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Chapter 1

Introduction

Many of the systems that surround us are dynamics complex sys-
tems. The goal of understanding their properties is one of the main
challenges in scientific and engineering disciplines. Despite the great
complexity and variety of systems, natural system such as cells and
human brain, are essential to our scientific inquiry and understanding
and also they provide metaphors and tools which can be effectively
used for analyzing artificial agents, such as robots.

The behavior of these systems is detailed and complex. For ex-
ample we can think to the functioning of the brain that is considered
responsible for sensory processing, motor control, language, common
sense and most other aspects of what might be called higher infor-
mation processing. However, it is reasonable to assume that many of
the principles concept upon which those system are designed may be
described through a model that takes into account only the essential
elements. A concrete example is represented by the neural networks
model. It grew out of research in Artificial Intelligence with the aim
to modeling the low-level structure of the brain.

Qualitatively, to understand the behavior of a complex system we
must understand not only the behavior of the parts that compose it,
but how they act together to form the behavior of the whole. Because
we can not have information about the whole without describe each
part of the system, and because these parts must be described in
relation to other parts, the behavior of a dynamics complex system is
difficult to understand and analyze.

Often, mathematical models that represent dynamics complex sys-
tems are described in a very complex way. For this reason is not possi-
ble to study in detail their behavior. This happens even for the neural
networks model, also called ”black box”, in which it is possible to ob-
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2 CHAPTER 1. INTRODUCTION

serve the final result but is not possible to deep analyze the internal
mechanism that lead to those result.

We identify Boolean Networks (BNs) as a suitable alternative math-
ematical model due to its compact and simple structure representation
able to show very complex dynamics. They have been introduced by
Stuart Kaufman as a model for genetic regulatory networks and as an
abstraction of complex systems used to study evolutionary processes
mechanisms in living beings.

The goal of this thesis, developed in collaboration with the Institut
de Recherches Interdisciplinaires et de Dèveloppements en Intelligence
Artificielle (IRIDIA) of the Universitè Libre de Bruxelles, is to design
Boolean networks for robot controller using an automatic methaeuris-
tic technique and analyze how the resulting networks realize the ob-
servable robot’s behavior.

Thanks to the simplicity of the Boolean networks model and the
availability of tools for its analysis it is possible, for the first time,
studying the resulting network’s behavior by giving a concrete repre-
sentation of its state space. The analysis have shown that the state
space structure can be represented by a finite states automaton in
which it is possible to examine, step by step, the path that starting
from the inputs generates the target behavior.

Studies are performed on three concrete applications. In the first
two we are interested in observe how the state space structure orga-
nizes itself in order to achieve two simple task, in particular phototaxis
and obstacle avoidance. Then we analyze the state space in a more
difficult task (i.e. sequence recognition) in which a memory structure
is needed in order to achieve the task.

1.1 Outline of the work

The reminder of the thesis is organized as follows.

In Chapter 2, we present Boolean Networks (BNs) and Random
Boolean Networks (RBNs) describing their dynamics and properties.

In Chapter 3, we present the approach, based on metaheuristics
techniques, used to design Boolean network robotics systems. First
we provide some basic concepts and reasons to use metaheuristic tech-
niques for the design of Boolean network. Then, we describe our
approach starting from the network-robot coupling to the analytic
method used for the network’s manipulation and training.

In Chapter 4, we analyze the state space of e Boolean network.

2



CHAPTER 1. INTRODUCTION 3

We first provide a definition of the main structures that compose it.
Subsequently, we describe two learning algorithm able to modify the
network’s state space and that can be used as aid algorithm to meta-
heuristics techniques. Finally, we discuss the possibility to use the
RBN model to better understand the emergence of memory.

In Chapter 5, we apply our design methodology on two concrete
experiments (i.e. phototaxis and obstacle avoidance) in order to an-
alyze the resulting networks. The analysis focuses in understanding
the networks behavior by analyzing their state space. In particular we
observe the number of states used by a network during the achieve-
ment of a task and we study the state space structure emphasizing
the presence of macro area that refer to the concept of memory.

In Chapter 6, the analysis is performed on networks trained for
a more complicate task, i.e. sequence learning. This task is more
difficult because it requires the presence of some memory structures in
order to be performed. For this reason we deeply analyze the concept
of memory in random Boolean network analyzing the network’s state
space.

In Chapter 7, we draw some conclusions and we give an outlook
for future works.
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Chapter 2

Boolean Networks

In this chapter we introduce Boolean Networks, focusing on their
structure and dynamics, with enphasis on Random Boolean Networks
(RBNs).

2.1 Boolean Networks model

Boolean networks (BNs) were proposed by Kauffman in 1969 as a
mathematical model of genetic networks and complex adaptive sys-
tems. Despite their simplicity, BNs show very rich dynamics. For this
reason, they have been used in several works in biology and complex
systems.

In recent works, they have also been proposed for machine learning
applications [9,11]. Another important reason that makes very inter-
esting the use of Boolean Networks as learning systems is the fact
that it is possible, a priori, define their dynamical state. They are, in
fact, a particular case of discrete dynamical networks, where time and
states are discrete.

In the following we describe the main concepts on boolean net-
works.

2.1.1 Structure

The BN offers a simple yet powerful tool based on Boolean function,
and as all networks structures it is composed of nodes. The general
idea is that each node has a Boolean state that can change over time.
The change depends on the state of the connected nodes. In fact, this
is realized associating a boolean function to each node and calculating
its value at each computation step.

5



6 CHAPTER 2. BOOLEAN NETWORKS

A BN is a discrete-state and discrete-time dynamical system whose
structure is defined by a directed graph of N nodes. Each node is
associated to a Boolean variable xi, i=1, ... ,N, and a Boolean function
fi(xi1, ... , xiKi) where Ki represents the number of input of the node
i. The arguments of the Boolean function fi are the values of the nodes
whose outgoing arcs are connected to node i and the list of Boolean
functions Fi represents the interaction rules between nodes. The state
of the system is defined by the array of the xi Boolean variable values
at time t: s(t) ≡ (x1(t), ... , xN(t)). The connectivity of a Boolean
network is defined by K, and since a Boolean variable can assume only
two different values, the state space size is 2N . Figure 2.1 reports a
simple example of Boolean network.

Figure 2.1: A simple example of a Boolean Network with N=3, K=3
and its function table.

2.1.2 Dynamics

To date, researchers have focused mainly on studying various prop-
erties of Boolean networks. However, many questions concerning the
dynamics of Boolean networks are still open. With the term dynamics
of the network we refer to a series of changes that takes place within a
network. Boolean network dynamics is basically realized through the
update of the values of each node. This update can be done in two
ways: synchronously or asynchronously. In a synchronous BN (SBN),
the states of all nodes are updated simultaneously, while in an asyn-
chronous BN (ABN) not all nodes are necessarily updated at the same
time. A consecutive sequence of states obtained by state transitions
is called a trajectory. State transitions in a SBN are deterministic,
so a trajectory starting from any state is uniquely determined. Dif-
ferently, in ARBN, states transition depends on the number of nodes

6



CHAPTER 2. BOOLEAN NETWORKS 7

and which nodes are updated at each updating step. This value could
be randomly selected.

Initially the network performs a series of updates that lead to a
trajectory characterized by a sequence of states all different among
each other and they will not be repeated. This phase is called tran-
sient. The number of updates of the network that leads to a state
different from the previous one defines the length of the transitory.
This length can also be zero. Because the network’s update is syn-
chronous and the number of states are finite, the dynamics, sooner or
later, will encounter the same states or sequence of states that will be
repeated. These states are called attractors.

Figure 2.2: An example of a BN with three nodes (a) and its corre-
sponding state space under synchronous and deterministic update (b).
The network has three attractors: two fixed points, (0, 0, 0) and (1,
1, 1), and a cycle of period 2, (0, 0, 1), (0, 1, 0).

An attractor is a state or a set of states to which the system evolves
after a long enough time. If the attractor has only a single state it
is called a fixed point, and if the attractor consists of more than one
state it is called a cycle attractor. There are two important quantities
that characterize the dynamics of a Boolean network. The first one
is the number of different attractors, and the second is the length of
these attractors. Both quantities are network-specific.

2.2 Random Boolean Networks

Random Boolean networks (RBNs), a special category of BNs, were
originally developed by Stuart Kauffman as a model of genetic regu-

7



8 CHAPTER 2. BOOLEAN NETWORKS

latory networks (Kauffman, 1969; Kauffman, 1993).
His original model, and the one we will describe in the following,

is based on the following three assumptions:

• The nodes are associated to Boolean functions and their state is
either on (1) or off (0);

• The number of inputs is the same for each node;

• The topology of the network is chosen at random;

• The update of the network is synchronous in time.

2.2.1 Structure

Random Boolean Networks (RBNs) maintain the same characteristics
as the classical Boolean networks described in section 2.1.1 and 2.1.2.

The general way to generate a RBN is to define the number of
inputs for each network’s nodes and the respective Boolean function.
The first value, represented by the parameter K, is arbitrary defined
but the wiring scheme is randomly chose. The Boolean function is
defined by assigning to each of its entry a 1 with probability p and a
0 with probability 1 - p. The parameter p is called bias. Usually, also
the initial state is randomly chosen.

This kind of approach is very useful when the network must model
a complex system, or when it contains some not well known parame-
ters. Then, the generic properties of a RBN can be applied to a certain
system with the aim to capture the mechanisms that regulate it.

2.2.2 Dynamics

In RBNs nodes are usually updated in a synchronous way. This means
that the value assumed by a node at time t + 1 depends on the value
of its inputs at time t. Actually, the update could be also done in
a different way accepting to obtain totally different results, and in
some cases also unpredictable. Many experiments are being made on
asynchronous update of classic RBNs (Harvey and Bossomaier, 1997;
Mesot and Teuscher,2003; Rohlfshagen and Di Paolo, 2004; Gershen-
son, 2002;Gershenson, 2004). The effects of these asynchronous up-
dates have been studied on some properties such as length and number
of ciclic attractors that a network can achieve. The results showed
that, many characteristics and properties of synchronous RBNs are

8



CHAPTER 2. BOOLEAN NETWORKS 9

not present or are substantially different. In the following, when talk
about updating scheme, we always refer to the synchronous one.

It has been also studied that, acting on the random Boolean net-
work’s parameters K and p (see Section 2.3.3) the entire dynamics
change as well as the number and the type of a network’s attractors.
Depending on the value assumed by these two parameters the network
dynamics is classified in three different regime called either ordered,
chaotic, and critical.

In the next section we deeply describe the property of the RBN’s
dynamics. In particular we focus on the three regime mentioned above
also characterizing the network value that carry out each particular
regime.

Ordered, chaotic and critical phase

In this section we describe differences and characteristics of the three
regimes of a random Boolean network. These regime can be identified
with different methods, since they have several unique features.

We can imagine to plot the state of every node of a network in
a square lattice and to let the dynamics proceed. In this way it will
be possible to observe how much and which nodes change over the
time. The dynamics of a network forces some states to assume fixed
values over time, while others keep on changing. To distinguish them
we color the fixed states in red while the others in green. For certain
configuration of p and K (setting in according to 2.1) it is possible to
observe that the network state seldom change. After having selected
an initial random state, the nodes value start to change and to assume
the green color, but quickly the dynamics stabilize. This phase gives
as result a red sea with few and isolated green islands. We call it
ordered regime. For a different configuration of p and K, the number
of states which, from green become red, are numerically smaller. This
indicates that the network states undergo continuous changes bring the
dynamics to be less stable. We call this the chaotic regime. For some
value, in between the two cases mentioned above, we observe a regime
that displays a stability analogous to the ordered regime and a number
of attractors analogous to the chaotic one. The phase transition from
the ordered to the chaotic regime, also known as the edge of chaos or
critical regime , occurs when the ordered green sea breaks into green
islands, and the red islands join and percolate through the lattice
(Kauffman, 2000, pp. 166-167).

Another interesting and studied feature of these dynamic regimes

9



10 CHAPTER 2. BOOLEAN NETWORKS

is related to sensitivity to initial conditions, damage spreading, and
robustness to perturbations which are different ways of measuring the
stability of a network. For example we can measure the damage caused
by a random change within a network just changing, damaging or
perturb its nodes by altering the value they assume, or changing the
topology of the network acting on the links of the nodes or in their
Boolean function.

In ordered regime the damage is not propagated within the net-
work. A perturbed network, in fact, immediately resumes the behav-
ior before the perturbation. This is because changes cannot propagate
from one green island to another. On the other hand, in the chaotic
phase, a small perturbation involves a great damage to the dynamics
of the network. Indeed, it is quickly propagated because perturbations
can propagate through the green sea making the network itself very
unstable. This behavior, also known as ”butterfly effect”, is typical of
chaotic systems, in which a small perturbation has consequences on
the entire system making it unstable. Finally, at the edge of chaos,
changes can propagate, but not necessarily through all the network.

Figure 2.3: Trajectories through state space of RBNs within different
phases. a) ordered, b) critical c) chaotic.

The propagation of perturbations in RBNs can be measured in
several ways. A well-known technique is the Derrida annealed approx-
imation that takes two random initial configuration, and measures
their overlap.

Given two copies of the same network we can perturb one of them
by altering the value of a node. Since the nodes of the network influ-
ence each other because of links between them, it is possible to map
the Hamming distance (H) defined as the number of nodes with differ-
ent value between the two networks. Repeating this procedure in time

10



CHAPTER 2. BOOLEAN NETWORKS 11

and changing, for every network update, one of the N nodes value, it
is possible to draw the average value of this distance and distinguish
between the three different regimes. In particular, in 1986 Derrida and
Pomeau, with this method, showed that dynamical phase transition
is controlled by the parameters K and p.

Figure 2.4: Phase diagram for the standard NK model. The black line
is the critical phase, while the gray space is the ordered phase.

They proved that there is a value of connectivity of the network,
i.e. the number of inputs that a node can accept, that serves as a
threshold. This value is calculated as follows:

Kc(p) = [2p(1−p)]−1 (2.1)

For K < Kc(p) the system is very robust to the initial state perturba-
tion ( ordered phase ) for K > Kc(p) the system is in a chaotic phase.
According to Kauffman, Stauffer, and other authors, only when
K = Kc(p) (the critical phase) does the NK model have the required
stability properties compatible with the order manifest in the genetic
networks of living organisms. Living systems need a particular stabil-
ity but, at the same time, flexibility, to be able to evolve and explore
the whole area of the states. This has led many people, including
Kauffman, to propose that the life of natural systems evolves in a
more natural and robust way in the ”Edge of chaos”, or in ordered
phase near to critical.

11



12 CHAPTER 2. BOOLEAN NETWORKS

Observing the plot in figure 2.4 we can see that, for example, fixing
the value of p = 0.5, the model converges to the stable point when
K < 2, meaning that different states tend to converge and we are in
the ordered dynamics. At K = 2, this point becomes unstable and for
K > 2 we are in the chaotic dynamics, in fact different states tend to
diverge.

So far we have said that the dynamics of a boolean network depend
on the parameter K and p. Actually, these are not the only two pa-
rameters that characterize the three different phases. There are some
Boolean functions with the property of taking a specific value (0 or 1)
depending just from the value assumed from one of its inputs. These
functions are called canalizing functions. An example of canalizing
functions could be the or function which, if it has one of its input
equal to 1, it will give 1 as output value independently from the value
of the other inputs. Suppose we have a network in which the func-
tions are all or functions. This has the consequence that, if a node
assume, at time t - 1, the 1 value, all the other nodes connected with
it ( its output nodes ) will take value 1 at time t. This forcing the net-
work dynamics to create a loop that tend to strengthen the stability
of the network. It means that the number of canalizing functions in a
network has an impact on the dynamics of the network itself.

12



Chapter 3

Boolean Network Design

The goal of this chapter is to outline the approach used to design
Boolean network robotics systems, from the robot’s input/output map-
ping with the BN’s input/output nodes, to the analytic methodology
used for the BNs manipulation and training. In particular we focus
on evolutionary computation methods and, in general, hybrid meta-
heuristics techniques, the computational method we will use to design
BN.

3.1 Introduction

The design of complex systems has always been one of the challenges
faced in the field of engineering discipline. The scientific community is
used to realize mathematical models able to represent complex system.
The aim is to better understand their characteristic.

Even if the Boolean network model is a fairly simple model it is
characterized by a complex dynamics that can well represent a com-
plex system (seen in Chapter 2). In addition, it is quite simple to
analyze it thanks to the availability of new tools and the developing
research. This is one of the main reason because, in the robotics field,
it could be interesting to use this model and execute it as a robot con-
troller. The aim of a controller, in general, is to control the robot and
allow it to reach a target behavior. The idea is to design a Boolean
network able to do this. We use the term ”design” to indicate the
process used to ”sculpt” the network dynamics with the goal to carry
out a specific robot’s behavior. Such configuration could be also made
by hand flipping, for example, some value in some Boolean function.
The problem is that we don’t have any guideline and also the task
become quite impossible in case of big networks. In this case it be-

13



14 CHAPTER 3. BOOLEAN NETWORK DESIGN

comes normal to think about automatic techniques as meta-heuristics
techniques that we better describe in section 3.4.2.

Finally it is important to underline that, classic Boolean networks
design, is aimed at the simulation of natural complex systems. In
such a way it is possible to study and understand the dynamics that
govern them. In the robotics field, on the other hand, the objective
is to obtain a network that can be used as a robot controller. We are
not interested to reach some target states inside the network dynamics,
but we just focus on the displayed behavior of the robot.

3.2 Background Concepts

In this section we describe some basic concepts and reasons to use
Metaheuristic techniques for the design of a Boolean network.

Combinatorial problems are used in many disciplines, including
computer science and artificial intelligence. In this typology of prob-
lem, given a set of solution components, the objective is to find a
combination of these components with certain properties. To solve
this problems it is possible to use algorithm with the aims to find
solutions that meet certain conditions or constraints of the problem
itself. Combinatorial problems can be divided into two categories:
decision problems and optimization problems:

• Decision Problem: computational problem in which given a prob-
lem instance, the objective is to decide whether it satisfies a
certain property.

• Optimization Problem: computational problem in which, given
a problem instance and objective function f , the goal is to find a
candidate solution of the instance that minimizes (or maximizes)
f .

BN design can be seen as a combinatorial optimization problem
in which the components are the Boolean functions. The aim is to
give a complete assignment to those function so that it is possible to
minimize or maximize the problem’s object function.

One of the main techniques used to solve these types of problems is
the local search techniques. Local search algorithms start from some
initial solution and iteratively try to replace the current solution with
a better one found in an appropriately defined neighborhood of the
current solution. These algorithms are usually incomplete algorithms,

14



CHAPTER 3. BOOLEAN NETWORK DESIGN 15

which means that it is not guaranteed that, eventually, the optimal
solution will be found.

In the ’70, a new kind of approximate algorithms have emerged.
They basically try to combine basic heuristic methods in higher level
frameworks aimed at efficiently and effectively exploring a search space.
These methods are commonly called metaheuristics. Metaheuristics
techniques (a.k.a. Stochastic Local Search - SLS) are well known for
their performance on combinatorial optimization problems. They are
general search strategies upon which a specific algorithm, like for in-
stance local search, can be designed. They use a different idea, com-
pered to the non metaheuristics techniques, for exploring the space
of candidate solutions. Also they use learning techniques to improve
the search for a solution as close as possible to the optimum. They
consists, for example, in structure, as additional memory, that allow
the algorithm to exit from local minimum (maximum) that a standard
local search algorithm may achieve.

Intensification and diversification are the two characteristics that
allow these high level strategies to have a dynamic balance between
performance and results. The term intensification means, usually, the
ability to exploit knowledge bases accumulated during the research
process, while the term diversification refers to how to move within
the search area. The balance between these two variables is important
because it allows us to quickly identify regions in the research space
with high quality solutions avoiding visited regions which would not
lead to good solutions.

Metaheuristics can be usually classified into two different families :
trajectory methods, and population based methods. The search process
of the first one may be seen as an the evolution in discrete time of a
discrete dynamical system. A initial solution (state) is selected, and
then iteratively, a trajectory is drawn within the search space. The
system dynamics depend on the type of technique; simple algorithms
can be represented by simple trajectories, composed essentially of a
transient and a fixed attractor. In addition, the characteristics of the
trajectory can provide useful information regarding the optimization
algorithm trend and its effectiveness in the specific instance of the
problem. Trajectory methods are often based on local search-based
methods.

Regarding the population based methods, rather than working on
a single solution, they manage a set (population) of solutions. The al-
gorithms that are based on these techniques can be seen as models of
evolutionary processes. These algorithms start with an initial popula-

15



16 CHAPTER 3. BOOLEAN NETWORK DESIGN

Figure 3.1: A generic trajectory based method scheme.

tion and, iteratively, a number of operators are applied to each single
individual of the current population to generate the individuals that
make up the next one. The main operators are the recombination or
crossover and the mutation. The first one, starting from two individu-
als, combines them and generates other two or more new individuals.
The second operator consists of a small individual perturbation that
allow the adaptation of the individual itself. Finally, the individual’s
selection occurs through the evaluation of its fitness ( which could
be the value of the objective function), individuals with higher fit-
ness have more probability to survive and to be selected as a possible
solution. Genetic algorithms are part of this category.

Figure 3.2: A generic population based method scheme.

Both local search and population based methods have been used
for system design, tuning and neural network training. At the end we
have that the system parameters are the problem decision variables,
and the objective function is defined by evaluating some resulting
parameter from the system simulation. In the section 3.4.2 we will
see how the techniques mentioned above can be used for the design
and the training of Boolean networks, with the aim of obtain networks

16



CHAPTER 3. BOOLEAN NETWORK DESIGN 17

that serve as robot controller.

3.3 Related work

In this section we discuss a series of studies related to the design
of boolean networks. A first proposal was made by Kauffman, who
introduced an automatic methodology for the BNs design. The aim of
the work was focused on obtaining networks able to reach an attractor
matched to a target state. The algorithm is a modification of genetic
algorithm in which only the mutation operator was applied. It has
both the possibility to modify the connections between the network
nodes to flip the result of one entry in a node Boolean function. In
addition it applies a very compelling selection methodology: when
an good individual is found, the entire population is replaced by the
latter. Then a mutation is performed to set the new population. The
work of Kauffman is extended by Lemke, with the aim to find networks
whose attractor is not only a fixed point attractor, but also a cycle
attractor.

Many techniques have been proposed for the design of robust boolean
networks. With the term robust we mean a network able to maintain a
stable behavior even in the face of a perturbation, as a flip of one of its
nodes value. For this purpose, Mihaljev, use a genetic algorithm ap-
plied to only networks with canalising functions, and Fretter extends
these studies generalizing them in networks with any type of function.
Further work has been proposed by Roli et al [9]. which has intro-
duced a genetic algorithm for the design of networks with attractors of
given length. In Section 3.4.2 we explain how the training of boolean
networks, carried out with the same techniques used in literature, can
be extended and used to teach to the networks also not trivial tasks.

3.4 Boolean Network Robotics

Boolean network robotics concerns the use of Boolean networks as
robot control code. The network that controls the robot is designed
through an automatic procedure based on stochastic local search tech-
niques. The reason to use boolean networks for robot control is intrin-
sic in the properties that characterize the networks itself. In fact BNs
have a very simple structure, but they are able to capture complex be-
havior thanks to their dynamics. This makes them an excellent model
for the representation of complex systems and a perfect tool on which
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to base the development of robot controller.

The Boolean Network robotics design is composed of two steps:

• Definition of the mapping between sensors/actuators and net-
works inputs/outputs

• Design the BN that serves as robot program

In the following section we describe in detail what methods were
used by us to carry out the design of boolean networks robotics.

3.4.1 BN-robot coupling

The general approach to use boolean networks on robots, is to use one
networks that serves as a robot controller. In this way the behavior
of the robot is described through the elements that characterize the
dynamics of a network, such as trajectories, attractors and basins of
attraction. The available number of tools able to study these elements
is high. This makes it easy the analysis through which it is possible to
study the robot behavior in terms of network dynamics. This approach
enable the identification of all the network parameters that affect the
behavior of the robot.

Before being able to map the network nodes with robot’s sensors
and actuators it is necessary to identify the network size, in terms of
nodes. It is reasonable to think that the size of the network grows
with the complexity of the tasks that it will be required to perform.
For example, with the increase of sensors number, also the number
of network nodes will be increased. After this first operation we can
proceed with the BN-robot coupling.

Usually, Boolean networks are studied as autonomous (or isolated)
systems, in other words systems that do not receive perturbation from
the outside world. With the operation of coupling the network inter-
acts with the outside world. The nodes are divided into three cate-
gories: input nodes, internal nodes and output nodes. A simple choice
for the mapping is to associate each sensor value to an input node and
each actuator to an output node. This direct encoding is not always
possible, due, for example, to the high number of sensors from which
the net receives data. So it is possible to carry out various techniques
of mapping. We have chosen a group of sensors that are all connect
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Figure 3.3: The coupling between BN and robot.

to the same input node. So, for example, if we have eight sensors and
we group it by two, we just need of two inputs nodes instead of eight.
This allows us to maintain the size of the network not too high and, at
the same time, to take advantage of a good number of internal nodes
acts to the propagation of data toward the output nodes.

Figure 3.1 shows the scheme of the coupling between BN and robot.
Once the input and the output mappings are defined, the BN that
forms the robot program has to be designed. This operation is gener-
ally performed by stochastic algorithms.

3.4.2 Metaheuristics techniques for BN design

The design of a boolean network has the aim of obtaining a network
able to maximize the robot performance in terms of observed behav-
ior. The process can be transformed in to a constrained optimization
problem with the aim to maximize the robot performance. It is im-
portant to emphasize that, in these problems, it is not important to
give a proof of optimality (we are not sure to find the optimal solution
if it exists), since the criteria that defines the quality of the solution
is an approximated criteria. We just want to find a good solution in a
not too hight time. This makes the metaheuristics techniques prefer-
able to exact one, that conversely always reach the optimal solution
but with a time complexity that scales polynomially with the instance
size. The usage of metaheuristic technique have also other advantages.
They are able to to increase, incrementally, the complexity of the re-
search strategy. This mechanism could be useful when a robot has to
learn more then one task. In fact, it is possible to implement an in-
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cremental learning, starting with the most simple task until the most
complex one. Moreover, it is possible to explore quickly and efficiently
wide portions of the research space. That is because with have the
possibility to use some problem specific information (such some well
know data) inside the metaheuristic technique and make the robot
learning procedure faster.

Figure 3.4: Metaheuristics techniques approach

The approach used is described in figure 3.4. It starts by an ini-
tial BN whose parameters are number of nodes (n), number of input
for each node (K ) and the value of homogeneity (p). The optimiza-
tion process consist in changing, at each iteration, some of network’s
parameter and then evaluate the resulting network. In our case, the
metaheuristic technique operate mutating one of the Boolean function
value in a single nodes, then the new network is executed and eval-
uated. Because the network represent the robot controller, evaluate
it, means evaluate the robot performance in a simulated environment.
The criteria for a robot (network) performance evaluation is closely
linked to the type of task assigned to them. In general, the evaluation
is more good as the performance of the robot is high. In a phototaxis
task, a performance measure could be the distance of the robot from
the light at end of an experimental run. In robotics field, and also
in our case, the simulation process coincides with a robot simulation
that seeks to achieve a given target under specific initial conditions.
The reason because it is very frequent simulate a robot behavior is
that, training process, is often expensive in terms of time and setting
on real robot. After the phases of simulation and evaluation we have,
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as a result, a value that represents the goodness of the network. This
value is passed to the metaheuristics which can decide whether to keep
the network, or discard it.The process ends when it reaches a maxi-
mum number of iterations or a desired robot behavior represented by
a good evaluation.
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Chapter 4

Memory

In this chapter we introduce the concept of memory applied to discrete
dynamics systems with special focus on RBN. After an introduction of
the main concepts, we analyze the space-time patterns and the attrac-
tors of random Boolean networks. Subsequently, we briefly describe
some learning algorithm able to modify the network dynamics creat-
ing new attractors and changing the transient. Finally, we discuss the
possibility to use the RBN model to better understand the emergence
of memory in discrete dynamics system.

4.1 Introduction

RBN are usually taken as sparsely connected systems where the num-
ber of inputs of each node (K ) is much smaller than the number of
nodes (N ). This justifies their applications in the biology field, where
a gene is directly regulated by few of many other genes in the genome,
and neural networks application, where a neuron has a relatively low
number of direct input from other neurons of the brain.

The number of inputs per node in a random boolean network in-
fluences its dynamics. Random links imply a special geometry of the
network. In the case of completely connected networks, the spatial dis-
position of the network element is irrelevant for the dynamics of the
network itself because each elements is connected to all the others. In
sparsely connected networks, on the other hand, each element has a
limited effect on the others. The extent of such effect increases with
the connectivity degree of the nodes. In the following we use the term
”element” to indicate a node of the network, and the term ”neigh-
borhood” to identify the nodes to which a specific network element is
connected to.
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John Hopfield (1982) presented an asynchronous recurrent neural
network model. It is capable of producing, what he calls, ”general
content addressable memory”. The system dynamics can reach ar-
eas in the state space in which the number of states remains stable.
This brings the system to the equilibrium. The addressable memory is
the result of a hierarchical classification of the states space of the net-
work. RBN’s attractors may be seen as ”content addressable” memory
in the way Hopfield refers to it, but in RBNs we have an additional
element. The model proposed by Hopfield, in fact, captures only the
attractors, with any notion about reliable convergence to transient
outside the attractors. In the RBN, since the transient determin-
istically emerge, the state space undergoes hierarchical classification
even along the transient, starting from the root of each subtree. In
this chapter we refer to the concept of ”memory” view from this last
concept. Synchronous random network could have great potential in
the realization of content-addressable memory thanks, not only the
classification in attractors, but also within the transient subtrees that
leads the formation of complex hierarchies usable as memory.

In biological networks, as well as in the brain’s neural network,
the topology of the attractor basins field and its subtrees must have
a structure capable of working in a wide variety of contexts. The dy-
namics of these networks must, therefore, be versatile but not chaotic,
to ensure reliable behavior. In other words, there must be a balance
between order and chaos. In RBNs the balance between order and
chaos i naturally made by the transition between these two regime.
Simply tuning some network’s parameters, like wiring between nodes,
or degree of canalisation function (see chapter 3), we can move the
dynamic behavior across the transition. The range of topology of
basin attractor and its capability of complex categorization, suggest
that basin may merge as the network’s cognitive substrate (Wuensche
1992b). The difficulty in explaining the memory, in biological neural
networks, just through attractors, could reside in the presence of very
long transient in order to achieve an attractor while the reaction time
in biological systems is extremely fast.

4.1.1 Basin of attraction

In this sections, following to Andrew Wuensche (1996) [1], we intro-
duce some concepts used to describe the basin of attraction of a dis-
crete dynamical system.

The behavior of a RBN can be analyzed from two points of view.
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The first concerns the study of local dynamics, by extrapolating space-
time patterns from individual trajectories, while the second refers to
the global dynamics. The global dynamics emerges from the study
of basins of attraction, attractors and its transient. The basins of
attraction, can be reconstructed and portrayed by a diagram that
connects all the global states according to their transition. An example
is shown in Figure 4.1. Attractors may be fixed points or cycles. The
basin of attraction’s task is to attract, various regions of phase space,
within the basin of attraction through a transient. As we can see from
the image, in discrete dynamical systems, such as cellular automata
(CA) and RBN, transient emerge outside the attractor.

Figure 4.1: Basin of attraction of RBN (n=13 k=3). The attractor
has period 7. The direction of time is from the garden-of-Eden states
to the attractor, then clock-wise

The dynamics is driven by an iterative updating procedure that
produces a succession of global states, the network trajectory. Every
single trajectory through states is represented by a space-time pattern,
i.e. it is possible to identify regularities in the network trajectories,
in the form of space-time patterns. Setting a specific nodes value
for an initial RBN at time t0, a sequence of states at time t1,t2,t3...
will be generated through the application of its updating process. The
connection between the elements is not a completely connection, so the
layout of the network and the conditions that occur in his boundary,
are important parameters to understand the dynamics of the system.

A RBN state has only a successor but could have an arbitrary num-
ber of predecessors, which is usually called pre-image. States without
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a pre-imagine are called garden-of-Eden. They can not be reached by
the normal evolution of the network but must be imposed from out-
side. Even if an initial state can set always a single future dynamics,
at each iteration the intermediate state may have a different history.
The path followed by the dynamics can be very different but it could
finish always in the same attractor.

The state space of a network with n nodes is 2n. Each path,
realized by the network dynamics, meets repeated states and, sooner
or later, must reach a states cycle ( the attractor ). This because
the number of states if finished and the updating of the network is
synchronous. So that, the attractor can be a single state, a stable
point cycle to itself or could have a period of arbitrary length. All the
paths that lead to the same attractor, including the attractor itself,
form the basin of attraction. The state space is typically subdivided
into several basins of attraction. The set of those basin of attraction
form the basin of attraction field. A trajectory is simply a particular
path within the basin of attraction. The portion of trajectory that
remains outside the attractor is called transient, and usually forms,
together with other transients, a branching tree with the garden-of-
Eden like leaves. A transient sub-tree is the set of all paths from
garden-of-Eden states leading to a state within a transient tree. The
basins of attraction have typically a topology described by trees (with
leaves that start far from the attractor) directed toward a cycle.

Figure 4.2: The consequences of mutating a single bit in the rule table
of just one element of a small RBN, n=6, k=3.
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The study of the basin of attractors is also important to character-
ize the stability of the network in presence of perturbations. Figure
4.2 shows the change in the basin of attraction as a consequence of
the mutation of a single bit in a node’s Boolean function. The net-
work in the example is small, so we are able to show more clearly the
configuration of each state. Larger networks are affected in a similar
way. Since a single bit perturbation will be reflected across the whole
system dynamics, it could happen that, even in very large networks,
this might lead to drastic changes as the breaking of a cyclic attractor.

In the top three examples depicted of the image three basins of
attraction are shown that compose the basin of attraction field of a
RBN. In the bottom examples it is possible to see the changes in
basins of attraction field after one bit mutation was performed in a
single network element.

4.2 Learning using basins of attraction

As described in the introduction, the basins of attraction represent
the memory of the network. Separated basins of attraction within the
basin of attraction field, together with the different nodes in which
the dynamic evolves, characterize the state space. All states, except
the garden-of-Eden stases, are addressable memory states. All the
attractors and the complex hierarchies created by transient realize the
network’s collective memory.

It is reasonable to think that, altering the structure of a state space,
we can modify the network’s knowledge to let the system perform a
specific behavior. The concept is very similar to the one proposed by
Kauffman ( Kauffman 1993 ) and which he describes as ” a walk in
parameter space seeking good attractors”. In other words, he proposes
to perform several movements within the fitness landscape looking for
good attractors. In our case finding good attractors is not enough.
We are also interested in good basins of attraction and its subtrees
because we use Boolean networks as control system and the robustness
if fundamental.

There are two types of algorithms that allow a RBN to learn (or
forget) ”from experience”. Both can be used as aid algorithm to meta-
heuristics techniques. The idea is to perturb either network wiring or
Boolean function value. These algorithms require the presence of a
”teacher” that specifies the pre-image that a state must learn or for-
get. The effect of learning, namely the change in the basin of attraction
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field structure, could be significant in the case in which the pre-image
to learn requires many changes to the network. For what concerns the
procedure of forgetting, the effects are usually minor. These learning
algorithm are not effective in cases in which we want to achieve a de-
sired behavior starting from a random network because the network
would be moved away from the desired dynamics. It should be em-
phasized, in fact, that the methodologies described below are suitable
for tuning networks that are already close to some desired behavior.

Figure 4.3: Example of pre-image in a transient subtree.

With reference to the image 4.3, suppose we want to set P1 as a
pre-image of A. Any discrepancy between the two states, i.e. the real
successors of the state P1 and the real pre-images of the state A, may
be corrected in one step by changing the network wiring or Boolean
function called also rule scheme. Through these two methods we can
create for example fixed point attractors doing learn A as a pre-image
of itself. We could create also a cyclic attractors if A is learnt as a
distance pre-image of itself. Finally, if A is learnt as a pre-image of
some one other state inside the basin of attraction field, its transient
subtree may be completely or partially transplanted along with A.

Even if these two methodologies are used in isolated networks, i.e.
networks that don’t have any input from the environment, and their
goal is to find target attractors instead of reaching an emergent target
behavior, the study of the effect inside the basin of attraction field
is very interesting in robotics field as well. In fact, the peculiarity of
the re-wiring and mutating rule schema learning is that they prove
the importance of they basin of attraction field in learning. In other
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words, they show how to lead a network to evolve and organize its
addressable memory by working on not only its attractors, but also
on its transient tree and on the entire basin of attraction field.

In the following we briefly describe the two algorithms mentioned
above.

4.2.1 Re-wiring learning

Imagine having to teach a network that the pre-image of the state
A must be the state P1. As the natural dynamics of the networks
develops, the successor of P1, and therefore the real pre-image of A, is
generated according to wiring-rule scheme. This state, which we will
call B1, is likely to have a number of nodes values different from A
equal about n/2 if the states A and P1 are chosen at random.

Figure 4.4: Correction of a value mismatch between B14 and A4 by
performing a single re-wiring move.

Suppose the target state and its real pre-image have a mismatch
only in a single value, in our case the difference is between B14 and A4.
One reconnection, or more if necessary, could be performed to correct
the mismatch between the two values. We will limit our analysis only
to the case of single wiring moves. . Also, it must be noted that this is
a stochastic method so we could have more than one good move that
lead us to correct the value mismatch.

Assuming that P1 has a roughly equal proportion 0s and 1s, there
will be approximately n/2 alternative positions in which a wire move
will result in a good change. If the nodes have K inputs, the alterna-
tives become ( K · n/2 ). Finally, if the proportion of 1, in the rule
table of the nodes we want change, is around 1/2, the possible moves
that allow to have B14=A4 are ( K · n/4 ). The choice to re-wire
may initially be selected at random from one of the possible re-wiring
moves.

After have learnt P1 as pre image of A, what if we learnt another
pre-image of A without forgetting P1? If several pre-images are to be
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learnt without forgetting any previous pre-image learnt, the space of
possible re-wiring moves will be reduced. In fact, each change effect
on the whole Boolean function of the same node. The output value
of the Boolean function could change depending on the value taken
from the nodes of the new pre-image and it could be different from
the value used to learn the first pre-image. The learning procedure is
very sensible to the initial re-wiring choice and to the learning order.
We could perform good initial re-wiring moves that allow the network
to learn each pre-image without forgetting the previous one. This
happens very frequently when the pre-images to be learnt are very
close to each other in terms of Hamming distance. We will have, in
this case, a low number of mismatches to correct, and the network
learning potentially increase. In conclusion, the ability of learning by
re-wiring depends on: the original wiring-rule scheme, the difference
from a pre-image to another, the re-wiring moves and their order.

4.2.2 Mutating rule schema learning

Correcting a mismatch between two values by re-wiring has a huge
impact on the whole system dynamics and it is very difficult, in some
cases, to learn a pre-image without forgetting the previous one. Cor-
recting a mismatch by mutating the rule schema it means that we
perform a flip in a single element’s Boolean function ( 0 → 1 or 1 →
0 ). Using this method we can learn a pre-image without forgetting
the previous one because any mismatch between two elements can not
relate to the same entry of the element’s Boolean table. With this

Figure 4.5: Correction of a value mismatch between B14 and A4 by
performing a specific flip in the node’s rule table.

method there is no limit to the number of pre-images that can be
learnt without the risk to forget previously learnt pre-images.

Imagine to be in the same situation described for the re-wiring
method. We have a mismatch between B14 and A4. There is only one
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option to correct the value by flipping a single bit in the nodes Boolean
function. Of course, this mutation forces the network to ”forget” some
other transitions in the basin of attraction field, but always far from
the pre-image to be learnt. The probability to ”forget” this kind of
transition decreases with the increase of the number of input nodes
K. For a network with K wiring, the probability is 1/K, i.e. for K =3
the probability is 1/8, for K =5 is 1/32 and so on.

As in the re-wiring learning, if two pre-images to be learnt are close
in terms of Hamming distance, there will be fewer side effects in the
basin of attraction field. The number of flips in this case is low.

4.3 Emergence of memory

The aim of this section is propose describe the similarities between the
basins of attraction of a discrete dynamics network, and the human
brain. This can bring us to better understand the similarity in the
emergence of memory and find, if possible, some pattern in its struc-
ture. First of all, it is better to underline that the paradigm we use is
in contrast with the one that considers the brain as a computational
system, like a Turing machine. Also, the definition of the brain as a
system able to manipulate symbols or representations is not consid-
ered here. The comparison between human brain and discrete dynamic
system arises from the fact that the brain’s structure can be describe
as a billion of sparsely neurons connected together forming a complex
network. The structure is very close to the structure of a RBN. Cog-
nitive functions such as memory and learning seem to emerges as high
level properties from the activity of these neurons. Now the question
is : what can we say about networks that can display a behavior we
are used to see in the human, or animal, world?

One of our assumption is that a network that performance ”hu-
man task” should be able to categorize its state space of distributed
patterns used to recognize the situation and lead to the system sta-
bility. There are not only a single activation pattern, but they are
organized in hierarchy that represent the entire network knowledge.
As it happens in the human brain, depending on the activated pat-
tern, the network dynamics can have different trajectories and bring
the system to different (or even not) stable points. State spaces are not
just categorized by attractors, but also by the long transient tree, that
emerge even far from attractors. They drive the dynamics from the
chaos to the ordered state. The self organization of the state space is
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the only way, for the network, to organize a space-time abstraction of
its memory. This portions of memory could be reused by the network
itself. We could think about a network able to perform an infinite
sequence of task1 and task2. In the state space, in this case, we could
observe two macro hierarchy used from the network, one for each task.
This means that the network can, first of all, recognize the task, and
second, reuse the same portion of memory to perform it. The same
happen when we link up together more networks. The entire system is
able to access the specific memory field and reach an higher level cog-
nitive state. RBNs represent a simple, but at the same time, powerful
model to study the basin of attraction in this context.

The ability of reusing resources, together with the tendency to
compact the knowledge in hierarchies, can lead us to think that the
number of states that are truly useful for the task performance are
considerably lower than those potentially usable. Of course, the num-
ber of states also depends on the type and number of tasks that the
network must achieve.

In addition, systems with discrete dynamics have shown that they
can perform adaptive behavior. In fact, they can continue to realize
their task even if the environment in which they work undergo some
perturbation. This means that the reliability of the system is very
high and the access to its internal memory very fast. The natural way
to organize the internal knowledge representation in order to perform
an adaptive behavior is the memory-categorization in hierarchies of
sub-categories. This could be also the reason why the notion of mem-
ory simply as attractors seems to be inadequate to account for the
dynamics of these system.

In conclusion, a discrete dynamics system with synchronous up-
dating uses its transient tree for a reliable categorization of its state
space, far from equilibrium. The same happens with the attractors. A
network that has evolved or learnt a specific dynamics should be able
to reach the right section of its internal memory in few updating steps,
possibly just one. It is important to notice that transients compose
the the main elemtn in which the memory can be organized thanks to
its sub-categories structure.
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Test cases

The goal of this chapter is to understand what happens inside a net-
work while it performs a task. In order to do this, we need to study
the network state space. This because the network state space, that
consists in the state set used by the network dynamics, actually rep-
resents the network behavior.

Moreover, during the design process (see Chapter 3), we operate
on the network Boolean function, i.e. on the network structure. Op-
erating this modification we produce, also, a change in the network
dynamics and so in the network behavior. The problem is that, just
by studying the network structure changes, we don’t have any infor-
mation about the network behavior. The only way to study it is to
study the network state space.

It is important to underline that we can study the entire state space
because we are using Boolean networks. In fact, a state is described
by a sequence of bit (0 and 1), so that we can think to decode it and
represent the result in a graphical. This possibility is not given by
neural networks. In fact, in the neural network model each neuron
is described by a differential equation. Currently, the mathematical
complexity of fully analyzing the state space of a large neural networks
is still an unsolved problem

Specifically, in Section 5.4, we focus on analyzing the dimension of
the state space. In particular we observe the number of states used by
a network during, and at the end, of a design process. In addition we
study the state space structure emphasizing the presence of macro are
that refer to the concept of memory described in Chapter 4. Finally,
we provide a new approach to represent the network state space, both
using a graph structure and a pseudo code algorithm.

In order to conduct our analysis, we make use of two concrete
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experiments: phototaxis and obstacle avoidance. We chose two simple
and well known tasks because we are interested in deeply analyzing
how this task is performed by a Boolean network..

5.1 General setting

Because running all the experiments represents a big cost in terms of
time and resource (such as battery power for the robot), we need to
simulate the entire experiment process in order to evaluate the robot
performance. To this aim, we use ARGoS, an open source multi robot
simulator. The robot we use for the simulation is a small circular robot
called E-puck [17]. It is equipped with eight proximity sensors, eight
light sensors and one ground sensor. The proximity and light sensors
are disposed on the top of the robot as displayed in Figure 5.1, while
the ground sensor is placed under the robot. The data coming from
those sensors are values between 0 and 1. Regarding the proximity
sensors, it signals the presence of an obstacle near by the robot. The
0 value means no obstacle, while the 1 represents an obstacle very
close to the robot. The value coming from the light sensors, instead,
represents a light intensity. The maximum intensity is represented by
the value 1. Finally, the ground sensor is able to recognize a grayscale
from white (1), to black (0). Regarding actuators, the E-puck robot
is provided with two motors used to control the two wheels and eight
red LEDs disposed around the top of the robot. Depending on the
task typology, we can choose the right configuration of sensors and
actuator to achieve the goal.

Each experiment is executed starting from 300 different Boolean
network. The initial node connections and Boolean functions of these
networks are randomly generated with K =3. The probability to have 1
in the nodes Boolean function is equal to p that assumes the value 0.5,
0.788675 and 0.9. Such homogeneity values statistically correspond to
chaotic, critical and ordered regime, respectively (see Section 2.3.2).
We generate 100 networks for each value. The number of the network’s
nodes can change from a problem instance to another.

During the experiment the Boolean network is executed as robot
controller, and its dynamics are used to control the robot behavior. In
order to do this, as described in Section 3.4.1, we need to realize the
BN-robot coupling and configure the input/output network’s nodes.
Input nodes are not influenced by the network dynamics, but the
values they assume are set from the robot sensors. The output nodes,
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Figure 5.1: E-puck light and proximity sensors disposition.

on the other hand, are the nodes whose values change with the network
dynamics. They assume a value according to their Boolean function
and wire-scheme. This coupling phase is experiment specific, for this
reason we describe it in each experiment section.

The simulation process is time discrete, it is organized in a sequence
of ticks. The updating of inputs/output nodes is made at each tick.
In particular, in a simulation step, the simulator engine takes the
new data coming from the sensors. This data represents the new
value assumed by the network’s input nodes. After this, the network
performs an update, and the value assumed by the output nodes is
used to set the robot actuators.

Regarding the optimization algorithm, we use in both the experi-
ments a stochastic descent algorithm. A general scheme is displayed
in Figure 5.2.

In order to apply this algorithm to our task, we need to instantiate
its problem-dependent components: the solution representation, that
is, a state in the search space, the objective function and a suitable
neighbor definition.

A state in the search space is represented by a BN. An initial so-
lution s is a random Boolean network with defined n, K and p. The
neighbor defines the modification, or move, performed on the current
solution. For both experiments, first we randomly choose a node func-
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Figure 5.2: Stochastic Descent general scheme.

tion, then we flip a bit in its Boolean function. The objective function
depends on the specific task to be accomplished, therefore it will be
described separately for each case study presented. In the problems
that will be discussed, the goal of the search is to minimize the objec-
tive function, which can thus be considered as an error function. We
also bring a little modification to the algorithm acceptance criterion.
In fact, a solution is chosen if F(s0)≤F(sbest) + ε(ε = 0.0001).

5.2 Phototaxis

The robot’s task consists in the realization of phototaxis, i.e. a move-
ment in the light source direction. The task is one of the most popular
in the robotics field, in particular in the field of evolutionary robotics.

A concrete example is presented by Di Paolo [5] in which a popu-
lation of 30 robots is evolved using a standard genetic algorithm with
truncation selection. In truncation selection the candidate solutions
are ordered by fitness, and some proportion P of the fittest individ-
uals are selected and reproduced 1/P times.The experiment consists
of two independent evolutions. Each of them is characterized by the
sequential presentation of two different light sources. Only one source
at a time is proposed to the robot for a period t chosen at random
from the system. Robots are equipped with two light sensors (their
simulated model includes noise) and two motors. The motors are con-
trolled by a neural network. The neural network consists of six nodes
and is fully connected except for self connections. The whole system
is simulated.
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With our stochastic descent and RBN we want propose an alter-
native the paradigm based on genetic algorithms and neural networks,
for single-task robot learning.

5.2.1 Robot setup

Below we describe the robot setting used during the simulation.

• Sensors: In order to perceive the light source and understand
the position in which it is located we use the eight light sensors.

• Actuators: In order to be able to move toward the light source,
the robot uses the two wheels, activated by the two motors. The
maximum speed is 15 m/s. For the experiment the motors that
control the wheels may take only two values, ON and OFF. ON
corresponds to a constant wheel speed of 5 m/s, while OFF to
the wheel speed of 0 m/s, i.e. the robot doesn’t move.

5.2.2 Boolean network setup

In this experiment the input nodes receive the information from light
sensors that represent a light intensity perceived by the robot. In order
to maximize the number of internal nodes, without increasing the net-
work size, we gather the light sensors in pairs. Each pair corresponds
to one input node. When at least one of the two sensors perceives a
light variation over a chosen threshold, the corresponding input node
assumes the value 1. In Figure 5.2 we report the input mapping.

Figure 5.3: Mapping between light sensors and BN’s input nodes.
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In Figure 5.3 we show the mapping between the wheels and the
output nodes. The mapping used provides that when the output node,
associated with one wheel, takes the value 1, the wheel is moving at
a constant speed of 5 m/s, otherwise the wheel stops.

Figure 5.4: Mapping between wheel actuators and BN’s output nodes.

5.2.3 Training

The environment consists of a square arena (5x5 m) in which a light
source is placed. This source is located in one of the 4 corners of the
arena at a 1 meter height from the ground. We set the light color to
yellow.

Figure 5.5: Arena used for the robot training in the phototaxis task.
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The experiment consists in a set of trials in which the position
of the light source is fixed. On the other hand, the position and
orientation of the robot is changed in each single trial. We decided
to place the robot at 4.5 meters away from the light ( which is in the
origin ), with z axis angle among 15 and 75 degrees, with steps of 12
degrees. Each of these points corresponding to two different random
robot orientations: the first one between 0 and 144 degrees and the
other between 180 and 324 degrees.

During the training process we evaluate the network by evaluating
the robot performance. We describe the robot performance minimiz-
ing the error function (E ∈ [0,d]) displayed in 5.1.

E( Π) = d (5.1)

The term d represents the distance between the robot final position
and the light at the end of each trial. The more the robot moves close
to the light, the better is the performance. Whereas the arena size
and the maximum speed at which the robot can move, a time of 120
seconds for a single trial allows it to achieve, starting from any initial
configuration, the required objective.

Launching some experiments starting from a small group of net-
works we have observed that 1000 iterations of the optimization algo-
rithm were sufficient to obtain networks able to successfully complete
the task. At each iteration the optimization algorithm performs 10
trials which differ in the initial conditions. The performance is evalu-
ated at each single trial. As a result we have 10 evaluations. The goal
of the optimization algorithm is the minimization of the average value
assumed by the error function during the all 10 trials.

5.3 Obstacle Avoidance

In this section we talk about an avoidance experiment. The Boolean
network is trained to reach the ability to control a robot in a unknown
space without colliding with objects. This task is more difficult then
the phototaxis described int the Section 5.2 because the number of
cases in which the robot could be operate is bigger and less predictable.

5.3.1 Robot setup

Below we describe the sensors and actuators used to perform the task.
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• Sensors: In order to perceive the presence of an obstacle we use
the eight proximity sensors able to detect an obstacle in a range
of 4-5 cm.

• Actuators: The only actuators we need in this experiment are
the two wheels that allow the robot to perform random walk in
the environment.

5.3.2 Boolean network setup

In this experiment the input nodes receive the information from the
proximity sensors that represent the presence, or not, of an obstacle.
The mapping and the way in which this work is displayed in Figure
5.3 and 5.4. The only difference is that, for the sensor mapping, we
use the proximity sensors.

5.3.3 Training

The environment for this experiment consists in a corridor 6.5 meters
long and 0.5 meters wide. The corridor is one of the typical shape
used for this kind of task because reduces the robot movements. It
forces the robot to run in a very small space in which is impossible do
not encounter a wall. So, if the robot is able to exit from the corridor,
it is also able to avoid the walls.

Figure 5.6: Arena used for the robot training in the obstacle avoidance
task.

The experiment consists of 6 trials. In each of these, the robot
position is always the same. It is placed 6 meters far from the end
of the corridor corresponding to the origin of the axis. The initial
rotation is chosen among 120 and 240 degrees with steps of 24 degrees.
The time available in a single trial is 120 seconds, dimensioned in order
to allow the robots to reach the corridor exit starting from any initial
condition.
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The evaluation of the network is done by evaluating the robot
performance. We describe the robot performance minimizing the error
function ( E ∈ [0,d]) displayed in Figure 5.1. The more the robot
moves towards the exit without collision, the better is the performance.
To this end is important to underline that, if the robot hits a wall,
the specific trial is immediately stopped without waiting the expired
of 120 seconds. This guarantees that the robot doesn’t reach the exit
just crawl a wall.

For this experiment we execute 1000 iteration of the optimization
algorithm. At each iteration the robot is evaluated on the 6 trials. As
a result we have 6 evaluations that correspond to the same number
of robot performance. The goal of the optimization algorithm is the
minimization of the worst case value assumed by the error function
during the all 6 trials.

5.4 Results and analysis

The analysis we conduct in this section focuses on studying the state
space of a network trained to achieve a target behavior. In particular
we are interested in analyzing how the network uses and organizes its
state space depending on task and network size. We also provide a
graphic representation of the entire state space to better underly the
structures that emerge from it. Finally we represent the same state
space by using a explicit finite states automaton.

Analyzing the results we will often talk about the three network
regimes. In this regard it is necessary to specify that the network’s
Boolean functions are randomly changed during the training process,
therefor even the network dynamics changes. For this reason, the
dynamics of the final solution could belong to a different regime com-
pared with that of the initial network in the optimization process.
Nevertheless, we can classify the final networks using the starting dy-
namics regime because the difference showed by the results demon-
strate that the initial regime properties influence also the final solu-
tion.

To provide a more thorough analysis we compare results obtained
by training networks with different size and so, with different state
space size. In particular we study the case of network with N =20 and
N =40.

Starting with the phototaxis experiment with N=20 we can ob-
serve the final error values in Figure 5.7 left. Because of task sim-
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Figure 5.7: Phototaxis experiment with N=20 and 1000 algorithm it-
erations. Left: final error value. Right: state space usage.

plicity, we obtained a very good results with a final error value very
close to zero. Now we want to observe the state space portion used to
perform the phototaxis task. So we count the number of states used
by each network. In order to do this, we need to make some assump-
tions. In the state space used by the trajectory, we could encounter
some transitory states. It means that they are not essential in the task
realization, but they are just used to pass from a state to another. In
addition, it could happen that some states are used in just few trajec-
tories. Again, we assume that these states are not important for the
task achievement. So that, we introduce two arbitrary thresholds. A
state is counted if it is visited at least the 20 percent of the average
visit number in a single trajectory or if the state is present at least in
the 20 percent of the trajectories. The collected data are plotted in
Figure 5.7 right. What emerges from the graphics is that the number
of states is very low compared with the entire state space. In fact, the
networks use about 70-80 states when the number of available states
has a dimension of 220 states. This confirms that the networks do not
use of the entire space, this also suggests that the state space must be
organized according to some mechanism that allows the networks to
use just the portion needed to carry out the task.

At this point we want to observe what happens if we double the
network dimension (N=40 ) passing from 220 to 240 possible states.
The final error value are plotted in Figure 5.8 left while the state
space usage in plotted in Figure 5.8 right. What we can observe from
the first plot is that we need to double the optimization algorithm
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Figure 5.8: Phototaxis experiment with N=40 and 2000 algorithm it-
erations. Left: final error value. Right: state space usage.

iteration to achieve almost the same quality results. Actually, this is
quite obvious if we think that increasing the number of nodes in the
network we also increase the search space dimension. For this reason
more iterations are necessary to find a solution. What is less obvious
and even more interesting is that also the number of used states are
very small compared to the entire state space size. In fact, increasing
the state space by a 220 factor the used space is about double for
the ordered and critical regime and about triple for the chaotic one
compered with the N=20 case. This confirm the results obtained with
N=20.

Another interesting element that the plot in Figure 5.8 suggests
is a presence of a relationship between the quality of the results and
the state space use. In fact, what we can observe is that the best re-
sults belong to networks that use a small portion of their state space,
i.e. ordered regime. Vice versa, networks that use a bigger number of
states, such as the chaotic one, tend to obtain worst result. This sug-
gests that the ordered dynamics moves in a more compact way within
the state space. The network trajectory avoids to explore space in
which there are not any good solutions. This could also explain why
there is a difference between the results in different network regimes.
While in the case of N=40 this difference is quite clear, for N=20
the medians of the three state distribution are very close. For this
reason we decide to analyze the distribution of the number of states
using the Wilcoxon test. The Wilcoxon test is a nonparametric test
that compares two paired groups. The test calculates the difference
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between each set of pairs and analyzes these differences. If the test re-
turns a value (p-value) less or equal to 0.05 we can assert that the two
compared distributions are different. The resulting p-value between
the ordered and chaotic regime is 0.01994 that confirms a statistically
significant difference between the distributions. This confirm the ob-
servation made for the N=40 case.

We made the same kind of analysis for the obstacle avoidance
experiment both with N=20 and N=40. The results are showed in
Figures 5.9 and 5.10. All the plot confirm the observation made for
the phototaxis experiment. The state space portion used by the net-
works is very small compared with the the size of the state space. In
addition, because this task is more difficult than the phototaxis one,
the relationship between the quality of the results and the number of
the states used is more evident. In particular we can observe that
in the ordered regime, in which the number of states is low in both
configurations, the error value continues to be very close to zero. Dif-
ferently, for the chaotic regime, it is more difficult to keep the number
of used states low, and also the error value assume value away from
zero.

All these observations suggest the presence of a ”compression mech-
anism” inside the state space and that it is more efficient in the ordered
regime compared to the chaotic one. Such compression allows the net-
work to map its behavior in a very small portion of the state space.
This compressed space composes the internal knowledge representa-
tion, or rather the concept of memory described in Chapter 4. The low
number of states implies that the trajectories within the state space
do not need to visit a large number of states to perform the target
behavior. This means that the reliability of the system is very high
and the access to its internal memory very fast.

So far, we have analyzed the network at the end of the design pro-
cess. This gives us information about the final state space structure,
but it does not give us any information about how this state space
evolves during the optimization. In particular, we want observe how
the states compression mechanism works during the design process
and what is its role during task learning. In order to answer to these
question we trained 300 random networks as described in Section 5.2.3
and 5.3.3. At each iteration we collected the trajectory of the chosen
network. In this way it is possible to have a dynamic history and ob-
serve the changing that have led to the final solution. It is important
to underline that we want observe the generic trend of the three regime
and not the specific states number. For this reason we plot a repre-
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Figure 5.9: Obstacle avoidance experiment. Final results (left) and
state space usage (right). Top N=20 and 1000 algorithm iterations.
Bottom: N=40 and 2000 algorithm iterations
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sentative sample of the 300 initial networks. The results are showed
in Figure 5.10. The figure shows that the critical and chaotic regime
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Figure 5.10: States distribution in the phototaxis and obstacle avoid-
ance experiment during a training process. Left: compare between the
three network regime in phototaxis. Right: compare between the three
regime in obstacle avoidance.

have a similar trend. Starting from a random number of states, the
training process brings the two dynamics to explore an increasingly
large state space. After a good solution is found, the dynamics tends
to stabilize using approximately the same number of states used to
find the solution. The main difference between the two regimes is in
the final number of states. In fact, the chaotic regime confirms to be
the regime that uses of the highest number of states and that, usually,
reaches the worst final results.

The ordered regime, instead, is very interesting to analyze, not
only because the ordered networks are the ones with the highest rate
of success, but also because their trend suggests a more complex be-
havior. We can distinguish the training process in two phases. In the
first one the network makes an exploration process. It starts from a
very low number of states and suddenly it increases them until a peak
is reached. Because the ordered dynamics is difficult to perturb, the
network needs to increase the number of states to increase the chance
to find a good solution. After this, the network continues with an
exploitation process. Starting from the peak, the number of states
quickly decreases. This phase occurs when the network finds a right
solution and starts with the state compression: the states are grouped
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together and the number decreases until the dynamics finds a configu-
ration with a low number of states that allows the network to perform
the task. Thanks to this process the network dynamics becomes more
robust. The results in Figure 5.10 right confirm the same results even
for the more complex experiment of the obstacle avoidance.

To confirm the relation between the two phases, exploration and
exploitation, and the final solution, i.e. error value, we can plot in
the same graphic the two distributions. In order to this, we chose
30 ordered networks and during the training process we collected, at
each iterations, the number of the used states and the corresponding
value assumed by the error function. The results are showed in Figure
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Figure 5.11: Comparison between states distribution and error func-
tion during a training process. Left: Phototaxis. Right: Obstacle
Avoidance.

5.11. Because the phototaxis task (Figure 5.11 left) is a quite simple
task, the exploration phase does not need to increase too much the
number of used states. According to this, even the exploitation phase
does not drastically reduce the number of states. The used space stay
low for the entire training process. Nevertheless, we can observe that,
during the exploration phase we have a quick decrease of the error
value. This is more visible in the obstacle avoidance case (Figure
5.11 right). The plot shows how, in correspondence to the exploration
phase, the error function quickly decreases its value. This confirms
that, increasing the state space size we also increase the number of
chances to find a good solution. With abuse of terms we could say
that, in the exploration phase the ordered regime becomes chaotic
to better explore the entire state space. This phase continues until
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the error function assumes values very close to zero, which means
that a good solution was found. After this, the regime returns to be
ordered and the solution is refined by the exploitation phase. The
improvement performed on the error value are very low, conversely,
the number of states decreases significantly. The state space becomes
smaller to confirm the ”states compression” capability.

Now that we have analyzed the states compression mechanism and
we have confirmed that the network behavior is mapped in a very low
number of states, we want give a graphical representation of the state
space and analyze the structures formed inside it. It is important to
underline that this analysis step is possible due to the low number of
states and to the their binary representation. In fact, more complex
models such as neural networks, it is impossible to represent the state
space due to the mathematical complexity of the model. So that
t is practically impossible to describe in depth the structure of the
state space. Conversely, with the Boolean networks we are able to
accurately represent and analyze the behavior of e network.

In order to do this, we collected 200 trajectories during an ex-
periment and plotted Figure 5.10. We decode each possible state to
make it more comprehensible and we plot the graph that represents
the state space used by the trajectory. To further reduce the num-
ber of states and make the representation clearer, we group together
states with the same input/output value without consider the remain-
ing state configuration. The results are showed in Figure 5.12. Each
graph consist of a group of ellipsis that represents a single state in the
state space. The number on the arrows represents the probability to
move from a state to another. Inside each ellipsis we can find a string
that summarizes some state’s information. It consists of three differ-
ent sections separated by the symbol ” / ”. They represent, from the
left, input/output decoding, total number of visits for the single state
and total number of times that the state appears in a trajectory. The
input/output decoding consist of two strings separated by the symbol
”-”. The first on the left indicates a cardinals point from which the
robot sensors are reading some data. The north direction corresponds
to the front of the robot. The one on the right side, instead, represents
the actuators, or rather the wheels.

What emerges from the plot is that the state compression groups
together states with the same behavior. This causes the emergence of
hierarchies. Also, this confirms the idea described in Chapter 4 where
we explain that hierarchies represent the simplest way to organize the
internal knowledge and, in the same time, they increase the network
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Figure 5.12: Network trajectory graph over the state space. Top: Pho-
totaxis. Bottom: Obstacle Avoidance.
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stability and reliability.
Another important observation can be made on the elements that

characterize the network behavior. The general idea is that the dy-
namics of a complex system is characterized by its attractors and all
the information concerning the network behavior could be extracted by
studying the structure of the state space’s attractors. What emerges
from the plots 5.12, instead, confirms that this in not true. In fact, the
network behavior is not described just by attractors, but also by the
states that compose the transient tree that leads to the attractor itself.
This confirms what said in the Chapter 4 where we described that the
network knowledge is ”stored” in the attractors and their basin. So
that the entire state space contains a large amount of informations
that are not possible to observe just with attractors.
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Figure 5.13: Finite states automaton representing phototaxis (top) and
obstacle avoidance (bottom) task.

Now we focus on the role of the states that compose the network
behavior. The phototaxis task is clearly represented by two macro ac-
tions or categories of actions: orientation toward the light and move-
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ment toward it. The first action is performed by two different groups
of states (red and blue circle). When the robot senses the light source
in the east position (E) it performs a right rotation, in the same way,
when the robot perceive the light on the west (W) or south (S) posi-
tion, it performs a left rotation. The rotation continues until the robot
perceives the light source from the north (N) direction. It indicates
that the robot maintains a certain type of behavior until the final
condition is not satisfied. This kind of logic belong to the ”while loop
logic”. It makes the robot behavior more robust and able to general-
ize a task. The second action, i.e. the movements toward the light,
is performed by the two states in the yellow circle. Actually, they
also represent the two network attractors in which the robot continue
to move toward the light. The obstacle avoidance diagram, Figure
5.12 bottom, confirms what said for the phototaxis one. The network
achieves the task by using two regions of the state space. The one in
the blue circle is used to avoid obstacles on the left side by performing
a clockwise rotation, while the area in the red circle is used to avoid
obstacle in the right side. When the robot does not perceive any ob-
stacle (identify by the symbol X) the dynamics converge to the three
attractors in the yellow circle. They allow the robot to go ahead.

What emerges from this analysis is that the network behavior is
represented in the state space in a very straightforward way. The
state set contains the description of all the possible cases that the
robot could encounter during the task performance. In other words,
the network follows a proper finite state automata to perform the
target task. In order to prove that, we propose it in Figure 5.13.
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Chapter 6

RBN Sequence learning

In this Chapter we discuss a sequence learning problem. This is a
more difficult task compared to the two described in Chapter 5. The
difficulty of the sequence task learning is in the fact that the network
have to dynamically show a given behavior depending on what hap-
pened in its past. In our case, the possibility to recognize if a color is
in sequence or not depends on the color that the network had visited
in the past. This makes necessary the presence of a memory concept.

Our goal is to make use of this task to test our solution method-
ology and confirm the results presented in the Chapter above. In ad-
dition, we deeply analyze the concept of memory in random Boolean
network analyzing the network’s state space.

6.1 Sequence learning

Sequence learning has always been one of the most used learning meth-
ods by human and animals. It is part of human’s abilities, and it is
essential to the development of intelligence. Sequences of action or
information can be found in task daily performed. We could think,
for example, to the sequential movements of a musician who plays an
instrument, or the sequence of actions that leads a man to drive a car.

Actually, the interest in the ability to learn and the usage of se-
quences, for processing information and actions, is by no means a
recent phenomenon. Despite this, sequence learning already plays a
fundamental role in all application domains in which it makes use
of intelligent systems such as planning, speech recognition, DNA se-
quencing and robotics. While there is a variety of motivations for
experimentation in sequence learning three main reasons characterize
this interest:
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• Sequencing of information and actions is a fundamental human
ability.

• Sequence learning is an easily studied example of skill acquisi-
tion.

• Sequence learning may be a complex form of implicit learning.
With implicit learning we mean the activity of learning complex
information in an incidental manner, without awareness of what
has been learned. It may require a certain minimal amount of
attention and may depend on attentional and working memory
mechanisms.

There are several categories of sequence learning problems, and
these categories are distinguished by the goal of the given problem.
Below we propose a list of the main sequence learning problem.

• Sequence prediction: si, si+1, ..., sj → sj+1. Given a si, si+1, ..., sj
sequence we want to predict the sj+1 element. If i=1 we want to
predict the new element of the sequence based on all the previ-
ous elements in the sequence. If i=j we want make a prediction
based just on the last element of the given sequence.

• Sequence generation: si, si+1, ..., sj → sj+1. The formal defi-
nition is essentially the same used to define the sequence pre-
diction. The difference is in the fact that we do not want to
recognize the element sj+1, but we want generate it.

• Sequence recognition: si, si+1, ..., sj → yes or not. Given si, si+1, ..., sj
we want to recognize if the subsequence belongs to a target se-
quence.

• Sequential decision making: si, si+1, ..., sj; sG → aJ . Given a
sequence si, si+1, ..., sj we want to chose an action aJ at time
step j that eventually allows us to achieve the goal sG. For the
trajectory oriented problems, given si, si+1, ..., sj and the next
state sj+1, we want to select the right action aJ at time step j
that allows us to reach the desiderated state sj+1.

How humans learn sequential procedures has been a long-standing
research problem in cognitive science and currently is a major topic in
neuroscience. Research work has been going on in several disciplines,
including artificial intelligence, neural networks, and engineering.
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A concrete application, in artificial intelligence field, is given by
Brian M. Yamauchi in his article [4]. The cases study proposed in
this article belong to sequence generation category. The aim of his
work is to explore the use of genetic algorithm to evolve continuous-
time recurrent neural networks capable of sequential behavior and
learning. He evolves networks able to generate a fixed output sequence
in response to an external trigger occurring at varying intervals of
time. He also evolves networks that can learn to generate one of a
set of the possible sequence. The learning mechanism is based on
reinforcement learning, in which the networks optimize their behavior
in the face of rewards and punishments. This work display that small
(3-9) continuos-time recurrent neural networks are capable of solving
simple sequence generation and learning task.

6.2 Task definition

The case we want analyze belongs to sequence decision making cat-
egory. The aim of our task is to obtain a network able to learn and
recognize a sequence. The sequence is composed by the color black
and gray, and it consist in their ciclic repetition. The background color
(white) of the floor in which they are placed is used as separator. So
that, a color is always followed by a white space.

The network represents a robot controller. The robot must be able
to move on the colors and turn on its LEDs when it encounters a color
in the right sequence position. Vice versa, when it encounters a color
not in sequence, or a color that not belong to the sequence at all, the
LEDs must be off.

The peculiarity of this task is that the network must remember
which was the color previously encountered to be able to recognize
the next color in the sequence. This brings out a strong concept of
memory. Is important to emphasize that, we don’t provide to the
network any explicit memory structure. To perform this sequence
recognition task, in fact, the network must be able to organize its
internal structure in such a way to develop its addressable memory.

6.3 Robot setup

In this section we describe the robot’s characteristic in terms of hard-
ware configuration. In particular we describe all the actuators and
sensors whereof the robot is equipped with.
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• Sensors: The main thing the robot must be able to do is recog-
nize a color. For this reason we have equipped it with one ground
sensor that can recognize grayscale, from black (0) to white (1).
We assume that a value less then 0.3 represents the black color,
a value bigger then 0.6 represents the white color while a value
between 0.3 and 0.6 is the gray color. Actually, the robot has
also another kind of sensor, the proximity sensor. This one is
not strictly necessary to the fulfillment of the task, but may be
useful to the robot depending on the environment in which it
is trained. For example, it could be necessary to avoid some
obstacle in order to moves on the colored area without getting
stock. These sensors are arranged as showed in figure 5.1.

• Actuators: In order to be able to moves, the robot has two wheels
used in the same way described in section 5.1.1. In addition, to
signal when the robot recognize a color in the right sequence, it
is equipped with eight LEDs.

6.3.1 BN setup

Because of the high complexity of the task and the hight number of
input nodes, a network with 30 nodes can be a good deal. The set of
the network used in this experiment is the same described in section
5.1.

Figure 6.1: Mapping between proximity sensors and BN’s input nodes.

After the network generation, we make the robot-network coupling.
First we want to map the proximity sensors. Because the presence of
obstacles is not an essential information in order to perform sequence
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Figure 6.2: Mapping between the ground sensor and BN’s input nodes.

recognition, we chose to have one input nodes for two proximity sen-
sors. So, at the end, we have the eight proximity sensors mapped in
just four input nodes. This enables us to safe some internal nodes and,
in the same time, have a quite good information about the obstacle
presence. The second sensor we want to map is the ground sensor.
It must be able to recognize three different situation: when it is on a
black, gray or a white area. For this reason we map it into two input
nodes. These two nodes assume a different value configuration accord-
ing to the color type that the sensors can perceive from the ground.
All the sensors mapping are displayed in figure 6.1 and 6.2.

Figure 6.3: Mapping between wheels actuators and BN’s output nodes.

Figure 6.4: Mapping between the LEDs and BN’s output nodes.

Regarding the actuators, we chose to map the wheels with two
different output nodes, one for each wheel, while we map the eight
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LEDs with a single output node. This because we are not interested
to control each single LED. In fact, they always assume the same
status: ON or OFF. In the figure 6.3 and 6.4 is possible to see the
actuators mapping.

6.3.2 Training

The entire experiment is built and tested with the Argos simulator.
The choice of the right environment in which train the robot is a quite
sensitive problem. The presence of too much elements that do not
stringently belong to the problem could dramatically interfere with
the sequence learning task. In other words, we need to reduce the
robot mobility and force it to pass over the colored area quite often.
So, we chose to execute the train process in a corridor arena, 6.5 meters
long and 0.5 meters wide, with a colored-striped floor. The corridor is
the perfect shape to reduce robot mobility, moreover the striped floor
force the robot to encounter the colored area without the necessity
to perform a random walk to find them. Figure 6.5 shows the arena
configuration used for the training process.

Figure 6.5: Arena used for the sequence learning training.

The experiment consists of 10 trials of 130 seconds each. The robot
in placed in a white area within the corridor at 6.0 meters far from the
exit, and oriented toward it. For each trial we propose, to the robot,
a different sequence of color for the arena floor, keeping always the
black and the gray area separated by a white one.

During the training process, the quality of a network is calculated
by evaluating the robot performance. To evaluate the robot perfor-
mance we must be able to know when it recognizes a color in sequence.
For this purpose, we define a rule based on how long the robot takes
on its LEDs. As mentioned in Section 5.1, the simulation process is
time discrete, so that, the training process is shaped by a sequence of
ticks. We use these ticks as unit of measure to count the time spent by
the robot in a color. We assume that a color is detected as in sequence
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if the robot takes on its LEDs a number of ticks greater than or equal
to 2/3 of the ticks that it spends on that color. Vice versa, it means
that for the robot the color is not in sequence. The threshold value
2/3 it’s arbitrary, but the reason because we introduce it is intrinsic
in the network dynamics. In fact, it could be possible that, the input
information (the color of the area), can not be propagated inside the
network in just one updating step. This brings the robot to have a
wrong behavior, not because it fails the task, but because its outputs
(LEDs status) need more then one update to change. In addition,
when the trial starts, the network is randomly initialized. Therefore,
even the output nodes assume a random configuration that we don’t
identify as a robot mistake. Because of this, providing a threshold we
take into account this technical problem.

In the following we use the term wrong color to identify a color not
in the right sequence position, and the terms right color to identify a
color in the right sequence position. Now that we have a rule for the
colors detection, we can define a training methodology. The idea is to
stop a trial when the robot makes a mistake. The possible mistakes
are:

1. When the robot does not switches on the LEDs for a ticks ≥
2/3 on a right color.

2. When the robot switches on the LEDs for a ticks ≥ 1/10 on a
wrong color (even the white stripe).

3. When the robot crash in a wall.

The first point describes the case in which the robot doesn’t rec-
ognize the right color, the second point describe the case in which the
robot turns on its LEDs too many ticks in a wrong color but with-
out recognizing it. Actually, this behavior does not represents a real
mistake, because the robot doesn’t recognize the wrong color as in
sequence. Despite that, we want a clear division among the behavior
assumed by the robot. We want that, the number of ticks in which
the LEDs are turned on, in the case of wrong color and right color, are
significantly different. Finally, the last point could force the robot to
adopt two different behaviors: or it starts to use its proximity sensors
to achieve obstacle avoidance, or it starts to go ahead. For the se-
quence learning task we are not interested in which of the two options
the robot takes.
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At this point, we are ready to define the performance measure.
We describe this value by minimizing an error function E ∈ [0,1] as
displayed in 6.1.

E( Π) = 1− (α · (1− d) + (1− α) · Right ticks

Tot. ticks
) (6.1)

The main term is d. It represents the distance between the final
robot position and the corridor exit. The final robot position could be
either the position reached after the 130 seconds (the end of a trial) or
the position after a robot mistake. We normalize this value between
0 and 1. This kind of evaluation brings out the concept of implicit
learning. In fact, we don’t reward the robot directly for the sequence
recognition, but we push the robot to reach the corridor exit. For our
training methodology, if a robot can reach the exit it is also able to
recognize the sequence.

The second term is used to discriminate between robots that reach
the same final position but that they have used the LEDs in a different
way during the trial. We increment Right ticks for each ticks in which
the robot takes on the LEDs in a right color and when it takes off
the LEDs in the wrong one. At the end of a trial we normalize this
value using the total number of ticks (Tot. ticks) in which the robot
has lived. If the robot uses the LEDs in a perfect way the fraction
assume the maximum value 1. Summarizing, the more the robot moves
towards the exit without mistakes and using the LEDs in a proper way,
the better is the performance.

The multiplier α is used to give more or less weight to the two
terms. In our setting α assume the value 0.8.

Regarding the optimization algorithm we use several methauristic
techniques. We optimize the error function using stochastic descent,
variable neighborhood descent, iterated local search and genetic algo-
rithm. A more detail study on the usage of these algorithm in this
task refer to [3].

6.3.3 Results and analysis

The goal of this section is to analyze the network behavior by study
its state space during the perform of a complex task. The idea is that,
even if the task is more complicate compared with the two proposed in
the Chapter 5, some basic concept regarding the state space structure
can be confirmed. In addition, we deeply analyze the emergence of
memory studying the structure of the state space.
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As said before, sequence learning is not a trivial task due to the
necessity of some memory structures. The task complexity has im-
pact in two analysis aspects. The first one concerns the percentage of
success. After a training process, depending on the optimization al-
gorithm, the number of working networks is among 8 and 20 percent,
while in the phototaxis experiment the percentage was around the 100
percent and in the obstacle avoidance was about 95 percent. This is
important because our analysis focus on study working networks and
their low number makes the analysis less general. The second is the
difficulty to collect and manipulate the data. In fact, the optimiza-
tion algorithm needs several iteration (around 100000) to find a good
solution that imply an high number of hours for the computation. In
addition, the data collected during the training process reach various
dozen of gigabytes that means an high investment in terms of physical
resource. The final result of each optimization algorithm is showed in
Figure 6.6. Due to the low number of good solution the analysis is
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Figure 6.6: Sequence learning algorithm results.

not carried out in large scale, for this reason i allow myself in some
conjectures and speculations.

The first aspect we want analyze is the state space usage during
the training process. In order to be able to plot this information we
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collected data regarding the number of states corresponding to each
algorithm iterations using the same criteria described in section 5.4.
In Figure 6.6 there are two characteristic trends regarding the states
number associated with the optimization algorithm iteration.
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Figure 6.7: Task Sequence states distribution during the training pro-
cess.

The trends showed by the two graphics is quite similar. We can
observe that the number of states tends to increase during the train-
ing process, but the states number does not grows indefinitely. Both
graphics display that the number of used states tend to stabilize with
the increasing of the algorithm iterations. In addition the number
near by it stabilizes is very low, we have in fact a value around 200
states for both the networks. If we think that the state space is com-
posed of 230 possible states this confirms that the states compression
mechanism still present.

Another element that emerges is that the two trends are character-
ized by several peaks among which is possible define once higher than
the other. The fact to have more then one peak could be explained by
the difficulty of the task and the way in which the networks learn it.
Sequence recognition could be seen as composition of subtask. For ex-
ample when network learn to recognize the black color, some memory
structure is created within the state space. When the network learns
to recognize also the second color, the memory needs to change and
even the state space is reconfigured. This suggest that we could have
a peak for each memory modification, and the highest one could rep-
resent the moment in which the network brings the final modification
to its memory structure that allows to recognize the entire sequence.
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At this point it is interesting to observe the trend of the error func-
tion compered to the states number. For this purpose we plot the
two value distributions in Figure 6.8. What we can observe is that
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Figure 6.8: Task sequence. Comparison between states distribution
and error function values.

the error function has a step trend. It could be explained with the
memory modification described above. Each object function improve-
ments corresponds to a new subsequence recognition. In particular,
observing the value assumed by the two error function’s terms, we can
confirm that for an error value ≥ 0.6 the network is able to recognize
the first sequence position, i.e. the robot turns on the LEDs if it en-
counter the black color, and for an error value ≥0.5 the network is able
to recognize a sequence of length two, i.e. all possible configuration
that the two colors can assume. Finally, with an error value ≤ 0.4
the network is able to generalize the two tasks above and recognize a
sequence of any length. This last step makes the difference between
working and not working network. Because this step corresponds to
the moment in which the states number is higher, i.e. the peak, we
are inclined to affirm that the exploration and exploitation phases are
fundamental to the goal achievement.

Summarizing, the analysis suggests that the state space compres-
sion is still present in networks with good results. In addition, even the
relation between the error function and the state space continue to ap-
pear during the training process. Finally, it seems that the exploration
and exploitation phases have an huge impact for the memory struc-
ture creation. Now that we have analyzed the state space structure,
we want to represent it in the same way adopted for the test cases. In
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Figure 6.9: Task Sequence trajectory graph over the state space.
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Figure 6.9 is showed the trajectory graph over the state space. The
first thing that emerges from the plot is the very low number of states.
This suggest that, during the training process, the network can both
find a solution to the proposed problem and refines it thanks to the
compression mechanism that can be seen as an optimization process.
The optimization process produces also group of states that cause the
emergency of hierarchy. Each hierarchy has a fundamental role in the
target achievement. This confirm that hierarchies are the simplest
way, for the network, to organize the internal knowledge and increase
its stability and reliability. This also confirm that the network behav-
ior can not be represented just by its attractors, on the contrary, the
entire state space contains a large number of informations that could
be lost by studying only the singles attractors.
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Figure 6.10: Finite states automata for the task sequence dynamics.

As said in the introduction, sequence learning needed the emer-
gence of memory to be realized. In our case the recognition of a color
depends on the color previously recognized. So, the network needs to
organize its state space structure in such a way to generate the con-
cept of memory. From plot 6.9 it emerges that the network attains
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memory by duplicating some portion of its state space and placing it
in the right position of the hierarchy.

The first consideration we can do is that even if the two portions
have the same states structure they realize two different behavior de-
pending on the position that they assume in the state space. In fact,
the red rectangle achieves the black recognition while its duplicate, in
the blue rectangle, recognizes the gray. The elements that discrimi-
nate which of the two behavior have to be performed are the states in
the yellow ellipses. They can be seen as the decision point of the sys-
tem. Even these state are duplicated and depending on the position
that they assume in the state space they have a different meaning. In
fact, the first ellipse on the top leads to the black recognition while
its duplicate allow the gray recognition if and only if the black has
already been recognized. Both, the decision and the color recognition
portion, are reused from the trajectory during the sequence recogni-
tion. The entire system dynamics can be well represented by the finite
states automata showed in Figure 6.10 that perfectly represents the
state space just described.

Another consideration regards the duplication process. In fact,
the mere states duplication would lead to an uncontrolled usage of the
state space, with the effect to dramatically increase the states number.
We could think to recognize a sequence of 100 colors. The duplication
mechanism tends to duplicate the portion used to recognize a color
hundred times. And what if we have a sequence with more colors?
We could reach a situation in which the state space dimension could
not be big enough to recognize the entire sequence. This suggest that
the compression states mechanism makes a solution optimization in
terms of state space usage but also it allows the resource reuse, and
so, the task generalization.

What emerge from the analysis is that, the resource reuse together
with the state space compression and duplication are the elements used
from the networks to organize their state space and realize memory.
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Conclusion

In this thesis we have first tested an automatic method to synthesize
robot controller based on Boolean networks (BN) as robot agent pro-
gram and metaheuristic techniques as optimization algorithm. Then
we have analyzed the resulting networks focusing on the state space
structure.

In order to validate the method and perform the first analysis we
experimented two simple tasks: phototaxis and obstacle avoidance.
We obtained good performance in a short computation time. The
state space study has revealed that the networks tend to use a low
portion of state space to achieve the target task and it has highlighted
a relationship between the used states number and the results quality.
In particular we have noticed that in the ordered regime, where the
number of used states is lowest, we obtained better results compared
with the chaotic regime in which the number is highest. Moreover,
analyzing the states distribution during the design process we have
noticed that the number of states undergoes a phase of exploration
(i.e. states augmentation) and exploitation (i.e. states decrease) that
suggest the presence of a ”states compression mechanism”. To make
the analysis stronger we have executed the same two experiments with
networks of different size, more precisely we doubled the networks size
augmenting the state space of a 220 factor. Even with this configura-
tion the results have been confirmed in both the experiments.

Finally we plotted the entire state space to better represent its
structures. The results have showed that the network’s knowledge
stored within the state space is organized in hierarchies that increase
the stability and reliability of the network. This analysis has confirmed
that the entire state space contains a large amount of information that
is not possible to extract just by studying attractors. In addition, we
have demonstrate how the entire state space can be easily represented
by a finite states automaton that describes, step by step, the network
behavior.

Because of the good results and the interesting observations re-
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sulted by the analysis, we have decided to move on a more complex
scenario. In particular we focused on a task (i.e. sequence learning)
in which the robot is required to keep an internal memory to achieve
a given goal. At the end of the design process we obtained networks
able to perform the recognition of a sequence confirming the presence
of memory structure within the network state space. Analyzing the
states usage we have confirmed also the low number of states. Plot-
ting the state space graphic we have observed that the network realizes
memory by duplicates some portion of its state space and placing it in
the right position of the hierarchy. This mechanism is realized by the
states reuse together with the state space compression and duplica-
tion. Finally, even in this more complicate task the network behavior
can be represented by an finite states automaton.

Summarizing, we have observed that the state space undergoes
a states compression mechanism during the training process. This
causes the emergence of behavior’s hierarchies that characterize each
single state space portion. The hierarchies organization allow a fast
access to the internal knowledge and makes the dynamics more re-
liable. In addition, we have noticed that the attractors states give
a partial information about the network behavior. In fact, the state
space categorization happens even in the attractors transient tree. Fi-
nally we have observed the structure used within the state space for
the emergence of memory. What has emerged is that the network
realizes its memory structures by duplicating some state space por-
tion and connecting it in a specific position of the state space. The
duplication mechanism that is in contrast with the low states number
confirm that the compression mechanism can be seen has an automatic
optimization process realized within the state space.

Future work consists of performing the analysis is a more compli-
cate task. Starting from the sequence recognition we will add more
subtask such as obstacle avoidance and random walk, that is required
to find the sequence’s elements. The aim is to observe how the state
space changes and organizes its structure to achieve more complex
behavior.

We will also interested in analyze the state space structure of not
working networks and compare it with the working one. In this way
we could identify the dynamics properties that make possible the goal
achievement. We also plan to use these pieces of information to make
some improvements in the design method by forcing the process to
recreate those structures within the network’s state space.

Finally we will study the possibility to develop an automatic tool
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to map the network behavior in algorithm exploiting its finite states
automaton representation. This brings out the possibility to have
more reliable and robust control systems due to the fact that they
are the result of an automatic design process instead of a ”by hand”
implementation.
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