
ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

Seconda Facoltà di Ingegneria
Corso di Laurea Magistrale in Ingegneria Informatica

ADVANCED STOCHASTIC LOCAL SEARCH

METHODS FOR AUTOMATIC DESIGN OF

BOOLEAN NETWORK ROBOTS

Elaborata nel corso di: Intelligenza Artificiale

Tesi di Laurea di:
Lorenzo Garattoni

Relatore:
Prof. Andrea Roli

Correlatore:
Prof. Marco Dorigo

Dott. Ing. Mauro Birattari
Ing. Carlo Pinciroli

ANNO ACCADEMICO 2010–2011
SESSIONE III

KEY WORDS

Boolean Networks

Metaheuristics

Robotics

Contents

Acknowledgements iii

1 Introduction 1

2 Boolean Networks 5
2.1 Introduction . 5
2.2 Dynamics . 6
2.3 Random Boolean Networks 8
2.4 Boolean Network Design 11

3 Boolean Network Robotics 15
3.1 Background Concepts 15

3.1.1 Artificial Intelligence & Robotics 15
3.1.2 Genetic Regulatory Networks 16

3.2 Related Works . 18
3.3 Methodology . 19

3.3.1 BN-Robot coupling 19
3.3.2 Design methodology 20

4 Metaheuristics 23
4.1 Introduction . 23
4.2 Stochastic Local Search 27

4.2.1 Local Search . 27
4.2.2 Trajectory-Based Methods 31
4.2.3 Population-Based Methods 39

4.3 Analysis of Algorithms 42
4.3.1 Run-Time Distributions 42
4.3.2 Search Space Structure 44

5 Test Cases 47
5.1 Introduction . 47
5.2 General settings . 48

i

ii

5.3 Obstacle Avoidance . 51
5.3.1 Task Definition 51
5.3.2 Robot setup . 52
5.3.3 Evaluation . 53

5.4 Phototaxis . 55
5.4.1 Task Definition 55
5.4.2 Robot setup . 55
5.4.3 Evaluation . 56

5.5 Results & Analysis . 58

6 Dynamic Tasks Learning 71
6.1 Introduction . 71
6.2 Task Definition . 72
6.3 Settings . 74

6.3.1 BN & robot setup 74
6.3.2 Evaluation . 75

6.4 SLS Techniques . 80
6.5 Results & Analysis . 82

6.5.1 Algorithms comparison 82
6.5.2 Analysis . 90

Conclusion 95

ii

Acknowledgements

First of all, I would like to thank Andrea Roli, who has given me
the opportunity to undertake this experience and for being always
very kind and helpful. I thank also Marco Dorigo for giving me the
possibility to work in IRIDIA and Mauro Birattari for his support.
Many thanks to Carlo Pinciroli for his fundamental help. I am honored
to have known you and worked with you.

I thank also the whole IRIDIA family: Alessandro, Alexander,
Ali, Arne, Eliseo, Franco, Gianpiero, Giovanni, Manu, Giovanni 2,
Gabriele, Michele, Vito, Tarik, Leonardo, Roman, Leslie, Mikael, Si-
mon, Nithin, Rachael and Sara. Thank you for the great time we
spent together.

I would like to thank my university colleague Matteo. We have
been a great team during the last two years, especially in this last
experience.

Many thanks to Claudia for hosting me but mostly for immediately
becoming a good friend. Without you this great experience would have
not been the same.

I would like to thank my parents for giving me the possibility to
achieve my studies, for their continuous support in all my decisions.

Finally, thanks to all my friends for the important role they have
in my life and simply for being my friends.

iii

iv CHAPTER 0. ACKNOWLEDGEMENTS

iv

Chapter 1

Introduction

Humans have always been fascinated by the origins of intelligence.
Several disciplines have tried to tackle the issue of what is the intel-
ligence and how it can arise, from psychology to philosophy through
artificial intelligence. During the history of this latter discipline, the
question has gradually changed becoming: “Can machines behave in-
telligently?”. In this context, besides answer to such question, one
of the main goals of artificial intelligence is to build intelligent ma-
chines (e.g. intelligent robots). For this purpose, two main categories
of synthesis methodology can be defined: the first category involves a
series of approaches based on a design of intelligent entities by hand.
The main problem of this approach is that, with the increase of the
system complexity, the synthesis would be too difficult to conceive
by a human designer. Moreover, the basic characteristics of intelli-
gent systems are the ability of adaptation and learning, which are
features hard to obtain with an approach by hand. Thus, recent stud-
ies have shown that, in many cases, it is preferable the employment
of automatic design methodologies. Automatic processes are able to
synthesize more flexible and robust entities and, in some cases, it has
been shown that they can lead to innovative design solutions.

Typically, the automatic design process can be treated as a search
problem based on two main components: the first is the model through
which the robot behavior is represented and the second is the opti-
mization algorithm that, working directly on the model, is designed
to find the optimal configuration of its components.

Concerning the former aspect, several models exist but the most
used so far are the artificial neural networks, usually trained by means
of techniques inspired to the Darwinian evolution (e.g. genetic algo-
rithms). In general, using genetic regulatory networks to model the

1

2 CHAPTER 1. INTRODUCTION

dynamic behavior of intelligent entities brings relevant advantages:
these models, created to simulate both the structure and the func-
tional behaviors of cells, provide intrinsically the same basic features
of adaptivity and flexibility peculiar of biological cells, which are able
to react to environment stimuli maintaining their internal organiza-
tion. In this context, the model employed for this work are the Boolean
networks (BNs), introduced by Stuart Kauffman. The main advan-
tages of BNs with respect to neural networks is their compactness and
simplicity and the fact that it is possible to precisely define and study
their dynamical behavior.

The heart of the automatic design methodology is the optimization
algorithm employed to find the optimal setting of the model which al-
low the intelligent entity, i.e. the robot, to perform a given target
task. A suitable choice for the optimization algorithms can be the
metaheuristic techniques, which are particularly appropriated for ex-
ploring huge search spaces in a limited amount of time.

Recent works in this context have proposed a first proof of concepts
of a methodology based on BNs and a basic metaheuristic technique.
In particular, the choice of the simplest stochastic technique employed
has been intended to reject the null hypothesis by preventing the re-
sults from being affected by mechanisms algorithm dependent. In
this work, developed in collaboration with the Institut de Recherches
Interdisciplinaires et de Développements en Intelligence Artificielle
(IRIDIA) of the Université Libre de Bruxelles, we use the method-
ology proposed as starting point, studying some prominent properties
of the design process and proposing relevant improvements.

The main goals of the work are two: first, want to analyze some
features of the automatic design process. More precisely, the work
aims at studying the connection between the search process which
trains the robot’s BN-based program to perform a specific task, and
the trend of some properties of the network dynamic behavior. The
hypothesis is that there exists a correlation between the learning trend
and the value of certain features of the BN program, in particular in
its dynamics. The second goal is the improvement of the methodology
by means of advanced stochastic local search methods, drawing con-
clusion about the characteristic of the search process that affect the
results.

In order to achieve the proposed goals, the methodology is tested
on three robotic applications. The first two applications involve simple
target tasks so as to allow the analysis of a large amount of data dur-
ing the whole training process and investigate the prominent aspects.

2

CHAPTER 1. INTRODUCTION 3

During the last experiment, the most complex since it requires some
form of memory to be performed, the main target is the methodology
improvement through the employment of advanced stochastic local
search algorithms.

The thesis is organized as follows:
In Chapter 2, we describe the model used to represent the robot

behavior: Boolean networks. We focus on the most relevant aspect of
the structure and the dynamics. Then we also present the state of the
art concerning the automatic design procedure of BNs.

In Chapter 3, we introduce the background concepts of the work.
In particular, after a brief historical overview about robotics and its
connections with the automatic design of biological inspired networks
(e.g. BNs) to control the robots, we present the related work and the
basic methodology employed.

Chapter 4 provides a wide overview of the metaheuristic tech-
niques. Moreover, we introduce some basic concepts used afterwards
to perform the result analysis.

In Chapter 5 we discuss the robotic test cases. First we describe
the task to be performed and the experimental settings for the training
phase. Finally we analyze the results obtained focusing on the relevant
properties emerging and trying to derive some considerations with a
view to more complex tasks.

Chapter 6 concerns the final robotic application of the work. The
target task is a form of sequence learning, which means that a form of
memory is required. After the task description and the experimental
settings, we describe the advanced stochastic techniques proposed in
order to improve the methodology. Finally we compare the results
and we draw important considerations about their analysis.

Finally, Chapter 7 draws some conclusions and gives an outlook
for future works.

3

4 CHAPTER 1. INTRODUCTION

4

Chapter 2

Boolean Networks

In this Chapter we will introduce Boolean networks. In Section 2.1 we
discuss some basic and general concepts and in Sections 2.3 and 2.4
we focus on more relevant aspects for this thesis: Random Boolean
Networks and some important studies about the design of Boolean
Networks through advanced local search methods.

2.1 Introduction

Boolean Networks (BNs) have been introduced by Stuart Kauffman
in 1969 [1] as a model for genetic regulatory networks (GRN). Subse-
quently, many works have been proposed in several research fields, and
the community of complex systems is giving considerable attention to
the BNs because of their properties which can model some aspects
and mechanism of living system.

A BN is a discrete-state and discrete-time dynamical system. Its
structure can be thought as an oriented graph with N nodes, each
associated to a Boolean value xi and a Boolean function fi = (x1, ...,
xK) where K is the number of inputs of node i. The arguments of
the function fi are the boolean values of the nodes whose outgoing
arcs are connected to i. On this simple structure, it is possible to
define the network dynamic behavior as a sequence of state updates
(i.e., each node updates its own boolean value according to the value
of inputs and the associated boolean function). In a given instant
of time t, the state of the system is represented by the array of the
N Boolean variable values s(t) = (x1(t) ,..., xN(t)). Many kinds of
dynamics and update schemes exist [2] but the most studied, and
the one we consider in this thesis, is synchronous state updates of all
the nodes and deterministic, i.e., the output of a boolean function is

5

6 CHAPTER 2. BOOLEAN NETWORKS

unambiguously computed depending on its arguments. An example
of states update in a simple boolean network is showed in Figure 2.1.

Figure 2.1: The table describes the dynamics of the BN showing the
successor of each state.

2.2 Dynamics

BN model’s dynamics can be studied by means of usual dynamical
systems methods, hence the usage of concepts such as state (or phase)
space, trajectories, attractors and basins of attraction [3]. Chosen an
initial state arbitrarily or randomly, depending on the specific ap-
plication, the dynamics flows according to the update functions and
scheme. Since the Boolean functions are deterministic, at each instant
of time, the system passes from a state to its unique successor state.
During its execution, a network traverses a succession of states, often
called a trajectory in the state space. Furthermore, since the state
space is finite (a node’s Boolean variable can assume the value zero
or one therefore the state space size is 2N), the system will eventually
assume a state previously encountered. Thus, a trajectory in the state
space assumes this form:

• In the first phase, starting from the initial state, each state is
different from all the previous ones and it will not be repeated.
This states succession is called transient. It can also happen that
this phase has length zero, i.e., the network does not undergo
this phase.

6

CHAPTER 2. BOOLEAN NETWORKS 7

• Eventually, the trajectory will reach a point in which a state,
or a sequence of states, will be repeated. This means that the
network has reached an attractor. If the attractor consists of
one state, it is called a point attractor or fixed point, whereas if
it consists of two or more states, it is called a cycle attractor.
The set of states that lead to an attractor is called the attractor
basin.

An example of a BN and its corresponding state space under syn-
chronous and deterministic update is showed in Figure 2.2. Figure 2.3
shows instead the dynamics inside an attractor basin of a random
boolean network.

Figure 2.2: An example of a BN with three nodes (a) and its corre-
sponding state space under synchronous and deterministic update (b).
The network has three attractors: two fixed points, (0, 0, 0) and (1,
1, 1), and a cycle of period 2, (0, 0, 1), (0, 1, 0).

Many dynamical features of a network can be studied such as the
length of attractors or the sizes of the basins of attraction drained by
the state cycle attractors. Attractors have typically been the focus of
many studies because of their strong biological implications. Attrac-
tors are the harbors in which the system settles down, hence they are
the phase in which a system spends the most of the time. The other
states in the state space are only transient points leading to such
attractors. All dynamical systems, from neural networks to cardiac
systems through genomic regulatory networks, exhibit attractors. For
these reasons, the characteristics of attractors in system with many
elements are of basic relevance in both development and evolution.

7

8 CHAPTER 2. BOOLEAN NETWORKS

Figure 2.3: Basin of attraction of a random boolean network with
N=13 and K=3. The basin links 604 states, of which 523 are garden-
of-Eden states. The attractor cycle has a period of 7

2.3 Random Boolean Networks

Random Boolean Networks (RBNs) are a special category of Boolean
Networks which was also introduced by Kauffman [1] to explore as-
pects of biological genetic regulatory networks. Since then, thanks to
their features that capture relevant aspects and phenomena of complex
systems (in particular in genetic and cellular mechanisms), they have
been used as a tool in a wide range of areas such as self-organization
(e.g., [5]), computation (e.g., [4]) and robotics (e.g., [16]).

Random BNs are typically created by choosing randomly K inputs
per node and defining the Boolean functions assigning to each entry
of the truth tables a 1 with probability p and a 0 with probability 1 -
p. Parameter p is called homogeneity or bias. Depending on the value
of this parameter and K we can distinguish between three different
regimes: chaotic, ordered and critical. Many studies have been car-
ried out about these systems regimes and the properties that a system
shows during each of these regime [5]. A system is in ordered regime

8

CHAPTER 2. BOOLEAN NETWORKS 9

when a large part of its elements is fixed. In this kind of regime, the
frozen component represents the bulk of the system and it leaves be-
hind small and isolated island of components which are free to change
state and have complex dynamics. On the other hand, in systems in
chaotic regime, unfrozen elements form a connected component which
spreads throughout the system and leaves isolated areas of frozen el-
ements. The critical regime, the border between the ordered and the
chaotic one, is also named edge of chaos” and it consists of an ordered
sea that breaks into unfrozen islands, and the frozen islands join and
percolate through the system. Many works have been proposed on
the critical regime because of some its important proprieties, such as
the capability of achieving the best balance between flexibility and
robustness [6] and maximizing the average mutual information among
nodes [7]. This features have suggested several conjectures concerning
the fact that living cells, and living systems in general, are critical [8].

One of the most interesting and studied property of these dy-
namical regimes is related to sensitivity to initial conditions, damage
spreading, and robustness to perturbations which are different ways
of measuring the stability of a network, seeing how changes affect the
stable behavior. Resuming BNs, for perturbation we mean a perma-
nent mutation in the connections or in the Boolean functions of the
BN. A damage is instead the cascade of changes in dynamical be-
havior caused by transiently altering the activity of a single binary
variable [5].

In the ordered regime attractors are small and structural pertur-
bations stay in small unfrozen areas, not causing cascade of damages
spreading. Hence the perturbed network flows through the state space
as the original one. Networks in this regime are also very robust with
respect to the initial conditions whereas similar states tend to converge
to the same state. In the chaotic regime, on the other hand, attrac-
tors are very large and a perturbation of the activity of any single
Boolean variable, causes a cascade of damage percolates through the
unfrozen sea and the system. This kind of network is very sensitive to
changes in initial conditions because different states tend to diverge.
Finally, at the edge of chaos, perturbations can spread but damages
usually remain restricted to a portion of the system. In critical net-
works, moreover, nearby states tend to lie on trajectories that neither
converge nor diverge in state space [9].

Living systems, and computational systems, need stability to sur-
vive, but also flexibility to adapt to either the environment and the
changes it could have, and explore their space of possibilities. This

9

10 CHAPTER 2. BOOLEAN NETWORKS

has led some researchers to argue that life and computation occur nat-
urally at the edge of chaos [10], or at the ordered regime close to the
edge of chaos.

Living systems exist in the solid regime near the edge of
chaos, and natural selection achieves and sustains such a
poised state. Stuart Alan Kauffman 1993

There exist many techniques to study the features of BNs, but one
of the most used is the Derrida Plot [11] which provides a measure
of divergence/convergence of network dynamics in terms of Hamming
distance (i.e., the number of positions at which the corresponding
symbols are different) between states. In particular, in a Derrida Plot
pairs of initial states are sampled at defined initial distances, H(0),
from the entire state space, and their mean Hamming distance, H(t),
after a fixed time, t, is plotted against the initial distance H(0). For
perturbation calculation, we consider two copies of the same RBN and
we flip n node values in one copy. Then, we compare the states of the
normal network with the state of mutated network by means of the
Hamming distance H(t), after a fixed time (i.e. after a state update of
both the two networks). Repeating this procedure for different values
of n between 0 and N and plotting the results, we can highlights the
effect of perturbation and distinguish between ordered, chaotic and
critical regime measuring the slope of the plot.

Thanks to these studies, scientists identified another important
feature about dynamical regimes: changing the value of K, the dy-
namic regime of RBNs changes too. In particular, networks with K
≤ 2 are in the ordered regime, and networks with K ≥ 3, are in the
chaotic regime. Derrida and Pomeau were the first to determine ana-
lytically that the critical phase was found when K = 2 [12]. Figure 2.4
shows dynamics of RBNs in different phases. To explain the motiva-
tion of this dependency between the number of inputs of each node
of the network and the dynamical regimes we need to introduce the
concept of canalyzing functions. A canalyzing Boolean function is any
Boolean function having the property that the output is determined
by only one input (for instance one input with value 1 is enough to
let the OR function assume the value 1). The consequence of having
many canalyzing functions inside a network is that a node value can
force the elements it regulates to assume the same value at the next
moment. Such a mechanism propagated iteratively to all the descen-
dants along with the fact that the network has loops, creates forcing
loops or descendant forcing structures [5]. The creation of large forc-

10

CHAPTER 2. BOOLEAN NETWORKS 11

ing structures produces order in the network since these frozen areas
form a large interconnected web that percolates through the whole
system. Several works have been produced to prove the relationship
between K and the number of canalyzing functions in the networks,
and consequently the dynamical regimes [5].

Figure 2.4: Trajectories through state space of RBNs within different
regimes, N = 32. A square represents the state of a node. Initial states
at top, time flows downwards. a) ordered, b) critical, c) chaotic

Derrida and Pomeau also introduced two important generalizations
of the classical model: the first concerns nonhomogeneous networks
(K is not necessarily the same for all nodes), and another is that
they considered the concept of homogeneity or bias p (as mentioned
above each entry of the truth table have a probability p of being
one and 1 - p of being zero), to numerically find the critical line
corresponding to the critical regime and to define the relation between
the parameters of the networks. Thanks to these intuitions and to the
method they used called Derrida annealed approximation, they defined
the following equation which describes the critical line:

2p(1 - p) = 1/K (2.1)

The plot of this equation can be seen in Figure 2.5.

2.4 Boolean Network Design

The design of complex systems is one of the main challenges in sci-
entific and engineering disciplines. Scientists have to face this basic

11

12 CHAPTER 2. BOOLEAN NETWORKS

Figure 2.5: Relationship between p and K in phase transitions

issue in many research areas, such as reverse engineering of biological
and social networks, design of self-organizing artificial systems and
robotics. One of the most widely used approaches to tackle the prob-
lem is the synthesis and tuning of such systems by means of automatic
techniques, most of which are search methods. Despite BNs, especially
in the past, have been mainly used to model and study genetic or bi-
ological phenomena, more recently, several works have been produced
to explore their potential as computational learning systems. One of
the main reasons to investigate the learning process of Boolean Net-
works is that it is possible, in this scenario, to precisely define their
dynamical state.

The first contribute concerning the potential of BNs as learning
systems was by Kauffman [13], who in his work proposed a modified
genetic algorithm (with only a mutation operator) with the objective
of generating networks whose attractors matched a prescribed target
state. Afterwards, Lemke et al. extended the scenario to cycle attrac-
tors targets using a full implementation of genetic algorithm (with
crossover). Those studies, and other more recent including the dis-
cussion of experimental results on the application of a simple genetic
algorithm to to obtain an attractor with a given length [14], are an
investigation of the impact of evolution over BNs. In particular, they
were meant to evolve some specific features in the networks, mostly

12

CHAPTER 2. BOOLEAN NETWORKS 13

structural or dynamical properties such as the length of attractors or
the control of the BN’s trajectory to match a target [15]. On the
other hand, few works have been proposed aimed at revealing some
behavioral aspect of the network so that they can be used to address
some specific task. Examples of this second approach are [15], in
which the author uses the Boolean networks trained by either a Ge-
netic Algorithm and a Iterated Local Search (ILS) to solve the Density
classification problem, or [17] and [16] where the authors exploit a first
investigation of the potential of automatic designed BN controllers for
robots (we will discuss this topic in detail in the next Chapter).

The results obtained in all the mentioned studies raise interesting
questions on the training algorithm, the search landscape structure
and the evolutionary dynamics depending on the networks character-
istics. We will focus on all these concepts in Chapter 4.

13

14 CHAPTER 2. BOOLEAN NETWORKS

14

Chapter 3

Boolean Network Robotics

This Chapter introduces some basic concepts regarding the use of
Boolean Networks in Robotics. In the Section 3.1 we introduce a series
of background aspects required to fully understand the rise of this
recent approach. In particular we give a brief historical introduction
to robotics, and subsequently we illustrate the relevance of the genetic
regulatory network models inside this discipline. Moreover, in Section
3.2 we present some related works and finally, in Section 3.3, we outline
the automatic BN-robotic design methodology which we will use as
starting point for our studies.

3.1 Background Concepts

In this section we present a historical introduction to Artificial Intel-
ligence and Robotics, focusing on the aspect close to our work. In
Section 3.1.2, we describe the basic features of the cellular models
and the reasons for which they can be usefully employed in robotics,
presenting some prominent examples of these studies.

3.1.1 Artificial Intelligence & Robotics

Humans have always been fascinated by the question about “what is
intelligence”. This issue has has been tackled by several disciplines,
and the debate also includes the ideas of many philosophers and psy-
chologists. Since the beginning of the XX century, thanks to techno-
logical advances, the question has gradually changed becoming: “Can
machines think?”, that is also “Can machines behave intelligently?”.
The discipline that, in the recent history, has tried to give an answer
to these questions is Artificial Intelligence (AI). AI has its origin from

15

16 CHAPTER 3. BOOLEAN NETWORK ROBOTICS

the work of Turing [18] which represented a milestone for the theory of
computation and computability and was the basis for subsequent pro-
gresses in the field of machine computing. Some years later, in 1956,
Newell and Simon [19] presented a program that could demonstrate
theorems in logic, and on the basis of this and of another work by
Newell and Simon [20], in AI the physical symbol hypothesis became
prominent: every intelligent behavior could be simulated by appro-
priate manipulation of physical symbols. In this direction, artificially
intelligent systems were built so that they could solve whatever prob-
lem for which knowledge could be modeled in form of logic symbols.
Even in robotics, which in the meantime had grown up also thanks to
the cybernetic contribution (discipline that studied the animals as if
they were machines and tried to model their behaviors using control
theory and statistical information theory), reasoning was performed
by symbolic manipulation of symbols. In 1980s, a new paradigm in
contrast with the symbolic paradigm, connectionism, moved its first
steps studying artificial neural networks (bottom-up approach). The
real revolution, however, started with Brooks [21] who thought that
the study of Artificial Intelligence should start from building machines
that interact with the real world, abandoning the top-down traditional
approach for which modeling was always required. The idea of Brooks
was to turn to a biologically-oriented, bottom-up methodology. He
also introduced two basic concepts for modern robotics: situatedness
(i.e. robots perceive the world through their sensors, and the world
provides them all the information required to execute their behavior)
and embodiment (i.e. robots can act on the environment, moving
in the world and modifying it, actively determining what will be the
feedback they will subsequently receive). These concepts are today the
basis of the design of embodied agent programs. The work of Brooks
gave rise to a series of new studies about embodied cognitive science,
where the importance of embodiment stems from the possibility to
exploit the dynamic interactions of the agent with the environment,
so that intelligent behaviors can emerge. The same ideas are also
the basis of other studies, which use biological or, in general, natural
inspired models and processes to synthesize robot agent programs.

3.1.2 Genetic Regulatory Networks

One of the branches of research generated by the studies presented
in Section 3.1.1, concerns the exploitation of embodied Genetic Reg-
ulatory Networks (GRNs) as real-time control systems for artificial

16

CHAPTER 3. BOOLEAN NETWORK ROBOTICS 17

organisms, in particular robots. GRNs are models used to simulate
both the structure and the functional behaviors of cells. This kind
of approach in robotics arose from a series of historical considerations
about the concepts of embodiment and adaptivity. Maturana and
Varela in 1980 [22] argued that adaptivity is not limited to a mere
reaction to environmental stimuli. It takes place due to a “structural
coupling” between the agent and the environment, during which they
are both sources of mutual perturbations. From this point of view,
the cognition of an agent is considered as “functional embedding” of
an agent in its interaction with the world. This kind of embodiment
considers adaptation as the capability of an agent to maintain its in-
ternal organization in relation to the perturbations that come from
the environment. In Maturana and Varela’s view [22], this features
of maintaining under control the internal organization is peculiar to
living systems and cannot be found in artificial artifacts. The basic ex-
amples of such adaptivity property in living systems is the biological
cell: it is composed by several parts enclosed within the cell mem-
brane. All these parts are connected to form a network of interactions
meant to maintain the cell internal organization.

Embodied genetic regulatory network-driven control systems ex-
ploit this natural metaphor to develop flexible and robust controllers,
able to dynamically adapt to the environment and continually driving
the interplay between agent and environment, giving rise to coherent
observable emergent behaviors. The GRN model most commonly used
so far are neural networks, models that attempt to simulate either the
structure or functional aspects of the biological central nervous sys-
tem. Nevertheless, several GRN models have been proposed like the
Biosys model used in [23], in which a cell consists of Genes and Pro-
teins that regulate the interaction of the cell with the environment.
Another important model are the Boolean networks, the model we use
in the thesis which is recently having considerable consideration from
the scientist thanks to the structural simplicity but in the meantime
the dynamical richness.

In GRN-driven controllers, behaviors are not directly specified but
rather GRNs encode complex dynamics through which structured be-
haviors can emerge. In such a way, the agent (the robot in our context)
performs autonomously the specific task. In particular, the GRN is
continually coupled to the agent’s environment, perturbing and being
perturbed, acting as a real-time control system: at each control step,
first, the sensors values are encoded in the input subset of the network.
Then a network update occurs. Finally the effector on the environment

17

18 CHAPTER 3. BOOLEAN NETWORK ROBOTICS

are performed through the actuators according to the GRN’s output.
The way in which the agent behaves in the environment determines
the stimuli it will receive as input in the future. Moreover, it is not
unusual that the interaction between the system and the environment
is not perfectly known in advance.

Thus, for all the above reasons, it appears preferable to use an
automatic technique, such as an optimization algorithm or an evolu-
tionary algorithm, that gradually builds up the GRN control system
of an autonomous agent. In order to do this, the automatic procedure
exploits the behavior of the system embedded in its environment and
the variations in the interactions between the environment and the
agent itself. In addition, automatic design procedures can make the
process simpler, more robust and general with respect to a customized
procedure. The space of solutions explored by automatic technique
can be larger and less constrained than that explored by conventional
engineering methods. It has been shown that this feature can lead the
search process to innovative design solutions [24, 25].

One of the most important example of the automatic design method-
ology is Evolutionary Robotics (EV), that is a methodological proce-
dure to automate the design of agent programs inspired by the Dar-
winian theory of natural selection. The first intuition that the Dar-
winian evolution could be used to generate efficient control systems
was by Alan Turing in 1950s, when he suggested that intelligent ma-
chines capable of adaptation and learning would be too difficult to
conceive by a human designer. They could rather be obtained by
means of an evolutionary process with mutations and selective repro-
duction of the fittest individuals in a population [26]. Historically
the agent program model most commonly used in the EV approach
are Artificial Neural Networks [27, 28] but, in this thesis, we want
to further investigate the potential of Boolean Networks as real-time
robotics controller combined with the exploitation of advanced search
strategies.

In the following we present some related works about this branch
of research, and the description of the methodology used to automate
the design process.

3.2 Related Works

The employment of the Boolean Networks in robotics is a recent pro-
posal. Few studies have been presented and the one we focus on is the

18

CHAPTER 3. BOOLEAN NETWORK ROBOTICS 19

thesis [17] and the subsequent paper [16]. These works can be con-
sidered the first attempt to automatically synthesize Boolean network
robotic controllers by means of a methodological procedure. Through
the new methodology proposed in this studies, which we will describe
in Section 3.3, the authors were able to prove the possibility to train
and tune, with a simple search algorithm, a BN controller. After the
training process, the robot could manage either some simple tasks,
like a path follower, or more complex tasks like phototaxis and anti-
phototaxis. However, the goal of those works was to provide a proof of
concept, without focusing on properties of the methodology, such as its
success rate on robotics case studies and the possible improvements,
or on the features that the training process arises in the network struc-
ture and dynamics. This thesis aims to investigate in a deeper way
the first of the two aspect just mentioned, that is the learning process
improvement in terms of methodology enhancement and employment
of more sophisticated search strategies. The work developed in paral-
lel by M. Amaducci [29] has the goal of study the second issue, i.e.,
the consequences of the training process on the network dynamics and
other interesting properties, like the memory representation, that can
emerge from the whole process.

3.3 Methodology

In this section we describe the main aspects of the automatic design
methodology for BN robot controllers proposed in the work discussed
above and used in the thesis as starting point for subsequent improve-
ments and inspirations.

3.3.1 BN-Robot coupling

The first thing required to the process concerns the definition of a
coupling between the BN controller and the robot. In other words, we
define a mapping between the robot’s sensors and the network’s input
and between the robot’s actuator and the network’s output. Thus, the
Boolean value of the network’s input nodes is not determined by the
network dynamics but is set according to the robot’s sensor readings.
Similarly, the output node values are set by the network dynamic and
are used to encode the actuators activation. The mechanism is a first
distinctive aspect of this approach with respect to most of the studies
proposed regarding BNs, in which they have been mainly considered

19

20 CHAPTER 3. BOOLEAN NETWORK ROBOTICS

as an isolated systems, as they have been not assumed to have inputs.
Figure 3.1 shows the scheme of the coupling between BN and robot.

Figure 3.1: The coupling between BN and robot.

Several ways of defining the mapping are possible, but the most
natural is via a direct encoding. In the Boolean Network model the
nodes can assume only binary values. The sensor’s values and the
actuator’s activation thresholds have therefore to be discretized and
represented in a binary form in order to be encoded on the correspond-
ing set of network nodes. This last aspect is maybe the main drawback
of BNs with respect to other models because a binary encoding is not
always feasible or simple in general, while in other continuos values
models, like the Neural Networks, the same issue does not exist.

Once the input and the output mapping are defined, the Boolean
Network, that is the robot controller, has to be designed in order to
obtain a program which can perform a given task. Many approaches
can be adopted to achieve this goal, such as designing a BN focusing on
its dynamics properties so that they can be mapped into given features
of the target robot behavior. Our methodology, instead, models the
BN design process as a search problem, in which the objective function
to be maximized is the robots performance.

3.3.2 Design methodology

Treating the design process as a search problem, the automatic de-
sign methodology is composed by two main components: the robot
program or controller and the optimization algorithm. In the matter
of the robot program, we already discussed its nature: the process

20

CHAPTER 3. BOOLEAN NETWORK ROBOTICS 21

starts from a RBN, whose parameters are the number of input of each
node K and the bias p. Both the topology and the Boolean functions
are randomly generated, but while the topology does not change, the
truth tables are the subject of the optimization algorithm’s moves.

Figure 3.2: Methodology approach

The process, which can be modeled as a constrained combinato-
rial optimization problem, consists of a series of iterations whose cycle
can be depicted like in Figure 3.2. At each iteration the optimiza-
tion algorithm (in our case a metaheuristic technique) operates on
decision variables which encode Boolean functions of the BN. The ob-
tained network is then injected” into the robot (according to a suitable
input-output mapping defined as described in Section 3.3.1) and exe-
cuted. The resulting robot behavior is evaluated according to specific
target requirements, dependent on the task to be performed. Hence,
the objective function is represented by the performance measure of
the robot. Typically, the execution on the real robots during the train-
ing process is too expensive in terms of time and resources such as the
battery charge. For these reasons, both the execution and the evalua-
tion of the robot behavior are performed in a simulated environment
by a specific software component. In particular, for all the robotics
applications in this thesis, we use an open source modular multi-robot

21

22 CHAPTER 3. BOOLEAN NETWORK ROBOTICS

simulator called ARGoS [31] (Autonomous Robots Go Swarming). Fi-
nally, the performance evaluation is passed back to the metaheuristic
technique which can thus proceed with the search process, appropri-
ately modifying the BN’s Boolean functions. This process ends when
a certain number of iterations is reached or when a certain target per-
formance is obtained. In Chapter 5 and 6, during the presentation of
the robotics experiments, we will discuss in detail all the aspects of
the process.

The employment of metaheuristics ensures numerous advantages,
like the efficient exploration of huge search spaces or the possibility to
incrementally improve the process, starting from a simple strategy to
a more sophisticated one. However, all the features of metaheuristics
will be widely discussed in the next Chapter. Obviously the method-
ology is not limited to the Robotics field, but it is sufficiently abstract
to be employed for several other problems and disciplines.

22

Chapter 4

Metaheuristics

In Chapter 3 we introduced the automatic design methodology that is
the basis of our synthesis process of Boolean Network agent programs.
The procedure is strongly based on the metaheuristic techniques which
are responsible of the search space exploration. The goal of this Chap-
ter is to provide a wide panoramic of the metaheuristics, focusing on
the features that make them particularly appropriated for tackling the
issue of automatic design of BNs.

In Section 4.1 we give a brief introduction of the topic with some
background concept, such as combinatorial problem and computa-
tional complexity. Then, in Section 4.2 we introduce the stochastic
local search methods, starting from the basic local search techniques
and then describing more advanced local-search based and popula-
tion based algorithms. Finally, in Section 4.3 and 4.4 we focus on
some relevant properties of the result analysis and of the search space
structure.

Throughout the Chapter we follow the approach of Hoos and Stut-
zle in [32].

4.1 Introduction

Combinatorial problems are mathematical problems whose solutions
typically consist of grouping, ordering or assignments of a discrete, fi-
nite set of objects that satisfy certain conditions or constraints. Com-
binations of these objects form the potential solutions of the com-
binatorial problem. Prominent examples of such problems, such as
finding the shortest path on a graph or determining whether there is
an assignment of truth values of a logic formula under which the for-
mula is satisfied, can be found in many areas of computer science and

23

24 CHAPTER 4. METAHEURISTICS

other disciplines. It is possible to distinguish between two concepts:
a problem is the abstract definition of a category of problems such as
the examples cited above. A problem instance, instead, consist of a
specification of all the parameters and constraints of the problem. An
abstract problem can be seen as the set of all its instances. For each
instance, combinations of variable values form the set of potential so-
lution, namely candidate solutions. Candidate solutions are solutions
that may be possibly encountered during an attempt to solve the given
problem, but unlike solutions, they may not satisfy all the constraints
of the problem definition. Combinatorial problems can be subdivided
in two categories:

• Decision Problems: the solution of each instance of a decision
problem is specified by a set of logical conditions. Two variants
are possible:

– the search variant, whereby, given a problem instance, the
objective is to find a solution (or to determine that no so-
lution exists);

– the decision variant, in which for a given problem instance,
one wants to answer the question whether or not a solution
exists.

However, the two variants are related because the algorithms
used to solve the search variants are also able to solve the de-
cision variant. For many combinatorial decision problems, the
converse also holds: algorithms for the decision variant of a prob-
lem can be used for finding actual solutions.

• Optimization problems: optimization problems can be seen
as a generalization of decision problems, with the addition of a
solution quality evaluation through an objective function. De-
pending on whether this function has to be minimized or max-
imized, the problems can be stated as minimization or maxi-
mization problems. We can distinguish between two variants of
optimization problems as well:

– the search variant, whereby, given a problem instance, the
objective is to find a solution with optimal (minimal or
maximal) objective function value.

24

CHAPTER 4. METAHEURISTICS 25

– the evaluation variant, in which for a given problem in-
stance, the objective is to find the optimal objective func-
tion value (i.e., the solution quality of an optimal solution).

The search variant is the most general of these, since with the
knowledge of an optimal solution, the evaluation variant can be
solved trivially.

Often, optimization problems are defined based on an objective
function and a set of logical conditions. In this cases candidate solu-
tions satisfying the conditions are called feasible or valid, and among
those, the optimal solutions can be distinguished on the basis of the
objective function evaluation.

With respect to these definitions, the problem of automatic design
of a Boolean network-based program for robots can be modeled as a
combinatorial optimization problem, by properly defining the set of
decision variables, constraints and the objective function.

The most natural way to solve a combinatorial decision and opti-
mization problem is to explore and search for solutions in the space
of its candidate solutions. Thus, these problems are sometimes also
called search problems. Unfortunately, given a combinatorial problem
instance, the size of the set of candidate solutions grows exponentially
with the size of that instance. This issue raises questions about the ex-
istence of efficient methods to explore such vast spaces and, specially,
the time required for solving an instance of a combinatorial problem.

Questions like these are the core of the computational complexity
theory, that studies the classification of computational problems, in
terms of computation time and memory space required to be solved.
Such theory plays a fundamental role in the metaheuristic algorithms,
because the primary field of application of such techniques is a class
of computationally very hard combinatorial problems, for which no
efficient algorithms are known (where efficient means polynomial run-
time w.r.t. instance size). Complexity theory usually deals with prob-
lem classes rather than the single instances. For a given algorithm,
the complexity is characterized by the functional dependency between
the size of an instance and the time and space required to solve this
instance. Since generally the time complexity is the most restrictive
factor, problems are often categorized into complexity classes with
respect to their asymptotic worst-case time complexity. Thus, the
complexity of a problem is usually defined by the worst-case, i.e., the
time complexity in the worst case over all problem instances of a given

25

26 CHAPTER 4. METAHEURISTICS

size. If a suitable definition of the computational complexity of an al-
gorithm for a specific problem is given, the complexity of the problem
itself can be defined as the complexity of the best algorithm for this
problem.

Two particularly interesting complexity classes are P and NP . P
is the class of problems that can be solved by a deterministic machine
in polynomial time. In this definition, deterministic machine means
a machine model whose decisions can be determined unambiguously,
basing on its current internal state. On the other hand, NP is the
class of problems that can be solved by a nondeterministic machine in
polynomial time. Given the current state, nondeterministic machines
make decisions choosing among a set of all the possible alternatives.
They are not equivalent to machines that make random choices but
rather they are idealized models of computation that have the ability
to make perfect guesses for certain decisions.

Every problem in P is also contained in NP , because it is always
possible to emulate deterministic calculations on a nondeterministic
machine. As of today, the reverse, that is whether NP ⊆ P , and
consequently P = NP , is not true because a lot of relevant problems
are in NP , but they are not contained in P . This means that no
polynomial-time deterministic algorithm is known to solve such com-
putationally hard problems because the best algorithms known so far
have exponential time complexity. This question, however, is one of
the most open problems in computer science. Many of the hard prob-
lems in NP are strictly related and can be translated into each other
with polynomial deterministic time methods (polynomial reductions).
If given a problem, every problem in NP can be polynomially reduced
to it, then the problem is NP-hard and we say that it is at least as
hard as any other problem in NP . This definition means that NP-
hard do not necessarily have to belong to the class NP themselves, as
their complexity may be higher than NP problems. NP-hard prob-
lems that are contained inNP are calledNP-complete: NP-complete
problems are believed to have at least exponential time-complexity for
any realistic machine or programming model; in a certain sense, these
problems are the hardest problems in NP .

One fundamental result of computational complexity theory states
that it suffices to find a polynomial time deterministic algorithm for
one single NP-complete problem to prove that NP = P . This stems
from the fact that all NP-complete problems can be encoded into
each other in polynomial time.

26

CHAPTER 4. METAHEURISTICS 27

Despite many practical relevant combinatorial problem are NP-
hard or NP-complete, this does not mean that that it is impossible
for a problem to be solved efficiently. We can distinguish between two
main possible approaches to solve these kind of problems:

• Complete techniques: they are guaranteed to return an op-
timal solution in finite time, or return failure if the problem is
infeasible, for every finite size instance of a problem. The draw-
back is that for growing problem size, the problem instances be-
come quickly intractable in terms of computation time needed
for practical purposes.

• Approximate Techniques: they do not return proof of opti-
mality but they find (near-)optimal solutions efficiently, signifi-
cantly reducing the complete algorithms amount of time.

In Section 4.2 we discuss the general approach of approximate al-
gorithms, which can be characterized as search algorithms. We will
focus on advantages and disadvantages of these techniques, highlight-
ing the reasons of the introduction of more sophisticated algorithms,
the metaheuristics.

4.2 Stochastic Local Search

All the common approaches for solving hard combinatorial problems
can be characterized as search algorithms. The basic idea behind these
algorithms is to iteratively generate and evaluate new candidate so-
lutions. Evaluating a candidate solution means to decide whether it
is an actual solution in the case of combinatorial decision problems,
while it means determining the respective value of the objective func-
tion in the case of optimization problems. Despite the time complexity
of NP-hard problems is exponential, search algorithms can be much
more efficient, i.e. characterized by polynomial complexity. Moreover,
the evaluation of candidate solutions is often rather straightforward
to implement.

4.2.1 Local Search

Search methods can be classified on the basis of different aspects,
mainly the way in which the candidate solutions are generated and
the search space visiting paradigm. The most common distinction,

27

28 CHAPTER 4. METAHEURISTICS

based on the second aspect, is between systematic and local search:
systematic search algorithms traverse the search space completely, en-
suring that eventually either a solution is found (if it exists), or the
fact that no solution exists for the problem instance is determined with
certainty. This property of systematic search algorithm is called com-
pleteness. On the other hand, local search algorithms start at some
location of the search space, representing a feasible solution, and try
to improve it by iteratively move from the present location to a neigh-
boring location. Each location in the search space has a relatively
small number of neighbors and the moves are performed on the basis
of decision based on local information only. This kind of algorithms
are typically incomplete, which means that it is not guarantee that
existing solutions are eventually found, and if no solution exists, this
fact will never be determined with certainty.

Local search algorithms are often based on perturbative search:
candidate solutions are composed of solution components, such as the
values in the Boolean functions of a Boolean network during a learning
process. Therefore, given a candidate solution it is easy to move to a
new candidate solution, that is a neighbor for the first one, modifying
one or more of the corresponding solution components. These small
local modifications can be characterized as perturbations of the current
candidate solution. Hence, the methods based on this space navigation
mechanism can be classified as perturbative search methods.

Other local search algorithms, characterized as constructive search
methods, use a different approach: these algorithms try to generate
“good” (where for optimization problems, the goodness corresponds
to the value of the objective function) complete candidate solutions
by iteratively extending partial candidate solutions. In many cases
constructive local search methods can be combined with perturba-
tive local search exploiting the advantages of an hybrid approach.
Moreover, both perturbative and constructive methods combined with
other mechanisms such as the backtracking, can be the basis of sys-
tematic search methods.

According to the foregoing discussion, it might be argued that,
due to their incompleteness, the local search techniques are generally
inferior with respect to systematic algorithms. But this is not the
case, because there are many problem instances which are known to
be solvable, and hence in these situations the goal is to find a solution
rather than understand whether one exists. In addition, in scenarios
in which the time to find a solution is limited, that is almost every
real world problem, systematic algorithms may need to be stopped

28

CHAPTER 4. METAHEURISTICS 29

before the search termination. This premature termination can cause
problems, specially to the constructive techniques that search through
spaces of partial solutions without computing complete solutions early
in the search. Thus, local search algorithms are often advantageous
in certain situations, particularly if reasonably good solutions are re-
quired within a short time, if parallel processing is used and if the
knowledge about the problem domain is rather limited.

Many of most widely used and successful local search algorithms
exploit the use of randomized choices in generating or selecting can-
didate solutions for a given problem instance. These algorithms are
called Stochastic Local Search (SLS) methods. As discussed above,
the search process starts from a selected initial candidate solution
and then proceeds by iteratively move from a position to a neighbor-
ing candidate solution, making decisions on the basis of limited local
knowledge only. In SLS methods, these decisions as well as the search
initialization can be randomized. In addition, the search process may
use additional memory, for instance, for storing a limited number of
recently visited candidate solutions.

In order to formally describe a stochastic local search process for
combinatorial problems, we need to define some basic components
which provide the basis for solving a given problem using the SLS
paradigm:

• The search space S(π) of instance π, which is a finite set of
candidate solutions s ∈ S (also called search positions, locations,
configurations or states); over this space it is also defined a set
of (feasible) solutions S’(π) ⊆ S(π);

• A neighborhood structure is a function N : S → 2S that assigns
to every s ∈ S a set of neighbors N (s) ⊆ S. N (s) is called the
neighborhood of s. Typically, the choice of an appropriate neigh-
borhood relation is fundamental for the performance of an SLS
algorithm and often, this choice needs to be problem specific.

• An objective function f(π,s): S(π) → R that maps each search
position onto a real number in such a way that the global optima
of π correspond to the solutions of π. The objective function is
used in the search process to assess the candidate solutions in the
neighborhood of the current position. Thus the objective func-
tion guides the search process, and the efficacy of the search de-
pends on its properties. For these reasons this function is usually
problem-specific and often depends on the search space, solution

29

30 CHAPTER 4. METAHEURISTICS

set and neighborhood underlying the SLS. Notice that often a
distinction is drawn between the concept of evaluation function
(denoted with g and used to assessing or ranking candidate so-
lutions in the neighborhood of the current search position) and
the objective function f. The objective function characterizing
the problem is often used as an evaluation function, such that
the values of the evaluation function correspond directly to the
quantity to be optimized. Thus, in the following we do not use
this distinction, simply using the concept of objective function
f (for completeness, in the figures that outline the algorithms
such distinction is maintained).

• A finite set of memory states M(π), which, in the case of SLS
algorithms that do not use memory, may consist of a single state
only.

• An initialization function init(π) which specifies a probability
distribution over initial search positions and memory states.

• A step function step(π) that map each search position and mem-
ory state onto a probability distribution over its neighboring
search positions and memory states.

• A termination condition which indicates the probability with
which the search is to be terminated upon reaching a specific
point in the search space and memory state.

The metaheuristic search can be thought as a search process over
a graph characterized by the triple L = (S, N , f), that is the solution
set, the neighborhood function and the objective function. The search
starts from an initial node and explores the graph moving from a node
to one of its neighbors, until it reaches the termination condition.

One of the most basic examples of SLS techniques is the iterative
improvement. Iterative improvement starts from a randomly selected
point in the search space (all the position in the search space have the
same probability to be chosen), and then tries to iteratively improve
the current candidate solution with respect to the objective function
f. A move is only performed if the candidate solution it produces is
better than the current solution. A stochastic version of this algorithm
also exists, called Stochastic Descent (SD), in which the neighbor to
be evaluated is randomly picked into the neighborhood sets.

Note that, following the definition of iterative improvement, in
the case in which none of the neighbors of a candidate solution s

30

CHAPTER 4. METAHEURISTICS 31

realizes an improvement, the search process terminates even if the
quality of the current solution is not satisfying. A candidate solution
with this property corresponds to a local minimum of the objective
function f. A locally minimal solution (or local minimum) can be
formally defined with respect to a neighborhood structure N as a
solution ŝ such that ∀ s ∈ N (ŝ) : f (ŝ) ≤ f (s). We call ŝ a strict
locally minimal solution if f (ŝ) < f (s) ∀ s ∈ N (ŝ). In cases where
an SLS algorithm guided by an objective function encounters a local
minimum that does not correspond to a solution, this algorithm can
“get stuck” so that it can not find good solutions. For these reasons
the basic techniques have been extended and enhanced with strategies
that are required to prevent the search from getting trapped in local
minima and to escape from them. In the following we present some of
the most known SLS algorithm, describing the escape strategies and
the advantages of each one, deepening more in those related to the
thesis. SLS methods can be usually classified into trajectory methods,
and population-based methods. The former kind describes a trajectory
over a search graph while the latter methods perform a search process
characterized by an iterative sampling of the search space. We apply
the same classification in our following discussion.

4.2.2 Trajectory-Based Methods

Introducing the iterative improvement we highlighted its main lim-
itation, i.e. the fact that it can get stuck in local minima of the
underlying objective function. The first simple idea that can alleviate
this problem is using a larger neighborhood. As discussed before, the
performance of a search method significantly depends on the neighbor-
hood relation definition, in particular, on the size of the neighborhood.
Generally, larger neighborhoods contain more and potentially better
candidate solutions, and hence they typically offer better chances for
finding locally improving search steps. Clearly, the time complexity
for determining improving search steps is much higher in larger neigh-
borhoods. In this context, there is a tradeoff between the benefits
of using large neighborhoods and the associated time complexity of
performing search steps. One possible way to partially solve this is-
sue is to use a neighborhood pruning method. This kind of approach
consist in using large neighborhoods but reducing their size by never
examining neighbors that are unlikely to yield any improvements.

31

32 CHAPTER 4. METAHEURISTICS

First Improvement & Best Improvement

Another simple method for making the local search technique more
efficient is to select the next search step more efficiently. From this
perspective, the Iterative Best Improvement method is based on the
random selection, at each step, of one of the candidate solutions that
achieve a maximal improvement in the objective function. One thing
to notice is that this algorithm, also known as greedy hill-climbing or
discrete gradient descent, needs a complete evaluation of the whole
neighborhood in each step.

The Iterative First Improvement algorithm tries to avoid the time
complexity of evaluate all neighbors at each search step, selecting the
first improving candidate solution encountered during the neighbor-
hood evaluation process. Obviously, the order in which the neighbors
are visited during the evaluation, can deeply affect the performance
of this strategy. Instead of using a fixed order, random orderings can
also be used.

Summarizing, the search steps in first improvement algorithms can
often be computed more efficiently than in best improvement, since
typically only a small part of the local neighborhood is evaluated.
However, the improvement obtained by each step of first improve-
ment is usually smaller than for best improvement and therefore, more
search steps have to be performed in order to reach a local optimum.

Variable Neighborhood Search

Resuming the idea of larger neighborhood to increase the search pro-
cess performance, another common approach can be exploited. It
consists of using standard neighborhoods until a local minimum is
encountered, at which point the local search switches to a different,
typically larger, neighborhood, which may allow the process to es-
cape from the local minimum and reach further progress. This idea
is the basis of the Variable Neighborhood Search (VNS) framework,
which comprises a number of algorithmic approaches including Vari-
able Neighborhood Descent (VND). VND is an iterative improvement
algorithm that realizes the general idea behind VNS in a very straight-
forward way. In VND, k neighborhood relations are defined which are
often ordered according to increasing size: |N1| < |N2| < . . . <
|Nkmax | . During the search process, the algorithm switches to neigh-
borhood structure Ni to Ni+1 whenever the search stagnates, that is
whenever no further improving step is found for a neighborhood Ni.
If an improvement is obtained in Ni, the search process switches back

32

CHAPTER 4. METAHEURISTICS 33

to N1, from where the process is continued as previously described.
It has been shown that variable neighborhood descent can consider-
ably improve the performance of iterative improvement algorithms.
Such improvements are both w.r.t. to the solution quality of the local
optima reached, as well as w.r.t. the time required for finding (high-
quality) solutions compared to using standard Iterative Improvement
in large neighborhoods [33]. Figure 4.1 shows a VND algorithm out-
line.

Figure 4.1: Algorithm outline for Variable Neighborhood Descent for
optimization problems

A different approach to the idea of larger neighborhood concerns
the selection of search steps from large neighborhoods efficiently, com-
posing more complex steps from a number of steps in small and sim-
ple neighborhoods. The idea is exploited in Variable Depth Search
(VDS) and in Dynasearch. The former can be seen as an iterative im-
provement method in which the local search steps are variable length

33

34 CHAPTER 4. METAHEURISTICS

sequences of simpler search steps in a small neighborhood. The lat-
ter, differently from VDS, requires that the individual search steps
that compose a complex step are mutually independent. Indepen-
dence means that the individual search steps do not interfere with
each other with respect to their effect on the objective function values
and the feasibility of candidate solutions.

Randomized Iterative Improvement

Another idea to let the search out from local minima is to accept that
in some cases the search process can perform worsening steps which
can help to escape. One of the simplest ways of exploiting this idea
is to extend iterative improvement algorithms such that they select,
sometimes, a neighbor at random rather than an improving move. The
alternation with a fixed frequency of such random walk steps and im-
provement steps can lead to situations in which the effect of a random
selection are immediately undone by the subsequent improvement se-
lection. In order to avoid the problem, it is possible to introduce a
parameter wp ∈ [0,1], called walk probability or noise parameter, that
corresponds, at each step, to the probability of performing a random
move rather than a improvement move. The resulting algorithm is
called Randomized Iterative Improvement (RII). It differs from a it-
erative improvement just for two aspects: the step function, in which
it determines probabilistically the step to be executed, and for the
termination condition, because there is no more need to terminate as
soon as a local optimum is encountered.

An advantageous consequence of the fact that arbitrarily long se-
quences of random steps can occur is that there is always a chance to
escape from any local optima. However, RII is rarely applied in prac-
tical application, probably due to the fact that more complex SLS
algorithms can often achieve better performances.

Simulated Annealing

Simulated Annealing (SA) is a SLS that explores a similar idea: the
probability of accepting a worsening step should depend on the value
of the objective function such that the worse a step is, the less likely
it would be performed. This idea is the basis of a family of algo-
rithms called Probabilistic Iterative Improvement (PII). In these tech-
niques each step can be split into two stages: in the first, a neighbor
of the current candidate solution is randomly chosen. In the second
stage, an acceptance criterion is applied, according to a probability

34

CHAPTER 4. METAHEURISTICS 35

distribution over neighboring candidate solutions based on their re-
spective objective function value. The acceptance criterion, known as
the Metropolitan condition, is shown in Figure 4.2.

Figure 4.2: Acceptance criterion in simulated annealing

The probability of performing worsening steps depends on the pa-
rameter T, also called temperature. The higher the temperature is,
the more likely the algorithm is to accept even drastically worsening
steps with relatively high probability. Maintaining the temperature
constant during the search, we obtain a PII algorithm while the pe-
culiarity of the SA is exactly the generalization of this idea: T can
vary over the search process through a mechanism called annealing
schedule or cooling schedule inspired to the physical annealing pro-
cess. An annealing schedule is a function which determines, at each
instant of time t, the respective value of temperature T(t). There exist
several ways to vary the temperature during the search, such as geo-
metric, logarithmic or non-monotonic. The choice, obviously, strongly
depends on the problem to be solved but the simple geometric cooling
schedule has been shown to be quite efficient in many cases.

Simulated annealing is one of the most used algorithms. The rea-
son can be the fact that it is simple to enhance it with other techniques
such as a greedy initialization or neighborhood pruning. Another ap-
pealing reason can be the fact that, under certain conditions, the
convergence of the algorithm can be proven (i.e., any arbitrary long
trajectory in the search space is guaranteed to terminate in an optimal
solution). The conditions are, however, extremely severe and typically
not feasible in practical applications.

Tabu Search

A radically different approach to tackle the problem of escaping from
local minima exploits information about the search history. Tabu
Search (TS) is a general SLS method that systematically utilizes mem-
ory to guide the search process. In particular, we focus on the sim-
plest and the most widely used technique, also known as simple tabu
search. It uses a short-term memory in order to both avoid cycles

35

36 CHAPTER 4. METAHEURISTICS

in the search trajectory and to escape from local minima. Typically,
simple tabu search consists of a best improvement strategy to select
the best neighbor of the current candidate solution. In a local mini-
mum, this can lead to a worsening step or to a plateau step (i.e., a step
which does not lead to any change in the objective function value). In
order to prevent the search process to immediately return to a previ-
ously visited neighbor, TS keeps track of recent visited solutions and
forbids them. Often, memorizing solutions is not convenient in terms
of performance, therefore moves, i.e. solutions components, are stored
instead. However, storing moves instead of solutions could forbid im-
proving, not yet visited candidate solutions. For this reason, many TS
algorithms use an aspiration criterion, which specifies the conditions
under which a tabu restriction is overridden, thereby including the
otherwise forbidden solution. A commonly used aspiration criterion
is to allow solutions which have improving evaluation with respect to
the currently-known best solution.

The most important parameter of TS is the the duration (in search
steps) for which the tabu restrictions is applied, called tabu tenure. If
tabu tenure is too small, search stagnation may occur. If it is too
large, the search trajectory is restricted and good solutions may be
missed. More complex version of the algorithm exist, that try to find
a tabu tenure optimal value in different ways or extend the memory
to form of intermediate-term or long-term memory.

Tabu search algorithms have been successfully applied to several
combinatorial problems. Often, beyond the tabu tenure value, a care-
ful choice of the neighborhood definition is crucial for the performance
of these algorithms.

Dynamic Local Search

The previous techniques exploit two main strategies to guide the search
process out from local optima: the first allows worsening steps while
the second concerns changing the neighborhood structure during the
search. We can account into the latter the variable neighborhood
search algorithms, which increase the neighborhood size, and the tabu
search methods, which instead change the neighborhood structure for-
bidding certain movements.

A further idea is to modify the search space with the aim of mak-
ing unexplored areas more desirable. In order to do that, the SLS
algorithms collectively called Dynamic Local Search (DLS) methods,
change the objective function dynamically whenever a local optimum

36

CHAPTER 4. METAHEURISTICS 37

is encountered. In such a way, the search landscape gradually changes
and further improvement steps become possible. This can be achieved
by associating penalty weights with solution features, typically solu-
tion components. Whenever the search process gets stuck in a local
minima, the penalty of some solution components are increased and
the objective function is modified so as to take into account these
penalties (Figure 4.3). This mechanism leads to a degradation of the
current solution evaluation until it reaches a value worse than the eval-
uation of a neighboring candidate solution. At that point, improving
moves become available.

Figure 4.3: Dynamic local search objective function with penalties

Iterated Local Search

So far, the techniques we discussed in this Chapter could be character-
ized as simple SLS methods, in the sense that they perform only one
type of search step. The performance of the search process can be of-
ten significantly improved combining various different types of search
steps. The result is a series of hybrid SLS algorithms that can be seen
as a combination of simpler SLS techniques. One of the simplest and
most used hybrid algorithm explores a very intuitive idea to address
the problem of escaping from local optima: it utilizes two types of SLS
steps, the first for reaching as efficiently as possible a local optima and
the other for effectively escaping from the local optima. This idea is
the basis of Iterated Local Search (ILS) algorithm. Figure 4.4 shows
an ILS algorithm outline.

Starting from an initial candidate solution, usually randomly se-
lected in the search space, a local optima solution is obtained through
an underlying local search procedure (localSearch). Then, at each it-
eration of the cycle the algorithm is divided in three stages: first, a
perturbation is applied to the current candidate solution in order to
obtain a new candidate solution (perturb). Then, starting from this
new solution, the local search procedure leads the process to a new
local optima solution. Finally, an acceptance criterion (accept) is ap-
plied in order to decide whether the new local optimum is accepted

37

38 CHAPTER 4. METAHEURISTICS

Figure 4.4: Iterated local search outline

as new candidate solution from which start the new cycle of the algo-
rithm. A variety of termination conditions can be used for deciding
when the search process ends.

The three stages are therefore the core of the precess. A good
balancing of these components is fundamental for achieving a good
tradeoff between intensification and diversification. The former aspect
has the goal of greedily improve solution quality by means of some
guidance mechanism, for instance an objective function. The latter
aims to prevent search stagnation trying to lead the search process to
a good coverage of the space. Obviously, the localSearch procedure
has strong impact on the performance. In general, more effective local
search methods lead to better performing ILS algorithms [32]. The
perturbation has the role of modifying the current candidate solution
in such a way that it will not be immediately undone by the subsequent

38

CHAPTER 4. METAHEURISTICS 39

local search. Finally, the acceptance criterion can also have a strong
impact on the performance: for instance, a strong intensification of the
search is obtained if the best of the two solutions s and s′′ is always
accepted.

ILS can be seen as a simple, yet powerful technique for extending
basic SLS algorithms. Moreover ILS algorithms are typically easy
to implement but, at the same time, they are today among the best
approximate search methods for many combinatorial problems. Some
example of ILS algorithms successfully applied to hard combinatorial
optimization problems are [34, 35].

4.2.3 Population-Based Methods

The SLS methods discussed so far are all characterized by the fact
that they consider a single candidate solution at each search step. An
intuitive extension is to consider algorithms in which several individ-
ual candidate solutions are simultaneously maintained. This idea is
the basis of the category of algorithms called population-based meth-
ods. The first clear advantage of using a population is the implicit
search diversification feature which leads to an enhanced exploration
capability of the search process.

A first population-based SLS is the Ant Colony Optimisation (ACO),
a method inspired by aspects of the pheromone-based trail-following
behavior of real ants. It was introduced by Marco Dorigo in [36] as a
metaphor for solving hard computational problems. The peculiarity
of ACO is that the individuals in a population (ants) interact with
each other in a indirect way. This indirected, distributed, dynamic
exchanging of information is performed via the so-called (artificial)
pheromone trails. For a complete description of the ACO metaheuris-
tic we refer to [37], since in the following we focus on a category of
algorithm more related to this work, evolutionary algorithms.

Evolutionary Algorithms

The most prominent example of population-based methods is based
on a direct interaction between the individuals within a population of
solutions. These methods are called Evolutionary Algorithms (EAs).
EAs are inspired by principles of Darwinian evolution theory. They
are typically iterative methods that, starting with a set of candidate
solutions (the initial population), repeatedly apply three genetic op-
erators, selection, mutation and recombination. Through these opera-

39

40 CHAPTER 4. METAHEURISTICS

tors, EAs apply the principles of evolution, leading to the development
of species (solutions) that are better adapted for survival in a given
environment. Specifically, using selection, mutation and recombina-
tion, the current population is (completely or partially) replaced by
a new set of candidate solutions at each iteration. The populations
generated in the course of the evolution process are called generations.

At each generation, the selection operator aims to chose, typically
probabilistically, the candidate individuals either for the next genera-
tion or for the subsequent application of mutation and recombination.
Usually, selection is performed ensuring that fitter individuals have a
higher probability of being chosen. The fitness of a single individual
is measured by means of a fitness function that is typically positively
correlated with the objective function that quantifies the quality of
a candidate solution. Mutation is a unary operator which aims to
introduce small, and often random, modifications in a single individ-
ual. Recombination is an operator that generates one or more new
individuals (the offspring), by combining components of two or more
individuals of a parents population. The most used type of recom-
bination operator is the crossover, inspired to biological mechanisms,
which consists in combining slices of information belonging to different
parent individuals in order to assemble new child individuals. Several
kinds of crossover combination exist, that differ from each other for
the number of parents involved in the recombination (multi-parent
crossover), for the number of points in which the parent individu-
als are split (single-point vs multi-point crossover) or for the general
schema of recombination (uniform crossover). One of the most com-
monly used recombination is the one-point binary crossover operator,
whose schema is shown in Figure 4.5.

Figure 4.5: One-point binary crossover

The concepts introduced so far are the basis of all the EAs. The

40

CHAPTER 4. METAHEURISTICS 41

most prominent example of Evolutionary Algorithms for combinatorial
problem is the Genetic Algorithm (GA). GAs were introduced by John
Holland in the 1970s to mimic features of natural evolution [38]. The
general scheme of GAs can be outlined as in Figure 4.6.

Figure 4.6: Genetic algorithm outline

The algorithm starts from an initial population, for instance gen-
erated at random, and iteratively evolves it by applying the operators
previously described: mutation, recombination and selection. The
function Evaluate computes the fitness of each individual of the pop-
ulation. One of the crucial aspects for the performance of a GA is
the selection operator that has to bias the search toward the fittest
solutions, i.e., those with the highest objective function value. Many
selection schemes are possible, the most of which involve probabilistic
choices (e.g. roulette wheel selection or tournament selection). How-
ever, it is often advantageous to use elitist strategies, which ensure
that the best candidate solutions are always selected.

The first goal of genetic algorithms, and of the other evolutionary
methods, is the search diversification through which the search pro-
cess can cover promising regions of the search space. This feature can
facilitate the process to reach high-quality solutions of a given opti-
mization problem instance. Thanks to this property GAs have been
successfully applied to many combinatorial problem [39, 38]. Obvi-
ously, several different version of GA can be obtained varying the
three operator. In general the best setting for a good performance
depends on the specific problem. A prominent extension to the simple
GA is, however, the steady-state GA, in which the parent population
is not completely replaced by the selection, but an arbitrary number
of parents are maintained.

41

42 CHAPTER 4. METAHEURISTICS

4.3 Analysis of Algorithms

One of the crucial aspects of the SLS algorithms is the analysis of
both their behavior during the search process and their performance.
Given the non-deterministic nature of such algorithms, a theoretical
analysis of these features is often difficult to perform. This stems from
the fact that theoretical results are typically hard to obtain, and even
when they do exist, their practical applicability is often limited.

Given the fact that the knowledge about the behavior of stochas-
tic techniques is often insufficient to perform a theoretical study, the
analysis of the run-time behavior of SLS algorithms is often based on
empirical methodologies. In particular, a series of hypothesis, compu-
tational experiments and observations is employed in order to obtain
a model which can explain the phenomena and reveal practically rel-
evant aspects of algorithmic behavior.

4.3.1 Run-Time Distributions

Applying local search methods to real world scenarios, the utility of
a solutions typically depends on its quality as well as on the time re-
quired to obtain it. Therefore, SLS optimization algorithm evaluation
should be based on a detailed knowledge and analysis of the solution
probabilities Ps(RT ≤ t,SQ ≤ q), where Ps is the probability to ob-
tain a certain solution quality q within a given time t. This probability
can be determined from the probability distributions of the random
variables which characterize the solution quality and the run-time of
a given algorithm. Formally we can state the following definition:

Given an optimization algorithm A for an optimization problem Π
and a solvable problem instance π ∈ Π, let Ps(RTA,π ≤ t, SQA,π ≤ q)
denote the probability that A applied to π finds a solution of quality
less than or equal to q in time less than or equal to t. The runtime
distribution (RTD) of A on π is the probability distribution of the bi-
variate random variable (RTA,π, SQA,π), which is characterized by the
run-time distribution function rtd : R+ × R+ → [0, 1] defined as
rtd(t, q) = Ps(RTA,π ≤ t, SQA,π ≤ q).

The behavior of an optimization algorithm, and similarly for deci-
sion problem algorithms, applied to a given problem instance is com-
pletely described by the corresponding RTD. The knowledge of the
runtime distribution allows one to easily compute other performance

42

CHAPTER 4. METAHEURISTICS 43

measures about an algorithm, such as the mean time to find a solution,
the median and its standard deviation. The converse, instead, does
not hold because the RTD carries more information than these other
measures. In fact, it enables the study of the behavior of algorithms
in applications which involve more complex tradeoffs.

From the definition above, the runtime distribution for an opti-
mization algorithm is a multivariate probability distribution. This
kind of functions are often difficult to handle and manage. For this
reason it is preferable to refer to the univariate distributions of the
run-time required to obtain a given solution quality threshold. The
resulting probability distributions are called Qualified Run-Time Dis-
tributions (QRTD). The qualified RTDs are marginal distributions of
the bivariate RTD. In practice, they are usually used for studying
the ability of an algorithm to find optimal or near-optimal solutions
(if the optimal solution quality is known). Analyzing the QRTD for
subsequent and tight values of solution quality threshold can give a de-
tailed overview of the general behavior of the algorithm. An example
of QRTD is shown in Figure 4.7.

Figure 4.7: Bivariate Run-time distributions for SLS algorithms ap-
plied to hard combinatorial optimization problem (left), corresponding
univariate Qualified RTDs (right)

Practically, it is often impossible to compute analytically the RTD
of a SLS algorithm. Instead, the real RTDs characterizing the behavior
of an algorithm, are typically approximated by empirical RTDs. For a
given algorithm A on a given problem instance π, the empirical RTD
can be obtained by performing k independent running of A on π and
record its results (at each improvement the solution quality obtained
and the time at which the improvement is achieved) during the search
process. The RTD is calculated as the cumulative distribution function

43

44 CHAPTER 4. METAHEURISTICS

associated with these observations. Formally, let sq(t, j) denote the
quality of the best solution found in run j until time t, the cumulative
empirical run-time distribution of A on π is defined by Ps(RT ≤
t′, SQ ≤ q′) = # {j|sq(t′, j) ≤ q′ }/k . Obviously, the more runs are
executed, the better will be the empirical approximation of the true
distribution.

The empirical study of SLS algorithms are often performed in or-
der to compare different techniques, trying to determine a superiority
of one of them with respect to the others. Thus, these studies are
intended to show that, given two algorithms, one of them consistently
gives a higher solution probability than the other. RTDs can be very
useful for this purpose, since the previous qualitative sentence can be
formally captured by the concept of probabilistically domination in
the following way:

For an instance π ∈ Π of an optimization problem Π and optimization
SLSs A and B for Π, A probabilistically dominates B on π for solution
quality less than or equal to q if, and only if, ∀t : Ps(RTA,π ≤ t, SQA,π

≤ q) ≥ Ps(RTB,π ≤ t, SQB,π ≤ q) and ∃t : Ps(RTA,π ≤ t, SQA,π ≤
q) > Ps(RTB,π ≤ t, SQB,π ≤ q).
A probabilistically dominates B on π if, and only if, A probabilistically
dominates B on π for arbitrary solution quality bounds q.

From the definition, one algorithm probabilistically dominates an-
other if, and only if, the two qualified RTDs do not cross each other.
This provides a graphical method to check the probabilistic domina-
tion. However, for a single problem instance, a probabilistic domina-
tion does not always hold. In these situations, in which a cross-over
between the two RTD lines occurs, other statistical tests can be used
to verify the performance differences (e.g., the Mann-Whitney U-test
or the Wilcoxon test can be applied to determine whether the medi-
ans of two samples are equal, hence a rejection indicates significant
performance differences) .

For a more detailed discussion about the properties of the RTDs
in comparison and analysis of the SLS algorithms behavior we refer to
Chapter 4 of [32].

4.3.2 Search Space Structure

The performance of SLS algorithms deeply depends on the properties
and the structure of the search space. The study of these features

44

CHAPTER 4. METAHEURISTICS 45

can allow to significantly improve or understand the behavior of such
techniques.

We already introduced, in Section 4.2.1, the triple L(π) = (S(π),
N (π), f(π)) representing the search process over a graph. This triple
is called search landscape, or simply landscape, of the optimization
problem instance π. The landscape makes it possible to define some
global and local properties of the search space. Often, the detailed
analysis of the landscape is based on local features, i.e. performed by
classifying the search positions according to the topology of their local
neighborhood.

One of the most relevant landscape features in terms of the impact
on the SLS behavior are the local minimum. Clearly, in landscapes in
which there are not local minima other than the global minima, even
the simplest search algorithms should eventually reach the optimal
solution. Therefore, the difficulty of solving a combinatorial problem
can be attributed to the presence of large numbers of local minima in
the corresponding landscapes. Another important feature which can
have impact on the algorithm behavior is the distribution of the local
minima within the search space. For instance, the local minima can be
uniformly distributed across the entire landscape or clustered in some
regions causing a large variability in localized local minima density.

The guidance mechanism of the search method through the land-
scape is given by the objective function. A crucial aspect in studying
the performance of SLS algorithms is to verify the effectiveness of such
guiding mechanism. A first aspect to check is whether there exists a
relationship between the solution quality and the distance to an opti-
mal solution. Ideally, the better the solution are evaluated, the closer
they should be to the optimum. This aspect can be explored by the
Fitness-Distance Analysis (FDA), which measures this relationship in
terms of the correlation between the quality of solutions (on the ba-
sis of their objective function value) and their distance to the closest
globally optimal solution.

However, one of the features that more deeply influences the be-
havior of SLS algorithms is the landscape ruggedness. In particular,
a search landscape is called smooth when neighboring positions have
similar objective function values, while in the rugged case, the values
across neighboring states are characterized by high variance in the
objective function evaluation. Intuitively, landscape ruggedness is re-
lated to the number of local optima: landscapes with a high density of
local optima are typically rugged, while smooth landscapes have usu-
ally fewer local optima. From the relation between the number of local

45

46 CHAPTER 4. METAHEURISTICS

optima in the landscape and the difficulty of solving the correspond-
ing combinatorial problem, it is possible to state that more rugged
landscapes are harder to search for SLS algorithms. The ruggedness
property can be analyzed by estimating (in cases where it cannot be
determined analytically) the autocorrelation of the landscape. Smooth
landscapes are characterized by high autocorrelation, while rugged
ones have low autocorrelation. One common approach is to measure
the correlations between neighboring solutions by means of a unin-
formed random walk of m steps starting from a random initial posi-
tion. The autocorrelation of a series G = (g1, . . . , gm) of objective
function values is computed as

r =

∑m−1
k=1 (gk − ḡ) · (gk+1 − ḡ)∑m

k=1(gk − ḡ)2
(4.1)

where ḡ is the average value of the series. This definition refers to the
autocorrelation of length one, i.e., that corresponding to the correla-
tion between two points that are one step far in the random walk. One
important aspect is that the starting point of the random walk has
no influence on the information obtained from the trajectory. Hence,
any random walk is representative of the entire search landscape. The
autocorrelation analysis can be therefore useful to assess the differ-
ences between various neighborhood relations for a given problem or
for studying the impact of parameter settings of an SLS algorithm on
its behavior.

Finally, other important features of the search landscapes that
can influence the SLS performances, are plateaus, barriers and basins.
Plateau regions are simply regions of positions that are all at the same
level. This kind of regions are dangerous for the search process which
can stagnates within the plateau if the escape mechanisms are not ef-
fective. Not all the local minima or closed plateaus are equally hard to
escape from. One factor connected with the difficulty of achieving an
improvement in the given objective function f from a local minimum
or closed plateau is the difference in f that needs to be overcome in
order to reach a position at a lower level. This intuitive sentence is
captured by the concept of barrier. Related to the notion of local min-
ima depth and barrier height is the notion of a basin, which intuitively
describes a region of positions at or below a given level. However, for a
complete description of all these concepts, the analysis methods, and
the subsequent measures that might be adopted in order to tune the
algorithm performance, we refer to Chapter 5 of [32].

46

Chapter 5

Test Cases

In this Chapter we present the first robotic experiments of this work.
The goal is both to acquire familiarity with robotic applications and to
exploit the potential of the automatic controller design methodology
introduced in Chapter 3. To these purposes we test the methodology
on two basic tasks, analyzing the results obtained using a very simple
search algorithm and trying to draw some important considerations
with a view to more complex tasks. Section 5.1 contains an intro-
duction to the goals of the Chapter, in particular the aspects that we
want to analyze about the automatic design process. Section 5.2 in-
troduces the general experimental settings. In Section 5.3 and 5.4 we
present the two experiments, describing the task to be performed and
all the specific settings chosen to achieve the target. Finally, in Sec-
tion 5.5 we analyze the results obtained in both the experiments trying
to draw some consideration about the relevant aspects regarding the
methodology and the parameters that can affect it.

5.1 Introduction

Besides familiarizing with the robotics applications, the goal of the test
cases and of the Chapter is to investigate some substantial aspects of
the automatic design process, that we shall also call training w.r.t
robotics applications. First, we want to provide evidences that with
simple tasks to perform and search landscapes high autocorrelated
(Section 4.3.2), the methodology can lead to very good results even
using a simple SLS method such as the stochastic descent. Moreover,
we want to highlight the differences in the methodology effectiveness
when using different type of random Boolean networks.

Another issue we analyze is the link between the improvements

47

48 CHAPTER 5. TEST CASES

during the training and other properties of the networks: in partic-
ular, our hypothesis is that there is a correlation between the local
search improvements and the trend of two quantities, that are the
number of states visited by the networks inside their state space dur-
ing their execution and the complexity of these networks. Analyzing
the former aspect we want to show how the improvement moves in
the search landscape correspond to particular effects on the dynami-
cal features of the networks, especially on the number of states visited.
The latter quantity also concerns aspects of the system dynamics pro-
viding a measure of their complexity. In this regard, we think that
significant improvements of the objective function values correspond
to an increase of the system complexity. All these questions are in
some respect counterintuitive: the search algorithm and the network
dynamics operate in two different spaces, the search space and the
state space, that during the design process are not directly bound.
The methodology works, in fact, only on the structure of the net-
works, modifying their Boolean functions, without directly deal with
dynamical issues. Despite this, the fact that an indirect connection
might emerge between the two space properties is very attractive and
could be an interesting way to exploit for future improvements to the
methodology.

Then, we check the robustness of the design process essentially by
two methods: the first is the testing, through which we test the best
networks obtained during the training over a series of different initial
condition in order to verify if they can adapt their behavior to general
situations. The second method are the RTDs, described in Section
4.3.1, that show the trend of the training phase over the time and
depending on the given solution quality expected.

Finally, we show the role that the number of nodes of each network
plays in the design phase. A wrong choice of this parameter can deeply
affect the performance of the process: it is crucial to find the right
tradeoff between the required computational capacity to perform the
target task and a small search landscape which can help the search
algorithm.

5.2 General settings

In this Section we present all the training settings shared by the two
experiments. The methodology we adopt, that is the automatic design
process described in Section 3.3.2 and illustrated in Figure 3.2, starts

48

CHAPTER 5. TEST CASES 49

from an initial random Boolean network. In order to achieve both
the proposed tasks, we use as first attempt Boolean networks with 20
nodes, i.e., N = 20. The topology, i.e. the inputs, of the networks are
randomly generated with K = 3, which means that each node has 3
ingoing arcs. Boolean functions are also randomly generated with a
p, i.e. the probability to have an entry with 1 as output value in the
Boolean function of a node, which varies. In particular, we generate
100 initial networks with p = 0.5 (with respect to the equation 2.1
these networks are in the chaotic regime), 100 networks with p = 0.9
(ordered regime) and 100 networks with a p = 0.788675 (the value
which verifies the critical line equation). In the second part of each
test case we test the same process also with initial Boolean networks
with a number of nodes of 40 (N = 40) to verify how the results can
change depending on this parameter.

During each cycle of the process, the Boolean network representing
the current candidate solution is injected into the robot and connected
through a suitable mapping to the robot’s sensors and actuators. In
this way the execution of the network, in particular its dynamics,
controls the robot behavior, constantly perturbing the environment
through the robot actuator and being perturbed by the environment
in which the robot moves.

The robot employed for all the experiments presented in this work
is the e-puck. The e-puck is a small circular robot designed with the
purpose to be both a research and an educational tool in universities.
It has many interesting features, but here we focus only on those nec-
essary for our tasks. The robot is equipped with 8 infrared proximity
sensors which have also the capability to perceive the amount of light
acting as 8 light sensors. The disposition of these sensors is shown in
Figure 5.1. Moreover, the e-puck can detect the color of the ground
it is moving on thanks to 3 ground sensors located on the bottom of
the chassis. Finally, it has 8 LED single color on the top and 2 motors
that actuate the 2 wheels.

The specific mapping between the robot and the BN controller,
depend on the task to be performed and, for this reason, it will be
discussed in the Sections concerning each experiment.

Once the mapping is defined and the network is configured, a suit-
able software component simulates the experiment and evalutes the
behavior of the robot, according to the specific target requirements.
This step is typically executed in a simulated environment rather than
on real robots. The reason is that the several iterations that are usu-
ally involved in the automatic methodology, could render the whole

49

50 CHAPTER 5. TEST CASES

Figure 5.1: Proximity sensors grouping

process unfeasible in a reasonable amount of time, or w.r.t. other lim-
ited resources such as the battery charge of the robots. The simulated
environment used for all the experiment performed during this work
is an open source modular multi-robot simulator called ARGoS [31].
The simulation is time discrete, that is, for each instant of time (or
tick), the robot perceives the environment through its sensors, selects
the action to perform, and finally actuates it.

The performance evaluation is then passed back to the metaheuris-
tic technique which can consequently modify the current solution and
proceed with the search process. The optimization process works only
on the Boolean functions of the nodes, leaving the initial topology un-
changed, in order to not increase the problem complexity. The whole
cycle is executed iteratively to gradually improve the behavior and
finally obtain a solution which performs the target task. The local
search method employed for the test cases is a basic SLS strategy, the
Stochastic Descent (SD) whose outline is shown in Figure 5.2.

In our case, the search process starts from a Random BN gener-
ated as described above. The neighborhood relation, which defines
the modification performed by the metaheuristic on the current so-
lution in order to obtain a neighboring one, is defined by randomly
choosing a node function and then flipping a random bit in its Boolean
function. The pair formed by the node and the Boolean function po-
sition is uniformly sampled with replacement. The difference between
the algorithm outline in Figure 5.2 and the version we adopt, is that

50

CHAPTER 5. TEST CASES 51

Figure 5.2: Stochastic descent outline

we accept a new candidate solution even if its evaluation is equal or
slightly worse (by an epsilon = 0.0001) than the current one. This
movements, called sidewalks, are intended to avoid the instant stag-
nation of the search process inside the plateau regions. By allowing
these side movements, the search process can continue the exploration
and, in some cases, escape from such regions.

For the first two experiments, in particular with the configuration
of network with 20 nodes i.e. N=20, we run the optimization process
for just 1000 iterations, given the triviality of the tasks to be per-
formed. Notice that, with the configuration of network with 40 nodes,
i.e. N=40, we increase the number of iterations to 2000 in order to
obtain comparable final results.

5.3 Obstacle Avoidance

In this Section we describe the first robotic experiment of the thesis.
In particular we focus on all the settings which completely define the
training process for the obstacle avoidance task.

5.3.1 Task Definition

The target task of the experiment is a problem that has been often
tackled in the past, mostly in the context of robotics: the obstacle
avoidance. For our purposes, it simply consists of a robot that has to
avoid any collision with the obstacles it detects along its path (no path
planning issues are involved). Many branches of AI can be applied

51

52 CHAPTER 5. TEST CASES

to the problem, some of which employ automatic design approaches
(e.g. in this field several works with neural networks and evolution-
ary algorithms have been proposed [27, 28, 43]) while others concern
the application of specific algorithms (e.g. fuzzy logic [44], steering
behavior model created by Craig Reynolds and generally applied to
flocking [45]).

In order to completely define how the task learning process is per-
formed according to our methodology, we need to describe its envi-
ronment: it consists of a corridor of length 6.5 meters and width 0.5
meters with the exit in the origin of the coordinate system. The robot
is placed within the corridor 6 meters far from the exit. During the
experiment it has to advance along the corridor avoiding collisions
and reach the exit. A representation of the environment is shown in
Figure 5.3.

Figure 5.3: Obstacle Avoidance corridor environment

5.3.2 Robot setup

As mentioned in Section 3.3.1, the way in which the Boolean networks
control the robot behavior is the following: we use a subset of the nodes
as input nodes and some other as output nodes. The input nodes are
connected to the robot sensors, while output nodes are connected to
the actuators. Input nodes are nodes whose Boolean variable, at each
instant of time, is not determined by BN dynamics (frozen nodes),
but it is set according to the robot sensor values. On the other hand,
output nodes are nodes whose Boolean variable, at each instant of
time, is used to set actuator values. Thus, at each step, the values
detected by the sensors are encoded in the input nodes, then a network
update is performed, and finally the output node values are used in
order to set the actuators. Hence, this mechanism requires a suitable
mapping between value range of sensors and actuators, and Boolean
values.

In this first experiment, with the aim of avoiding obstacle on their

52

CHAPTER 5. TEST CASES 53

path, the robot needs only proximity sensors and wheels in order to
detect the obstacles and change the movement accordingly. The map-
ping is defined as follows: we use four frozen nodes to encode the eight
proximity sensor states. Thus proximity sensors are gathered in pairs,
and if at least one of them overtakes a chosen threshold (proximity
sensor values are normalized between 0, which means no obstacles de-
tected, and 1, that is obstacle very close, therefore we need a threshold
beyond which we can consider the sensor on), the corresponding input
node is set to 1. The groups of sensors are chosen to ensure that robots
can detect obstacles from the four directions north-east, south-east,
south-west and north-west.

Furthermore, we set two nodes as output nodes, each of which
control a wheel of the robot. Thus the speed value can assume for each
wheel only two values, that are ON or OFF. The complete mapping
between perceptions/actions and node values is shown in Table 5.1
and Table 5.2.

Input node Node value Proximity state

x0
0 No obstacle detected by IR0 or IR1

1 Obstacle detected by IR0 or IR1

x1
0 No obstacle detected by IR2 or IR3

1 Obstacle detected by IR2 or IR3

x2
0 No obstacle detected by IR4 or IR5

1 Obstacle detected by IR4 or IR5

x3
0 No obstacle detected by IR6 or IR7

1 Obstacle detected by IR6 or IR7

Table 5.1: Mapping between robot sensors and BN input nodes

5.3.3 Evaluation

In this Section we focus on the last aspects that characterize the
methodology proposed, that is number and nature of the different
initial conditions (namely trials) whereby each network is tested, and
the evaluation criteria used to assess the performance of each network:

• Trials: given the arena previously described and depicted in
Figure 5.3, we test the behavior of each robot over 6 trials start-

53

54 CHAPTER 5. TEST CASES

Nodes Actuators

x4 x5 Left wheel Right wheel

0 0 OFF OFF

0 1 OFF ON

1 0 ON OFF

1 1 ON ON

Table 5.2: Mapping between robot actuators and BN output nodes

ing from different initial conditions. The starting position re-
mains the same, in particular the robot starts from the position
6,0,0 (i.e. 6 meters far from f the origin and the exit of the corri-
dor). What makes the difference between the trials is the initial
rotation, which assumes values in a range among 120◦ and 240◦

with steps of 24◦. Through these trials we evaluate the network
over several heterogeneous situations in which it has to detect
the corridor walls in different directions and react to avoid them.
At the same time, we want limit the complexity of the trials. In
fact, situations in which the robot might need to move away
from the exit to avoid a wall could be too tricky for the robot to
solve as well as for the experimenter to fairly assess them. In or-
der to achieve this tradeoff between situation diversification and
straightforward execution, we decided to start the robot with
an initial rotation such that it is always turned toward the exit
direction (hence the angle among 120◦ and 240◦). During each
trial the robot must move along the corridor, avoid the collision
with walls and reach the exit before the time of the experiment
has expired. We empirically estimate the experiment length in
120 seconds (the speed of the robot with both the wheels ac-
tivated is 5 cm/s, hence ignoring noise it needs 120 seconds to
cover the entire corridor). In cases in which, during this time
the robot hits a wall, the trial is immediately stopped.

• Evaluation criteria: the performance evaluation of each net-
work is very simple thanks to the trivial task to achieve and to
the experiment setup. Given the configuration described, the
performance value assigned to each trial is merely the final dis-
tance of the robot to the center of the coordinate system, that
is the corridor exit. Thus, the more the robot advances avoid-

54

CHAPTER 5. TEST CASES 55

ing collision along the corridor during a trial, the shorter is the
final distance to the exit, the better is the trial evaluation. The
evaluation can be seen therefore as the measure of the error com-
mitted by the network. Once we have the performance in each
of the 6 trials, we finally assess the network on the basis of the
arithmetic mean of these values. The learning process is carried
out minimizing this average error value.

5.4 Phototaxis

In this Section we describe the second experiment of the thesis. We
focus on all the settings needed to completely define the training pro-
cess for the phototaxis task. However for a more exhaustive discussion
about the experimental settings of this specific task we refer to [29].

5.4.1 Task Definition

The target task of this second experiment is another robotics basic
task: phototaxis. Phototaxis is a kind locomotory movement, that
occurs when an organism moves in response to the stimulus of light.
Phototaxis is called positive if the movement is in the direction of
increasing light intensity and negative if the direction is opposite. In
our experiment the robot has to perform a form of positive phototaxis,
moving toward the light source. In order to completely define the task,
we describe its environment: the robot is placed into a square arena
with edge of 5 meters positioned at a distance of 4.5 meters to the light
source. During the experiment it has to perceive the light stimulus
and move towards the light source, which is placed on top of one of
the vertices of the arena (in particular the one centered in the origin
of the coordinate system). The environment described is illustrated
in Figure 5.4.

5.4.2 Robot setup

In this second experiment, the robot needs to perceive the light in
order to and move toward it. For this purpose, the devices involved in
the BN-robot mapping are only light sensors and wheels which permit
to the robot to sense the light and change consequently the direction.
The mapping: we use four frozen nodes to encode the eight light
sensor states. Like for the first experiment, light sensors are gathered
in pairs. For each couple of sensors, it is sufficient that one overtakes a

55

56 CHAPTER 5. TEST CASES

Figure 5.4: Phototaxis arena environment

chosen threshold of activation to make the corresponding input node
assumes the value 1. The groups of sensors are chosen to ensure that
robots can sense the light in the four directions north-east, south-east,
south-west and north-west.

Moreover, we use two nodes as output nodes whose mapping is the
same described for the first experiment and illustrated in Table 5.2.
The Table 5.3 shows instead the input mapping between the Boolean
network and the robot’s light sensors.

5.4.3 Evaluation

The last aspects of the second experiment are the nature of the trials
through which the behavior of each robot is tested and the evaluation
criteria employed to assess the performance of the network:

• Trials: each robot is tested during the simulation of 10 differ-
ent trials, which differ from each other for the initial conditions.
In particular the robot is placed in 5 starting positions, and for
each of them 2 trials are performed with 2 different initial ori-
entations. The positions are chosen so that the robot starts 4.5
meters far from the origin of the coordinate system, on top of
which is placed the light source. For this purpose, they are de-
fined on a quarter of a circumference of radius 4.5 m centered in

56

CHAPTER 5. TEST CASES 57

Input node Node value Light state

x0
0 No light sensed by IR0 or IR1

1 Light sensed by IR0 or IR1

x1
0 No light sensed by IR2 or IR3

1 Light sensed by IR2 or IR3

x2
0 No light sensed by IR4 or IR5

1 Light sensed by IR4 or IR5

x3
0 No light sensed by IR6 or IR7

1 Light sensed by IR6 or IR7

Table 5.3: Mapping between robot sensors and BN input nodes

the origin. On this circle, we sample 5 points corresponding to
5 different angles with respect to the z axis (the normal axis to
the plan on which the arena of Figure 5.4 is defined). More pre-
cisely, the angles range from 15◦ to 75◦ (with angles 0◦ e 90◦ the
robot would be positioned on the edge of the arena) with steps
of 15◦. The 10 initial rotation of the robot are instead chosen so
that for each starting position, the corresponding two rotation
are specular, i.e., differs from each other by 180◦. During the
trials, the robot has to sense the light and moves towards its,
terminating the experiment as close as possible to its source. We
empirically estimate that the amount of time required in order
to properly perform such task in 120 seconds.

• Evaluation criteria: thanks to the experimental settings de-
scribed so far, and to the trivial task, the performance evaluation
of each network is very straightforward. Like for the obstacle
avoidance, the performance value assigned to each trial is sim-
ply the final distance of the robot to the origin of the coordinate
system, where the light source is placed. Therefore, the more a
robot is able to narrowly perform phototaxis, the closer to the
light it will be at the end of the experiment, obtaining a good
evaluation. Again, given this criteria, the evaluation can be seen
as the measure of the error committed by the network in each
trial. The final performance of a network is computed, like in
the first experiment, by means of the arithmetic average of the
evaluations obtained during the 10 trials. The training process

57

58 CHAPTER 5. TEST CASES

try to iteratively minimize this value.

5.5 Results & Analysis

In this Section we present all the results obtained during the two ex-
periments presented so far in the Chapter. Since the goal of the thesis
is to investigate the most relevant properties of the training process,
we focus on some relevant aspects in that direction, in particular con-
cerning the learning process and the local search features.

The first thing we analyze are the final results obtained for each
run executed. More precisely, in the plot reported below (Figure 5.5
(top) for phototaxis and Figure 5.5 (bottom) for obstacle avoidance),
are depicted the the results of the best networks found at the end
of each experiment. The plots exploit the expressiveness of boxplots.
Boxplots represent the main statistical features of a distribution in a
compact way, showing the median (central segment) and the 1st and
3rd quartiles (lower and upper side of the box, respectively). Minimum
and maximum, along with outliers, are placed as segments and points
external to the box.

The results are classified in different ensembles on the basis of the
regime of the initial RBN from which the learning process starts. A
consideration must be accounted about this classification, which we
follow throughout the thesis: starting from a RBN in one of the three
regimes, the training process works on the Boolean functions changing
the network dynamic, and consequently its type of dynamical regime.
For this reason, the final solution of each experiment can not be tightly
expected to be in the corresponding dynamical regime.

Nevertheless, the networks generated by perturbing the initial ran-
dom Boolean network maintain some properties of the initial dynam-
ical regime. This is also proved by the results reported in the plots,
which show the different success rate of the process when it starts
from networks in different dynamical regimes. All the plots presented
in the following exploit this assumption to classify the results.

The two plots, which depict the results after 1000 iterations of
the process, show that phototaxis is the simplest task and all the
three categories of initial RBN obtain a low error. This means that,
except for few outliers with a higher error, the final networks are
able to perform phototaxis and reach the light source. The boxplots
concerning obstacle avoidance, show instead a different trend: the best
results are achieved by the ordered networks, most of which reach the

58

CHAPTER 5. TEST CASES 59

●

●

●

●
●
●●

●

●

●●●
●●
●

●

●

●
●

●

●

●

●

●●●●
●

●

●

●

●●●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ordered critical chaotic

0.
0

0.
5

1.
0

1.
5

2.
0

Result Phototaxis Training−N=20

Networks

E
rr

or

●

●

●

●

●

●

●
●

●

●

●

●

ordered critical chaotic

0
1

2
3

4
5

6

Result Obstacle Avoidance N=20

Networks

E
rr

or

Figure 5.5: Distributions of optimized network’s error after 1000 iter-
ations for phototaxis (top), and obstacle avoidance (bottom)

59

60 CHAPTER 5. TEST CASES

target (if we choose an error threshold of 1 the success rate is ≈ 0.75).
The worst results are obtained by the chaotic networks, whose success
rate w.r.t. the same threshold is slightly over the 0.5 and the median
is rather higher. The critical networks produce good results, even
though not as much good as those achieved by the ordered ones.

Our hypothesis, to explain such difference between the results of
the three types of networks, is that one of the reason can be the
ruggedness of the search landscape (we have introduced the concept
of ruggedness in Section 4.3.2). In fact, small perturbations in an or-
dered network’s Boolean functions correspond to small variations in its
BN dynamics, hence small differences in the objective function values.
Conversely, slightly differing chaotic networks have a very different be-
havior, as discussed in Section 2.3. Thus, the initial search landscape
is likely to be smooth in the case of ordered networks, whereas it is
expected to be rugged for chaotic ones. Critical networks are expected
to be in the middle of the two, with properties that do not excessively
differs from the ordered ones. In order to verify the hypothesis the
that initial networks dynamical regime affects local search effective-
ness we need to compute a measure of the landscape ruggedness for
each of the type of network.

The parameter that measure such property is the autocorrelation
of the landscape, introduced in Section 4.3.2. For each networks dy-
namic class we compute the empirical autocorrelation obtained by
collecting the objective function values along a random walk of 200
steps starting from 30 randomly generated initial candidate networks
for each dynamical regime. For each random walk we calculate the
value of autocorrelation according to the equation 4.1. The boxplots
in Figure 5.6 summarize the statistics distribution of the values of au-
tocorrelation of the landscapes induced by the three BN dynamical
regimes (on the left the boxplots concerning the phototaxis and on
the right the obstacle avoidance).

The first thing to notice in the plots is that the level of autocorre-
lation is high for both the experiments and, in general, for each class
of network. This stems from the triviality of the task to be performed
and leads to a high success rate for both the experiment. This result
provide evidence to the fact that, for simple tasks and search land-
scape strongly autocorrelated, the automatic methodology proposed
is very suitable, even using one of the simplest stochastic local search
methods, in our cases the stochastic descent (Figure 5.2).

Concerning the plot of the phototaxis, the boxplots show slight dif-
ferences between the three classes. However, these differences can not

60

CHAPTER 5. TEST CASES 61

●

●

●

ordered critical chaotic

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Phototaxis Landscape Autocorrelation

Networks

A
ut

oc
or

re
la

tio
n

●

●

●

●

ordered critical chaotic

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Obstalcle Avoidance Landscape Autocorrelation

Networks

A
ut

oc
or

re
la

tio
n

Figure 5.6: Autocorrelation distribution of the landscapes correspond-
ing to networks in different dynamical regimes. Phototaxis (top) and
obstacle avoidance (bottom)

be considered statistically significant. The situation changes focusing
on the plots regarding the obstacle avoidance. Here the differences
shown by the boxplots are more pronounced, specially between the
ordered and the chaotic networks. In order to assert that the two
distributions are significantly different, we use the Wilcoxon test, a
statistical hypothesis test used when comparing two related samples
on a single sample to assess whether their distribution means are equal.
We perform the test for each pair of distribution and the results are
reported in Table 5.4:

Networks Test Result

Regime 1 Regime 2 p-value

Ordered Chaotic 0.0008203

Ordered Critical 0.2244

Critical Chaotic 0.03997

Table 5.4: Wilcoxon test results between initial network regimes

Whereas usually is considered statistically relevant a p-value under
0.02 or 0.05, these values provide an interesting overview: while the
autocorrelation distribution of ordered and critical networks do not
differ, the difference is quite relevant between critical and chaotic and

61

62 CHAPTER 5. TEST CASES

statistically significant between ordered and chaotic networks. These
data support our hypothesis about the fact that initial networks dy-
namical regime affects local search effectiveness. Therefore, higher
performance can be obtained where the landscape is smoother, i.e.
typically with networks in ordered regime.

In order to support these hypothesis and analyze the robustness of
the training process, we use the run-time distribution (RTD) method
introduced in Section 4.3.1. RTD represent the probability to obtain a
certain solution quality within a given time, or iteration. These distri-
bution are computed, for each solution quality threshold, by counting
the number of runs that reach the solution quality within a certain it-
eration, and repeating this procedure for a series of values of iterations.
In our experiments, we use steps of 100 iterations and 5 solution qual-
ity thresholds (different between phototaxis and obstacle avoidance).
Therefore, for each plot shown in Figure 5.7 we have 5 RTD curves,
one for each error threshold. Furthermore, these plots highlight again
the differences in the effectiveness of the training, during its progress,
by starting from networks in different regimes. Figure 5.7 shows only
the RTD curves concerning the obstacle avoidance, whereas they are
the most interesting due to the higher complexity of the task to be
performed.

The RTD trends confirm that the training process is faster when
starting from networks in ordered regime and reach better final results.
The critical networks have performance slightly worse but they do not
differ significantly while with the chaotic the much lower slope of all
the 5 curves proves that the training is slower and more complex.

Another interesting method to assess the robustness of the au-
tomatic process is the testing phase. It consists in testing the best
solution achieved in each run over a series of trials, different from
those used during the training phase, and measure its performance.
Through this method, it is possible to realize the robustness of the
training process, that is whether the resulting networks are able to
generalize the task to be performed without fossilize on the training
situations. One thing to point out is that the testing trials should
be of the same nature of the training ones, in order to not introduce
new variables that could distort the evaluation. The plot below (Fig-
ure 5.8) illustrates the results of the testing, classified according to the
initial network regime, for the obstacle avoidance. They are obtained
by testing each final network over 6 trials with different initial rota-
tions w.r.t. the training ones, but chosen in the same range between
120 e 240 degrees). We do not show the results for phototaxis for

62

CHAPTER 5. TEST CASES 63

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Run−Time Distribution Obstacle Avoidance − ordered networks

Local Search Iterations

P
(s

ol
ve

)

error = 0.25
error = 0.5
error = 1.0
error = 1.5
error = 2.0

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Run−Time Distribution Obstacle Avoidance − critical networks

Local Search Iterations

P
(s

ol
ve

)

error = 0.25
error = 0.5
error = 1.0
error = 1.5
error = 2.0

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Run−Time Distribution Obstacle Avoidance − chaotic networks

Local Search Iterations

P
(s

ol
ve

)

error = 0.25
error = 0.5
error = 1.0
error = 1.5
error = 2.0

Figure 5.7: Obstacle avoidance RTDs. Ordered (left), critical (right)
and chaotic (center)

reasons of brevity since they are very similar.

What emerges from the plot is that the results of the ordered and
the critical networks remain good with a slight deterioration, proving
that the most of the final networks of these runs are able to generalize
the task. The worsening of the chaotic is more significant but, in
general, the plot reveals a high degree of robustness of the process.

Given these results we want to focus now on the ordered networks,
trying to figure out some aspect that can be the basis for their better
performance w.r.t. the other network regimes. An interesting feature
is the trend of the number of visited state by the network in its state
space during the training process. Such property is an indirect yield
of the optimization algorithm. In fact, our automatic design method-
ology works only on the Boolean functions, i.e. on the structure of

63

64 CHAPTER 5. TEST CASES

●

●
●

●

●
●

ordered critical chaotic

0
1

2
3

4
5

6

Obstalcle Avoidance Testing N=20

Networks

E
rr

or

Figure 5.8: Obstacle avoidance testing results

the networks, without deal with space state concerns. The state space
features that stem during the training process could be interesting in
order to understand whether there exists a connection between the
search process and the corresponding behavior of the candidate solu-
tions inside their state space. In this context, by overlapping the trend
of the number of visited state with the one of the objective function
values for a typical case, we try to understand if the two quantities
are related. Moreover, this method can reveal how the changes in
the number of visited states affect the objective function trend. Fig-
ure 5.9 shows a typical case of overlapped trends during the obstacle
avoidance training of an ordered network.

The plot suggests that the initial network visits a very limited
number of states, as expected for an ordered network. Initially, the
search algorithms try to quickly increase this number in order to have
a wider number of possible dynamics and enhance consequently the
probability to find a good solution. This mechanism can be seen as the
method exploited by the search process to achieve the search diversifi-
cation. Once a good solution has been found, we have a second phase
in which the process tries to optimize this solution (intensification),

64

CHAPTER 5. TEST CASES 65

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

25
0

30
0

35
0

x

st
at

es

0
1

2
3

4
5

6

ob
jf

states
objf

Figure 5.9: Overlapped trends of visited states and objective function
values during obstacle avoidance training (1000) iterations

reducing and wrapping the visited states. In this phase the value of
the objective function is subject to small changes. Finally, both the
objective function and the number of states are stabilized, the latter
in particular, on a number extremely low (≈ 50) with respect to the
dimension of the state space (220). This means that the design process
is able not only to achieve solution that perform the target task, but
it shows also the ability to optimize the utilization of the state space.
This trend is typical of the ordered network, while the other network
have different behaviors inside the state space during the training. In
particular, as Figure 5.10 highlights in a typical case, with chaotic
networks the number of nodes steadily increases and never converges
whereas the critical network remains between the other two.

The number of states assumed by the solutions during the training
is not the only dimension that we can analyze. In particular, we want
now to show the connection between the progress of the automatic
design process and another dimension, that is the statistical complex-
ity [40]. The statistical complexity is computed on the basis of two

65

66 CHAPTER 5. TEST CASES

0 200 400 600 800 1000

50
10

0
15

0
20

0
25

0

Obstacle Avoidance states distribution−N=20

Iterations

N
. S

ta
te

s

Ordered
Chaotic
Critical

Figure 5.10: Number of visited state’s trends comparison between the
three different network regimes during the training

other quantities: entropy and disequilibrium. The former is the mea-
sure introduced by Shannon [41] which quantifies the expected value
of the information contained in a random signal, or in a system. The
entropy of a system with N accessible states with probabilities to be
visited p1, ... , pN is calculated as follows (binary alphabet used to
encode the states):

H = −
N∑
i=1

pi log2 pi (5.1)

The latter is a kind of distance from the actual system configu-
ration to the equilibrium (the more states the system assumes, the
further it is from the equilibrium). The disequilibrium is calculated
as follows:

D =
N∑
i=1

(pi −
1

N
)2 (5.2)

66

CHAPTER 5. TEST CASES 67

The complexity is defined as the product between entropy and dis-
equilibrium: C = H×D. For our analysis we compute the complexity
value of each candidate solution encountered during the search pro-
cess, by measuring these quantities on the trajectory performed by the
network over the state space. Therefore we have the complexity trend
during the whole training.

What we want to prove is that there exists a correlation between
the complexity trend and the significant variation of the objective
function value. In particular, we are interested in highlight the fact
that relevant improvements of the objective function correspond to a
complexity increase. In order to do that, we exploit a measures em-
ployed in the signal processing discipline, the cross-correlation [42].
Cross-correlation is a measure of similarity of two waveforms as a
function of a time-lag applied to one of them. Computing the discrete
cross-correlation between the complexity and the objective function
trends, we obtain for each run of the experiments a measure of the
similarity of the two signal over a time series. One thing to remark
is that these values refers to the measure of cross-correlation corre-
sponding to a subset of the improvements, since we want to focus on
the most relevant ones. To this end, for each run, we sample the val-
ues of the two trends at each improvement at least as significant as
the tenth, sorting by relevance, of the run. Since we are interested in
the simultaneous correlation in the two trend changes we focus, for
each run, on the value of cross-correlation corresponding to Lag = 0.
Finally, we plot all the values obtained through a boxplot that can
reveal the distribution properties. Figure 5.11 shows the results both
for phototaxis (top) and obstacle avoidance (bottom).

The plots show that, in general, there exists an anti-correlation
rather clear between the two trends, which means that relevant im-
provements of the objective function correspond to a complexity in-
crease. In particular the median value of correlation is equals to −0.6
(r = −0.6), and the distribution is compressed towards the value −1.
Moreover, where the correlation is positive the value is low, except for
few outliers, and therefore not very relevant.

This is an interesting result which could mean that the training
process for a given task involves an increase of the complexity of the
system, which leads to a greater learning ability. One attractive idea
could be to exploit this trend to improve the search process that un-
derlies the automatic training process, for instance by adding a term in
the objective function which rewards candidate solutions with higher
complexity.

67

68 CHAPTER 5. TEST CASES

●
●

●

●
●

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Complexity − Objective Function Correlation Phototaxis

●

●

●

●

●

●

●●

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Complexity − Objective Function Correlation Obstacle Avoidance

Figure 5.11: Distribution of Lag 0 correlation between complexity and
objective function values for phototaxis (left) and obstacle avoidance
(right)

Last thing we discuss about the analysis is how the number of nodes
of the Boolean networks employed in the process affect the local search
performance. For this purpose, we increase the number of nodes from
20 to 40 (N = 40) and we execute a new training process. The result
expected is that with the same number of iteration used with 20 nodes,
i.e. 1000, the local search algorithm could not be able to reach quality
results as good as the previous with 20 nodes. The reason is that
the search space and the state space of the networks increase their

68

CHAPTER 5. TEST CASES 69

dimension by a factor 220. Therefore the search algorithm moves in a
much wider space and handles solutions with more variegate dynamics.

●●●
●
●●
●
●●●●●

●
●
●●●●●●

●

●
●

●

●●●

●

●●●
●
●

●

●

●

●●●●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

ordered critical chaotic

0
1

2
3

4
5

6

Result Phototaxis N=40

Networks

E
rr

or

●

ordered critical chaotic

0
1

2
3

4
5

6

Result Obstacle Avoidance N=40

Networks

E
rr

or

Figure 5.12: Distributions of optimized network’s error after 2000 it-
erations for phototaxis (top), and obstacle avoidance (bottom). N =
40

Given these issues, we choose to increase the local search iterations
to 2000 and analyze the results (Figure 5.12).

The boxplots show that the results are similar with respect to the
ones with N = 20 for the ordered networks while are rather worse for
the critical but specially for the chaotic ones. Once again this proves
that the initial network dynamic regime affect the training process

69

70 CHAPTER 5. TEST CASES

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Run−Time Distribution Obstacle Avoidance − ordered networks

Local Search Iterations

P
(s

ol
ve

)

error = 0.25
error = 0.5
error = 1.0
error = 1.5
error = 2.0

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Run−Time Distribution Obstacle Avoidance − critical networks

Local Search Iterations

P
(s

ol
ve

)

error = 0.25
error = 0.5
error = 1.0
error = 1.5
error = 2.0

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Run−Time Distribution Obstacle Avoidance − chaotic networks

Local Search Iterations

P
(s

ol
ve

)

error = 0.25
error = 0.5
error = 1.0
error = 1.5
error = 2.0

Figure 5.13: Obstacle avoidance RTDs with N = 40. Ordered (left),
critical (right) and chaotic (center)

and the quality of the results. These results allow us to state that
the number of nodes of the networks has relevant consequences on the
training process performance. In other words, the number of nodes
must be dimensioned with respect to the target task complexity so that
to obtain the right tradeoff between the required computational ca-
pacity to perform it and a space not too wide which favors the search.
The last plots we report, in Figure 5.13, are intended to support this
argument, illustrating the obstacle avoidance RTDs over the 2000 it-
erations. In fact, the curves show how the process is slower, specially
for the chaotic, compared to the training of 20 node networks.

70

Chapter 6

Dynamic Tasks Learning

In Chapter 5 we undertook two robotic experiments in order to val-
idated our methodology on two simple target task and investigate
some interesting aspects of the training process. In this Chapter we
move to a much more complex target task: dynamic task learning or
task sequence learning. The first goal is to verify the robustness of the
training process in tackling the issue of design BN robotic programs for
complex tasks, confirming the interesting features revealed in Chapter
5. The second goal is to improve the methodology by exploiting some
advanced stochastic local search methods and compare their results.

6.1 Introduction

This chapter aims at testing our methodology on a complex target
task in which the training process has to tackle the issue of designing
BN networks with some advanced dynamical characteristics such as a
form of state memorization.

Beside the validation, the chapter aims at improving the training
process by means of some advanced stochastic local search methods.
Analyzing the different results we focus on the properties of such meth-
ods that are shown to be more effective on the performance. In par-
ticular, we want to support the hypothesis that a restart mechanism,
such as the perturbation performed in the iterated local search meth-
ods, can profoundly improve the results. In general, our speculation
is that the process should alternate deep intensification of the search
in order to reach a local minima, to diversification which leads the
search to visit other regions in order to escape from the local minima.
The simple algorithm employed for the test cases lacks with respect
to the second aspect, since when it reaches a local minima it has no

71

72 CHAPTER 6. DYNAMIC TASKS LEARNING

mechanism that can lead the search out of it.

Finally, we focus on the properties of the training process already
considered for the test cases: the relation between the improvements of
the objective function and some properties of the networks, in partic-
ular in their state space, such as the number of visited state during the
execution and the system complexity. The goal is to confirm the con-
siderations drawn for the test cases: the first is that the search needs
to explore regions with network characterized by a rich dynamic in
order to significantly improve the solution and subsequently optimize
it by reducing the space used in the state space. The second is that
there exists a correlation between the relevant changes of the objective
function and the complexity of the network trajectories.

6.2 Task Definition

Sequence learning is one of the most prevalent form of human and
animal learning. It is a fundamental part of everyday human activi-
ties that range from reasoning to language, from common skills and
abilities to complex problem solving. Sequence learning is a relevant
component in many domains and scientific disciplines, such as plan-
ning, reasoning, robotics, natural language processing, speech recog-
nition, adaptive control, time series prediction, financial engineering,
DNA sequencing. Clearly, each of these different perspectives leads to
a different approach in tackling the sequence learning problem. These
approaches, stemming from various task domains, deal with differ-
ently formulated sequential learning problems and different aspects of
sequence learning.

With some simplifications we can characterize the different formu-
lation of the sequence learning in four main categories [46], that can
be formally defined as follow (in each case, 1 ≤ i ≤ j <∞):

• Sequence prediction: si, si+1, ..., sj → sj+1. That is, given si, si+1,
... , sj, we want to predict sj+1. When i = 1, we make predic-
tions based on all the previously seen elements of the sequence.
When i = j, we make predictions based on only the immediately
preceding element.

• Sequence generation: si, si+1, ..., sj → sj+1. That is, given si, si+1,
... , sj, we want to generate sj+1. (Clearly, sequence prediction
and generation are essentially the same.)

72

CHAPTER 6. DYNAMIC TASKS LEARNING 73

• Sequence recognition: si, si+1, ..., sj → yes or no. That is, given
si, si+1, ... , sj, we want to determine whether this subsequence
is legitimate.

• Sequential decision making (that is sequence generation through
actions): si, si+1, ..., sj; sG → aj. That is, given si, si+1, ..., sj
and the goal state sG, we want to choose an action aj at time
j that will likely lead to sG in the future. In particular, in the
trajectory based version we have si, si+1, ..., sj; sj+1 → aj, that is,
given si, si+1, ..., sj and the desired next state sj+1, we want to
choose an action aj at time j that will likely lead to sj+1 in the
next step. From these definition is noticeable that the sequential
decision making formulation is the most general and it subsumes
all the others.

Sequence learning is clearly a difficult task, due to the fact that
forms of memory structures are needed. Several techniques exist
to tackle the problem, including recurrent neural networks, hidden
Markov model, dynamic programming, reinforcement learning, evo-
lutionary computational models and so on. However, even if the se-
quence learning has been often under-estimated in AI and machine
learning [46], it is still an open problem in many disciplines.

The target task of the last robotic experiment is a form of se-
quence learning. More precisely, the robot has to learn to recognize
a sequence of colors, by performing certain actions. The environment
of the task is a straight corridor of length 7 meters and width 0.5
meters with the exit in the origin of the coordinate system (which
is the coordinate system provided by the ARGoS simulator used to
simulate the experiment [31]). Along the corridor, the ground is com-
posed of three different color: the white color is the background while
the black and the gray colors are the symbols” that can compose a
sequence. In particular, the colors are disposed in such way to realize
a striped ground, with stripes 0.5 meters wide orthogonally arranged
with respect to the corridor direction. The stripe pattern is realized
by alternating a white stripe with a black or gray stripe. In this en-
vironment the robot, placed within the corridor 6.5 meters far from
the exit on the white color, has to move along it, turning the LEDs on
when it encounters a black or gray in the right sequence and keeping
the LEDs off when the color is not in the right sequence. The sequence
of task to perform, in our case, is a cyclic repetition of black and gray.
On the background color, i.e. the white, the robot has to behave as
well as if it was on a wrong color of the sequence, that is keeping its

73

74 CHAPTER 6. DYNAMIC TASKS LEARNING

LEDs off. An illustration of the environment described is shown in
Figure 6.1. The sequence of colors on the floor is just an example of
the possible combinations that can be proposed to the robot on its
path.

Figure 6.1: Sequence learning task corridor environment

The task described can be seen as a form of dynamic task, in which
the robot, i.e. the network that drive the robot, needs to take decisions
dynamically about which task to perform next, on the basis of the
tasks it performed in the past. In other words, the network needs to
exploit some form of memory in order to know which task has been
already performed (turning the LEDs on), and consequently which is
the next task (the next color in the right sequence). This complex task
can easily be ascribed to the category of sequential decision making
discussed, in particular, to the trajectory based version. In fact, the
task of the robot can be seen as a sequence of decisions to make, one
for each color it encounters, which consist in turning the LEDs on on
the right color and keeping the LEDs off on the wrong, i.e. the color
not in sequence.

6.3 Settings

Once the task to be performed is defined, we discuss the experimental
settings required to completely define the training process. In the
following of this Section we present the setup for the Boolean networks
and for the robot, and finally we describe the evaluation methods. The
last component of the training, i.e. the stochastic local search methods
employed, will be discussed in Section 6.4, so as to discuss one of the
most prominent aspects of the thesis in depth.

6.3.1 BN & robot setup

Again the process starts from an initial random Boolean network. In
order to achieve the last task, much more difficult with respect to the

74

CHAPTER 6. DYNAMIC TASKS LEARNING 75

test cases, we choose as first attempt to increase the number of nodes
to 30, i.e., N = 30. The topology, i.e. the inputs, of the networks
are randomly generated with K = 3, which means that each node has
3 ingoing arcs. Boolean functions are also randomly generated with
a p, i.e. the probability to have an entry with 1 as output value in
the Boolean function of a node, which varies. In particular, unlike in
the test cases, we generate 30 initial networks with p = 0.9 (ordered
regime) and 30 networks with a p = 0.788675 (the value which verifies
the critical line equation 2.1). This choice of reducing the number of
networks is due to the increased number of process iterations required
to reach good results. Hence also the choice of dismissing the chaotic
networks, proved to be the least relevant in the test cases, is intended
to economize computational and time resources.

The network are used then as the robot program by defining a
suitable mapping between the robot sensors and the network input
nodes and between the actuators and the subset of output nodes.
In this last experiment, in which the robot needs to move along a
corridor, detect the colors of the ground and turn the LEDs on when
it encounters the right color of the sequence, the devices employed are:
the ground sensor, able to detect the color the robot is moving on, the
wheel motors and the LEDs actuator. We include in the mapping also
the proximity sensors because moving in the corridor the robot might
need, if its trajectory is not straightforward, to avoid the impact with
the walls. The mapping is defined as follow: four frozen nodes encode
the eight proximity sensor states (this mapping is the same as that
used for the obstacle avoidance in Section 5.3.2). The color detected
by the ground sensor is encoded in two input nodes since we need
to encode just three possible colors (white, black and gray). Finally,
we connect two output nodes to the wheel motors, that hence can
assume only the value ON or OFF, and one output node that trigger
the eight LEDs behavior (the robot does not need to use single LED
separately). The complete mapping between perceptions/actions and
node values is shown in Table 6.1, Table 6.2, Table 6.3, Table 6.4.

6.3.2 Evaluation

Once we have defined the mapping between the robot and the BN
program, we execute the BN in such way that its dynamic controls
the robot behavior. The experiment is then simulated over a series of
trials, which differ for the initial condition, and the BN is evaluated
according to the specific target requirements. In order to completely

75

76 CHAPTER 6. DYNAMIC TASKS LEARNING

Input node Node value Proximity state

x0
0 No obstacle detected by IR0 or IR1

1 Obstacle detected by IR0 or IR1

x1
0 No obstacle detected by IR2 or IR3

1 Obstacle detected by IR2 or IR3

x2
0 No obstacle detected by IR4 or IR5

1 Obstacle detected by IR4 or IR5

x3
0 No obstacle detected by IR6 or IR7

1 Obstacle detected by IR6 or IR7

Table 6.1: Mapping between robot proximity sensors and BN input
nodes

Input nodes Node value Color

x4 0
BLACK

x5 0

x4 0
GRAY

x5 1

x4 1
WHITE

x5 1

Table 6.2: Mapping between robot ground sensor and BN input nodes

Nodes Actuators

x6 x7 Left wheel Right wheel

0 0 OFF OFF

0 1 OFF ON

1 0 ON OFF

1 1 ON ON

Table 6.3: Mapping between robot wheel actuators and BN output
nodes

define this process we describe the nature of the trials and the evalu-

76

CHAPTER 6. DYNAMIC TASKS LEARNING 77

Node Actuators

x8 LEDs

0 OFF

1 ON

Table 6.4: Mapping between robot LED actuator and BN output node

ation criteria:

• Trials: in the corridor arena described in Section 6.2, the robot
behavior is tested over 10 different trials. At the beginning of
each of these trial, the robot is placed in the centre of the corridor
6.5 meters far from the exit (6.5,0,0) and with an initial rotation
of 180◦, i.e. perfectly directed towards the exit and the origin
of the coordinate system. Thus, differently from the test cases,
the robot’s initial position and rotation remain the same in all
the trials. This choice aims to focus the process only on the
sequence learning, without increase the complexity by involving
in the experiment other tasks, such as the collision avoidance.
However the robot is not prevented to move towards the walls
as long as it succeeds in avoiding them thanks to the proximity
sensors. What differs between the 10 trials is the pattern of
colors placed on the ground of the arena. More precisely, for
each trial we realize a different sequence of length 6 with color
black and gray, ignoring the white stripes between them. In
the arena depicted in Figure 6.1 is shown one of the possible
sequences realized. During each trial, the robot has to advance
along the corridor and choose the right action to perform for
each color it encounters during its movement. In case of error in
these choices, the trial is immediately stopped. The errors that
a robot can make are listed below (in the definition we use the
term colored to identify black or gray stripes):

– crossing, with the LEDs on, the colored stripe not in the
next sequence position. More precisely, we consider an error
when the robot keeps the LEDs on for a fraction of the total
time it spends on the color, greater or equal than a given
threshold. We set this threshold to a fraction of 1/10 of the
total time on the color.

77

78 CHAPTER 6. DYNAMIC TASKS LEARNING

– crossing, with the LEDs off, the colored stripe in the next
sequence position. Again we decide whether an error occurs
according to a time fraction threshold. In this case the
robot has to keep the LEDs on, on the right color, at least
for a time fraction of 2/3 of the total. Otherwise it is
considered an error.

– keeping the LEDs on for a fraction of time equals or greater
than 1/10 of the total time it spends on a white stripe.

– colliding with a wall.

Given these definitions, we consider that the robot recognize a
color in the right sequence if, and only if, it spends at least 2/3
of the total time on the color with the LEDs on. Conversely, we
consider a color correctly not recognized when the time with the
LEDs on is less than 1/10 of the total. The choice of the first rule
aims at reaching a good tradeoff between a strict policy that do
not allow the robot to make wrong choices and a relaxed line that
grant few errors that might be due, for instance, to the network
dynamic delay. The network dynamic, in fact, might take more
than one tick to propagate a decision to the output from the
instant of time in which an input changes. Employing a too strict
policy in such cases, the network would be unfairly penalized.
This second restriction, instead, is required in order to obtain
results with visually different behaviors on color in sequence or
not in sequence. Summarizing, for each of the 10 trails, the
robot starts with the same initial position and rotation but with
different colored pattern on the floor. During the trials it has to
advance along the corridor towards the exit by recognizing the
right sequence of colors (a cyclic repetition of black and gray)
and, if necessary, avoiding collision with walls. Otherwise, in all
the cases listed above, the robot is immediately stopped in its
current position and the trial ends. We empirically estimate the
amount of time required in order to cover the entire corridor in
130 seconds. Like in the other experiments, the simulation is
time discrete, which means that each second a certain number
of steps (or ticks) are performed. During each tick, the robot
perceives the environment through its sensors, selects the action
to perform, and finally actuates it.

• Evaluation criteria: given the configuration described, the
performance value assigned to each trial, that is the objective

78

CHAPTER 6. DYNAMIC TASKS LEARNING 79

function to be minimized by the training process, is defined as
follow:

E = 1− (α · (1− d) + (1− α) · tr
ttot

) (6.1)

In the equation 6.1, d is the normalized distance of the robot to
the center of the coordinate system (the corridor exit) at the end
of the trial. The term tr ttot represents the fraction of the total
time of the trial, in which the robot has a good behavior, in terms
of the state of the LEDs. In other words, ttot is the total length
of the trial, in terms of the number of ticks elapsed before the
termination (due either to the expired time or an error occurred
among those listed above). tr, instead, counts the number of
ticks during which the robot maintains the LEDs in the right
state: off when it is on the color not in sequence and on the white
color, and on when it is on the color in sequence. This fraction is
particularly useful to distinguish between network that commit
an error at the same distance from the exit: this situation, in
fact, is very likely due to restrictive policy employed. Thanks to
this term we can therefore provide higher rewards to networks
that have better performance on the color than networks that
reach the same distance but with worse performance. The term
has value 1, when a robot perfectly actuates its LEDs during its
life”. Note that the performance defined as in equation 6.1 allows
the experimenter to favor the final distance term with respect to
the one of the LEDs performance changing the value of α. For
our experiments we use an α = 0.8 in order to favor the term
of the final distance of the robot to the exit, since this term is
the one that best fits the performance measure concerning the
sequence recognition. The other term is useful, as mentioned,
for the discrimination between networks with similar behavior.

Once we have the performance in each trial, the final evaluation
assigned to a network is given by the worst case, which means
the worst performance obtained in the 10 trials. This choice,
different from the one made for the other experiments, aims at
not suffering the likely variability of the 10 performance mea-
sures. The different colored patterns, in fact, are likely to cause
large differences in the 10 evaluations of the same network. The
worst case performance selection, differently from the average,
is intended to limit this problem and finally provide networks

79

80 CHAPTER 6. DYNAMIC TASKS LEARNING

with good behavior in all the situations.

6.4 SLS Techniques

In this Section we describe, with respect to the sequence learning
task, the aspect of the methodology that is the heart of the thesis:
the metaheuristic techniques employed for the automatic design of
BN robot controllers. In particular, for this experiment we use four
different SLS methods in order to exploit their different properties
and better understand the features that can be useful for this kind
of problems. In the following we will describe each of the techniques,
while for the results and the final comparison we refer to the Section
6.5.

SD

The first algorithm employed is the one we used for the two test cases,
i.e. the Stochastic Descent (SD), which despite its simplicity proved
to be very effective. A general outline of the algorithm is depicted
in Figure 5.2. In our case, the initial solution is randomly generated
according to the settings described in Section 6.3. The neighborhood
relation is defined, like in the test cases, by randomly choosing a node
and then flipping a random bit in its Boolean function. The pair
formed by the node and the Boolean function position is uniformly
sampled with replacement, which means that once a neighbor has
been sampled and rejected we do not remove it from the neighbors
ensemble. The consequence is that the neighbors ensemble will never
be empty and the algorithm will be executed until the timeout expira-
tion. Again, we accept a new candidate solution even if its evaluation
is equal or slightly worse (by an epsilon = 0.0001) than the current
one. These sidewalks aim to prevent the instant stagnation of the
search process inside the plateau regions and to enhance the explo-
ration capacity of the algorithm.

ILS+SD

The second version of algorithm used for the training process is an
hybrid technique which exploit the straightforward stochastic descent
along with a mechanism for effectively escaping from the local min-
ima in which the SD can get stuck: iterated local search. The idea is
therefore to intensify the search with the SD until it reaches a local

80

CHAPTER 6. DYNAMIC TASKS LEARNING 81

minima, and then apply a perturbation to the current optimal solution
to diversify the search and hopefully reach other improvements. The
outilne of the algorithm is the one illustrated in Figure 4.4. The in-
ternal local search procedure is the stochastic descent described above
with a simple variation: we allow the sidewalks but if the local search
can not find an improvement solution within a certain number of steps,
we assume that the search is stocked. In such cases, we stop the search
procedure to exploit the ILS perturbation mechanism in order to es-
cape from the local minima. The perturbation method is chosen so
that it is not too close to a random restart, while keeping the per-
turbation computationally fast and easy to implement. It consists of
performing a random flip in the Boolean function of each node. The
acceptance criterion is the same employed for the internal SD: accept
a new candidate solution if it is better, equal or slightly worse than
the current best one. Again this choice aims to achieve a substantial
search diversification, since the new cycle of perturbation and local
search will start from the new current candidate solution.

ILS+VND

As discussed in Chapter 4, there exist several methods designed to
help a local search procedure to escape from a local optima. Another
method we employ, beside the ILS perturbations, is based on the idea
of changing the neighborhood relationship whenever the search gets
stuck. This idea is at the basis of the Variable Neighborhood Descent
(VND) algorithm, whose outline is shown in Figure 4.1. In particular,
in our solution, the neighborhood relations are characterized by the
number of random flip performed to obtain from the current solution
the neighboring one. The algorithm starts with neighborhood N1,
that is the simple neighborhood defined by randomly choosing a node
and flipping a random bit in its Boolean function, like in the SD.
Whenever no further improvements are found for a certain number of
steps, the algorithm continues the search with the neighborhood N2,
which means performing two random flips at a time and so on until
the last neighborhood relation defined k. If the search can not still
find further improvements within the maximum number of iterations,
the search is stopped. During this process, whereas an improvement
solution is found, the neighborhood relation is switched back to N1.
Once again we decide to allow sidewalks in order to move the search
process as much as possible but without, in these cases, switch the
neighborhood back to N1. The algorithm described is employed as the

81

82 CHAPTER 6. DYNAMIC TASKS LEARNING

local search procedure inside the ILS mechanism in order to exploit its
properties inside a method that allow an higher search diversification.
ILS, in fact, can be very effective in escaping from deep local minima
in which the VND mechanism is not enough. The ILS perturbation
and the acceptance criterion remain the same of the ILS+SD.

GA

Another prominent category of metaheuristics, are the Genetic Algo-
rithm (GA) introduced in Section 4.2.3. The general scheme of GAs is
illustrated in Figure 4.6. For this work, we implement a GA through
the open source library EALib [47], which provides the basic primitives
to develop an evolutionary algorithm. More precisely, the algorithm
employed is a simple GA, with a two parents single-point crossover,
mutation that consists in flip a randomly chosen bit in the Boolean
function of a random node and elitism. The selection is performed by
a roulette wheel: the probability of each individual of being chosen
to reproduce in the next generation is proportional to its fitness value
(objective function value).

6.5 Results & Analysis

In this Section we present the results obtained in the sequence learn-
ing training. First, in Section 6.5.1, we discuss the results comparison
between the different stochastic local search techniques employed. Fi-
nally, in Section 6.5.2, we analyze other prominent aspects emerging
from the results. This analysis aims to confirm the results obtained in
the test cases, such as the correlation between the network dynamics
complexity and the objective function improvements.

6.5.1 Algorithms comparison

In order to explore the potential of improving our methodology by
means of advanced stochastic local search techniques, we analyze the
results of the four algorithms described in Section 6.4 in the training
for the complex sequence learning task. Below we briefly describe the
experimental settings for each technique:

• SD: the algorithm has been described in Section 6.4. We exe-
cute 60 independent experiments and each of them corresponds
to an initial different BN (randomly generated as described in

82

CHAPTER 6. DYNAMIC TASKS LEARNING 83

Section 6.3). As mentioned, the algorithm samples a neighbor
from the neighbors ensemble with replacement. This means that
the termination condition is simply the chosen timeout. In par-
ticular, we execute for each experiment a number of iteration
equal to 100000.

• ILS+SD: the version exploits the simplicity of the SD search
procedure along with the potential of a restart mechanism typ-
ical of the ILS. More precisely, the version employed is charac-
terized by a number of external cycles, i.e. of restarts, of 10
iterations. The internal local search procedure is the same SD
described above with a cutoff of 50000 iteration. As mentioned
in Section 6.4 , the unique variation is that the local search is
stopped also if a number of iteration without an improvement is
reached. For this version we use a non-improvements timeout of
20000 iterations. We run 60 independent experiment.

• ILS+VND: this second version of ILS, whose external itera-
tions are also 10, makes use of a different local search procedure
based on the basic idea of the VND. The algorithm passes from
a neighborhood to the next (i.e. from a number of flips to the
next, as explained in Section 6.4) whenever the maximum non-
improving steps are achieved, in our version 5000 iterations. If
a new improvement is found the algorithm switches back to the
first neighborhood and the non-improvements counter is set to
0. Five neighborhood relations are defined, from 1 flip to 5
flips. Whether the non-improving timeout is reached with the
last neighborhood, the local search procedure is stopped. How-
ever, the general timeout of 50000 iterations also stands. Like
for the other methods, 60 independent experiment are executed.

• GA: the GA is a simple GA with a population size of 20 in-
dividuals. The elitism is set to 2, which means that the best 2
individuals of the current population are automatically chosen
for the next generation. This ensures that the best candidate
solutions are always selected. Again we execute 60 experiments
corresponding to an initial different BN generated as described
in Section 6.3. Each of these random BN represent an individ-
ual in the initial population. The others 19 are also randomly
generated by the library primitives [47]. Concerning the genetic
operators, the mutation consists in flip a randomly chosen bit
with probability pmutation = 0.02 while the single-point crossover

83

84 CHAPTER 6. DYNAMIC TASKS LEARNING

has probability pcrossover = 0.1. The selection is a proportional
selection performed by a roulette wheel.

Given these experimental settings, the first thing we present is
the final error distribution comparison of the 60 independent runs of
each algorithm. These results are shown in Figure 6.2. Each boxplot
corresponds to the 60 final error distribution of a different algorithm.

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●●

●●

●

SD ILS+SD ILS+VND GA

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sequence Learning Algorithm Comparison

Algorithms

E
rr

or

Figure 6.2: Sequence learning task corridor environment

In general, the boxplots confirm the complexity of the task, since
the errors are mostly distributed on high values. One thing that must
be said is that the results under the value of 0.3 are all working, which
means that the robots are able to perform the task correctly. The
variability between 0 and 0.3 is due only to a different speed of the
robots along the corridor. Robot with an evaluation of 0.3 are slightly
slower than those with a lower error, and hence they are not able
to reach perfectly the corridor exit, even if their behavior is correct
in terms of sequence recognition. For this reason we report below
in Figure 6.3 a histogram which shows the number of results of each

84

CHAPTER 6. DYNAMIC TASKS LEARNING 85

algorithm in the range 0.0 - 0.3, i.e. the number of final results able
to perform the target task.

SD ILS+SD ILS+VND GA

Sequence Learning Algorithm Results Interval 0.0 − 0.3

Algorithms

R
es

ul
ts

0
2

4
6

8
10

12

Figure 6.3: Final results in range 0 - 0.3 for each algorithm

The histogram supports the information emerged from the box-
plots: the worst algorithm is the simple SD, whose median error is
just under 0.6 and the number of working results, just 4, is the low-
est. The GA errors distribution is slightly better with a number of
good results that is up to 10. The GA feature which probably leads
to the advantage with respect to the SD is the implicit search di-
versification through which the search process cover more extensive
regions of the search space. However, the two best algorithms are
the ILS+SD and the ILS+VND. The distributions of the final error
are vary similar, with a median slightly over 0.4, and with 11 and 12
working solutions respectively. This results confirm the deep effective-
ness of the search diversification which helps to escape from the local
minima and explore different regions of the search landscape. In the
former, i.e. ILS+SD, the diversification mechanism is exploited by the
ILS method while in the latter, that is ILS+VND, also the internal
local search procedure alternates intensification, during the 5000 pos-
sible non-improving steps, to diversification, when the neighborhood
relation changes in favor of a more perturbative one. In order to sta-

85

86 CHAPTER 6. DYNAMIC TASKS LEARNING

tistically test the differences in the error distributions we execute the
wilcoxon test for each couple of algorithms. The results are reported
in Table 6.5.

Algorithms Test Result

Algorithm 1 Algorithm 2 p-value

SD GA 0.01004

SD ILS+SD 1.427e-07

SD ILS+VND 7.562e-08

ILS+SD ILS+VND 0.5637

ILS+SD GA 0.0002003

ILS+VND GA 5.371e-05

Table 6.5: Wilcoxon test results between algorithms

These results confirm the observations: a significative difference
stands between the SD and the other three methods. The two methods
which make use of the ILS have significantly better performance also
with respect to the GA. Then, between the two techniques, there is no
significative statistical difference, even if the ILS+VND is confirmed
to be slightly better. To further corroborate these information, we
present in the following the histogram (Figure 6.4) which illustrates
the number of results, for each algorithm, in the range between 0 and
0.5. The plot provides evidence to the fact that the two algorithm
with the ILS are able to generally reduce the error, leading almost all
the runs to a final error under the 0.5. The GA and the SD are instead
rather worse, succeeding in such exploit in less than the half of runs
for the former and in just 14 runs for the latter.

Up to now, we have compared the algorithm results after their
entire execution. This is not completely fair, since the algorithms
have different experimental settings and they could execute different
number of iterations. Moreover, the iterations can have a different
nature: for example an iterations of the GA is completely different
with respect to the iterations of the other three methods, since each
GA iteration handle a population of candidate solutions rather than a
single solution. For these reasons, to fairly compare the algorithm be-
havior another method has to be employed. The method is the RTDs,
already used in Section 5.5, which shows the probability distribution
that an algorithm finds a solution of a given quality within a certain

86

CHAPTER 6. DYNAMIC TASKS LEARNING 87

SD ILS+SD ILS+VND GA

Sequence Learning Algorithm Results Interval 0.0 − 0.5

Algorithms

R
es

ul
ts

0
10

20
30

40
50

Figure 6.4: Final results in range 0 - 0.5 for each algorithm

time, or a certain number of iterations. Through this method we can
compare the algorithm behavior in the same period of time with re-
spect to more error thresholds. We decide to carry out our comparison
over a frame of 100000 iterations, choosing 5 different error thresh-
olds. For the GA comparison, we consider an iteration each individual
evaluated during a generation. This means that, with a population
of 20 individuals, each generation is considered as 20 iterations. The
RTD comparison is shown in Figure 6.5.

The y axis is scaled is in the range between 0 and 0.4 since the
target task complexity, as mentioned, has led to a deterioration of
performance. What the plots show is that, over the 100000 initial it-
erations the worst behaved algorithm is the GA, since its distributions
are always under the distribution of the other algorithms. The sim-
ple SD is rather better, but again the two techniques exploiting the
ILS show the best behavior also during the initial 100000 iterations.
Between ILS+SD and ILS+VND there are no significative differences,
since the latter has a slight advantage concerning the lowest thresh-
olds while the situation is reversed for the highest error thresholds. In
order to clearly show the differences between the algorithm behaviors
we report another series of plots (Figure 6.6), each one corresponding

87

88 CHAPTER 6. DYNAMIC TASKS LEARNING

2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
1

0.
2

0.
3

0.
4

Run−Time Distribution Task Sequence − SD

Local Search Iterations

P
(s

ol
ve

)

error = 0.2
error = 0.3
error = 0.4
error = 0.5
error = 0.55

2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
1

0.
2

0.
3

0.
4

Run−Time Distribution Task Sequence − GA

Local Search Iterations

P
(s

ol
ve

)

error = 0.2
error = 0.3
error = 0.4
error = 0.5
error = 0.55

2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
1

0.
2

0.
3

0.
4

Run−Time Distribution Task Sequence − ILS + SD

Local Search Iterations

P
(s

ol
ve

)

error = 0.2
error = 0.3
error = 0.4
error = 0.5
error = 0.55

2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
1

0.
2

0.
3

0.
4

Run−Time Distribution Task Sequence − ILS + VND

Local Search Iterations

P
(s

ol
ve

)

error = 0.2
error = 0.3
error = 0.4
error = 0.5
error = 0.55

Figure 6.5: Algorithm comparison through RTDs. 100000 iterations, 5
error thresholds. SD (top-left), GA (top-right) ILS+SD (bottom-left)
ILS+VND (bottom-right)

to a different error threshold with a line representing the trend of each
algorithm.

These results confirm the effectiveness of the perturbation mecha-
nism exploited by the ILS method, and in general of the diversification
of the search alternated with a deep intensification. In fact, from the
plots emerges that the difference between the simple SD and the ILS
methods arises mostly after the 50000 iterations, that is the point at
which, roughly, the first perturbation is performed. This can be a
starting point for future improvements aimed at exploiting more ef-
fective diversification methods. Moreover, other mechanism can be
employed to improve also the intensification phase, for instance with
a tabu search that can help the search to do not get stuck inside cycles.

88

CHAPTER 6. DYNAMIC TASKS LEARNING 89

2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
1

0.
2

0.
3

0.
4

Run−Time Distribution Task Sequence − 0.2

Local Search Iterations

P
(s

ol
ve

)

SD
GA
ILS+SD
ILS+VND

2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
1

0.
2

0.
3

0.
4

Run−Time Distribution Task Sequence − 0.3

Local Search Iterations
P

(s
ol

ve
)

SD
GA
ILS+SD
ILS+VND

2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
1

0.
2

0.
3

0.
4

Run−Time Distribution Task Sequence − 0.4

Local Search Iterations

P
(s

ol
ve

)

SD
GA
ILS+SD
ILS+VND

2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
1

0.
2

0.
3

0.
4

Run−Time Distribution Task Sequence − 0.5

Local Search Iterations

P
(s

ol
ve

)

SD
GA
ILS+SD
ILS+VND

2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
1

0.
2

0.
3

0.
4

Run−Time Distribution Task Sequence − 0.55

Local Search Iterations

P
(s

ol
ve

)

SD
GA
ILS+SD
ILS+VND

Figure 6.6: Algorithm comparison through RTDs grouped on the basis
of the error threshold. 100000 iterations, 5 error thresholds: 0.2 (top-
left), 0.3 (top-right) 0.4 (bottom-left) 0.5 (bottom-right) 0.55 (center)

89

90 CHAPTER 6. DYNAMIC TASKS LEARNING

A last statistic which can be useful is the time of execution of each
algorithm. In fact, the result distributions shown in Figure 6.2 stem
from algorithms with different number of iterations, and in some cases,
like between the trajectory-based algorithms and the GA, the itera-
tions have heterogeneous execution times. For these reason we show
in Table 6.6 the time stats concerning all the algorithms employed,
distinguishing between the execution over 100000 iterations, used for
the RTDs comparison, and the entire run.

Algorithm
milliseconds

1 Iteration 100000 iterations Entire run

SD 700 7e07 7e07

ILS+SD 700 7e07 3.5e08

ILS+VND 700 7e07 3.15e08

GA 550 5.5e07 2.2e08

Table 6.6: Time stats comparison

The Table shows that the GA iterations are in general faster, prob-
ably thanks to the internal optimization of the open-source library
used for its implementation [47]. Moreover, since the single iteration
time is the same for the other three methods, the interesting value is
the last, concerning the total run execution. Apart from the simple
SD executed for just 100000 iterations, there is a difference between
the ILS+SD and the ILS+VND in terms of mean number of iterations
executed and, consequently, in terms of total execution time. This is
due to the experimental settings, in particular to the non-improving
counter setting. In the former method, in fact, the non-improving
timeout is probably excessively high and this leads the algorithm to
reach the timeout of 50000 in each local search procedure. In the
latter, instead, the changing neighborhood mechanism leads, in gen-
eral, to a earlier termination and consequently a lower number of total
iterations executed.

6.5.2 Analysis

After the algorithm result comparison we want to focus on the prop-
erties of the results in order to confirm the observations carried out
for the test cases. More precisely, we want to analyze the trend of the

90

CHAPTER 6. DYNAMIC TASKS LEARNING 91

two quantities already considered in the test cases, during the train-
ing process. Before the analysis we need to make some preliminary
remarks: the complexity of the target task have huge effects on the
data collection. In fact, the high number of iterations needed to reach
good results, and the limited number of final networks able to perform
the task, significantly limit the data to be analyzed. For these reasons,
in the following we analyze some typical representative cases, trying
to draw considerations and conjectures.

The first quantity we analyze is the number of visited states by
the network in their state space during the training process. Like for
the test cases, our hypothesis is that there exist a connection between
the local search improvements and the trend of the number of states
visited by the networks inside their state space during their execution.
In order to investigate this aspect we report two plots (Figure 6.7)
about two different working network training, in which the objective
function trend is overlapped to the trend of the umber of visited state.

0 10000 20000 30000 40000 50000 60000

0
50

10
0

15
0

20
0

25
0

30
0

35
0

States number−error function trend

Iterations

st
at

es

States number−error function trend

0.
2

0.
4

0.
6

0.
8

er
ro

r

states
error

0 10000 20000 30000 40000 50000 60000

0
50

10
0

15
0

20
0

States number−error function trend

Iterations

st
at

es

States number−error function trend

0.
2

0.
4

0.
6

0.
8

er
ro

r

states
error

Figure 6.7: Overlapped trends of visited states and objective function
values during task sequence training of 60000 iterations. Two different
networks

The execution is limited to 60000 iteration in order to limit the
memory resource needed to store the entire trajectories of the net-
work during the training. The plots are very interesting because they
show that the learning process seems to be incremental, i.e. the robots
learn to recognize a color after the other and finally to generalize to
a cyclic sequence. Moreover, the moments in which the objective
function value significantly decrease its value, correspond to peaks in
the number of state trend. Again we can speculate that there ex-

91

92 CHAPTER 6. DYNAMIC TASKS LEARNING

ists a parallel between the search space and the state space and the
search process needs to explore in regions of the landscape in which
the networks have a high number of visited states in order to obtain
an improvement (exploration phase). Subsequently the search opti-
mizes this results by wrapping and grouping the states (exploitation
phase). This second phase affects the objective function value with
small changes, probably due to the optimization and generalization
which stem from the described grouping. This trend is repeated for
all the improvements, but the most significative for our task is the
improvement that leads the objective function under the threshold of
0.4. The reason is that the networks with an evaluation greater than
0.4 are able to recognize at most a single occurrence of the sequence,
while under the 0.4 they start to recognize the cyclic sequence. Thus,
we can see this improvement as the moment in which the process fully
generalize the task. Interestingly, in both the two plots, this moment
corresponds to the highest peak of the number of visited states. This is
another attractive feature that in the test cases could not be such ev-
ident, due to the simplicity of the target tasks. Such feature supports
our hypothesis that the design process needs to explore landscape ar-
eas where the solution are richer, in terms of dynamic properties, to
find a solution which can perform a given task. Moreover it seems
that the more the task is complex, the richer must be the dynamics
in order to find a solution, which will be subsequently grouped and
optimized again.

Last thing we want to highlight about the plots is that, in general,
the number of states visited during the whole process is rather limited,
slightly greater then for the simpler test case tasks. This is another
important property of our methodology, which seems able to econo-
mize the resources and the state space. For a detailed description of
the final internal organization of the networks and their dynamical
properties that give raise to features, like the memory needed to solve
this complex task, we refer to the work [29].

The second quantity we want to put in relation with the learning
trend is the network dynamic complexity. The definition of statistical
complexity is the same given in Section 5.5. Like for the test cases
we compute the cross-correlation between complexity values and the
objective function values, focusing on the topical moment, i.e. on the
most relevant improvements. To this end, we sample the values of the
two trends at each improvement at least as significant as the tenth,
sorting by relevance, of the run. Then, we focus on the value of cross-
correlation corresponding to Lag = 0, since we are interested in the

92

CHAPTER 6. DYNAMIC TASKS LEARNING 93

simultaneous changes of the two trends. The values obtained for the
two networks under examination are reported in Table 6.7.

Network Cross-correlation at Lag = 0

Network 1 -0.8808433

Network 2 -0.7077384

Table 6.7: Cross-correlation between complexity and objective function
at Lag 0 for the two networks analyzed

Two values are clearly not enough to provide evidence, but can
be stated that they support our first analysis: in general, there ex-
ists an anti-correlation between the two quantities, which means that
relevant reductions of the objective function correspond to a complex-
ity increase. As discussed for the test cases, after a deeper analysis
of such data in order to verify that these results statistically stand,
these information could be used to improve the methodology. The
search method, for instance, could be designed so as to favor solu-
tions with higher complexity in order to lead the process to quicker
improvements.

93

94 CHAPTER 6. DYNAMIC TASKS LEARNING

94

Conclusion

In this thesis we employed an automatic design methodology in order
to synthesize BN-based programs for robots able to perform a given
task. Treating the design problem as a search problem, the methodol-
ogy is composed of two main components: the robot program model
and the metaheuristic technique used for the design process. Con-
cerning the robot program model we have used the Boolean networks,
whose dynamics is suitable to realize complex behaviors notwithstand-
ing the simplicity of the model. Moreover the dynamical behavior can
be studied and analyzed. For the second component we have utilized
the stochastic local search methods.

The design process has been treated as an optimization combi-
natorial problem. More precisely, the optimization algorithm works
on the Boolean functions of nodes, considered as the set of decision
variables, in order to find the assignment which maximizes the robot
performance.

Starting from these definitions, we have employed the methodol-
ogy on two test cases whose target tasks are very basic robotic task:
phototaxis and obstacle avoidance. These experiments have aimed at
revealing some prominent and attractive aspects of the learning pro-
cess thanks to the huge amount of data collected. In particular, we
have proved the robustness of the methodology in tackling these exper-
iments showing, for example, the excellent results obtained with the
simplest stochastic technique and the ability of generalizing the task.
Moreover, we have studied some properties of the search landscape,
such as the landscape autocorrelation, that can affect the result qual-
ity. In this context, we have shown that the dynamical properties of
the initial solution, i.e. the initial RBN, can impact the performance
of the search process. Initial solutions which lead to more uncorrelated
landscapes, i.e. networks in chaotic regime, cause a deterioration of
the search performance. Furthermore, we have proved how the choice
of the number of nodes of the BNs can deeply affect the performance
of the process: it is crucial to find the right tradeoff between the re-

95

96 CHAPTER 6. CONCLUSION

quired computational capacity for the target task and a small search
landscape which can help the search algorithm.

An attractive study carried out concerns the link between the im-
provements during the training and the properties of the networks:
we have shown that relevant improvements in the search landscape
correspond to particular effects on the dynamical features of the net-
works, especially on the number of states visited. Precisely, the search
method needs to move towards networks with rich dynamics in order
to find a good solution and subsequently, with slight improvements,
it optimizes this solution by grouping the states and generalizing the
task. Furthermore, we have provided evidence that there exists a sig-
nificative anti-correlation between the trend of the relevant objective
function improvements and the complexity of the network dynami-
cal behaviors. These studies show that, even if the search algorithm
and the network dynamics operate in two different spaces not directly
bound, during the learning process a relation is, in some respect, es-
tablished.

Finally, the methodology has been employed for the dynamic task
learning task, more complex due to the form of memory required to
be performed. This last experiment has aimed at confirming in a
complex scenario the interesting results obtained in the test cases
and proposing important improvements for the methodology. After
demonstrating the lack of the simple stochastic descent in tackling
the task, we have proposed different techniques with improved fea-
tures of search diversification, such as the iterated local search. Then,
we have also refined the search intensification phase by utilizing tech-
niques of variable neighborhoods. Finally, from the results comparison
and the depth analysis, we have drawn important consideration about
the best mechanisms that can improve the methodology and help to
achieve a good tradeoff between intensification and diversification.

The results achieved during the work leave open several possible
future developments. The first will be the employment of the method-
ology for complex target tasks composed by single subtasks, assessing
how this affect the process. For instance, the last experiment under-
took, i.e. the dynamic task learning, can be enhanced with obstacle
avoidance issues or random walking in a wider arena. Then, studying
in depth the correlation between the search process and the dynamic
features of the networks, the methodology can be improved by exploit-
ing this property: an idea can be the insertion of a new term in the
objective function the leads the search towards solutions with certain
dynamical characteristics (e.g. a higher number of visited states in

96

CHAPTER 6. CONCLUSION 97

order to achieve a solution which can perform the target task). More-
over, other parameters cold be subject to automatic design, such as
the number of nodes and the topology of the networks. The former as-
pect, especially, has been proved to have a strong effect on the design
performance. Other studies should reveal the relation between the
task complexity and the number of nodes required in order to solve it.

Another future work will be the employment of other stochastic
local search methods in order to improve the methodology perfor-
mance. This goal can be reached by optimizing the search behavior
both concerning the intensification and the diversification. An idea
could be, for instance, to avoid loops in the search movements by ex-
ploiting techniques which utilize information about the search history
(e.g. tabu search).

Finally, an attractive idea could be to divide the automatic design
process in the two stages: in the first, an algorithm (e.g. ant colony
optimization) can set up the optimal topology and during the second
another method can optimizes the Boolean function assignments in
order to solve the given task.

97

98 CHAPTER 6. CONCLUSION

98

Bibliography

[1] Kauffman, S. Metabolic stability and epigenesis in randomly con-
structed genetic nets Journal of Theoretical Biology 22, 437467
(1969)

[2] C. Gershenson. Introduction to random boolean networks
CoRR,nlin.AO/0408006, 2004.

[3] S. Benedettini et al. Learning Boolean Networks Elsevier Editorial
System(tm) for Neurocomputing

[4] B. Mesot, C. Teuscher. Deducing local rules for solving global tasks
with random Boolean networks Physica D 211 (2005) 88106.

[5] S. Kauffman. The Origins of Order: Self-Organization and Selec-
tion in Evolution Oxford University Press, UK, 1993.

[6] Aldana, M., Balleza, E., Kauffman, S., Resendiz, O. Robustness
and evolvability in genetic regulatory networks Journal of Theo-
retical Biology 245 (2007) 433-448.

[7] Ribeiro, A., Kauffman, S., Lloyd-Price, J., Samuelsson, B., Soco-
lar, J. Mutual information in random Boolean models of regula-
tory networks Physical Review E 77(011901) (2008).

[8] Nykter, M., Price, N., Aldana, M., Ramsey, S., Kauffman, S.,
Hood, L., Yli-Harja, O., Shmulevich, I. Gene expression dynamics
in the macrophage exhibit criticality. Proceedings of the National
Academy of Sciences, USA. Volume 105. (2008) 1897-1900

[9] Kauffman, S. A. Investigations Oxford University Press (2000).

[10] C.G. Langton. Computation at the edge of chaos: phase transi-
tions and emergent computation. Phys. D, 42(1-3):12-37, 1990.

99

100 BIBLIOGRAPHY

[11] B. Derrida and G. Weisbuch. Evolution of overlaps between con-
figurations in random Boolean networks. Journal de physique,
47(8):1297-1303, 1986.

[12] Derrida, B. and Pomeau, Y. Random networks of automata:
A simple annealed approximation Europhys. Lett., 1(2):45-49.
(1986).

[13] S.A. Kauffman and R.G. Smith. Adaptive automata based on
Darwinian selection. Physica D: Nonlinear Phenomena, 22(1-
3):68-82, 1986.

[14] Roli, A., Arcaroli, C., Lazzarini, M., Benedettini. Boolean net-
works design by genetic algorithms. In: Villani, M., Cagnoni,
S. (eds.) Proceedings of CEEI 2009 - Workshop on complexity,
evolution and emergent intelligence. Reggio Emilia, Italy (2009),
http://www.aixia09.unimore.it/index.php/workshops/64

[15] Stefano Benedettini et al. Learning Boolean Networks

[16] Andrea Roli et al. Boolean network robotics: a proof of concept

[17] Mattia Manfroni. Towards Boolean network design for robotics
applications

[18] A. M. Turing. On computable numbers, with an application to the
entscheidungsproblem Proceedings of the London Mathematical
Society, 42(2), 230-265 1936

[19] A. Newell and H. A. Simon. The logic theory machine: A complex
information processing system IRE Transactions of information
theory, 1956.

[20] A. Newell and H. A. Simon. Computer science as empirical en-
quiry: Symbols and search Communications of the ACM, 1976.

[21] R. A. Brooks. A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, 1986.

[22] H. Maturana and F. J. Varela. Autopoiesis and Cognition: The
Realization of the Living. volume 42 of Boston Studies in the
Philosophy of Science. D. Reidel Publishing Company, Dordrecht,
The Netherlands, 1980.

100

BIBLIOGRAPHY 101

[23] T. Quick et al. Evolving Embodied Genetic Regulatory Network-
Driven Control Systems. Department of Computer Science Uni-
versity College London Gower Street, London WC1E 6BT, U.K.

[24] Ansaloni, L., Villani, M., Serra. Dynamical critical systems for
information processing: a preliminary study Villani, M., Cagnoni,
S. (eds.) proceedings of CEEI 2009 - Workshop on complex- ity,
evolution and emergent intelligence. Reggio Emilia, Italy (2009)

[25] Miller JF, Job D, Vassilev VK. Principles in the evolutionary de-
sign of digital circuits part I. Genetic Programming and Evolvable
Machines (2000) 1: 735.

[26] A. M. Turing. Computing machinery and intelligence Mind 49:
433460 (1950)

[27] D. Floreano, L. Keller. Evolution of Adaptive Behaviour in Robots
by Means of Darwinian Selection

[28] S. Nolfi, D. Floreano, O. Miglino, F. Mondada. how to evolve
autonomous robots: different approaches in evolutionary robotics

[29] M. Amaducci Design of Boolean network robots for dynamics
tasks

[30] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klap-
tocz, S. Magnenat, J. C. Zuerey, D. Floreano, and A. Martinoli.
The epuck, a Robot Designed for Education in Engineering. In
Proceedings of the 9th Conference on Autonomous Robot Sys-
tems and Competitions, volume 1, pages 59 - 65, Portugal, 2009.
IPCB: Instituto Politecnico de Castelo Branco

[31] C. Pinciroli et al. ARGoS: a Modular, Multi-Engine Simulator
for Heterogeneous Swarm Robotics

[32] H.H. Hoos and T. Stutzle. Stochastic local search: Foundations
and applications Morgan Kaufmann, 2005.

[33] P. Hansen and N. Mladenovi. An introduction to variable neigh-
borhood search. In S. Voss, S. Martello, I. H. Osman, and C. Rou-
cairol, editors, Meta-Heuristics: Advances and Trends in Local
Search Paradigms for Optimization, pages 433458. Kluwer Aca-
demic Publishers, Boston, MA, USA, 1999.

101

102 BIBLIOGRAPHY

[34] M. Chiarandini, T. Stutzle. An application of iterated local search
to graph coloring problem D. S. Johnson, A.Mehrotra, M. Trick
(Eds.), Proceedings of the Computational Symposium on Graph
Coloring and its Generalizations, pp. 112125.

[35] H. Lourenco, O. Martin, T. Stutzle. Iterated local search F.
Glover, G. Kochenberger (Eds.), Handbook of Metaheuristics,
volume 57 of International Series in Operations Research Man-
agement Science, Springer, New York, NY, 2003, pp.

[36] M. Dorigo, V. Maniezzo, A. Colorni. Distributed Optimization by
Ant Colonies actes de la premire confrence europenne sur la vie
artificielle, Paris, France, Elsevier Publishing, 134-142, 1991.

[37] M. Dorigo and T. Stutzle. Ant Colony Optimization MIT Press,
Cambridge, MA, USA, 2004.

[38] J. H. Holland. Adaptation in Natural and Artificial Systems Uni-
versity of Michigan Press, Ann Arbor, 1975.

[39] Goldberg, D. Genetic algorithms in search, optimization and ma-
chine learning. Addison Wesley, Reading, MA (1989).

[40] Ricardo Lopez-Ruiz, Hector Mancini, Xavier Calbet. A Statistical
Measure of Complexity.

[41] Shannon, C.E., Weaver, W. The Mathematical Theory of Com-
munication. University of Illinois Press, Urbana, Illinois (1949).

[42] http://en.wikipedia.org/wiki/Cross-correlation.

[43] O. Miglino H. H. Lund S. Nolfi. Evolving Mobile Robots in Sim-
ulated and Real Environments.

[44] http://aass.oru.se/Agora/FLAR/HFC/home.html

[45] Craig Reynolds. Steering Behaviors For Autonomous Characters,
Boids Web Page, Flocks, Herds, and Schools: A Distributed Be-
havioral Model. 1987 Siggraph Paper

[46] Ron Sun. Introduction to sequence learning CECS Departement,
University of Missouri Columbia, MO 65211, USA

[47] Martin Kreutz, Bernhard Sendhoff and Christian Igel. EALib: A
C++ class library for evolutionary algorithms Institut fur Neu-
roinformatik, Ruhr-Universitat Bochum

102

