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INTRODUCTION 

 

Analysing many years of research it becomes apparent that “texture”, both that 

of the road surface and that of tyres, and the way that they combine in the 

contact patch, is the most important broad factor which needs to be understood 

for optimising tyres and road surfaces. This factor, on all its scales, influences 

the interaction between tyre and road to develop friction; it plays a significant 

role in noise generation or attenuation and, potentially in tyre rolling resistance. 

There are also other aspects of road surfaces and tyres, such as the impacts 

that construction techniques might have on the surface properties that show 

gaps in current knowledge. 

In many areas, the knowledge gaps are associated with inadequate or 

inconsistent measurement techniques. For example, our understanding of 

texture and its influence is limited by what can currently be measured and the 

ability to measure characteristics. For this reason other methods of analysis are 

required and so it’s useful to consider the problem in three dimensions rather 

than two. It would enable different or new parameters to be defined that would 

better predict or explain behaviour. The problem of measurement limitations 

restricting understanding also applies to surface construction characteristics 

such as interconnected voids, which may influence noise, water dispersal in the 

skid resistance context and the durability of performance. 

Lack of well-defined measurement techniques is also a serious limitation of 

understanding the rolling resistance of tyres, especially on real road surfaces. 

Similarly, differences in ways of assessing passenger-car and truck tyres and 

their performance are not always well understood. 

Over the years there has been a great deal of research relating to the 

optimization of skid resistance, rolling resistance and noise emissions, and work 

in this area is continuing. However, the research typically is driven by the 

different perspectives and interests of various involved groups: the road 

construction industry, the tyre manufacturing industry, road users and road 

agencies. Consequently, in individual research projects, optimization has 

tended to be focused on either road surfaces or tyres but seldom on both. The 

optimisation of road surfaces was not really affected by the optimisation of tyres 
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and vice versa. Road surfaces are always tested with specified test methods for 

the individual properties; tyres are tested on specified surfaces (particularly in 

accordance with ISO10844). 

Therefore, road surfaces are designed to perform optimally in relation to the 

specific test methods and tyres are optimised to perform on their specified test 

surfaces. 

In practice, interaction between roads and tyres and the factors that affect them 

are influenced in their turn by road geometry, general traffic levels and the 

speeds and loads of vehicles. 

However, some environmental factors, such as particulates and seasonal 

effects, have specific impacts on the three surface properties that are also 

associated with knowledge gaps requiring research to fill them and these are 

shown in the next chapters. 

Currently, texture is measured in one of two basic ways. One of these, the 

historic approach, is to use a volumetric technique to fill the voids in the surface 

to provide an estimate of the space available in the texture (the texture depth) 

which, it is thought, has a primary function of draining water from the tyre/road 

interface. However, a limitation of this technique is that it does not access all the 

voids in the surface from this perspective and says little about the smaller 

component of texture near to the surface that actually makes contact and 

interacts with tyres. 

Over the last 25 years there has been a trend towards measurement of a two-

dimensional surface profile of the road surfaces, typically using lasers. 

However, this technique requires algorithms to convert the discreet height 

measurements in the profile into parameters to represent the texture and these 

are proving inadequate to enable researchers and engineers to properly 

understand the texture. It may be much more helpful not only to improve the 

profile measurement technique but to extend it to make laminar texture 

measurements of road surfaces provided that this can be done with the 

necessary resolution and acceptable speed. 

This would allow the different texture wavelengths, texture depth, texture form 

and their relationships with the three surface properties to be assessed. 

Potentially, microtexture, which currently is not measured directly at all, could 

also be included. The contact patch of the tyre on the surface, and therefore the 
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interaction of the tyre with the surface occurs in three dimensions, not only one 

line (2D). A 3D approach to measurement and assessment of road surface  

texture could lead not only to an improved measuring technique but would also 

follow on to the development and assessment of new parameters to represent 

aspects of texture that cannot be suggested at the moment because they 

cannot be measured adequately, if at all. 

How tyres respond to the road surface texture is also a significant knowledge 

gap; it is likely that many other factors could be involved here which currently 

are not known or well understood. These might include size of the contact 

patch, localised pressures due to different road surface textures or tyre 

characteristics and the way the tyre shapes itself to the surface, specific tyre 

characteristics, vehicle size and mass. Such factors, deriving from both road 

surfaces and tyres, may have different influences in relation to the three 

properties which could then be complicated further when differences between 

wet and dry conditions are taken into account.  [1] 

In this thesis has been  considered how the interaction of a tyre and an asphalt 

surfacing may be investigated in the laboratory to assess a range of properties 

ranging from aggregate and mix type, grip, texture, noise and rolling resistance. 

The interactive properties of any vehicle / tyre / road surfacing combination are 

constantly changing. The holistic relationship between the many different 

variables is extremely difficult to model and predict. With unlimited funding and 

time the interaction between vehicles and the different types of asphalt road 

surface could be assessed over many years using full scale road trials. 

However, this ideal is now totally unrealistic.  

Laboratory based research needs to relate to observable and measureable 

performance in the field. Whilst there is a need for the fundamental approach, 

improved understanding needs to be based on accelerated simulated conditions 

to provide meaningful data, something that most standardised test methods 

cannot do as they do not adequately consider how materials and properties 

change with time. This thesis describe how new types of data might be 

measured in the laboratory that either relates to or effects the interaction of a 

tyre and an asphalt surface. The measurements considered include skid 

resistance, interface mapping and texture. 
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Moreover, the use of 3D models allows much greater insight into surface 

textures. For example, it may generally be used to highlight areas of a surface 

potentially at risk due to water entrapment, and the use of software, such as 

ArcGIS, can help us in predicting the effect of water and of other parameters on 

durability of asphalt surfacing materials, better than a simple estimation of 

texture depth could give.  [15] 
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CHAPTER 1: 

TYRE/ROAD INTERACTION: SKID RESISTANCE AND ROAD 

TEXTURE 

 

1.1 INTRODUCTION: 

Acting together, roads and tyres make a vital contribution to road safety but in 

the process they also have an impact on the environment. The interaction 

between the tyre and the road surface, provides grip to allow vehicles to 

manoeuvre, but the same process can also give rise to rolling resistance, with a 

potential increase in fuel consumption and CO2 emissions. The interactions also 

generate noise both in vehicles and in areas close to the road. There are also 

safety implications for rolling resistance and noise, although these are not 

related to vehicle control. Vehicle emissions and noise levels have a potential 

influence on the health of drivers and those living or working near major roads. 

If road/tyre noise is very low there might be risks to vulnerable road users such 

as pedestrians who might not be alerted to the approach of a vehicle. This 

chapter introduces the known main factors associated with road surfaces and 

tyres that influence skid resistance and road texture. [1] 

 

 

1.2 FRICTION AND SKID RESISTANCE 

 

Clearly, the provision of adequate grip between tyres and roads is vitally 

important in helping drivers to be able to travel safely, a fact recognized in the 

earliest days of research as motor traffic began to increase.  

There are three particular situations in which the forces transmitted through the 

tyres are increased and so the adhesion provided needs to be adequate for a 

vehicle to be driven safely: 
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• Under power, when a reaction force between the tyre and the road is needed 

for the vehicle to accelerate or maintain speed. 

 

• In braking, when forces are developed between the tyre and the road that 

react against the action of the brakes so that the vehicle slows down. 

 

• While cornering, when reaction against side forces generated in response to 

steering action enables the vehicle to follow around the curve. 

 

These forces are generated as a result of friction between the tyre and the road. 

In normal circumstances, the contact patch, the area of the tyre in direct contact 

with the road, is instantaneously stationary.  

However, if the forces required by the manoeuvre exceed the available friction, 

the contact patch will start to slide over the road surface, a condition known as 

“slipping”. If too much power is applied when accelerating, the powered wheels 

may spin freely; if the force on the brakes is too great the wheels may lock, 

leading to a skid; if lateral acceleration is too great when cornering, the tyre will 

slide sideways. If acceleration or, braking, are combined with cornering then the 

combined forces must be “shared” with the available friction, increasing the 

likelihood of grip being reduced. 

Once the tyre is slipping or skidding, full control is lost. In many situations 

control cannot be recovered in time, if at all, and a crash of some kind is the 

inevitable result. 

When a road surface is dry, the coefficient of friction between a tyre and the 

road is normally high and adequate for most vehicle manoeuvres. However 

when the road is wet, the tyre/road friction decreases significantly and becomes 

much more dependent on the properties of the road surface and the tyre. When 

the road is wet, friction is not only reduced but also decreases as speed 

increases. Importantly, sliding friction on a wet road is typically much lower than 

the friction available just before the tyre starts to slip. It is also important to note 

that a damp road may also show a marked reduction in tyre/road friction even 

though it may no longer be raining. 

It is important to appreciate the differences between these two concepts since 

they are often used interchangeably and this can sometimes lead to confusion. 



Chapter 1: Tyre/road interaction: Skid resistance and road Texture 
 

7 
 

The following convention, widely used in the context of road surface 

characteristics, is therefore used to distinguish between the meanings of 

“friction” and “skid resistance”. 

 

Friction, in the context of tyres and roads, represents the grip developed by a 

particular tyre on a particular road surface at a particular time. The coefficient of 

friction is a measure of this, defined as the ratio of the load, the force applied in 

the vertical direction, to the traction, the force resisting movement in the 

horizontal direction. 

Friction is influenced by a large number of parameters relating to the road and 

the tyre but it is also affected by other influences that may not be directly 

attributable to them, such as the vehicle suspension, ambient conditions, speed 

and the presence of localized contaminants (including water). 

 

Skid resistance describes the contribution that the road makes to tyre/road 

friction. Essentially, it is a measurement of friction obtained under specified, 

standardized conditions, generally chosen to fix the values of many of the 

potential variable factors so that the contribution that the road provides to 

tyre/road friction can be isolated. 

In the context of a crash, or situation that might lead to one, it is the coefficient 

of friction available at the time and place of the incident that matters. However, 

for the purposes of building and maintaining roads, it is the initial designed 

properties of the surfacing and, subsequently, the general condition of the road 

surface in service that are important. [1] 

 

 

1.3 PRINCIPLES OF FRICTION GENERATION 

 

The mechanisms of tyre/road friction are not fully understood, but it is widely 

recognized that there are two main mechanisms involved: molecular adhesion 

and hysteresis losses, and so the overall friction between tyre and road surface 

is the sum of these two components. 
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Adhesion is a surface phenomenon that occurs at the interface between the tyre 

tread rubber and the road, so this contribution depends on the actual contact 

area.  

Some theories have described adhesion as a thermally activated molecular 

stick-slip process. During sliding between a rubber and a hard surface, the 

separate chains on the two surfaces attempt to link together, thus forming a 

local bond. Sliding causes these bonds to stretch, rupture and relax before new 

bonds are made. The contribution of adhesion to friction is the sum of the inter-

facial shear tension between the tread rubber and the road surface by different 

islets on the overall contact area, which depend on surface roughness at the 

microscopic scale. 

The hysteresis contribution comes from energy losses due to damping in the 

rubber bulk when this is deformed as it passes over the aggregate particles in 

the surface. The internal damping in the rubber opposes its own movement 

upstream of aggregates and its shape recovery downstream of aggregates, 

creating an asymmetric pressure distribution on aggregate surfaces. This 

contribution depends on roughness of the surface at the macro scale.  

Figure 1.1 illustrates these two concepts of adhesion and hysteresis. 

 

 

 

Figure 1.1  – Adhesion and Hysteresis 
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To be effective, the adhesion component needs close contact and thus a clean 

surface, while the hysteresis component needs cyclic deformation of the rubber 

and a rough surface. It is argued that, on rough and lubricated surfaces, the 

friction force derives primarily from the hysteresis contribution, whereas 

adhesion is dominant when rubber slips on a smooth and clean surface. 

There is a slightly different interpretation by Yandell, which is based on the 

assumption that adhesion does not play a significant part in tyre-road friction, 

rather that the observed effects can be entirely explained in terms of hysteresis.  

In this theory, the texture of the road surface is separated into components with 

different scales. Hysteresis is generated on each of these scales and the total 

friction is obtained from the sum of the individual contributions. 

Yandell and his colleagues showed that predictions based on this analysis, 

together with measurements of the damping factor of the tread rubber, agree 

well with locked wheel and sideways force measurements on concrete and 

bituminous surfaces. [1] 

 

 

1.3.1 LONGITUDINAL FRICTION PRINCIPLE  

 

For a vehicle travelling in a straight line, when the driver applies the brake, a 

torque is applied to the vehicle wheels via the braking system. A reacting force 

develops in the tyre/road contact area. Provided that grip is maintained, the 

angular speed of the wheels decreases and the vehicle slows down as kinetic 

energy is absorbed in the braking system. 

However, as the braking torque increases, the wheel speed may reduce below 

the vehicle speed and consequently the tyre slips on the road, generating 

friction forces in the contact area, due to adhesion and deformation processes, 

to slow down the vehicle.  

In the extreme, the wheel may cease to rotate, known as the “locked” condition, 

and one area of the tyre slides or skids over the road surface. Longitudinal 

friction measuring devices try to simulate part of this process, typically by 

controlling the rate at which the wheel rotates relative to the road speed. This 

leads to the idea of the “slip ratio” and it is important to appreciate how the 

longitudinal friction coefficient varies with the slip ratio. 



Chapter 1: Tyre/road interaction: Skid resistance and road Texture 
 

10 
 

The tyre slip ratio G is defined by the formula: 

 

 

 

where: 

ω: angular speed of the wheel; 

R: wheel radius; 

V: vehicle speed. 

 

G varies between 0 and 1. For skid-resistance measuring devices, G is 

generally expressed as a percentage.  

Thus, for G = 0%, the tyre speed is equal to the vehicle speed and the wheel is 

freely rotating;  for G = 100%, there is no rotation and the wheel is locked. 

 

 

The longitudinal friction coefficient LFC varies with the tyre slip ratio as 

illustrated in Figure 1.2: 

 

 

Figure 1.2 -  Illustration of LFC – G curve 
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It can be seen that, initially, friction increases as the slip ratio increases but it 

reaches a maximum value before decreasing as the slip ratio continues to 

increase until the locked wheel state is reached.  

This variation can be explained by the movement of the tyre treads in the 

tyre/road contact area changing from a largely shear phase to a mainly slipping 

phase. 

The maximum value of LFC denoted by Gmax, sometimes known as “peak 

friction”, typically occurs at a slip ratio between 15% and 20%. [2] 

 

 

1.3.2 TRANSVERSE FRICTION PRINCIPLE 

 

In a bend, the driver uses the steering system to turn the vehicle’s front-wheels 

so that there is a difference between the vehicle direction and the wheel 

rotation-plane.  

The induced angular difference is known as the slip angle. It induces tyre/road 

friction, which in turn generates a centripetal force opposing the centrifugal 

force exerted on the vehicle in the bend, allowing the vehicle to follow round the 

curve. Just as with longitudinal friction, when as the braking force increases the 

wheel starts to slip over the road surface, so in the transverse friction situation if 

the centrifugal force exceeds the friction force available, the tyre will slip 

sideways, even though it continues to rotate. 

Transverse-friction skid resistance measuring devices try to simulate this 

process. This leads to the concept of the “slip angle” and it is important to 

appreciate how the transverse, or sideway, friction coefficient varies with the 

slip angle. The slip angle is the angle formed by the wheel’s plane of rotation 

and the tangent to the wheel’s path. On a skid resistance test device the 

wheel’s path normally follows the direction of travel of the test vehicle. 
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Figure 1.3 -  Illustration of slip angle 

 

The sideways friction coefficient SFC varies with the tyre slip-angle as 

illustrated in Figure 1.4: 

 

 

 

Figure 1.4 - Illustration of SFC – δ curve 
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It can be seen that the friction increases at first as the slip angle increases, 

reaching a maximum before decreasing as the slip angle continues to increase. 

This process is analogous to the variation observed in longitudinal braking, as 

the tyre tread in the tyre/road contact area moves from a shear phase to a 

slipping phase.  

Typically, the maximum value of SFC occurs at a slip angle, denoted by δmax, 

between 4° and 7° for a light vehicle, and between 6° and 10° for a truck. [2] 

 

 

1.4 IMPORTANT PARAMETERS FOR ROAD SURFACE 

 

As we have seen, the interactions between the tyre and the road that affect skid 

resistance, rolling resistance and noise emission all derive from the way in 

which different parts of the tyre deform to make intimate contact with the road, 

and then are released again as the tyre rotates further or moves on. 

The surface profile of a road with which tyres interact is often described in terms 

of its “surface texture”. In order to describe the components of texture, [1]  that 

is defined as the deviation of actual surface from an ideal reference plan, in 

relation to the factors that they influence, [3] the profile is divided into different 

texture scales, based on wavelength ranges. Figure 1.5 illustrates the 

“irregularity ranges” that are typically used to describe these texture scales and 

the different factors, including skid resistance, rolling resistance and noise that 

are influenced by them. 
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Figure 1.5 - Texture wavelength influence on tyre-road interactions 

 

Although their influence varies, it can be seen that essentially there are just 

three main parameters relating to the road surface that affect the three main 

factors in this study.  They are: 

 

• Microtexture, which is formed by the microscopic asperities on the surface of 

aggregate particles and fine grains in the road surfacing material. [1] It’s 

constituted by wavelenght values inferior to 0,5 mm and profile peak-to-peak 

width values between 1 µm and 0,2 mm, which is the result of roughness of 

individual aggregate items used in road surface material and is therefore tightly 

connected to the mineralogical composition of an aggregate. [3] 

 

• Macrotexture, which is formed by the shape of and spaces between the 

larger aggregate particles (or grooves formed in concrete) at the surface of the 

road. [1] It’s constituted by wavelenght and peak-to-peak width values between 

0,5 mm and 50 mm and 0,2 and 10 mm, respectively, depending on mixture 

size range. [3] 

 

• Megatexture, which arises from variations in the surface profile on a larger 

scale. It often appears as waviness and includes wavelengths between 50 and 

500 mm and peak amplitudes from 0.1 to 50 mm. These wavelengths are of the 

same order of size as the length of the tyre/road contact area. 
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There are no boundaries between these categories; one merges into the next. 

Figure 1.6 illustrates the range of textures that could be encountered on roads. 

It is macrotexture and microtexture that have the greatest influence on skid 

resistance and tyre/road friction. [1] 

 

 

 

Figure 1.6 – Texture 

 

 

1.4.1 INFLUENCE OF TEXTURE ON SKID RESISTANCE 

 

The effects of texture scales on the two basic mechanisms of tyre/road friction 

can be summarized as the adhesion component being highly sensitive to 

microtexture, whereas the hysteresis component is mostly sensitive to 

macrotexture. 

Although skid resistance is generally high on dry and clean road surfaces, in 

wet conditions road surface texture on both the micro- and macro-scales is 

essential. 

The surface must provide sufficient macrotexture to assist effective drainage of 

water from the road/tyre interface and increase the zone of potential dry contact 

at the rear of the tyre/road contact patch. However, drainage alone is not 

sufficient to provide good skid resistance; the water film can only be broken if 
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the road surface has a good microtexture on which localized high pressures are 

built up. 

The texture of the surface also influences how skid resistance varies with 

speed. As is normal practice in studies of skid resistance, a standardized 

smooth tread tyre was used in the tests to separate the effect of road 

characteristics from those of the tyre, such as tread pattern and depth. A 

smooth tyre represents the worst case in practical terms. 

It can be seen from the results of many studies that all texture scales have a 

significant effect on tyre/road friction. Both the microtexture and the 

macrotexture of a road surface should be high in order to increase adhesion, 

hysteresis and water drainage. 

Microtexture affects friction over the range from almost zero up to the maximum 

possible friction and is important at all speeds. Macrotexture has some 

influence on friction at low speeds, albeit to a much lesser extent than 

microtexture, but is the dominant factor at higher speeds on wet roads. 

However, as yet there are limitations to the reliable modelling of the influence of 

macrotexture, partly due to the ways in which this factor is quantified and 

measured. 

Microtexture currently cannot be measured quantitatively. Work is in hand at 

many institutes to study this but measurements made with low-speed devices 

such as the pendulum tester or dynamic friction tester are often used as 

surrogates. [1] 

 

 

1.5 THE INFLUENCE OF SURFACING MATERIALS  

 

In order to produce road surfacings with effective texture, it is necessary to 

know how the composition of the asphalt or concrete influences the 

development and maintenance of skid resistance. 

Parameters of the surfacing material that will influence the texture and therefore 

the skid resistance include: 

1) Aggregates. 

2) Bitumen. 

3) Void content. 
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4) Paving and compaction of asphalt surfaces. 

5) Texturing of concrete surfaces. 

6) The types of surfacing -  Asphalt / Concrete . 

As well as providing appropriate levels of microtexture and macrotexture when 

new, it is important that the surfacing can maintain appropriate levels during its 

service life. This will depend on various factors, including: 

• The aggregates’ ability to resist polishing and the associated loss of 

microtexture when trafficked. 

• Resistance to wear that could lead to reduced macrotexture as surface 

aggregate particles are worn down or concrete brush-marks are worn away. 

Microtexture may also be affected as aggregate particles in the body of the 

surfacing material with less polishing resistance become exposed at the 

surface. 

• The ability of the surface to maintain its structural integrity and hence 

macrotexture. This is important on modern asphalt materials in which loss of 

some aggregate particles from the surface can lead to a gradual degradation of 

the surrounding material as unsupported particles are broken away. 

Deformation or flushing of bitumen could lead to the embedment of surface 

chippings with loss of macrotexture (or even, in the extreme, the covering of 

microtexture). [1] 

 

 

1.5.1 AGGREGATES 

 

The shape of the various asperities on the road must be taken into account in 

order to explain the main differences in the friction performance of different 

types of road surfacing materials. Depending on how the surface is made, 

patterns of texture can vary widely, both at the micro- and macrotexture scales.  

On asphalt surfaces these may range from closely-packed small particles 

through larger individual chippings spaced out from one another with relatively 

smooth asphalt mortar in the spaces between them. The aggregate particles 

may be orientated differently, with pyramidlike angles or, conversely, essentially 

flat surfaces uppermost. The natural properties of the aggregate after crushing 

and grading will have an influence on these factors. A high proportion of 
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naturally-flaky particles, for instance, will tend to present flatter faces to the 

surface, whereas more cuboid particles are more likely to present an angled 

edge. On concrete surfaces the ways in which grooves and ridges are formed 

can create a different range of texture patterns, including repeating patterns that 

may be transverse or longitudinal compared with the direction of traffic 

movement. 

In relation to microtexture and, in particular, its ability to break through a water 

film, it is reasonable to assume that aggregates with sharp asperity peaks 

produce higher localized pressures in the contact patch and that these are likely 

to be more efficient at breaking the last slight water film than aggregates with 

rounded asperities. Another advantage of sharp 

asperities is that the total load on a tyre could be carried on quite a small area; 

thus, only a small area need be cleared of water before much of the load is 

supported upon a dry road surface. 

The shape of the aggregates used can be assessed by the shape index or 

flakiness index. 

Flaky aggregates tend to lie flat during the paving process and so make a 

relatively small contribution to macrotexture. For this reason, it is better to use 

coarse aggregates with a low shape or flakiness index and this is often taken 

into account in different national regulations or specifications. 

Angularity of the aggregates is only relevant for the sand (0.063 – 2 mm) within 

the mix, because for the coarse aggregates in surface layers crushed materials 

have to be used. This property of the sand is determined by the flow coefficient. 

Crushed sand gives a higher value of the flow coefficient and the friction 

coefficient increases with the crushed sand content. This is currently taken into 

account in different national regulations. 

As well as being affected by particle shape, macrotexture is controlled to a 

certain degree by the size of the aggregate particles. On surface dressings  and 

most asphalt surfacings, the macrotexture, in particular the drainage paths, is 

determined by the spaces between the particles at the surface, the so-called 

“positive” texture. On porous asphalt and Stone Mastic Asphalt (SMA) thin 

surfacings, macrotexture is produced by voids between adjacent particles below 

their upper surfaces, so-called “negative texture” and is controlled by the way 

the particles pack together in the mix. 
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The size of aggregates used in surfacings influences skid resistance, with 

smaller sizes giving greater skid resistance. This has been observed in a 

number of experiments. For example it has been shown that increasing the 

percentage of crushed faces increases the skid resistance, and is important for 

high-speed skid resistance while chip grade is more important at low speeds. 

In controlled environmental conditions, skid resistance at any time is primarily a 

function of the geological properties of the aggregates and the traffic loads 

placed upon them. The type of aggregate used will determine the microtexture 

of the surfacing and its ability to maintain that microtexture under loading from 

traffic and as a result of weathering. 

Under traffic loading high stresses are developed at the tips of the asperities 

which combined can cause the individual particles to polish, particularly if fine 

surface detritus is also present. Thus the main engineering quality required from 

an aggregate to be used in a pavement surfacing is to be resistant to the 

polishing and abrasive actions of traffic. Rocks, which contained minerals of 

sufficiently different hardness or which were friable, consisting of grains rather 

insecurely cemented together, were found to give high polishing resistance. 

The microtexture on an aggregate that is exposed in the surface of a road is 

affected by the following factors: 

 

- Polishing. 

- Differential wear. 

- Weathering. 

 

The term “polishing” describes any general smoothing of an aggregate, 

including rounding that takes place by abrasion. This phenomenon tends to 

smooth aggregates by reducing their angularity and microtexture and is caused 

by the action of tyre carrying detritus and grinding away material from the 

exposed aggregate. The severity of the abrasive action is related to the density 

of the traffic and the petrographic characteristics of the aggregates:  

 

- Degree of hardness and proportion of hard minerals. 

- Proportion, orientation and distribution of cleaved minerals. 

- Grain size 
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- The nature of the inter-granular bond. 

- Degree of liability to chemical alteration of the mineral content. 

 

Where aggregate particles consist of agglomerations of several minerals with 

different resistance to wear, rough texture can remain as the particles are worn 

by traffic. Some minerals remain in high relief, whilst others are worn down to a 

lower level. This phenomenon can be expected where the minerals are of 

different hardness or toughness. 

This will tend to prevent general smoothing by recreating a microtexture. 

The aggregate used in a road surfacing has a progressively greater influence 

on skid resistance as the surfacing ages. The aggregates start with good 

microtexture but this is lost over time and aggregates with good resistance to 

polishing can be expected to provide higher levels of equilibrium skid 

resistance. In order to help in the selection of appropriate aggregates, 

accelerated polishing tests have been developed that can be used in the 

laboratory to assess likely performance. The most widely-used of these is the 

Polished Stone Value (PSV) test. [1] 

 

 

1.5.2 INFLUENCE OF TRAFFIC LOADING 

 

On opening a surface to traffic, the skid resistance can alter for the first year or 

two as a result of traffic action before settling to an equilibrium value around 

which the skid resistance will fluctuate slightly. Once equilibrium has been 

reached, the skid resistance at any time may vary as a result of seasonal 

variation and a significant change in traffic level may alter the equilibrium level. 

On a new asphalt surface, the microtexture can be masked by bitumen when 

the surface is initially laid and for a period afterwards until the effects of 

trafficking and weathering remove the excess bitumen to expose the 

microtexture. This phenomenon, often referred to as “early life skid resistance”, 

has been investigated in some depth in recent years. 

The rate at which skid resistance changes in this period depends upon the type 

of surfacing material, the trafficking and climatic conditions. 
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Particularly on more lightly-trafficked roads, the process can sometimes 

dominate the skid resistance performance of a surfacing throughout its life. 

After the initial period, the aggregates are gradually exposed and actual 

polishing of the aggregate particles begins, gradually reducing skid resistance 

to the equilibrium level. [1] 

The effect of trafficking can be evaluated in laboratory conditions using the 

Road Test Machine (RTM) apparatus. 

 

 

1.5.3 BITUMEN/BINDER 

 

The amount of bitumen used in the asphalt mix can also have some influence 

on skid resistance. High binder contents will tend to produce a low void content, 

which could lead to bleeding: this may have resulting negative effects on skid 

resistance as a result of loss of microtexture, as the bitumen covers the 

aggregate, and on macrotexture as the filling of surface voids reduces 

macrotexture. 

There is no evidence that suggests that the type of bitumen used in the asphalt 

mix has a noticeable effect on skid resistance. However, for carriageways with 

heavy traffic it is better to use bitumen with higher viscosity to ensure the 

durability of the surface and therefore, indirectly, its skid resistance. 

Practical experience shows that the use of polymer modified bitumen (PMB) 

tends to produce higher levels of skid resistance compared to standard 

bitumen. This could be due to the higher viscosity of PMB and therefore a 

higher ring-and-ball softening point, resulting in a pavement that has a higher 

resistance to permanent deformation at high temperatures.  

In contrast, however, if bitumen with higher viscosity or polymer modified 

bitumen is used, it may take much longer for the bitumen to be removed from 

the aggregate in the initial period after laying, especially if there is less traffic. 

This can have two influences: one is adverse, in which the bitumen blinds the 

microtexture and reduces skid resistance, especially as speed increases; the 

other is favourable because the presence of the bitumen can delay the onset of 

the polishing of the aggregate so better microtexture is maintained for longer. 

[1] 
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1.5.4 VOID CONTENT 

 

The void content and other volumetric values of the asphalt mixture are only 

relevant for dense rolled asphalt. 

Different studies and practical experience show that, with lower ‘void content’ 

(V) and therefore rising ‘voids filled with bitumen’ (VFB) at the surface, the skid 

resistance tends to fall because of loss of micro and macro texture. A critical 

range of V is about 2 Vol.-% and VFB about 90%. [1] 

 

 

1.5.5 PAVING AND COMPACTION OF ASPHALT SURFACES 

 

The appropriate usage of the paver and the roller compactor could avoid 

negative effects on skid resistance of paving and compaction to the surface. 

The effects are likely to vary depending on the specific material being laid, but 

examples found in some countries could include segregation in the horizontal 

direction caused by inappropriate use of the paver  and in the vertical direction 

by the selection of an inappropriate use of the roller. [1] 

 

 

1.5.6 TYPE OF SURFACE  

 

Asphalt 

There are many different types of asphalt surfacing, as well as applied 

treatments such as surface dressings, used on European roads. These can 

have markedly different characteristics in the ways in which micro- and macro-

texture are provided at the surface. Therefore, the skid resistance that a road 

will provide is affected by the type of surfacing. The finished surface will have 

different proportions of coarse and fine aggregate exposed at the surface to 

interact with tyres through which the skid resistance forces are transmitted. 

Studies have shown that for asphalt mixtures with a high proportion of fines in 

the contact area, such as some Asphalt Concrete materials, the fines 

themselves contribute to microtexture, and hence skid resistance. In surfacings 

in which coarse aggregate predominates in the contact area, high-PSV 



Chapter 1: Tyre/road interaction: Skid resistance and road Texture 
 

23 
 

aggregate (typically, PSV > 50) is needed to provide and maintain microtexture. 

In some countries, in the UK for example, that generally use surfacings with a 

high proportion of coarse aggregate at the surface, different levels of PSV are 

used to deliver different levels of skid resistance depending on expected traffic 

levels. Nevertheless, in surfaces which are not gap-graded, it is necessary to 

use coarse aggregate with adequate PSV since both coarse and fine materials 

contribute to microtexture.  

 

Concrete 

Portland cement concrete surfaces behave differently from asphalt surfaces in 

the way in which microtexture and macrotexture, and hence skid resistance are 

developed initially and how this changes over time. The actual composition of 

the concrete has a relatively small impact on skid resistance at first because the 

running surface is created by the mortar on the surface and the way in which 

that has been formed to provide texture. However, as the surfacing wears over 

time, this initial texture can change. 

In the worst cases, the internal structure may be exposed at the surface and 

consequently influences skid resistance. 

The microtexture of a concrete surface is provided initially by the sand grains in 

the mortar. These are naturally at the microtexture scale and the polishing 

resistance can be important, especially if crushed-rock fines are used.  

Over time, the upper surface can wear away to expose the coarse aggregate in 

the bulk of the material and the polishing resistance of the aggregate then 

becomes of great significance in terms of skid resistance, especially if this is 

associated with a naturally-low texture depth. 

The macrotexture of concrete roads is determined by their structure, which can 

be broadly divided into two categories: 

• Isotropic, in which the macrotexture is formed by aggregate particles 

deliberately exposed at the surface (e.g. exposed aggregate concrete, porous 

concrete). 

• Anisotropic, where the macrotexture is formed by ridges or grooves applied to 

the surface, either while the cement is still wet or plastic or after it has 

hardened. 
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In Germany, for example, where the composition of cement concrete surfaces 

can vary more than elsewhere in Europe, it has been found that using a higher 

stability concrete does not necessarily lead to greater durability of the texture 

produced. Furthermore, a loss of texture geometry does not have to lead to a 

loss of skid resistance, provided that the mortar layer contains a high proportion 

of fine aggregate and is of suitable thickness, perhaps 0.5 to 1.0 mm. However 

it has also been found that as well as the composition of the mortar, its 

consistency can also have an impact on measured skid resistance. [1] 

 

 

1.6 THE ROLE OF TYRES IN SKID RESISTANCE 

 

Skid resistance is described as the “Characterization of the friction of a road 

surface when measured in accordance with a standardized method” and does 

not therefore relate to the contribution that different tyre types or properties 

make to road/tyre friction.  

The ability of a tyre not to skid on a surface is sometimes referred to as “wet 

traction” or “wet grip”. Tyres are a rotationally symmetric composite that 

consists of a complex rubber compound with about 200 constituent parts which 

is reinforced by different layers of textile or steel fabric. Tyres have to support 

wheel loads but they also transfer torques that enable the vehicle to accelerate 

and decelerate and transfer lateral forces in order to steer. 

There are different types of tyre design but the predominant type for cars and 

many trucks is the radial tyre. Radial tyres are built on a carcass of steel cords 

running radially from bead to bead. A stabilizing belt of crossed steel cords 

surrounds the carcass. The rubber tread, which is the part of the tyre that is 

contact with the road surface, is bonded to the belt and sculpted with a tread 

pattern. 
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Figure 1.7 – Tyre section 

 

The two parts of the tyre that have the main influences on skid resistance, 

rolling resistance and noise are the carcass and the tread. The design of the 

carcass, its inflation pressure and aspect ratio all have an influence on the way 

in which the tyre rolls over the surface and responds to changes in surface 

characteristics such as megatexture, or changes in driving pattern such as 

braking or cornering. 

In the case of the tread, which is the part of the tyre through which frictional 

forces are transmitted and which is distorted by the road surface, there are a 

number of particular aspects that influence our main topics in different ways. [1] 

 

 

1.6.1 TREAD PATTERN 

 

We have seen that a major contribution that road surface macrotexture makes 

to road/tyre friction is removal of water from the contact area. The tyre also 

contributes to this through its tread pattern. This provides channels for water to 

escape, with the aim of establishing some localized dry contact between the 

tread and road surfaces. The role of the tread pattern is extremely important on 

surfaces that have low drainage capacity, i.e. low macrotexture. 

Today, there are many different designs of tread pattern but most consist of 

circumferential and zigzag rib patterns. Investigations were undertaken in the 
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1960s to determine whether particular tread patterns produce better 

performance on wet surfaces, but at that time no one pattern design seemed to 

show significantly better performance than others. [1] 

 

1.6.2 TREAD DEPTH 

 

The effect of tread depths on skid resistance has also been studied. From these 

various studies, it appears that on surfaces with relatively high macrotexture, 

the influence of tread depth on the tyre is less important until water depths 

become high.  

Studies, have demonstrated clearly that macrotexture is important but that 

increasing it markedly beyond a certain level, about 1.2 mm TD has been 

suggested gives no additional benefit. Therefore, on road surfaces that are 

already above this level in macrotexture terms, the contribution of tyre tread is 

small in terms of increased grip. However, on surfaces with inherently low 

texture depth, the contribution made by the tyre tread becomes a much more 

significant component of the tyre/road friction process, especially at higher 

speeds with greater water depth. 

However, on wet surfaces, an increase in tread depth resulted in higher friction 

values. [1] 

 

 

1.6.3 TREAD COMPOUND 

 

Tread rubber is a viscoelastic material. The term viscoelasticity is applied to 

materials which are neither ideal elastic solids nor viscous liquids but posses 

characteristics which are typical of both. On a stress against strain curve, the 

loading and unloading parts of a cycle have different slopes that are due to 

energy loss in rubber with changes in the storage and loss modulus of the 

rubber; this is what gives rise to the hysteresis effect.  

It is established that a large part of friction between rubbers sliding over a rough 

lubricated surface comes from energy losses in the rubber and that the lower 

the rubber resilience is, the greater the tyre wet grip is. [1] 
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1.6.4 INFLATION PRESSURE 

 

It is clear that changes in loading and inflation pressure will alter the dimensions 

and shape of the contact area. This is potentially important since this will 

determine the duration of the contact between each element of the tyre and the 

road, and so will have an effect on the water film variation. However, tests 

carried out in normal conditions, with patterned tyre and textured surface, 

showed that relatively large changes in inflation pressure had hardly any effect 

on tyre/road friction; its effect was low compared with road macrotexture and 

tyre tread depth.  

Other investigations have shown the same for wet surfaces, where the inflation 

pressure has no effect on friction value, even if the tread depth increases. 

However, on dry surfaces the friction value rises, when the inflation pressure 

decreases, even with an increase in the tread depth, and this reduction in 

friction value can be explained by the reduced contact area that results from a 

higher inflation pressure, which leads to higher contact pressure. 

On wet surfaces, however, it seems that the influence of the changes of the 

inflation pressure and therefore the inhomogeneous contact pressure are in 

balance. This may occur because on wet surfaces the dry area through which 

the contact pressure acts to develop adhesion is already a relatively small part 

of the tyre contact patch and so is less sensitive to the overall change in contact 

area as a result of inflation pressure changes. [1] 

 

 

1.6.5 TYRE TYPE 

 

Tyres are essentially of two general types: heavy goods vehicle (HGV) tyres 

and passenger car tyres. Car tyres can also be divided into summer and winter 

tyres, with different rubber compounds and tread patterns chosen to reflect the 

different conditions. Winter tyres are not always used in countries that do not 

experience great extremes between summer and winter conditions or in which 

the extreme conditions are not over prolonged periods. 
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Heavy vehicles use different tyres on different axles according to their purpose. 

Tyres on the drive axles usually have a traction profile to give grip for power 

transmission, whereas tyres on the steering axles have a longitudinal profile. 

 

 

 

Figure 1.8 – Tyre types 

 

The different tyres on HGVs, with their various profiles, influence the braking 

distance of these types of vehicle. The tyres on the power transmission axles 

with a traction profile have approximately the same braking distance as the 

tyres on the steering axles with a longitudinal profile. However, the behaviour of 

braking distance in relation to the tyre width is inconsistent; sometimes the 

braking distance rises and sometimes it falls with an increase in tyre width. [1] 

 

 

1.7 EXTERNAL ENVIRONMENTAL INFLUENCES  

 

1.7.1 RAINFALL AND THE INFLUENCE OF WATER FILM 

 

When a road is clean and dry, high levels of tyre/road friction are generated 

whatever the vehicle operating conditions; it is water on the surface during and 

after rainfall that is the main factor leading to reduced friction. Various factors 

relating to the road and the tyre and other influences such as vehicle speed 

then affect the actual level of friction achieved in a particular situation. 
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The role of the water itself is primarily as a medium that separates the rubber of 

the tyre from the microtexture of the road by acting as a lubricant. 

A wedge angle is created between the tyre and water ahead the contact area. 

This occurs because of the change in momentum of the water as it is pushed 

ahead of the tyre by the rolling surface of the tyre. 

This phenomenon creates a hydrodynamic pressure that increases with the 

square of the vehicle speed. A tread element which comes into contact with the 

road as the tyre is rolling must first squeeze out the film of water ahead of the 

contact area before it can make contact with the road surface asperities in the 

remainder of the contact patch. The real areas of contact between tread 

elements and the road occur only towards the rear of the contact patch. At any 

moment during the tyre movement, the tyre load is supported partly by the 

water trapped in the contact patch and partly by the road surface asperities that 

are in direct contact with the tyre tread. The greater the proportion of dry 

contact, the greater the tyre/road friction will be. 

The contact patch can be divided into three zones with different proportions that 

range from wet to almost dry. These zones are generally explained as follows: 

 

 

Figure 1.9 - Three zones in the tyre/road contact patch 

 

 

• Squeeze-film zone (or Sinkage zone or Zone A): Under wet conditions, the 

forward part of what would normally be considered the contact area under dry 

conditions floats on a thin film of water, the thickness of which decreases 

progressively as individual tread elements traverse the contact area. Since the 
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tyre, water film, and the road surface have virtually no relative motion in the 

contact area, the tread elements in effect attempt to squeeze out the water. 

 

• Transition zone (or Draping zone or Zone B): The transition zone begins 

when the tyre tread elements, having penetrated the squeeze-film, commence 

to drape over the major asperities of the surface and to make contact with the 

lesser asperities. 

 

• Actual contact zone (or Dry zone or Zone C): This is the region where the 

tyre tread elements, after draping, have attained an equilibrium position 

vertically on the surface. This zone occupies the rear portion of the contact 

area. 

 

The lengths of these regions depend on vehicle velocity and relate to water 

drainage time. At low speeds, the contact time is long, and there is ample time 

for water film to be expelled, thus allowing a large actual contact zone to 

develop with a resulting high level of friction. 

When speed increases, the time available for water to be expelled from the 

interface becomes shorter and consequently the expulsion of water is less 

complete, the actual contact zone is smaller and friction is lower. 

Increasing speed will decrease the available drainage time so much that the 

squeeze-film zone is extended, ultimately to the point where it occupies the 

whole contact length. This situation corresponds to the viscous hydroplaning 

limit. At such a speed, the hydrodynamic pressure is less than the wheel load. 

Further increase in speed moves the situation to the point that corresponds to 

dynamic hydroplaning, where the hydrodynamic pressure balances the normal 

wheel load and the water occupies the whole contact area. In this extreme 

situation the tyre is effectively lifted off the road and all grip and steering control 

are lost. However, normal road surface are never smooth, so the contact area is 

usually broken up into discontinuous areas, either by the texture of the road or 

by the texture of the tread pattern of the tyre. This increases the speed needed 

for hydroplaning to occur. Nevertheless, in practice, it is not at all necessary to 

have a flooded road surface for viscous hydroplaning to occur, and the slightest 

film of water may be sufficient to make skidding possible. 
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Instead of determining water drainage time, Horne and Buhlmann proposed an 

alternative method for determining the available friction at any speed that takes 

the road texture directly into account. This method describes the water removal 

rate in the squeeze film and transition zones. The relative drainage times from 

both zones are expressed in terms of pavement drainage coefficients, Cmac 

and Cmic. It is Cmac that determines the percentage of the tyre footprint in the 

squeeze-film zone. Since in this area the dynamic effect of water predominates, 

the removal rate is dependent upon bulk channel flow, which is determined by 

the amount of road surface macrotexture in the case of a smooth test tyre. 

Cmic determines a percentage of the tyre footprint that set the relative size of 

the transition zone. Unlike the squeeze-film zone in which bulk water is 

removed, fluid viscous forces prevail in this region. Since localized high contact 

pressures are required to penetrate and break this viscous film, this coefficient 

depends on the road surface microtexture. 

The film thickness decreases rapidly with time as soon as it enters in contact 

with the tyre. Thus, the differences in the initial thickness of the water films are 

small importance. Experimental investigations at the Road Research Laboratory 

in the UK in the late 1960s confirmed that the main skidding problem on roads 

is the lubricating effect of a relatively thin water film, of about 3 to 4 mm. Based 

on experimental investigations, Bohdan et al proposed a mathematical 

relationship between water film thickness and skid resistance with a form that 

responds in the same sense as the RRL results.  

 

 

1.7.2 OTHER EXTERNAL FACTORS INFLUENCING TYRE/ROAD 

INTERACTION 

 

There are also other external environmental factors that also have an influence 

in the real world of in service roads and tyres travelling on them.  

Over time, microtexture is polished by the action of the repeated passage of 

vehicle tyres, especially those of heavy vehicles. This leads to a gradual 

reduction in skid resistance as the road ages until an equilibrium value is 

reached. The extent to which a surface will polish, and hence the equilibrium 

skid resistance achieved, depends on both the level of traffic and the ability of 
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the aggregate to resist polishing. The effect is also influenced by other stresses 

such as braking and cornering forces, so an aggregate may provide different 

levels of skid resistance depending on where it is used. 

Generally, the greater the polishing resistance of the aggregate, the better the 

microtexture and the better the skid resistance will be. Conversely the greater 

the traffic level, the greater the polishing and the lower the skid resistance will 

be.  

On very lightly trafficked roads, it may take many years for the equilibrium skid 

resistance to be reached. On heavily trafficked roads this may happen in as 

short a time as six months to a year.  

It has been found that, especially in temperate climates such as in much of 

western and central Europe, there is a marked variation in skid resistance (and 

consequently in road/tyre friction) throughout the year and from one year to the 

next. Typically, skid resistance is at its lowest in summer and higher in winter. 

This cyclical effect is known as “seasonal variation and this process can be 

explained as follows. Initially, the skid resistance on a new road is high because 

the aggregate is unpolished. During the summer period, fine deposits on the 

surface act as a polishing medium, leading to a reduction in the microtexture. 

However, in winter, frost action and more frequent rainfall mean that the 

deposits are coarser and so the microtexture is roughened. Initially, the 

polishing process dominates and the skid resistance gradually falls to the 

equilibrium level. Once reached, the skid resistance will remain at this same 

general level but, depending on the balance between summer polishing and 

winter roughening, it will vary from year to year. A change in traffic will also alter 

the balance of the polishing cycle and the equilibrium level may then increase 

(lighter traffic) or decrease (heavier traffic). 

While seasonal variation is a significant phenomenon in the study of skid 

resistance, and must be taken into account in any standards for roads based on 

skid resistance measurements, it is not strictly a parameter of either the road or 

the tyre. Rather, it reflects in part the way in which the road responds to the 

effects of traffic and weather over time. 

The presence of ice and snow on the road surface primarily impacts on 

tyre/road friction. By covering the surface of the road with a slippery film, the 
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normal frictional characteristics of road surfaces are masked and the tyre has to 

interact with ice.  

If the ice or snow has a water film on its surface then clearly it becomes very 

slippery indeed. However, when it is dry, for example on recently-fallen snow, 

reasonable levels of grip may be available. 

Salt or other de-icers may be spread on the road during winter maintenance 

operations to counteract the effects of ice formation. Some of these might have 

an adverse effect on skid resistance but recent research in the UK suggests 

that the effects, if any, are negligible and preferable to an icy road. 

During long, hot, dry spells, especially in summer, deposits of dust, oil and 

rubber can build up on the road. When it next rains, at first these deposits 

create a slippery film on its surface that has a worse effect on friction than water 

alone. Once sufficient rain has fallen, the deposits are washed from the surface 

but for a short time they are potentially hazardous. This is an important factor of 

which drivers need to be aware but it has little directly to do with the properties 

of road surfaces and tyres. 

Temperature itself does not directly influence the skid resistance of roads but 

high summer temperatures and frosty conditions can have an influence on the 

deterioration mechanisms of road surfacing materials that then affect their 

performance characteristics.  

There are also small effects due to temperature changes that can influence tyre 

rubber characteristics and consequently affect friction, or skid resistance 

measurements. [1] 
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CHAPTER 2: 

TESTS TO ASSESS  SKID RESISTANCE AND TEXTURE 

DEPTH 

 

 

2.1 TEST TO ASSESS SKID RESISTANCE 

 

2.1.1 BS 7941-2:2000 -  Surface friction of pavements  - Part 2: Test 

method for measurement of surface skid resistance using the GripTester 

braked wheel fixed slip device 

 

This British Standard describes a method for determining the skid resistance of 

a surface using the GripTester continuous reading braked wheel fixed slip 

device. 

The method is applicable to the following: 

- highways: surfacings; 

- highways: horizontal signs; 

- airport runways; 

- flight decks; 

- footways; 

- pedestrian precincts; 

- test panels of surfaces intended for any of the above. 

The method is for measurement of skid resistance along a continuous surface 

on external paved surfaces or indoors. Test speeds can vary from 5 km/h to 130 

km/h depending on the application. The measured values can be affected by 

the test speed. 

The GripTester is a device developed by Findlay Irvine Ltd in the United 

Kingdom, initially for use on helipads but now widely used in many countries on 

airfields and roads. The device operates on the longitudinal friction principle and 

is a trailer with two running wheels, called the “drive” wheels,  and a single small 

test wheel. 
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The wheel dimensions are similar to those of a “go-kart” wheel (Figure 2.1). It 

can also be configured to be pushed manually for low speed operation in 

confined areas. 

 

 

 

Figure 2.1 – Grip Tester 

 

GripTester measures LFC using a small test wheel operating at fixed slip ratio 

of 15%.  

The test wheel is mounted on a stub axle and is mechanically braked by a fixed 

gear and chain system linking it to the drive wheel axle.  

The wheel slips as it is towed along the wetted pavement surface at a constant 

speed and the slipping force and vertical load are both measured. The static 

load on the test wheel is (250 ± 30) N when towed or (260 ± 30) N when used in 

push mode. In the latter case a small water container is mounted on the device 

itself, adding to the load. 

During operation, the stub axle becomes elastically deformed by the horizontal 

drag and vertical load forces acting on the test tyre. Two strain gauge bridges 
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on the stub axle continuously measure the horizontal drag and vertical load 

forces. The two drive wheels are mounted on the main axle, which also carries 

a toothed wheel. A proximity sensor generates signals for distance recording. 

For normal wet road testing, water is deposited in front of the test tyre from a 

water tank fitted with a control valve. A water nozzle is mounted directly in front 

of the test wheel delivering a controlled amount of water to the road surface. In 

towing mode, water flow rate is further controlled by a pump and may be 

monitored with a flow meter. 

The standard test-conditions for the GripTester are listed in Table below: [2] 

 

 

Table 2.1 - The standard test-conditions for the GripTester 

 

 

 

2.1.2 BS 7941-1:2006 - Methods for measuring the skid resistance of 

pavement surfaces – Part 1: Sideway-force coefficient routine 

investigation machine 

This British Standard describes a method for determining the wet-road skid 

resistance of a surface using the sideway-force coefficient routine investigation 

machine (SCRIM). The method provides a measure of the wet-road skid 

resistance properties of a bound surface by measurement of sideway-force 

coefficient at controlled speed. The method has been developed for use on 

roads but is also applicable to other paved areas such as airport runways. 

The SCRIM was originally designed in the UK by the then Road Research 

Laboratory and has been manufactured under licence by WDM Limited since 
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the 1970s. The device operates on the transverse friction principle and uses 

special narrow test wheel which set at an angle to the direction of travel. The 

wheel is lowered on to the road surface under the action of a static load. 

The test wheel is mounted to the side of a tanker lorry between the front and 

rear axles of the truck so that it runs in the vehicle wheel path. SCRIM is used 

widely across Europe with many countries operating more than one machine. 

There is a wide variety of truck chassis and bodywork in use, ranging from small 

units for use on local roads to very large three-axle trucks for long-distance 

main highway work. 

Figure 2.2 shows the measuring wheel assembly on a SCRIM built for UK main 

road use, with its test wheel on the left side of the truck. European mainland 

machines normally carry the test wheel on the right side and some machines 

are fitted with two test wheels. 

 

 

Figure 2.2 – SCRIM 

 

SCRIM measures SFC using an angled wheel. Some machines are also fitted 

with laser sensors to measure macrotexure. 

These have been estimated from data from the 2008 annual comparison trial in 

the UK involving fourteen machines operating on seven different test surfaces. 

Reproducibility values may vary in other countries depending on whether the 

machines have been maintained and compared with the UK fleet. 

A freely rotating wheel fitted with a special pneumatic, smooth, rubber tyre, is 

mounted midmachine in line with the nearside wheel path and set at an angle to 
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the direction of travel of the vehicle. The wheel is lowered on to the road surface 

under the action of a static vertical load defined by the mass of the wheel 

assembly, which is able to move freely up and down on vertical linear guides. 

The force acting along the axle of the test wheel is measured and used to 

calculate the SFC. On some machines, particularly those operating in the UK, 

the dynamic vertical load is also simultaneously measured and used in the 

computation of SFC. 

The standard test conditions for the SCRIM are listed in Table 2.2. [2] 

 

 

Tabel 2.2 - The standard test conditions for the SCRIM 

 

 

2.1.3 BS EN 13036-4:2011 - Road and airfield surface characteristics — 

Test methods. Part 4: Method for measurement of slip/skid resistance of a 

surface: The pendulum test 

 
This European Standard describes a method for determining the slip/skid 

resistance of a surface using a device which remains stationary at the test 

location. The slip/skid resistance is measured by means of a slider mounted at 

the end of a pendulum arm, either in the field or in the laboratory. 

This method measures the slip/skid resistance of a small area of a surface 

(approximately 0,01 m2). This should be considered when deciding its 

applicability to a surface which may have non-homogeneous surface 
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characteristics, e.g. containing ridges or grooves, or is rough textured 

(exceeding 1,2 mm mean texture depth). 

As the results from this test are taken at one small location, the results cannot 

be compared with results from devices e.g. mobile devices, that measure the 

slip/skid resistance over a long length of a surface. 

 

Measurements in the field 

 

- The test surface shall be brushed free of loose particles and flushed 

clean with water, unless the test is to include for the contamination of the 

surface. 

- Place the Pendulum Tester upon a firm surface with the pendulum 

swinging in the direction of traffic. The surface shall not have gradient in 

excess of 10 %. Where this is not possible, the test may be carried out at 

any angle to the direction of traffic to enable the gradient criterion to be 

satisfied. On surfaces bearing a regular pattern such as ridged or 

brushed concrete, grooved asphalt or paving blocks, tests should be 

made with the slider operating at an angle of approximately 80° to the 

ridges, grooves or joints in pavers. 

- Measure and note the temperature of the test surface and the slider to 

the nearest whole number. The test cannot be carried out if the 

temperature of the wet surface and/or slider temperature are outside the 

range 5 °C to 40 °C. 

- Measure and note the temperature of the water used for wetting the 

surface to the nearest whole number. The test cannot be carried out if 

the water temperature differs more than 15 °C from air temperature. 

- Wherever possible the readings shall be taken on the C scale using the 

wide slider. This determines the PTV directly. On non-homogeneous 

surfaces where a plane test surface can only be achieved of sufficient 

size to use the narrow slider, this may be used reading on the F scale. 

An estimation of the PTV can be obtained by calculation.  
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Measurements in the laboratory 

 

- Flat laboratory test specimens shall have minimum dimensions of not 

less than 100 mm × 150 mm. Where the specimens are initially smaller 

then this specimens may be cut and glued together on a backing panel to 

provide a plane surface of sufficient size to test. Curved specimens for 

the Polished Stone Value test shall have a test surface as described in 

EN 1097-8. 

- The appropriate slider assembly with either a slider 57 or slider 96 shall 

be selected as required. 

- Specimens cut from a surface shall use a method of cutting or coring to 

ensure the surface to be tested remains undamaged. 

- Specimens manufactured in the laboratory shall have the texture and 

material type on the surface specified in the relevant European Standard 

or as specifically detailed. 

- Specimens may be tested as taken from the site, as prepared in the 

laboratory (unpolished) or after a polishing regime. 

- Laboratory specimens shall be clean and free from contamination or 

loose particles and held rigidly so as not to be moved by the passage of 

the slider. 

- The water for wetting the surface, the pendulum tester, and the slider 

shall be kept in a room where the temperature is controlled at (20 ± 2) °C 

for at least two hours before the test begins and for the duration of the 

test. 

- Laboratory tests shall be carried out with the specimens held for a 

minimum of 30 min at (20 ± 2) °C before testing and for the duration of 

the test. 

 

Test procedure 

The pendulum test equipment, illustrates in Figure 2.3, shall be transported in 

the box supplied with the equipment. Carry out a visual check of the pendulum 

tester to ensure that it has been assembled correctly and there is no obvious 

damage that requires repair prior to use. Swing the pendulum arm to see if 

there are any obvious mechanical defects.  
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Figure 2.3 - Skid Resistance Tester (SRT) 

 

In the field, check the surface temperature when wet at each test location. If a 

pyrometer is used to measure the slider surface temperature it shall be 

orientated perpendicular to the direction of the surface. 

Set the pendulum up over the surface to be tested such that the pendulum 

swings over the particular area that is required for testing. When testing 

samples in the laboratory, set the pendulum upon a rigid surface that includes a 

suitable means of restraining the test sample in a horizontal position and 

support it solidly. The adjustable feet are used in conjunction with the built-in 

spirit level to ensure that the frame of the instrument is horizontal. It is important 

that the bubble lies exactly in the centre of the spirit level. 

Raise the axis of suspension of the pendulum so that the arm swings freely, and 

adjust the friction in the pointer mechanism so that when the pendulum arm is 

released from the right-hand horizontal position the pointer comes to rest at 

zero position on the test scale. Repeat twice more for confirmation. If the pointer 

swings past the zero position, screw the rings up a little more tightly. If the 

pointer does not reach zero, unscrew the rings a little. Ensure that the locking 

ring is tight before further use. 

Adjust the height of the pendulum arm so that in traversing the surface the 

slider is in contact with it over the whole width of the slider and over the length 
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below and wet the surfaces of the specimen and the slider rubber with a 

copious supply of water. 

Set the sliding length of the slider (the distance between two points where the 

sliding edge of the rubber touches the test surface) by gently lowering the 

pendulum arm while using the vertical screw after unclamp the head of the 

pendulum until the slider just touches the surface, first on one side of the 

vertical, and then on the other. The sliding length shall be between (126 ± 1) 

mm for the wide slider and (76 ± 1) mm for the narrow slider. This is normally 

accomplished as follows in a series of small steps, using one of the gauges for 

126 mm sliding length or a special scale for the narrow slider with a sliding 

length of 76mm. 

Move the pendulum foot to the right and lower the head so that the slider starts 

to contact the test surface with its rear corner (aluminium backing) level with the 

right mark on the gauge. Manually hold the gauge in that position. 

Raise the slider with the slider lifting handle and move the pendulum foot to left 

hand side sufficiently to ensure the slider is clear of the surface when the slider 

is lowered. Allow the pendulum foot to gently drop back so that the slider 

contacts the test surface. 

The rear edge (aluminium backing) of the slider shall coincide with the left hand 

mark of the gauge. If not, then raise or lower the Pendulum head so that the 

slider moves about 50 % of the distance towards the correct setting. 

Reclamp the head, reposition the gauge so that the corner of the slider is level 

with the left hand gauge mark and then move the pendulum foot over to the 

right hand side and check if it lines up with the right hand gauge mark. If not, 

repeat the process, backwards and forwards until the pendulum head is set at 

the correct height to give the required sliding length. Alternatively use a gauge 

or scale and measure directly at the contact points of rubber and test surface. If 

the sliding length is okay return the pendulum arm to its rest horizontal position. 

Wet the surfaces of the specimen and the slider rubber with a copious supply of 

water, being careful not to disturb the slider from its set position. 

Generally on surfaces typical of those found on roads, at least 100 ml of water 

may be required to be applied to the surface and the slider rewetted prior to 

each swing to ensure the wet slider is passing over the wet test surface. 
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Applying too little water will have a significant effect on the results if any part of 

the swept length is dry. 

Release the pendulum arm and pointer from the horizontal position using the 

release mechanism (knob), catch the pendulum arm on the early portion of the 

return swing and record the position of the pointer on the scale to the nearest 

whole number. Return the pendulum arm by raising the slider using the lifting 

handle and pointer to the release position. 

Perform this operation five times, re-wetting the surface and slider copiously just 

before releasing the pendulum and recording the result each time. If the first five 

readings differ by more than three units, repeat until three successive readings 

are constant and record this value. 

 

Calculations 

Now it’s possible to calculate the Pendulum Test Value as the mean of five 

swings using the formula: 

 

 

Where v1 to v5 are individual values for each swing; or: 

 

PTV = vj 

 

Where vj is the constant value achieved by the final three swings if the initial 

swings are too variable. 

Where testing in the field, correct Pendulum Test Value for temperature using 

the nearest temperature from the Table  below: 
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Table 2.3 – correction factor for PTV due to the temperature 

 

The measured slider temperature shall be the mean of the temperatures of the 

wetted slider before and after testing. Report the temperature corrected PTV 

value as PTVCorr to the nearest whole number. The PTV for a location is the 

mean of three individual PTV determinations. 

 

Precision 

The reproducibility of the measuring method has been examined on the basis of 

a round-robin test in which eleven different European laboratories participated. 

This involved testing twelve different material surfaces, whereby each 

laboratory tested the relevant material surfaces under laboratory conditions, 

using a slider 57 as well as a slider 96. Testing was done in the “wet” condition. 

The materials were tested in two opposite directions and the average value was 

examined. The standard deviations found were as follows: 

-  Slider 96: From 1.5 to 4.5 PTV units, depending on the nature and the 

surface characteristics of the material, with an average standard 

deviation of 2.4 PTV units. 

- Slider 57: From 1.4 to 3.9 PTV units, depending on the nature and the 

surface characteristics of the material, with an average standard 

deviation of 2.6 PTV units. 
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2.2 TEST TO ASSESS TEXTURE DEPHT 

 

2.2.1 BS EN 13036-1:2010 - Road and airfield surface characteristics — 

Test methods. Part 1: Measurement of pavement surface macrotexture 

depth using a volumetric patch technique 

 

This European Standard specifies a method for determining the average depth 

of pavement surface macrotexture by careful application of a known volume of 

material on the surface and subsequent measurement of the total area covered. 

The technique is designed to provide an average depth value of only the 

pavement macrotexture and is considered insensitive to pavement microtexture 

characteristics. 

This test method is suitable for field tests to determine the average 

macrotexture depth of a pavement surface. When used in conjunction with other 

physical tests, the macrotexture depth values derived from this test method can 

be used to determine the pavement skid resistance capability, noise 

characteristics and the suitability of paving materials or finishing techniques. 

When used with other tests, care should be taken that all tests are applied at 

the same location. 

 

Test method 

The standard materials and test apparatus consist of a quantity of uniform 

material, a container of known volume, a suitable wind screen or shield, 

brushes for cleaning the surface, a flat disc for spreading the material on the 

surface, and a ruler or other measuring device for determining the area covered 

by the material. A laboratory balance is also recommended to ensure consistent 

amounts for each measurement sample. 

The test method involves spreading a known volume of material on a clean and 

dry pavement surface, measuring the area covered, and subsequently 

calculating the average depth between the bottom of the pavement surface 

voids and the tops of surface aggregate particles. 

In spreading the material specified in this test method, the surface voids are 

completely filled flush to the tips of the surrounding aggregate particles. 
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Pavement aggregate particle shape, size and distribution are surface texture 

features not addressed in this method. The method is not meant to provide a 

complete assessment of pavement surface texture characteristics. In particular, 

care should be exercised in interpreting the result if the method is applied to 

porous surfaces and to deeply grooved surfaces. 

The method can be applied to a wide range of surfaces. Its validity range is 0,25 

mm to 5 mm, expressed in Mean Profile Depth, MPD. 

 

 

Material and apparatus 

The essential elements of the apparatus, shown in Figure 2.4, consist of the 

following: 

1) portable wind screen 

2)  spreading tool 

3)  surface cleaning brushes 

4)  sample cylinder 

5)  ruler 

 

Figure 2.4 — Apparatus for measuring surface macrotexture depth 
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Procedure 

Inspect the pavement surface to be measured and select a dry, homogeneous 

area that contains no unique, localized features such as cracks and joints. 

Thoroughly clean the surface using the soft bristle brush to remove any residue, 

debris or loosely bonded aggregate particles from the surface. Position the 

portable windshield around the surface test area. 

 

 

Material sample 

Fill the cylinder of known volume with dry material and gently tap the base of 

the cylinder several times on a rigid surface. Add more material to fill the 

container to the top, and level with a straightedge. If a laboratory balance is 

available, determine the mass of material in the container and use this mass of 

material sample for each measurement. 

 

Determination 

Pour the measured volume or mass of material on to the dry and cleaned test 

surface. Carefully spread the material into a circular patch, with the disc tool, 

rubber-covered side down, filling the surface voids flush with the aggregate 

particle tips. Use a slight pressure on the hand, just enough to ensure that the 

disc will spread out the material so that the disc touches the surface aggregate 

particle tips. 

Measure and record the diameter of the circular area covered by the material at 

a minimum of four equally spaced locations around the sample circumference. 

Calculate and record the average diameter. 

 

Number of test measurements 

The same operator should perform at least four, randomly spaced 

measurements on a given test pavement surface type. The arithmetic average 

of the individual values shall be considered to be the average surface texture 

(macrotexture) depth of the tested pavement surface. 
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Calculation of surface mean texture depth 

Calculate the mean texture depth, MTD, using the following equation: 

 

MTD = 4V /πD2 

 

Where: 

- MTD is the mean texture depth, expressed in millimeters (mm); 

- V is the sample volume (i. e. internal cylinder volume), expressed in 

cubic millimeters (mm3); 

- D is the average diameter of the area covered by the material, expressed 

in millimeters (mm). 

 

Precision of the method 

Controlled tests have been conducted on laboratory specimens having a range 

of macrotexture depth 0,5 mm to 1,2 mm. 

The standard deviation of repeated measurements by the same operator on the 

same surface can be as low as 1 % of the average texture depth. 

The standard deviation of repeated measurements by different operators on the 

surface can be as low as 2 % of the average texture depth. 

The standard deviation of the site-to-site variations may be as large as 27 % of 

the average texture depth. Here, site defines a randomly selected location 

within a nominally homogeneous pavement section. This means that a large 

number of measurement observations would be necessary to estimate the 

average texture depth reliably for given pavement types with large variations in 

texture, despite the fact that the method is highly repeatable and not subject to 

large operational influences. 
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2.3 TEST TO ASSES ASPHALT WEAR:  ROAD TEST MACHINE (RTM) 

 

The Road Test Machine was built by what is known as the TRL in the 1930’s to 

research the properties of asphalt road materials. The equipment was located 

from TRL to the University of Ulster in 2004. [4] 

The RTM was originally designed over 70 years ago and was subsequently at 

what is now known as the TRL for many years. [5] 

Actually, it is used to assess the wear characteristics of High Friction Surfacing 

system for use in the United Kingdom, and it has also used at the University of 

Ulster to investigate the wear characteristic of asphalt materials. 

The same methodology as used for High Friction Surfacing, was used in this 

laboratory investigation to assess the change in SMA characteristics. 

The machine, shown in Figure 2.5, consists of a 2.1 m diameter table that 

rotates at 10 rpm. Up to ten 305mm x 305mm x 50mm test specimens can be 

mounted on this table. 

Two vertically mounted tyres rune freely on the table applying a load 

approximately 5 kN. New tyres are fitted prior to testing a new set of test 

specimens. 

During testing the tyres track back and forth across the width of the test slab. 

The RTM is enclosed in a temperature controlled room where testing is carried 

out at 10+/-2C. Both the number of rotations and temperature are recorded 

automatically. The RTM can be programmed to stop after a specified number of 

rotations. [4]  

The use of this machine allows to reach three main objectives: 

 

- To determine the effect of nominal aggregate size on wet skid resistance 

and texture depth. 

- To determine how these properties developed with simulated trafficking. 

- To assess the importance of contact area on wet skid resistance and 

texture depth. [5] 
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Figure 2.5 – Road Test Machine 
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CHAPTER 3 

3D TECHNIQUES FOR THE EVALUATION OF TEXTURE DEPTH 

 

3.1 INTRODUCTION 

Characterization of surface texture is very important for pavement management 

applications, because it can affect road characteristics and vehicle performance 

in the areas of tire wear, rolling resistance, tire and road friction, noise in 

vehicles, exterior road noise and discomfort. [3] 

Characterization of pavement surface texture has significant effects on ride 

comfort and road safety. It is typically reported as a single attribute, such as 

mean profile depth, root mean square roughness or hydraulic radius, which 

limits the usefulness of information extracted from texture measurements. [7] 

Although mean profile depth was correlated with friction and noise, it is not the 

only contributing factor, and for this reason, methods that characterize 

pavement texture in three dimensions are requested. [3] 

The main objective of these methods is to recover the 3D heights of the 

pavement surface. Also, the validation of the proposed image-based texture 

indicators is examined. Results show that image-based techniques can be 

successfully applied to recover the 3D heights of pavement surface textures 

and provide substantial information on the friction and noise characteristics of 

the surface. 

Pavement texture characteristic is a common indicator for evaluating the 

performance of road pavements In the wavelength ranges of macrotexture (0.5–

50 mm), the most significant impacts of texture are in the areas of rolling 

resistance, tyre-road friction and noise. 

The ability to characterize highway surfacing textures is essential to better 

understanding their performance. Traditional volumetric methods such as sand 

patch produce data based on estimation of a single geometry and offer little 

insight to early life deformations of bitumen coatings, changes in aggregate 

shape or longer term performance of the asphalt. Durability of an asphalt 

surfacing is a function of its ability to withstand static and dynamic contact 
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stresses applied during its life. The asphalt surface / tyre interaction governs 

properties such as grip, noise generation, rolling resistance and durability. 

These properties cannot be viewed or studied on their own. This requires a 

holistic approach, that is extremely difficult to predict. There is the need for 

laboratory testing to assess not only the aggregate, or the bitumen, but to 

evaluate the asphalt mix to accelerated simulated trafficking conditions and 

consequently relate these tests to observable and measurable performance in-

situ. Most standard test methods offer little insight in this regard as they do not 

fully address how material performance and properties vary with time. [10] 

 

3.2 THE CONTACT BETWEEN A TYRE AND THE ROAD SURFACE 

Before analyzing the different 3D techniques, is interested to focus our attention 

on the knowledge of the contact patch between a tyre and the road surface. 

This is essential to improve understanding of surfacing properties. It was found 

that the contact area enveloped between tyre and surface is an ellipse; it’s 

directly proportional to wheel load and inversely proportional to tyre pressure. 

Siegfried  and Douglas found stress due to a tyre rolling over a road surface to 

be highly concentrated. This concentration would then exploit any weaknesses 

in the aggregate or asphalt surface. A simple circular configuration is typically 

assumed in structural design. Figure 3.1 shows the ellipsoid model proposed by 

Tielking and Roberts to explain how the tangential motion between tyre friction 

and the pavement is inwards towards the centre of the tyre contact patch. 

 

 

Figure 3.1 -  Tyre deforming due to vertical contact 
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Millar showed that close range stereo photogrammetry could be used to monitor 

accelerated wear of asphalt concrete surfaces. Figure 3.2 shows a high 

resolution contact pressure map generated by a worn smooth Findlay Irvine 

Griptester tyre placed statically on a high resolution (1x1mm) XSensor pressure 

mat; this is a simplification of what actually happens. 

 

Figure 3.2 - Ellipitcal contact footprint measured using a high resolution XSensor 

pressure pad 

 

Although wheel load is important to pavement structural design, tyre inflation 

pressure is more related to road / tyre interfacial phenomena. The distribution of 

contact stress within the contact patch is not uniform and changes frequently as 

a vehicle travels down a road. [8] 

This interaction may be investigated in the laboratory to assess a range of 

properties ranging from aggregate and mix type, grip, texture, noise and rolling 

resistance, and this holistic relationship between tyre, road surface and vehicle 

is extremely difficult to model and predict.  

 

 

3.2.1 LABORATORY EXPERIENCE 

 

A new approach was developed  to measure static and dynamic tyre / asphalt 

surface contact properties. It complements existing test methods such as the 

Noise and Rolling Resistance Indices and uses roller compactor slabs 
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subjected to accelerated trafficking using the Road Test Machine (RTM) to 

show development of surface properties with time. This test in based concerns 

a  modification of a Wessex dry wheel tracker to cause the asphalt test 

specimen to move under a loaded tyre in a controllable manner. 

 

 

Figure 3.3 Example contact pressure maps for (left to right) chipped HRA, 

unchipped HRA, 6mm SMA and 14mm SMA 

 

Highway surfaces are vulnerable to the potentially damaging effects of 

protracted exposure to wet weather or melting snow and ice containing de-icing 

salts. Cyclic freeze/thaw mechanisms and hydraulic pressures can subject a 

surface to significant stresses exacerbated by pockets of entrapped standing 

water. The ability to identify and rank surface vulnerability is another area of 

growing importance. Millar and Woodward noted that the extent to which water 

can accumulate on and within highway surfaces leads inevitably to 

consideration of surface texture.  

Methods of characterizing surface texture range from the simple sand patch 

method for static spot testing to high speed laser based dynamic systems. 

However such methods based on estimation of a single geometry offer little 
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direct insight of processes occurring at the tyre surface interface. The use of 

TIN datasets generated within a spatial information system from digital images 

can improve this. Millar found mean texture depth estimated from 3D models 

based on stereo images correlates well with sand patch method. 

 

Figure 3.4 – Representation of depth using ArcGIS 

 

This figure illustrate an example of ArcGIS depth classified surface showing 

potential areas of water entrapment, as areas of purple. Low textured surfaces 

may show high risk whilst a highly textured surface may have a relatively low 

risk of water entrapment. For this purpose, a simple estimation of texture depth 

alone gives a limited indication of a surface’s capacity for surface water 

retention. This is an area that offers potential for predicting the effect of water 

on durability of asphalt surfacing materials. It’s also very important to consider 

the effect of rain on aggregate wear and how aggregate wear is assessed. 

Simple in-situ conditions such as rain and the use of salt can have significant 

effects on the aggregate which in turn affects contact area and which in turn 

affects properties such as skid resistance, noise and raveling. It’s possible to 

use pressure mapping to help explain the growth of a pothole due to a weaker 

aggregate, as shown in Figure 3.5 in which is illustrated a pressure distribution 

of a tracked asphalt slab test specimen where a single coarse aggregate 
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particle is missing. This allow to consider the increased contact stressing 

around the hole in the and to monitoring his evolution after trafficking. 

 

 

Figure 3.5 - Pressure map showing concentrated contact around a missing piece 

of coarse 

 

 

3.3 CHARACTERIZATION OF TEXTURE USING 3D LASER SCANNER  

 

The potential of a laser-scan 3-D technique is examined for the detection of 

road pavement macro- and micro-texture. Triangulation laser devices are based 

on forward intersection topographical principle and are therefore able to 

determine the position of one point within the instrumental reference system 

space. it is provided with: 

- an emitting source allowing to scan the reference area by rotating at α 

emission angle; 

- a reception sensor acquiring the ray reflected from surface at β incidence 

angle, determining the point coordinates at a given distance. 
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Figure 3.6 - Service drawings of a triangulation laser device 

In addition to geometrical data, the instrument also allows to catch radiometric 

data. The device allows operating at Macro and Wide operating modes, differing 

in terms of accuracy, working distance and scanning surface size on one object. 

Acquisition speed is about 50,000 points/sec with an average delay of 90 

seconds for each scan.  

Laser datum acquisition is usually performed in both Macro and Wide modes. 

The scanner has to be set for individual scans at the best quality available, with 

an acquisition delay time of 120 sec approximately. In order to acquire an image 

of the whole surface with a single scan, samples need to be placed at about 40 

cm when scanned in Wide mode. Scan data have to be user-filtered in order to 

remove both image portions of sample stands and any outlayers, that is rough 

mistakes in point determination. Mesh objects are linked to a single local 

reference system and once aligned, they need to be consolidated in a single 

mesh object describing the whole sample surface. In order to do so, it’s required 

that redundant points are removed along with triangulation faults resulting from: 

• “non manifold” mesh conditions (3 surfaces are in the same side) (figure 3.7, 

no 1); 

• Overlapping faces (some sides intersect) (figure 3.7, no. 2); 

• Face redundancy (figure 3.7, no. 3); 

• Inverted mesh normal (figure 3.7, no. 4). 
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Figure 3.7 - Triangulation faults 

 

After these stages, a final DSM (Digital Surface Model) is obtained representing 

sample orography. Figure 3.8 shows an example of this: 

. 

 

Figure 3.8 - Wireframe surface representation 

 

In order to determine which data acquisition system would better suit the exam 

application, surfaces obtained through Wide and Macro modes  must be 

compared along with the relevant deviations for each analysed sample.  

Wide operating mode generally allows to obtain a morphologically 

representative image with one single scan, with a smaller number of dropouts, 

and processable with no particular mesh filtering operations. Opposite, the 

surface appears smoothed compared to Macro mode, since points spacing 

does not allow for a perfect detection of micro-roughness. In order to have a 

better understanding of his potentiality, it’s useful compare results obtained 

through laser scanner with indicators conventionally used in order to measure 
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adherence. In particular, the indicators usually considered, are listed below and 

represented in Figure 3.9 and 3.10: 

 

- HS value, assessing surface roughness mean height as the between a 

given sand volume and the relevant covered area; 

- Mean Profile Depth (MPD), determining profile mean depth as the 

difference between arithmetic mean of two peaks and mean level on a 

100 mm baseline; 

- average roughness (Ra), that is the average value of absolute 

deviations with reference to mean profile line; 

- peak to valley height (Rt), that is the maximum vertical distance 

between the highest peak value and the lowest profile valley; 

- levelling depth (Ru), that is the depth resulting from the distance 

between average line and a straight line tangential to the profile peak; 

- mean depth (Rm), that is the distance between average line and a 

parallel line tangential to the most accentuated cavity, that is the lowest 

point. 

 

 

Figure 3.9: Mean Profile Depth Evaluation 
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Figure 3.10: Indicators detected by means of profilometers 

 

It can be seen that: 

-  in calculating roughness with Ra’ (volume-surface ratio) and with 

average Ra (surface-length ratio) does not show any particular deviation, 

when calculated along all samples points; 

MPD value generally shows max-min deviations of 20-35% among samples. 

The draining sample shows more significant deviations, indicating a more 

accentuated availability of peaks and valleys. When considering the same 

sample, MPD and HS values are very similar. This trend finds an evidence in 

test operating modes: sand shaving on sample tends to conform at higher 

peaks, getting closer to mean profile depth represented by MPD. 

Examined materials can be also assessed in terms of water drainage on road 

surface, assuming that water layer is an even plan intersecting roughness and 

by recreating the emerged bitumen surface according to water volume increase 

on sample. 

For instance, analyzing a draining sample, it’s possible to notice that it has a 

bigger capacity, as it includes almost a double water volume. At equal water 

volume values, it keeps a higher emerged surface value, thus increasing the 

tyre-pavement surface and adherence accordingly. Individual draining features 

should also be taken into account, as they allow for different degrees of down 

flow. 

Obtained results confirm 3D laser scanner potentials in detecting road surface 

texture patterns. 
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In fact, this technique offers a 3D datum on surface course and thus implies 

several benefits both in monitoring mixture laying, and in case of on-site checks 

such as: 

-  volumetric and surface studies involving adherence and tyre-pavement 

grip; 

- on-site or log monitoring of pavement status in order to keep wear under 

control during surface life cycle; 

- surface compressing level, through monitoring of macro-texture after 

treatment with tamping rollers. [3] 

 

 

 

3.4 CHARACTERIZATION OF SURFACE TEXTURE USING 

PHOTOGRAMMETRY  

 

Another important method, widely used for characterizing the surface texture is 

photogrammetry. it was first used by a French military officer in 1851, and in few 

years, there was a development of photogrammetric techniques to document 

building surveys predating aerial applications for which the method is now best 

known. Development of terrestrial photogrammetry from plane table techniques 

through analog to contemporary digital processing has greatly enhanced its 

usefulness and potential across many aspects of civil engineering and aligned 

disciplines.  In fact is possible to use photogrammetric techniques to quantify 

texture depth change for highway surface course mixes under accelerated 

laboratory trafficking conditions. 

The photogrammetric method was chosen as it offers a number of benefits to 

alternative techniques and because of the simplicity of the method; post 

processing and stereo matching are carried out using proprietary software. 

Close range sub-pixel accuracy is achievable with modest camera technology 

which has significant implications for rapid capture surface monitoring. This 

made it ideally suited for exploratory investigation under the accelerated 

laboratory conditions. 

The initial investigation had several objectives related to real world scenarios 

i.e. to quantify aggregate wear and to explore additional uses of the data e.g. 



Chapter 3: 3D techniques for the evaluation of texture depth 
 

64 
 

the application of triangular irregular network (TIN) meshes to model changes in 

the characteristics of surfaces subject to increasing trafficking under simulated 

conditions. [9] 

The fundamental principle used by photogrammetry is triangulation. By taking 

photographs from at least two different locations, so-called "lines of sight" can 

be developed from each camera to points on the object. Taking photographs is, 

of course, essential for making a photogrammetric measurement. To obtain the 

high accuracy, reliability and automation the system is capable of, photographs 

must be of the highest quality. The three main considerations for good 

photography are: 

- Field of View 

- Focusing 

- Exposure 

The camera's field of view defines how much it sees and is a function of the 

focal length of the lens and the size of the digital sensor. For a given lens, a 

larger format sensor has a larger field of view. Similarly, for a given size sensor, 

a shorter focal length lens has a wider field of view. The relationship between 

format size, lens focal length and field of view is shown in the two pictures 

below: 

 

 

Figure 3.11 – Field of view 1 
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Figure 3.12 – Field of view 2 

 

The wider the field of view, the more you see from a given location. For a 

medium angle lens, a convenient rule of thumb is that you will generally need to 

get back as far from the object as the size of the object. For example, you will 

get about three meters back to see a three-meter object. In general, there is a 

tradeoff between the field of view of a lens and accuracy. Although wider-angle 

lenses need less room around the object, they also tend to be less accurate. 

Thus, you generally want to use the longest focal length lens you can. One 

consideration for normal photography is, of course, focusing the lens so the 

image is sharp. The range of acceptable sharpness is called the depth of focus. 

The depth of focus of a lens is a function of many factors, including: the focal 

length of the lens, the format size, the distance from the camera to the object, 

the size of the object, and the f-number of the lens. As you can appreciate from 

all the factors listed above, the depth of focus can be a complex function. For 

photogrammetry purposes, it is desirable to set the targets bright and the 

background dimension. When retro-reflective targeting is used, the target and 

background exposures are almost completely independent of each other. The 

target exposure is completely determined by the flash power while the 

background exposure is determined by the ambient illumination. The amount of 

background exposure is controlled by the shutter time. Eliminating the 

background exposure makes the targets easier to find and measure. However, 

if there is no background image whatsoever, trying to figure out which target is 

which can be difficult. Usually, a compromise is reached and the background 

exposure is set so the object is dim enough to not interfere with target 

measurement, but still bright enough that it can be seen when enhanced. The 
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shutter time is used to control the background exposure. The flash power 

setting for the target exposure depends on the distance from the camera to the 

targets, and the target size. If the targets are smaller than this, you may want to 

increase the flash power setting one step to help compensate. 

Photography in its broadest sense is a process that converts the real three 

dimensional world into flat two dimensional images. The camera is the device 

that makes this transformation or mapping from three dimensions to two 

dimensions. Unfortunately, we cannot map the three dimensional world onto 

two dimensions completely so some information is lost, primarily the depth. 

Photogrammetry instead reverses the photographic process described above. It 

converts or maps the flat two dimensional images back into the real three 

dimensional world. However, since information is lost in the photographic 

process, we cannot reconstruct the three dimensional world completely with just 

one photograph. As a minimum, we require two different photographs to 

reconstruct the three dimensional world. If this process was perfect, the two 

photographs are more than enough information to perfectly reconstruct the 

three dimensional world they represent. Unfortunately, the photography and 

measuring process is not perfect so the reconstruction of the three dimensional 

world is also imperfect. However, we can take more photographs and use the 

extra information in them to improve the process. The three dimensional 

coordinates we produce from the measurements of multiple photographs are 

the end result of photogrammetry. Photogrammetry uses the basic principle of 

Triangulation, whereby intersecting lines in space are used to compute the 

location of a point in all three dimensions. However, in order to triangulate a set 

of points one must also know the camera position and aiming angles, together 

called the orientation, for all the pictures in the set. A process called Resection 

does this. Finally, because the camera is a precision measuring instrument, it 

must be calibrated so its errors can be defined and removed.  
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Figure 3.13 – Triangulation 

 

Triangulation is the principle used by both photogrammetry and theodolites to 

produce three dimensional point measurements. By mathematically intersecting 

converging lines in space, the precise location of the point can be determined. 

However, unlike theodolites, photogrammetry can measure multiple points at a 

time with virtually no limit on the number of simultaneously triangulated points. 

In the case of theodolites, two angles are measured to generate a line from 

each theodolite. In the case of photogrammetry, it is the two-dimensional (x, y) 

location of the target on the image that is measured to produce this line. By 

taking pictures from at least two different locations and measuring the same 

target in each picture a "line of sight" is developed from each camera location to 

the target. If the camera location and aiming direction are known, the lines can 

be mathematically intersected to produce the XYZ coordinates of each targeted 

point. However, the accuracy of a photogrammetric measurement can vary 

significantly since accuracy depends on several inter-related factors. The most 

important are: 

1. The resolution and quality of the camera you are using. 

2. The size of the object you're measuring. 

3. The number of photographs you're taking. 

4. The geometric layout of the pictures relative to the object and to each other. 

To scale a photogrammetric measurement, we must have at least one known 

distance. If we know the actual coordinates beforehand of some targeted points, 

we can compute the distances between these points and use these to scale the 
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measurement. Another possibility is to use a fixture with targets on it and 

measure this along with the object. The distance between the targets on the bar 

is known and can be used to scale the measurement. Whenever possible, you 

should use more than one distance to scale the measurement. This is important 

because when a single scale distance is used and it is in error, the entire 

measurement will be incorrectly scaled. On the other hand, if you have multiple 

scale distances, scale errors can be detected and removed. With two known 

distances, if one is in error you will be able to detect a scale error but usually 

you cannot tell which one is in error. With three known scale distances, you can 

usually detect if one of them is in error and remove it. In some cases, a 

measurement may not need to be precisely scaled. For example, some surface 

or shape measurements do not require accurate scale. [11] 

 

3.4.1 LABORATORY EXPERIENCE 

 

Lots of tests developed at the University of Ulster, are based on the evaluation 

of texture depth, using photogrammetric techniques. The slabs are usually 

subjected to simulated trafficking using the Road Test Machine (RTM) located 

at the University of Ulster, stopping tests after different number of wheel passes 

and recording digital image pairs. 

The stereo image pairs of each sample are then post processed using 

proprietary digital photogrammetric software, transformed within a prescribed 

reference framework and projected onto a two dimensional plane. 

A stainless steel mesh overlay is used to provide control for post processing 

and to indicate possible differential distortion of the slab due to trafficking. 

Following transformation slab surfaces are modelled using TIN meshes to 

generate 3D images to assess a range of parameters and variables. For 

example, it is possible to determine how the negative texture of the sample 

develops with time. The software can show how the perimeter of either an 

individual aggregate particle or a given area of the slab changes with increasing 

number of wheel passes. It is possible to quantify texture in relation to a 

reference plane that can be specified at 0.5mm intervals vertically down through 
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the TIN mesh. The images may also be projected as contour and photo realistic 

texture maps. 

The lighter areas are the trafficked slab/tyre interface whilst the darker areas 

are the negative texture of the asphalt concrete. Figure 3.15 shows the same 

image with a superimposed 0.1mm vertical contour interval. 

 

 

Figure 3.14 - Simple orthorectified digital image of trafficked asphalt concrete 

slab surface 

 

 

Figure 3.15 - Superimposed contours plotted at a 0.1mm vertical interval. 

 

It’s also possible to highlight the perimeter of three distinct areas of negative 

texture depth. The volume of each negative textured area enclosed by the 

polylines may be determined from the TIN mesh. 
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Figure 3.16 - Contoured surface showing 3 areas of negative texture 

 

This allows to plot the change in area of the selected negative texture areas, or 

depressions, throughout the experimental cycle from different numbers of wheel 

passes. The general trend shows a reduction in area with increasing number of 

wheel passes indicating surface wear. Continued trafficking then continues to 

wear the asphalt surface causing a gradual reduction of texture depth. [9] 

 

 

 

3.5 STEREO-VISION APPLICATIONS TO RECONSTRUCT THE 3D 

TEXTURE OF PAVEMENT SURFACE  

 

Macrotexture measuring devices that map the pavement surface with a high 

degree of precision provide additional information and may allow a better 

understanding and modelling of the tyre–pavement interaction. 

With the progress in image-processing technology, different techniques can be 

used for extracting pavement information from images. First, Schonfeld, in 

1970, used stereophotography for documenting pavement conditions. 

The procedure required the capture of 5–10 photographs of a surface viewed 

through two different micro-stereoscopes and interpreted to determine various 

surface texture parameters. 

The edge-detection technique was used for studying aggregate size, angularity 

and texture. For a grey-scale image of an aggregate sample, a predetermined 
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intensity for the background was used (white background), and threshold grey 

intensity was applied to distinguish between soil particle colours and their 

background. The image was converted to a binary image in which a black 

colour region represents the surface of a particle.  

The edge-detecting technique can be extended to reconstruct the 3D shape of 

an aggregate by using two or three orthogonal camera positions. 

Since aggregate is one of the components used to construct the pavement 

surface, studying aggregate properties only is not sufficient to represent the 

pavement surface texture. Also, the orthogonal camera technique is not 

applicable to measuring surface heights of a pavement sample. 

 

 

Figure 3.17 - Setup of orthogonal camera position:  

(a) pavement sample and (b) aggregate sample. 

 

 

 

The maximum value of the 2D Fourier transform of a filtered image was found 

to be correlated with the qualitative performance rating of the chip-sealed 
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pavement surface. Also, one-image analysis can successfully provide 1D 

texture indicator such as the root mean square roughness (RMSR) by analysing 

the variation in the pixel grey intensity values. One-image analysis cannot be 

used to recover the 3D heights of pavement surface, even when analysing an 

image to extract a 1D texture indicator, the limitations of this analysis should be 

taken into consideration. 

For the recovery of the 3D heights, multiple images are required. An analysis of 

multiple images, usually called photometric stereo, can be successfully used for 

recovering surface heights of an object. The surface of an object reflects a 

fraction of the incident illumination in a given direction on the basis of the optical 

properties of the surface material.  

The fraction of light reflected in a given direction is characterised by the surface 

orientation On the basis of the reflectance model, several techniques are 

available to recover the 3D shapes of objects. The photometric stereo technique 

is one of these techniques, where multiple images are captured of the same 

scene under different lightand view angle conditions. Although photometric 

stereo techniques have been successfully used for recovering surface texture 

applying such techniques for recovering pavement surface required adding 

extra features to overcome the problems raised from the properties of the 

pavement surface, which include specularity and shadow effects. 

The stereovision system (SVS) recovers surface height by capturing two 

images of the same scene using two cameras separated by a small baseline 

distance. As a result, they get slightly different views of a 3D scene. Then the 

two images are compared by making relative shifts, effectively placing one 

image on top of the other and translating them to find the parts that match. The 

shifted amounts are called the disparity values. The disparities, at which objects 

in the images have best match, are used by the processing software to 

calculate their distances from the camera.  
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Figure 3.18 - Stereo-vision principle 

 

The figure 3.18 shows the location of the points (x, y and z coordinates) in the 

pavement surface can be determined using triangulation in stereo imaging, 

considering cameras located at a distance from the surface. By knowing the 

distance between the cameras and finding the corresponding pixel match from 

images taken by both cameras, we obtained the depth information, where pixel 

Pl taken from the left image is matching with pixel Pr taken from the right image.  

The surface-measuring process begins by setting the appropriate properties of 

the camera (aperture, focus, gain, etc.), pointing the cameras downward facing 

the pavement surface at a distance of 0.39m from the ground, and taking a pair 

of stereo images. 
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Figure 3.19 - Stereo-vision digital images and reconstructed surface: (a) raw 

digital images, (b) rectified stereoscopic image and (c) 3D map. 

 

The captured images were then processed to remove lens distortions, and 

rectified to align the epipolar lines Additional constraints for texture validation, 

surface size validation and disparity range reduce false matches and improve 

accuracy of the resulting disparity image. The disparity values can be converted 
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to a grid with x, y and z coordinates, which represent the 3D heights of the 

pavement surface. Statistics such as average depth can then be calculated to 

quantify the surface texture. 

Mean texture depth (MTD) equivalents are computed as the overall maximum 

average depth difference of the 12 sectors in which an image is divided after 

matching all the pixels and obtaining individual z-coordinates for each one. Non-

valid points are not considered in the computations.  

 

 

3.5.1 PHOTO TEXTURE TECHNIQUE  

 

The three-image photometric stereo technique was proposed by Woodham 

(1980), where three images are captured under three different directions of 

incident illuminations, whereas the viewing direction (camera location) being 

held constant. Assuming a constant light intensity and since the image 

geometry is not changed, any three incident directions which do not lie in a 

plane were sufficient to reconstruct the 3D surface heights. But because of the 

properties of the material of the pavement surface, specularity and shadow 

effects are some of the problems encountered when photometric techniques are 

used. When a point on the surface is oriented such that its specular spike is in 

the same direction as one of the three light sources, a spike is produced in the 

reflected intensity. A fourth source is added to detect the existence of 

specularity by computing four surface normal vectors; one normal for each 

combination of the three images. Similarly, shadow appears when an object 

blocks the incident rays from reaching a certain area In the same manner, the 

fourth source can be used for detecting shadow contribution, where image with 

shadowing contribution can be excluded from the surface recovery procedure. 

The four different light sources were replaced with one source, which was 

manually repositioned in the required four light directions. Because the dark 

monotone of the pavement surface requires a high-illumination intensity to 

produce a reasonable variation in surface reflectance, a fibre optic light source 

with adjustable illumination intensity was used. The light intensity was adjusted 

so that the digital still camera had an optimum scene exposure. A practical 

application of the systems reviewed in this paper is the determination of 
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commonly used parameters to measure texture depth. Pavement texture is 

defined as the deviation of a pavement surface from a true surface within a 

specified wavelength range. The most common texture indicator, the MPD, is 

the standard method for computing the average depth of pavement surface 

macrotexture from surface profile 

 

 

Figure 3.20 -  3D recovery of surface heights: (a) pavement sample and (b) the 3D 

recovery. 

 

Generally, the MPDs computed from PhotoTexture were smaller than those 

computed from manual measurements because of the method of integrability 

used to recover the 3D heights of the surface. 

The Root mean square roughness (RMSR) for a typical profile of pavement is 

the standard deviation of the height of the surface profile. As an advantage, the 
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area-based measurement technique allows computing the power spectrum 

energy (PSE). 

The quality control of measuring the uniformity of pavement texture is another 

innovative application that cannot be achieved with conventional technologies. 

The University of Manitoba tested a new paved section in Illinois to study the 

effect of texturing type on tyre– pavement noise and fiction, and Photo Texture 

2.0 was used for the testing performed immediately before the road was opened 

for traffic. 

The comparison of the tested samples with their corresponding map of heights 

demonstrates the ability of Photo Texture to detect texturing successfully.  

Different  systems for recovering pavement surface texture from digital images, 

have been shown. Laboratory and field experiments conducted with these new 

tools supported that photometric stereo can be used successfully for measuring 

pavement surface heights in the range of macrotexture.  

Since current texture indicators, such as the MPD, are based on unidirectional 

profiles, a new indicator was proposed and assessed. The PSE based on a 2D 

Fourier transform of an area-based grid of surface heights is proposed as a 

texture indicator. The results suggest that area-based macrotexture indicators 

and measurement techniques will provide a better understanding of pavement 

surface properties, and more accurate simulation of tyre–surface interaction and 

pavement surface maintenance and rehabilitation needs. [7] 
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CHAPTER 4 

EXPERIMENTAL PHASE 

 

4.1 INTRODUCTION 

The aim of this project was to analyze a range of asphalt surfacing materials used 

in the UK, in order to improve current understanding of their surface texture. Each 

surface has been first assessed using standard methods, such as Sand Patch and 

after that using 3D photogrammetry and 3D laser techniques. Properties such as 

tyre-pavement contact areas, water storage and horizontal water drainage have 

been determined. The analysis has involved the use of different software 

applications; the additional classification properties carried out from these, enabled 

a  better understanding of the role of surface textures in analyzing features such as 

grip, wear, durability, spray generation and noise. The purpose was to appreciate 

how the Skid Resistance and the Texture Depth varied through the process of 

wear, subjecting the samples to the effect of trafficking. The experimental phase 

followed different stages as showed in the flow chart in Figure 4.1. After an initial 

study about the mix design, the preparation of the samples and the analysis of 

some properties such as voids content, laboratory tests were effectuated. It has 

been determined the Texture depth,  the Skid Resistance and the Contact Area of 

the samples before and after trafficking them with the RTM. Successively the use 

of 3D techniques were required to reconstruct the texture of the specimens and to 

analyze some properties of the surface. 
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Figure 4.1 –  Flow chart  

ANALYSIS OF TEXTURE AND 

SKID RESISTANCE ON 10 SMA 

SPECIMENS 

LABORATORY TESTS: 

‐ EVALUATION OF TEXTURE DEPTH (BS EN 13036‐1:2010) 

‐ EVALUATION OF SKID RESISTANCE (BS EN 13036‐4:2011) 

EVALUATION OF WEAR: 

Road Test Machine (RTM) 
Test stopped at 

different stages 

of the process 

INTERACTION 

TYRE/ASPHALT 

USE OF 3D TECNIQUES 

RECONSTRUCTION OF TEXTURE WITH 

PHOTOGRAMMETRY SOFTWARE 

CONTACT AREA 

CONTACT PRESSURES 

MATERIALS CHARACTERISTICS: 

‐  AGGREGATE SIZES ( 10mm and 14mm) 

‐ VARIABILITY OF THE VOID CONTENT 

‐ DIFFERENT RATES OF COMPACTION IN THE GYRATORY 

MACHINE 
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4.2 PREPARATION OF THE SAMPLES  

The first stage of the project comprises the creation of SMA (Stone Mastic Asphalt) 

samples, with aggregates sizes of 10mm and 14mm, using the ELE-SERVOPAC 

Gyratory compactor. The main characteristics of the materials have been 

summarized in tables 4.1 and 4.2  below and graphically represented in Figure 4.2 

and 4.3: 

BS SIEVE SIZE (mm) 
PERCENTAGE 
PASSING (%) 

CONFORMITY 
SPECIFICATION (%) 

20,0  100  98‐100 

16,0  100   

14,0  97  89‐100 

10,0  51  44‐58 

8,0  39   

6,3  34  23‐37 

4,0  31   

2,0  22  16‐28 

1,0  17   

0,500  15   

0,250  12   

0,125  10   

0,063  7,6  5,7‐9,7 

 

Table 4.1 - SMA  14 SURF (FIBRES)  

 

Figure 4.2 – Percentage of passing (14mm) 
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BS SIEVE SIZE (mm) 
PERCENTAGE 
PASSING (%) 

CONFORMITY 
SPECIFICATION (%) 

14,0  100  98‐100 

10,0  99  90‐100 

8,0  74   

6,3  44  40‐54 

4,0  35   

2,0  26  19‐31 

1,0  18

0,500  15   

0,250  12   

0,125  10   

0,063  7,7  6,0‐10,0 

 

Table 4.2 - SMA  10 SURF (FIBRES)  

 

Figure 4.3 -  Percentage of passing (10mm) 

The first mix contains the 6% of binder, while the second one a percentage of 

6.2%.  

The materials have first been heated in an oven set to 160 °C (Figure 4.4), 

successively weighed and put in the gyratory compactor mould with filter paper at 

the bottom and on the top (Figure 4.5). The different weights used, vary from 

1600g to 2400g for 14mm samples and  from 1750g to 2400g for 10mm ones. 
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Figure 4.4 – Some stages in the samples’ preparation 

 

After this, using the gyratory compactor, it was possible to create some samples for 

each kind of SMA with a different rate of compaction and  different kind of surface 

texture, ranging from a smooth to a open textured one. 

 

   

Figure 4.5 – Successive stages of the Gyratory compaction process 
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At the end, 5 samples from each aggregate size were chosen to begin testing. The 

main features of these samples are shown in the tables below: 

SAMPLE HEIGHT (m) WEIGHT (kg) GYRATIONS 

12 (1A) 0.052 2.150 500 

11 (2A) 0.049 1.940 300 

14 (3A) 0.050 1.800 23 

15 (4A) 0.050 1.700 9 

16 (5A) 0.050 1.600 3 

Table 4.3 – 14 mm samples  

 

SAMPLE HEIGHT (m) WEIGHT (kg) GYRATIONS 

X (1B) 0.050 2.100 950 

V (2B) 0.052 2.100 300 

I (3B) 0.050 2.000 300 

IX (4B) 0.050 1.900 90 

XIII (5B) 0.050 1.750 16 

Table 4.4 – 10 mm samples 

 

4.2.1 THE GYRATORY COMPACTOR MACHINE 

The gyratory compactor simulates the kneading action of rollers used to compact 

asphalt pavements by applying a vertical load to an asphalt mixture while gyrating 

a mold tilted at a specified angle.  The Superpave Gyratory Compactor (SGC) is 

used in the Superpave mixture design system to prepare asphalt specimens for 

determining volumetric and mechanical properties. It produces specimens that are 

similar to pavements in aggregate orientation and mechanical properties, and it 

can be used for quality control at hot-mix plants. To compact a specimen, an 

asphalt mixture is placed in a steel mold that has an inner diameter of 150 mm and 

a steel base plate that serves as a lower platen. The assembly is placed inside the 

SGC where a load is applied through an upper ram and platen. The bottom of the 

mold is shifted horizontally along one diameter to provide the required angle of 
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1.25 degrees. The angle is then applied to the mold in a circular manner at a 

constant speed of 60 gyrations per minute. The platens remain parallel to each 

other during compaction, but are free to move with respect to the mold as the 

mixture densifies. Compaction occurs due to the pressure from the ram and the 

kneading action provided by the revolving angle. The standard ram pressure is 600 

kPa. As the specimen densifies and becomes shorter in height, a pressure gauge 

signals the loading system to adjust the position of the loading ram so that the 600 

kPa pressure is maintained throughout the compaction process. The SGC uses a 

linear variable differential transformer to record the position of the upper loading 

ram. The vertical change in ram position provides a measurement of the specimen 

height during compaction. The SGC methodology uses the change in height to 

determine the change in density with gyrations. Density is the mass of the 

specimen by its volume. Thus, the SGC provides a compaction curve, which is the 

relationship between density and the number of gyrations. In the Superpave 

volumetric mixture design, the optimum binder content is chosen so that it provides 

a 4% air void content at the design number of gyrations, called Ndesign. Ndesign for 

dense-graded mixtures ranges from 68 to 172. It depends on the traffic level and 

the climate where the mixture will be placed. Ndesign for stone mastic asphalt is 100. 

Two other gyration levels are also used to evaluate a mixture: the initial number of 

gyrations, called Ninitial, and the maximum number of gyrations, called Nmaximum. 

Ninitial is used to eliminate tender mixtures. Nmaximum is used to eliminate rutting if the 

air-void level in the pavement falls below the design level of 4 % because of 

uncertainties such as increased traffic. [12] 

 

4.2.2 ELE-SERVOPAC GYRATORY COMPACTOR 

The Servopac is a fully automated, servo-controlled, gyratory compactor designed 

to compact asphalt mixes by gyratory compaction. Compaction is achieved by the 

simultaneous actions of static compression and the shearing action resulting from 

the mould being gyrated through an angle about its longitudinal axis. A number of 

ergonomic features have been designed into the Servopac to ensure operator 
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safety and minimise manual handling of the hot and heavy asphalt-filled moulds. 

The mould slides from a bench directly into the compaction chamber, and following 

compaction, to the pneumatically operated specimen extraction device, thus 

eliminating any lifting. The compaction chamber is completely enclosed, and the 

access door is fitted with safety glass to allow the operator to view the compaction 

process. The door closes and opens automatically and a safety interlock prevents 

the machine from operating while it is open. The Servopac has a four column 

frame for increased rigidity. Vertical stress is measured by a load cell and is 

accurately controlled during compaction. The gyratory motion is also servo-

controlled, enabling the gyratory angle to be accurately controlled during 

compaction, irrespective of load and minor flexing of the machine's components. 

The servo-control operation of the machine allows the vertical stress, gyratory 

angle and speed to be quickly modified from a hand-held control pendant or PC. 

The optional PC 'Windows' interface provides a screen to input test parameters 

and display and plot either height, density or angle against gyratory cycles in real 

time. Test data may be stored and retrieved or transferred to other software 

analysis packages. The Servopac is designed to comply with SHRP Superpave 

asphalt mix design requirements and the recommendations of the draft CEN 

European standard on gyratory compaction. [13] 

 

4.3 MAIN PROPERTIES OF THE SAMPLES 

 

It was interesting to analyze some of the relationships between different features of 

the samples during the compaction process. For instance, the change in the 

heights of the samples has been evaluated after an established number of 

gyrations. This analysis was stopped after 200 gyrations and the results show that 

the sample’s height reduces with the increase of the gyrations. The experiment 

was carried out using 5 specimens of 10mm SMA  and  5 of 14mm SMA, all with 

varied weights, as we can see in these two graphs: 
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Figure 4.6 – Relationship between heights and gyrations for 10 mm samples 

 

Figure 4.7 – Relationship between heights and gyrations for 14 mm samples 

It is important to realise that in both of these two diagrams, the trend is the same. 

The heights of the specimens decrease with the increasing void content, but for the 

14 mm aggregate, it’s possible to notice a wider range of values, that reflect in an 

higher variability of texture. 
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The relationship between density and number of gyrations was another interesting 

aspect of this experiment. This analysis has been completed after 200 gyrations. 

Firstly, it was necessary calculate the volume of each sample, considering a radius 

of 150mm and a variable height, changing with the evolution of the compacting 

process: 

V = π*r2*H   [m3] 

and so the density is the ratio between mass and volume: 

ρ = W/V [kg/m3] 

The results are summarized in the tables below, and represented in Figure 4.8 and 

4.9. 

SAMPLE WEIGHT [kg] 
DENSITY AFTER 200 

GYRATIONS  [kg/m3] 

VOLUME AFTER 200 

GYRATIONS  [m3] 

1B 2,100 2,2553 0,9311 

2B 2,100 2,2631 0,9279 

3B 2,000 2,2486 0,8894 

4B 1,900 2,2329 0,8508 

5B 1,750 2,2219 0,7876 

Table 4.5 – Density - Volume for 10 mm samples 

 

SAMPLE WEIGHT [kg] 
DENSITY AFTER 200 

GYRATIONS [kg/m3] 

VOLUME AFTER 200 

GYRATION [m3] 

1A 2,150 2,3027 0,9341 

2A 1,940 2,2379 0,8682 

3A 1,800 2,2023 0,8173 

4A 1,700 2,1769 0,7809 

5A 1,600 2,2522 0,7103 

Table 4.6 – Density – Volume for 14 mm samples 
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Figure 4.8 – Evaluation of density after 200 gyrations (10 mm samples) 

 

Figure 4.9 – Evaluation of density after 200 gyrations (14mm samples) 
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In these two graphs, the density increase with the number of gyrations, and there’s 

a variability of values between the samples.  

In the last step of this stage,  the interest was focused on the voids content.  Two 

different percentages of voids content have been calculated. The first one, was 

obtained using the maximum density written in the normative (ρ1), and the 

maximum density calculated for each sample (ρi), according to the formula: 

Air Voids 1 = [1 – (ρ1 / ρi)] * 100   [%] 

The second one was calculated considering the maximum density for each sample 

(ρi), and the density obtained after 200 gyrations in the gyratory compactor (ρk), as 

follows: 

Air Voids 2 = [1 – (ρi / ρk)] * 100   [%] 

The two different graphs for 10 mm and 14 mm SMA, are plotted in  Figures 4.10 

and 4.11: 

 

Figure 4.10 Air Voids percentage for 10 mm SMA 
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Figure 4.11 Air Voids percentage for 14 mm SMA 

 

In these two graphs, the relationship for the two different kind of air voids are 

perfectly linear, both for 10 mm (B) samples and for 14 mm (A) ones. The straight 

line representing the trend of Air void content 2, shows negative values. This is due 

to the fact that this percentage of void has been calculated considering the 

maximum density for each sample, and the density after 200 gyrations. As some of 

the sample have been prepared after an higher number of gyrations, as illustrated 

in tables 4.3 and 4.4, there are negative values. For this reason, the straight of Air 

voids 1, is more reliable in representing the real trend of air voids content. The data 

are shown in table 4.7: 

 

Sample 1A 2A 3A 4A 5A 1B 2B 3B 4B 5B 

Air Voids content 1 (%) 5,61  9,17 17,02 21,77 24,47 3,53 6,01 6,97 10,14 16,54

Air voids content 2 (%) ‐2,26  ‐1,25 5,99 10,34 16,33 ‐4,31 ‐1,29 ‐0,90  1,85  8,38

Table 4.7 – Air Voids content 
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4.4 SAND PATCH METHOD 

Road surface texture is usually measured by the Sand Patch Method (BS EN 

13036-1:2010) on small areas of sand, and for practical purposes this method 

gives a fairly accurate assessment of road surface texture. The principle is simple: 

the greater the texture, the more the sand will be taken up by it and the smaller the 

circle that can be achieved from the standard quantity of sand.  In this case the 

method was a bit different from the standard one, but, all the same, it carried out 

an evaluation of average texture depth. The followed stages are: 

- A small measure containing 50mm of sand was weighted three times, and 

an average weight of the sand was considered. 

- Each sample was weighed at the beginning, then covered by sand in order 

to fill all the asperities on the surface texture, and weighted again.   

- After that, the difference in weight between the two steps, was determined. 

   

   

Figure 4.12 – Laboratory Sand patch method on compacted specimens 
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- The volume of sand was calculated considering the volume of the measure 

(Vm = 50ml), the weight of the sand contained in it (Ws =  61,5g) and the 

weight of each sample (Vi), according to this formula: 

 

Vs =  Vm / Ws * Vi 

 

- The area of the sample with a radius of 75mm was calculated, and so it was 

finally possible to determine the texture depth, obtained by the ratio between 

the volume of sand (Vs) and the area of sample (A): 

Tdepth = Vs / A 

The results for both 10 mm and 14 mm SMA are shown below: 

Sample 
Weight 

(g)  

Weight 

with Sand 

(g) 

Difference in 

Weight (g) 

Volume of sand 

(mm3) 

Area of 

Sample 

(mm2) 

Texture 

Depth 

(mm) 

1A   2144 2175,5 31,5 25609,756 17671,45 1,4492 

2A 1948 1983,3 35,3 28699,187 17671,45 1,6240 

3A 1804,8 1862,8 58,0 47154,471 17671,45 2,6683 

4A 1702,5 1783,4 80,9 65772,357 17671,45 3,7219 

5A 1604,4 1702,5 98,1 79756,097 17671,45 4,5132 

                                      Table 4.8 – Texture depth for 14 mm SMA 

Sample Weight (g)

Weight 

with Sand 

(g) 

Difference in 

Weight (g) 

Volume of sand 

(mm3) 

Area of 

Sample 

(mm2) 

Texture 

Depth 

(mm)  

1B  2091,8 2109,4 17,6 14308,943 17671,45 0,8097 

2B 2103,1 2128,3 25,2 20487,805 17671,45 1,1593 

3B 1985,3 2020,7 35,4 28780,487 17671,45 1,6286 

4B 1896,7 1930 33,3 27073,171 17671,45 1,5320 

5B 1742,2 1815,7 73,5 59756,097 17671,45 3,3815 

Table 4.9 – Texture depth for 10 mm SMA 

These results show that the values of texture depth are higher in 14 mm SMA than 

in 10 mm ones, as would be expected. It is possible to notice these differences in 
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texture also simply via visual inspection, because 14 mm SMA are more open 

textured, than 10 mm ones. 

 

4.5 SKID PENDULUM TEST 

Next stage of this project, concerned the evaluation of the skid resistance for each 

sample, with the Skid Pendulum Test (BS EN 13036-4:2011). This test equipment 

is used for measuring PTV’s and SRV’s, following the instructions contained in 

ROAD NOTE 27 from the Transport and Research Laboratory. The test’s name 

originates from the pendulum action of the rubber slider that contacts the surface to 

be tested. The process is quite simple, the pendulum is released from the 

horizontal position by a quick release button, it swings down with uniform force 

each time, and the rubber slider at the bottom of the pendulum contacts the road 

surface for a fixed length that has been previously set by highering or lowering the 

height of the pivot of the pendulum. The degree to which the pendulum will rise up 

the calibration on the left-hand side of the image will be dependent on the 

friction/resistance the rubber slider meets on the road surface. The more friction  

resistance, the less the pendulum will rise and the higher the Skid Resistance 

Value (SRV) of the road surface.  Swinging with the pendulum is a pointer that 

cannot be seen on the photograph, and as the pendulum falls back the pointer will 

be left in place indicating the SRV.  The test has been developed carrying out the 

values of PTV after 0 wheel passes in the Road Test Machine, and thus the 

samples haven’t been subjected to trafficking. The results are summarized in the 

table below: 

SAMPLE 1A 2A 3A 4A 5A 1B 2B 3B 4B 5B 

PTV 62 56 56 67 65 65 64 59 51 65 

Table 4.10 – PTV value after 0 wheel passes in the RTM Machine 
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4.6 CONTACT AREA 

The attention is now focused on the role of contact area on wet skid resistance and 

texture depth.  

An asphalt surfacing is subjected to direct contact with the tyre and all of the 

imposed stressing associated with a moving vehicle: weight, axle, suspension, 

acceleration, braking, cornering and speed. Both road surface and tyre require 

minimum levels of grip and texture to remove water and minimize aquaplaning. 

The measurement of actual, rather than assumed, full-scale tyre surface contact 

stress distributions in all three of the co-ordinate directions is difficult. 

Researchers at the University of Ulster have been involved in the development of 

static and dynamic testing technologies since the 1990’s. As highlighted before, the 

contact envelope between tyre and surface is elliptical in shape and directly 

proportional to wheel load and inversely proportional to tyre pressure. Whereas 

wheel load is important to pavement design, tyre inflation pressure is more 

important for the conditions experienced at the road/tyre interface. The tread 

pattern of a tyre is generally only 14 to 18% of the contact envelope, and the 

stresses involved due to a tyre rolling over a road surface are highly concentrated 

and will exploit any weakness present such as micro-texture on the aggregate 

surface, the chipping edges or inferior quality constituents. This helps into 

explaining how factors such as grip, noise and rolling resistance are closely inter-

related to not only one another, but also to the amount and type of texture. 

For these reasons a new approach was developed at the University of Ulster  to 

measure static and dynamic tyre-asphalt surface contact properties. It 

complements existing test methods such as the Noise and Rolling Resistance 

Indices and uses roller compactor slabs subjected to accelerated trafficking using 

the Road Test Machine (RTM) to show development of surface properties with 

time. The dynamic aspect of testing is achieved by modification of a Wessex dry 

wheel tracker to cause the asphalt test specimen to move under a loaded tyre in a 

controllable manner. It’s possible to modify the wheel tracker lever arm to 

accommodate a range of wheel sizes ranging from the solid tyre as used in the 

rutting test, a smooth Findlay Irvine GripTester test wheel to a smooth SCRIM tyre. 
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In the case of the Grip/Tester tyre, BS 7941 (2000) states that the static load on 

the GripTester test wheel under normal operating conditions should be between 

22kN and 28kN. An additional 3.343kg load to the end of the wheel-tracker arm 

gives an idealised equivalent static load of 25kN. This allows for potential direct 

correlation of laboratory measured contact area with grip measured using 

GripTester. The test apparatus in shown in Figure 4.13: 

 

 

 

 

Figure 4.13 – Modified Wessex test equipment ltd 

 



Chapter 4: experimental phase 
 

97 
 

Two XSensor pressure mapping systems can be used to quantify pressure 

distributions under the test tyre. This type of measuring system was developed for 

dynamic pressure measurement at the interface between two surfaces i.e. in this 

case the tyre and asphalt surface. An X500:256.256.22 high resolution sensor is 

used to obtain images of the tyre. This system is designed for high-quality pressure 

images and is used for tyre-tread analysis and tyre design. It is mounted on a 

Plexiglass backing and is capable of measuring 6 frames per second. With 65,536 

sensing points this system has a 1.15mm resolution. The second sensor used is an 

IX500:128.128.10. This resembles a flexible mat and has been designed for 

uneven surfaces. Although it has a 2.54mm resolution its high data-acquisition 

rates, make it suitable for dynamic testing. XSensor 3 Pro Version 6 software has 

been used for initial analyse of pressure data. An export facility allows the data to 

be used in other software packages. This setup allows the asphalt samples to 

move dynamically under the test tyre with contact phenomena measured either 

under static or dynamic conditions. The lower resolution pressure pad is located 

upside down on the test specimen and pressure distributions recorded as it moves 

under the loaded wheel. Although each frame can be assessed individually, the 

XSensor software allows individual frames to be merged together representing the 

track of the test wheel across the pressure pad. [15] 

In this case, the pressure mat interfaces with XSensor 3 Pro Version 6 software 

and is capable of capturing up to sixteen frames per second, with individual contact 

images, and merging them into a single composite trace showing the passage of 

the tyre across the pressure map. Figure 4.14 and 4.15 show examples of 2D 

contact area plots based on merging 200 individual pressure maps collected during 

dynamic testing for 10 mm SMA and 14 mm SMA: [8] 
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Sample 1B        

 

Sample 2B    

 

Sample 3B    

 

Sample 4B    

 

Sample 5B    

 

 

Figure 4.14 – Contact area pressure distribution plots for 10 mm samples after 0 

wheel passes 
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Sample 1A   

Sample 2A    

Sample 3A     

     Sample 4A     

Sample 5A      

 

Figure 4.15 – Contact area pressure distribution plots for 14 mm samples after 0 

wheel passes 
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These two figures show how the pressure are distributed on the surface of 

specimens and highlight the differences in texture between the samples. 

It’s possible to notice that there are concentrated pressures around  missing pieces 

of coarse aggregate in the centre of SMA samples, as shown in the figure below: 

 

      

Figure 4.16 – Pressure Map in a SMA sample  

 

For each sample, the software carried out a 3D image, that allows a better 

understanding of the distribution of pressures on the contact areas, as shown in 

Figure 4.17 and Figure 4.18. 

 

 

Figure 4.17 – 3D image of contact pressure for a 10 mm sample 
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Figure 4.18 – 3D image of contact pressure for a 14 mm sample 

 

 

 

4.7 THE EFFECTS OF TRAFFICKING – ROAD TEST MACHINE 

 

After years of testing at the University of Ulster into sustainable highway 

construction, to improve the prediction of asphalt surfacing material performance, it 

was discovered that the simplistic assumption that use of texture or use of hard 

aggregate equals safer longer lasting roads is not a sustainable option if the 

aggregate or mix only lasts for a limited number of years failing prematurely. 

For this reason, it’s now essential to understand and quantify what happens to 

these materials with time. 

Improved sustainable highway construction implies the use of materials that will 

perform at adequate levels for longer period of time. 

However, it is difficult to test the durability of asphalt materials in conditions similar 

to those experienced in-situ. The use of simple methods such as wet/dry testing of 

asphalt using Marshall stability or Indirect Tensile Stiffness Modulus does not 

consider the effect of traffic stressing. This has prompted considerable research 

into assessment of the wear characteristics rather than simple moisture sensitivity.  

The Road Test Machine (RTM) consists of a rotating table on which 10 slabs or 

cores are subjected to accelerated trafficking using 2 full-size tyres. The equipment 

is housed in an environmental chamber that controls test temperature and subjects 

the test slabs to accelerated wear. The development of properties such as skid 
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resistance is measured using the British Pendulum Tester with texture depth 

measured using the Sand Patch method. 

The RTM is currently accredited by the British Board of Agreement to assess the 

wear characteristics of High Friction Surfacings (HFS) for Highways Authorities 

Product Approval Scheme (HAPAS) accreditation. HAPAS was set up in the 

1990’s with the objective of developing national approval arrangements for 

innovative products, materials and systems for use in highways and related areas. 

The effect of accelerated trafficking is assessed by measuring change in texture 

depth and skid resistance generally after 100,000 wheel passes. 

The RTM can used to study the wear characteristics of a wide range of asphalt 

materials including hot rolled asphalt, porous asphalt, bitumen macadam, asphalt 

concrete, micro-asphalt, or SMA, like in this project. These asphalt investigations 

typically involve making 305 x 305 x 50mm slabs from materials sampled on-site or 

mixed in the laboratory, but it’s possible to make it suitable for cores with 150mm of 

diameter and height of 50mm, utilizing a wooden mould. 

This allows combinations of aggregate and bitumen to be easily and quickly 

assessed without the need for full-scale road trials under controlled repeatable 

conditions.  [16] 

In this study testing was periodically stopped, particularly during the early stages, 

after 500, 2000, 5000, 10000, 20000, 50000 and 100000 wheel passes. This 

allows different periods in the life of an asphalt surfacing material to be determined 

and ranked against other types. Generally, the presence of water can substantially 

reduce friction between dry and wet test conditions. The presence of water can 

also change the ranking of asphalt mixes in dry and wet conditions. In this case all 

testing were carried out in dry conditions.  

All the samples were removed and tested for skid resistance using the Pendulum 

tester (PTV) and Texture Depth using the Sand Patch method. Each  test 

specimen was photographed at each stage of testing to record changes in their 

visual appearance and subsequently analysed for Contact Area between test 

sample and test tyre using the new dynamic pressure mapping system developed 

at the University of Ulster, as already described. 
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CHAPTER 5 

ANALYSIS OF DATA 

 

 

5.1 INTRODUCTION 

 

The main objectives of this investigation were to determine how each asphalt 

material, made with two different sizes of aggregate, 10mm and 14mm, 

responded to simulated trafficking under controlled laboratory conditions, 

analyzing the effect of nominal aggregate size on wet skid resistance and 

texture depth. It was determined how these properties developed with time and 

assessed the importance of contact area on wet skid resistance and texture 

depth. These objectives were achieved using the data collected with increasing 

number of wheel passes in each test method. 

 

 

5.2 SKID RESISTANCE 

 

The wet skid resistance (PTV) has been evaluated for increasing number of 

wheel passes, and  the evolution of the values are shown in Table 5.1: 

 

SAMPLE 0 500 2000 5000 10000 20000 50000 100000 

1A 62  49  50 57 62 57 56  54

2A 56  45  50 57 61 60 54  55

3A 56  53  55 60 67 63 64  60

4A 67  51  55 61 63 59 62  57

5A 65  46  60 61 63 62 65  63

1B 65  51  55 65 64 61 61  60

2B 64  48  55 64 60 59 58  56

3B 59  54  58 65 60 57 59  53

4B 51  49  55 60 64 62 59  57

5B 65  51  59 62 63 59 60  59

 

Table 5.1 – Values of wet skid resistance (PTV) 
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Figure 5.1 plots all of the data for all of the samples. This shows a general 

trend: there’s an initial loss of skid resistance in early life, followed by an 

increase and thereafter a reduction to equilibrium conditions. If the bulk of the 

aggregate is moisture sensitive or contains particles that are moisture sensitive, 

they will quickly lose their bitumen coatings and so facilitate the development of 

early or very early life skid resistance. 

 

 

Figure 5.1 – Change in wet skid resistance for increasing number of wheel       

passes 

 

The main exceptions are the 14mm samples number 3A, 4A and 5A that gained 

skid resistance in the later stages of testing due to severe surface reveling. 

This premature loss of particle edges or loss of individual particles may affect 

mix durability and tyre-surface contact patch phenomena, both in early and 

more importantly in mid life. 

These data are in agreement to what has been found during these last years of 

researches at the University of Ulster. 

In fact, it was discovered that an asphalt surface, during his service life, reaches 

a level of performance equilibrium after a period of 1 or 2 years. There’s a 

period before this equilibrium stage, during which it was claimed that certain 

types of road surface material may become slippery with problems of 



Chapter 5: Analysis of data 
 

105 
 

aquaplaning and bituplaning. It was found that there are reductions in wet skid 

resistance over the first few days, weeks or months. This time period is referred 

to as very early life and varies depending on asphalt mix, aggregate / bitumen 

combination and in-service conditions. 

This general trend during the early life is confirmed also in this project as we 

can see in Figure 5.1 and in Figure 5.2. The last one, plots the data for the first 

5000 wheel passes and shows in more detail this early life development of skid 

resistance. 

 

 

Figure 5.2 -  Change in wet skid resistance for first 5000 wheel passes 

 

This figure also shows a wide range in PTV values during the early stages of 

testing. This is despite all of the mixes being made with the same aggregate 

and reflects the complex interactions of aggregate nominal size, grading, 

bitumen content, texture depth and contact area. 

Generally, as it’s possible to observe in Figure 5.1, reducing the nominal 

aggregate results in an increase in wet skid resistance as measured using the 

pendulum tester. This is confirmed in all of the specimens, except for the 

samples 3A, 4A and 5A, for the reasons previously explained. 
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5.3 TEXTURE DEPTH 

 

The values of texture depth calculated for increasing number of wheel passes 

are summarized in Table 5.2: 

 

SAMPLE 0 500 2000 5000 10000 20000 50000 100000 

1A 1,44  1,13  1,24 1,08 1,05 1,09 1,18  1,00

2A 1,61  1,36  1,43 1,45 1,52 1,60 1,55  1,47

3A 2,67  2,48  2,59 2,46 2,74 2,77 3,00  2,72

4A 3,70  3,00  3,11 2,93 3,17 2,91 2,88  2,99

5A 4,46  3,94  3,99 3,82 3,89 4,08 4,47  4,56

1B 0,65  0,72  0,65 0,68 0,63 0,73 0,73  0,69

2B 1,05  1,07  1,05 1,03 1,02 1,14 1,13  1,18

3B 1,36  1,39  1,36 1,38 1,36 1,35 1,33  1,26

4B 1,30  1,31  1,30 1,34 1,35 1,36 1,28  1,34

5B 2,53  2,59  2,53 2,41 2,36 2,22 2,88  2,94

 

Table 5.2 -  Values of texture depth (mm) 

 

Figure 5.3 plots all of the texture depth data and similar to the skid resistance 

data shows a general trend in terms of texture depth development during 

testing. It’s clearly highlighted an early life decrease followed by increase and 

then either gradual decrease or increase. In terms of texture, this increase in 

the later stages of testing relates to surface raveling and stone loss, because 

the surface of the test specimen is starting to disintegrate due to simulated 

trafficking. 

This suggests that the testing method is a simple means of putting a time-scale 

against the relative performance of an asphalt surfacing material, not only in 

skidding resistance and texture but also in its structural integrity. 

It should also be pointed out that all of the RTM testing reported in this project is 

carried out in dry conditions. It would be expected that should the test samples 

be preconditioned by soaking in water  that more rapid failures may happen. 
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Figure 5.3 - Change in texture depth for increasing number of wheel passes 

 

The reduction of texture depth in the very early life of the material, is clearly 

shown in Figure 5.4, in which it is represented the evolution for the first 5000 

wheel passes.   

 

 

Figure 5.4 - Change in texture depth for first 5000 wheel passes 

 

It has been noticed during the first 500 wheel passes a decreasing of texture 

depth. This may be explained by smearing and migration of the binder on the 
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trafficked aggregate surfaces. After this point, all the samples show an overall 

trend: a small increase in texture depth as this migrated bitumen was removed 

by trafficking. This increment is more evident in samples 5A and 5B, that are the 

samples with the most open textured surface. 

Moreover the two previous figures, clearly show the influence of nominal 

aggregate size. In fact a smaller nominal aggregate size results in lower texture, 

and this would be expected. 

There’s a wide range of values between the samples and it’s possible to 

recognize two different zones: the first on the top of the graph represents the 

range of texture depth for 14 mm samples; the second shows the trend for 10 

mm ones. Moreover, all of the samples have a similar parallel plot and achieve 

equilibrium approximately after 2000 wheel passes.   

This laboratory ranking of texture change is more or less in agreement with 

expected in-service performance and suggests that the RTM testing protocol 

may be a suitable method to rapidly predict how asphalt materials will perform. 

 

 

5.4 RELATIONSHIP BETWEEN SKID RESISTANCE AND TEXTURE DEPTH 

 

Analysis of data has been concentrated on single properties of materials, such 

as wet PTV and texture depth. The data was further analysed to consider the 

relationship between these properties with time, after an increasing number of 

wheel passes. 

Figures 5.5 and 5.6 plot the relationship between wet skid resistance and 

texture depth for all data measured after 0 and after 100000 wheel passes. 

Figure 5.5 shows that the values are very scattered. This may be due to the 

differences in the rate of compaction. In fact these values range from 3 to 900 

gyrations in the gyratory compactor and this well relates with having a wide 

range in texture depth and skid resistance. 
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Figure 5.5 – Relationship between PTV and TD after 0 wheel passes 

 

 

 

Figure 5.6 – Relationship between PTV and TD after 100000 wheel passes 

 

 

After 100000 wheel passes the situation changes radically. As shown in Figure 

5.6, we can see three distinct sets of data related to nominal aggregate size. 

This shows how these properties are susceptible to change during their early 

life. This is probably due to the smearing of bitumen coatings and temporary in-

filling of surface textures, exposure of the aggregate and subsequent on-set of 

aggregate polishing. This last figure shows that an equilibrium state has been 
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achieved for the SMA samples, after prolonged simulated trafficking. This is true 

except for sample 1B, that doesn’t totally agree with this trend. 

 

Figure 5.7 – Relationship between PTV and TD after 100000 wheel passes, not 

including sample X 

 

For this reason the values of sample 1B were removed from the graph and this 

allow to have a linear trend for both of the two aggregate sizes, as shown in 

Figure 5.7. This equilibrium state represents a stable and durable material and 

this is typical of how SMA would be expected to perform in situ. 

 

 

5.5 CONTACT AREA 

 

Upon considering the role of contact area on wet skid resistance and texture 

depth. As explained in the previous chapter, this new methodology developed at 

the University of Ulster allows a test specimen to move under a loaded tyre in a 

controllable manner. 

Tracking with the tyre has caused the flexible X Sensor pressure pad to 

highlight the areas of contact between the smooth GripTester tyre and the 

asphalt surface. 

The aim of this stage of the project, was to analyze the changes in contact area 

after  different number of wheel passes, and to relate these changes with the 

main parameters worked out from the XSensor 3 Pro Version software. 
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The evolution in contact area for all the samples are summarized in the table 

5.3. 

  CONTACT AREA (mm2) 

SAMPLE  0 WP  500 WP  5000 WP  20000 WP  100000 WP 

1A  6961,29  6103,23  5683,87  5645,16  5458,06 

2A  6070,97  4464,52  3774,19  4141,94  5670,96 

3A  6974,19  4658,06  4864,52  3587,1  3974,19 

4A  5980,65  3845,16  3832,26  3219,35  3535,48 

5A  6735,43  3303,23  3393,55  2812,9  2464,52 

1B  7477,42  5335,48  5729,03  6438,71  6580,65 

2B  7212,9  5341,94  5896,77  5303,23  5232,26 

3B  7251,61  5167,74  5135,48  4425,81  4554,84 

4B  7064,52  4548,39  4387,1  4000  4341,94 

5B  6812,9  3541,94  3374,19  4129,03  2877,42 

 

Table 5.3 – Contact area data 

 

The plot of these data is represented in Figure 5.8. The overall trend shows a 

rapid decrease of the values of contact area especially after the first few 

hundred wheel passes. The situation remains the same for all the samples until 

5000 wheel passes; after this point most of the cores continue in decreasing the 

contact area, as it would be expected.   

 

 

Figure 5.8 – Relationship between contact area and number of wheel passes 
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However test have carried out particular results for the sample 1B and 

especially for sample 2A. This may be due to  trafficking that in this two samples 

has attenuated the roughness in texture. 

Other interesting parameters have been analyzed: the peak pressure due to the 

contact between tyre and asphalt, and the average pressure. 

A visual evolution in the peak pressure and in the contact area, is shown both 

for a 10 mm aggregate sample and for a 14 mm, in the figures below: 

 

        

 

  

 

 

                      Sample 1B (10 mm)                                   Sample 2A (14 mm) 

 

Figure 5.9 - Evolution in contact area and change in the distribution of pressure 

for an increasing number of wheel passes (0, 500, 5000, 20000, 100000) 
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In these images is easily recognizable an increase with trafficking in the values 

of pressure for both the two samples, but also an increase of contact patch after 

5000 wheel passes for specimen 1B and after 20000 wheel passes for 

specimen 2A, and this is not in agreement with what it would be expected.  

In order to explain what should be the actual evolution of contact patch and 

pressure’s distribution, an example is shown in the Figure 5.10. 

 

 

 

 

 

 

 

Figure 5.10 - Evolution in contact area and change in the distribution of pressure 

for core 1A (14 mm) 
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In this figure it’s easy to see the reduction of the contact area with increasing 

number of wheel passes. In order to understand better also the evolution of the 

pressure, the 3D models of some of these contact patches are shown in Figure 

5.11. 

 

 

 

 

 

 

5.11 – Distribution of pressure after 5000, 20000 and 100000 wheel passes for 

sample 1A (14 mm) 
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These simple examples clearly show how the high values of pressure are 

concentrated on the protruding chipping and this happens especially for the 

larger sized samples of SMA. 

The peak pressure and the average pressure have been evaluated for all the 

samples. The data are summarized in Table 5.4 and Table 5.5 and plotted in 

Figure 5.12 and in Figure 5.13. 

 

  PEAK PRESSURE (psi) 

CORES  0 WP  500 WP  5000 WP  20000 WP  100000 WP 

1A  70,81  71,02  75,87  78,27  102,13 

2A  72,92  73,19  83,06  81,79  107,81 

3A  91,75  96,07  100,77  106,57  172,00 

4A  94,41  99,93  102,6  130,29  256,00 

5A  110,9  114,35  116,51  152,25  256,00 

1B  65,75  66,24  68,27  94,99  119,32 

2B  74,04  74,93  75,59  100,30  155,06 

3B  78,21  79,59  81,18  101,71  163,30 

4B  79,25  81,18  88,23  99,27  189,67 

5B  84,94  85,89  89,26  200,11  256,00 

 

Table 5.4 – Peak pressure data 

 

 

  AVERAGE PRESSURE (psi) 

CORES  0 WP  500 WP  5000 WP  20000 WP  100000 WP 

1A  26,50  31,94  31,03  32,00  36,71 

2A  26,77  29,50  27,83  27,93  38,91 

3A  33,08  37,30  38,41  35,13  44,72 

4A  25,63  39,00  40,87  42,53  53,70 

5A  34,52  40,80  43,77  43,02  55,81 

1B  24,32  25,75  28,40  31,12  37,49 

2B  30,21  33,03  35,67  36,85  40,03 

3B  29,74  33,56  34,68  33,42  37,84 

4B  26,28  29,44  32,75  35,23  38,81 

5B  26,69  35,90  35,28  42,02  48,42 

 

Table 5.5 – Average pressure data 
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Figure 5.12 – Relationship between peak pressure and wheel passes 

 

 

 

 

Figure 5.13 – Relationship between average pressure and wheel passes 
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From these two graphs the trend appears well defined. In both of these and for 

all the samples, there are an increase of peak pressure and average pressure 

with the increasing number of wheel passes. This well relates to the effect of 

trafficking. 

 

 

5.6 RELATIONSHIP BETWEEN CONTACT AREA, TEXTURE DEPTH AND 

SKID RESISTANCE 

 

In order to have a better understanding of the behaviour, some relationships 

between the main indicators have been evaluated. 

Figure 5.14 plot the change in contact area  and in texture depth after 0, 500, 

5000, 20000 and 100000 wheel passes. 
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Figure 5.14 – Contact area against Texture depth 
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The first graph shows similar values of contact area for all of the 5 sample of 10 

mm aggregate and this reflects in a linear trend. The situation is  different for 

the 14 mm sample; in fact the values are very scattered  because of the wide 

range of texture in the 5 samples. 

The situation starts to change after the use of RTM machine to simulate 

trafficking. In fact the values of contact area and texture depth are decreased 

with the increasing number of wheel passes, and this has caused an alignment 

of points. For this reason now the relationship between contact area and texture 

depth is linear for both of the two groups of specimens. 

These changes in texture depth and in contact area have caused an increase in 

the angles of the two straight lines.  

Analyzing the two equations for the trendilines found in the last graph, it’s 

possible to find the two point of intersection between these two straight lines 

and the y-axis; the two equations are listed below: 

 

    (10 mm) 

  (14 mm) 

 

This allow to calculate the maximum value of contact area, in which  there is 0 

mm of texture depth. That points represent a completely smooth surface. 

These two values are 6867 mm2 for the 10 mm samples and 6619,5 mm2 for the 

14 mm ones.  

Subsequently the values of contact area and texture depth have been gathered 

in two groups, depending on the aggregate size, as it’s possible to see in Figure 

5.15 and Figure 5.16. 

These two graphs clearly highlight a linear trend for all the stages of trafficking 

and for both of the groups and confirm the reduction in the values of contact 

area with the increasing number of wheel passes. 
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Figure 5.15 – Contact area against texture depth (10 mm) 

 

 

Figure 5.16 – Contact area against texture depth (14 mm) 

 

Another important relationship has been evaluated. It concerns the evolution in 

contact area and in skid resistance, by means of PTV index, obtained from the 

pendulum skid test. 

Figure 5.17  plot the data for this relationship in 2 graphs, for the two different 

aggregate size, reflecting the changes of the values after different levels of 

trafficking (0, 500, 5000, 20000, 100000 wheel passes). 
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Figure 5.17 – Contact area against PTV 

 

At the beginning (0WP), it’s possible to notice a wide range of PTV values, due 

to the differences in texture and in the rate of compaction. 

Subsequently under the effect of trafficking, the range of PTV values has 

started to decrease while the contact area decreases as well. 

After 500 wheel passes in the RTM, the points in the graphs have moved 

through lower values of skid resistance, and after that through higher ones, 

remaining almost constant until the end of testing. 

This fact is perfectly in agreement with the behavior of SMA during his early life, 

with a decrease of skid resistance and texture depth, due to the loss of its 
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bitumen coating, followed by a rapid increase of values proceeding with 

trafficking, and finally reaching a state of equilibrium.  

 

 

5.7 THE INFLUENCE OF PRESSURE ON TEXTURE DEPTH AND SKID 

RESISTANCE 

 

Another important parameter considered in this analysis concerns the role of 

pressure in influencing properties of the sample, such as texture depth and skid 

resistance. 

For all the samples, the values of average pressure and peak pressure after 

different number of wheel passes in the RTM machine, have been evaluated. 

It has been found a very significant relationship between Peak pressure and 

texture depth, as shown in Figure 5.18. 
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Figure 5.18 – Peak pressure against Texture depth 

 

The relationships shown in these graphs are perfectly linear, for all the stages of 

testing. This is testified by the high values of the correlation. 

This linear trend suggests that an increase in texture depth, causes an increase 

of Peak pressure between tyre and material, as well. 

These two trendlines found for the two groups of aggregate size, give us a way 

to find one of these two parameters, just knowing the other one. 

Moreover this well relates with what would have been expected; in fact 

generally an increase in texture depth is due to the reveling aggregates and to 

the widening of the surface’s holes, and this cause a growth in the values of 

pressure around these particular characteristics of the surface. 

The linear relationship between Peak pressure and texture depth represented in 

Figure 5.19 shows an increase in the angle of the trendlines for each stage of 

trafficking till 45°, the bisector of the axis. 

This is due to the fact that with the increasing number of wheel passes, the 

surface texture is generally worn, with missing pieces of cores that reflects in an 

increase of texture depth and Peak pressure. 
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Figure 5.19 – Peak pressure against Texture depth  

 

After this the connection between Peak pressure and PTV was also considered, 

as presented in Figure 5.20. 
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Figure 5.20 – Peak pressure against PTV 

 

The values are very grouped for all the stages of trafficking, for what concerns 

both the Peak pressure and the PTV values. The only exception is for some 

samples after 100000 wheel passes in which the effect of the wear on the 

specimens, have caused an increase of the values of Peak pressure. In fact in 

this last stage of trafficking there’s more variability in the values of PTV. The 

reveling of aggregates causes a gain in PTV and a concentration of pressure 

around missing pieces of coarse. 
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Considering the same relationships for the average pressure it’s possible to 

notice that the trend is very similar to the previous one. This is because an 

increase in the values of peaks causes also an increase in the values of the 

average. 

In fact the relationship between average pressure and texture depth is linear 

especially in the last two graphs of Figure 5.21 as already seen in Figure 5.18 

and Figure 5.19. 
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Figure 5.21 – Average pressure against texture depth (0, 500, 5000, 20000, 100000 

wheel passes) 
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The same trend is also identifiable in Figure 5.22, in which are represented two 

graphs for the two different aggregate sizes. 

 

 

 

 

Figure 5.22 – Average pressure against texture depth 

 

 

The same behavior is recognizable also in the link between average pressure 

and PTV. 
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Figure 5.23 – Average pressure against PTV 

 

 

5.8  THE INFLUENCE OF AIR VOIDS CONTENT 

 

As it has been previously explained, the samples have a very different range of 

texture due to the difference in rates of compaction in the gyratory machine. 

This is reflected also in a wide range of Air void content (%). For these reasons 

it has been necessary to analyze how the percentage of voids influences the 

different parameters considered in this project. 

It has been considered the relationship between Air voids content and texture 

depth, PTV, Peak pressure and Average pressure, as illustrated in Figure 5.24. 
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Figure 5.24 – relationship between Air voids and TD, PTV, Peak pressure and 

Average pressure 

 

The evolution of each sample in the process of trafficking, is characterized  by a 

group of points on the vertical lines, each of them representing the different 

percentage of voids in the specimens. For all the parameters analyzed in these 

graphs is possible to see the same trend. In fact the values are very gathered in 

the first stages of trafficking and they become very scattered after 20000 and 

100000 wheel passes. This behavior is clear in the first and in the last of the 

graphs in Figure 5.24, in which the values of Texture Depth and Average 

Pressure have a wider range in the samples with an open texture and higher 

percentage of voids. 

The main exception is in the second graph, in which it’s possible to recognize 

high variability of the values, in the first stages of trafficking, especially 

analyzing the differences in Contact Area before the RTM’s effect and after 500 

wheel passes. This great changes in Contact Area with the effect of RTM, 

influence the behavior of all the parameters considered. 

 

The analysis of data has carried out a general trend for all the samples. As 

shown in Figure 5.8 the Contact Area decreases with the process of trafficking 

in all of the samples with the exception of specimen 2A.  In order to understand 

this strange behavior, a 3D analysis was required; the methodology and the 

results are illustrated in the next chapter. 
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CHAPTER 6 

ANALYSIS OF TEXTURE USING 3D PHOTOGRAMMETRY SOFTWARE 

 

6.1 INTRODUCTION 

The ability to characterise highway surfacing textures is essential to better understanding 

their performance. Traditional volumetric methods such as sand patch produce data based 

on estimation of a single geometry and offer little insight to early life deformations of 

bitumen coatings, changes in aggregate shape or longer term performance of the asphalt. 

Durability of an asphalt surfacing is a function of its ability to withstand static and dynamic 

contact stresses applied during its life. For these reasons, in the last years, 3D techniques 

have been used to create digital models of real surfaces. [10]  Previous studies developed 

at University of Ulster, suggest that these methodologies offer improved understanding of 

tyre/surface interaction, and they have been used in this thesis, to appreciate why sample 

2A has a different behavior compared to the others. For this purpose, the use of 

photogrammetry was required. The images have been manipulated using ArcGIS to form a 

spatial framework for analysing surface textures. ArcGis is a geographic information 

system that integrates hardware, software, and data for capturing, managing, analyzing, 

and displaying all forms of geographically referenced information. GIS allows to view, 

understand, question, interpret, and visualize data in many ways that reveal relationships, 

patterns, and trends in the form of maps, globes, reports, and charts. It helps to answer 

questions and solve problems by looking at data in a way that is quickly understood and 

easily shared. 

 

6.2 THE USE OF PHOTOGRAMMETRY 

Photogrammetry is a versatile, powerful, and flexible measuring technology broadly used 

in many fields, for a wide variety of measurement tasks. The fundamental principle used 

by photogrammetry is triangulation, therefore it is necessary to take photographs from at 

least two different camera angles. For this reason, two pictures were taken for each 

sample, from both right and left sides.  
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Figure 6.1 – Photographs of the same sample taken from the right and left side 

These two pictures taken from each sample, were then loaded in a photogrammetry 

software, called Topcon Image Master, in order to create the 3D model. Image Master is 

photogrammetric software recently released by Topcon. This program allows the use of 

digital photos for various surveying purposes, such as photogrammetric measurements or 

preparing orthophotos. Originally designed to be used with an imaging total station, it can 

also be used with a digital camera. It uses photogrammetric methods that allow the 

parallax in a pair of stereo photos to be measured and converted into XYZ coordinates. 

The process involves several steps: 

1. Calibrate the camera. the camera can be calibrated by taking five photos of a test 

pattern from specific angles and processing them with the calibration software. The 

test pattern is provided with the software, which consists of a grid of dots and 

diamonds. This calibration only needs to be done once for a fixed-length lens.  

2. Take a stereo pair of photos of the subject. Each of the photos need to be taken a 

similar distance from the target, with the camera oriented in the same direction and 

the entire subject included in each photo. Each pair of photos creates one stereo 

model. If the subject is large, multiple stereo models can be stitched together later.  

3. Measure the coordinates of at least four control points that are visible on both 

photos and are distinctive.  
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4. Load the control coordinates, the stereo photos, and the lens parameters into 

ImageMaster and designate the location of each control point in both photos. The 

software will then calculate the parallax of the photos and return the error residual 

of each point.  

5. Coordinates of any point identifiable on both photos can now be measured. 

ImageMaster also has the ability to create a TIN and contours from the points, and 

the photos can be draped over the TIN to make orthophotographs. [14] 

All these models were generated with a TIN mesh of 0.5 mm. Some also utilized the 0.3 

mm mesh, to have a better understanding of the texture and to show more details. The two 

figures below show how it’s possible to have a more detailed reconstruction of texture by 

moving from a 0.5 mesh to a 0.3 mm one, for the same sample. 

 

 

Figure 6.2 – 3D model for a 14mm SMA with 0.5 TIN mesh 



Chapter 6: Analysis of texture using 3D photogrammetry software 
 

138 
 

 

Figure 6.3 – 3D model for a 14mm SMA with 0.3 TIN mesh 

 

In particular for sample 11 was analyzed the difference in texture considering the situation 

before testing and the one after 100000 RTM wheel passes. In order to do this, a 3D 

model for each sample was created, with a 0,3 TIN mesh.  

 

 

Figure 6.4 – Reconstruction of texture pre and after trafficking using Topcon Image Master 
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Its behavior in fact is considered strange considering the relationship between wheel 

passes and contact area. As it has been previously shown, sample 2A and also sample 1B 

have an increase in contact area after the effect of trafficking. 

Focusing the attention on figure 6.4, it clearly shows how the effect of RTM has reduced 

the deeply of the asperities and so the surface appears now flatter; this explains that an 

increase in the contact area is possible. With the intention of understanding why, the use 

of ArcGis software was successively required. 

In this case, the software has been used to highlight the differences in the height on the 

sample’s surface, before and after trafficking. An example of this is shown in Figure 6.5 for 

sample 11 before testing, and in Figure 6.6 after 100.000 wheel passes. 

 

 

Figure 6.5 - Topographic map processed in ArcGis (0 wheel passes) 
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Figure 6.6 - Topographic map processed in ArcGis (100.000 wheel passes) 

 

This software permits to better understand texture depth change; a reference plane at 

0mm texture depth was chosen to calculate the loss in volume after 100000 wheel passes. 

This was possible overlapping the two models, as shown in Figure 6.7, and it was found a 

reduction in volume with the effect of wear. 

 

Figure 6.7 – Superimposition of the images to appreciate the differences in texture 
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This figure illustrates the variations in texture between the two samples and confirms the 

existence of potential areas of water entrapment. 

This is water entrapped in small pockets having a definable perimeter within the area of a 

tread-block or as an area of surface water with no clear drainage path. All surfaces were 

found to entrap water.  

This suggests that simple estimation of texture depth alone gives a limited indication of a 

surface’s capacity for surface water retention. This is an area that offers potential for 

predicting the effect of water on durability of asphalt surfacing materials and it suggests a 

very interesting topic for futures development and studies. 
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CONCLUSION 

 

This thesis has summarised the findings of a laboratory investigation to assess whether it 

is possible to rank the relative performance of 10 samples of SMA, with different air voids 

content and rates of compaction.  

The ten specimens were made with two different sizes of aggregate, 10 mm and 14 mm, 

to investigates how asphalt type relates to texture and wet skid resistance. 

The Road Test Machine was used to simulate controlled trafficking conditions. The change 

in wet skid resistance and texture depth was determined at regular intervals during testing. 

By stopping periodically the complex interrelationships between asphalt mix properties 

such as asphalt type, nominal aggregate size, wet skid resistance and texture depth can 

be better understood and how they develop with time. 

The data shows a general trend: there’s an initial loss of skid resistance in early life, 

followed by an increase and thereafter a reduction to equilibrium conditions; with the 

exceptions of some 14mm samples that gained skid resistance in the later stages of 

testing due to severe surface reveling. The texture depth was found to increase as the 

nominal stone size increased.  

It is concluded that the RTM can be used as a tool to quickly assess the relative 

performance of an asphalt material under controlled laboratory test conditions allowing 

material use to be optimized and reducing reliance on lengthy and costly road trials. 

After this was considered the role of contact area on wet skid resistance and texture depth.  

It was found that the contact patch of the tyre had a significant role in rolling resistance 

being affected by tyre loading, inflation pressure and type of tyre. As the inflation pressure 

increased, the contact area decreases and there is an improvement in rolling resistance.  

The data carried out with this test show a general decrease in contact area for all the 

sample with the effect of trafficking and this is true for the most of the samples, and an 

increase of Peak pressure and average pressure with the increasing number of wheel 

passes.  

The evolution of each sample in the process of trafficking was analyzed in relationship with 

all the parameters considered in this project.  The analysis of this factors in correlation with 

the air voids content was very significant. All the values are characterized  by a group of 

points on vertical lines, each of them representing the different percentage of voids in the 

specimens. For all the parameters it’s possible to recognize the same trend. In fact the 

values are very gathered in the first stages of trafficking and they become very scattered 
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after 20000 and 100000 wheel passes. This behavior is clear in the graphs of Texture 

Depth and Average Pressure in which there’s a wider range of values in the samples with 

an open texture and higher percentage of voids. 

The main exception is in the analysis of Contact Area in which significant changes are 

shown also after 500 wheel passes. This great changes in Contact Area with the effect of 

RTM, influence the behavior of all the parameters considered. 

The data of a smooth GripTester tyre interacting dynamically with a surface can be 

combined with 3D photogrammetric and spatial analysis. 

This was required to better understanding the behavior of some samples, that not well 

relate with the general trend found for the others. 

This 3D methodology is exceptionally versatile allowing rapid data capture at source and 

the ability to generate a theoretically unlimited number of profiles in any plane. This 

facilitates assessment of surface textures change, such as deformation, wear polishing, 

over time and space. The 3D surface models may be used to estimate volume of material 

loss and displacement with time. For this reason, in this thesis has been used the 

photogrammetry to model and monitor surface macro-texture change of asphalt cores 

subjected to laboratory accelerated trafficking. Stereo image pairs were taken during 

testing and processed using  a photogrammetric software and subsequently exported in 

ArcGig to show change in macro-texture profiles, depression perimeters and volumes and 

analyze the different behavior of sample 2A. This changes suggests an early re-deposition 

of material in voids and infilling of surface texture during early life trafficking due to 

smearing of the bitumen coating off the trafficked asphalt concrete surface. In contrast the 

conventional sand patch method offered much less insight of the processes taking place 

during the trafficking period.  It is concluded that stereo photo analysis, and the use of 3D 

techniques in general, offer a potentially viable method of correlating mechanical 

processes at the tyre/surface interface with surface characteristics and give us a better 

understanding of the texture.  This is very important for road security and also from an 

economic point of view. In fact some studies have proved that reducing the texture depth 

of positive textured surface dressing resulted in significant reductions in road/ tyre noise 

and that surface texture appeared to be the main surfacing property that needed to be 

considered when developing more fuel-efficient surfacing materials. Moreover the 

relationship between road surface is the main factor in the safety; in fact both road surface 

and tyre require minimum levels of grip and texture to remove water and minimize 

aquaplaning.  
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