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ABSTRACT 

 

La chiodatura dei terreni è una tecnica di consolidamento del terreno che 

consiste nell’inclusione di elementi di rinforzo (solitamente barre d’acciaio) in 

un terreno di riempimento, successivamente rivestiti con uno strato di malta 

cementizia. L’unione di questi elementi con il terreno e il paramento, 

costituisce la formazione di una struttura omogenea con funzione di sostegno e 

rinforzo di pendii instabili. 

La tecnologia del soil nailing è largamente utilizzata in tutto il mondo per il 

sostegno di muri in terra verticali o, più generalmente, per il sostegno di pendii 

con un’inclinazione che in condizioni normali non permetterebbe il 

raggiungimento di uno stato di equilibrio. Una quota parte significativa dei 

costi realizzativi di una struttura costruita con la tecnica del soil nailing è da 

attribuire alla scelta costruttiva di realizzare una parete rigida in calcestruzzo 

come paramento. 

Le potenzialità, in termini costruttivi, economici e ambientali nell’utilizzo di un 

paramento flessibile, realizzato con una maglia esagonale in acciaio, 

solitamente utilizzata per le opere di ritenuta di massi, in alternativa alla scelta 

costruttiva di realizzare un paramento rigido in calcestruzzo, sono studiate in 

questa ricerca. 

E’ importante precisare che muri in terra a forte inclinazione, che solitamente 

sono caratterizzati da una mobilitazione del terreno di notevole entità, nei quali 

entrano in gioco forze di elevato ordine di grandezza, richiedono comunque la 

realizzazione di un paramento rigido, che assicura stabilità alla struttura stessa. 

L’utilizzo di paramento flessibile per pendii con forte inclinazione è comunque 

possibile se le deformazioni che nascono non interferiscono con strutture 

limitrofe. 

Questa tecnica presenta anche un minor impatto ambientale rispetto ad una 

struttura con paramento rigido, in quanto la crescita di vegetazione è concessa 
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e nella maggior parte dei casi voluta con la costruzione dei cosiddetti muri 

verdi. L’uso di maglie in acciaio rappresenta una soluzione economica anche 

per questo aspetto, perché con la crescita di vegetazione si elimina la necessità 

di progettare un sistema di drenaggio per eliminare le pressioni interstiziali nel 

terreno. 

Sebbene l’utilizzo di questa tecnologia è in continuo aumento, non esistono 

metodi di progetto specifici per la loro costruzione. Sono presenti solo approcci 

empirici che forniscono solamente indicazioni generali. 

Per questo motivo e con l’intento di studiare e analizzare il comportamento di 

strutture realizzate con la tecnica del soil nailing a paramento flessibile, 

modelli numerici alle differenze finite realizzati col software di modellazione 

geotecnica FLAC
3D

 e modelli numerici agli elementi finiti sviluppati con il 

software per il calcolo strutturale, Straus7, sono stati implementati e studiati in 

questa ricerca. 

Con il software di modellazione geotecnica sono stati studiati e analizzati sette 

differenti modelli di struttura, differenti tra loro principalmente per la diversa 

tecnologia costruttiva del paramento (rigido, flessibile, deformabile) e per le 

caratteristiche del pendio e degli elementi utilizzati. Da questi modelli, 

dapprima, si è analizzato il differente comportamento tra le diverse strutture 

(deformazioni, stress nei chiodi e stress sulla facciata) comparandole tra di loro 

e in seguito le strutture realizzate con paramento flessibile sono state prese in 

considerazione per la seconda parte della modellazione, che è stata effettuata 

utilizzando il software agli elementi finiti Straus7. Con questo secondo 

software si è modellizzata numericamente la maglia esagonale di acciaio 

utilizzata come paramento strutturale, considerando diverse dimensioni delle 

aperture (60 x 80 mm, 80 x 100 mm, 100 x 120 mm), applicando ad esse lo 

sforzo membranale calcolato nei precedenti modelli alle differenze finite 

comparandoli con la tensione nominale della maglia, che in questo studio è 

stata considerata di un valore di circa 350-500 N/mm
2
 (Maccaferri 

Rocknetfall). 
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Si è realizzato quindi un modello multi-scala della maglia in acciaio esagonale, 

comparando lo sforzo membranale agente sull'intera maglia in acciaio (studiata 

come elemento unico e omogeneo) allo sforzo totale di fibra agente nel singolo 

elemento componente la stessa. In questo modo si è fatta l'ipotesi che il 

modello in macro-scala non sia reagente a sforzi di momento flettente ma 

solamente a sforzi membranali, mentre nel modello in micro-scala, i vincoli tra 

i singoli elementi sono considerati rigidi (ipotesi derivante dalle proprietà 

dell'acciaio) e quindi reagenti anche a sforzi di momento.  

Con queste semplificazioni è possibile dimostrare come la maglia esagonale di 

acciaio abbia funzione di controllo dell’erosione nel caso di bassi valori 

dell’angolo di inclinazione del pendio mentre all’aumentare della pendenza, 

l’elemento espleti anche funzione strutturale.  

Inoltre l'utilizzo di una maglia con aperture larghe con funzione strutturale, 

accoppiata ad un geotessile non tessuto con funzione di controllo dell'erosione, 

può permettere un risparmio in termini di consumo di materiale e quindi di 

costi senza compromettere la stabilità strutturale della facciata. 

 

Riassumendo, la tecnica di realizzazione di strutture con la tecnica del soil 

nailing con paramento flessibile rappresenta una valida alternativa alla tecnica 

che prevede un paramento rigido, in quanto la maglia esagonale espleta, se pur 

in maniera ridotta, una funzione strutturale soprattutto di contenimento delle 

deformazioni e, caratteristica fondamentale di questa tecnica, con la possibilità 

di crescita della vegetazione sulla facciata con conseguente impatto ambientale 

nettamente inferiore rispetto al caso di paramento rigido. 

 

Questa ricerca getta le basi per la realizzazione di linee guida per la 

progettazione di una tipologia strutturale in continuo sviluppo che presenta 

vantaggi notevoli rispetto ad altre tecniche di consolidamento presenti. 

  



Abstract 

 

4 
 

 

 



Flexible facing for soil nailing retaining system 

 

5 
 

INTRODUCTION 

 

Soil nails are more or less rigid bars driven into soil or pushed into boreholes 

which are subsequently filled completely with grout. Together with the in situ 

soil, they are intended to form a coherent structural entity supporting an 

excavation or arresting the movement of an unstable slope. 

Soil nail walls are a widely used technology for retaining vertical cuts, nearly 

vertical cuts in soil and any slope which is at an angle steeper than the soil 

parameters would normally permit. A significant portion of the cost of soil nail 

wall construction is related to the construction of a reinforced concrete face. 

The potential for use of a flexible facing design for soil nail walls to replace 

reinforced concrete facing was studied in this research, studying the literature 

data and using three-dimensional finite difference modelling. It is important to 

say that vertical walls will always require concrete facing due to the forces 

involved. However, steep slopes can use flexible facings instead. This 

approach represents also an environmental benefit because of its peculiarity to 

allow the growth of vegetation (green walls). 

Soil nails are structural reinforcing elements installed to stabilize steep slopes 

and vertical faces created during excavations. Commonly used soil nails are 

made of steel bars covered with cement grout. The grout is applied to protect 

the steel bars from corrosion and to transfer the load efficiently to nearest 

stable ground. Some form of support, usually wire mesh-reinforced shotcrete, 

is provided at the construction face to support the face between the nails and to 

serve as a bearing surface for the nail head plates. The use of wire mesh-

reinforced shotcrete facing can require the mobilization of a specialty 

contractor and increase the cost of a project. Use of flexible facing material 

such as geosynthetic, steel wire mesh, or chain link without shotcrete could 

provide significant savings. In recent years, alternative forms of facing support 

for soil nail supported slopes have been used, including steel wire mesh which 

has been successfully applied in Europe. The use of high strength steel wire 
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mesh is economical, eliminates the need of drainage, and facilitates the 

greening of the slopes. 

 

The weight and friction of the mesh material provides stability, and allows 

controlled downward movement of material. More advanced installations 

provide deeper stabilization by holding the mesh to the surface with anchors or 

soil nails throughout. These designs are largely dependent on the ability of the 

system to transfer forces from the facing material to the anchor points. The low 

tensile strength of conventional wire mesh has led to the use of steel wire rope 

nets, but these nets tend to be relatively expensive. These limitations have been 

overcome by the development of a cost-effective diagonal wire mesh 

manufactured from high tensile strength, highly corrosion- resistant wire. 

 

When the wire mesh is used as a facing material, the mesh and nails act 

together as a system to provide stability to the slope, preventing deformations 

in the top layers and restricting movement along planes of weakness. With the 

high strength of the mesh, it is possible (not so common) to pre-tension the 

system against the slope, and the pre-tensioning enables the mesh to provide 

active pressure against the slope, preventing break-outs between the nails. 

Although the use of flexible facings are increasingly common, there is no 

design method for their construction. Only few empirical methods exist and 

they only provide approximate indications. 

 

 

Thesis layout 

 

The aim of this research  is to understand the behavior of a soil nailed structure 

with a flexible facing, hence to find when it represents a cost effective solution 

and which limits it could shows. This aim was discussed in two different points: 
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The first was to investigate the load transfer mechanisms occurring in the 

structure and how they are relevant to the mesh; the second point was to  

determine whether commonly used mesh/nail arrangements have a suitable 

factor of safety. 

 

This will be carried out through a review of the data found in the literature and 

through analytical models developed with the finite differences software 

FLAC3D and the finite elements software Straus7. 

The following chapters examine in further detail the contents of the 

introduction and an explanation of each chapter is outlined below: 

 

Chapter 1: Fundamentals of soil nailing. The review covers the concept of 

soil nailing and its historical application and development throughout the world. 

The review includes the description of different application fields in which soil 

nailing system is used and a brief description of the characteristics of the soils 

in which it can be installed. 

 

Chapter 2: Key mechanisms of behavior. The fundamentals of soil nail design 

are examined. In particular the behavior and the design of the nails focused on 

the description of how they act in the transfer of loads and how they can 

provide equilibrium in the structure in a limit state condition against failure, are 

investigated. 

 

Chapter 3: Facing. The facing system can modify the internal failure 

mechanisms. Three types of facing can be used in a soil nailing design. These 

are soft, flexible and hard. Every type has different characteristics of element 

composing the structure, differences in the design and in the construction. In 

particular, this chapter, is focused on a detailed design of flexible facing 

systems. 
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Chapter 4: Numerical analysis of soil nailed walls with flexible facing. A 

series of FLAC3D finite differences models were constructed to simulate the 

performance of different soil nail walls with steel wire mesh as facing system. 

The aim of this chapter is to simulate and understand the real behavior of  

flexible facing, hence how the stresses develop in the different elements by 

their own stiffness and, in particular it is focused, on the stress developed in the 

facing and how it could be design to be cost effective and safe at the same time, 

compared with the other types of facing. 

 

Chapter 5: Numerical analysis of the stress acting in steel wire meshes. In this 

chapter the coupling stress acting in the geogrid element output with FLAC3D 

models is converted  into a total fiber stress acting in a single element 

composing the steel wire mesh to compare it with the nominal tension strength 

of the wire mesh itself. The aim of this chapter is to understand whether the 

flexible facing system is acting with a structural function or it only can provide 

the function of erosion control. 

 

Chapter 6: Conclusions and recommendations. The research is concluded 

and further recommended research is presented. 
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1. FUNDAMENTALS OF SOIL NAILING 

1.1 Generals 

Soil nailing is a form of soil reinforcement in which the reinforcement is 

installed into the slope face creating a mass stabilised of ground either natural 

soil or an existing fill. Soil nails are made of metallic or polymeric material and 

may be: installed into a pre-drilled hole and then grouted, drilled and grouted 

simultaneously, or inserted using a displacement technique. Most common soil 

nails are installed at a sub-horizontal inclination. 

Nails used in soil nailing method are usually steel bars or polymeric fibres 

(FRP) elements, which resist to tensile, shear and bending forces. It is possible 

to identify two different categories: 

 driven nail, which are small diameter elements (14 to 45 mm) inserted 

into the ground with a small spacing (0.5-4 nails per square meter of 

wall) with a vibro-hammer (pneumatic or hydraulic); steel nails with 

ductile behaviour to avoid brittle fracture mechanisms are preferable. 

This type of installation is quick and cheap, even if it is limited for the 

maximum nail length and for their ineffectiveness in heterogeneous 

soils. 

 grouted nails, which vary  in size from 15 to 46 mm and placed in pre-

drilled holes, large  10 to 15 cm in diameter, with a vertical and 

horizontal spacing that varies depending on the type of land (0.25 - 1 

nail per square meter of wall). The hardening (usually cementation) 

takes place at atmospheric pressure (gravity force) or at low pressures. 

 

The facing is the final element of the work in a soil nailing technique and it is 

produced not only in function of the spacing of the nails, but it depends also on 

the type of the structure, temporary or permanent. The main distinction is 

between hard and soft facings. The first type is preferred for steep slopes and 
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for permanent works, instead soft type is preferred for shallow slopes and/or 

aesthetic finish . 

The technique of reinforcement is considered very useful and cost-effective for 

soils with  the capacity to sustain itself (stand up time) in an excavation 1-2 

meters deep for a period of 1-2 days. Highly weathered rocks are preferred, as 

well as cemented sands and gravels, and uniform sand from medium to fine 

size and soils with water capillary cohesion (with a water content of the order 

of 5%, Byrne et al.1993). However, the method is also applicable to silt soils 

which are located above the aquifer, as well as in cohesive materials and clays 

with low plasticity index. A hard, flexible or soft facing may be used at the 

surface of the slope. These topics will be described in the chapters below. 

 

 

 
Fig.1.0 Main components of soil nailing system  
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1.1.1 Basic mechanisms 

 

The basic mechanism of soil reinforcement relies on tensile forces developing 

in the reinforcement to resist those developing in the soil. To be efficient, the 

orientation of the soil nails needs to correspond closely to the principal tensile 

strain field of the soil. In addition, the resistance of the nails to tensile rupture 

should allow, whether a reduction of properties incomes during the design life 

(i.e. an allowance for corrosion), the maintenance of the structural stability 

without failure. 

The mechanism by which soil nails develop tensile resistance requires some 

relative movements between the soil and the nails. Because of this, soil nailing 

is considered a passive system.  The magnitude and distribution of movements 

will depend on the type of structure, the type of construction and the spacing 

between the nails. 

It is important to say that much research has focused on the behaviour of the 

nails and mechanisms relating to the behaviour of the facing are not well 

understood. 

 

 

1.1.2 Advantages of Soil Nailing 

 

Soil nailing presents the following advantages that has contributed to the 

widespread of this technique in several countries (Abramson et al. 1995): 

 Economy: economical evaluation of a few projects has led to the 

conclusion that soil nailing is definitely a cost - effective technique as 

compared with a tieback wall.  

 Rate of construction: fast rates of construction can be achieved if 

adequate drilling equipment is employed.  
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 Facing inclination: in rigid facings, the use of shotcrete easily 

accommodates an inclined facing, with benefits to overall stability. 

Backwards inclination of the facing also reduces shotcrete losses due to 

rebound.  

 Deformation behaviour: observation of actual nailed structures 

demonstrated that horizontal deformation at the top of the wall ranges 

from 0.1 to 0.3% of the wall height for well-designed walls (Clouterre 

1991, Juran and Elias 1991). 

 Light construction equipment: soil nailing can be done using 

conventional drilling and grouting equipment. Thus the techinique is of 

particular interest on sites with difficult access and limited space 

constraints 

 Adaptability to different soil conditions: in heterogeneous ground where  

boulders or hard rocks may be encountered in softer layers soil nailing 

generally is more feasible than other technique such as soldier piles. 

 Flexibility: nailed soil retaining structures are more flexible than 

classical cast-in-place reinforced concrete retaining structures. 

Consequently, these structures can conform to deformation of 

surrounding ground and can withstand larger total and differential 

settlements. This characteristic of soil nailing can provide economical 

support for excavations on unstable slopes. 

 Reinforcement redundancy: if one nail becomes overstressed for any 

reason, it will not cause failure of the entire wall system. Rather, it will 

redistribute its overstress to the adjoining nails. 

 Environmental benefits: the use of a flexible facing system permits the 

construction of green-walls. 
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1.1.3 Limitations 

 

Soil nailing technique mobilises soil strength and the soil mass deforms, 

leading to displacements in the surroundings of the wall. This can bring 

unacceptable deformation to a sensitive structure in the vicinity of the wall. 

This effect is higher if the soil nailed structure presents flexible facing because 

displacements are bigger than which occurred with hard facing system. 

Placements of the shotcrete requires that the excavated face be free standing 

for a period of time. Corrosion protection requires careful attention in 

aggressive environments. For a flexible facing system the main limitation is to 

achieve steeper inclination, because it is not possible to guarantee the stability 

and the erosion control as in a rigid facing system. Due to this fact, the use of 

flexible facing is not suggested where important displacements could develop.  

 

1.2 Principal differences between soil nailing and other type of 

geotechnical structures 

 

Although soil nailing technique shares certain features with the older and more 

widely known technique of reinforced earth for retaining wall construction, 

there are also some fundamental differences which are important to note. 

Soil nailing structures are realized by a “top-down” technique, which consists 

in free staged excavations usually 1-2 meters deep (the height must be smaller 

than the critical height of cut), followed by the inclusion of nails and by the 

realization of the facing with light cover. This is applied to the achievement of 

the fixed depth (fig.1.1). 

Reinforced earths, on the other hand, are realized with a “bottom-down” 

technique: the soil is made dense and levelled with rollers and then the plain 

reinforcement are laid out and covered by other soil subsequently made dense. 

Also in this case this technique is applied to the achievement of the fixed 

height. 
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Another difference is while in the soil nailing the resistant elements are chosen 

to reinforce a slope or an excavation, for a reinforced earth structures the 

choice must be taken both for reinforcement and soil, opting to the 

combination that offers the best result. In addition the reinforcements in soil-

nailing are mainly bars (items that can be considered one-dimensional), while 

in reinforced earth structures strengthening components are continuous 

elements along the horizontal. 

 

Fig 1.1 Typical nail wall construction sequence (Byrne et al. 1998) 

The main difference between these two kinds of structures, however, concerns 

the forces’ distribution and deformations along the walls and sure enough in 

soil nailing technique the maximum deformation involves the top of the 



Flexible facing for soil nailing retaining system 

 

15 
 

structure unlike the reinforced soil technique where the deformation is bigger 

at the toe. 

The soil nailing system is also used as alternative of soil anchored system. 

Although the used methods are similar, substantial differences exist between 

these two techniques of reinforcement (fig.1.2). 

 

 

 

Fig 1.2 Differences between anchors and soil nails 

 

While the anchors are connected to the ground only in a limited zone hence 

with a limited area where frictional resisting forces are developed, nails are 

completely connected to the ground and the resistance generated by soil/nail 

friction is developed along the entire element. For that reason, inclusions are 

also called “uniform” (Schlosser et al.1983) as the interaction between soil and 

reinforcement can occur in every part of the inclusion; also the capacity of the 

nails to develop friction resistance even in the "active zone" makes smaller the 

forces acting on the facing which, in this manner, could have no bearing 

capacity. Anchors can be pre-tensioned after installation and that is not 

possible for nails, therefore they always require soil deformation to develop 

resistance. 
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1.3 Development of soil nailing 

 

This section speaks about the history and the development of soil nailing 

techniques in the 20
th

 century.  First techniques were developed partly for rock-

bolting and multi-anchorage systems and partly for the reinforcement of soils. 

In Austria was developed a method of tunnelling design, between 1957 and 

1965, the (New) Austrian Tunnelling Method (NATM). That is a technique for 

supporting underground galleries and tunnels. The NATM integrates the 

principles of the behavior of rock masses under load and monitoring the 

performance of underground construction during construction (fig. 1.3) 

 

 

Fig 1.3 Schematic comparison of the New Austrian Tunnelling Method and a traditional 

method of supporting an underground gallery (from Bruce and Jewell, 1986) 

 

The design’s idea is to excavate the tunnel and immediately after that, put 

steels bar to reinforce the ground and then grout them to achieve a perfect 

anchorage and meanwhile spray concrete reinforced with steel wire meshes 

provides primary support realizing a perfect rigid facing (where used). That 

minimizes the lining deformations and creates a resisting ring-like and in firsts 
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designs it was possible to monitor the deformation and the stresses developing 

in the structure, hence to improving the knowledge on the structure’s behavior 

and its design. 

 

Using this method is possible to achieve to a better result, building a tunnel 

lining thinner than those built with conventional method of support.  

Soon were built other structures composed by the inclusion of steel bars in 

rocks, and due to its good behavior in different kind of rocks, this technique 

was started to be used with soil reinforcement.  

Some trials were made up to the first (reported) structure in 1972, built at 

Versailles. It is an application of passive inclusions in a soil cut which used 

closely spaced short grouted nails 4m or 6m long (fig. 1.4). This was an 18 

meter high wall, with a 70 degrees slope, in Fontainebleau dense sand. It could 

be considered the first soil nailing structure. 

 

 

Fig. 1.4 Section through the first soil-nailed wall in the world, built at Versailles, France, in 

1972/73 (from Clouterre, 1991) 
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The development of these techniques involved many countries: the first 

orderly/systematic research about soil nailing was developed in Germany, 

concerning the “Bodenvernagelung Programme” (1975 – 1979) made by 

Gässler and Gudheus, who made a lot of studies on this topic; after that, similar 

programmes were made in the US and in France (Programme Clouterre): this 

research programme included experiments in different soils, with different type 

of nails and different techniques of nail inclusion, to study the real behaviour of 

this kind of structures. The results of this research were published in 1991 and 

form the basis of the soil-nailing design approach used in France and adopted 

in other countries. 

It is possible to say that soil nailing technique is widespread used all over the 

world. Studies and researches, from Germany to France, from Japan to the 

USA and the UK, have contributed to the development of this technique, which 

due to its low impact on the environment and cost-effectiveness, is achieving a 

fundamental role in the geotechnical applications.  

 

 

1.4 Development of soil nailing in the UK 

 

The development of soil nailing in the UK has been relatively slow. The main 

reason was a concern about the long term durability of the nails and about the 

role of shear and bending in the stability in this kind of structures. 

Many studies were carried out by UK’s universities and researches institutions 

like TRL (Transport Research Laboratory) up to 1993, to discovered and study 

the principles of the behaviour of these structures to find and improve new 

analytical methods. 

So, the development of this technique was totally different than in France and 

Germany. That is due to the use of soil nailing in existing slope rather than new 

constructions. This reflects the typical UK’s way of thinking that consists in 

more effort given to remedial works and maintenance than to new construction. 



Flexible facing for soil nailing retaining system 

 

19 
 

Flexible and soft facing have been used much more extensively in the UK than 

in France or Germany, this is due to its involvement with sustainable 

remediation existing slopes. With the aim of this types of facing it is possible 

to guarantee the growth of vegetation that could be an important factor for both 

the facing’s stability and its visual appearance.   

The use of this technique looks to increase in the future and it has become 

widespread all over the UK, often as part of new infrastructure work or as 

remedial works to existing infrastructure. The recent works for the Channel 

Tunnel Rail Link, the M6 Toll Road and the A3 Hindhead Tunnel Scheme 

have included several soil nailing applications. 

 

 

1.5 Application of soil nailing 

 

 

This technique of soil improvement can be used in: 

 Stabilisation of existing retaining walls; 

 Stabilisation of existing (unstable) slopes e.g.: 

 Natural slopes: soil nailing can be used to stabilise natural 

slopes. For example at Dolywern, north Wales, in 1986 a 10 

m-high slope was stabilised using seven rows of soil nails 

(Barley, 1992); 

 

Fig. 1.5 Natural slopes (Barley, 1992) 
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 Railway embankments: stabilisation of the side slope of 

existing railway embankments is currently the largest single 

application of soil nailing in the UK. Soil nailing can be a 

good solution where access is difficult, because drilling 

equipment mounted on long reach excavators can sit at the 

toe of the embankment slope and temporary works are 

minimal. Self-drilled nails are commonly used on the 

majority of railway earthwork stabilisation sites in the UK 

for the following reason: 

 easy access; 

 rapid installation. 

 

 Railway cuttings; 

 

 

Fig. 1.6 Railway cuttings 

 

 Highway embankments and cuttings;  

 Embankment dams; 
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1.6 Aspects of ground conditions relevant to soil nailing 

 

Not all soils are suitable for nailing. It is important to know and understand the 

characteristics of the soil that will be managed and worked, therefore a well 

define site investigation is required.  

There are many problems that could affect the behaviour of the soil, 

particularly during construction and in the long term. 

It is possible to divide soil in three main categories: 

 Cohesive soils; 

 Granular soils; 

 Soft/weak rocks. 

 

The aim of designers, after the study of geological and hydrogeological soil 

condition is to identify the specific risk and the best suitability of soil nailing. It 

is also important to study the ground condition that governs the application of 

soil nailing. Soil nailing is considered a cost-effective solution if the shear 

strength developed by the soil is sufficient and it works as solution if the bond 

generated between the nail and the soil into which is installed is adequate. 

Soil nailing technique gradually progresses down the slope: a row of nails in 

installed in a bench cut with a height of 1-2 metres and it needs to stay 

unsupported until the nail have been installed. So it is necessary that the bench 

cut hence the soil, has sufficient apparent cohesion, hence shear strength. 
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1.6.1 Cohesive soils 

 

Soil nailing is unsuitable for soft clays and silt. That is due to the low shear 

strength developed in this type of soil hence it provides low bond strength as 

well as the impossibility to maintain temporary stability. Deformations are also 

difficult to control, they could be really excessive and the maintenance of the 

stability of the structures would become unsustainable in economical and time 

terms. 

Differently, firm to stiff clays are suitable for soil nailing because their un-

drained shear strength is greater than 50 kPa and provides sufficient bond 

strength, particularly in slope where tension forces are quite low. 

In dry condition they also provide enough stand-up time for excavation of 

benches and they also provide good bore stability for drilled and grouted nails 

without the need for casing.  

There are some particular problems that would occur in cohesive soils. These 

are shrinking and swelling and they usually affect high plasticity and over 

consolidated clays subjected to change their volume very easily because of 

their mineral composition. 

Cohesive soil structures suffer deterioration at the crest and the face because 

the repeated seasonal wetting and drying causes shrinking and swelling. High 

plasticity clays are more inclined to suffer these problems than low plasticity 

ones. 

Particular care is required to ensure that nail spacing, head plate dimension and 

facing stiffness are all sufficient to avoid gradual degradation of the nail system 

which could lead to progressive failure. 
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1.6.2 Granular soils 

 

Because of their high angle of shearing resisting resulting in a strong bond, 

granular soils are well suited to soil nail applications. It is required to pay 

attention to the short term stability because it is possible that granular soil do 

not provide sufficient cutting stability in the short term causing unstability in 

the benches. In many cases, where soils are unsaturated, suctions will provide 

temporary stability thanks to their cohesion properties. 

Particular attention must be given to the presence of ground water that can 

destroy the apparent cohesion. 

 

 

1.6.3 Weak rocks 

 

Weak rock are well suited for soil nailing because they provide good shear 

resistance hence good bond strength. They provide also good stand-up time of 

excavated forces. It is important to pay attention with the joints because they 

could contain low strength fine material and the structure could occur to an 

unstable state, both in short and long term. 

 

1.6.5 Groundwater 

 

For most soil types, soil nails are not suited to applications below the water 

table and should be installed from a dry excavation. 

Groundwater can have adverse effect on: 

 Bond; 

 Durability of the nail and the integrity of the grout; 

 Stability and durability of the facing; 
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 Stability of temporary excavations; 

 Overall stability of slopes; 

Seepage of groundwater through the unsupported cut face can lead to 

instability of temporary excavations, particularly in predominantly granular 

soils or cohesive soils (fig. 1.7). 

 

 

Fig. 1.7 Effect of ground water on wall facing 

 

Groundwater at depth can still introduce difficulties, both in terms of 

installation and in the long term performance of the nails. Groundwater flow 

through the soil can lead to instability of nail bores, unless casings are 

employed. 

Effects of long term change in ground water conditions on the soil nailing 

scheme. This may include climate charge, different rates of abstraction from 

aquifers or changes in groundwater regime.  

A rise in groundwater is often associated with old mining areas where 

groundwater pumping of the mines has ceased an equilibrium of the natural 

water table is gradually being restored. 
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2. KEY MECHANISMS OF BEHAVIOUR 

 

The reinforcements used in reinforced earth systems have the primary function 

to develop tensile strength to collaborate in the whole structure behaviour, so 

their maximum efficiency is achieved by placing them in the same direction of 

principal strains axes.  

 

 

 

Figure 2.1: Effects of reinforcement of a sample of soil in triaxial conditions (from Schloesser 

et al., 1972). 

 

The usefulness of reinforcing element can also be evaluated with reference to a 

simple scheme in which the reinforcement intercepts a failure surface (fig. 2.1). 

The beneficial effects of the presence of a tensile stressed element are: 

 the component of stress in the reinforcement (PR) normal to the surface 

scroll (PRsen) contributes positively to the shear strength to increase 

the normal strain forces; 

 the component of stress in the reinforcement (PR) parallel to the surface 

scroll (PRcos) contributes positively to the efforts for reduce shear 

forces. 
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Figure 2.2: Effects of reinforcement on both sides of a fracture surface of the ground. 

 

The behaviour of a reinforced soil mass is typical of composite materials 

whose mutual interactions are developed by friction. So, it depends primarily 

by two variables that govern the shear behaviour of the uncemented bodies: 

friction angle (in this case the interface between reinforcement and soil) and 

normal stress acting on the interface’s surface (for reinforcement plans is 

usually the vertical tension or a component).  

The stress states induced by these mechanisms of reinforcement interaction are: 

a tension or compression state due to longitudinal interaction, and a shear and 

bending state due to transverse interaction. 

 

The interaction between soil and inclusions has two beneficial effects: reduced 

deformability and an increase in shear strength. Stability is satisfied by the 

mobilisation of shear stresses at the soil/nail interface.  
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2.1 Transfer of loads 

 

Soil nailing technique improves the stability of an excavation or a slope mainly 

through the mobilization of tensile stresses in the inclusions that is developed 

through the friction interaction between soil and reinforcement and for the 

reaction of the head of the nail and the facing. 

As a result of small deformation occurring in the facing, the nail is subject to 

displacements both in the axial and transverse direction to its axis that induce 

stress. The axial displacements are generated by tensile stresses occur in the 

nail, which can reach the maximum limit value equal to the maximum 

frictional resistance that can occur in the soil-reinforcement interface, which is 

called pullout resistance. The tensile stresses contribute to increase the soil 

resistance, whether absorbing part of the shear stress or causing an increase of 

normal stress along the potential failure surface. 

Lateral displacements develop transverse forces on the nail; these forces 

achieve the maximum limit equal to the bearing capacity of the soil determined 

in the same way of piles loaded by horizontal forces. Shear and bending forces 

are influenced by the inclination and the stiffness of the nail itself. That is due 

to lateral displacements arising in the nail. 

Because of its thinness that characterizes nail, reinforcing actions related to 

shear and bending are limited by low bending resistance and are usually not 

considered (FHWA 1998). They do not occur under deformations of less than 

0.3 – 0.4 per cent of the wall or slope height. 
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The tensile stress generated in the nails has parabolic development and its peak, 

which coincides with the hypothetical failure surface, separates the soil-nailing 

system in two areas: it is greater than the stress transferred to the facing (as 

shown in figure 2.3): 

 

 ACTIVE ZONE:  Zone of potential failure where the friction forces 

along the nail are directed towards the facing and act to remove the 

reinforcement; 

 RESISTANT ZONE: passive zone, where friction forces are directed 

toward the interior of the slope, preventing outward movement of the 

nail and, therefore they minimize displacements even in the active zone. 

 

Often we consider the soil nails as the elements that bind in a certain way the 

active region with the passive and the concept of two distinct and separated 

areas, however, is only an idealization to simplify the model. There is actually 

a complex failure zone subject to shear distortion, and also the failure surface is 

influenced by the presence of joints where it is evident a beginning of 

detachment. 

Soil nail head together with the facing perform primarily a confinement 

function minimizing possible deformations of the soil, with a consequent 

growth of the effective tension and the shear strength of the soil behind the nail 

head, and help to avoid preventive local ruptures near the surface of the wall. 

As evident from the forces distribution the strain hanging on the facing and on 

the nail heads is less than the maximum achievable value because of the 

interaction between nail and soil even in the active region, hence the forces at 

the nail head will never be as high as the maximum resistance developed 

further down the nail. In this way, the facing may have not bearing functions 

but only aims for protection and containment. 
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Figure 2.3: Active zone and resistant zone, and stress distribution in nails 

 

The pullout resistance is provided by the part of the nail located in the passive 

zone and the mobilization of its resistance depends on several factors. 

Theoretically, the shear strength acting between the soil nail and the 

surrounding soil depends on the strain contact and the factor of friction. When 

a soil nail is drilled and filled with grout, the drilling process reduces 

significantly the radial tension on drilling perforation, the hole remains stable 

due to arching.  
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2.2 Failure domain of the nail 

 

 Although the soil nails are mainly stimulated by tensile stresses, as a result of 

big displacements and because they cross the failure surface, they are also 

subjected to shear and bending stresses that deform the element into a “S” 

shape. The position on the nail where the stresses are greater are two points: “A” 

(Fig 2.4) where the value of the bending is maximum and where they are at the 

same distance (symmetrically) from the failure surface, and point “B” where 

the nail intersects the failure surface, which is precisely the point where the 

maximum shear stress is acting (and therefore with none bending stresses). The 

shear and bending stresses are uniquely related to each other, once defined load 

conditions, and the tensile stress generated in the nail is totally independent. 

 

 

 Figure 2.4: Loads and stresses subjected by the nails on the failure surface (Jewell, 1990 

edited by Evangelista 1995), where Tn is the tensile stress along the nail, Tt is the maximum 

shear stress, Mmax is the maximum bending stress. 

 

These shear and bending forces, although they are usually ignored in design 

phase, affect the maximum resistance which can be provided by the soil nail 

and depends on the rupture of the nail itself. The reinforcement ability to 

support these other types of stress as well, can increases the shear strength of 

the soil. However,  ignoring development of shear and bending in design is 



Flexible facing for soil nailing retaining system 

 

31 
 

conservative. The value of the maximum force the nail is required to carry can 

be obtained from analysis on possible states of stress that can be developed 

simultaneously. The domain of possible states of stress in the plan Tn-Tt for a 

nail was defined by Schlosser (1982) by using four failure criteria. Based on 

the Mohr's circle, Jewell et al. (1987) proposed a relationship for the 

calculation of the strain forces developed on the nail as a function of its angle 

of inclination compared to the failure surface. 

This report, confirmed by experimental results of shear tests on sand reinforced 

with bar embedded in different inclinations, is indicative of the relationship 

between the maximum tensile stress in the nail and its angle of inclination β 

(Fig. 2.5), the soil shear strength increases with the angle β until it reaches up 

to 30° and then decreases. The results showed that the presence of 

reinforcement produces a re-orientation of the principal directions of 

deformation of the soil. The deformation of the soil in the vicinity of the 

reinforcement is less than the deformation occurring in a unreinforced soil, 

because the presence of the reinforcement inhibits the formation of failure 

surfaces. The shear strength of the soil increases if the reinforcement has the 

same orientation of the main directions of strain forces, but it decreases when it 

follows the orientation of the compression forces. 

 

 

Figure 2.5: Variation of shear strength as a function of the angle of inclination β of the nail, 

with a rough reinforcement (Jewell et al., 1987) 
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As written above, the effect of reinforcement is influenced by the angle of 

installation, Gassler identified three groups that can divided the soil nail types 

(Gassler, 1992): those that are installed horizontally, working mainly under the 

action of tensile; soil nailing structures with a small bending stiffness that are 

installed with a slight inclination compared to the failure surface, and that work, 

however, mainly under the action of tensile forces;  reinforcements with high 

bending resistance that are installed almost perpendicular to the slipping 

surface and that develop shear strength if important displacements are 

generated. 

The displacements required to mobilize the shear and bending forces in nails 

are bigger than those that allow to achieve the maximum tensile strength and 

ultimate shear strength in the soil. For this reason, during the structure 

serviceability, due to the reduced movements, their contribution in the total 

resistance generated by the reinforcement is insignificant. Therefore, for shear 

and bending to be taken in account the designer needs to verify that the 

deformations will be sufficient to mobilise these resistances.  
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2.3 Mechanisms of failure and design methods for soil nailing 

 

The detailed design of soil nailed slopes or walls is based on information about 

the soil, groundwater conditions, loads, geometry and type of soil nail to be 

used. Detailed design is undertaken to fulfil the following main requirements: 

 to satisfy equilibrium of forces and moments (strength and stability) 

 to limit displacements (serviceability) 

 to maintain this performance criteria throughout the specified design 

life (durability) 

 

The design of this kind of structures follows steps that depend each other like 

every other geotechnical structure. For this technique they consist in: 

1) define geometry and design cross-sections; 

2) define surcharges and loads; 

3) define ground model; 

4) define groundwater and design of drainage; 

5) design codes and design methods; 

6) define characteristic soil strengths; 

7) determination of design soil parameters and design loads; 

8) internal stability and pullout resistance. 

9) nail tendon design; 

10) ground aggressivity and corrosion protection; 

11) internal and external stability checks; 

12) design of facing and head plates; 

13) prediction of deformation. 



Chapter 2: Key mechanisms of behaviour 

 

34 
 

The firsts six steps are well defined above. This chapter treated the following 

steps. 

In stability analysis of an excavation or a slope of primary importance is the 

identification of all possible sliding surfaces, in those surfaces is exceed the 

soil capacity to resist shear forces. The sliding surface, as seen, divides the 

system into an active and a passive zone, it is usually identified taking into 

account the mechanical properties of the soil and possible overload. The shear 

strength of the soil is mobilized along this surface, which can be expressed in 

terms of effective stress, such as τ= c'+ σ' tanϕ' according to the Mohr Coulomb 

failure criterion. If the shear strength available is less than that required to 

prevent that the active zone is subjected to a relative displacements in relation 

with the passive zone, the soil breaks along the failure surface; conversely the 

excavation or a slope is stable. 

Soil nailing structures, because of the presence of reinforcement, may be 

affected by failure mechanisms both internal and external, the firsts regards the 

failure which may subject the individual nail; in the seconds soil nail 

reinforcement and soil are considered as a single monolithic system that can be 

affected by a slipping surface. When they occur at the same time a mixed 

failure is happening. 

The main types of internal failure that may affect the soil nail, both in active 

and passive zone, are: the pullout failure of reinforcement for loss of friction 

between the soil nail and the surrounding soil. Exceeding the maximum load 

bearing capacity of the soil due to excessive movement of the soil nail, the nail 

rupture due to excess tensile stresses or to the combined action of shear and 

bending forces; structural failures due to the rupture of the soil nail head or due 

to the rupture of the facing. 

External failure of the soil nailing system occur when sliding mechanisms 

along the slipping surfaces, together with rotation and translation mechanisms 

occur in the soil-reinforcement complex. 
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Fig 2.6 Possible mechanisms of failure of an excavation with the technique of reinforced soil 

nailing 

There are several methods proposed for the soil-nailing system design based on 

the analysis of stability with the limit equilibrium method and on the use of 

partial safety factors. In the analysis of equilibrium stability limit, different 

assumptions about the potential slipping surface can be made and as well as 

forces to break the nail. Failure surfaces are variable from method to another 

one in a wide range: those that are linear methods that assume the formation of 

a slipping wedge or those bi – linear, logarithmic spiral and circular type; much 

discussed is the shear and bending forces influence in the soil nail system 

stability, because it’s of minor importance compared to tensile stresses (<10%), 

as already mentioned. In many cases they also can be overlooked. 

The methods as well as the shape of the failure surface and for the stress state 

in the nail, differ among themselves for the factors of safety adopted: some 

methods, oldest ones and already outdated, referring to a single factor of global 

security calculated with the available resistance and acting forces ratio. 

Other methods, more sophisticated but also more reliable, are based on several 

factors that take into account the possible failure type which may be locally 

subject a soil nailed slope and the various factors that may affect in some way 

the system stability. 

In the latter approach is verified that the destabilising forces are less than the 

resistances,    , where S = τmob is equal to the resistance acting along the 

slipping surface and R = τ
s
 + ΔτNL + ΔτNT is the sum of the resistance 

respectively with the absence of strong nails and contributions due to 
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longitudinal and transverse components of the strain force developed by the 

nails to the failure surface. 

 

When the structures, may be affected by deformation to a lesser extent than 

those that would result in the collapse of the system, they are in a state called 

serviceability condition and, however, must also be verified the rupture 

condition.  The deformations which can occur in the system cannot be 

catastrophic, but they can cause nevertheless a loss of structure’s functionality 

as well as damage to surrounding structures or infrastructures: it must be 

ensured that the weaknesses developed in the excavation are acceptable as well 

as the reinforcements’ deformation. The structure’s functionality can be a 

problem in long-term. The displacements of the excavation shall be such as not 

to cause disturbance to nearby buildings or infrastructures, failure of the facing,  

unequal loads’ distribution between the nails, which then can lead to rupture of 

the most loaded reinforcement, ground-breaking strength. Several trial fields 

have been allowed, through continuous monitoring, to estimate horizontal and 

vertical displacements at the top of the structure. They may be considered 

acceptable if they are of the order of 0.1 to 0.4% of the height of the slope 

(Clouterre, 1991; Srinivasa et al.2002 ). 

The different published design methods favour slip surfaces of varying 

geometry. In order to ensure a safe design the most critical of these should be 

identified. For long term serviceability the critical slip surface should be 

calculated taking the possible long term soil strengths into account. The 

published design methods, from a number of different countries, are discussed 

below together with their main recommendations. The different national 

methods are often developed in parallel and are based on differing design 

philosophies. Hence the assumptions which each method makes can be very 

different. 
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2.4 Limit state design 

 

When a soil-nailed wall or slope, or part of it, fails to satisfy any of its 

performance criteria, the wall or slope is deemed to have reached a limit state. 

Structures’ stability can’t be achieved also for deformations problem. 

Predicting deformations of soil-nailed walls and slope can be difficult. It is 

common to introduce partial factor of safety for a correct and safety design. 

 

2.4.1 Ultimate limit state 

 

Ultimate limit states are generally associated with total collapse or failure. It is 

achieved when disturbing forces exceed the available stabilising forces at any 

particular moment. The limit state can occurs in: 

• External stability – the failure falls outside the zone of reinforcement. 

• Internal stability – mechanical failure of the nail elements, generally more 

than one element, pullout may also result in internal failure of the soil nailed 

system. The nature of soil nailing allows transfer of load from one nail to 

another if an individual failure occurs. 

• Compound stability – a possible mixture of external and internal stability. 

 

The retaining wall system should be designed to exhibit sufficient ductility in 

approaching geotechnical limit states to give visible warning of failure. The 

ultimate state design requires to consider the likely hazard and risk could occur 

in the slope during is design life. For soil-nailed slopes and wall, these are: 

 External stability hazards 

 loss of overall stability at any stage; 

 rotation; 
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 sliding; 

 foundation failure; 

 

 Internal stability hazards 

 pullout of nails through failure at the soil/nail interface; 

 rupture of the soil nails 

 toppling of the facing 

 bending or punching failure of structural facings 

 punching or bearing failure of head plates 

 failure of soil between the nails 

 bearing capacity of structural failure of head bearing pads. 

 

 

Fig. 2.7 Illustrations of ultimate limit states for soil-nailed slopes and walls 
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2.4.2 Serviceability limit state 

 

A serviceability failure occurs if a structure deforms more than an allowable 

value. This type of failure is not necessarily catastrophic but could be 

hazardous to surrounding structures. 

The serviceability state must be verified in: 

 External stability – settlement of the slope foundation 

 Internal stability – post construction strain in the reinforcement and 

creep of soil 

 

The design life is the period for which all serviceability criteria need to be met. 

Common serviceability limit states may eventually lead to ultimate limit state 

failure through progressive deterioration: 

 Strains or movement of the facing that could affect the visual 

appearance of the facing or result; 

 Deformations in the facing that could affect the serviceability of any 

adjacent structures, service or infrastructure; 

 Cracking of hard facings (when used); 

 Excessive bulging of soft or flexible facings (where used). 

Limits are set as to what would be acceptable to limit damage, or it may be 

human perception of what is dangerous. The only method to check the 

displacements with a soil nail system is numerical analysis. 
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Fig 2.8 Illustrations of serviceability limit states for soil-nailed slopes and walls 

 
 

2. 5 Conceptual design 

 

The design of a soil-nailed wall or slope comprises two main stages: 

conceptual, which is followed by detailed design. 

The first consists to identify the characteristics and the properties that describe 

the site used for the work. That includes the study of the site in its global 

properties and the accurate study of the soil characterizing the site. Both 

require tests, either lab or in-situ test. 

Conceptual design is only the first stage in any project involving soil-nailed 

walls or slopes. 

The factors to be considered for soil nailing are: 

 Risk based approach; 

 Characterisation of the ground; 

 Groundwater; 

 Construction sequence and buildability; 
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 Site constraints. 

 Deformation. 

 

2.5.1 Layout and spacing of nails. 

 

The conceptual design concludes with the preliminary layout, angle of 

installation and lengths of the nails. The most important factors that influence 

these are: 

 Ground strength; 

 Height of face; 

 Angle of face; 

 Type of nail (drilled and grouted, or driven); 

 Unit pullout resistance; 

 Environmental constraints; 

 Facing type (rigid or flexible). 

 

Generally, nails are installed in rows at a slight inclination below the horizontal 

of between 5 and 20. For grouted nails, this is to permit gravity installation of 

the grout. While it is most practicable to make all the nails inclined at the same 

angle to the horizontal, different layouts may be required in special cases. 

The spacing of the soil nails reflects the choice of facing type as well as overall 

stability requirements.  Maximum horizontal and vertical nail spacing are 

typically in the range of 1.0 – 2.0 m, that is due to the behaviour of the soil as a 

coherent reinforced soil block becoming insignificant if the area covered by 

one nail is upper than 6mq in a rigid facing structure or upper than 2-4mq for a 

flexible facing structure (Phear et al., 2005). 
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2.5.2 Nail orientation 

 

It is important to define the nail orientation to achieve to a cost effective and 

efficient. Many researches have been carried out to understand and find which 

nails’ configuration could be the most effective, hence which practical angle of 

installation it is better to use in a soil nailed slope. 

One important study by Johnson et al (2002) has shown that for a nail 

intersecting a failure plane inclined at 60 to the horizontal in a soil with an 

internal friction angle ϕ’ of 25, the most effective nail inclination was 35° and 

it is possible to see this experience applied to a 6 metres high slope reinforced 

with a single 6 metres long. It is possible to see how the nail installed at 

optimum tensile has a short length (2.3m) in the resistant zone and little depth 

(1.2m) of overburden. Although the nail installed at 15 below the horizontal 

has an efficiency of 64% of the nail installed at the optimum angle, it has 

nearly twice the length in the resistant zone and more than four times the 

average overburden. 

Based on the above 

theoretical analysis, it would 

appear that the optimum 

design angle is between about 

10 and 15 below the 

horizontal (fig. 2.9). 

 

 

 

 

Fig. 2.9 Influence of nail inclination 
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2.5.3 Nail tendon design 

 

The design tensile strength of the nail tendon (Tnd) is calculated as follows: 

    
     

  
 

s, a partial factor for reinforcement material, is 1.05 for steel in tension and 

about 1.3 for geosynthetics (Eurocode7, 2004). As and fy should be the values 

applicable at the end of the design life. 

 

 

 

2.5.4 Detailed design 

 

It is important to say that many codes and methods exist and every nation still 

uses its guidelines and norms but nowadays the principal guideline for 

European design is the Eurocode 7 . 

For both serviceability limit state and ultimate state cases, design soil strengths 

are obtained by dividing (and so reducing) the characteristic strengths by a 

partial factor as follows: 

                
                      

              
 

For serviceability limit states, all partial factors for soil strength are 1.0. 
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2.5.5 Pullout resistance 

 

The pullout resistance of a soil nail is dependent upon the overburden pressure 

of the soil, the vertical and lateral pressure around the nail and the nail/soil 

interface friction. The design nail resistance is the lowest of the following: 

1) The pullout resistance between the soil nail and the ground. 

2) The pullout resistance between the nail tendon and the grout (for 

grouted nails). 

If the aim is to achieve a ductile slope failure mechanism, Criterion 1 is 

preferred. 

The ability of a soil nail to generate sufficient pullout resistance (soil/nail) is of 

fundamental importance to the stability of a soil-nailed slope or wall. The 

ultimate pullout resistance of a soil nail is a function of the following: 

 Soil type; 

 Surface roughness; 

 Drilling or installation technique; 

 Time that the drillhole is left open and ungrouted (if this is too long, it 

will probably reduce the ultimate pullout resistance) 

 Grout pressure (if grouted); 

 Nail diameter; 

 Nail length in the active zone; 

 Nail length in the resistant zone; 

 Elasticity of the tendon; 

 Time (for soils susceptible to creep action); 

 Presence of groundwater 

 

There are at least five methods of determining the pullout resistance, as 

discussed below. 
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1. Empirical correlations and charts. 

2. Pullout test. 

3. Undrained shear strength methods (only for cohesive soil). 

4. Effective stress methods (for cohesive and for granular soils). 

5. From pressumeter tests. 

Confirmation of ultimate pullout resistance is particularly important since a 

large proportion of failures of soil-nailed slopes and walls results from 

overestimation of the pullout resistance of the nails. Site pullout tests should be 

considered to be an extension of the design process. 

 

2.5.6  External stability checks 

 

The types of internal stability are described in par. 2.4. 

The following external failure modes should be considered in the analysis of 

soil-nailed walls or slopes: 

 Overall stability; 

 Sliding failure; 

 Bearing failure. 

 

“Sliding stability” 

Analysis of sliding stability considers the ability of soil-nailed walls or steep 

slopes to resist sliding along the base of the soil-nailed block in response to 

lateral earth pressure behind it. Sliding failure may occur when the lateral earth 

pressure exceed the sliding resistance along the base. Such failures can occur if 

there is a weak horizontal, or nearly horizontal, seam or zone at or slightly 

below the toe of the wall or slope. 
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“Bearing capacity” 

Very rarely, bearing capacity may be a concern when a soil-nailed wall or steep 

slope is excavated in soft fine-grained soils. Since the soil-nailed block does 

not extend below the base of excavation, the unbalanced load caused by the 

excavation may cause the base of the excavation to heave. This may result in a 

bearing capacity failure of the foundation of the wall or slope. 

 

Fig 2.10 Failure surfaces used to assess stability of slopes (from Johnson et al, 2002) 
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3. FACING 

 

Where soil nail are  used to stabilise an existing slope, or to construct a new 

slope, they do not stabilise the surface soil. This is done by means of head 

plates and /or a facing. Separate measures to retain the surface (and near-

surface) soil need to be adopted and integrated with the soil nail system. The 

facing system (hard, flexible or soft) can modify the internal failure 

mechanisms. The larger and smaller components of load transfer to a working 

soil nail are summarised in fig(3.1). 

 

 

Fig 3.1 Comparison of the larger and smaller components of load transfer between hard and 

flexible facing system 
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As the bond stresses transferred to the facing varies depending on the type and 

stiffness of facing. 

It is important to observe the empirical correlation based on previous 

experience, collected by Bruce and Jewell (1987), of different features of  the 

different types of facing . 

They derived four parameters to allow comparison between the design of 

different projects. These are: 

 

 Length ratio (L/H) 

 

 
 

                   

                 
 

 

 Bond  ratio (Br) 

   
                           

            
 

 

 Strength  ratio (Sr) 

   
              

            
 

 

 Performance ratio (Pr) 

   
                 

                 
 

 

The most useful of these ratios for conceptual design is the length ratio and 

examples are presented from Table 3.1 to Table 3.3, there appears to be little 

correlation between slope angle, length ratio, area per nail and material type. 

That could be due to the fact that there is confusion over design methods.  
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However, there is a correlation between facing type and slope angle (steeper 

angle need hard facing and shallow angle could be built without a facing 

system) 

It is possible to see how the selection and detailing of an appropriate facing for 

soil nailed slopes and walls just as important as the design of the soil nails 

themselves and is fundamental to the performance of the soil nailed slope. 

Where the surface of a wall or slope has proven long-term stability (such as an 

existing vegetated slope or stabilisation of an existing retaining wall) facing 

may be omitted by design. Usually a facing is required and its selection needs 

to consider the site constraints, and environmental and aesthetic requirements. 

As discussed above, the major role of the facing is to stabilise the surface (and 

near-surface depth) of the ground between the nails. It provides lateral 

confinement for the retained soil between the nail head locations. Progressive 

shallow failure will occur if the facing, precast panels or vegetation. There are 

three commonly used facing types: 

1. Soft facings. 

2. Flexible structural facings. 

3. Hard structural facings. 
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3.1 Soft facings 

 

These perform no long-term role but provide stability while vegetation 

becomes established. Their primary purpose is to retain the vegetation layer 

and topsoil and to prevent surface erosion. Typically the may be used on 

structures with a relatively shallow slope face. Material commonly used for this 

purpose are geogrids, cellular geofabrics, geosythetic sheet, light metallic 

mesh/fabric, or degradable coir mats. Various methods and proprietary systems 

of fixing such materials to the face are available. Such facings should not be 

used for slopes steeper than the angle at which the soil forming the slope 

surface is stable naturally (soil nailing may be needed in such cases to increase 

the stability of the slope against deeper-seated slips). 

The long-term effectiveness of a structure with this type of facing is dependent 

on the growth, and subsequent maintenance, of the vegetation. It is also 

dependent on adequate drainage. This may be available naturally or may need 

to be installed as part of the soil-nailing works. 

The characteristics for conceptual design for soft facing system are presented 

in table 3.1: 

 

Soil type Slope angle to 

horizontal 

(degrees) 

Length 

ratio 

Area per 

nail [m
2
] 

Source 

 

Glacial till (north-east 

England) 

 

 

About 30 

 

0.9-1.2 

 

0.5-2.3 

 

Unwin (2001) 

 

Poorly compacted 

cohesive fill over 

glacial till (north-west 

England) 

 

 

28 

 

0.9-1.25 

 

5.8 

 

Martin (1997)  

 

High plasticity clay 

 

 

24 

 

1.38 

 

2.4 

 

Johnson et al 

(2002) 

 

Tab 3.1 Empirical characteristic for flexible facings (in descending order of slope angle) 
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3.1.1 Design of soft (non-structural) facings 

 

The primary function of a soft facing is erosion control and to support 

establishment of  vegetation on the face of the slope. With such facings, the 

nail heads fix the facing to the ground. A soft facing will not: 

 Be very effective against ravelling, and will therefore rely on the 

vegetation to provide protection against this 

 Contribute significantly to slope stabilisation between the nails 

 Guarantee the group action and integrity of soil nails. The nails will 

simply behave individually against destabilising force. 

The use of soft facings should therefore be limited to shallow slope angles 

(of up to about 30° to the horizontal) 

 

3.1.2 Construction of soft (non-structural) facings 

 

The long-term effectiveness of a slope with a soft facing depends on the 

growth, and subsequent management, of the vegetation. For this reason, 

existing natural vegetation should be maintained where appropriate. The 

selection of suitable vegetation types or species is a specialist subject, but the 

primary factors include: 

 The local climatic conditions 

 Orientation of the slope face 

 Rainfall pattern 

 Topsoil and subsoil type  

 Soil chemistry 

Good practice is to vegetate the face with grass and/or shrubs. Seeding can be 

carried out by means of a seeded geotextile or hydro seeding. Consideration 
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should be given to the time of year or season in which these systems are 

applied and the need for initial watering and protection. 

When the performance of the facing is dependent on the vegetation, it should 

be applied as soon as is practicably possible. Before application, the exposed 

slope face may need to be protected to prevent degradation. 

Secondary pins should be installed between the soil nails to control/restrict the 

movement of the soft facing until the vegetation becomes fully established. 

These need to be sufficiently robust to be satisfactorily and need to have the 

same durability as the other facing components. Where seed-impregnated mats 

are used, care should be taken to install them with the correct side upwards. 

The incorporation of a geotextile within turf rolled out and pinned to the slope 

reduces short-term instability caused by heavy rainfall. 

3.2 Flexible structural facings 

 

These structural facings provide long-term stability of the face of the soil-

nailed structure by transfer of the soil load from the soil nails to the nail heads. 

The facing materials allow greater soil movement and minor bulging between 

the head plates should be expected, although this reduces with closer nail 

spacings. Materials used commonly comprise coated metallic meshes 

appropriately designed, in conjunction with the head plates, for the structural 

loads and durability requirements. Proprietary  heavy rock meshes, which are 

used to prevent rock falls on steep slopes, also work well as flexible facing for 

soil-nailed slopes. Their opening sizes are typically about 80 mm x 80 mm. 

The mesh wires typically are plastic-coated to improve their durability. 

Careful consideration needs to be given to the facing material’s ability to resist 

the loads imparted by the nail heads and head plates to avoid failure by 

puncturing or rupture and/or  excessive bulging under working conditions. 

Only a few geosynthetics (including geogrids) are suitable for flexible facings, 

because the punching resistance of many of them is too low to fulfil 
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satisfactorily the static (i.e. structural) function required for these facings. This 

often results in such geosynthetics being suitable only for soft facings. 

Sometime the mesh is placed side by side with a geotextile impregnated with 

grass seed and fertiliser to achieve rapid vegetation growth. Such facings 

should not be used for slope steeper than about 60-70° to the horizontal and 

will require either jointing or lapping to provide structural continuity between 

the soil nails. Allowance needs to be made in the facing design for the method, 

and health and safety aspects, of replacing the facing material, as this will 

normally have  a shorter design life than the soil-nailed structure. 

 

 

Fig. 3.2 Structure with flexible facing 

Commonly used soil nails are made of steel bars covered with cement grout. 

The grout is applied to protect the steel bars from corrosion and to transfer the 

load efficiently to nearest stable ground. Some form of support, usually wire 

mesh-reinforced shotcrete, is provided at the construction face to support the 

face between the nails and to serve as a bearing surface for the nail plates. The 

use of wire mesh-reinforced shotcrete facing can require the mobilization of a 

specialty contractor and increase the cost of a project. Use of flexible facing 

material such as geosynthetic, steel wire, or chain link without shotcrete could 

provide significant savings.  The use of high strength steel wire mesh wire is 

economical, eliminates the need of drainage, and facilitates the greening of the 
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slopes (Geobrugg 2007). The mechanism of increased stability of the soil 

nailed walls can be explained by : 

1) the increase in the normal force and the shear resistance along the 

potential slip surface in frictional soil ; 

2) the reduction in the driving force along the potential slip surface in both 

frictional and cohesive soils.  

When the wire mesh is used as a facing material, the mesh and nails act 

together as a system to provide stability to the slope, preventing deformations 

in the top layers and restricting movement along planes of weakness. With the 

high strength of the mesh, it is possible to pre-tension the system against the 

slope, and the pre-tensioning enables the mesh to provide active pressure 

against the slope, preventing break-outs between the nails (Geobrugg 2007). 

Soil nailing has proven to be an effective and economical means of protecting 

unstable slopes and providing temporary shoring. Construction facing 

alternative such as steel wire mesh and is considered in the present research. 

 

 

Fig. 3. 3: 120-year-design-life drilled and grouted soil nail with flexible facing.  
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The characteristics for conceptual design for flexible facing systems are 

presented in table 3.2: 

Soil type Slope angle to 

horizontal 

(degrees) 

Length 

ratio 

Area per 

nail [m
2
] 

Source 

 

Silty clay and clayey 

sand (Tunbridge Wells 

Sand and Wadhurst 

Clay) 

 

 

70 

 

0.63-1.1 

 

2.3-2.9 

 

Pedley and Pugh 

(1995) 

 

Old cohesive 

embankment fill 

(north-east England) 

 

 

About 70 

 

0.8-1.0 

 

0.5 

 

Martin (1997) 

(temporary 

works) 

 

Mercia Mudstone 

Group (marl) 

 

 

68 

 

2.2 

 

1.0 

 

Johnson et al 

(2002) 

 

Firm to stiff sandy clay 

(glacial till) 

 

 

68 

 

1.3 

 

2.25 

 

Johnson et al 

(2002) 

 

High-plasticity clay 

 

 

57 

 

1.0 

 

0.8-1.5 

 

Johnson et al 

(2002) 

 

 

Various cohesive soils 

 

 

Steeper than 45 

 

0.42-1.0 

 

/ 

 

Barley (1997) 

Tab 3.2 Drilled and grouted soil nails – empirical length ratio and area of facing per nail for 

various soils, slope angles for flexible facings (in descending order of slope angle) 

 

 

3.2.1 Design of flexible structural facings 

 

Flexible facings are not suitable for large spans between nails. The entire 

system of flexible facing, head plates and the soil nails themselves needs to be 

rigorously designed to provide restraint at the slope surface, to provide a 

restraining force at the nail head and to satisfy the agreed durability and 

maintenance requirements. 
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Flexible facing design needs to consider: 

 Nail spacing 

 Soil type 

 Potential deformation mechanisms 

 Head plate dimensions 

 Nail and soil stiffness 

 Groundwater and drainage conditions 

 Steepness of the slope and future role of the vegetation 

 

There are few recognised design methods for flexible facings other than 

published by Ruegger et al. in 2001. The design considerations should include: 

 Check the ultimate limit states. The serviceability limit state conditions 

(such as deformation) cannot be checked except by numerical analysis 

methods 

 Check the punching resistance of the facing 

 Calculate the head plate size based on the punching resistance of the 

facing 

 Check that the structural capacity of all connections is adequate – in 

particular the detail for lacing together adjacent panels of mesh needs to 

have adequate capacity 

 Check durability of the facing material itself and all connections for the 

design life. 

 

The facing should be designed to resist potential out-of-balance forces, which 

can be transferred to the facing by failure of three-dimensional blocks between 

the nails. Such blocks can be conservatively modelled in two dimensions 

(ignoring side friction) using shallow two part wedge mechanisms or slip 

circles, to achieve force equilibrium. This is one approach for determining the 

force that the mesh need to carry. However, this is only an empirical method 
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without experimental validation. Depending on the slope angle, the load on the 

facing may increase as the height below the top of the slope increases, and may 

be greatest at the toe of the slope. For medium and high-plasticity clays, the 

influence of water-filled tension cracks should also be considered. 

The pore water pressures that need to be adopted in the calculations should be 

carefully considered.  

The reinforcement strength adopted needs to be a characteristic strength 

reduced by partial factors appropriate to the required design life. For polymeric 

grids allowance should be made for the effects of creep over the design life. 

If the load in the reinforcement is excessive, a grid of short nails should be 

added in between the other nails to carry some of this load. Alternatively, or in 

addition to the short nails, intermediate pins can be introduced between the soil 

nails to reduce the span of the facing further and thus to reduce further the 

tensile load that it needs to carry. The size of potentially out-of-balance blocks 

between the nails will also then be reduced. 

Once such potential out-of-balance forces are less than the punching capacity 

of the facing, the remaining design to produce a satisfactory flexible facing 

needs to be via careful detailing rather than calculations. 

The above design method is much simplified. In this research we study the way 

in which a flexible facing performs involves complex interaction between the 

soil, soil nails and the facing, and is dependent on their relative stiffness. 
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Fig. 3.4 Two-part wedge potential failure mechanism between rows of nails (based on HA 

68/94 (Highways Agency, 1994)) 

 

 

Equation for force: total out-of-balance force per meter width,  Ftot = F1 + F2, 

has to be less than the punching resistance of the facing. 

 

  
   (           )      

     

     
(            )

 
   (           )      

     

     
(            )

 

 

 

Vary wedge sizes and angles, ε1 and ε2 to obtain maximum out-of-balance 

force, Ftot . 
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Fig.3.5 Simple wedge potential failure mechanism between rows of nails for steeper slopes 

(based on Ruegger et al, 2001) 

 

 

 

3.2.2 Elements of the flexible facing system and their design  

 

In the absence of definitive simplified design techniques for flexible facings, 

design approaches can be developed with finite difference numerical modelling 

techniques. Numerical modelling is chosen due to the absence of routine design 

methods for special structures of this nature and to: 

 understand the load transfer mechanism; 

 gain a robust understanding of likely face deformation; 

 identify strain concentrations; 

 refine the facing design; 

 confirm that currently employed construction practices have a sensible 

factor of safety. 
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The analysis also facilitated comparison with the limit equilibrium predicted 

failure modes. A summary of the five principal elements of the facing system 

that could be taken in account and the role of the numerical modelling are 

presented below: 

1. Secondary facing nails. To prevent failure between adjacent horizontal 

nails in the upper half of the slope where the primary reinforcement 

nails could be installed. The secondary nails provide additional support 

to the facing and extend beyond the active wedge immediately behind 

the cut face. 

2. Structural facing mesh. Is possible to use steel mesh as the primary 

mechanism for face containment or hexagonal steel wire mesh, 

typically used for rock retention systems.  

3. Vegetation and erosion mats. For the cutting to remain stable 

throughout the design life, it is important to establish vegetation on the 

cut face without allowing surface water runoff to erode the slope. The 

facing design first requires a vegetation mat to be placed against the cut 

face of the slope. The structural mesh is placed over this, followed by 

an erosion mat to prevent the washout of fines while the vegetation 

become established. The erosion mat usually comprises a hexagonal 

treble-twist wire mattress similar to that used in gabion baskets, with a 

plastic fabric bonded to the wire. On a 60° cut slope, this relatively 

flexible product could not be relied upon to provide a structural 

function to retain the soil behind the facing. 

4. Head plates of variable size and thickness.  For each row of nails the 

head plates for both the primary and secondary nails i.e. assessed in 

terms of both dimensions and thickness.  

5. Concrete toe wall. If significant strains could be developed at the toe of 

the wall In the long term and subject to swelling and softening, these 

might propagate slope failure. To counteract this failure mechanism, a 
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reinforced concrete wall has to be designed to provide additional 

stiffness in the toe of the cutting. An additional “toe pin” could be also 

installed, to prevent the toe wall from rotating and kicking out. 

 

3.2.2 Construction of flexible structural facing 

 

Materials used for flexible facings include geogrids and coated metallic meshes, 

in conjunction with head plates. These facing materials need to have sufficient 

strength and durability and will require either jointing or lapping to provide 

structural continuity between the soil nails.  

To minimise degradation of the slope face, the flexible facing should be 

applied after soil nail installation but before the next excavation stage. As with 

soft facing, intermediate/secondary pins are usually required between the nails 

to reduce the span of the facing. The length of the pins should be defined by 

design. The flexible facing should be securely fixed at the top, preferably 

above the upper row of nails. 

Completion of the flexible structural facing includes the tying in of the facing 

material along vertical joints and at the base of the excavation. Up to this point 

temporary stability conditions apply and the potential for shallow translational 

movement of the soil under the flexible structural facing exists. 

Typically, where a flexible structural facing is adopted, a vegetation layer is 

applied. Application of the vegetation layer or soft facing prevents degradation 

and softening of the soil nail face slope on to which the flexible structural 

facing is located. Hence it is important that this is applied and established 

without delay. On steeper soil-nailed slopes or in environments where growth 

of vegetation is unreliable (such as under bridges), a crib facing or other 

proprietary facing system may be used. 
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Fig 3.6 Schematic of the installation of a flexible facing (adapted from Barley et al, 1997a) 

 

 

 

Fig 3.7 Schematic of the installation of a flexible facing (adapted from Barley et al, 1997a) 
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3.3 Hard structural facing 

 

These perform the same function as the flexible structural  facings but with less 

deformation. They generally comprise sprayed concrete reinforced with steel 

mesh. Most early soil-nailed structures were faced in this way. Other structural 

facing materials include conventional cast-in-situ concrete or precast concrete 

panels. Hard structural facings are often used where steep, or vertical, soil-

nailed slopes are required because of the face loading to be resisted. Cost and 

aesthetic considerations, particularly for sprayed concrete, have limited their 

use on less steep soil-nailed slope faces where flexible structural facings can be 

used. 

Unlike flexible structural facings, which usually are permeable, water pressure 

can readily build up behind the hard structural facing, so weep holes need to be 

included within the facing and/or a drainage system installed behind the facing. 

 

3.3.1 Design of hard structural facings 

 

The design sequence for hard facings generally includes the following steps: 

 Decide on facing type based on performance and aesthetic requirements 

 Determine the nail head forces 

 Calculate head plate size and/or initial sprayed concrete thickness based 

on the punching resistance of facing 

 Check the flexural resistance of facing and reinforcement detailing 

 Check performance requirements under serviceability limit state 

conditions (crack width, deflection and durability) that are required for 

long-term applications. 

 



Chapter 3: Facing 

 

64 
 

Since the majority of resisting forces are generated along nails, only some of 

the maximum tension force in the nail is transferred to the facing. Therefore, 

soil nailing requires lighter  facing elements than other conventional earth 

retention techniques. 

The characteristics for conceptual design for hard facing systems are presented 

in table 3.3: 

 

Soil type Slope angle to 

horizontal 

(degrees) 

Length 

ratio 

Area per 

nail [m
2
] 

Source 

 

Weakly cemented 

sand; silty sand; 

alluvial silt, sand and 

gravel (three sites) 

 

 

70-90 

 

0.5-0.8 

 

1.5-2.8 

 

Bruce and 

Jewells (1987) 

 

Weathered schists, 

shales and mudstone 

(two sites) 

 

 

75 and 80 

 

0.55-0.75 

 

2.0-2.3 

 

Bruce and 

Jewells (1987) 

 

Moraines and marl 

(five sites) 

 

 

70-90 

 

0.5-1.0 

 

2.4-6.0 

 

Bruce and 

Jewells (1987) 

 

Soil investigated by 

Clouterre 

 

 

70-90 

 

0.8-1.2 

 

2.5-6.0 

 

Clouterre (1991) 

 

Medium gravel over 

weakly cemented sand 

 

 

90 

 

1.0 

 

1.5 

 

Johnson and 

Card (1998) 

 

Sandy clays and silty 

sands 

 

 

80 

 

1.0 

 

0.7 

 

Pedley (2000)  

(temporary 

works) 

 

 

Clayey sand fill over 

firm sandy clay/ silty 

sand 

 

70 

 

1.0 

 

1.0 

 

Pedley (2000) 

(temporary 

works) 

 

Tab 3.3 Drilled and grouted soil nails – empirical length ratio and area of facing per nail for 

various soils, slope angles for hard facing systems (in descending order of slope angle) 

 



Flexible facing for soil nailing retaining system 

 

65 
 

3.3.2 Construction of hard structural facing 

 

Hard structural facing perform the same function as flexible structural facing 

but generally comprise steel- mesh-reinforced sprayed concrete. Other 

structural facing materials could include conventional cast-in-situ concrete or 

precast concrete panels. 

Before using sprayed concrete on the permanent works, trials are 

recommended. 

There is a natural tendency for temporary stability to become more critical as 

the slope face angle increases. In some case excavation, therefore, soil nail 

construction and the application of sprayed concrete are carried out in bays of 

limited width. 

Alternatively, the nails may be installed before the final cut slope is excavated, 

followed by rapid excavation and spraying the concrete in stages. The speed of 

sprayed-concrete application, achievable strength gain and stiffness are 

significant advantages in these conditions. 

Sprayed concrete may be applied either as a single layer or in two phases. The 

latter may be adopted where temporary excavation stability is marginal, as the 

thin initial layer protects the slope face and enhances the localised stability of 

the soil. 
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3.4 Head plates 

 

The correct sizing of head plates is important so that they do not fail through 

insufficient bearing capacity. For slope with flexible facings, head plates play 

an important role in promoting arching between the nails. 

 

3.4.1 Design of head plates 

The head plate should be correctly sized to prevent bearing failure and to 

promote soil arching and hence to reduce local surface instability between the 

soil nails. The head plate should also be in good contact with the soil behind it 

to prevent ravelling. If the nails are too far apart and/or the head plates are too 

small then the soil may fail between the nails. For the design of head plates for 

hard facings. 

The head plate transfers the load from the facing material to the soil nail and 

should be parallel to and in contact with the facing material to avoid localised 

unacceptably high stress in the facing material and the risk of bursting failure 

around the head plate. The head plate detail needs to take account that the head 

plate is not usually perpendicular to the soil nail.  

There is little previously published advice on how to estimate the design nail 

head load for flexible facings (Tffd), but it should first be derived from the 

calculations for the flexible facings. The head plate should then be sized for 

bearing capacity and its resistance to punching through the facing should be 

checked. 

The interaction between the bearing pressure of the head plate and the 

deflection of the flexible facing is complex and the suggested approach greatly 

simplifies this. 

For shallow slopes, Terzaghi’s basic bearing capacity equation for square 

footings gives a simple preliminary estimate of the plate size required. Note 
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this gives ultimate load whereas the methods below are for design parameters 

and loads. 

 

                                

 

Appendix E of HA 68/94 (Highways Agency, 1994) includes a method for 

calculating the size of head plates for flexible or soft facings. This checks the 

adequacy of the head plate in bearing, to guard against front face pullout, using 

a lower bound and an upper bound solution, as shown in Figures 8.8a and 8.8b 

respectively. The lower bound solution is simpler and is presented below. It is 

conservative because it is two-dimensional and ignores side friction. It is more 

applicable for steep slopes (up to 60°). 
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The upper bound mechanism comprises a two-part wedge acting passively.  

 

 

 

Fig. 3.7 Calculation of head plate bearing capacity (from Highways Agency, 1994) 

 

Having determined the plan area of the head plate, the thickness then needs to 

be calculated to avoid overstressing the head plate in bending. 

Such checks on head plate bending overstress are not required where the head 

detail is a concrete pad. Any stabilizing influence or benefit derived from the 

use of a flexible facing is ignored in the above approach, so it may be 

conservative in some situations. When used with flexible facings, the design of 

head plates can be optimized by determining the punching resistance and 

deformation characteristics of the proposed facing system. Where such tests are 

not available, the simplified approach given above can be used to size the head 

plate. 
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4. NUMERICAL ANALYSIS OF  SOIL NAILED 

WALLS WITH FLEXIBLE FACING 

 

The main aim of this study is to understand the behavior of a soil nailed 

structure with a flexible facing, hence to find when it represents a cost effective 

solution and which limits it shows. For this reason it is important to understand 

how every element composing the structure acts to guarantee the stability of 

the structure itself. To do that, also comparisons with other different types of 

facing were run. 

Although several thousand soil nail structures have been constructed 

worldwide, only a limited number have been instrumented to provide 

performance data to support design procedures and ensure adequate 

performance (FHWA, 2003). 

The main shortcoming of the limit equilibrium design method is that they do 

not give a prediction of stresses and deformations. They also do not consider 

the deformation required to mobilize the resisting forces in the soil and soil 

nails. These methods cannot therefore provide a well define description of the 

contribution of each soil nail to overall stability. 

Stresses and deformation can be predicted approximately using empirical 

correlation and in many cases they have limitations 

In situations where more confidence is required, a higher level of analysis 

should be adopted by using numerical modeling such as finite element and/or 

finite difference methods. The accuracy of numerical modeling depends on the 

quality of data acquired, the estimation of in-situ stress and soil stiffness and 

the availability of good case histories to calibrate numerical models. 

Observation during construction are essential and cannot be replaced by 

numerical modeling. Even using numerical modeling, it is still relatively 

difficult to predict stresses and displacements. The accurate modeling of the 

grout/soil interface is also difficult, as mobilization of tension forces is often 
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not directly proportional to facing deflections and/or construction stages (Phear 

et al., 2005) 

 

A series of FLAC finite differences models were constructed to simulate the 

performance of different soil nail slopes with steel wire mesh. Numerical 

modeling of the soil nailed wall was conducted using FLAC
3D

. The numerical 

modeling was run for different types of facing, most of all where flexible 

facing type.  

Seven models were developed to simulate the different behavior of different 

slopes, including the effects of different type of facing, the effects of different 

slope angles to the horizontal and the effects on the behavior using different 

spacing of the nails. 

Characteristics of the models are shown in Table 4.1. 

script facing slope’s angle [°] spacing [m] 

1 flexible 45 1.5 

2 flexible 60 1.5 

3 flexible 75 1.5 

4 flexible 60 2.0 

5 hard 75 1.5 

6 soft 45 1.5 

7 soft 60 1.5 

Tab 4.1 Implemented models 

A further model was developed to have a comparison with a real structure. 

That is a hard facing structure built in Istanbul with inclinometers to register 

the displacements occurring at the surface.  
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Properties of soil, cable, and grout used for the numerical modeling are listed it 

table 4.2 : 

Soil  

Young’s modulus 

 

Friction angle 

 

Cohesion 

 

Density 

50 [MPa] 

 

32° 

 

0.005 [MPa] 

 

1840 [kg/m
3
] 

Nails  

Length 

 

Diameter 

 

Young’s modulus 

 

Yield stress 

7 [m] 

 

ϕ20 [mm] 

 

200 000 [MPa] 

 

2500 [MPa] 

Grout  

Diameter 

 

Young’s modulus 

 

Cohesion 

 

Interface friction angle 

Φ100 [mm] 

 

35000 [MPa] 

 

7.5 [MPa] 

 

35° 

Tab 4.2 Elements’ properties 
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The properties of facings used for the numerical modeling are given in Table 

4.3.  

Steel hexagonal wire mesh (flexible)  

Young’s modulus 

 

Poisson’s ratio 

8500 [MPa] 

 

0.33 

Shotcrete (hard)  

Young’s modulus 

 

Poisson’s ratio  

30000 [MPa] 

 

0.2 

Tab 4.3 Properties of facings 

 

The model boundary conditions were fixed by standard fixities, where side 

vertical boundaries were fixed in horizontal x-direction but free to move 

vertically, while the bottom boundary was restrained from any movements in 

all directions. The initial stresses of the model were calculated by gravity 

loading to reach its equilibrium. 

Fully drained Mohr-Coulomb Model was implemented as representing soil and 

interfaces behavior. The elastic-plastic Mohr-Coulomb Model represents a 

“first-order” approximation soil or rock behavior. It is recommended to use this 

model for a first analysis of the problem considered. Mohr-Coulomb Model 

involves five input parameters: Young’s modulus (E) and Poisson’s ratio (υ) 

for soil elasticity, internal friction angle (ϕ) and cohesion (c) for soil plasticity 

and an angle of dilatancy (ψ).  

The secondary aim of this research is to simulate and understand the real 

behavior of  flexible facing, hence how the stresses develop in the different 

element by their own stiffness. In particular it is focused on the stress 

developed in the facing and how it could be design to be cost effective and safe 
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at the same time. To study this behavior  a 10.5 meters height and 3 meters 

width  slope was implemented. 

 

 

4.1 Elements modeling 

 

In this section the characteristics of the different elements are shown to see 

how they work, their function and their mechanical behavior . In particular, it is 

important to note the different element used to model soft/flexible and hard 

facing elements. For the first type a geogrid simulation was chosen and not a 

shell element as for the hard facing, used as usual in a numerical model. That is 

due to the membrane behavior of the geogrid element, not resisting to 

compressive stress.  More information of their mechanical behavior are written 

below. 

 

4.1.1 Mechanical behavior of a geogrid element  

 

This type of element is used to model a soft/flexible facing element. 

A geogrid is embedded in the interior of the FLAC
3D

 grid.  

These stresses, consisting of an effective confining stress, σm, and a total shear 

stress, τ , are balanced by the membrane stresses that develop within the 

geogrid itself. These membrane stress resultants are denoted by N in fig4. The 

interface behavior is represented numerically at each geogrid node by a rigid 

attachment in the normal direction and a spring-slider in the tangent plane to 

the geogrid surface. The orientation of the spring-slider changes in response to 

relative shear displacement us between the geogrid and the host medium. 
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The spring-slider carries the total shear force acting over the tributary area on 

both sides of the geogrid surface. Also, the effective confining stress is 

assumed to be acting equally on both sides of the geogrid surface. 

 

 

Fig 4.1 Stresses acting on the geogrid element 

 

The shear behavior of the geogrid-soil interface (fig4.1) is cohesive and 

frictional in nature, and is controlled by the coupling spring properties of:  

 

1. stiffness per unit area, k;  

2. cohesive strength, c;  

3. friction angle, φ;  

4. effective confining stress, σm.  

 

The effective confining stress, σm, acts perpendicular to the geogrid surface, 

and is computed at each geogrid node, based on the stress acting in the single 

zone to which the node is linked.  

The value of σm is taken as          , where p = pore pressure. 
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This type of element was used because the stress in coupling spring is always 

positive and that is because is acting on geogrid in tangent plane on geogrid 

surface. Exactly the ideal behavior of a steel wire mesh. 

 

 

 

 

Fig 4.2 Idealization of interface behavior at a geogrid node 

 

4.1.2 Mechanical behavior of a shell element 

 

This type of element is used to model a hard facing element. 

A shell-type structural element is assumed to be a triangle of uniform thickness 

lying between three nodal points.   

Each shell-type element provides a different means of interacting with the grid. 

The structural response of the shell is controlled by the finite element assigned 

to the element. There are five finite elements available: 2 membrane elements, 

1 plate-bending element and 2 shell elements. 
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Because  these are all thin-shell finite elements, shell-type elements are suitable 

for modeling thin-shell structures in which the displacements caused by 

transverse-shearing deformations can be neglected. 

Each shell-type element has its own local coordinate system shown in fig4. 

This system is used to specify applied pressure loading.  

 

 

The shell-type SEL coordinate system is defined by the locations of its three 

nodal points, labeled 1, 2 and 3 in fig. 4.3. The shell-type element coordinate 

system is defined such that: 

1. the shell-type element lies in the xy-plane; 

2. the x-axis is directed from node-1 to node-2;  

3. the z-axis is normal to the element plane and positive on the “outside” 

of the shell surface.  

 

 

Fig. 4.3 Shell-type coordinate system and 18 degrees of freedom 

available to the shell finite elements 
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4.1.3 Mechanical behavior of a cable element 

 

In FLAC3D if bending effects are not important, cable elements are sufficient, 

because they provide a shearing resistance (by means of the grout properties) 

along their length. 

 

Each cable structural element is defined by its geometric, material and grout 

properties. A cable element is assumed to be a straight segment of uniform 

cross-sectional and material properties lying between two nodal points.  

The cable element behaves as an elastic, perfectly plastic material that can 

yield in tension and compression, but cannot resist a bending moment. A cable 

may be grouted such that force develops along its length in response to relative 

motion between the cable and the grid. The grout behaves as an elastic, 

perfectly plastic material, with its peak strength being confining stress 

dependent, and with no loss of strength after failure. 

 

Each cable has its own local coordinate system, shown in fig 4.4. This system 

is used to define the average axial cable direction.  

 

 

Fig 4.4 Cable element 
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4.2 Macro-scale model 

 

The model represents a 10.5 meter high slope, filled with a granular incoherent 

soil with a very low cohesion. 

To represent the reality as much as possible, the soil nailing model was built 

step by step. Every step figures a cut with a height equal to the spacing of the 

nails to simulate the real behavior of the soil hence the behavior of the structure. 

In this way the slope model can reach the equilibrium in every step and if it 

does not, it is possible to see where it begins to be unstable hence where a 

failure mode is developing.  

The first step consists of  the consolidation of the soil block, under the effect of 

his own weight by gravity  (fig 4.5). 

 

 

Fig 4.5- Zone 
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From figure 4.6 To 48. different “cuts” are shown. 

 

 

Fig. 4.6 – First “cut” 

 

 

 

Fig. 4.7 – Fourth “cut” 
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Fig. 4.8 – Entire structure 

 

For the first three scripts a higher level of refinement was used: every zone 

corresponds to a 20 cm wide block. The other script, instead, were developed 

with a level of refinement that correspond to a 25 cm wide blocks.  

 

Once the model has been run, it is possible to see the different forces and stress 

acting in every different elements. 
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4.2.1 Parametric analysis of the model 

 

To understand whether the model used to simulate the behavior of a soil nailed 

slope was appropriate, results were initially compared to a real slope for which 

monitoring data was available. Due to the lack of available data regarding  

structures with flexible facing a site with a hard facing system was analysed. 

This structure is situated in the city of Istanbul, and is a 10 meter high structure 

(fig. 4.9) , with a facing built with a shotcrete technique and with an inclination 

of 85°. Inclinometers were installed to register the displacements occurred in 

the structure. 

 

 

 

Fig. 4.9 Cross section of the structure 
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Data collected  by the inclinometer  are shown in figure 4.10 . That shows a 

maximum value of the displacements at the top of the wall of about 24 mm, 

and a value of about few millimeters at the bottom. 

 

Fig. 4.10 Inclinometer readings (Durgunoglu et al., 2007) 

 

The finite element back analysis of this structure was performed on the cross 

section in fig. 4.9 . Subsoil parameters are tabulated in table 4.4. 

The slope geometry designed with the software and the displacements 

calculated with it are presented in figure 4.11 and figure 4.12 , respectively. 
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The structure was built using the soil nailing technique and the characteristics  

of its composing elements are listed below: 

 

Nails  

 

Length 

 

Diameter 

 

Young’s modulus 

 

Yield force 

 

12 [m] 

 

Φ40 [mm] 

 

200 000 [MPa] 

 

2500 [MPa] 

Grout  

 

Diameter 

 

Young’s modulus 

 

Cohesion 

 

Friction angle 

 

Φ110 [mm] 

 

35000 [MPa] 

 

7.5 [MPa] 

 

35° 

 

Soil   

 

Young’s modulus 

 

Friction angle 

 

Cohesion 

 

Density 

 

30 [MPa] 

 

33° 

 

0.005 [MPa] 

 

1840 [kg/m
3
] 
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Shotcrete  

 

Young’s modulus 

 

Poisson’s ratio  

 

30000 [MPa] 

 

0.2 

 

Tab. 4.4 Properties of elements (Durgonoglu et al., 2007) 

 

The cross section made with the software is shown in the following figure 

(4.11) 

 

 

Fig. 4.11 Cross section obtained with FLAC
3D
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The simulation was conducted to compare the deformation with the data 

collected by the inclinometer in the real structure. The result is shown in the 

following figure. 

 

 

Fig 4.12 Deformations result in the model 

 

As it possible to see the maximum displacement that occurs in the model has a 

value of 23 mm that is comparable with the value registered that has a value of  

24 mm. Displacements are decreasing with the depth until a value of about few 

millimeters.  

With this data it is even possible to confirm an appropriate implementation of 

the model and the effective potential of the software. 
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4.3 Study of the stress acting in the nails with different 

inclination of the slope 

 

The first three structure were developed with a higher level of refinement 

respect the other models developed and they were compared to the literature 

data, to understand the behavior of this kind of structure and to understand if 

they could show analogies and differences with the reality .  These three scripts 

were developed with a value of the slope angle of, respectively, 45°, 60° and 

75°. The spacing considered amounts to a value of 1.5 m. This choice was 

made with the typical design of this kind of structures. 

 

4.3.1 Stress acting in the nails in the first model – 45° 

The first script consists in a slope 10.5 m high. It is a slope with an angle with a 

value of 45° to the horizontal .  The horizontal and the vertical spacing between 

two row of nails have a value of 1.5 m (fig. 4.13). 

 

 

Fig. 4.13 – Cable stress in the first structure 
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The development of the stress in the different rows was studied. The first row  

is considered the highest one at a height of 9.75 m and the seventh row is 

considered the lowest, at a height of 0.75 m. The results are shown from 

fig.4.14 to 4.20. This data were taken at the last step of construction, when the 

model were completely built. 

 

Fig. 4.14 – Cable stress in the first row 

 

 

Fig. 4.15 – Cable stress in the second row 

 

0,00

10,00

20,00

30,00

40,00

50,00

60,00

0 1 2 3 4 5 6 7 8

St
re

ss
 [

M
P

a]
 

Distance from the facing [m] 

Stress  CABLE 1 

0,00

10,00

20,00

30,00

40,00

50,00

0 1 2 3 4 5 6 7 8

St
re

ss
 [

M
P

a]
 

Distance from the facing [m] 

Stress CABLE 2 



Chapter 4: Numerical analysis of soil nailed  walls with flexible facing 

88 
 

 

Fig. 4.16 – Cable stress in the third row  

 

Fig. 4.17 – Cable stress in the fourth  row 

 

Fig. 4. 18– Cable stress in the fifth  row 
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Fig. 4.19 – Cable stress in the sixth row 

 

 

Fig. 4.20 – Cable stress in the seventh row 

 

These data confirm the highest row is the more loaded and the stress in the 

cable is decreasing with the depth. That is due to the fact that the first row is, of 

course, the first installed row and step by step the stress is increasing because 

the amount of soil that needs to be sustain is clearly higher on every step. 

 

There is an exception that is possible to see in the fourth row: the stress 

developed in this row is not higher than the fifth one. That is probably due to 

the fact that the slope has achieved an equilibrium  and there is not developing 
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plasticity in that cut, hence the nails are not working at their maximum bearing 

capacity. 

 

In fig. 4.21 is possible to see how the stress is increasing step by step in the 

most loaded row. That confirm that a complete equilibrium in the slope has 

been reached, because the stress has increased in every point at every step. 

 

The low level of plasticity is confirm in fig 4.22 where it is not possible to see 

a high level of maximum shear strain increment. That means the structure has 

achieved an equilibrium and there are not considerable soil movement. 

 

 

Fig. 4.22 – Potential slip surface of the slope 
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Fig. 4.21 – Cable stress developed step by step in the first row 
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4.3.2 Stress acting in the nails in the second model – 60° 

The second script consists in a slope 10.5 m high. It is a slope with an angle 

with a value of 60° to the horizontal . The horizontal and the vertical spacing 

between two row of nails have a value of 1.5 m (fig 4.23). 

 

 

Fig. 4.23 – Cable stress in the first structure 

 

The development of the stress in the different rows was studied and it is shown 

from fig. 4.24 to fig. 4.25 

 

Fig. 4.24 – Cable stress in the first row 
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Fig. 4.25 – Cable stress in the second row 

 

Fig. 4.26 – Cable stress in the third row 

 

Fig. 4.27 – Cable stress in the fourth row 
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Fig. 4.28 – Cable stress in the fifth row 

 

Fig. 4.29 – Cable stress in the sixth row 

 

Fig. 4.30 – Cable stress in the seventh row 

0,00

20,00

40,00

60,00

80,00

0 1 2 3 4 5 6 7 8

St
re

ss
 [

M
P

a]
 

Distance from the facing [m] 

Stress  CABLE 5 

0,00

10,00

20,00

30,00

40,00

0 1 2 3 4 5 6 7 8

St
re

ss
 [

M
P

a]
 

Distance from the facing [m] 

Stress  CABLE 6 

0,00

5,00

10,00

15,00

20,00

25,00

30,00

0 1 2 3 4 5 6 7 8

St
re

ss
 [

M
P

a]
 

Distance from the facing [m] 

Stress  CABLE 7 



Flexible facing for soil nailing retaining system 

 

95 
 

Also these data confirm the highest row is the more loaded and the stress in the 

cable is decreasing with the depth. It is clear to see the stress developing in this 

case is greater than shallower slopes. 

 

In this case there are two exceptions that is possible to see in the second and in 

the fourth row: the stress developed in these rows are not higher than, 

respectively, the third and the fifth row.  

 

In fig. 4.32 is possible to see how the stress is increasing step by step in the 

most loaded row. In this case the stress is not increasing in every point at every 

step. From the fourth trench the angle with which the nail is achieving the 

maximum stress is getting lower. That means that from this step the plasticity 

is developing in the slope and a potential failure plain is occurring (fig. 4.31) 

 

 

Fig. 4.31 – Potential slip surface of the slope. 
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Fig. 4.32 – Cable stress developed step by step in the first row 

 

0

10

20

30

40

50

60

70

0 2 4 6 8

St
re

ss
 [

M
P

a]
 

Distance from the facing [m] 

Stress development CABLE 1 

trench 1

trench 2

trench 3

trench 4

trench 5

trench 6

trench 7



Flexible facing for soil nailing retaining system 

 

97 
 

4.3.3 Stress acting in the nails in the third  model – 75° 

 

The third script consists in a slope 10.5 m high. It is a slope with an angle with 

a value of 75° to the horizontal . The horizontal and the vertical spacing 

between two row of nails have a value of 1.5 m. 

In this case, it is not possible to collect comparable data. That is due to the fact 

that a failure has occurred in the model. In the following figures is possible to 

understand where it has occur. Studying the stress increasing in the first row of 

cables is clearly show that since the fourth cut has been made the system did 

not resist to the soil movement and a decrease of the stress in the nail occur. 

In figure 4. is more clear the development of global failure plane rather than 

localised as in shallower slope. The potential critical slip surface is now well 

define and its dimension are notable. 

 

 

Fig. 4.33 – Potential critical slip surface 
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Fig. 4.34 – Cable stress developed step by step in the first row 
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4.4 Study of the displacement of the slope surface with different 

inclination of the slope 

 

In this paragraph the displacement occurring in the different slope with 

different inclination has been studied. The same three models were used to 

collect and compare data. 

 

4.4.1 Displacements in the first model – 45° 

 

The displacements occurring in the first slope are shown in fig 4.35 

 

 

Fig. 4.35 – Displacements in the first model 

 

The displacements were collected in correspondence of the two rows of nails, 

with x-coordinate from the global point system, respectively of 0.75 and 1.5 m, 

and a third row of points was collected between these two rows of nails with x-

coordinate of 1.125 m. 
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The first vertical column has the nails at a height of: 2.25, 5.25 and 8.25 m. 

The second vertical column of nails presents the nail at a height of: 0.75, 3.75, 

6.75 and 9.75 m. 

The presence of the nails and its effect on displacements is more 

understandable watching the diagrams below from fig. 4.36 To 4.38. 

 

 

 

 

Fig. 4.36 – Displacements in the first row (0.75 m) 
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This diagrams show how the value of the displacements is very low. However 

is easy to differentiate the position of the nails that correspond to the lower 

displacement.  

 

 

Fig. 4.37 – Displacements in the second row (1.5 m) 
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Fig. 4.38 – Displacements between the two rows of nails  (1.5 m) 

 

This diagram  shows that, in this case, the biggest displacements occur at the 

top and at the bottom of the wall. In the middle, instead, they are lower hence 

they are not decreasing with height. 
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4.4.2 Displacements in the second model – 60° 

 

The displacements occurring in the first slope are shown in fig. 4.39 

 

 

Fig. 4.39 – Displacements in the second slope 

 

As for the first script the displacements were collected in correspondence of the 

two rows of nails, with x-coordinate from the global point system, respectively 

of 0.75 and 1.5 m, and a third row of points was collected between these two 

rows of nails with x-coordinate of 1.125 m. 

Results are shown in the following figures. 
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Fig. 4.40 – Displacements in the first row (0.75 m) 

 

In this diagram is possible to see where the nails are installed: at a height of 

2.25, 5.25 and 8.25 m. It shows that in this kind of structure with a flexible 

facing installed, the displacements is not increasing with the height, but it 

depends on how the slope is punching the face hence the wire mesh. 
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Fig. 4.41 – Displacements in the second row (0.75 m) 

 

Even in this diagram it is clear  to see where the nails are installed: at a height 

of 0.75, 3.75, 6.75 and 9.75 m. It is possible to see that the displacements are 

comparable in every spacing, that means the nails and the facing are working in 

every cut to maintain the equilibrium. 
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Fig. 4.42 – Displacements between the two rows of nails  (1.5 m) 

 

This diagram confirms that the displacements is not increasing with the height 

in soil nailed walls flexible facing but they depend on the force acting on the 

surface and on the facing’s properties. 
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4.4.3 Displacements occurring with a spacing of 2.0 m 

 

The data written in paragraph 4.4.1 show that displacements occurring with a 

spacing of 1.5 m are not that high. Therefore a comparison with a spacing with 

a value of 2.0 m was conducted to demonstrate that the use of a higher value of 

spacing is possible in structure with a low-medium value of the angle of 

inclination to the horizontal. 

 

For this comparison, the script 7 was run and the output data of the 

displacements are shown in figure 4.43: 

 

 

 

Fig. 4.43 Displacements occurring with a spacing of the nails of  2.0 m (45°) 

 

As for the previous scripts, data were collected at the heights that correspond to 

the places where the nails were positioned and in the middle of two different 

rows of nails, both horizontally and vertically. 
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The results show that an increment of the spacing  brings the stricter to higher 

displacements that are, however, contained in a little range and always under 

the value of 1 cm. This script demonstrates that in a sand-granular slope with a 

low angle of inclinations the use of  higher space is possible. That would 

decrease significantly the cost of the whole structure itself. 

 

The same implementation was run with an inclination of the slope of 60°. Data 

result are shown in fig.4.44: 

 

 

Fig. 4.44 Displacements occurring with a spacing of the nails of  2.0 m (60°) 

 

It shows high values of the displacements compared to ones found with a 

spacing between the nails of 1.5 m. This picture demonstrates the possibility to 

use a larger span of the nail to build a cost effective structure. 
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4.5 Study of the coupling spring stress acting on the facing in 

slopes with different inclinations 

 

As written above, the facing was modeled as a geogrid elements. That is due to 

the fact that the facing is acting like a membrane and it does not resist neither 

to bending moment stress nor compressive forces. The geogrid element is the 

only that resists only to tensile forces.  

Results of the first two script, with an inclination of the slope of a value, 

respectively, of 45° and 60° are shown in the following paragraphs. 

 

As for the displacements the data were collected in correspondence of the two 

rows of nails, with x-coordinate from the global point system, respectively of 

0.75 and 1.5 m, and a third row of points was collected between these two rows 

of nails with x-coordinate of 1.125 m. 

The first vertical column has the nails at a height of: 2.25, 5.25 and 8.25 m. 

The second vertical column of nails presents the nail at a height of: 0.75, 3.75, 

6.75 and 9.75 m. 

  



Chapter 4: Numerical analysis of soil nailed  walls with flexible facing 

110 
 

4.5.1 Coupling spring stress in the first model – 45° 

 

The coupling spring stress resulting in the first output data are shown in fig 

4.45 

 

 

Fig. 4.45 – Coupling spring stress in the first slope 

 

These data will be used to developed the second model: the micro-scale model, 

obtained with the FEM software Straus7.  Data show that the maximum value 

of the coupling stress is acting in correspondence of zone at the top of the nail . 

That means that there is the risk of puncturing in the zone nearby the head of 

the nails. The value registered is about 7.5 kPa in the “border” nails (at a height 

of 2.25 and 5.25m) and about 6 kPa in the nail placed in the middle of them (at 

a height of 3.75 m). Between two rows of nails the stress acting is not 

increasing with the displacements hence the soil pressure, in fact the data 

registered are contained in a range between 1 and 1.5 kPa. That is due for the 

higher stiffness of the nails compared to the stiffness of the wire mesh. That 

confirm the distribution of the stress depends on the stiffness of the element 
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and it also means that in this case, with very low values of displacements the 

steel wire mesh is not providing a structural function. 

 

4.5.2 Coupling spring stress in the second model – 60° 

 

The coupling spring stress resulting in the first output data are shown in fig. 

4.46. 

 

 

Fig. 4.46 – Coupling spring stress in the second slope 

 

Also in this case data show that the maximum value of the coupling stress is 

acting in correspondence of zone at the top of the nail . A risk of puncturing in 

the zone nearby the head of the nails is still possible. The value registered is 

about 21 kPa in the “border” nails (at a height of 2.25 and 5.25m) and about 20 

kPa in the nail placed in the middle of them (at a height of 3.75 m). Between 

two rows of nails the stress acting is not increasing with the displacements 

hence the soil pressure, in fact the data registered are contained in a range 

between 2 and 4 kPa.  
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4.6 Comparison between different type of facing with numerical 

analysis 

 

4.6.1 Comparison between hard and flexible facing 

 

In this paragraph a comparison between the slope with hard facing and the 

slope with flexible facing is studied. The inclination of the slope is of 75° and 

the spacing between  two different rows of nails is of 1.5 m. 

The scripts run for this study are the script 3 and the script 5. The data of the 

script 3 has been studied in the previous paragraphs and they show that a slope 

with an inclination of 75° with a spacing of 1.5 m is going to a failure since the 

fourth step of excavation.  

At the third step of excavation the output displacements are shown in fig. 4.47. 

 

 

Fig. 4.47 – Displacements at the third step of excavations in script 3 
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As it is possible to see, the value of the  displacements occurring at the third 

step of excavation, equal to a cut with an height of 4.5 meters, are already 

higher than 3 cm and. In fact, at the fourth step of excavation, when the slope is 

not achieving anymore a state of equilibrium, the maximum displacements 

occurring in the slope has a value of about 18 cm and it is developing in the 

zone nearby the third row of nails (fig 4.48). 

 

 

Fig. 4.48 – Displacements at the fourth step of excavations in script 3 

 

 

If these data are compared with those resulted from the study of the same slope 

but with a hard structural facing made with shotcrete (fig. 4.49), the magnitude 

of displacements is highly different. That confirm the effective structural 

function of the hard facing for high values of the inclination of the slope. 

The maximum displacement amount now of value of about 8 mm. This 

confirm that if the displacements has to be controlled because other structure 

are situated in the proximity of the soil nailed wall, a structure with a hard 

facing has to be built. 
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Fig. 4.49 – Displacements occurring in script 5 

 

With this comparison is possible to note that the order of magnitude of the 

stress occurring in the facing is twice higher than that occurring in a flexible 

facing structure. That is due, of course, for the high inclination and the higher 

value of the stiffness of the shotcrete, however, it means that this type of facing 

can achieve to a high level of stress. 

The stress developing in the highest row of nails is shown in fig. 4.50. 

 

 

Fig. 4.50 – Stress developing in the first row of nails 
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From this graph is possible to notice that the maximum value of the stress 

acting along the nail is lower than that occurring in a soil nailed wall with a 

flexible facing built with a lower inclination. That is due, obviously, to the 

distribution of the stress by the different stiffness of the elements composing 

the structure, but that means that the role of the nails in structures with this 

kind of facing is not that significant with this value of the spacing between the 

nails.  

It is also notable that the stress along the nail starts with a higher value. This is 

the bond effect of the hard structural facing. In a structure with flexible facing 

this effect is achievable only with the use of steel plates like head of the nails. 

 

 

4.6.2 Comparison between soft and flexible facing 

 

Slope inclination of 45° 

 

In this paragraph a comparison between the slope with flexible facing and the 

slope with soft facing is studied. The inclination of the slope is of 45° and the 

spacing between  two different rows of nails is of 1.5 m. 

The scripts run for this study are the script 1 and the script 6. The data of the 

script 1 have been studied in the previous paragraphs and they show that a 

slope with an inclination of 45° with a spacing of 1.5 m is reaching the 

equilibrium very easily. 

For that reason the comparison with a slope without facing was conducted to 

understand whether the facing act an important role in the sustainability of the 

structure itself or it only provides a function of erosion control. 
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The cross section of this structure is shown in fig 4.51: 

 

Fig. 4.51– Cross section of the structure with soft facing 

 

A comparison of the displacements developing along the surface was made and 

it is possible to see in fig 4.52 and fig 4.53  how the variation of the 

displacements between the two systems with different type of facing is 

insignificant.  

 

Fig. 4.52 – Deformations occurring with soft facing system 
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Fig. 4.53 – Deformations occurring with flexible facing system 

 

Of notable importance is to say that the higher values of the deformation 

developing in the model with flexible facing is due to the higher degree of 

refinement of the mesh use for the first script compared to the refinement 

factor used in the soft facing model. 

 

Even a comparison between the stresses acting along the nails in the different 

models were conducted to understand how the different use of different type of 

facing acts. Results are shown in fig 4.54. As it is possible to see, the stress 

acting along the nails in a structure with an inclination of the slope of 45° is 

approximately the same. That means that a structure with characteristics of the 

soil and elements of those kind, it is possible to use a soft type of facing. So the 

flexible facing is doing very little in the 45 degrees case, and for these soil 

properties, is not required for structural reasons.  
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Fig. 4.54 – Stress acting along the nails with different type of facing 

 

Slope inclination of 60° 

 

As seen above there is not a big difference with a low inclination of the slope. 

Now, the different behavior of these two different types of facing with an 

inclination of the slope of 60° is studied. In the following figure (4.55) the 

displacements occurring with a soft facing are shown. 

 

 

Fig. 4.55 – Displacements in soft facing system with an inclination of 60° 
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These results compare with the ones output in the second script (fig 4.56) show 

that with the use of a steel wire mesh as flexible facing, a big reduction of the 

displacement along the wall surface occur. 

 

Fig. 4.56 – Displacements in flexible facing system with an inclination of 60° 

 

Even a comparison between the stresses acting along the nails in the different 

models were conducted. Results are shown in fig 4.57. As it is possible to see, 

the stress acting along the nails in a structure with an inclination of the slope of 

60° is bigger with the use of a soft facing systems.  

 

 

Fig. 4.57 – Stress developing with different types of facing 
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5. NUMERICAL ANALYSIS OF THE STRESS 

ACTING IN STEEL WIRE MESHES. 

 

In FLAC
3D

 the facing is modeled as a geogrid element with six degrees of 

freedom. That means the geogrid is acting like a membrane element. It resists 

membrane but does not resist bending loading. 

The element is considered like an homogeneous plate and it is not possible to 

understand how the steel hexagonal wire mesh is resisting to this action.  

The aim of this chapter is to compare the membrane stress acting in the geogrid 

element with the nominal tension strength of the wire mesh. To do this 

comparison Maccaferri Rocknetfall’s properties are considered: the tension 

strength for this element is about 350 – 500 N/mm
2
.  

 

To study how this stress is acting in the different elements composing the wire 

mesh, a model with the FEM software Straus7 has been developed. A 

simplified model of the behavior of the wire mesh is obtained by the 

employment of a multi-scale model technique: starting from the macro-scale 

behavior it is possible to study the micro-scale behavior and compare the 

results obtained in the macro-scale model with the results obtained in the 

micro-scale one. 

 

In the macro-scale model, developed with FLAC
3D

, is possible to read the 

membrane stress in some observation points, defined before the 

implementation. In the scripts with a nail spacing of 1.5 meters , these point 

where collocated on the nails and in the points in the middle of these two rows. 
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5.1 Micro-scale model 

 

For the micro-scale model, beam elements were used to define the hexagonal 

elements of the mesh and this is one of the limits of this model. In fact, it is not 

possible to study these elements with cable or trus elements, which have a 

deformational behavior closer to the real behavior, but the calculation of the 

stress acting in the elements is denied because of the lability  of the model 

itself. Using beam element is possible to compare the stress acting in the 

macro-scale geogrid with distributed forces acting on the edge of the mesh in 

the micro-scale model. 

Three different types of wire mesh dimension were designed and modeled. 

This choice was made relating to the most used type of wire mesh in soil 

nailing technique system. These three types are: 

 

 60 x 80 mm; 

 

 

Fig. 5.1 60x 80 mm wire mesh 
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 80 x 100 mm; 

 

 

Fig. 5.2 80 x100 mm wire mesh 

 

 100x120 mm; 

 

 

Fig.5.3 100 x120 mm wire mesh 
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As written above the considered area corresponds to a steel wire mesh area of 

1.5 x 1.5 m, exactly the distance between two rows of nails. In fact, the point 

where the nails are installed are fixed in the model. A further place in this area 

was fixed that corresponds to the nail installed in the intermediate row of nails. 

 

It is important to say that the calculation of the stress acting in the single 

elements of the wire mesh in the micro-scale model are considered as total 

fiber stress. Although in the macro-scale model developed in FLAC
3D

 the stress 

considered was a membrane stress, to consider the real mechanism of behavior 

of the wire mesh element and to compare the stress acting along a single part 

composing  this wire mesh with the nominal tensile strength  of the element 

itself, this assumption must be taken. 

It is possible to describe this behavior in this manner: in the macro-scale 

behavior the steel wire mesh is acting as an homogeneous element, as a sheet 

of paper, not resisting to bending moment forces. For that reason the wire mesh 

was modeled as a membrane structure in the macro-scale model.  But if the 

micro-scale behavior is studied, it is possible to considered, the bond within 

every part of the steel wire mesh as rigid. In this way the single elements are 

supposed to resist to bending moment forces. In this case the total fiber stress 

acting in the elements must be taken in account .  
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5.2 Study of the stress acting in the steel wire mesh 

 

The analysis of the stress developing in the steel wire mesh was conducted for 

all the scripts modeled with a flexible type of facing. Results of these analysis 

are shown in the following paragraphs. 

 

5.2.1 Stress acting in the wire mesh of the structure modeled in script1 

 

The membrane stress acting in the first implemented model is shown in fig 5.4 

This structure has an inclination of the slope of 45° and a spacing of the nails 

of 1.5 m. 

 

 

Fig. 5.4 – Coupling spring stress in the first slope 

 

 

The values of the coupling stress were studied in correspondence of the points 

were nails were installed and between two different rows of nails. 
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In the first structure, the coupling stress acting along the wire mesh is about 9 

kPa nearby the head of the nails and about  2 kPa between two different rows 

of nails. These data were input in the Straus7 models. 

 

The following result of the first script, in this case, were carried out using a 

mesh with dimensions 60 x 80 mm (fig.5.5) 

 

 

Fig. 5.5 – Total fiber stress in the steel wire mesh with dimension 60x80 mm 

 

In this case the maximum total fiber stress has a value of  6 
 

    . 

This value compared with the tensile strength of the wire mesh that has a value 

of 350-500 
 

     is largely satisfied. 
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The following results of the first script , in this case, were carried out using a 

mesh with dimensions 80 x 100 mm. Results are shown in fig 5.6 

 

 

Fig.5.6 Total fiber stress for a 80x100mm wire mesh 

 

 

In this case the maximum value of the total fiber stress has a value of  9 
 

   
 . 

Even in this case value compared with the tensile strength of the wire mesh that 

has a value of 350-500 
 

   
  is largely satisfied. 
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The following results of the first script, in this case, were carried out using the 

wire mesh model with larger dimension: 100 x 120 mm 

 

 

Fig 5.7 Total fiber stress for a 100x120mm wire mesh 

 

The maximum total fiber stress output has a value of 13 
 

    . 

 

Also in this case, the steel wire mesh is not subject to a stress that could bring 

the element to failure. 

This results confirm that the presence of the steel wire mesh in a slope with an 

inclination angle of low magnitude has not structural function but only a 

function of erosion control. 
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5.2.2 Stress acting in the wire mesh of the structure modeled in script2 

 

The membrane stress acting in the first implemented model is shown in fig 5.8. 

This structure has an inclination of the slope of 60° and a spacing of the nails 

of 1.5 m. 

 

 

 

Fig. 5.8 – Coupling spring stress in second slope 

 

The values of the coupling stress were studied in correspondence of the points 

were nails were installed and between two different rows of nails. 

In the second structure, the coupling stress acting along the wire mesh is about 

21 kPa nearby the head of the nails and about  5 kPa between two different 

rows of nails. These data were input in the Straus7 models. 
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The following result of the second script, in this case, were carried out using a 

mesh with dimensions 60 x 80 mm (fig.5.9). 

 

 

Fig. 5.9 – Total fiber stress in the steel wire mesh with dimension 60x80 mm 

 

 

In this case the maximum total fiber stress has a value of  14 
 

    . 

This value compared with the tensile strength of the wire mesh that has a value 

of 350-500 
 

   
  is largely satisfied. 
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The following results of the second script , in this case, were carried out using 

a mesh with dimensions 80 x 100 mm. Results are shown in fig. 5.10. 

 

 

Fig. 5.10 Total fiber stress for a 80x100mm wire mesh 

 

 

In this case the maximum value of the total fiber stress has a value of  22 
 

   
 . 

Even in this case value compared with the tensile strength of the wire mesh that 

has a value of 350-500 
 

   
  is largely satisfied. 
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The following results of the second script, in this case, were carried out using 

the wire mesh model with larger dimension of 100 x 120 mm. They are shown 

in figure 5.11. 

 

 

Fig. 5.11 Total fiber stress for a 100x120mm wire mesh 

 

The maximum total fiber stress output has a value of 32 
 

   
 . 

 

Also in this case, the steel wire mesh is not subject to a stress that could bring 

the element to failure. 
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5.2.3 Stress acting in the wire mesh of the structure modeled in script4 

 

The membrane stress acting in the fourth implemented model is shown in fig. 

5.12. This structure has an inclination of the slope of 60° and a spacing of the 

nails of 2.0 m. 

 

 

Fig. 5.12 – Coupling spring stress in second slope 

 

The values of the coupling stress were studied in correspondence of the points 

were nails were installed and between two different rows of nails. 

In the fourth structure, the coupling stress acting along the wire mesh is about 

30 kPa nearby the head of the nails and about  8 kPa between two different 

rows of nails. These data were input in the Straus7 models. 
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The following result of the fourth script, in this case, were carried out using a 

mesh with dimensions 60 x 80 mm (fig.5.13). 

 

 

 

Fig. 5.13 – Total fiber stress in the steel wire mesh with dimension 60x80 mm 

 

 

In this case the maximum total fiber stress has a value of  18 
 

    . 

This value compared with the tensile strength of the wire mesh that has a value 

of 350-500 
 

     is largely satisfied. 
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The following results of the second script , in this case, were carried out using 

a mesh with dimensions 80 x 100 mm. Results are shown in fig 5.14 

 

 

Fig. 5.14 Total fiber stress for a 80x100mm wire mesh 

 

 

In this case the maximum value of the total fiber stress has a value of  28 
 

    . 

Even in this case value compared with the tensile strength of the wire mesh that 

has a value of 350-500 
 

     is largely satisfied. 
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The following results of the fourth script, in this case, were carried out using 

the wire mesh model with larger dimension of 100 x 120 mm. They are shown 

in figure 5.15. 

 

 

Fig. 5.15 Total fiber stress for a 100x120mm wire mesh 

 

The maximum total fiber stress output has a value of 41 
 

   
 . 

 

Also in this case, the steel wire mesh is not subject to a stress that could bring 

the element to failure. 

 

This results show that the presence of the steel wire mesh in a slope with an 

inclination angle of medium magnitude do not provide the main structural 

function of the structure but it ensures a control of the displacements and it 

provide tensile resistance against the punching of the slope. 
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On the evidence of the shown data it is possible to say that a correct design of 

the steel wire mesh could permit the construction of a cost effective structure. 

If the steel wire mesh with structural function is coupled with a non-woven 

textile geogrid with erosion protection function it is possible to use mesh with 

big spans instead that mesh with small ones.  
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CONCLUSION 

 

With the aim of study and analyse the behavior of soil nailed structures with 

flexible facing, numerical models were implemented and run with the three-

dimensional finite differences software, FLAC
3D 

and with the finite element 

software Straus7. The following conclusions and recommendations were 

developed based on the finite difference and finite element modeling. Finite 

difference modeling was effective in predicting the behavior of the soil 

compared to the data written in the literature. Specifically, the shape and 

relative magnitude of the deformations and the developing of the stress in the 

different elements composing the soil nailing structure. 

The software FLAC
3D 

was used, to implement seven different modeled 

structures. These structures were studied with different type of facing (hard, 

flexible, soft) and with different characteristics of the slope (inclination) and 

the elements (spacing). 

Due to lack of available data regarding  structures with flexible facing a site 

with a hard facing system was analysed to compare the model with real slope 

for which monitoring data was available: that is a structure built in the city of 

Istanbul with a hard facing technique (Durgonoglu et al., 2007). This analysis 

were conducted to study the sensitivity of the model and the elements which 

come into play in a numerical model of a soil nailed structure. 

Once the model was calibrated the other models were run on the basis of a real 

structure built by the company Mott Mac Donald, in the Hindhead Tunnel 

Scheme of the highway H3, London-Portsmouth. The parameters used in the 

implementation are the same used in the construction of the real structure. 

The first three models that were implemented and developed correspond to 

three structures with the same soil and elements parameters (mechanical 

properties, geometric properties and spacing) but with different inclination of 

the slope, respectively of 45°, 60° and 75°. With the results obtained in these 
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implementations, a comparison with the literature data was possible. These are 

the developing of the stress along the nails that was studied on every row of 

nails and on the first row of nails at every construction step and the 

deformation occurring on the surface of the structures. 

From these data is possible to see that a structure built with a sand with a low 

value of cohesion is reaching a state of equilibrium for inclination angles of 

low magnitude but it is not achieving the equilibrium with a steeper inclination 

(75°). In fact, the structure is already presenting a mechanism of failure at the 

fourth (out of seven) excavation. 

In particular, the first structure, with an inclination of the slope of 45° is 

reaching a complete state of equilibrium without the clear formation of critical 

slip surface but only with zones nearby the facing which are achieving a low 

state of plasticity. Furthermore, the deformations occurring in this structure 

confirm the very low mobilization of the slope. They show a maximum value 

less than one centimeter. 

In the second structure, with an inclination of 60°, instead, is clear to identify a 

potential critical slip surface with the possibility of the beginning of a failure 

mechanism. In this case, the stresses developing along the nails and the 

deformations occurring at the surface are greater than shallower slope. The 

deformations are achieving a maximum value of about four centimeters. That 

means a higher mobilization of the soil behind the surface, hence a higher 

stress occurring along the nails. 

For those reasons two structures with a higher spacing of the nails (2.0 meter) 

were implemented, to study whether it could bring the structure to maintain the 

state of equilibrium or not, hence if the use of higher spacing could be a cost 

effective solution. The analysis conducted with an inclination of 45° and 60° 

show that there is no significant change of values of the stress and the 

deformation occurring, hence in the achievement of a state of equilibrium. 
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To understand the behavior of structures with different type of facing, three 

other models were run. One of this has a hard facing and the other two present 

a soft facing system. The structure with hard facing has an inclination of the 

slope of 75° with a spacing of the nails of 1.5 meter and it was compared to the 

structure implemented in the third script with a flexible facing system. It is 

possible to see that with these type of facing, the stress developing in the facing 

is greater, the deformation are lower than those found in the flexible facing 

system. Furthermore, an equilibrium state is completely achieved. That 

confirms that for structure with high inclination and/or for structure in which 

the value of displacement must be contained in a small range, a hard facing 

system is required. 

In the case of structure with soft facing  is possible to see that in shallow slopes 

the equilibrium state is achieved very easily hence the use of a steel wire mesh 

has only the function of erosion control, not structural. Instead, with steeper 

inclination of the slope, the deformation occurring in a soft facing structure is 

doubled. That means the steel wire mesh, now, has structural function. 

To study this structural behavior and to understand how the steel wire mesh is 

acting in this way, a series of models were implemented with the finite element 

software Straus7. With this software the hexagonal wire mesh was modeled 

with three different dimensions: 60 x 80 mm, 80 x 100 mm, 100 x 120 mm 

(these correspond to the typical dimensions used in real structure). 

So multi-scale models of  hexagonal steel wire meshes were implemented 

comparing the membrane stresses acting in the whole mesh, studied as 

homogenous element, with the total fiber stress acting on a single element 

composing the mesh. In this way, the hypothesis of a macro-scale element not 

resisting to bending stresses but only membrane stresses was made. Instead, in 

the micro-scale model, the single elements are considered as rigid (that is due 

to the mechanical properties of the steel) hence they are resisting both 

membrane and bending stresses. 
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The wire mesh did not appear to be overstressed in the simulation and, in this 

aspect, it performed very well.   

The results in the micro-scale models confirm that the steel wire mesh is 

providing a structural function and requires deformation and mobilization of 

the slope to become functional. That means that significant deformation is 

required to mobilize the tensile strength of the facing. 

Based on these results, it is recommended that use of soil nail walls with 

flexible facing in sand be limited to walls with low-medium angle of 

inclination where significant deformations are tolerable. A flexible facing 

systems does not provide the main contribute for the stability of the wall, but it 

does help in this way and with its characteristic of allow the growth of 

vegetation, hence a lower impact in the environment, it can be preferred to hard 

facing systems when the environmental conditions permit that.      

This research could even represent the start of the study of guide lines for the 

design of a construction technique that represents a cost effective and a low 

environmental impact solution. 
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