain ε0 or crack opening width w0 

 

All these parameter should rely on experimental data, the alternative is a long 

calibration process to find out a traction law that, once inserted in the global model, 

provide the best fitting between experimental curves and numerical one . An 

experimental campaign [25] conducted over plain and fiber-reinforced concrete was 

considered: 

 

 

Fig. 4.22: Tensile Stress specimen 
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in which 4 LVDT were positioned close to the section carved with a measurement 

base of 65 mm on the front and back surface of the specimen. Neglecting the elastic 

component, the relative displacements measured by two LVDT closer to the notch 

have been conventionally considered equal to the crack opening at that point 

(w[mm]). The output was represented in Figure 4.23: 

 

 

Fig. 4.23 Tensile Stress versus crack opening displacement  
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4.7 Numerical simulation of a simple tensile 

test  

In order to verify the correct implementation of the traction behavior of the concrete, 

a numerical simulation of a  simple tensile proof was carried out. The goal is to 

reproduce the experimental results obtained by Reinhardt(1984)[26]. Here below in 

Fig. the experimental set-up that he used for his experimental campaign is reported. 

 

Fig.4.24  - Uniaxial tensile test experimental equipment 

In the numerical test specimen having the dimensions proposed in Fig.4.25 were 

used .To avoid stress concentrations in correspondence of the corners close to the 

saw-cuts, the geometries were simplified as reported in Fig.4.25 b 

                                                                    

 

 

 

 

 

 

 

Fig.4.25  Sample geometry 
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The experiments, conducted in deformation control, were tested on narrow 

specimen 250 mm x 60 mm x 50 mm, where a saw-cut (5 mm width) reduced the 

cross section to 50 mm x 50 mm. The specimens have a notch of 5 x 5 mm in both 

sides so as to locate the process of cracking in the central area of the specimen 

thus having a section of 50 x 50 mm2. In the numerical simulation, to locate the 

cracking in the central section, it is preferred to replace the two notches present in 

the experimental test, with a gradual narrowing of the specimen to obtain the same 

section 50 x 50 mm2 in the central area of the specimen.  The test consists in 

applying, with the aid of a load cell a deformation, (in the case of test carried out in 

displacement control) and through two displacement transducers positioned outside 

the area of fracture, displacement is measured on the specimen above and below 

the slatted area. If the measurement length l0 is sufficiently small, this displacement 

can be considered coincident with the crack opening width w. In this experiment the 

measuring distance of transducers is approximately 50 mm. In Fig.4.26, Fig.4.27 

are reported  the experimental results that the numerical simulation wants to 

reproduce. 

 

Fig.4.26 Experimental curve σ-w(mean behavior of NC samples) 
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Fig.4.27 Experimental curves σ-w 

 

Once the geometry was created, has been possible to create the element 

discretization proposed in Fig. . The mesh size  is of  6.1 mm with 5 mm of 

thickness in the central zone. A total top displacement equal to 0.14 mm was 

imposed. This displacement represents the ultimate displacement and is reached 

for successive increments of load. An hysostatic boundary condition was imposed at 

the bottom base  to not induce additional hyperstatic stress components.  

                   

Fig.4.28  The mesh and the boundary conditions 
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Than the material properties has been defined. The two different concrete 

constitutive models of Abaqus environment  were compared:  

a) Concrete smeared cracking(CSC) 

b) Concrete damaged plasticity(CDS) 

The goal of the comparison was to test their performances in reproducing failure 

behavior and to have an instrument to better understand their calibration process. 

 To have a brief theoretical insight of these two models, the Paragraph 4.2 with its 

bibliography is recommended. 

 

4.7.1 Implementation of simple tensile test (Reinhard 1986)with smeared 

cracking model 

To implement this type of constitutive modeling different parameter are requested: 

1-Elasticity parameters  

The Young’s modulus of 39270 MPa and Poisson ration of 0.185 were imposed as 

reported in Fig.4.29 and in the reference article [26]. 

 

Fig.4.29  Properties of the concrete tested by Reinhard 
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2-Compressive behavior of concrete 

 The compressive behavior  is not directly involved in this type of proof but Abaqus 

implementation request it, because in the smeared cracking model the maximum 

tensile stress is evaluated as a fraction of the maximum compression strength. The 

input table is in terms of compression stresses σc versus "plastic strain", evaluated 

as the real total strain ε minus the strain at the ultimate elastic stress εel . In this case 

it can be evaluated as 23.55 MPa divided for the Young modulus. 

The non-linear part of the compressive behaviour is shown in Table 4.1.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1 Non-linear part of the compressive behavior 

The parabola follows the σ- ε  Kent-Park formulation [23]. 

 

Stress[Mpa] Plastic strain _ εpl 

23.55 0 

26.26210894 7.00E-05 

28.39784847 0.000140031 

30.41814261 0.000210046 

32.32299138 0.000280061 

34.11239477 0.000350076 

35.78635278 0.000420092 

37.3448654 0.000490107 

38.78793265 0.000560122 

40.11555452 0.000630138 

41.32773101 0.000700153 

42.42446212 0.000770168 

43.40574785 0.000840183 

44.27158819 0.000910199 

45.02198316 0.000980214 

45.65693275 0.001050229 

46.17643696 0.001120244 

46.58049579 0.00119026 

46.86910924 0.001260275 

47.04227731 0.00133029 

47.1 0.001400306 
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3- The  4 failure surface parameters 

The specification of the failure ratios are necessary to define the shape of the failure 

surface in the concrete smeared cracking model. Four failure ratios can be 

specified: 

 The ratio of the ultimate biaxial compressive stress to the ultimate uniaxial 

compressive stress → 1.16 

 The absolute value of the ratio of the uniaxial tensile stress at failure to the ultimate 

uniaxial compressive stress →  3.2 MPa/47.1 MPa = 0.06794 

 The ratio of the magnitude of a principal component of plastic strain at ultimate 

stress in biaxial compression to the plastic strain at ultimate stress in uniaxial 

compression→ 1.28 

 The ratio of the tensile principal stress at cracking, in plane stress, when the other 

principal stress is at the ultimate compressive value, to the tensile cracking stress  

→ 0.33 
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4- Tension stiffening 

 

The postfailure behavior for direct straining across cracks is modeled with tension 

stiffening, which allows you to define the strain-softening behavior for cracked 

concrete. This behavior also allows for the effects of the reinforcement interaction 

with concrete to be simulated in a simple manner. Tension stiffening is required in 

the concrete smeared cracking model. You can specify tension stiffening by means 

of a postfailure stress-strain relation or by applying a fracture energy cracking 

criterion. The second approach will be used strictly connected to the definition of 

ultimate displacement of tension stiffening branch u0, that is the ultimate crack 

opening at which a stress transfer is still possible. 

 

Fig.4.30 Tension stiffening Abaqus editor  

 Post-failure stress-strain relation 

Specification of strain softening behavior in reinforced concrete generally means 

specifying the post-failure stress as a function of strain across the crack. In cases 

with little or no reinforcement this specification often introduces mesh sensitivity in 

the analysis results in the sense that the finite element predictions do not converge 

to a unique solution as the mesh is refined because mesh refinement leads to 

narrower crack bands. This problem typically occurs if only a few discrete cracks 

form in the structure, and mesh refinement does not result in formation of additional 

cracks. If cracks are evenly distributed (either due to the effect of rebar or due to the 

presence of stabilizing elastic material, as in the case of plate bending), mesh 

sensitivity is less of a concern. 
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In practical calculations for reinforced concrete, the mesh is usually such that each 

element contains rebars. The interaction between the rebars and the concrete tends 

to reduce the mesh sensitivity, provided that a reasonable amount of tension 

stiffening is introduced in the concrete model to simulate this interaction (Fig.4.31). 

 

Fig.4.31 “Tension stiffening” model. 

The tension stiffening effect must be estimated; it depends on such factors as the 

density of reinforcement, the quality of the bond between the rebar and the 

concrete, the relative size of the concrete aggregate compared to the rebar 

diameter, and the mesh. A reasonable starting point for relatively heavily reinforced 

concrete modeled with a fairly detailed mesh is to assume that the strain softening 

after failure reduces the stress linearly to zero at a total strain of about 10 times the 

strain at failure. The strain at failure in standard concretes is typically 10–4, which 

suggests that tension stiffening that reduces the stress to zero at a total strain of 

about 10–3 is reasonable. This parameter should be calibrated to a particular case. 

The choice of tension stiffening parameters is important in Abaqus/Standard since, 

generally, more tension stiffening makes it easier to obtain numerical solutions. Too 

little tension stiffening will cause the local cracking failure in the concrete to 

introduce temporarily unstable behavior in the overall response of the model. Few 

practical designs exhibit such behavior, so that the presence of this type of 

https://www.sharcnet.ca/Software/Abaqus610/Documentation/docs/v6.10/books/usb/pt05ch20s06abm36.html#cconcrete-ten-stiff
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response in the analysis model usually indicates that the tension stiffening is 

unreasonably low. 

Fracture energy cracking criterion 

As discussed earlier, when there is no reinforcement in significant regions of a 

concrete model, the strain softening approach for defining tension stiffening may 

introduce unreasonable mesh sensitivity into the results. Crisfield (1986) discusses 

this issue and concludes that Hillerborg's (1976) proposal is adequate to allay the 

concern for many practical purposes. Hillerborg defines the energy required to open 

a unit area of crack as a material parameter, using brittle fracture concepts. With 

this approach the concrete's brittle behavior is characterized by a stress-

displacement response rather than a stress-strain response. Under tension a 

concrete specimen will crack across some section. After it has been pulled apart 

sufficiently for most of the stress to be removed (so that the elastic strain is small), 

its length will be determined primarily by the opening at the crack length (Fig.4.32). 

 

Figure 4.32 Fracture energy cracking model. 

 

Obtaining the ultimate displacement u0 

The ultimate displacement, , can be estimated from the fracture energy per unit 

area, , as , where  is the maximum tensile stress that the 

concrete can carry. Abaqus manual states that typical values for  are 0.05 mm for 

a normal concrete to 0.08 mm for a high strength concrete. A typical value for  is 

about 10–4. As a matter of fact this type of values, related to reasonable values of 

fracture energy per unit area Gf (0.09-0.13 N/mm), don't converge. To find out the 

correct values of the ultimate displacement u0 that both: 

https://www.sharcnet.ca/Software/Abaqus610/Documentation/docs/v6.10/books/usb/pt05ch20s06abm36.html#cconcrete-frac-ener
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- converge and   

-provide the correct solution,  

a trial and error procedure was used. The results are provided in the following 

pages. 

 
Trial al error procedure to calibrate the u0 value: 

Once the compression behavior and the failure parameters has been implemented 

is necessary to define the tensile softening branch of the concrete. The difficulty is 

to find out the correct value of u0 to find out a convergent and correct solution, 

because not all the u0 values provide a solution( in this case Abaqus "abort" the 

Job) and not all the solution are correct. Different spy-nodes were selected on the 

numerical specimen: twelve above the critical cross section, twelve below as 

reported in Fig.4.33 with a distance of 55 mm between the two lines. 

 

Fig.4.33 Spy-nodes on the numerical specimen 
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The stress were calculated as the sum of the bottom reaction forces in y direction 

RF2, divided for the critical area of 2500 mm2. 

Different values of ultimate displacement were tested: 4 mm , 2 mm , 0.5 mm , 

0.125 mm, 0.12 mm, 0.1 mm. Values of 0.05-0.08 mm as suggested in the Abaqus 

manual don't provide convergent solutions. 

 

Fig.4.34 Graph σ-Crack Opening dependant on u0 

Overlapping the numerical curve u0=0.125 mm with the experimental one it can 

noticed how Abaqus reproduce the tensile test: 

 

 Fig.4.35 Comparison mean experimental σ-Δl  curve and numerical - CSC model 
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Fig.4.36 Comparison mean experimental σ-Δl  curve and numerical - CSC model 

The displacement distribution reveal that there is a crack opening in the critical 

section: at the final state all the deformations are concentrated in that area. 

 

Fig.4.37 Final state of Smeared Cracking specimen(UY - Scale factorx100) 



 

Grid type wall system 

 

 

126 

 

4.7.2 The CDP "concrete damage plasticity" model based on Lee and Fenver  

theory 

Also in the concrete damage model the elastic properties must be defined. As in the 

previous case a Young modulus of 39270 MPa, a Poisson modulus of 0.185 and a 

compression behavior in terms  of σc-εpl were established. The traction law definition 

for what concern the post peak behavior  follows Cornellissen (1986) formulation,  

as reported in the Paragraph 4.6.1 . The post peak branch is dependent on the peak 

stress value equal to 3.2 MPa and on the ultimate strain εu evaluated as: 

         
  

     
         

where h is the extent of the zone that participate to the cracking behavior. From the 

observation of the previous case the maximum stress and strain concentration 

before crack opening, where spread over a 1.5 cm of lenght in the zone close to the 

critical section; the other two parameters were set as:  

Gf=0.135 N/mm 

σt=3.2 MPa 

 

Fig.4.38  Graph σ-ε in CDP formulation (Cornellissen) 

 

As reported in the previous paragraph the damage d must be a value between 0 

and 1. To not create numerical problems the maximum value should never be 

bigger than 0.99. For the definition of this variable see paragraph. In Fig. 4.39 is 

reported the damage trend used in Abaqus traction specimen. 
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Fig.4.39 Damage variable trend in CDP specimen  

 

For what concern plasticity parameters in Fig. 4.40 is reported the Abaqus editor: 

 

Fig.4.40 Plasticity parameters in CDP specimen  
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It can be noticed how the numerical model fit the experimental results of  the tensile 

uniaxial experimental test: 

 

Fig.4.41 Comparison mean experimental σ-Δl  curve and numerical - CDP model 

Considering the whole set of experiment the results match quite well. 

 

Fig.4.41 Comparison experimental σ-Δl  curves and numerical - CDP model 
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Chapter 5 
 

Bond-slip  
formulation 
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Background 

The behavior of the bond between the concrete and reinforcing steel in an RC 

structure is a many-faceted phenomenon which allows longitudinal forces to be 

transferred from the reinforcement to the surrounding concrete.  When studying 

cracked reinforced concrete, characterization of the bond behavior is one of the 

most important issues. Once a crack develops, the concrete stress near the crack is 

relieved, but the tension in the steel can increase considerably. The high level of 

steel stress at the crack is transferred to the surrounding concrete through the 

interfacial bond (Won 1991).Therefore, it is helpful to understand the bond behavior 

and to model it appropriately before simulating the failure behavior of the RC grid 

wall of interest in this study. This report describes an attempt to accurately model 

the bond-slip relationship between concrete and rebar using the FE software 

package ABAQUS. 

 

Object 

The primary objective of this study was to develop a finite element model which 

could correctly simulate the bond-slip relationship in a RC member, and to 

accurately predict the level of stress and strains transferred by the bond. Other 

objectives were to develop a better understanding of bond behavior simulation, with 

the aim to insert in the RC wall model,  the best modeling techniques available in 

Abaqus.  

Introduction 

The action of the steel/concrete bond is a complex force transfer phenomenon 

occurring between the reinforcing steel and the surrounding concrete in RC 

members. The existence of the bond is the basic condition for these two materials to 

work together as a kind of composite material. The connection between the 

reinforcing bars and the concrete is also responsible for controlling of the crack 

opening behavior in an RC member (Filho et al. 2004).Between significant cracks, 

the concrete still "works" and will absorb part of the tensile load from the rebar 

because the bond allows the load transfer between these two materials. 

Consequently, the average and total strains resulting in the rebar are smaller than 

those that would be experienced under the same load in a plain rebar. This 
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mechanism, attributed to the bond, reduces the width of the cracks that develop and 

increases the stiffness of the structure. Because of its importance, the bond-slip 

relationship is considered in most of the design and analysis efforts involving RC. 

Researchers have conducted numerous studies to characterize the constitutive 

bond-slip relationship. In the finite element analysis field, many different methods 

were also employed to represent the nature of the interaction between the concrete 

and reinforcement.  

 

5.1 Bond-slip Relationship 

The pull-out experiment is perhaps the easiest method used to test the bond-slip 

relationship. In the state-of-the-art report "Bond of reinforcement in concrete" from 

CEB-FIP (The International Federation for Structural Concrete), the authors agree 

that the interaction between the concrete and the rebar subjected to a pull out force 

is characterized by four different stages, as represented in Fig 5.1, and described 

below(CEB-FIP 2000). 

 

Fig. 5.1Local Bond Stress-Slip Laws (adapted from CEB-FIP 2000) 

 

In Stage I the concrete is uncracked. For the low bond stress levels present in 

Stage I, bond efficiency is assured mostly by chemical adhesion, and there is little 

rebar slip, but highly localized stresses arise close to lug tips (CEB-FIP 2000). 
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Stage II is the stage in which first cracking occurs. For the higher bond stresses 

present in Stage II, the chemical adhesion breaks down; in deformed bars, the lugs 

induce large bearing stresses and transverse micro cracks originate at the tips of 

the lugs, allowing the bar to slip (CEB-FIP 2000).The progression through the 

relationship for regular reinforced concrete (i.e., including deformed bars) will be 

from Stage I to Stage II, then either to Stage III, or Stage IVb, or Stage IVc, 

depending on the confinement level and amount of transverse reinforcement 

present. Stage IVa, as indicated in the figure, is a special case for plain bars (i.e., 

without deformations).Stage IVc is the stage in which deformed bar pull-out failure 

occurs. In the case of deformed bars confined by sufficient transverse 

reinforcement, splitting failure does not occur and bond failure is caused by bar pull 

out, as indicated in Fig. 5.1 (CEB-FIP,2000).Stage IVb is characterized as the 

deformed bar-splitting failure stage; in the case of deformed bars confined by light 

transverse reinforcement, the splitting cracks breakout through the whole cover and 

between bars, and the bond tends to fail abruptly. On the other hand, a sufficient 

amount of transverse reinforcement can assure bond efficiency despite of concrete 

splitting. In this situation, the bond strength reaches a peak and then starts 

decreasing as slipping value increases, but still the bond strength remains 

significant at very large slip values, as shown in Fig. 5.1. (CEB-FIP 2000) .In Stage 

III, a more sudden failure occurs in concrete with lighter transverse and 

confinement. This stage ends as soon as concrete splitting reaches the outer 

surface of the member (CEB-FIP 2000).Stage IVa is called the plain bar-pull out 

failure stage: in plain bars, this stage immediately follows the breakage of the 

adhesive bond. The sliding interface reduces the friction and the bond stress 

decreases (CEB-FIP 2000).For better use of the bond slip relationship above has 

been simplified to a linear or bilinear curve by many researchers. There are several 

popular bilinear models, such as the three segments model (Nilson 1972), the five 

segments model (Guo and Shi 2003), and the six segments model(Tassios 1982); 

these three models are illustrated in Fig. 8.2. In Figure 5.2, τ represents bond 

stress, while S represents the magnitude of bond slip. In CEB-FIP MC90, a four 

segment model is suggested, as shown in Figure 5.3; Table 5.1 shows the 

characteristic values for the different parameters specified in this model. 
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Figure 5.2 Multilinear Bond Slip Relationships 

 

 

 

Figure 5.3 CEB-FIP MC90 Model (CEB-FIP, 1993) for Bond-Slip 

 

Table 5.1 Values of Parameters for CEB-FIP MC90 Model 
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Engstrom modified the degrading part of the CEB model recently in order to 

consider the effect of yielding of the rebar (CEB-FIP 2000). He found that the bond 

stress decreases more when the steel strain exceeds the yield strain than when the 

steel bar is still elastic because when the reinforcing bar reaches the yield stress, 

due to the Poisson's ratio, there is a narrowing of the section of the bar, with 

consequent detachment between the bar and the walls of the concrete. Fig 5.4 and 

Table 5.2  illustrate the different bond slip relationships under these two situations. 

 

Figure 5.4 Engstrom’s Model (CEB-FIP 2000) 
(I) Steel Bar in Elastic Stage (II) Steel Bar in The Plastic Stage 

 

The parameters to define the Elastic curve are: 

 

Table 5.2  Values of Parameters in Engstrom’s Model (CEB-FIP 2000) for Bond-Slip 
in Elastic phase 
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Instead the equations that describe the different branches of the Plastic stage are: 

 

 

where: 

sy= slip value at yielding phase= s1  
  

    
 

    

           τy=f(sy)=0.75 τmax 

syf=sy + 2.5 mm                                                             τyf=0.2τmax 

s5=2 s3 ÷ 15 mm 

 

5.2 Current Study and Existing Models 

 

5.2.1 FE Model of Reinforced Concrete 

Unlike steel and aluminum, which have uniform constitutive properties, reinforced 

concrete consists of two totally different materials working together to resist various 

types of loadings. Therefore, it is somewhat complex to predict reinforced concrete 

behavior that includes the bond-slip relationship using the FE method. Currently 

there are three different FE models which are widely used to simulate reinforced 

concrete behavior. They are discrete, distributed and embedded models. For the 

discrete modeling technique, separate, distinct elements are used to represent the 

concrete and the reinforcement. For instance, it is sometimes convenient to use a 

solid finite element to represent the concrete and to use a beam element to simulate 

the reinforcing bars. In the discrete model, concrete and steel are two totally 

independent parts. For this modeling technique, special elements must be placed at 
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the interface between the concrete and steel to represent the bond mechanism. 

When using the embedded modeling technique, the rebar is considered as an axial 

member that is built into the concrete element. Because the rebar is embedded, the 

rebar has the same displacement as the concrete element. Perfect bond is 

assumed in this modeling technique, so that the two materials are assumed to work 

together completely as one unit (ASCE 1982).When using the distributed modeling 

technique, the reinforcement is assumed to be smeared into every element of the 

concrete. Compared to the embedded model, in which the contribution of the 

concrete and steel is calculated independently, for the distributed modeling 

technique, the rebar is transferred to an equivalent amount of concrete and the RC 

is considered as a homogeneous material in this model. Perfect bond is again 

assumed for this technique. Each of these three models has its own strong points. 

The distributed model is frequently used in practical structural design and analysis, 

based on its simplicity of implementation. However, the internal force of the 

reinforcement is not available to be quantified in this model since the steel has been 

smeared. The discrete model is the only model of the three which can consider the 

bond slip mechanism directly, so it is very useful in more accurate RC simulations, 

despite the fact that the modeling process for this technique is the most complex. 

Moreover, it is more convenient to simulate irregular reinforcement in the discrete 

model, because the concrete and steel are separate entities. The embedded 

modeling technique falls between the distributed and discrete model in terms of 

complexity and ease of implementation. It is, in general then, not used as often 

because it has few distinct advantages over the other techniques. With the 

development and advancement of computer technology, most finite element 

software packages such as ABAQUS, ADINA, ANSYS, and MSC/NASTRAN have 

their own concrete constitutive models, and corresponding concrete and rebar 

elements. Through the combination of these elements, the users can develop the 

three basic RC models above, and can then add advanced properties into the 

model such as the representation of bond, fracture and cracking behaviors. 

 

5.2.2 FE Model of Bond 

Based on the different FE models of concrete, there are various corresponding 

methods to represent the bond behavior. In a discrete concrete model, the bond 

may be considered  as a contact problem between two different materials. Some 
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dedicated elements have been developed to simulate this contact in earlier research 

and presently they are widely used in the commercial FE software. In the distributed 

concrete model, bond phenomena can be represented by a special property of the 

material, rather than by a connection, since the reinforcement is smeared into the 

concrete in the distributed model. In ABAQUS code, bond-slip is implicitly 

approximated by introducing some “tension stiffening” into the concrete model to 

simulate load transfer through the rebar (ABAQUS 2006). Tension stiffening is a 

bond-related behavior which decreases the tension in the steel due to bond, and 

increases the stiffness of the reinforcement, compared to that for a naked bar, after 

the RC cracks. The user can define the curve in Figure 5.5 by inputting different 

tension stiffening parameters. The tensile behavior is defined as having elastic 

behavior until the stress reaches ftu , the failure point of the material. Then, a linear 

or nonlinear softening model is used to represent post-cracking behavior including 

bond effect using the "tension stiffening" option of ABAQUS. 

 

Figure 5.5 Tension Stiffening Behavior in ABAQUS (adapted from ABAQUS 2006) 

 

5.2.3 Interaction Module of ABAQUS 

As mentioned earlier, a discrete reinforced concrete model, in which complex bond 

behavior can be simulated directly was developed for the present study. As such, 

the first step in producing a model was to select a method for building a contact 

between concrete and steel. ABAQUS, in its interaction modules, provides various 

methods for simulating this contact, such as constraints, contact elements, and 

connector elements. Since bond slip is a force (shear stress) versus displacement 
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(slip) relationship, and is a surface-based phenomena ,the interaction types in 

ABAQUS which can couple these two aspects  were considered. 

 

5.2.3.1 Friction 

Friction is a modeling tool available in ABAQUS that is commonly used to describe 

the behavior of the contacting surfaces. The basic equation for the friction model is  

τ crit=μ p , where τcrit is critical shear stress at which sliding of the surfaces starts, μ is 

the coefficient of friction and p is the contact pressure between the two surfaces. 

Figure 5.6  summarizes the behavior of the friction model in ABAQUS. There is only 

a very small amount of slip allowed between the two contact faces before the shear 

stress across the interface equals the limiting frictional stress, μp. 

 

Fig. 5.6  Frictional Behavior in ABAQUS 

 

The transmission of the shear forces caused by friction is very similar to the bond 

behavior exhibited between concrete and steel. Comparing the curve in Figure 5.6 

with the bond-slip relationships in previous pages, it seemed obvious that the friction 

model would seem a good choice for simulating a linear bond phenomenon. The 

advantage of using a friction model is that it is defined through a face-to-face 

contact. A friction model's shortcoming, though, is also very obvious. Friction can 

simulate neither the non linear bond behavior, nor the degradation portion of the 

bond behavior. Furthermore this type of modeling is not convenient in my model: I 

chose to reproduced “equivalent-area -squared bars”, this imply that only the upper 
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and the bottom  work,  reproducing incorrectly the bonding phenomena. The best 

choice results “cohesive based surface modeling”. 

 

5.2.3.2 Cohesive based surface modeling 

Surface-based cohesive behavior is defined as surface interaction properties 

between two contact pairs(two surfaces coupled by a relationship master-slave)that 

can be used to model delamination  at interfaces directly in terms of traction versus 

separation, where traction and separation must be conceived in the three directions 

as it will be better explained after the introduction of traction- separation matrix. It 

can be used to model sticky contact and it assumes a linear-elastic traction-

separation law prior to damage. It’s enforced as a node-to-face interaction in 

Abaqus/Explicit or as a surface-to surface formulation in Abaqus/Standard.  

Considering the latter a “small sliding” approach must be enforced .The model rely 

on three components: a linear traction separation law that describe the ascendant 

part of the law, a damage initiation criteria and a damage evolution law for the post 

peak . The elastic behavior is written in terms of a constitutive matrix that relates the 

normal and the shear stresses to the normal and shear separation  across the 

interface. The nominal traction stress vector, , consists of three components (two 

components in two-dimensional problems): , , and (in three-dimensional 

problems) , which represent the normal (along the local 3-direction in three 

dimensions and along the local 2-direction in two dimensions) and the two shear 

tractions (along the local 1- and 2-directions in three dimensions and along the local 

1-direction in two dimensions), respectively. The corresponding separations are 

denoted by , , and . The elastic behavior can then be written as 

 

 

An uncoupled behavior, that means to define only the diagonal elements of the 

matrix, has been considered. Moreover  to restrict  the cohesive constraint to act 

along the contact tangential direction only, the normal stiffness term, , has 

been set to zero; as a consequence an “hard contact” behavior  in the normal 

direction has been imposed to not allow penetration between steel and concrete. 
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The next step has been to define the damage, that means simulate the degradation 

and the eventual failure of the bond between two cohesive surfaces. The failure 

mechanism consist of two ingredients: a damage initiation criterion and a damage 

evolution law. Damage initiation refers to the beginning of degradation of the 

cohesive response at a contact point. The process of degradation begins when the 

contact stresses and/or contact separations satisfy certain damage initiation criteria 

that you specify. Several damage initiation criteria are available but a “quadratic 

stress criterion has been chosen”. This criterion recall the ellipsoid domain and can 

be represented as 

 

The damage evolution law describes the rate at which the cohesive stiffness is 

degraded once the corresponding initiation criterion is reached. A scalar damage 

variable, D, represents the overall damage at the contact point. It initially has a 

value of 0. If damage evolution is modeled, D monotonically evolves from 0 to 1 

upon further loading after the initiation of damage. The contact stress components 

are affected by the damage according to 

 

 

 

 

where , , and  are the contact stress components predicted by the elastic 

traction-separation behavior for the current separations without damage. There are 

two components to the definition of damage evolution. The first component involves 

specifying either the effective separation at complete failure, , relative to the 

effective separation at the initiation of damage, ; ; or the energy dissipated due 

to failure, . 
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Figure 5.7 Traction-separation response implemented in Abaqus 

 

The figure above represent the bond-slip behavior that can be modeled in Abaqus. 
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5.3 The pull-out test 
 
5.3.1 The test equipment 

A 3D finite element model is discussed in this paragraph. The geometry of this 

model was simplified from the specimen of the pull-out experiment detailed in E. 

Perry and J. Thompson’s article "Bond stress distribution on reinforcing steel in 

beams and pullout specimens" (Perry and Thompson 1966). Figure 5.8 shows the 

simplification employed. 

 

 

Figure 5.8   Pull-out experimental set up: the simplification reported 

 

As can be seen, a standard No.7 steel bar was embedded into a concrete prism. It 

correspond to a  

 

R fi 7 USA  0.4375 inch 1.11125 cm FI 22 ITA 

 

 

An equivalent are criteria was used obtaining a lateral edge of 19.5 mm.  

Figure 5.9 shows the 3D profile of the model in the CAE environment of ABAQUS. 
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Figure 5.9   Geometry and mesh in Abaqus 
 
Elastic material properties were used for both concrete and reinforcement in this 

model since the focus of the model was to investigate the bond between these two 

materials, rather than the response of the materials themselves. 

 

Concrete     Steel     

E 30474.84 Mpa E 199948 MPa 

ν 0.15   ν 0.32   

density 2380.463 kg/m^3 density 7916.423 kg/m^3 

 
Table 5.3   Material properties 

 

 
5.3.2 Load and boundary condition 

 

The applied loading consisted of an axial surface pressure of 142.005 MPa imposed 

at the exposed end of the rebar, applied in the pull out direction, which generated a 

slip that moved the rebar for a certain distance. The load was applied in small 

increments to overcome numerical instability difficulties that could have occurred: a 

Linear- Static RIKS analysis was used. 

To accurately simulate the effect of bearing on the block in the pull out test, a fixed 

boundary condition was also assigned at the surface of the concrete specimen to fix 

the concrete; moreover an upper pressure of 0.1 MPa was introduced to best 

simulate the conditions in the macro model that will be presented in the Chapter 6.  
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Figure 5.10   Load and boundary conditions in the Pull-out test 
 

 
5.3.4 Bond-slip formulation in the pull-out test 

As a special interaction available in ABAQUS, "Cohesive based surface modeling" 

was selected to simulate the bond phenomena between concrete and steel in this 

model as shown in Figure 5.11.  

 

Figure 5.11  View-cut on 2 contact-pairs(in green and in red) on which was applied 
the "Cohesive based surface behavior" 
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These contact pairs (involving a master-slave relationship on the 4 edges of the bar) 

were used to insert and interaction between the concrete and steel (along the length 

of the rebar) with a τ-slip behavior in the longitudinal (pull out) direction. A hard-

contact  was employed in normal direction on the same pairs, to not allow 

penetrations between concrete and steel.  
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5.4 Bond-sleep law implemented in the Pull-out 
test 

 
The mathematical bond-slip relationship CEB-FIP,2000 was used as reference, and 

was associated to contact pairs in a simplified version due to the bilinear trend of 

Abaqus implementation(see Figure 5.7). Referring to Figure 5.4 and Table 5.2 

(CEB-FIP 2000), the values that were used in the model are: 

fcm 31.3 Mpa 

τ_max 14.085 Mpa 

τ_y 10.56375 Mpa 

s1 1 mm 

s2 3 mm 

sy 0.9306049 mm 

syf 3.4306049 mm 

s3 3 mm 

s4 9 mm 

a 0.4   

Table 5.4   Parameters for CEB-FIP curve designation 

Once implemented in an Excel-spread sheet: 

 

Figure 5.12 Bond-slip relation  
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This law was conceived on a fi 8 rebar as the macro model presented in Chapter 6 

required. This choice could seem incorrect but from the bond-slip curves provided 

by Abaqus as output( see next Par 5.4) it can be noticed how the implementation 

resulted not affected by the Area. It is reminded that the goal of this specific model 

was to test the reliability of "based cohesive surface" interaction, not to study the 

stress-strain field developed.  

The interaction was transferred to the contact pairs by defining the stiffness in the 

ascendant linear branch OA reported in Figure 5.7  and reproduced in Fig. 5.13., a 

damage initiation criterion and a damage evolution criterion. All the step to 

implement in Abaqus this type of behaviour are reported in Chapter 6 Par.6.5.  

 

 

Figure 5.13 Bond-slip relation implemented in the pull-out test 
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5.5 The results of the Pull-out numerical test 

 

To verify the reliability of this type of implementation the CTF1 (Contact total force in 

direction 1, the horizontal one) on the 4 concrete master surfaces was requested as 

output. To catch the slip-trend, another single spy-node in the center bottom-surface 

of the steel bar was considered and the horizontal displacement history U1 of this 

node was requested.  

 

Figure 5.14 The spy node(in red) 

The CTF1 of the 4 concrete master surfaces were summed and divided for the 

lateral area of the steel bar in contact (equal to 17830.8 mm2) to have a τ in MPa. 

Implementing the whole history output "U1spy_node  -  Sum 4_CFT1/Lat_Area " : 

 

 

Figure 5.15 Bond-slip output of the numerical pull-out test in comparison with the 

the code one 
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Figure 5.16 Elastic strain distribution in the middle plain 
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5.6 Bond-slip law implemented in the grid wall 

The macro model that will be presented in the next Chapter 6 is reinforced with Φ8 

steel bars only. Reinforcing bars were simplified with "equivalent area squared 

section bars": Through this simplification the mesh around the bars resulted less 

complex. This assumption leads to an increase of the lateral surface of the bar and 

therefore a greater surface on which develop the adhesion between concrete and 

reinforcement. This effect was taken into account considering a decrease of the τmax 

proportional to the ratio of the two different lateral areas. In the next Figure 5.17 the 

bond-slip implemented was reported. 

 

fcm 31.3 Mpa 

τ_max 14.085 Mpa 

τ_y 10.56375 Mpa 

s1 1 mm 

s2 3 mm 

sy 0.9306049 mm 

syf 3.4306049 mm 

s3 3 mm 

s4 9 mm 

a 0.4   

Table 5.5   Parameters CEB-FIP for a Φ8 bar  

 

 

Figure 5.17 The bond-slip implemented in green. 
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Chapter 6 
 

Numerical model in 
Abaqus 

  



 

Grid type wall system 

 

 

152 

 

Background 

 

“The model is intended as a self-contained set of rational relations aimed at giving a 

closed –form response on the basis of a set of input data” (Fib, 2000). 

 

Every complete finite-element analysis consists of 3 separate stages: 

- Pre-processing or modeling: This stage involves creating an input file which 

contains an engineer's design for a finite-element analyzer (also called "solver"). 

- Processing or finite element analysis: This stage produces an output visual file. 

- Post-processing or generating report, image, animation, etc. from the output file: 

this stage is a visual rendering stage. 

The use of  FE software package ABAQUS is strictly connected with its powerful 

solver component. Furthermore the presence of two packages for concrete 

modeling made this software interesting for the numerical analysis that this work 

wants to explore. Abaqus/CAE is capable of pre-processing, post-processing, and 

monitoring the processing stage of the solver; however, the first stage can also be 

done by other compatible CAD software, or even a text editor. Abaqus/Standard, 

Abaqus/Explicit or Abaqus/CFD are capable of accomplishing the processing stage. 

The scheme below simplify these concepts: 

 

Figure 6.1 The 3 blocks of FE analysis in Abaqus 
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Object 

The primary object of this study was to develop a finite element model which could 

correctly simulate the experimental test conducted on 1 m x 1 m grid-wall subjected 

to compression, for an in deep understanding of the collapse phase. The 

experimental outputs provide lots of information, but the stress-strain distribution 

inside the wall and the coactive state between steel and concrete remain essentially 

unknown. The model, that wants to fill this gap, include the bond-slip relationship 

between steel-bars and concrete and non-linear constitutive laws both in tension 

and in compression for the concrete. The goal was to capture the ultimate state and 

the mechanisms that aid the collapse of the wall. In this chapter all the building 

phases of the model will be shown and analyzed. The experimental test chosen to 

be reproduced was the CC14_02 because it shown the most reliable data of the 

experimental campaign. 

 

Introduction 

To create the model the Abaqus/CAE was used. Abaqus/CAE, means 

"Complete Abaqus Environment" (an acronym with an obvious root in Computer-

Aided Engineering).  

The set-up of this chapter reflect the sequence of the different steps presented by 

Abaqus/CAE for the modeling purposes. 

The generation of a geometric model represents a fundamental step for the creation 

of a FE model in Abaqus, because the generation of the mesh rely on the geometric 

model. A geometric model, is essentially a set of various geometric entities (Part 

module), available in Abaqus. Once geometric entities has been build, their 

properties must be defined (Property Module) and it is necessary to assign the 

spatial relations between geometric entities (Assembly module). It follows the choice 

of the resolution-algorithm and of the interesting output(Step module). A mesh must 

be created (Mesh module) and interactions between parts must be assigned 

(Interaction module). If all these steps have been set with sufficient accuracy, it is 

possible to create an input file (inp.file with Job module) to be analyzed by the 

http://en.wikipedia.org/wiki/Backronym
http://en.wikipedia.org/wiki/Computer-Aided_Engineering
http://en.wikipedia.org/wiki/Computer-Aided_Engineering
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Abaqus solver that provide an odb.file in which all the output requested can be 

visualized(Visualization module). 

Since this is a three-dimensional model, Solid deformable elements were used for 

creating the geometric model. 

In the model creation it was decided to apply the following simplification compared 

to the actual structure to be tested: 

- Reinforcing bars of squared section: through this simplification the mesh around 

the bars resulted less complex. To not compromise the results on the stress state of 

the bars, a squared section with equivalent area was adopted. This assumption 

leads to an increase of the lateral surface of the bar and therefore a greater surface 

on which develop the adhesion between concrete and reinforcement . This effect 

was considered in Par 5.6. 

 

Circular section Squared equivalent section 

Diameter[mm] Edge lenght[mm] 

8 7.1 

 

Another important aspect is that, nonlinear analysis is characterized by the non-

proportional nature of the load-deformation behaviour, which means that the 

structural response against an incremental loading is affected by the instantaneous 

loading level and the deformed geometry of the structure.  In other words, the 

stiffness matrix of the structure is a function of element force as well as the 

deflection of the structure and,  therefore, for medium to huge size problems, the 

instantaneous stiffness equation can only be solved numerically by an incremental 

and iterative procedure allowing for the  geometrical change of the structure. These 

aspects will be analyzed in the xx paragraph concerning the definition of the "Step 

Module". 
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FE model for panels subjected to centered axial 

compression 

6.1 The "Part" module 

The real model consist of 32 different elements: 

- 2 high strength reinforced concrete bases(top one and bottom one) 

-1 core made of 4 pillars and 4 joist(the grid-wall) 

-8 horizontal steel bars 

-8 vertical steel bars 

-12 different wood-concrete cores that fill the "holes" of the grid-wall 

-1 top steel plate for load-diffusion purposes 

In the following Figure 6.2 the real specimen with the test set-up and the numerical 

model are reported: 

 

 

 

 

 

 

 

 

Figure 6.2 The real model and the numerical one 

Even if 32 different element compose the specimen, only 8 different Parts 

(geometrical entities) are necessary to define the whole geometry; as a matter of 

fact can be used only 1 Part to define the 8 different vertical steel bars, and 1 Part 

for the horizontal steel bars. The same for  the wood-concrete elments: there's the 

needing of only 1 Part for smaller one and another for the bigger elements. 
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6.1.1The Units 

In Abaqus CAE before starting to define any model, it is necessary to decide which 

system of units to use. ABAQUS has no built-in system of units. All input data must 

be specified in consistent units. 

In the model everything was consistent with [N] and [mm]. 

6.1.2 The two bases 

The dimension of the two bases were identical: 1m x 0.1m x 0.14 m of width. Their 

main function was to create a sort of anchorage-length for the vertical bars and to 

provide a diffusive zone for the load and the boundary. With the "Cut:extrude" 

command the holes for the vertical steel were recreated. 

 

Figure 6.3 The Part representing the upper base 

 

 

Figure 6.4 The Part representing the bottom base 
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6.1.3 The concrete core 

It represent the most important element of the entire model. It is the grid-wall made 

of 4 pillars and of 4 connector beams 12 cm high, that the campaign want to test. 

Also in this case the "Cut:extrude" command was used to reproduce the wood-

concrete holes and the place of both vertical and horizontal bars. 

 

 

 

 

 

 

 

 

Figure 6.5 The concrete core with the place for bars 

The main dimensions are 1 m x 1m x 0.14 m and the "holes-pattern" try to 

reproduce the real one observeded in laboratory. 
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6.1.4 The steel bars 

In the model-creation it was decided to apply the following simplification compared 

to the actual structure: reinforcing bars of squared section. Through this 

simplification the mesh around the bars resulted less complex. To not compromise 

the results on the stress state of the Φ8 bars, a squared section with equivalent 

area was adopted (7.07 mm of edge). The following Figure 6.6 report the  

positioning of the bars inside the concrete core. The vertical bar is 1.18 m long(with 

anchor. length), the horizontal is 1 m long. 

 

Figure 6.6 The position of the bars inside the concrete core 

 

 

 

 

 

 

Figure 6.7 The Horizontal Bar Part and the Vertical Bar Part 
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6.1.5 The wood-concrete cores 

They represent what remain of the wood-concrete formwork block removed to focus 

on the structural part of the grid wall and to underline the cracking pattern. 

 

 

 

 

 

 

 

 

 

Figure 6.8 The Wood-concrete cores in the model 

The bigger one have a base of 10 cm for 14 cm of height.  The smaller are 4 cmx 14 

cm. 
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6.2 Mechanical characterization of the materials 

One of the most challenging and tricky modules of the whole modeling process 

involved the calibration of the constitutive laws of the materials used. The results 

were strongly influenced by the definition of the laws implemented. When the 

information about the material are scarce the only way to proceed is to rely on the 

few experimental information, to make reference to literature review and to start a 

long calibration process. The experimental information are collected in Chapter 2; 

the constitutive laws proposed by the literature are reported in Chapter 4. 

 

6.2.1 Steel 

The reference is Chapter 2 par. 2.2.2  where the 3 tensile tests conducted on three 

different  Φ8 bars allowed the definition of the main parameters: 

fym= 500 MPa 

ftm=550 MPa 

E=200000 Mpa 

 

Figure 6.9 The Elastic material editor for STEEL 
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The definition of the material "STEEL" requests also the density that was simply 

defined as 7850 kg/m3 , inserted in Abaqus in N/mm2 and the definition of the plastic 

properties as reported in Figure 6.10. 

 

Figure 6.10 The Plastic material editor for STEEL 

The Isotropic Hardening was set. Furthermore each Abaqus inelastic editor, 

mandatory requests that the 1st Plastic strain is set to zero. 
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6.2.2 Concrete 

6.2.2.1 Kent-Park formulation implemented for compressive behaviour 
 
The theoretical framework was reported in Par 4.5. The descendant branch of σ-ε 

curve of concrete is strictly related to the presence of confinement. The base Kent-

Park formulation without confinement was built on the base of the results of 

compressive tests on cubic specimen reported in Table 2.1 of Chapter 2. 

Here below the curve without confinement is reported: 

 

 

Fig. 6.11: Kent-Park σ-ε formulation w/o confinement 
 

In the following table the σ-ε inelastic definition of the ascendant branch is reported: 

KENT-PARK 
 

ε_0 0.002 
  Constitutive 

Concrete   
    EPS SIGMA 
    0 0 
    0.0001 3.052424102 
    0.0002 5.948313636 
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    0.0004 11.27048899 
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0.0007 18.07974276 
  

2.05882E-05 0 

0.0008 20.03642488 
  

4.70588E-05 0 

0.0009 21.83657243 
  

7.94118E-05 0 

0.001 23.4801854 
  

0.000117647 0 

0.0011 24.96726381 
  

0.000161765 0 

0.0012 26.29780765 
  

0.000211765 0 

0.0013 27.47181692 
  

0.000267647 0 

0.0014 28.48929162 
  

0.000329412 0 

0.0015 29.35023175 
  

0.000397059 0 

0.0016 30.05463732 
  

0.000470588 0 

0.0017 30.60250831 
  

0.00055 0 

0.0018 30.99384473 
  

0.000635294 0 

0.0019 31.22864659 
  

0.000726471 0 

0.002 31.30691387 f'cm 
 

0.000823529 0 
Table. 6.1: Kent-Park σ-ε formulation W/O confinement 

 

The insertion of this type of curve, with a connected damage law didn't provide good 

results. So an amount of confinement was inserted. The final σ-ε inelastic ( as 

Abaqus request) was reported in Figure 6.12: 

 

Fig. 6.12: Kent-Park σ-ε formulation implemented 
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For the inelastic quantities definition the Par 4.3.1 can be consulted as reference. In 

Table 6.2 are reported the used quantities. 

 

COMPRESSION         

SIGMA EPS INEL   DAMAGE EPS_INEL 

15.9665 0   0 0 

20.0364 4.71E-05   0 4.71E-05 

26.2978 0.000212   0 0.000212 

30.0546 0.000471   0 0.000471 

31.3069 0.000824   0 0.000824 

25 0.006   0.201454 0.006 

Table. 6.2: Kent-Park σ-ε inelastic formulation implemented in the CDP formulation 

 

6.2.2.2 Formulation implemented for traction behavior 

Considering: 

-the tension stiffening effects in Par 4.3.1.2  

- the experimental curves reported in Par. 4.6.2.  

the traction behavior of concrete implemented was: 

 

Fig. 6.13: Post-peak traction law σ-w[mm]  implemented 

With a peak resistance of 2.9 MPa. In the following table the values implemented 
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TENSION         

SIGMA DISPL_INEL   DAMAGE DISPL-INEL 

2.9 0   0 0 

1.94393 0.066185   0.381217 0.066185 

1.30305 0.12286   0.617107 0.12286 

0.873463 0.173427   0.763072 0.173427 

0.5855 0.22019   0.853393 0.22019 

0.392472 0.264718   0.909282 0.264718 

0.263082 0.308088   0.943865 0.308088 

0.176349 0.35105   0.965265 0.35105 

0.11821 0.394138   0.978506 0.394138 

0.079239 0.437744   0.9867 0.437744 

0.053115 0.482165   0.99177 0.482165 

Table. 6.3: Concrete traction behavior implemented in the CDP model 

To edit the material property "CONCRETE" the following editor was set: 

 

Fig. 6.14: Post-peak traction law σ-w [mm]  implemented 

For what concern "Compressive behavior" editor and "Tensile behavior" editor the 

reference values were reported in Table 6.2 and Table 6.3. 
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6.2.3 The high strength concrete bases 

The two different bases, inserted for diffusion and anchoring purposes, were 

reinforced in the laboratory tests. The presence of the steel bars was neglected in 

the model but taken into account inserting a Young's modulus of 500000 MPa.  

 

Fig. 6.15: Material editor for the 2 bases 

The value of 500000 MPa was chosen considering a high value, but not too high to 

not introduce numerical problems. 
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6.2.4 The wood-concrete elements 

To define the properties of the wood-concrete strength, a bad masonry was 

considered; a fcm of 1.5 MPa  with a Young's modulus of 300 MPa found in literature 

was inserted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.16: Elastic properties of wood-concrete elements 
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Once the Materials were defined, different "Sections" were created to assign the 

material property to the different "Parts": 

 

Fig. 6.17: Section editor 
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6.3 The assembly 
 
Despite of the different figures used to better show the single elements in the entire 

context, after "Part" and "Material" modules, all the elements were still conceived as 

isolated. This module was used to assemble the model and to create all that "sets" 

useful for the definition of the next modules. 

Recalling the 8 different Parts, 32 Instances was identified and assembled with 

"Coincident point constraint". This type of "Position-constraint" allow a simple 

localization between instances that share the location of a chosen point. 

 

The Part is a geometrical entity that can be recalled more than one time, the 

Instance is a single element of the final model to which a mesh is assigned. The 

"independent mesh" was set for each instance. The alternative was to define the 

mesh on Parts. 

 

 

Figure 6.18 Instance editor in Abaqus 

 

The use of "Independant mesh" on instances was the first step for a simplification in 

the creation of the global mesh. 

The different surfaces necessary to implement the contact interaction between steel 

and concrete were created. More information are given in the "Interaction module" 

paragraph 6.5.  
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Figure 6.19 Surface editor in the Assembly module 

 

Quite important is the definition of the "spy-nodes", that are "Set" of the Assembly 

module. The goal was to reproduce the vertical shortening  and horizontal 

lengthening measured by the LVDT as will be reported in Chapter 7. The red points 

reported in the following figures were considered for both sides of the wall.  

 

 

The spy-nodes to monitor ΔLv and ΔLh 
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6.4 The "Step" module 
 
This module allowed the selection of the type of analysis to be performed on the 

model (defining also the associated parameters) and the selection of the variables 

to be included in the output files. 

 For what concern the type of analysis two ingredients must be mentioned: the use 

of "Non linear geometric option" called "NLGEOM", and the use of "Modified Riks 

Method" called "RIKS". The "Non linear geometric option"  request to be set in a 

large deformation analysis, where it is necessary to take into account the changes 

in geometry during the steps. The stiffness matrix will be calculated using the 

current configuration that means using the current position of the nodes. 

Modified RIKS algorithm is generally used to obtain nonlinear static equilibrium 

solutions for unstable problems, where the load-displacement response can exhibit 

the type of behavior sketched in Figure 6.20 —that is, displacement may decrease 

as the solution evolves. 

 

 

. Figure 6.20 Typical unstable static behaviour  

 

"Modified Riks Method" is one of the evolutions of the arc-length method  

proposed by Wempner (1971), Riks (1979) and Ramm (1980; 1981) for nonlinear 

analysis.  The basic concept of this spherical arc-length method is to constrain the 

load  increment so that the dot product of displacement along the iteration path 

remains  a constant in the 2-dimensional plane of load versus deformation, as can 

be seen in Fig. 6.21. 
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Figure 6.21 .- Typical Arc-length method algorithm 

 

It is assumed that the loading is proportional - that is, that all load magnitudes vary 

with a single scalar parameter as it happens in experimental compression test.  

 

 

where  is the “dead load,”  is the reference load vector, and  is the “load 

proportionality factor.” The load proportionality factor is found as part of the solution. 

In addition, it is assumed that the response is reasonably smooth - that sudden 

bifurcations do not occur. Several methods have been proposed and applied to 

such problems. The most successful seems to be the modified Riks method - see, 

for example, Crisfield (1981), Ramm (1981), and Powell and Simons (1981) - and a 

version of this method has been implemented in Abaqus. The essence of the 

method is that the solution is viewed as the discovery of a single equilibrium path in 

a space defined by the nodal variables and the loading parameter. Development of 

the solution requires that we traverse this path as far as required. The basic 

algorithm remains the Newton method; therefore, at any time there will be a finite 

radius of convergence. Further, many of the materials (and possibly loadings) of 

interest will have path-dependent response. For these reasons, it is essential to limit 

the increment size. In the modified Riks algorithm, as it is implemented in Abaqus, 

the increment size is limited by moving a given distance (determined by the 

standard, convergence rate-dependent, automatic incrementation algorithm for 

static case in Abaqus/Standard) along the tangent line to the current solution point 
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and then searching for equilibrium in the plane that passes through the point thus 

obtained and that is orthogonal to the same tangent line. 

 

 

Figure 6.23 Modified Riks algorithm 

All these concepts are implemented in Abaqus in the step editor reported in the Fig. 

6.24 and Fig.6.25 where the choice of the step is also reported. 

 

 

Figure 6.24 NLGEOM editor 
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Abaqus/Standard uses Newton's method to solve the nonlinear equilibrium 

equations. The Riks procedure uses only a 1% extrapolation of the strain increment. 

The user should provide an initial increment in arc length along the static equilibrium 

path, , when the step must be defined. The initial load proportionality 

factor, , is computed as 

 

where  is a user-specified total arc length scale factor (typically set equal to 

1). This value of  is used during the first iteration of a Riks step. For 

subsequent iterations and increments the value of  is computed automatically, so 

the user have no control over the load magnitude. The value of  is part of the 

solution. Minimum and maximum arc length increments,  and , can be 

used to control the automatic incrementation. 

 

 

Figure 6.25 Riks increment step editor 

 

For what concerns the selection of the output files, in Fig.26 was reported the "Field 

output request editor" for the whole model. 
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Figure 6.26 Field output request for the whole model 

 

Finally, the "History output Request" editor allow to define the output story of a 

predefined sets of points called "spy nodes" that will be better defined in the Mesh 

Module paragraph.  

  
 

 
 

Figure 6.27 History output editor 
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6.5 The "Interaction" Module 
 
In the model two type of interactions were introduced:  

-"tie constraint" between the bases in high-strength concrete and the concrete core, 

and to connect the wood-concrete elements to the concrete close to them. 

-surface based cohesive interactions between steel bars and concrete 

 

The theoretical framework under bond-slip interactions was fully examined in 

Chapter 5. Here below the Abaqus steps for the implementation are reported only. 

Contact interactions for contact pairs and general contact are defined by specifying 

surface pairings. All these surfaces were defined in the Assembly module.  

For what concern "steel bars-concrete interaction" one surface was defined for each 

of the 4 sides of the 16 steel-bars. For each side of the bars a concrete-pair surface 

was defined.  

 

  

Figure 6.28 Some surfaces of the steel-bars 

 

After the definition of the surfaces, the "Interaction Property" was defined, as 

proposed in Paragraph 5.4, in the three main steps reported in the following Figure 

6.29,  Fig. 6.30, Fig. 6.31, Fig. 6.32: 
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-Normal behaviour: to block the penetration between bars and concrete an "Hard 

contact" was introduced 

-Cohesive behaviour: to define the ascendant part of the bond-slip law. 

-Damage: that define the descending branch of the bond-slip law. 

 

 

Figure 6.29 Normal behaviour in the Contact Property editor 
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Figure 6.30 Cohesive behaviour in the Contact Property editor 



 

Grid type wall system 

 

 

179 

 

 

 

Figure 6.31 Damage Cohesive behaviour in the Contact Property editor: 

the initiation criterion 
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Figure 6.32  Damage Cohesive behaviour in the Contact Property editor: 

the linear evolution criterion 
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Same procedure for the wood-concrete elements and for the contacts between the 

bases and the core. In this case a simple tie constraint was used. A tie constraint 

doesn't need the perfect compatibility between meshes: Abaqus "ties" the d.o.f. of 

the nodes that are close one to another within a prescribed tolerance. The relation is 

a "master-slave" one as can be seen in the Constraint editor reported in Figure 

6.33. 

 

 

Figure 6.33 Tie constrain editor 

 

 

 

 

 

 

 

 

 

Figure 6.34 Tie constrain between upper base and concrete core 
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Figure 6.35  Tie constrain between a wood-concrete core and the main concrete 

core 
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6.6  Load and the boundary conditions 
 
The Load History of CC14_01 test  reached a peak value of 2497 kN.  To reproduce 

the experimental proof a pressure of  

 

  
              

              
            

 
on the top-surface of the concrete core was applied. The solver divide the Load 

History in steps. The RIKS method is able to capture also higher values than the 

maximum provided, but the analysis can also "abort" at smaller values. 

 

 

Figure 6.36  Load conditions 

 
For what concerns the boundary conditions, the vertical displacements of the lower 

face of the bottom base were prevented. Moreover the 4 point corners were 

blocked. 
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6.7 The mesh 
 
The goal was to create a so called structured mesh in Abaqus environment. 

The Mesh module, assign one color to the regions of the model according to the 

method it will use to generate the mesh:  

- Green indicates that a region can be meshed using structured methods.  

- Yellow indicates that a region can be meshed using sweep methods. 

- Orange indicates that a region cannot be meshed using the default element shape 

assignment (hexahedral) and must be partitioned further. The alternative is to  mesh 

the model by assigning tetrahedral elements to the model and using the free 

meshing technique. The mesh could obviously results very irregular. 

The assembly was partitioned to obtain only region in which apply Structured 

Technique. 

 

Figure 6.37 Mesh control editor 
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In a structured mesh the nodes of the "grid" are generated by the intersection of two 

families of lines belonging to specific systems of Cartesian coordinates or curvilinear 

(it is similar to the grids made by the method of finite differences). Using "grids" of 

this type it is easy to carry out a "rational" numbering  of the nodes. 

To mesh the assembly the following operations were performed:  

- the Assembly was partitioned to create regular zones in which structured mesh 

can be build. 

 

Figure 6.38 Partitioning lines 

 

To partitions the assembly it means to create prismatic shaped regions without 

cavities. 

- the "mesh attributes" were assigned to the part instances, that means to choose 

which FE element to use. The choice was "Hex8" elements with "reduced 

integration" option to reduce the time to solve. 

 

Figure xx Elementary FE used 
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- the part instances were seeded. The seed are the reference point on which the 

mesh was built. 

 

Figure 6.39 The Seeds of the Mesh 

 

- the entire assembly was meshed as a single Region with the command "Mesh 

Region". To proceed in this way the choice of "Independent mesh" on Instance 

during Assembly Module was required. 

Some particulars of the mesh obtained can be seen in Figure 6.40,6.41  . The mean 

dimension of the FE elements was 13.1 mm. 
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Figure 6.40 The mesh on the bases, on the Wood Cores and steel  

 

Figure 6.41 The mesh on the main Concrete Core  
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Chapter 7 
 

Results of the numerical 
model in Abaqus 
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Introduction 
 

In this chapter the numerical results obtained are analyzed in order to compare the 

output-data of the model with experimental observations and measurements 

obtained during the investigation performed at the Laboratory of CIRI-Building 

Department of the  University of Bologna.  

The experimental tests on which this Chapter are focused were the compressive 

tests CC14_01 and CC14_02, the results of which are reported in Chapter 3. 

It is reminded that the geometry of the model tried to reproduce the CC14_02 

specimen, because it shown to be the most reliable test. 

The insertion of bond-slip behavior allowed a better understanding of the stresses 

into the steel bars, moreover the comparison between experimental results and 

numerical one showed a good agreement in terms stress concentration in the 

cracking zones. 

. 
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7.1 Comparison P-ΔL curves 

As reported in Paragraph 6.3 the differential settlement of different spy-nodes was 

monitored to reproduce the Load-ΔL pattern of the experiment both in horizontal 

and vertical direction.  

7.1.1 P- Vertical ΔL comparison 

If the numerical test is compared with the  test CC14_02 that the simulation wants to 

reproduce it can be noticed how the model is able to capture the peak load with a 

difference of 0.6%. 

Experimental Peak Load: 2497 kN 

Numerical Peak Load: 2512 kN 

Also the general trend showed a very good matching. 

 

Figure 7.1  P-ΔL Vertical comparison 
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7.1.2  P-Horizontal ΔL comparison 

For what concern the Load- ΔL Horizontal Figure 7.2(a) and (b) can be considered: 

 

Figure 7.2(a) Load - ΔL Horizontal in elastic phase. Comparison between test and  

 

In blu and in red the experimental results of the two horizontal LVDT on the two 

sides of the grid-wall, in purple the numerical output. During the linear-elastic phase 

the model response was perfectly in between the two experimental curves that 

means that the model was able to capture the horizontal expansion of the 

specimen, but only in the linear elastic phase. The presence of the wood-concrete 

elements, probably didn't  allow a real lateral expansion of the model. The strength  

and the mechanical characteristics of wood-concrete elements were derived from 

unofficial literature, the only available. The whole trend of the Load - ΔL Horizontal 

graph is presented in Figure 7.2(b). 
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Figure 7.2(b)  Load - ΔL Horizontal comparison  

  

0 

500 

1000 

1500 

2000 

2500 

0 0.5 1 1.5 2 2.5 

L
o

a
d

 [
k
N

] 

Horizontal │ΔL│bars of measurement [mm] 

U_Horizontal_CC14_02_SI
DE1 

U_Horizontal_CC14_02_SI
DE2 

NUMERICAL 



 

Grid type wall system 

 

 

194 

 

7.2 Active yield flag 
 
The active yield flag is a so called "yes or no" variable. Indicates where one of the 

stress components reaches the  inelastic strain. As a matter of facts it can be 

noticed that the values assumed are 1(Red zone) or 0(Blu zone). 

The raise of the first "yielded elements" was detected between step 13 and 14 

(between 645 kN and 960 kN) that is the ultimate load of perfectly elastic phase as 

can be noticed in Fig.7.1. 

 

Figure 7.3  Active Yield Flag at 960 kN(step 14) 

 

Figure 7.4  Stress distribution(max. principal) at 960 kN 



 

Grid type wall system 

 

 

195 

 

From Fig.7.4 can be noticed how the raise of the AC YIELD is strictly related to the 

fact that the concrete close to the tensioned steel bars reach the maximum tensile 

stress: 2.9 MPa as implemented and  reported in Fig.7.4. 

At step 16 that correspond to 1225 kN it can be saw how the critical zones are close 

to the biggest holes, venues of the wood-concrete elements. 

  

Figure 7.5 Active Yield Flag at 1225 kN(step 16) 

A the step 21 that correspond to 1500 KN. The collapse is studied in Par. 7.7 ,7.8. 

 

Figure 7.6  Active Yield Flag at 1500 kN(step 21) 
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7.3 Main stresses on the pillars 
 
At the ultimate state, the stress distribution of the sigma σ22  (in vertical direction) in 

the middle plain is represented in Fig. 7.7.  The units of the legend is in MPa and it 

can be noticed how the model reproduce reliable values of stresses: in a range in 

between 2.45 MPa in tension and 31.3 MPa in tension. It's also interesting to notice 

how the stress path in Figure 7.7 recall the one presented in Fig.7.6. 

 

 

Figure 7.7  Stress σ22 distribution 

The symbolic representation makes more evident the stress path on a generic cross 

section. 

 

 

Figure 7.8  Stress σ22 distribution over a cross-section of the pillars 
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7.4 Main stresses on the connector-beams 

As literature suggests, the connector -beams-behavior follows a strut and tie 

scheme: the composition of the Sigma max-principal [MPa] and of the Sigma min-

principal[MPa], reported in the following figures suggested the presence of a 

compressed strut in the zone close to the bigger holes. Making a cut view it can be 

noticed how the stresses are distributed in connector beams in horizontal direction. 

 

Figure 7.9(a) Principal Max Stress distribution inside the connector beam  

 

Figure 7.9(b) ZOOM of Principal Max Stress distribution inside the connector beam  
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In vertical direction the stresses are of compression as can be expected. 
 

 

Figure 7.10Vertical Stress distribution on a joist-longitudinal cross-section   

 

Figure 7.11 Zoom of Vertical Stress distribution on a joist-longitudinal cross-section 
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7.5 Main stresses on the wood-concrete 
elements 
 
The peak values of these stress maps are reasonable: 0.27 MPa in tension, 1.6 

MPa in compression as can be expected by a fragile material. For action-reaction 

principle the wood-concrete elements develops in the external corners stress-

distribution with equal direction to the one that will be presented in section 7.7 on 

the adjacent concrete core. 

 

 
Figure 7.12 Stress distribution in the Min. Principal direction on wood-concrete 

elements 
 
 

 
Figure 7.13 ZOOM of Stress distribution in the Min. Principal direction on the central 

element 
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Figure 7.14 Stress distribution in the Min. Principal direction on wood-concrete 

elements 
 
The lateral expansion can be noticed also in the following Figure 7.15. 
 

 
Figure 7.15  Deformed configuration in the ultimate state 
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7.6 Strain distribution on concrete grid-wall 
 
The software divide the elastic strain( EE )  of the order of 10-4 from the plastic strain 

(PE) of the order of 10-3 as can be correctly expected in concrete. 

 

 
Figure 7.16 Stress distribution in the Min. Principal direction on wood-concrete 

elements 
 

 

 
Figure 7.17Stress distribution in the Min. Principal direction on wood-concrete 

elements 
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Figure 7.18  Plastic strain at ultimate state 
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7.7 Comparison between cracking pattern of 

the test and numerical results 

In almost all the compression tests the cracking-patterns presented the same 

diagonal direction as can be seen in Figure 7.19 , Figure 7.20, Figure 7.21, Figure 

7.22.  The 45° diagonal crack between bigger holes are present in all the cases 

reported below.  

 

Figure 7.19 Cracking pattern of one compression test CC14_01 

 

Figure 7.20 Cracking pattern of one compression test 
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Figure 7.21 Cracking pattern of one compression test CC4_14(CC14_02) 

 

Figure 7.22 Cracking pattern of one compression test CC1_18 
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Unlike concrete models based on the smeared crack approach, the concrete 

damaged plasticity model does not have the notion of cracks developing at the 

material integration point. However, it is possible to introduce the concept of an 

effective crack direction with the purpose of obtaining a graphical visualization of 

the cracking patterns in the concrete structure. Different criteria can be adopted 

within the framework of scalar-damage plasticity for the definition of the direction of 

cracking. Following Lubliner et. al. (1989), it can assumed that cracking initiates at 

points where the tensile equivalent plastic strain (PEEQ) is greater than zero, εt
pl>0 

 , and the maximum principal plastic strain( PE, Max principal)  is positive. The 

direction of the vector normal to the crack plane is assumed to be parallel to the 

direction of the maximum principal plastic strain. This direction can be viewed in 

the Visualization module of Abaqus/CAE as reported in the following figures. 

 

Figure 7.23 Plastic strain in the Maximum principal direction in the simbolic 

visualization 

A view cut command scanned in all the wall length, showed that the maximum 

plastic strain concentration is in correspondence of the corners of the bigger 

cavities. Figure 7.23 and Figure 7.24 and 7.25 shows this evidence. 
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Figure 7.24 ZOOM of Maximum principal plastic strain symbolic visualization 

 

 

Figure 7.25  Maximum principal plastic strain symbolic visualization 
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Considering also Figure 7.18 that represents the zones in which the PEEQ are 

present and bigger than zero we can notice how the model is able to capture the 

cracking pattern related to the collapse phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.26  Ability of CDP model to catch the cracking pattern 
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7.8 Collapse mechanism and stress history on 

steel bars 

The presence of misaligned pillars, intrinsically connected with the building 

technology, create a collapse mechanism that is well captured by the stress history 

output of the steel bars and here reported in its main steps. 

At step 23, that correspond to 1780 kN the vertical bars are equally compressed 

with a σyy max of 127.7 MPa of compression ( Figure 7.27 in blue )horizontal steel bar 

are in tension with σxx max of 33.8 MPa. ( Figure 7.28 in red ).  

 

Figure 7.27  Stress σyy max of 127.7 MPa at 1780 kN 

 

 
Figure 7.28   Stress σxx max of 33.8  MPa at 1780 kN 
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At step 49, that correspond to a load of 2490 kN the situation is changed: the load is 

no more equally distributed in the 4 pillars and even the σxx distribution is no more 

symmetric. 

 

 
Figure 7.29  Stress σyy max of 290 MPa at 2490 kN 

 
Figure 7.30   Stress σxx max of 95.5  MPa at 2490 kN 
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At ultimate load of 2512 kN the situation is the following. 

 

Figure 7.31  Stress σyy max of 307 MPa at 2512 kN 

 
Figure 7.32  Stress σxx max of 101.9  MPa at 2490 kN 

 
 
This behavior suggest the direction of the global collapse mechanism.  
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Chapter 8 
 

 Summary, 
conclusions, 

recommendations for 
future study 
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Summary 

 

The structure of this Thesis concerning "Grid-type wall systems" can be divided into 

two main parts: the first considered some experimental tests with particular attention 

on the results aimed at defining the equivalent continuous wall in linear-elastic field. 

The second part was focused on the building of a non-linear numerical model.  

The grid-wall objective of this thesis were so introduced, described and inserted in 

the National and ultra-national normative context (Chapter 1); followed a brief 

description of the test aimed at characterize the material used and the experimental 

test suggested by the CSLP Italian Guidelines (Chapter 2). Exploiting the 

experimental output the characteristics of the equivalent continuous wall in linear-

elastic field were defined (Chapter 3).  

The crucial aspect in the modeling phase was to correctly choose the necessary 

parameters to define the constitutive properties of concrete. In particular, the 

softening branch both in compression and in tension was set, comprehensive of 

damage laws, considering the few information from the test on the two 

materials(Chapter 2) and literature reviews(Chapter 4). The bond-slip relation 

between concrete and steel-bars was considered, analyzed in detail (Chapter 5) 

and reproduced in the numerical model of the grid-wall. The model was build trying 

to obtain mesh-compatibility between the steel-bars and the adjacent concrete, not 

necessary in Abaqus environment,  but almost imposed once the assembly was 

correctly partitioned (Chapter 6). The results of the numerical model (Chapter 7) 

showed that the finite element model developed with the program Abaqus  was able 

to accurately describe the non-linear response up to failure. The comparison and 

the agreement between numerical and experimental curves showed the reliability of 

the model and the ability to capture also the collapse mechanism. 
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Conclusions 

 

During the preliminary design phases  there' s the need of simple tools for an 

immediate and effective global elastic analysis; the characteristics of the equivalent 

continuous linear elastic panel were so evaluated. Considering the experimental 

compression tests on 1m x 1 m grid-walls conducted in CIRI was possible to 

evaluate both for 14 cm and 18 cm panels: 

 

-the equivalent geometric thickness seg 

 

-the corrective coefficient α and β to be applied respectively on the elastic Modulus 

E and G 

 

-the implementation of a simple traction proof allowed an in-deep understanding of 

the functioning of the two constitutive models implemented in Abaqus for concrete  

 

- a pull-out test was numerically reproduced to calibrate the bond-slip behavior 

between steel bars and concrete; the cohesive based surface model showed to be a 

reliable tool  to be used in the numerical grid-wall model  

 

-the grid wall model, after an accurate calibration process, furnished detailed stress 

and strain maps for a better understanding of the mechanisms occurred during the 

collapse phase, 

 

- the loading conditions of the steel bars were also captured 

 

- With an appropriate choice of the constitutive model was possible to reproduce 

with sufficient accuracy, the experimental collapse mechanism noticed in more than 

one centered compressive tests.  

 

-This CDP model can then be eligible to develop a study on the failure load and on 

the micro behavior of concrete. 
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Recommendations for future study 

 

-One aspect that could be deepen is the effective contribution of the wood-concrete 

layers both on the bearing capacity and on field of deformation of the grid-wall. The 

lack of data didn't allow a detailed study of this aspect.   

-more detailed tests on concrete specimen (triaxial tests, tension test..) to restrict 

the calibration process to a few number of parameters could be conceived. 

-a smeared cracking approach could be calibrated to have another confirmation 

about the results obtained 

 

-a real scale building could be implemented to test the reliability of the correction 

coefficient found to conceive the grid walls as simple the equivalent continuous 

walls in linear elastic field. 
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