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Sommario

Le ondate di calore estive sono aumentate in frequenza negli ultimi decenni in Europa
(Rousi et al. 2022), cos̀ı come il loro impatto sulla salute pubblica e sul sistema produt-
tivo. Prevedere questi eventi su una scala sub-stagionale e stagionale sarebbe cruciale per
mitigare le loro conseguenze negative (C. J. White et al. 2017). Questa tesi propone una
metodologia che integra ensemble subsampling e downscaling dinamico per migliorare la
rappresentazione delle temperature estive, concentrandosi sulla città di Bologna e sulle
aree rurali circostanti.

L’aspetto principale consiste nella preparazione di un dataset di previsioni stagionali
per inizializzare il modello di downscaling. La procedura combina dataset pubblicamente
disponibili per garantire una facile replicabilità. Attraverso test di sensibilità, viene
identificata una configurazione adeguata del modello WRF per effettuare il downscaling
su un sottoinsieme di membri dell’ensemble di previsioni stagionali.

Il downscaling dinamico riduce il BIAS e il MAE della temperatura media mensile
a due metri in tutte le località considerate, con i maggiori benefici osservati nelle aree
urbane. L’introduzione dell’aggiornamento della temperatura superficiale del mare in
WRF riduce il BIAS della temperatura sulle aree marine, ma ulteriori correzioni sareb-
bero necessarie per una rimozione completa.

Viene esplorata anche la performance di semplici correzioni statistiche, evidenziando
il potenziale di un approccio ibrido parallelo che combini downscaling dinamico e Mean
and Variance Adjustment.

Riconoscendo le limitazioni dell’attuale configurazione, vengono delineati i possibili
passi futuri. Questi includono l’implementazione di un process-informed ensemble sub-
sampling e il miglioramento dell’accoppiamento oceano-atmosfera. Inoltre, vengono pre-
sentate le metriche raccomandate per una valutazione più completa dei risultati.

2





Abstract

Summer heatwaves have been increasing in frequency in the past decades over Europe
(Rousi et al. 2022), and so has their impact on public health and the productive system.
Predicting these events on a subseasonal-to-seasonal timescale would be crucial to miti-
gate their negative effects (C. J. White et al. 2017). This thesis proposes a methodology
integrating ensemble subsampling and dynamical downscaling to improve the represen-
tation of summer temperatures, focusing on the city of Bologna and the neighbouring
rural areas.

The main aspect concerns the preparation of a seasonal forecast dataset to initialize
the downscaling model. The procedure combines publicly available datasets to ensure
easy replicability. Through sensitivity tests, I identify an adequate configuration of the
WRF model to downscale a subset of members from the seasonal forecast.

The dynamical downscaling reduces the monthly-averaged two-metre temperature
BIAS and MAE across all locations considered, with greater benefit observed in the
urban locations. Introducing the sea surface temperature update in WRF reduces the
temperature BIAS over marine areas, but further corrections would be needed to address
it fully.

The performance of simple statistical corrections is also explored, highlighting the po-
tential of combining the dynamical downscaling with the Mean and Variance Adjustment
technique within a hybrid parallel approach.

This work also acknowledges the limitations of the current setup while outlining the
possible future steps. These include implementing a process-informed ensemble sub-
sampling and improving the ocean-atmosphere coupling. Additionally, I present the
recommended metrics for a more comprehensive evaluation of the results.
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Chapter 1

Introduction

The effect of heatwaves on public health and agriculture can be mitigated with appro-
priate planning, but this requires the capability to anticipate such events weeks or even
months in advance. Focusing on Northern Italy, the Po Valley is a densely populated
region with multiple urban areas. Cities are the most susceptible locations to heatwaves,
as they can be amplified by the urban fabric because of the Urban Heat Island (UHI)
effect, of which a review is presented in Deilami, Kamruzzaman, and Liu 2018. Possega
et al. 2022 evaluates the multiscale relationship between heatwaves and UHI for multiple
European cities. Rural areas are not exempt from the effects of heatwaves, which can
place a significant strain on water management by reducing precipitation and typically
increasing irrigation needs, as explained in Cárdenas Belleza, Bierkens, and Van Vliet
2023. This is critical given the intensive agricultural practices in the region.

The seasonal forecasts produced by the ECMWF show a negative BIAS over the
Po Valley area across the reference period taken into consideration. Further details are
presented in Section 2.1. Removal or reduction of this BIAS may help improve the
quality and usefulness of the forecast.

My thesis aim is to explore whether a combination of existing well-established tech-
niques has the potential to improve the representation of surface temperature in the city
of Bologna, which lies in the southern part of the Po Valley. More precisely, the goal is
to propose a methodology based on dynamical downscaling to improve forecast skill and
reliability within the subseasonal-to-seasonal range. The downscaling is preceded by the
introduction of an ensemble subsampling, to reduce the total computational cost of the
operation. This work is intended as a foundation on which to build upon. The known
limitations and proposed next steps are outlined in Section 2.5.

The key part of the methodology presented in this thesis is the construction of the
dataset that will be used to initialize the downscaling model. This is done through a
combination of freely accessible data from the Copernicus Climate Data Store (CDS)
which is then adapted to initialize the downscaling model.

This setup is then tested on a set of locations within and around the city of Bologna,
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by comparing the results before and after the downscaling against the observational
reference provided by the in-situ weather stations and available larger-scale datasets.
Alternative simple statistical correction techniques are also introduced.

In the following sections of the introduction, some foundational concepts are briefly
discussed before continuing. Next, in Chapter 2, I describe the methodology in place.
Here the different sources of data are presented, followed by the models and the simula-
tion setup. Additionally, I explain how the seasonal dataset has been modified starting
from the available data to adapt it to the WRF operations. In Chapter 3, I present the
results of preliminary sensitivity tests on the WRF model setup, aimed at assessing the
downscaling quality and evaluating any significant changes. The same scores are then
evaluated again for a set of selected configurations for a longer period. The downscaling
of a seasonal forecast member is also checked. The results are shown in Chapter 4, where
it is explored the performance of the ensemble mean of the members downscaled using
the final setup, together with the alternative statistical correction methods. Ultimately,
the most significant outcomes and the future steps are discussed in Section 5.

1.1 The subseasonal-to-seasonal range

The potential benefit of considering the information provided by external forcing and
boundary conditions has been clear since the Seventies. Madden 1976 showed that at
the mid-latitudes, a significant portion of the total variability can be attributed to them.
Long-range predictability was seen as an estimated upper bound of skill, which had not
been reached yet.

Among the others, the subseasonal-to-seasonal (S2S) range can benefit from this
assessment. S2S is only marginally influenced by the initial condition, while the role of the
slowly evolving boundary conditions is more relevant (Shukla 1998). These include sea
surface temperature (SST), soil moisture and sea ice cover. These quantities are crucial in
the correct delineation of the interaction between the atmosphere and the Earth’s surface
through heat and moisture fluxes, and anomalies can influence the forecast outcome
(Schwitalla et al. 2008).

Among the land attributes, the most impactful is soil moisture (Merryfield et al.
2020). Long-lasting soil moisture anomalies have proven to be determinant in certain
areas, with opposing extremes generating skill in different regions. It is also suggested
by Ferranti and Viterbo 2006 that perturbing the initial soil moisture may help to han-
dle the associated uncertainties, a further argument in favour of ensemble approaches.
There is a significant impact on air temperature forecast skill in those areas where the
underlying ground observation network is reliable, as found by Koster, Mahanama, Ya-
mada, Balsamo, Berg, Boisserie, Dirmeyer, Doblas-Reyes, et al. 2010 for North America
and later confirmed in Koster, Mahanama, Yamada, Balsamo, Berg, Boisserie, Dirmeyer,
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F. J. Doblas-Reyes, et al. 2011, which extended the same analysis to a global scale. More
in general, this highlights the importance of a realistic land surface initialization. Van
Den Hurk et al. 2012 focuses instead on the European region, where it is shown there is
still a quantifiable benefit in subsampling members with similar soil moisture conditions,
or with extreme soil moisture conditions. However, temperature forecasts show lower
skill improvements compared to the US. This may be due to the influence of large and
remote Atlantic air masses on air temperature and precipitation.

Other sources of predictability are processes connected to climate variability, like
the North-Atlantic Oscillation (NAO) and the Madden-Julian Oscillation (MJO), or the
interaction with the stratosphere, as summarized in Mariotti et al. 2020; Merryfield et
al. 2020; Meehl et al. 2021. Given their longer timescale, they impart memory into the
system and can be exploited to disclose hidden predictability. An overview of the main
predictability sources depending on the time range is shown in Figure 1.1.

To take advantage of these sources of information, a larger number of ensemble mem-
bers may be preferable, as it helps to better predict NAO and MJO patterns. Improved
subseasonal forecast skill is observed when tailoring the ensemble generation approach
tailored for MJO prediction (Kim, Vitart, and Waliser 2018). The additional computa-
tional cost entailed should always be considered. Another area of improvement is the
coupling with the ocean, as it would allow to improve the use of the information coming
from SST and sea-ice. However, it is required a deeper understanding of the mechanisms
involved and their role in the climate system.

1.2 Ensemble forecasts and subsampling

Global models are currently the main tool to produce seasonal climate forecasts (Man-
zanas, J. Gutiérrez, et al. 2018). Operative forecasts are relatively a novelty in this range
and many aspects of the system design have undergone significant changes in the past
few years, with a major emphasis on the representation of initial conditions and model
physics uncertainty (Merryfield et al. 2020). Beyond the operational forecast systems
that have been recently introduced by ECMWF, NCEP, UK Met Office and other major
agencies, the datasets from S2S and SubX MME projects have also been available for
research purposes.

Given the chaotic nature of the atmosphere, as anticipated in Section 1.1, an advan-
tage is given by an ensemble approach where instead of a single global model, different
runs are considered together. Each one of them is initialized with a perturbed initial
condition and this allows to better capture the variability of the system. The ensemble
approach is necessary to better capture the variability of the system since the current
models’ skill is limited. For instance, the SubX project models show skill for temperature
and precipitation 3 weeks ahead of time only in specific regions, as shown by Pegion et
al. 2019. The ECMWF system has been shown in De Andrade, Coelho, and Cavalcanti
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Figure 1.1: Main sources of predictability depending on the time range. The S2S range
is mostly affected by the state of soil moisture and climate variability processes. Infor-
mation can also be inferred from stratospheric processes, like the Sudden Stratospheric
Warming (SSW). The Figure is taken from Mariotti et al. 2020.

2019 to be among the top-scoring models, but the scores still decrease with increasing
lead time.

One key area of focus is now the identification of smaller subsets within the ensemble
to increase the skill of the forecast system. This has been done in multiple ways. In
Albers and Newman 2019 a Linear Inverse Model (LIM) is used to establish a priori the
expected forecast skill and subsequently identify the subset within the ECMWF system
that shows higher skill. The selection ultimately comes down to the specific location
and season of interest, but a LIM can be a useful tool to detect the so-called forecasts
of opportunity, which increased prediction ability is a consequence of the influence of
phenomena which yield memory, and thus information. In these cases, a predictable
signal is dominant over the unpredictable noise in the system (Breeden et al. 2022). In
Mori et al. 2021 a subsampling of the ensemble forecast system is done by taking a small
number of members which spread is a good representation of the ensemble spread for
SST, an essential variable for the area being studied in the article.
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The subsampling can also be process-informed when it is based on the ability of the
ensemble member to effectively represent one or multiple chosen predictors (Dobrynin et
al. 2018; Kowal et al. 2024). A predictor is an indicator having a well-understood physical
connection with a key variable or with a climate index, for example, the ones describing
the phase of a climate variability process. It shows a strong statistical correlation with
said quantity in the region of interest. Finding relevant predictors can be a challenge,
as it can be a time-consuming and computationally expensive process. With the recent
development of Machine Learning (ML) and Artificial Intelligence (AI) it is getting
easier to build more advanced statistical relationships for a certain predictand. One main
challenge is to ensure the statistical connection found represents a physical process, which
could be unknown. AghaKouchak et al. 2022 recently proposed a bottom-up approach
that can help with the identification. The use of ML and AI must be especially cautious
when dealing with extreme events, as they are likely not part of the training set. This
can be exacerbated by global warming trends, and it may cause a significant degradation
in performance, as explained by Miloshevich et al. 2022 and Materia et al. 2024.

1.2.1 The benefits of dynamical downscaling

Given the coarse resolution of global models, they are unable to provide useful infor-
mation on a regional scale without further elaboration. The raw approximation of the
topography impacts the ability of the model to correctly represent local features. This
leads to low prediction skill and extensive bias over some regions.

One of the most widely explored solutions is dynamical downscaling, which consists
in nesting the global model with a local area model, which has a finer grid and is con-
figured for the specific region of interest. This is an expensive approach, where the local
area model is driven by the global one through lateral boundary conditions and initial
conditions. Nevertheless, it has been shown to improve the quality of forecasts in areas
with complex topography (Schwitalla et al. 2008) and bodies of water (Lauwaet et al.
2012). An appropriate choice for the set of land use categories can further increase the
quality of the forecast, as assessed through downscaling with the WRF model in López-
Espinoza et al. 2020. Another setting where it has proven an advantage in terms of bias
and skill is in regional subseasonal-to-seasonal precipitation forecasts. This has been
shown in Pal et al. 2019, where a downscaling is performed with a regional convection-
permitting model while considering periods with mostly convective precipitation. This
led to a reduction in mean and extreme summer precipitation bias. The bias in the re-
gional model output is different from the one from global models, which was largely due
to the misrepresentation of topography, whereas in this case it is more process-related,
as explained in Manzanas, Lucero, et al. 2018. The downscaling is also critical for risk
analysis, as high-resolution data is required for optimal results (Brogno et al. 2023).

One important aspect to consider is the coexistence of different sources of uncertainty.
Other than the global forecasting system, the regional model is often initialized with a
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reanalysis, to assess to which extent the improvements are imputable to the improved
land initialization and forcing. This clarifies to what extent the error is due to the global
model providing the initial condition and which part is instead given by the regional
model integration (Gulilat Tefera Diro 2016). There are then techniques to mitigate
both the uncertainty on the initial condition, through perturbations, and of the model
error, through stochastic physical schemes (Anderson et al. 2007). To represent the
uncertainty on the initial and boundary conditions it can be helpful to introduce an
ensemble approach, ensuring that the associated spread accurately reflects that of the
fields, as suggested in Mori et al. 2021.

1.3 Heatwaves and their predictability

A heatwave is an insistent condition of anomalously higher temperature in a certain
region. Definitions are ambiguous and there have been attempts to standardize using
percentile thresholds and restrictions on duration. The first range of proposed solutions
can be traced back to Robinson 2001. In the more recent reviews by Perkins and Alexan-
der 2013 and Domeisen et al. 2022 the question is addressed again and while there is
agreement on the general characteristics, the definition remains application-specific. One
interesting option is the Heatwave Magnitude Index, introduced by Russo et al. 2014 to
account for both heatwave amplitude and duration, while also considering the context
of the local climate in which the extreme event takes place. Building on this concept,
the recent study by Prodhomme et al. 2022 introduces the Heatwave Propensity, which
is then used to assess the ability of a model to predict the predisposition of a season to
heatwave occurrence over Europe.

There is evidence of an increase in the latest decades of the global coverage of heat-
waves and their magnitude, as indicated in Zampieri et al. 2016. Additionally, the North-
ern Hemisphere has experienced a higher number of extreme heat events, especially over
Europe, which Rousi et al. 2022 identified as a heatwave hotspot. This boosted the inter-
est in predicting such events with skilful forecasts, given their impact on public health
(Campbell et al. 2018), agriculture (Ribeiro et al. 2020) and how they can increase
wildfire risk (Libonati et al. 2022) and reduce water availability (Zampieri et al. 2016).

There are multiple valuable sources of predictability in the subseasonal-to-seasonal
forecast of such events. As mentioned in Section 1.1, land-atmosphere interaction plays
an important part. There exists a coupling between lack of spring precipitation and
extreme summer temperatures (Fischer et al. 2007), which is likely due to a feedback
effect with soil moisture (Seneviratne et al. 2010). A statistical linkage has also been
found between upper-tropospheric transient Rossby wave packets and surface temper-
ature extremes, especially at mid-latitudes, even though this interaction seems to be
case-dependent (Fragkoulidis et al. 2018). While this is not the case for heatwaves over
Europe, a relationship has been found even with the regional stalling of the jet stream
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meanders (Röthlisberger, Stephan Pfahl, and Martius 2016).
Summer heatwaves tend to be the more predictable on a subseasonal range. The

extreme heatwaves can often manifest in ensemble forecasts as warm anomalies at lead
times even longer than a month Domeisen et al. 2022. While these extreme events tend
to be more predictable with respect to the general skill for a temperature forecast, this is
certainly region-sensitive and higher skill is only observed in the first two weeks of lead
time, as shown in Wulff and Domeisen 2019.

Another aspect of interest is how the characteristics of a single heatwave influence its
predictability. In a study conducted over the European region by Pyrina and Domeisen
2023, it is shown that the intensity of the heatwave conditions the predictability of
its intensity. Whether it favours it or not, it depends on the region and lead week.
Concerning the heatwave onset, more intense heatwaves are associated with a higher
predictability in the first lead week. The number of correctly predicted onsets is very
low beyond that threshold for any intensity. The predictability of the heatwave duration
is very low as well beyond the first lead week, but Lavaysse et al. 2019 suggests that
selecting fewer ensemble members increases the number of correctly represented events.

Heatwaves in Europe

When studying heatwaves in the European region, it is of unequivocal importance the
influence of low-frequency climate variability in the Euro-Atlantic region. Summer NAO,
while smaller in amplitude compared to its winter equivalent, is still able to influence
the climate pattern of northwestern Europe. The second dominant mode of summer
variability in the area is the Summer East Atlantic pattern, and it can be associated to the
dynamics of summer heatwaves in Europe as well (Wulff, Greatbatch, et al. 2017). These
are, in turn, weakly influenced by ENSO (Folland et al. 2009) and MJO teleconnections
(Merryfield et al. 2020).

The connection between spring precipitation and summer temperature anomalies
anticipated in Section 1.3 is present in Europe too. Indeed, Quesada et al. 2012 shows
the role of a particularly wet spring season in inhibiting summer heatwaves over Southern
Europe. On the other hand, a dry season can lead to decreased predictability, since in
that case there seems to be an increased sensitivity to the weather regimes.

The role of atmospheric blockings and subtropical ridges

The occurrence of atmospheric blocking, which obstructs the prevailing flows and is
usually associated with a high-pressure area, is often co-located with a heat extreme,
especially at higher latitudes, as indicated by S. Pfahl and Wernli 2012. One reason
can be the establishment of a large-scale subsidence, which yields the absence of clouds
and increases the radiative warming on summer days, as explained by Kautz et al. 2022.
While a strong correlation between blocking and heatwaves is found in Northern Europe,
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there seems to be a strong anti-correlation in Southern Europe in all seasons (Brunner
et al. 2018). There are, in fact, different categories of blocking systems and depending
on their configuration they are prevalent in certain regions and latitudes and lead to
distinct effects. A general review of blocking climatology is available in Lupo 2021, while
Kautz et al. 2022 provides a review of the effects of different kinds of blocking systems
in terms of surface weather extremes.

Beyond enhancing the radiative heating of the surface, atmospheric blockings can
favour the occurrence of high-temperature anomalies through heat accumulation due to
increased large-scale warm air advection and vertical advection, as shown in Miralles
et al. 2014. It has been noted in Sousa et al. 2018 that the latter, and its associated
adiabatic heating, only plays a secondary role and is more relevant during winter and as
we move closer to the centre of the high-pressure area.

During 2023 summer, there have been three major anomalously warm periods over
Italy, namely in the second half of June, around the middle of July and in the second
half of August. All of them can be associated on a synoptic scale with an amplified
ridge, which dynamics and effects on the weather differ from the ones of the atmospheric
blockings seen further north (Sousa et al. 2018). This structure is typical of lower lati-
tudes like those of Southern Europe. It is a key driver in the development of temperature
extremes, with diabatic heating contributing more to positive summer heat anomalies
compared to horizontal advection (Sousa et al. 2018). Ultimately, it is important to con-
sider the challenges that remain in the correct simulation of these large-scale persistent
patterns, as remarked in Domeisen et al. 2022. Their predictions can carry a high degree
of uncertainty.
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Chapter 2

Methodology

In this Chapter, I present the data sources that are being used, and I also provide the
details of the methodology to build the dataset initializing the downscaling model. An
overview is presented in Figure 2.1, which highlights the most relevant phenomena and
briefly anticipates how the data is combined to create the initial and boundary conditions.
Further details and instructions that allow to replicate the operations are described in
Section 2.2.

The data is described in Section 2.1 and consists of ground station instantaneous
measurements, and the data from ERA5 and E-OBS datasets, which details will be
provided in Sections 2.1 and 2.1 respectively.

Next, in Section 2.3, the models in use are described, together with their tested
configurations. Subsequently, in Section 2.7, I provide a brief review of the recommended
quality metrics for testing the setup and analysing the resulting data.

2.1 Data

In this work, I focus on surface temperature and relative humidity for the summer in the
Emilia-Romagna region, Northern Italy. The data comprises observations from a set of
local weather stations, ERA5 reanalysis data and the seasonal forecasts of the ECMWF
ensemble forecast system.

Stations data

As a reference when comparing different simulations, the data from five weather stations
located around and within the city of Bologna are considered. The stations are Bologna
Urbana (also referred to by the abbreviation BOU ), Bologna Idrografico (BOI ), Bologna
Asinelli (BOA), Mezzolara (MEZ ), Sant’Agata Bolognese (STG) and San Pietro Capofi-
ume (SPT ). The data is provided by ARPAE, the local regional environment agency
maintaining the stations, through their D3xt3r portal. The data is acquired every half
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Figure 2.1: On the left-hand side, this figure presents the main processes involved in the
onset and persistence of a heatwave event in the Mediterranean area. This is an adapta-
tion from Domeisen et al. 2022. Being a subtropical region, the associated synoptic-scale
pattern is an extended subtropical ridge. An important role is also played by the different
feedbacks at the surface. Further details are presented in Section 1.3. The main steps
of the methodology are outlined on the right-hand side of the Figure. They represent
how the data from open-source services is combined to build the dataset, which then
constitutes the initial and boundary conditions for the downscaling model. The green
rectangles represent the members of the global seasonal forecast, while the purple one
represents the ERA5 data which is re-gridded and complements the dataset. Further
details on what data is available in each dataset are described in Section 2.4 and sum-
marized in Table 2.1.

an hour, except for the San Pietro Capofiume station which records a value every 15
minutes. Regular soundings are also available in correspondence with this station, with
profiles measured every 12 hours, at 00:00 GMT and 12:00 GMT. Bologna Urbana,
Bologna Idrografico and Bologna Asinelli are located within the urban area of Bologna,
while the other three stations are placed in the flat rural area around the city to its north.
Specifically, I am using two-metre temperature and relative humidity instantaneous data
for all the stations among those cited where they are available for the entire period of
interest. For the year 2023, Sant’Agata Bolognese station lacks relative humidity data
for the whole period, while Bologna Urbana station has no temperature data. San Pietro
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Capofiume station has no data for certain days of June and July 2023. For this reason,
in the comparisons in Chapter 4, only the stations for which the data is fully available
in the interest period are shown in the figures.

Reanalysis data

ERA5 reanalysis data (C3S 2018; Hersbach et al. 2020) is considered a benchmark when
evaluating the performance of the simulations. It has hourly data with a resolution of
31 km, and it is produced with the IFS CY41R2 model, with a modern 4D-var data
assimilation scheme. It shows a good representation of low-frequency variability and the
temperature anomaly patterns.

I use ERA5 data in the sensitivity tests phase to initialize the nested regional model.
This is helpful to test whether the different possible configurations of the downscaling
provide any improvement. The results of these tests are discussed in Sections 3.1 and 3.2.
Next, an elaboration of ERA5 is also used to complement the seasonal forecast dataset.
This is necessary due to the lack of essential surface fields in the seasonal forecast data
freely available for download from the Climate Data Store (CDS ) portal. Specifically,
I am introducing from ERA5 the skin temperature, the four volumetric soil moisture
levels and three out of the four soil temperature levels. Further details on the dataset
preparation are provided in Section 2.2. An overview of the variables available in each
dataset is shown in Table 2.1.

Gridded observations data

E-OBS is a 20-member ensemble dataset of daily gridded observations covering most of
the European continent and parts of Northern Africa and the Middle East. In this work,
I am using version 29.0 with the 0.1 degree regular grid for daily mean temperature. The
mean of the ensemble is provided as a best-guess field and is thus used as a reference other
than the ground observations when evaluating the simulations. The ensemble spread is
also provided. It is estimated by the difference between the 95th and 5th percentile, thus
representing a measure of the 90% uncertainty range.

It should be noted that no homogeneity corrections are applied to the station data
used to construct E-OBS. Moreover, the number of stations varies over time. For this
reason, the use of this dataset is not recommended in evaluating trends.

The E-OBS dataset is developed within the EU-FP6 project UERRA and with the
Copernicus Climate Change Service. The data is provided thanks to the ECA&D project.
Further details are available in Cornes et al. 2018.

Seasonal forecast data

As a seasonal forecast, the ECMWF system is used. The dataset consists of 25-member
hindcasts from 1993 to 2016 and real-time 51-member forecast since 2017. Further details
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on the model are provided in Section 2.3.
For the first tests, the data is taken from the model run initialized on the first day

of June 2023 and considered for three months lead time. The results are discussed in
Section 3.2. For the subsequent simulations, which results are explored in Chapter 4,
the run initialized in May is used.

At the time of writing, every field is available on a sub-daily basis, every twelve hours
on middays and midnights, except for snow depth and sea-ice cover which are instead
only daily Copernicus Climate Change Service 2018. All available pressure level data is
fed into the WRF model. The missing surface data required are introduced from the
ERA5 reanalysis, as anticipated in Section 2.1.

The seasonal forecast data initialized in the months of May and June over the refer-
ence period 1993− 2016 is also used to estimate its mean bias during the 2023 summer
months and compare it to the one of the ERA5 reanalysis. Further details on the subse-
quent statistical correction can be found in Section 2.6. The plots representing the mean
anomalies are instead shown in Section 3.4.

2.2 Dataset pre-processing

As anticipated in Section 2.1, the seasonal forecast data available on CDS contains fewer
surface variable fields compared to ERA5. To perform the downscaling without changing
the WRF setup, some missing fields are thus introduced from the latter.

Skin temperature, and the missing soil temperature and volumetric soil moisture
levels from ERA5 dataset are remapped using the Earth System Modelling Framework
(ESMF) software, to upscale them to the seasonal forecast grid. This new set of fields
is then combined with the other existing fields from the seasonal forecast dataset. The
missing relative humidity in the vertical levels is computed from the available specific
humidity using the MetPy package (May et al. 2022).

Two variations are tested. In the first one, referred to as option A, the ERA5 soil
data corresponding to the initialization date of the forecast is used to complement the
dataset. This introduces a boundary condition that is constant for the initially missing
fields in the seasonal forecast dataset. The alternative option B consists in building
a sub-daily climatology dataset, using ERA5 data from 1993 to 2016. A correction is
applied by considering the mean anomaly in the ERA5 fields for the first month of the
seasonal forecast. I use Option A for the forecast initialized in June 2023 and Option B
for the forecast initialized in May 2023.

The dataset is only partially sub-daily and some fields like snow depth and sea-ice
cover are only available daily. The snow depth and sea-ice cover values are assigned
to the midnight of each day and linearly interpolated to compute the missing midday
value. This is a rough approximation but given the season of interest, I do not expect a
significant variation of those variables during the period of interest.
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The missing surface pressure is computed using the Hydrostatic Equation 2.1.

dp

dz
= −ρg (2.1)

The temperature profile is approximated with a constant value, given by the average
between the virtual temperature of the first pressure level of the seasonal dataset and
the extrapolated one at the surface. The vertical displacement is equal to the difference
between the geopotential height of the first pressure level and the model elevation for
the corresponding location. The temperature gradient is assumed to be constant and
equal to 6 K

Km
. The values are thus computed as indicated in Equation 2.2, where T1000

indicates the temperature at the lower pressure level of the model. Using this estimate
for the temperature it is possible to correct the mean sea level pressure, which is available
in the dataset, to obtain the surface pressure, with the expression shown by Equation
2.3, where Md is the molar mass of dry air and Rd is the specific gas constant for dry
air. For a discussion on the lapse rate, the equations in use and their derivation, refer to
Wallace and Hobbs 2006.

Tref =
T1000 + (T1000 − ∂T

∂z
· δz)

2
(2.2)

Psurf = Pmsl · exp(−
zsurfMd

RdTref

) (2.3)

Since these operations alter the standard structure of the dataset, it is no longer
possible to solely rely on the WRF preprocessing system (WPS). More specifically, the
role played by the ungrib component is replaced by an external Python library called
pywinter (Suárez 2021), which allows building the WRF-WPS intermediate file directly
from a dataset in NETCDF format.

2.3 Models

SEAS5

SEAS5 is the fifth-generation seasonal forecast system introduced by ECMWF (Johnson
et al. 2019). It has a 1°x1° horizontal resolution and uses time steps of 20 seconds.
The forecast consists of a 51-member ensemble based on the IFS Cycle 43r1 Model, a
spectral model with upper air fields originally output as spherical harmonic coefficients.
The ensemble is defined through the perturbation of upper air variables and a small
number of land fields, including soil moisture, soil temperature and skin temperature.
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The member 0 is the control run, initialized with no perturbations. Further details on
the computation of perturbations can be found in ECMWF 2016.

For the hindcasts, the model is initialized with ERA-Interim data, which also drives
the 43r1 Surface Model. In forecast applications, the initialization is provided by ECMWF
operations.

Manzanas, Torralba, et al. 2022 evaluates the reliability of the SEAS5 forecast sys-
tem over different areas of the globe and assesses the sensitivity to region definition,
hindcast length and ensemble size. Here it is observed that reliability tends to increase
with a larger number of ensemble members as they allow a better representation of the
uncertainty. Of particular significance for this study is the good reliability observed for
forecast temperature during summer over Europe, rendering it an adequate choice as a
driving model for the region of interest.

OCEAN5

OCEAN5 is a modern operational ocean analysis system based on the Nucleus for Euro-
pean Modelling of the Ocean (NEMO) version 3.4 model. It provides ocean and sea-ice
initial conditions for SEAS5 forecasts. OCEAN5 contains a 5-member ensemble analy-
sis, generated by perturbations to the assimilated observations and to the surface forcing
fields. For the ocean ensemble, no unperturbed control forecast is provided.

Each SEAS5 member is assigned to an OCEAN5 member, and then further pertur-
bations are applied, except for member 0. The atmosphere and ocean are coupled hourly
to allow the diurnal cycle to be resolved.

WRF

As a regional model, I used the fourth version of WRF, the Weather Research and
Forecast model (Skamarock et al. 2019). It has been developed both for research purposes
and for numerical weather predictions. The vertical coordinates are based on hydrostatic-
pressure and are terrain-following, but they differ from the traditional sigma coordinates,
as they remove the influence of the terrain more rapidly while moving to higher altitudes.

The dynamical solver integrates the Euler equations in their compressible, non-
hydrostatic flux-form. They include the parametrized physics. The equations being
resolved are first rewritten in terms of perturbation variables, to reduce truncation and
rounding errors. The newly defined variables are perturbations of a reference hydrostat-
ically balanced state, which satisfies the governing equations for an atmosphere at rest.
The equations for the conservation of potential temperature and moisture remain instead
unaltered.

The low-frequency modes are integrated using a third-order Runge-Kutta scheme.
The higher frequency modes use a smaller time step to maintain numerical stability.
A forward-backwards time integration scheme is used for the horizontal propagating
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acoustic and gravity waves, whereas for the vertical propagating acoustic waves and
buoyancy waves, an implicit scheme is preferred. The spatial discretization is instead
based on a C grid staggering, meaning normal velocities are staggered half grid with
respect to the thermodynamic variables.

WRF is an atmospheric model and without the optional modules for ocean coupling
the representation quality of air-sea interaction is limited.

2.4 Simulation setup

To determine the appropriate choice for the WRF configuration a few different tries have
been made on a short one-week period. In these preliminary tests, ERA5 reanalysis is
downscaled. All the different simulation setups and their characteristics are listed in
Table 2.2.

The base simulation, indicated with Base and which variations will be discussed
afterwards, consists of three nested domains of 150 points per side each, with a grid
spacing of nine, three and one kilometre respectively, shown in Figure 2.2. It is centred
around the city of Bologna and the larger domain comprises northern Italy and most of
the alpine region. It has forty-five vertical levels with a constant surface stretch factor.
While it is assumed that the smaller domains can resolve convection in a satisfactory
manner, the Kain-Fritsch Parametrization is chosen for the largest one. It is a mass flux
parametrization that uses the Lagrangian parcel method to estimate the existence of
instability and its availability for cloud growth. More details and the major modifications
introduced since its first formulation are available in Kain 2004. As for the radiation
option, for all domains and both long-wave and short-wave radiation, the Rapid Radiative
Transfer Model (RRTM) is used (Mlawer et al. 1997). The boundary layer scheme is
based on the findings from Bougeault and Lacarrere 1989, which extends turbulence
parametrization techniques to orography-induced turbulence. The update of the SST is
turned off. To improve the representation of the terrain, sixty-one land categories from
the USCS dataset are introduced.

The first variation of this configuration is the introduction of coastline interpolation
to avoid unreasonable outcomes for the surface variables closer to coastal areas (referred
to as Coast), like unjustified sharp linear boundaries. This same simulation is then
also repeated with an alternative radiation option, namely the RRTMG, which is a
more efficient version of the RRTM, thought to have a minimal loss of accuracy for
general circulation applications (Coast RAD). In addition, an alternative boundary layer
option is explored, the Mellor-Yamada-Janjic (MYJ) scheme (Coast PBL). A further
improvement attempt is based on the introduction of a specific urban parametrization
approach (URB), evaluated for the city of Bologna in Zonato et al. 2020.

Both the basic simulation with only the coastal interpolation and the more sophisti-
cated one with the urban parametrization implemented, are then considered again with a
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Figure 2.2: Elevation map with Base simulation nested domains. Each domain has 151
grid points per side, distanced by 9, 3 and 1 km respectively.

change to the vertical levels (Coast VL and URB VL respectively), which allows having
the first one closer to the ground, at 10 metres, with an increasing distance between the
layers as the height increases. This reduces the gap between the point where the temper-
ature is explicitly computed by the model and the one to which the temperature value is
extrapolated. This can significantly affect the value, and it is a crucial aspect to test in
a comparison with ground station data. Two different configurations are evaluated, with
a different number of levels and ground distance of the lowest one (see the alternative
with Coast VL Bis).

Furthermore, a double nesting approach is assessed, with a five kilometres grid spac-
ing for the larger one, and one kilometre for the smaller one. This is not ideal, as it
breaks the recommended 1:3 ratio for WRF nestings. However, it is tested in the hope
of reducing the computation time while still obtaining meaningful results. The time
between radiation physics calls is adjusted accordingly as recommended by the WRF
User Documentation. A lower number of vertical levels is used, and the parametrization
of convection is turned off. This way there is no intermediate nested domain using a
convection scheme.
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Seasonal downscaling setup

This time the nestings need to be set up differently, given the coarser grid of the seasonal
forecast that is fed to the model. The centre remains the city of Bologna but this time
the three nestings have a grid spacing of 27 km, 9 km and 3 km respectively, as shown in
Figure 2.3. The configurations are chosen among the ones cited in Section 2.4 according
to the verification results shown in Chapter 3.

A variation of the best-performing setup with a continuous update of the SST is also
introduced. The impact of this change is assessed in Section 3.4.

Figure 2.3: Elevation map with seasonal forecast nested domains. Each domain has 151
grid points per side, distanced by 27, 9 and 3 km respectively.

2.5 Expected limitations

The findings in this thesis are exploratory, as they currently lack generality. Only one
year and one season are considered. This means the results are not representative of the
forecast performance. Moreover, only a handful of members are downscaled, ignoring the
others. A visualization of the fraction of data used for this work is shown in Figure 2.4.
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A more comprehensive dataset is fundamental for result robustness, since the forecast
reliability in a small hindcast may be overestimated, as explained in Manzanas, Torralba,
et al. 2022.

Even the testing setup is limited, as it considers only a small set of locations. More-
over, it focuses on the surface temperature, which reliability is usually higher in seasonal
forecasts (Manzanas, Torralba, et al. 2022). While this is already helpful in the seasonal
prediction of heatwaves, it still tells nothing about precipitation, which correct forecast
is just as important.

From the point of view of the model configuration, more initialization options at
different lead times should also be explored in subsequent work.

The use of the built-in SST update in the model is still an approximation. The
coupling with a true oceanic component in the model would be required to enhance the
forecast. This is especially important for those areas where the impact of the SST is
more relevant. One further improvement that can be explored in the future is a bias
correction of the SST before the data is fed to the downscaling model. The correction
of the global model output before its use is a common practice and there are multiple
approaches available, as expounded in Appendix B.

The subsampling considers the first five elements of the forecast ensemble, which is an
arbitrary choice. A process-informed subsampling has yet to be implemented, but further
research is required to deepen the understanding of the local predictors. Considering a
broad set of years within a cross-validation approach (Wilks 1995) is vital to improve the
choice robustness. It allows a better estimation of the forecast skill and has long been a
common practice (Francis and Renwick 1998).

2.6 Benchmark statistical bias corrections

The correction techniques used for the calibration of seasonal forecasts can be classified
into different categories: simple bias adjustment methods, ensemble recalibration tech-
niques and more complex statistical downscaling methods. These techniques can fully
replace the dynamical downscaling or work in synergy with it to enhance the results.
By pre-processing the data that is being fed to the downscaling model it is possible to
improve the overall result without a significantly higher cost. They can also be used as
post-processing techniques to address known biases in model output.

The simpler techniques correct the mean bias of the GCM and are usually based on
a linear scaling, like the one in Lenderink, A. Buishand, and Van Deursen 2007. Further
details are provided in Appendix B.

In the present work, I took a reference period spanning from 1993 and 2016. I
computed a reference summer two-metre temperature field using seasonal hindcast for
that period. Using this average field I computed the anomaly field of the forecast for
the year of interest, namely 2023. For each location, the temperature values are then
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Figure 2.4: Visualization of the available data for use. The downscaling in this work
only considers 5 members of the forecasts initialized in May and June 2023.

adjusted based on the value of the closest grid point of the anomaly dataset, as shown by
Equation 2.4. The overline indicates the temporal mean over the three summer months,
computed using only midday and midnight values to reduce the computational cost and
storage required. The apostrophe marks the corrected field. This scaling does not require
any observational reference. It is a rough correction, as it only corrects the mean bias
over a certain location.

x′
seas = xseas + (xseas − xseas) (2.4)

An alternative option is the Mean and Variance Adjustment (MVA), which uses the
data from the observations to correct both mean and variance biases, as in Equation 2.5.
Its first application to seasonal forecasts dates back to Leung et al. 1999. The perfor-
mance of MVA is equivalent or superior to even more sophisticated techniques in multiple
instances, as I outlined through a brief review in Appendix B.2. More specifically, in
Sections B.2, B.2 and B.3 where more complex methods are explored, their comparison
with MVA is simultaneously outlined.

x′
m = (xm − ⟨xm⟩)

σo

σm

+ ⟨xo⟩ (2.5)
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In my case, I considered a reference period spanning from 2014 to 2022, as the data
for each evaluated in-situ station is available for the majority of this period. I use
this correction as a surrogate statistical downscaling and compare it to the dynamical
downscaling in Chapter4.

More comprehensive bias adjustment methods can still lead to better results if prop-
erly calibrated and should be evaluated for future developments. A review of the possibil-
ities is presented in Appendix B. Beyond bias adjustments, more sophisticated techniques
are also possible. The two main proper statistical downscaling approaches are the Model
Output Statistics (MOS) and the Perfect Prognosis (PP), which I will further detail in
Appendix B. Statistical downscaling techniques are essentially empirical relationships
between a coarse grid predictor and a local predictand of interest. They could be a
cheaper alternative to the dynamical downscaling, but they need calibration. They can
be used as a benchmark to evaluate the performance of a dynamical downscaling, as
seen in G. T. Diro, Tompkins, and Bi 2012. Another option is blending them with the
dynamical downscaling to build hybrid methods. Slater et al. 2023 presents a review of
the different ways to achieve this.

2.7 Metrics and indicators

The main scope of this Section is to describe the metrics, indicators and verification
modalities in use in Section 3. The verification setup is presented in Section 2.7.1.
Moreover, this Section also presents a state of the art of the evaluation metrics that are
commonly used in the context of ensemble seasonal forecasting, outlining verification
steps to be considered for further evaluation of the proposed methodology. This is done
through Sections 2.7.2 and 2.7.3. Applying all of them to the present work would go
beyond the intent of this thesis, for which only a set of simpler metrics will be used.

2.7.1 Verification of downscaling

After any adjustment process, it is necessary to evaluate the quality of the forecast, which
also means assessing the quality of any downscaling method or bias correction technique
applied. As indicators for this first phase, I consider both two-metre relative humidity
and temperature. As metrics, I propose the use of two WMO-recommended scores for the
verification of a deterministic forecast, namely BIAS and Mean Absolute Error (MAE).
In the evaluation of model output against ground observations, the stations should have
at least 90% data availability during the verification period.

BIAS and MAE estimate the model accuracy, defined as the distance between the
model forecast and actual ground observation. Their expressions are shown by Equations
2.6 and 2.7 respectively, where n is the number of available observations. The BIAS is
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defined as the mean difference between the forecast values and the observed ones or the
reanalysis. The MAE is the average absolute difference between the forecast values and
the observations. Often they are computed together with RMSE, Equation 2.8, which is
the square root of the mean of the squares of those differences.

In this context, BIAS and MAE are computed to estimate a displacement of the
simulation from the in-situ observations and help evaluate its performance. They shall
not be considered as an attempt to evaluate the real BIAS and MAE of the model for the
area taken into consideration, as only a fraction of the data is considered, as anticipated
in Section 2.5. Therefore, the BIAS computed here is not a reliable estimate of the
systematic error of the model.

BIAS =
1

n

n∑
i=1

(Modi −Obsi) (2.6)

MAE =
1

n

n∑
i=1

|Modi −Obsi| (2.7)

RMSE =

√√√√ 1

n

n∑
i=1

(Modi −Obsi)2 (2.8)

Correlation is a measure of association, which shows the strength of linear relation-
ships between forecast and observation. It can also be computed considering the respec-
tive anomalies. It is shown in Equation 2.9, where the overline indicates the sample
mean.

rPearson ==

n∑
i=1

(Modi −Mod)(Obsi −Obs)√
n∑

i=1

(Modi −Mod)2
n∑

i=1

(Obsi −Obs)2
(2.9)

The first tests are performed by initializing the model with ERA5 reanalysis data
for the 21st of August at 00 : 00. The model is set to run until the 28th of August
at 12 : 00 for a maximum of 24 hours, within which nearly all the simulations are
completed. This is done to assess the ability of the simulation to correctly represent
a heatwave scenario, and the fourth week of August 2023 has temperatures well above
the climatological average for the period over northern Italy, which is the area of focus.
BIAS, MAE and Pearson Correlation are computed using instantaneous hourly values, as
it is the minimum common frequency provided for the temperature and relative humidity
data across the set of weather stations. The same scores are also computed for the daily
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extremes. The most relevant results, alongside the time series, are presented in Section
3.1.

A further comparison follows in Section 3.2, considering the entire three months of
June, July and August 2023. This evaluates the ability of the downscaling setup to
represent surface temperature across the entire season. It verifies if what is observed for
the weekly comparison is confirmed for this larger time range, which includes a more
diverse set of meteorological conditions. The seasonal forecast downscaling and the
impact of a continuous SST update are evaluated in the same way on one member in
Sections 3.3 and 3.4. A wider overview with multiple members, using BIAS and MAE
of monthly-averaged two-metre temperature, is instead shown in Chapter 4.

As suggested in Manual on the WMO Integrated Processing and Prediction System
2023, these computations shall happen both aggregating the whole domain and for every
individual grid point and this helps assess the spatial variability of the forecast skill.
For the present study, I only consider a set of locations, among the ones described in
Section 2.1. While focusing only on the area around the city of Bologna, this approach
still allows the evaluation of potential differences between rural and urban cases.

A comprehensive verification of seasonal forecasts would encompass a comparison
of the spatial patterns across the ensemble (G. T. Diro, Tompkins, and Bi 2012), with
specific attention to the extremes. This is especially important for those regions with
complex topography in which we would expect to see greater benefits from the introduc-
tion of a dynamical downscaling method.

2.7.2 Verification of the subsampling technique

At the time of writing, there are no universal verification strategies for the evaluation of
subsampled seasonal forecasts. Ensemble mean and spread are key figures to consider,
and the latter can be estimated using the interquartile range, as in Park and Kam 2023.
With the ensemble mean it is possible to compute the scores presented in Section 2.7.1.

A simple Mean Square Error Skill Score (MSESS) in combination with the Heidke
Skill Score (HSS) have been recently used by Kowal et al. 2024. Together they are
considered a suitable choice, since the former allows the investigation of the overall
quality of the forecast, while the latter measures the ability to predict extreme events,
once a quantile threshold has been defined. These simple metrics can be used to easily
assess different subsampling strategies before the final choice is made. Equation 2.10
shows the HSS expression considering the four coefficients of a standard contingency table
for binary events. Furthermore, the MSESS together with its three-term decomposition,
are a common choice in the verification of deterministic subseasonal and longer-range
forecasts, as recommended in Manual on the WMO Integrated Processing and Prediction
System 2023. More details on the decomposition of scores are presented in Appendix
A. The MSESS is obtained by subtracting to 1 the ratio between the mean square error
of the forecast and that of the reference, which could be the climatology. The formula
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is shown as Equation 2.11. If we assume the model to be perfect, it is also possible to
compute the ensemble mean MSSS starting from the individual members, as explained in
J. M. Murphy 1988. Then, it is possible to express it in terms of the mean MSESS of the
ensemble members, and it is ensemble size-dependent. This can be helpful to effectively
estimate the skill of the forecast system, as shown for the troposphere in J.-Y. Han et al.
2023.

HSS = 2
ad− bc

(a+ c)(c+ d) + (a+ b)(b+ d)
(2.10)

MSESS = 1− MSEforecast

MSEreference

(2.11)

Another option is to compare the estimated observation spread with the error asso-
ciated with the forecast, computed in F. Pappenberger et al. 2009 as a simple difference
with the observations. In that study, the spread difference was plotted against the mean
difference between the observations and the forecast. A predominance of positive, or
negative, differences in the spreads indicates an overestimation, or underestimation, of
the spread by the forecast.

2.7.3 Probabilistic metrics

To further take advantage of the ensemble approach, it is possible to compute scores
which consider the members in a probabilistic framework, as suggested by G. T. Diro,
Tompkins, and Bi 2012. This allows considering the distributions of the forecast variables
across the entire ensemble. These include the Rank Probability Skill Score (RPSS) and
the Relative Operating Characteristic Skill Score (ROCSS). They are commonly used
in seasonal forecast evaluation (Weisheimer and Palmer 2014; Manzanas, Lucero, et al.
2018; Manzanas, J. Gutiérrez, et al. 2018), together with reliability diagrams.

Measuring accuracy

The Relative Operating Characteristic (ROC) measures the ability of the forecast to
correctly discriminate different categorical events (Mason 1982). Events are commonly
classified using terciles (Manzanas, J. M. Gutiérrez, Bhend, Hemri, F. J. Doblas-Reyes,
Torralba, et al. 2019). The ROC curve represents the hit rate corresponding to a cer-
tain false alarm rate, providing information also regarding the extremes of the variable
distributions. The area underneath this curve (AUC) can be used to decide whether the
forecast can be considered skilful. AUC should be higher than 0.5, and the closer it is
to one, the better the quality of the forecast.

The Relative Operating Characteristic Skill Score (ROCSS) is based on the concept
of ROC and quantifies the improvement with respect to a random classification of the
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events. It has been used as a measure of accuracy in the context of seasonal temperature
forecasts (Manzanas, J. Gutiérrez, et al. 2018) and is regarded as a reasonable index to
communicate the value of a forecast (Manzanas, Fŕıas, et al. 2014), other than being a
recommended verification system for long-range forecasts by the bom.gov.au. Using a
ROC diagram with standardized AUC is also recommended by Manual on the WMO
Integrated Processing and Prediction System 2023 for the verification of subseasonal and
longer-range forecasts.

Measuring reliability

Reliability is a measure of how close the observed frequency of a certain occurrence is
to the forecast probability, and it is built using the different members of the ensemble
forecast system. The Rank Probability Score (RPS) (Epstein 1969, Wilks 1995) can be
used to measure the agreement of the forecast with the observations.

This score requires the definition of categories in which the observations fall, like
in Kumar, Barnston, and Hoerling 2001 and Doblas-Reyes et al. 2009. For instance,
a common choice is the introduction of terciles or quartiles. For each of the ranges, a
probability is computed from the ratio between the number of ensemble members falling
within it over the total. This is a way to quantify the probability of each class of events,
which is then used to assess its accuracy, namely how often the observation matches
with the most likely event according to the forecast. The RPS represents the deviation
of the forecast from what would have been the correct classification of the occurrences.
Its value ranges from zero for a perfect forecast, in which every value falling within a
certain bin corresponds to an observation in that quantile range, to one for an entirely
wrong one.

Equation 2.12 represents the RPS, where fj are the forecast probabilities while ej
represent the reference ones. The parameter c stands for the number of categorical
events. Using the RPS it is possible to define the Rank Probability Skill Score (RPSS).
Its value ranges from one for a perfect forecast to minus one for a completely misleading
forecast, where a value equal to zero stands for a result equivalent to considering the local
climatology. To de-bias the reference RPS when computed using observations of the local
climatology, Tippett 2008 presented a variation of the RPSS definition, which provides
an unbiased score in the limit of an infinite number of ensemble members. Equation 2.13
shows the corrected expression.

RPS =
1

c− 1

c∑
i=1

(
i∑

j=1

fj −
i∑

j=1

rj)
2 (2.12)

RPSS = 1− RPSforecast

RPSreference +
1

nmembers
RPSreference

(2.13)
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There exists also a continuous version of this skill score, namely the Continuous
Rank Probability Skill Score (CRPSS). It can be computed from the Continuous Rank
Probability Score (CPRS). This generalized version does not require the definition of
quantile categories. In the context of global ensemble forecasts, Manual on the WMO
Integrated Processing and Prediction System 2023 recommends the computation of the
CPRS for both the ensemble prediction system and the control deterministic forecast, in
which case it is equivalent to the mean absolute error (MAE).

The particular case of the RPS for binary categorical events is the Brier Score (BS).
The Brier Skill Score (BSS) has long been used as a measure of reliability (Brier 1950),
and its computation is required by Manual on the WMO Integrated Processing and Pre-
diction System 2023 for every variable in the verification of the global ensemble prediction
system. However, even a perfectly reliable forecast is useless if it always provides the
same probabilities as the climatology. Moreover, a forecast with a low score might still
be useful.

To avoid erroneously discarding them, Weisheimer and Palmer 2014 proposed a five-
categories system. Firstly, reliability is evaluated for multiple classes of events, using
the forecast probability of a certain occurrence and its expected long-term climatological
frequency. The types of events are usually defined using a tercile threshold approach,
which is also useful as it eliminates the influence of BIAS (Weisheimer and Palmer 2014).
Each of them is then plotted on a reliability diagram with a frequency histogram. Then,
to evaluate the overall reliability of the forecast, a linear regression is introduced, and the
slope becomes an indicator for reliability, with a perfect forecast having a value of one
for it. As the slope approaches zero, the added value of the forecast diminishes compared
to a reference climatological forecast. If the value of the slope is negative, the forecast
is said to be worse than useless, as it shows an opposite correlation between the forecast
probability of an event to happen and its climatological frequency.

The value is associated with uncertainty which can be estimated through a boot-
strap algorithm (Weisheimer and Palmer 2014). The categories are defined based on
the estimate for the slope and its range, for which a 75% confidence was proposed by
Weisheimer and Palmer 2014, but more recently a more conservative 90% has been used
by Manzanas, J. M. Gutiérrez, Bhend, Hemri, F. J. Doblas-Reyes, Torralba, et al. 2019.
The best possible scenario is a range containing a slope equal to one, associated with
perfect reliability, and fully contained within the region contributing positively to the
computation of the BSS. The forecast system is said to be still useful when the slope is
higher than 0.5, but its range does not include the perfect reliability line. A marginally
useful forecast is one still having a significantly positive slope, while none of the previous
conditions is met. This class was further split into two (Manzanas, Lucero, et al. 2018)
based on the belonging or not of the uncertainty range to the positive skill region. A
non-useful forecast system has a slope compatible with zero while for a negative slope,
the forecast is said to be dangerously useless. It is crucial to have a long hindcast to
provide robust estimates for reliability, as shown by Manzanas, Torralba, et al. 2022.
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Dataset Seasonal forecast
sub-daily data

ERA5 hourly data

10m u component of wind A A

10m v component of wind A A

2m dewpoint temperature A A

2m temperature A A

land-sea mask A A

mean sea level pressure A A

sea ice cover A A

sea surface temperature A A

skin temperature M A

snow depth A A

soil temperature level 1 A A

soil temperature level 2 M A

soil temperature level 3 M A

soil temperature level 4 M A

surface pressure M A

volumetric soil water layer 1 M A

volumetric soil water layer 2 M A

volumetric soil water layer 3 M A

volumetric soil water layer 4 M A

geopotential A A

relative humidity M A

specific humidity A A

temperature A A

u component of wind A A

v component of wind A A

pressure levels 12 37

Table 2.1: Variables required for the WRF model initialization and their availability in
the different datasets. A indicates availability of the field, while M indicates the data is
missing from the seasonal forecast dataset. The number of pressure levels is also shown
at the bottom of the table for each dataset.
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Name Number of x-y
grid points

Grid
spacing
(km)

Features and differences
with Base configuration

Base 150 - 151 - 151 9 - 3 - 1 61 land use
45 vertical levels

Direct 600 2 Time step of 6 seconds

Coast 150 - 151 - 151 9 - 3 - 1 Coastline interpolation

URB 150 - 151 - 151 9 - 3 - 1 Coastline interpolation
Zonato 2020 urban param

Direct Bis 900 1 Timestep of 1 second

URB larger 252 - 253 - 253 9 - 3 - 1 Same as URB

URB 5-1 150 - 251 5 - 1 radt = 5
cu physics = 0
(even at 5 km)
38 vertical levels
(lower at 5 m)

Coast VL 150 - 151 - 151 9 - 3 - 1 53 vertical levels
(lower at 5 m)

URB VL 150 - 151 - 151 9 - 3 - 1 53 vertical levels
(lower at 5 m)

Coast VL Bis 150 - 151 - 151 9 - 3 - 1 40 vertical levels
(lower at 10 m)

Coast PBL 150 - 151 - 151 9 - 3 - 1 Changed PBL physics
boundary = 2
sf sfclay physics = 2

Coast RAD 150 - 151 - 151 9 - 3 - 1 Changed radiation physics
ra lw physics = 4
ra sw physics = 4

Table 2.2: Simulations setup and changed WRF settings from Base setup.
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Chapter 3

Verification

The following tests evaluate the ability of the different WRF simulations to accurately
reproduce temporal patterns. This assessment is conducted at selected locations within
the area of interest where in-situ observations are available.

Firstly, some preliminary sensitivity tests are presented in Section 3.1 to quickly
evaluate the differences between different configurations of the WRF model when down-
scaling ERA5 data for a single week. Then a selected set of configurations is also tested
on the entire season in Section 3.2, to check whether the results can be generalized over
the longer three-month period. In Section 3.3, the final choice for the WRF configura-
tion is tested for the downscaling of one member of the seasonal ensemble forecast. The
impact of updating the sea surface temperature is evaluated in Section 3.4. The scores
for ERA5 are also computed, as it is used as a benchmark.

To provide an additional context before continuing, the distribution of summer hourly
temperatures for each station are computed. This allows a comparison of the mean ERA5
summer temperature values for each hour of the day with the values provided by each
station in the 10 years between 2014 and 2023. The behaviour is location-specific during
the night. As an example, the data for Bologna Idrografico (BOI) is shown in Figure
3.1, for which the night temperature is underestimated on average. During the day the
temperature provided by ERA5 is smaller than the observed mean of the distributions,
except for late afternoon where the ERA5 mean tends to overestimate the mean temper-
ature. In all locations outside the city of Bologna, there is an overall overestimation of
temperature, especially evident during the night in San Pietro Capofiume (SPT), shown
in Figure 3.2, which is the one located further from the bigger settlements.

3.1 Preliminary sensitivity tests

The simulations are referred to with the acronyms introduced in Section 2.4 and sum-
marized in Table 2.2.
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Figure 3.1: Hourly distributions of two-metre temperature as measured by the station
located in Bologna Idrografico (BOI) in the period 2014 − 2023. The dashed line rep-
resents the mean value from the ERA5 reanalysis. ERA5 tends to underestimate the
temperatures as the dashed line lies below the observed temperature distribution for the
majority of the time.

The computational times are similar for all setups, except for the ones with the
alternative configuration of the vertical levels, namely Coast VL and URB VL, which
take marginally less time to be completed. Other notable mentions are Direct and
Direct Bis, both of which could not be completed despite the lowered integration time
step, and URB Larger which could not be completed within the time constraint given.

To assess the quality of the different simulations, the data from five of the weather
stations mentioned in Section 2.1 is considered. From a first look at the time series,
it is possible to notice better agreement with ground observations for the two-metre
temperature series than for the two-metre relative humidity.

Focusing on the available urban station of Bologna Idrografico (BOI), the tempera-
tures tend to be overestimated during the first two days, especially by URB VL. However,
from day three, by which the heatwave intensifies, it is the one that comes closer the
observed temperature around the middle of the day. This aspect will be also evaluated
more quantitatively in Section 3.1. The mentioned model can not be considered the best
overall, since it is also the one which seems further from observations in the second half
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Figure 3.2: Hourly distributions of two-metre temperature as measured by the station
located in San Pietro Capofiume (SPT) in the period 2014 − 2023. The dashed line
represents the mean value from the ERA5 dataset. ERA5 tends to overestimate the
temperatures as the dashed line lies above the observed temperature distribution, espe-
cially during the night.

of the day, as shown in Figure 3.3.
The night minima are mostly overestimated, in particular during the central days

of the heatwave. On the contrary, ERA5 reanalysis tends to underestimate the tem-
peratures during the night, as confirmed by the overall negative BIAS for this station
shown in Table 3.1. ERA5 also shares the same difficulties of the tested simulations in
representing the highest daily values. Other features that can be seen in the short period
shown should not be intended as a general behaviour of the simulations.

Moving to rural stations, all simulations tend to overestimate the night temperatures.
ERA5 behaves similarly. As an example, part of the San Pietro Capofiume (SPT) time
series is shown in figure 3.4. The Coast RAD setup, which has the alternative radiation
parametrization scheme, and the ERA5 reanalysis are the ones overestimating the most
evening and night temperatures. The behaviour is less consistent across stations and
different days for the daily maximum temperatures.

As for the surface temperature, even with the two-metre relative humidity the differ-
ences between the simulations are more evident during the night. All simulations tend
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Figure 3.3: Two-metre temperature time series for the Bologna Idrografico (BOI) station
between the 22nd and the 25th of August 2023. The different simulations are represented
by continuous lines of different colours, ERA5 reanalysis data is shown as a dashed line
and the observations are plotted as blue dots.

to underestimate it to a certain degree.

The vertical profiles

A correct representation of the vertical temperature profile is also important to evaluate
the correct functioning of the simulations. The vertical profiles for August 22nd at 12:00
GMT and the one for August 23rd at 00:00 GMT are plotted against the observation of
the available soundings of the station located in San Pietro Capofiume. The simulations,
shown in Figures 3.5 and 3.6, largely follow the observed profile and correctly represent
the nocturnal surface inversion, as shown in Figure 3.6. The added value of downscaling
the reanalysis is clear close to the ground.

Quantitative outlook

To get a more quantitative outlook BIAS, Mean Absolute Error (MAE) and Pearson cor-
relation are computed using hourly data. More details on the computation are available
in Section 2.7.1. The station acronyms follow the convention introduced in Section 2.1.

Let us first consider two-metre temperature BIAS, presented in Table 3.1. It shows
the values for each simulation and each of their nestings, indicated with d01, d02 and
d03, where the latter is the smaller.
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Figure 3.4: Two-metre temperature time series for the San Pietro Capofiume (SPT)
station between the 22nd and the 25th of August 2023. The appearance of the elements
in this figure matches that of Figure 3.3.

It is clear the advantage provided by downscaling the ERA5 dataset. The BIAS is
reduced in all cases, especially in the urban stations. The introduction of nestings with
smaller grid-spacing does not consistently improve the score. Among the alternative con-
figurations to the base one, none of them improves the score significantly and coherently
across the examined stations. No significant difference is noticed across the board.

Coast PBL, which has the alternative PBL scheme, is the worst-performing one in
the urban context in the d01 9 km grid-spacing nesting while providing the smallest
BIAS for the rural stations. It then becomes the best one considering the smallest d03
nesting. The Coast VL and URB VL setups, having the first level closer to the ground,
seem to provide a small advantage.

URB 5-1 which has only two nestings is the worst performing of the group. This is
no surprise, as it ignores the recommended three-to-one ratio for grid spacing between
successive nestings in WRF.

Moving to the two-metre relative humidity BIAS, the conclusions that can be drawn
are similar, as it is shown in Table C.2 in Appendix C. In fact, while it is still beneficial to
perform the first downscaling, no further improvement is seen with the other two nestings,
which in most cases actually worsen the score. The introduction of the specific urban
parametrization shown almost no effect on the score, while the effect of the alternative
PBL scheme mirrors the one it has on the temperature BIAS.

Next, let us focus on the Mean Absolute Error, which must be considered in combina-
tion with BIAS. A reduced BIAS can result from the offsetting of positive and negative
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Figure 3.5: Vertical temperature profile for the San Pietro Capofiume (SPT) station at
12:00 GMT on 22nd August 2023. Simulations are represented by continuous lines, the
observed profile is shown as dots, and the ERA5 reanalysis profile is shown as a dashed
line.

contributions rather than indicating a simulation that is closer to the observations in
absolute terms. Just as for the BIAS, there is no clear difference in this score for both
variables with the different grid spacings.

When considering the two-metre temperature, MAE is always improved by all down-
scaling configurations, with the notable exception of Coast RAD, which worsens the score
in three out of the four stations analysed, and consistently remains the worst-performing
configuration even in the smaller grid-spacing cases. A small advantage is observed with
Coast VL, URB VL and Coast PBL. When turning to two-metre relative humidity, a
slight reduction is observed for the urban station, while the scores are worse for almost
every configuration in the rural ones. The MAE values for temperature and relative
humidity, shown in Tables C.3 and C.1 respectively, are available in Appendix C.

As for correlation, the values are already high for ERA5, with values higher than 0.85
for relative humidity and above 0.9 for temperature. After the downscaling the corre-
lation remains high even though it tends to be slightly reduced, especially in the urban
context. The alternative radiative transfer scheme tends to be the worst performing and
further deteriorates the correlation, with the finer nesting showing a coefficient value
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Figure 3.6: Vertical temperature profile for the San Pietro Capofiume (SPT) station at
00:00 GMT on 23rd August 2023. The appearance of the elements in this figure matches
that of Figure 3.5.

below 0.7 for the relative humidity. The difference is less clear for the temperature, for
which the grid spacing and the configurations chosen seem to have little to no impact on
the correlation.

The double-nesting approach, which has not been under the spotlight until now
in this section, often performs worse than the others. At the same time, it does not
significantly contribute to reducing the computational cost, which was the reason behind
its introduction in the first place.

The configuration Coast VL with the first level shifted at 5 metres from the ground
increases the number of levels to 53 compared to the Base configuration, which has 45.
In the alternative configuration of the vertical levels used in Coast VL Bis, the first level
is forced to be at 10 metres, while the total number of levels is set to 40. No significant
change is observed by changing the number of levels, as shown with simple scores in the
Tables in Appendix C. The observed computational time has not decreased substantially.

To assess whether the boundaries are too close to the region of interest, a larger
domain is tested with URB larger to evaluate if it could significantly improve the results.
No clear advantage is given by the larger domain. This alternative configuration is also
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Simulation Domain BOI MEZ STG SPT

Base d01 0.05 1.14 0.68 1.39

Coast d01 0.05 1.18 0.69 1.43

PBL d01 -0.42 0.64 0.20 0.96

RAD d01 0.63 1.68 1.37 1.97

VL d01 -0.41 1.01 0.28 1.31

URB d01 0.06 1.19 0.70 1.40

URB 5-1 d01 1.97 1.57 0.93 1.72

URB VL d01 0.27 1.00 0.30 1.28

ERA5 d01 -1.31 1.48 1.62 2.46

Base d02 0.28 1.45 1.22 1.60

Coast d02 0.26 1.46 1.20 1.61

PBL d02 -0.33 0.79 0.45 1.07

RAD d02 0.86 2.02 1.78 2.18

VL d02 -0.43 1.04 0.72 1.33

URB d02 0.47 1.40 1.23 1.57

URB 5-1 d02 2.50 1.78 1.07 1.95

URB VL d02 0.92 1.05 0.76 1.37

Base d03 0.73 1.46 0.90 1.49

Coast d03 0.72 1.47 0.91 1.51

PBL d03 0.11 0.85 0.28 1.09

RAD d03 1.26 2.09 1.49 2.14

VL d03 0.15 1.10 0.58 1.33

URB d03 1.02 1.44 0.92 1.53

URB VL d03 1.69 1.12 0.62 1.37

Table 3.1: BIAS of two-metre temperature for the different simulations and domains,
referred to the selected locations.

associated with a higher computational cost and is thus discarded. The Tables are shown
in Appendix C.

A key aspect in the representation of temperature is a correct portrayal of the ex-
trema. Starting with the results for the maximum temperature BIAS, the benefit is un-
clear. In some cases, it is significantly reduced and brought very close to zero. However,
this does not happen consistently across all available locations for any of the presented
configurations. Interestingly, the worst performing across the board seem to be Coast VL
and URB VL, despite their first level closer to the ground.
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The same analysis is repeated with temperature minima. As for the maxima, there is
not a consistently better configuration of the downscaling and the further nestings have
little to no impact. Most setups can marginally reduce the BIAS, especially Coast PBL.
The worst performing one is instead Coast RAD, coherently with the observed time series
in Figure 3.4.

To summarize, the downscaling is effective in terms of BIAS reduction. The down-
scaling has also proven effective in a few cases in improving the scores over the ERA5
value, especially in the available urban station. This aspect is investigated with the
addition of another station in Chapter 4. The enhancement is likely due to the higher
resolution of the topography and the land use information introduced with the WRF
downscaling.

Another conclusion which is possible to draw is the lack of noticeable improvements
in the observed scores given by the additional nestings beyond the d01. Being the
reference urban stations located within the city centre, the advantage of the better land
use representation can be already evident from the d01 nesting, with mostly minor
differences with the successive ones. This aspect is certainly setup-dependent, as for
example Coast PBL changes significantly its relative performance within the tested batch
depending on the nesting considered.

According to Meehl et al. 2021 the increased resolution must also be accompanied
by comparable increases in the quality of the physical parametrizations such as cloud
feedback and cloud-aerosol interactions. This may be part of the reason why no further
improvement is observed thanks to the finer grid spacing of the additional nestings.

While these tests are useful for sounding the possible effect of changes in the setup,
no single configuration of the downscaling consistently outperforms the others across
all metrics. On the other hand, these sensitivity tests still allow the exclusion of some
configurations, such as Coast RAD with the alternative radiative transfer scheme, as it
generally performs worse.

3.2 Tests on the entire season

The same triple nesting is maintained in this second comparison too, despite no evidence
of an improvement in the scores coming from the use of a finer grid alone. This is done
due to the longer time range considered, which consequently comprises a greater variety
of situations. Among the previously considered locations, three have temperature data
available for the entirety of the period and only for those the scores are computed.

URB which introduces the specific urban parametrization is tested again, given the
importance of such variation in the representation of the urban context. To conclude this
specific simulation, it was necessary to lower the time step for the last week of August
from the 54 seconds used in all other tests to 9. This is due to a higher numerical
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instability introduced by the urban parametrization. This increased the time required
to complete the simulation. Coast VL is also run for this entire period, given its lower
observed computational time. This setup required a lowering of the time step as well
for the last week. The dynamical time step is reduced to 9 seconds while the one for
the radiative transfer is lowered to 3 seconds instead of the 9 seconds of Base. These
variations caused a significant increase of the computational time.

Let us start by considering the same scores computed in Section 3.1. The relative
humidity BIAS is reduced significantly for the urban stations, which initial ERA5 BIAS is
much higher than the one seen in the available rural station located in Mezzolara (MEZ).
For this station the BIAS is increased by the downscaling. No benefit is provided by
additional nestings, as the BIAS generally increases with respect to the simulation with
9 km grid spacing, as shown in Table 3.2.

Simulation Domain BOU BOI MEZ

Coast d01 -5.56 -7.16 -4.09

URB d01 -3.23 -4.84 -4.15

VL d01 -3.12 -4.70 -0.15

ERA5 d01 13.74 12.07 1.39

Coast d02 -8.83 -10.45 -9.92

URB d02 -8.45 -10.06 -10.14

VL d02 -6.71 -8.33 -7.64

Coast d03 -9.67 -11.21 -10.14

URB d03 -9.34 -11.07 -10.27

VL d03 -7.75 -9.34 -7.78

Table 3.2: BIAS of two-metre relative humidity for the different simulations and domains,
referred to the selected locations.

Moving to the temperature BIAS, shown in Table 3.3, a reduction is observed in all
instances. The additional nestings marginally worsen the BIAS compared to the first
one, but the values are still lower than the ERA5 values.

The improvements are much less evident for relative humidity MAE, which is only
marginally reduced in the urban stations. Just as for the BIAS, MAE increases for the
Mezzolara rural station. Regarding the temperature, MAE is only marginally reduced for
the Bologna Idrografico (BOI) station, while there is no clear effect of the application of
the downscaling on the other two available locations. The relative humidity correlations
are slightly reduced by the downscaling at all stations, from values above 0.8 for ERA5.
Small or no changes are seen with temperature correlation, which remains above 0.9. No
significant change is observed with finer grid spacing.
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Simulation Domain BOI MEZ STG

Coast d01 0.37 0.15 0.04

URB d01 -0.12 0.15 0.05

VL d01 -0.07 -0.31 -0.45

ERA5 d01 -1.63 0.71 0.85

Coast d02 0.83 0.92 0.81

URB d02 0.68 0.93 0.75

VL d02 0.34 0.64 0.59

Coast d03 1.21 0.93 0.80

URB d03 1.09 0.89 0.73

VL d03 0.82 0.67 0.65

Table 3.3: BIAS of two-metre temperature for the different simulations and domains,
referred to the selected locations.

Time series

The limited changes in the scores considered are confirmed by a review of the time series.
I compute a daily value for the surface temperature for the downscaled forecast. This
statistic is obtained by averaging the midnight and noon values for every location. This
simplifies the visualization as opposed to showing hourly data and lowers the computa-
tion cost compared to using the whole dataset, as the scope is only to provide a quick
way of comparing the temporal behaviour of the different simulations in the context of
the reference datasets and in-situ observations. As a representative example, the daily
averages for July are shown in Figure 3.7 for the station of Bologna Idrografico. The
different simulations are barely distinguishable and largely overlap for most of the days.
No single configuration is consistently better than the others.

Extremes comparison

No consistent BIAS or MAE reduction is observed neither for temperature maxima. In
most cases, they are instead slightly increased. No significant difference is visible when
changing the resolution. The biggest benefit can be observed in the available urban
location, but only starting from the d02 nesting. Maximum temperature BIAS is shown
in Table 3.4 for all available locations. The daily maximum temperature correlation are
high for ERA5, and remain above 0.9 after the downscaling to 9 km. No effect or a
minor worsening of the correlation coefficient is observed with the finer nestings.

Moving to daily minimum temperature, a reduction of BIAS is instead evident across
all stations. This is also reflected into a reduction in MAE, not shown. Coherently with
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Figure 3.7: Daily two-metre temperature values for the month of July 2023 at the Bologna
Idrografico station. The continuous lines indicate the different downscaling simulations,
and the dashed line represents ERA5 reanalysis. The blue dots refer to in-situ observa-
tions while the orange squares represent the E-OBS dataset. The thicker line represents
the non downscaled seasonal forecast.

Simulation Domain BOI MEZ STG

Coast d01 -1.51 -0.24 -1.02

URB d01 -1.95 -0.30 -0.99

VL d01 -1.99 -1.02 -1.75

ERA5 d01 -1.83 0.17 -0.61

Coast d02 -0.49 1.34 0.58

URB d02 -0.89 1.37 0.89

VL d02 -0.87 0.92 0.16

Coast d03 -0.01 1.80 0.74

URB d03 -0.36 1.70 0.94

VL d03 -0.40 1.05 0.30

Table 3.4: BIAS of daily two-metre maximum temperature for the different simulations
and domains, referred to the selected locations.

what is already seen in Section 3.1, no significant improvement is observed with the
introduction of the additional nestings. The daily minimum temperature BIAS is shown
in Table 3.5. The correlation, not shown, remains moderate to high for all stations, with
little impact from the introduction of the downscaling.

The results over the tested three months period show no consistently different be-
haviour between the different configurations tested. As seen in Section 3.1, no significant
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Simulation Domain BOI MEZ STG

Coast d01 0.59 -0.03 0.71

URB d01 0.00 -0.04 0.59

Coast VL d01 0.47 -0.19 0.61

ERA5 d01 -2.10 1.54 3.12

Coast d02 0.81 0.00 0.58

URB d02 0.83 -0.30 0.52

VL d02 0.49 -0.06 0.80

Coast d03 1.13 -0.02 0.50

URB d03 1.12 -0.30 0.50

Coast VL d03 0.89 0.07 0.97

Table 3.5: BIAS of daily two-metre minimum temperature for the different simulations
and domains, referred to the selected locations.

benefit is introduced by the additional nestings beyond the first one, except for isolated
cases. However, the downscaling itself is effective in reducing summer temperature BIAS
across all stations, both in the urban and rural contexts. This was already evident in
the tests over a single week seen in Section 3.1, and it is confirmed for this longer time
range. The BIAS reduction seems to be especially evident for the daily minimum two-
metre temperature BIAS, while the improvement is only marginal for the maximum
temperature.

3.3 Tests on a single member of the seasonal ensem-

ble

Given the results in Sections 3.1 and 3.2 and its higher stability, the Coast configuration
is deemed adequate to downscale the seasonal forecast. As anticipated in Section 2.4,
this time the three nested domains have a grid spacing of 27 km, 9 km and 3 km. The
seasonal forecast is initialized at the beginning of June, while the downscaling starts on
June 2nd at midnight, the first time in the dataset with all variable fields available. The
range considered ends on the last day of August. The scores are computed as in Section
3.1, but I only consider the values every 12 hours, at noon and midnight. A direct hourly
comparison would not have been possible since the non-downscaled seasonal forecast has
the data only available on a sub-daily basis, as explained in Section 2.1. On a positive
note, this reduces the computational time. The same data is used to produce the time
series, for which a daily statistic is computed by averaging the midday and midnight
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values. As a reference, the same statistic is computed for the observations coming from
the in-situ weather station and the value of the closest point in the gridded observation
dataset E-OBS, which characteristics are described in Section 2.1.

I took the control member of the ensemble seasonal forecast, which is arbitrary, as the
scope of this test is to assess the quality of the downscaling process itself. The dataset
is composed according to what is indicated in Section 2.2 for option A. The scores are
computed for the same three stations of Section 3.2. As a comparison, the scores from
both ERA5 reanalysis and the non-downscaled non-perturbed member of the seasonal
forecast are also considered.

As expected, the seasonal forecast underperforms in terms of scores compared to
the ERA5 reanalysis. Interestingly, the dynamical downscaling, forced as described
in Section 2.2, provides a clear added value in terms of BIAS, with a reduction that
makes it lower than the ERA5 one. While the first two nestings appreciably reduce the
temperature BIAS, the difference with the introduction of the third one is limited, as
shown in Table 3.6. An advantage in terms of BIAS by the first nesting is also seen in
relative humidity BIAS, shown in Table 3.7. This is coherent with the results observed
with the ERA5 downscaling in Sections 3.1 and 3.2, which show little to no improvement
below the 9 km grid spacing either.

The first nesting is also helpful in marginally reducing MAE, but not below the values
for ERA5.

Relative humidity correlation is marginally reduced by the downscaling and ranges
from 0.4 to 0.5 across the available stations. Temperature correlation is not affected
significantly by the downscaling and remains significantly lower than the ERA5 one.

Simulation Domain BOI MEZ STG

0 d01 -3.67 -1.44 -1.00

ERA5 d01 -1.92 0.46 0.74

SEAS d01 -4.99 -2.25 -2.91

0 d02 -0.52 -0.96 -0.53

0 d03 -0.50 -0.87 -0.67

Table 3.6: BIAS of two-metre temperature for the different simulations and domains,
referred to the selected locations.

Time series

To help frame the scores, I will also present the time series for the mentioned locations.
As a reference, also ERA5 and the values from the interpolated observational dataset
E-OBS are shown. The values shown in the plots are computed as done in Section 3.2.
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Simulation Domain BOU BOI MEZ

0 d01 5.09 3.86 -4.88

ERA5 d01 14.85 13.46 2.93

SEAS d01 21.59 20.26 12.85

0 d02 -8.06 -9.29 -5.63

0 d03 -8.01 -9.25 -5.88

Table 3.7: BIAS of two-metre relative humidity for the different simulations and domains,
referred to the selected locations.

Looking at Bologna Idrografico, a difference is clear between the months of June,
shown in Figure 3.8, and August, Figure 3.9. In the former, there is a clear difference
in the shape of the curve compared to its non-downscaled counterpart. This translates
into a better forecast in the second half of the month, where the downscaling pushes the
forecast closer to the observed values. The original seasonal forecast misses the onset of
the heatwave and maintains similar values to the first half of the month.

If we look at the same plot for August, which represents lead time three for the
forecast, the situation is very much different. While the downscaling can reduce the
negative BIAS because it increases the temperature values on average, there is no clear
benefit in terms of the quality of the forecast, as it still does not follow the observed
trends. This is coherent with the limited MAE enhancement.

The station data shows temperatures that are consistently higher in value than what
both ERA5 and E-OBS indicate. This is likely due to the coarseness of these datasets
which are unable to identify the presence of the urban area and its consequences in terms
of temperature.

In the rural locations the general trends are very similar to the urban ones. One key
difference is the fact that the station observations in all three rural locations fall within
the 90th percentile range of the E-OBS dataset. As a representative example for June,
the trends from San Pietro Capofiume (SPT) are shown in Figure 3.10. The application
of the downscaling introduces a small correction to the original seasonal forecast. This
was already evident in terms of the scores, and it suggests the lower impact of a higher
resolution and a better soil use representation when modelling temperature outside the
urban context. This aspect is further investigated in Chapter 4.
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Figure 3.8: Daily values for two-metre temperature for June in Bologna Idrografico. The
dots represent the local weather station data. The squares and the shading represent
the E-OBS dataset mean and spread respectively and are an alternative observational
reference. The thick yellow line is the non-downscaled first member of the seasonal
forecast, while the thinner one is the same member after the application of the three
steps of downscaling.

Figure 3.9: Daily values for two-metre temperature for August in Bologna Idrografico.
The appearance of the elements in this figure matches that of Figure 3.8.
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Figure 3.10: Daily values for two-metre temperature for June in San Pietro Capofiume.
The appearance of the elements in this figure matches that of Figure 3.8

3.4 Sea surface temperature update

The simulations which scores are shown in Sections 3.1, 3.2 and 3.3 do not update the
SST, as is the default in the WRF model. This has the advantage of a lower computa-
tional cost. However, it affects the two-metre temperature.

To evaluate the magnitude of the impact on the surface temperature simulation, I
took as a reference the ERA5 reanalysis data from 1993 to 2016 and computed the mean
summer two-metre temperature field across these years. This allows the computation of
anomaly fields for the current year for the different products I want to compare.

Firstly, I present what can be considered the reference anomaly for 2023, namely
the ERA5 reanalysis summer temperature anomaly, shown in Figure 3.11. It shows the
warm anomaly over most of Europe that characterizes the year.

In Figure 3.12, I instead show the anomaly of the non-downscaled seasonal forecast
that I use to initialize the WRF model. Already in this forecast there is a significant dif-
ference with ERA5. The highest positive anomalies are observed in the continental areas
of the Iberian Peninsula and the mountainous regions of Italy and Morocco. The most
negative anomalies are located in the Anatolian peninsula. These areas are dominated by
the presence of orography, which oversimplification in the global model may explain the
excessive anomalies, but additional tests would be needed to confirm this with certainty.
Since the downscaling in heavily influenced by the driving dataset I should expect its
anomaly to similarly differ from the ERA5 one.

Figures 3.13 and 3.14 show the mean two-metre temperature anomaly, first without
the SST update and then with it active, respectively. Maintaining the SST condition
as the initial one leads to an underestimation of the SST in most areas, which in turn
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produces a lower two-metre temperature than expected over those areas. The impact
on land two-metre temperature is less significant. While the difference is clear over the
SST and the impact on coastal areas is likely high, the situation is less clear inland. The
impact in the set of reference locations in and around the city of Bologna is evaluated in
Section 3.4.

While the comparison with the original non-downscaled forecast is imperfect, as the
fields have a different resolution, it is still possible to notice how the higher anomalies
visible in Figure 3.12 are smoothed out. The update of the SST, which allows taking
advantage of the evolving SST boundary conditions provided by the driving dataset,
gives an output that is much more similar to the original global seasonal forecast as it
reproduces all the main patterns.

To get a first estimate of the impact of this change over the locations of interest, I
computed BIAS and MAE over the three summer months. This way I can have reference
scores computed in the same way as the other simulations tested in this Chapter. They
are shown in Table 3.8 in light blue, next to the corresponding score of the simulation
with no SST update. In all instances, there is a reduction of BIAS, with a more significant
benefit brought by the finer nestings. I also show the MAE comparison in Table 3.9,
for which the relative difference between the two setups is smaller. There is also less
difference in the scores between the chosen locations.

Simulation Domain BOI MEZ STG

Member 0 d01 -3.67 -1.44 -1.00

Member 0 d01 -3.25 -0.88 -0.47

ERA5 d01 -1.92 0.46 0.74

SEAS d01 -4.99 -2.25 -2.91

Member 0 d02 -0.52 -0.96 -0.53

Member 0 d02 -0.03 -0.28 0.02

Member 0 d03 -0.50 -0.87 -0.67

Member 0 d03 -0.03 -0.30 -0.06

Table 3.8: BIAS of two-metre temperature for the different simulations and domains,
referred to the selected locations. The rows corresponding to the simulation that updates
the SST are highlighted in light blue.

Coherently with what can be inferred from Figures 3.13 and 3.14, the impact of the
SST update is marginal yet positive around the city of Bologna, the area on which this
thesis focuses. The more realistic SST behaviour increases the temperature and reduces
the overall BIAS in all instances. Even the rural stations show a modest BIAS reduction,
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Simulation Domain BOI MEZ STG

Member 0 d01 4.99 3.72 3.67

Member 0 d01 4.65 3.53 3.46

ERA5 d01 2.13 1.16 1.65

SEAS d01 5.76 3.99 4.25

Member 0 d02 3.78 3.79 3.68

Member 0 d02 3.69 3.51 3.56

Member 0 d03 3.76 3.77 3.83

Member 0 d03 3.63 3.52 3.47

Table 3.9: MAE of two-metre temperature for the different simulations and domains,
referred to the selected locations. The rows corresponding to the simulation that updates
the SST are highlighted in light blue.

with a better score associated to the finer nestings compared to the ERA5 one. This is
observed for the urban locations even without the SST update, as the ERA5 reanalysis is
likely unable to account for the presence of the city, thus performing significantly worse.

The same comparison is repeated with option B dataset, as defined in Section 2.2.
The results are now shown for brevity as they are nearly equivalent and all conclusions
drawn for option A are equally valid. Therefore, the SST update is kept active for the
final downscaling setup, which results are shown in Section 4.3.
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Figure 3.11: Two-metre temperature anomalies of ERA5 2023 reanalysis. The anomaly
is positive on most of the domain. This is expected as summer 2023 is chosen for this
thesis due to being warmer than usual.

Figure 3.12: Two-metre temperature anomalies of non-downscaled seasonal forecast
(member 0) for 2023. The seasonal forecast presents areas with very pronounced anoma-
lies, especially in mountainous areas.
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Figure 3.13: Two-metre temperature anomalies of downscaled forecast without SST
update (member 0) for 2023. The constant SST leads to an overall underestimation of
the two-metre temperature over the Atlantic Ocean and the Mediterranean basin.

Figure 3.14: Two-metre temperature anomalies of downscaled forecast with SST update
(member 0) for 2023. Updating the SST removes the negative anomalies that were
present in Figure 3.13 but not in Figure 3.12.
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Chapter 4

Results

Given the results presented in Chapter 3, the chosen setup among the ones described in
Section 2.4 is now used to downscale multiple members of the ECMWF ensemble forecast.
More specifically, the deterministic control run together with the first four perturbed
members. The initialization dataset is constructed according to the two alternative
options presented in Section 2.2. The references are the observations at each available
ground station for the period from June to August 2023.

The results are evaluated on a monthly basis, as explained in Section 2.7.1, they
should not be intended as an attempt to estimate the actual model performance for the
specified locations, but more as a tool to compare the different adjusted or downscaled
forecasts against a common observational reference.

Coarsely-gridded products like E-OBS or ERA5 reanalysis are unable to account for
the specific characteristics of local features, like the presence of a city or a particularly
narrow valley. This is also true for the set of locations studied in this work, especially the
urban ones, as seen in Chapters A and 3. For this reason, in the context of developing a
downscaling methodology that can be applied to heatwave forecasting, the comparison
with ERA5 scores is also considered.

As an alternative approach, two less costly BIAS correction methods described in
Section 2.6 are also introduced. They are both applied to the ensemble mean of the
non-downscaled seasonal forecast.

4.1 Preliminary tests - Option A

Initially, I consider the downscaling of the seasonal forecast initialized on June 1st, with
the dataset built as explained for Option A in Section 2.2. This means the missing fields
are replaced by their constant initial state provided by ERA5 reanalysis.

Let us begin by considering monthly-averaged two-metre temperature BIAS and MAE
for a set of locations with available in-situ observations. As it is shown in Figure 4.1,
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the BIAS for the non-downscaled seasonal forecast is always negative and much smaller
than the ERA5 reanalysis one. ERA5 performs better in the rural stations, meaning the
BIAS is closer to zero.

The application of the dynamical downscaling generally improves the BIAS, as ex-
pected given the test results presented in Section 3.3, referred to the ensemble mean of
the downscaled ensemble members for each of the nestings. The average value across all
station and months passes from −3.35 of the non-downscaled seasonal forecast ensemble
mean to −0.37 after the downscaling process. The positive benefit given by the down-
scaling is especially clear in the available urban stations, where the scores were initially
worse than their rural counterparts. There, after the downscaling, the ensemble means
of the two finer nestings outperform even the ERA5 reanalysis. While the improvement
when passing from d01 27 km nesting to the successive d02 9 km is evident, the difference
from the latter and d03 3 km is barely visible.

The impact of the mean bias statistical correction is instead very marginal and even
leads to a slight worsening of the scores in the case of the station of Bologna Asinelli
(BOA). The more sophisticated MVA is marginally better than its simpler counterpart
in most cases. During June and July, the performance is generally close to the one of
the coarser domain ensemble mean. In the rural location during August this correction
shifts the BIAS to positive values. In the case of Sant’Agata station (STG), the scores is
still close to that of ERA5. The urban locations experience a shift of similar magnitude,
which brings the score closer to zero, with a performance that is comparable in these
cases with the one of the ensemble mean of the downscaling to the finer nestings d02
and d03.

Similar conclusions can be drawn from a further comparison using the MAE. In fact,
in Figure 4.2, it is evident the potential added value of the dynamical downscaling. Using
again a simple average across all stations and months, the value for the non-downscaled
forecast ensemble mean is 3.35 and is reduced to 0.40 after the downscaling to 3 km
resolution.

The urban stations show the biggest reduction in MAE, with the scores of the en-
semble mean of the second and third nestings being lower than the ones for the non-
downscaled seasonal forecast and the ERA5 reanalysis. In the rural locations in which
the score was already lower, the dynamical downscaling benefit is lower. It is still able
to bring it to a value comparable to ERA5 reanalysis, and can even outperform it, as is
the case in June and August. This also means getting more similar scores across the set
of stations after the downscaling, regardless of the nature of their location.

As for the MVA forecast, while performing generally better than the simpler correc-
tion, it still does not match in most of the cases the score achieved by the coarser nesting
ensemble mean. The biggest leap is observed in the urban locations in the month of
August. One exception is the score during the same month in the rural location, where
the performance is instead worse than what can be obtained with the simpler correction
method.
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Figure 4.1: Monthly-averaged two-metre temperature BIAS for each of the available loca-
tions, using option A. Each grey symbol represents a different domain of the downscaled
simulation of which the ensemble mean is taken. The coloured dots represent instead the
scores non-downscaled seasonal forecast ensemble mean, its statistical corrections and
the one for the ERA5 reanalysis.
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Figure 4.2: Monthly-averaged two-metre temperature MAE for each of the available
locations, using option A. The appearance of the elements matches that of Figure 4.1.

To get an idea of the role that an ensemble of downscaled forecasts can play, I also
present the time series of the downscaled members. Specifically, the first five members of
the ensemble are shown together with the non-downscaled seasonal ensemble mean. The
values are relative to the finer nesting d03. The daily values shown in the time series are
computed as indicated in Section 3.2.

The sample of members to which the downscaling is applied is the result of a random
choice, thus rendering the comparison only partially indicative of the potential benefits.
However, it allows to have a first estimate of what the behaviour of different members
can look like against the observational references and the full-ensemble mean. The bias-
corrected forecast are also shown for further comparison.

The month of June is shown in Figure 4.3. While the best-performing member
changes depending on the day, the small subset of members mostly follows the general
behaviour of the observational reference. This highlights the potential improvement of
the forecast quality if the subset of members is chosen properly. The total ensemble
mean of the non-downscaled forecast is not surprisingly mostly flat, only showing a mild
increase towards the end of the month. However, even considering the standard deviation
range the observed temperature values are well above, remarking the importance of
member selection. In the other urban stations, the behaviour of the simulations is similar.

In all cases, the effect of the simple mean bias correction, shown in Figure 4.4, is
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Figure 4.3: Daily values of two-metre temperature for Bologna Idrografico in June, option
A. The statistic shown is the one first described in Section 3.2. The appearance of the
elements in this figure matches that of Figure 3.8. Here the multiple downscaled members
are represented by light grey lines.

a minimal shifting of the trend, which is insufficient to bring the forecast close to the
observations in a satisfactory way. The MVA forecast behaves similarly to the single
downscaled members. While improving the representation at the beginning and the end
of the month, it still does not reproduce the peak intensity of the heatwave, which is
crucial when dealing with these extreme events.

Moving to a rural case, in Figure 4.5 the behaviour of multiple downscaled members
is shown for the station of Sant’Agata (STG) during June. The ensemble mean is closer
to the downscaled members which meander just above it. This time, the members lay
within the ensemble standard deviation range for longer. This suggests a lesser difference
between the original members of the ensemble and the newly downscaled ones, compared
to what is observed for the urban station in Figure 4.3.

4.2 Preliminary tests - Option B

In this paragraph, I present the results related to the alternative preparation of the ini-
tialization dataset, option B. As anticipated in Section 2.2, a corrected ERA5 climatology
is taken for the missing fields. The reference seasonal forecast is the one initialized in
May, and the downscaling is now performed from lead time 1.

In fact, the introduction of the downscaling provides a marginal improvement in
the scores in the selected locations, with minor differences between the second (d01 )
and third (d03 ) nestings. The average BIAS across the available stations and months is
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Figure 4.4: Daily values of two-metre temperature for Bologna Idrografico in June,
option A. The statistic shown is the one first described in Section 3.2. The appearance
of the elements in this figure resembles that of Figure 3.8, with the addition of further
continuous lines representing the mean-bias corrected forecast and the MVA one.

Figure 4.5: Daily values of two-metre temperature for Sant’Agata in June, option A.
The appearance of the elements in this figure matches that of Figure 4.3
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Figure 4.6: Monthly-averaged two-metre temperature BIAS for each of the available
locations, using option B. The appearance of the elements matches that of Figure 4.1.

reduced from −3.01 to −0.48 after the downscaling to 3 km resolution. The average MAE
is decreased from 3.01 to 0.83. The greatest difference with the non-downscaled seasonal
forecast is once again seen in the earlier month and in the urban stations. Therefore,
while not being directly comparable with the seasonal downscaling based on Option A,
as it is driven by a different forecast, the effects on the scores are indeed similar. During
the first month, the BIAS moves from being negative to positive in sign, as shown in
Figure 4.6. At the same time, there is a decrease in MAE, shown in Figure 4.7.

In this instance, the simple mean bias correction has a very small impact on the
forecast, as seen in Section 4.1. MVA tends to perform well in terms of BIAS in the
urban stations, resulting in better values than the simpler correction that renders it
comparable with the scores of the finer nestings ensemble mean and those of ERA5. In
rural locations, it is instead the simpler correction that leads to a better result among the
two, as the pronounced shift leads to a positive BIAS. It can be even higher in magnitude
than the initial negative BIAS of the non-downscaled seasonal forecast, as it happens in
the case of June in rural locations. The erratic effect it has in this instance renders it
inadequate.

Moving to the MAE, most of the conclusions remain valid, as a better BIAS is
reflected in a smaller MAE. The scores are shown in Figure 4.7.

The MVA performs well in the urban context in all months. In the rural location,
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Figure 4.7: Monthly-averaged two-metre temperature MAE for each of the available
locations, using option B. The appearance of the elements matches that of Figure 4.1.

its poor performance for the month of June is confirmed, with a higher MAE than the
non-downscaled seasonal forecast. For the other months, the scores are instead improved
by the correction. This is coherent with what is observed in Figure 4.6, as the BIAS is
smaller in magnitude than the non-downscaled seasonal forecast, even if it has its sign
changed.

Let us now consider the time series of two-metre temperature. Figure 4.8 shows
the month of June for the station of Bologna Idrografico (BOI). In agreement with the
scores, the downscaled ensemble members mostly overestimate the observed temperature,
especially at the beginning of the month. The MVA forecast, shown in Figure 4.11 has
a similar behaviour, as expected given the similar score previously presented.

Moving to the rural station of Sant’Agata (STG), shown in Figure 4.10, which situ-
ation is analogous to the one in Mezzolara (MEZ), it is possible to associate the strong
positive BIAS of the MVA forecast, in Figure 4.11 with an even more pronounced over-
estimation of temperature, especially in the first part of the month.

The trend of August is not followed accurately by any of the members. As for June,
in the urban context, they are much closer to the observation than they are to the non-
downscaled ensemble mean. The MVA forecast remains closer to it, as shown in Figure
4.12.

The worse performance for the rural stations is confirmed by looking at the time series.
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Figure 4.8: Daily values of two-metre temperature for Bologna Idrografico in June, option
B. The appearance of the elements in this figure matches that of Figure 4.3.

Figure 4.9: Daily values of two-metre temperature for Bologna Idrografico in June, option
B. The appearance of the elements in this figure matches that of Figure 4.4.
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Figure 4.10: Daily values of two-metre temperature for Sant’Agata in June, option B.
The appearance of the elements in this figure matches that of Figure 4.3.

Figure 4.11: Daily values of two-metre temperature for Sant’Agata in June, option B.
The appearance of the elements in this figure matches that of Figure 4.4.
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Figure 4.12: Daily values of two-metre temperature for Bologna Idrografico in August,
option B. The appearance of the elements in this figure matches that of Figure 4.4.

Taking as a reference the series in Sant’Agata (STG), most members underestimate the
surface temperature in the second half of the month, losing the onset of the heatwave,
with values closer to the non-downscaled ensemble mean.

In essence, the dynamical downscaling is effective in reducing monthly-averaged two-
metre temperature BIAS and MAE within the urban context, while the benefit is smaller
in the rural locations, which performance of the original forecast is already better. There-
fore, the scores across the different locations are similar after the downscaling.

The performance of the dynamical downscaling based on Option B is similar to what
is observed in 4.1 for Option A. However, since the considered simulation is the product
of downscaling a seasonal forecast initialized one month prior, one can argue this option
works better, although more comprehensive testing would be required to assert it.

The simple mean variance correction only has a minor impact on the forecast. It
cannot compete with the other methods as it is incapable of accounting for the speci-
ficity of a certain location. The performance of the MVA forecast is generally positive.
However, it is disappointing in some cases, cautioning against an unsupervised use of
this technique.

4.3 Analysis of the final setup

In this Section, I will assess the monthly performance of the simulation that uses option
B as the initialization dataset and introduces the SST update. This final configuration,
which characteristics are detailed in Section 2.4, is chosen according to the verification
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results in Chapter 3. The overview Table 4.1 summarizes the key aspects of the setup.

Category Description

Indicators computed Two-metre temperature and rela-
tive humidity

Temporal resolution of indicators 12 hours

Initial conditions As per option B

Boundary conditions As per option B

Domains 3 nested domains

Ensemble members 5 (subsampling)

Parent model resolution 1 degree

Child model resolutions 27 - 9 - 3 km

Table 4.1: Key aspects of the final seasonal forecast downscaling setup.

The impact of updating the SST seems to be low on inland locations, as addressed
in Section 3.4.

Similarly to what is done in Sections 4.1 and 4.2, I compute the BIAS and MAE of
monthly-averaged two-metre temperature, shown in Figures 4.13 and 4.14 respectively.
Considering the scores across the set of stations and the three months, the average
BIAS passes from −3.01 of the non-downscaled forecast ensemble mean to 0.15 after the
downscaling to 3 km resolution. This low score is also the consequence of compensating
positive and negative biases. The average MAE goes from 3.01 to 0.62.

The BIAS in the different cases is not far from the results of the preliminary tests
without the continuous SST update, summarized at the end of Section 4.2. The main
difference consists of generally higher values, which testifies a tendency to shift towards
warmer temperatures. This is expected given the outcomes presented in Section 3.4.
It leads to a marginal improvement in July and in the scores of the coarser grid in
the urban stations. Both cases were previously affected by a general underestimation
of temperature, so they benefit from the increase. The impact is less clear in other
instances, with the ones presenting positive BIAS that have it further increased with the
SST update.

Considering the MAE, similarly to what is seen in Section 4.2, a distinct improvement
is provided by the dynamical downscaling in the urban context. The scores for the
downscaled ensemble mean of the two finer nestings d02 and d03 are lower or nearly
identical to those of ERA5. The difference is smaller for the rural locations, as the non-
downscaled forecast already has a lower score, but the downscaling is still beneficial, and
the score is similar to the one of the ERA5 reanalysis.

These results are reflected in the time series. More specifically, to further investigate
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Figure 4.13: Monthly-averaged two-metre temperature BIAS for each location (final
setup). The appearance of the elements matches that of Figure 4.1.

Figure 4.14: Monthly-averaged two-metre temperature MAE for each location (final
setup). The appearance of the elements matches that of Figure 4.1.
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Figure 4.15: Daily values of two-metre temperature for Bologna Idrografico in June. Op-
tion B without the SST update is represented by a blue line. The orange line represents
the same setup but with the SST update. The appearance of the other elements in this
figure matches that of Figure 3.8.

the differences in the daily values introduced with this variation, it is possible to consider
the time series for the single members with and without the constant SST.

Since the situation is similar across the locations and months, I chose Bologna Idro-
grafico for June as a representative example. The trend in Figure 4.15 shows how the
SST update brings the first member of the simulation marginally towards warmer tem-
peratures, thus explaining the higher BIAS seen in Figure 4.13 and anticipated in Section
3.4. The figure shows how this difference is minimal at the beginning of the month while
getting more pronounced in the following week, as the SST temperature increases and
distances itself from the initial condition. The magnitude of this difference does not
increase further in the following months.

As the differences are quite limited from a visual standpoint and the plots would look
nearly identical to the ones shown in Section 4.2, they are omitted for brevity. Refer to
this Section also for a discussion of the statistical corrections, as the same initial seasonal
forecast is corrected with the same methods.
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Chapter 5

Conclusions

In this thesis, I propose, implement and discuss a methodology to downscale seasonal
forecasts that uses open-source data with global coverage. More specifically, it uses
a combination of seasonal forecast and ERA5 data as initial and boundary conditions
for the WRF model. The downscaling is performed up to a resolution of 3 km. The
focus is assessing any improvement in two-metre temperature representation compared
to the non-downscaled seasonal forecast in specific locations, using in-situ observations
as reference.

In the first phase of verification, described in Chapter 3, where ERA5 is downscaled
with the different setups, there is a clear BIAS reduction. This is especially true for
the night minima, meaning that dynamical downscaling has the potential to address the
issue of wrong nighttime temperature representation. This is a key aspect of the well-
being of the population during heatwaves, as there is evidence this is the time of the day
with the highest UHI amplification Possega et al. 2022. A reduction in monthly-averaged
two-metre BIAS and MAE is observed in the selected locations even when downscaling
the seasonal forecast. Using the final setup, the average MAE value across all stations
and months is lowered from 3.01 to 0.62.

Introducing the sea surface temperature update in WRF is crucial to avoid a cold
BIAS over the ocean and the Mediterranean Sea, which can significantly affect coastal
areas. In the tested locations, which are further inland, the impact is more marginal.
Dynamical downscaling alone cannot be the only way of addressing the presence of BIAS.
As highlighted in the season-averaged fields, the two-metre temperature BIAS is only
partially corrected with the downscaling.

The statistical correction methods are a way of avoiding the high computational cost
of dynamical downscaling. The simpler one is not very effective, as by definition it cannot
change the shape of the trend it is correcting. This does not improve the representation
of the variability and can only slightly reduce the BIAS. The more complex MVA has
the potential to be competitive with dynamical downscaling. However, it can perform
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very poorly in isolated cases, as shown in Chapter 4, and those must be excluded. This
requires further and wider testing as an acceptance threshold needs to be defined.

The testing setup is limited and so is the fraction of data considered in the analysis.
For this reason, this thesis can only support speculative conclusions. Nonetheless, I find
that the results from this downscaling methodology are encouraging. This is especially
true in terms of monthly-averaged two-metre temperature BIAS and MAE reduction in
urban locations. Based on the presented results, I recommend completing the simulations
to cover the subsampled dataset for the entire dataset hindcast period from 1993 to 2016.
These new simulations should be reviewed in light of the residual bias identified in this
thesis.

As the simulation proceeds, the inspection of the time series reveals how the down-
scaling of the forecast is unable to meaningfully change the trend, which largely follows
that of the original forecast for the subsequent months of the simulations. This un-
derlines the importance of ensemble subsampling in picking the best-behaving members
from the beginning. The subsampling should be process-informed, meaning the selection
is guided by documented local predictors, with a well-explained physical connection.

In those cases in which it is deemed applicable, the statistically corrected forecast
can be one component of a parallel hybrid forecasting approach, in which the output
from statistical and dynamical models are used together. A review of this technique and
recent developments is available in Slater et al. 2023.

Given the heatwave impact on society, anticipated in Chapter 1, an impact-based
prediction can provide added value to this forecast. This can be done by linking impact
assessment models, as suggested by AghaKouchak et al. 2022, which in this case would
estimate the impact of forecast extreme temperatures. For instance, the increase in water
consumption or the burden on the healthcare system.
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Appendix A

The concept of score

The concept of score relies on the definition of an observation (or target) and an assigned
probability distribution of the possible outcomes coming from a forecast. With a reli-
able forecast the observation follows the forecast distribution. In the simpler case of a
discretized distribution comprising n classes of events, it is possible to define a scoring
rule S(a, k) as a function taking one set a of n assigned probabilities and one possi-
ble observed outcome k. The scoring function of two different forecast probability sets,
Equation A.1, is defined as the sum of the scoring rule functions of the first set over the
n possible types of events, each one multiplied by the corresponding probability of the
second set. If they are equal, such quantity is defined as the entropy of that forecast
probability set. From the scoring function, it is possible to define the divergence, given
by Equation A.2.

s(a, b) =
n∑

k∈classes

S(a, k)bk (A.1)

d(a, b) = s(a, b)− s(b, b) (A.2)

Given a certain scoring rule, the score is said to be strictly proper if it is zero only when
the two sets are equal, and always positive in the other cases. If this holds, it is possible
to decompose the expectation value of the score in three parts, as shown in Equation
A.3. πa

k is the conditional probability of getting k as an observation given a being the
forecasting scheme and π is its expectation value and represents the climatology. The
entropy of climatology represents how informative climatology is when used as a forecast.
The resolution term quantifies the information carried by the forecast. The reliability
term indicates the discrepancy between the forecast and the climatology. Further details
and a complete demonstration of this decomposition are available in Bröcker 2009.

E[s(a, k)] = s(π, π)− E[d(π, πa)] + E[d(a, πa)] (A.3)
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Appendix B

Statistical calibration methods

In the following chapter, I am presenting with more detail the main existing statistical
correction methods, which categories have been anticipated in Section 2.6.

Each of these classes of methods operates based on a different logic, with the more
complex techniques focus on addressing one or more specific issues. Depending on the
intent, these methods can be applied before the data is fed into a model or after its
execution, to post-process the output. Some of these methods are suitable to be used
in combination with a decomposition technique to isolate a precise signal within the
variability of the object of interest. For instance, Empirical Orthogonal Functions (EOF)
have been used to filter out unnecessary noise in Zorita and Von Storch 1999.

The notation will be maintained throughout the Appendix. The overline indicates the
temporal mean, the angled parentheses indicate the ensemble mean, and the apostrophe
marks the corrected model output. σ indicates the standard deviation of the observations
(σo) or the model, considering all members of the ensemble and all time (σm) or all
times of the ensemble mean (⟨σm⟩). ρ represents the long-term correlation between the
ensemble mean and the reference observations.

B.1 Statistical downscaling using MOS and PP

Model Output Statistics (MOS) and Perfect Prognosis (PP) are two possible statisti-
cal downscaling approaches. They share a lower computational cost than dynamical
downscaling. On the other hand, they both require a time-consuming screening process
to identify the most appropriate variables to be used as predictors. The predictor is a
large-scale variable showing a physically-backed statistical link with the local predictand
of interest. It can be accomplished using either historical data or observations, for which
we then need a high enough spatial resolution, as explained in G. T. Diro, Tompkins,
and Bi 2012. A reliable characterization of the local climate is necessary to implement
them correctly, otherwise they might deteriorate the result (Manzanas, J. M. Gutiérrez,
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Bhend, Hemri, F. J. Doblas-Reyes, Penabad, et al. 2020). Moreover, their performance
depends on the region and model in use.

Model Output Statistics

MOS are trained with predictors taken from the model that is being post-processed.
They create a correspondence between past numerical forecasts and past observations
which is then used with current numerical forecasts to infer a value for the variables of
interest. This means they can only work on a monthly or seasonal basis. They work best
when a large dataset of model and observation data is available. By construction, they
significantly reduce the bias in the forecast since it automatically removes any systematic
bias, as shown in Marzban, Sandgathe, and Kalnay 2006. For this reason, many studies
in the past made use of MOS.

When evaluating this technique, it is important to use a cross-validation frame-
work. This avoids the overestimation of skill improvement, as explained in Manzanas,
J. Gutiérrez, et al. 2018.

Perfect Prognosis

PP encompasses a variety of techniques which are based on the use of observation data
instead of direct model output. Both the predictand and the predictor are observations.
A regression model is trained using large-scale predictors, coming from reanalysis data,
which are assumed to be a perfect forecast (Maraun 2016). This gives the name to this
class of methods.

PP is particularly recommended for those circumstances where the large-scale predic-
tor is significantly better represented than the local predictand, otherwise the improve-
ment following the introduction of this technique is minimal. This should be considered
as the regression model training can be expensive, and they may render its benefit dis-
proportionate to the actual resource cost (Manzanas, J. M. Gutiérrez, Bhend, Hemri,
F. J. Doblas-Reyes, Torralba, et al. 2019).

The complexity of the possible regression models used ranges from simple linear ones
to generalized regressions. Other options are analogue techniques, as in Zorita and Von
Storch 1999, which require the existence of a wide catalogue of past conditions to refer
to.

B.1.1 Dealing with model imperfections

One further aspect to consider is that during the integration of a model, there is a
loss of skill due to both the imperfections in the model and the chaotic nature of the
atmosphere associated with the non-linearity of the processes. When a PP or MOS
technique is applied the relation between the predictor and the predictand could be built
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contemporaneously for the two at a certain time. This is the best choice if we assume
that the model is perfect. But no model is perfect, and if the rate of loss of information
by the model is superior to the intrinsic one from chaos an optimal time lag can be
introduced to improve the training, as explained in Marzban, Sandgathe, and Kalnay
2006. The higher the uncertainty of the model is, the longer the time lag has to be. The
limiting case is a completely flawed model for which the predictor is taken from its initial
condition. Marzban, Sandgathe, and Kalnay 2006 proposed a reanalysis-based approach
to estimate the model uncertainty by using a double regression model.

B.2 Bias adjustment techniques

Bias Adjustment (BA) methods are regularly applied to general circulation models to
reduce their bias before using them to drive a regional circulation model (Hoffmann et
al. 2016). This may be necessary if a bias is discovered for a given region in the host
model as it can propagate into the regional model which is dominated by the boundary
and initial conditions imposed (Pielke and Wilby 2012). However, when considering
whether to perform a scaling, it is important to understand the nature of the observed
bias from the climatology. The non-scaled variables may still lead to a more realistic
outcome and thus can be preferable for operational seasonal prediction, as recalled in
Koster, Mahanama, Yamada, Balsamo, Berg, Boisserie, Dirmeyer, F. J. Doblas-Reyes,
et al. 2011.

Bias adjustment methods are not downscaling methods and thus work better in those
cases where the output is similar to the observation. In the following sections some
alternative approaches are presented. Some of them are simple and are characterized
by a lower computational cost, while others are designed to work in conjunction with a
dynamical downscaling.

Mean and variance bias correction

Typically, the correction tightly follows the assessment of the model anomaly. It is
commonly computed using a lead-time-dependent climatology as a reference, obtained
from an available set of hindcasts, as explained in Meehl et al. 2021.

As anticipated in Section 2.6, the mean bias correction techniques are usually based
on a linear scaling, like the one in Lenderink, A. Buishand, and Van Deursen 2007, shown
in Equation B.1. In this case, the ensemble members are concatenated instead of being
averaged directly, and the time averaging operation is followed by a smoothing using a
Gaussian filter. An additive term is typically used in the case of temperature correction,
and it is based on the difference between long-term monthly mean observed and modelled
values (Teutschbein and Seibert 2012).

75



x′
m = xm + (xo − xm) (B.1)

Crochemore, Ramos, and Florian Pappenberger 2016 applied a linear scaling based
on a multiplicative factor to the correction of ensemble seasonal precipitation forecasts,
which helped improve forecast accuracy. Ghimire, Srinivasan, and Agarwal 2019 sug-
gests that a better precipitation correction can be accomplished with correction factors
computed separately on a monthly basis. The factor is defined as the ratio between the
observed values and the model ensemble mean, and it is used to rescale the monthly
mean values of the precipitation forecast.

Another way of correcting the mean bias of the GCM is the mean shift correction
used by Holland et al. 2010. Since then, it has been applied both in climatological studies
and in seasonal forecasting. It is referred to with the name of Mean Adjustment (MA),
and it is given by Equation B.2.

x′
m = (xm − ⟨xm⟩) + ⟨xo⟩ (B.2)

However, only correcting the mean bias leaves untouched all other biases. The use
of a non-linear scaling allows acting on the variance bias as well, even with a simple
power transformation as shown for precipitation in Leander and T. A. Buishand 2007.
It has been applied to precipitation correction also by Teutschbein and Seibert 2012. A
more direct approach is the Mean and Variance Adjustment (MVA), which equation is
presented in Section 2.6.

Xu and Zong-Liang Yang 2012 implementation, where biases are assumed stationary
in time, has been found to significantly improve the forecast, even regarding extreme
events Xu, Y. Han, and Z. Yang 2019. On the other hand, it may alter the trend of
certain variables. Hoffmann et al. 2016 proposed a procedure to circumvent this problem,
by removing the trend and adding it back after the correction has been applied.

Quantile-quantile correction

The quantile-quantile correction (Colette, Vautard, and Vrac 2012) is another BA tech-
nique based on the correction of the cumulative distribution function towards the refer-
ence global one. Also known as Quantile Mapping (QM), these methods alter the shape
of the distribution, allowing them to correct biases even in the extremes.

There are different kinds of QM techniques. The different implementations depend
on the distribution chosen for the cumulative function. Golian and C. Murphy 2022
evaluated multiple alternatives, while also checking whether it is more beneficial to apply
the correction to the individual members of an ensemble of GCM and then take their
average or directly to the ensemble mean. It is shown that whichever QM method is
applied, the former results in a lower Mean Absolute Error and better correlation. On
the other hand, this approach should be avoided when considering the extremes of the
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distributions, since it tends to neutralize them. In this case, the latter choice can be
preferable.

QM needs to be applied carefully as it may introduce spurious precipitation vari-
ability and additional bias in spatial gradients, as explained in R. H. White and Toumi
2013. Another aspect worth mentioning is that such correction does not maintain the
inter-variable dependencies since it acts on the distributions without considering the con-
nection between the different variables. An improvement on this matter may come from
the introduction of consistency constraints, on which you can read more in Section B.2.

One common QM choice is the Empirical Quantile Mapping (EQM) which adjusts
the percentiles of an empirical cumulative function. However, it can perform worse when
compared to MVA, at least for some observational references (Manzanas, J. M. Gutiérrez,
Bhend, Hemri, F. J. Doblas-Reyes, Torralba, et al. 2019). It is also significantly more
resource-demanding. Nonetheless, it can still be a valuable tool for extreme adjustments
and for all those indicators based on thresholds. In another study by Crochemore,
Ramos, and Florian Pappenberger 2016, this technique was effective in improving forecast
reliability.

Depending on the variable considered, parametric distributions can be used as well.
For instance, a Gaussian distribution or a Gamma distribution can be used for precip-
itation and temperature data respectively (Manzanas, J. M. Gutiérrez, Bhend, Hemri,
F. J. Doblas-Reyes, Penabad, et al. 2020).

Delta Mapping (DM) is another possible QM method, which has been shown to
outperform the QM methods based on parametric distributions in some regional studies
(Mendez et al. 2020). It operates while maintaining the relative changes in quantiles.

Bias correction with consistency constraint

To avoid breaking the dependencies between different variables it is possible to introduce
bias correction methods with consistency constraints, which may impose for instance the
hydrostatic equilibrium or the geostrophic balance. Meyer and Jin 2016 proposed a
multistep procedure, where only a few variables are corrected, and then the others are
computed from them through known relationships.

A further scheme proposed by Hernández-Dı́az et al. 2017 introduces a procedure
that can maintain the inter-variable dependencies while also performing a three-step
dynamical downscaling. It uses an atmosphere-ocean coupled GCM in which sea surface
temperature and sea-ice mean biases are corrected, providing a higher added value in
those regions highly affected by these variables. Then a second model is introduced, an
atmosphere-only GCM, forced by the previous one and formulated in a way that retains
the wanted dependencies. The last RCM model is driven by the second. Significant
degradation due to the bias is still possible in the upper variables far from the direct
influence of the sea. As a consequence, it may not work properly in those cases in
which the sea surface temperature is strongly influenced by atmospheric conditions, as
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explained in Xu, Y. Han, and Z. Yang 2019.
In many cases, the additional correction given by the constraints can be negligible.

Given the high computational cost of this approach, it may not be the best choice even
considering its higher physical coherence. The correction might be so small compared
to intrinsic variability that it can be smoothed out anyway by the RCM integration, as
shown by Dai et al. 2020.

Bias correction of low-frequency variability

Rocheta, Evans, and Sharma 2017 introduced the correction of low-frequency variability
bias. This is especially helpful in the forecast of high-impact events, such as floods and
droughts, which are usually related to low-frequency variability. It operates by replacing
the lag-1 autocorrelation with the observed monthly lag-1 one. In the climatological
study in which it was used, it showed the ability to improve the result but not significantly
better than a simpler MVA (Xu, Y. Han, and Z. Yang 2019). Additional studies are
needed to understand whether the inter-variable dependencies are maintained.

Spectral nudging during integration

One further bias correction technique introduces spectral nudging during RCM integra-
tion to continuously apply a correction to it (Xu and Zong-Liang Yang 2015). The main
advantage is the continued bias correction, which is introduced everywhere and not only
as a boundary and initial condition. It uses a 4Dvar data assimilation technique to
constantly force the RCM towards a corrected GCM.

The drawback of this method is the strong disturbance it can generate in the RCM,
especially if not properly calibrated. This may affect inter-variable dependencies, thus
introducing new biases, as explained in Xu, Y. Han, and Z. Yang 2019.

B.3 Ensemble recalibration techniques

Ensemble Recalibration techniques (RC) are a relatively simple way of assessing the
representativeness of the observation and its predictability by a model ensemble.

One example is the Climate Conserving Recalibration (CCR), first introduced by
Francisco J. Doblas-Reyes, Hagedorn, and Palmer 2005. The name is a reference to its
ability to not introduce any systematic bias in both the mean and the variance of the
model climatology (Weigel, Liniger, and Appenzeller 2009). The expression is shown in
Equation B.3. Each observation is assumed to be the sum of a predictable signal and a
Gaussian-distributed stochastic noise. This way a hypothetical distribution is built and
when considering the ensemble of forecasts it should be statistically indistinguishable
from the observation. In an ideal case, the distributions should correspond. However,
this is not the case in a real scenario, where the ensemble spread does not necessarily
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correspond at all times to the spread associated with the noise in the observation. Sup-
posing that is the case, the forecasts are said to be unreliable, and to correct the mean
and spread of the ensemble they are rescaled appropriately.

x′
m = ρ

σo

σ⟨xm⟩
⟨xm⟩+

√
1− ρ2

σo

σm

(xm − ⟨xm⟩) + ⟨xo⟩ (B.3)

The Ratio of Predictable Components (RPC) introduced by Eade et al. 2014 and
shown in Equation B.4 is another example of RC. The predictable component is defined
as the square root of the fraction of the predictable variance. The idea is to compare
this quantity for the forecast with that of the observation. The latter can be estimated
through the computation of the Pearson correlation between observations and the en-
semble mean, which represents the predictor. The former can instead be estimated using
the ratio of the average ensemble variance and the average one for a single member.
If the forecast were perfect in representing the actual predictability of the system, the
RPC would be equal to one. This technique has been used both for seasonal (Man-
zanas, J. M. Gutiérrez, Bhend, Hemri, F. J. Doblas-Reyes, Torralba, et al. 2019) and in
seasonal-to-decadal scales (Eade et al. 2014).

x′
m = ρ

σo

σ⟨xmodel⟩
(⟨xm⟩ − ⟨xm⟩) +

√
1− ρ2

σo√
σ2
xm−⟨xm⟩

(xm − ⟨xm⟩) + ⟨xo⟩ (B.4)

Yet another approach is the ensemble MOS Recalibration (MOS-RC), which can be
implemented in different ways. One option consists in using a linear regression between
the ensemble mean and the corresponding observation, as done in Marcos et al. 2018. The
derived parameters are then used to rescale the forecast standardized anomalies. The
generally good performance and relatively low computational cost of this approach have
been stated in Manzanas, J. M. Gutiérrez, Bhend, Hemri, F. J. Doblas-Reyes, Penabad,
et al. 2020. A more resource-intensive alternative is the use of a non-homogeneous
Gaussian regression, first introduced by Gneiting et al. 2005 and applied to seasonal
forecasts by Tippett and Barnston 2008. The expression is given by Equation B.5,
where α, β, γ and δ are parameters. They are obtained through the minimization of the
ensemble CRPS, which is a commonly used quality metric, mentioned in Section 2.7.

x′
m = α + β(⟨xm⟩ − ⟨xm⟩) +

√
γ2 + δ2σ2

xm
(xm − ⟨xm⟩) (B.5)

These methods have been compared by Manzanas, J. M. Gutiérrez, Bhend, Hemri,
F. J. Doblas-Reyes, Torralba, et al. 2019 in which it was found that they perform sim-
ilarly. Other more complex RC methods do exist but were not considered as they are
thought to lead to overfitting. RC can significantly and effectively reduce the bias in a
way comparable to simple BA methods, while also enhancing forecast reliability. The
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performance is also favourable when compared to more complex PP or MOS statistical
downscaling techniques, as shown in Manzanas, J. M. Gutiérrez, Bhend, Hemri, F. J.
Doblas-Reyes, Penabad, et al. 2020. One limit they present is their inapplicability to
daily data, whereas that is possible, in general, for BA methods.
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Appendix C

Score tables

This Appendix contains the score tables referred to in Chapter 3 and supports the
discussion about the choice of the downscaling configuration. Other tables are omitted
for brevity.
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Simulation Domain BOU BOI MEZ SPT

Base d01 6.71 5.74 7.92 12.41

Coast d01 6.76 5.82 7.93 12.24

Coast PBL d01 7.25 5.95 6.98 8.96

Coast RAD d01 7.01 6.03 8.16 12.08

Coast VL d01 6.97 5.92 7.49 11.40

URB d01 7.16 6.08 7.75 12.11

URB 5-1 d01 5.09 5.96 8.03 13.53

URB VL d01 6.33 5.53 7.35 11.28

ERA5 d01 8.72 7.26 6.89 10.29

Base d02 6.95 5.97 8.69 13.08

Coast d02 6.94 5.87 8.67 12.94

Coast PBL d02 6.90 5.42 6.26 9.33

Coast RAD d02 7.68 6.94 9.43 14.02

Coast VL d02 5.56 4.39 7.64 11.66

URB d02 7.34 6.45 8.22 12.94

URB 5-1 d02 5.66 6.83 8.66 14.79

URB VL d02 5.12 4.46 7.15 11.56

Base d03 6.86 6.37 8.89 12.94

Coast d03 7.00 6.33 8.68 12.64

Coast PBL d03 6.71 5.12 6.26 9.64

Coast RAD d03 7.56 7.14 10.10 13.75

Coast VL d03 5.68 4.30 7.25 11.78

URB d03 7.50 7.00 8.25 13.08

URB VL d03 5.25 5.28 7.10 11.82

Table C.1: MAE of two metres relative humidity for the different simulations and do-
mains, referred to the selected locations. This Table is referred to in Section 3.1.
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Simulation Domain BOU BOI MEZ SPT

Base d01 0.96 -0.79 -3.94 -10.81

Coast d01 0.99 -0.76 -3.79 -10.66

Coast PBL d01 5.41 3.65 1.01 -6.20

Coast RAD d01 0.77 -0.98 -3.45 -10.20

Coast VL d01 3.83 2.08 -1.48 -9.04

URB d01 1.03 -0.72 -3.69 -10.47

URB 5-1 d01 -2.83 -4.58 -6.26 -12.96

URB VL d01 2.72 0.97 -1.51 -8.95

ERA5 d01 8.10 6.35 -3.51 -8.33

Base d02 -0.38 -2.13 -6.30 -12.07

Coast d02 -0.13 -1.88 -6.00 -11.75

Coast PBL d02 3.02 1.27 -1.62 -7.62

Coast RAD d02 -1.12 -2.88 -6.21 -11.88

Coast VL d02 3.12 1.37 -1.82 -9.14

URB d02 -0.80 -2.55 -5.55 -11.41

URB 5-1 d02 -3.66 -6.00 -7.46 -14.41

URB VL d02 0.26 -1.49 -2.21 -9.40

Base d03 -1.54 -3.41 -6.51 -11.71

Coast d03 -1.37 -3.22 -6.21 -11.45

Coast PBL d03 2.17 0.37 -2.09 -8.15

Coast RAD d03 -2.22 -3.93 -6.37 -11.83

Coast VL d03 1.89 0.13 -2.29 -9.29

URB d03 -2.00 -3.94 -5.68 -11.24

URB VL d03 -0.64 -3.14 -2.53 -9.53

Table C.2: BIAS of two metres relative humidity for the different simulations and do-
mains, referred to the selected locations. This Table is referred to in Section 3.1.
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Simulation Domain BOI MEZ STG SPT

Base d01 1.14 1.61 1.64 1.70

Coast d01 1.16 1.64 1.64 1.72

Coast PBL d01 1.12 1.46 1.58 1.49

Coast RAD d01 1.35 2.05 1.90 2.16

Coast VL d01 0.99 1.42 1.54 1.55

URB d01 1.27 1.60 1.64 1.69

URB 5-1 d01 2.14 1.81 1.46 1.82

URB VL d01 1.12 1.42 1.53 1.54

ERA5 d01 1.81 1.61 1.68 2.48

Base d02 1.23 1.71 1.79 1.82

Coast d02 1.22 1.71 1.79 1.83

Coast PBL d02 1.14 1.49 1.55 1.55

Coast RAD d02 1.48 2.20 2.06 2.31

Coast VL d02 0.98 1.55 1.61 1.64

URB d02 1.36 1.71 1.79 1.84

URB 5-1 d02 2.58 1.97 1.54 1.98

URB VL d02 1.33 1.50 1.59 1.60

Base d03 1.34 1.71 1.71 1.71

Coast d03 1.33 1.69 1.70 1.72

Coast PBL d03 1.12 1.51 1.59 1.53

Coast RAD d03 1.66 2.22 1.90 2.25

Coast VL d03 1.08 1.57 1.64 1.64

URB d03 1.67 1.71 1.71 1.80

URB VL d03 1.94 1.57 1.65 1.63

Table C.3: Mean Absolute Error of two metres temperature for the different simulations
and domains, referred to the selected locations.
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Simulation Domain BOI MEZ STG SPT

Coast VL d01 -0.41 1.01 0.28 1.31

Coast VL Bis d01 -0.28 0.97 0.36 1.24

ERA5 d01 -1.31 1.48 1.62 2.46

Coast VL d02 -0.43 1.04 0.72 1.33

Coast VL Bis d02 -0.31 1.03 0.79 1.30

Coast VL d03 0.15 1.10 0.58 1.33

Coast VL Bis d03 0.24 1.13 0.63 1.30

Table C.4: BIAS of two metres temperature for the two alternative configurations of the
vertical levels. Every available location is considered. This Table is referred to in Section
3.1.

Simulation Domain BOI MEZ STG SPT

Coast VL d01 1.45 1.88 1.93 1.97

Coast VL Bis d01 1.32 1.84 1.88 1.92

ERA5 d01 2.18 1.92 2.13 2.73

Coast VL d02 1.32 1.97 2.05 2.05

Coast VL Bis d02 1.28 1.90 2.00 2.00

Coast VL d03 1.36 1.99 2.07 2.08

Coast VL Bis d03 1.39 1.92 1.98 2.04

Table C.5: RMSE of two metres temperature for the two alternative configurations of
the vertical levels, referred to the selected locations. This Table is referred to in Section
3.1.

85



Simulation Domain BOI MEZ STG SPT

URB d01 -0.27 1.46 0.15 1.38

URB larger d01 -0.35 1.33 0.10 1.18

ERA5 d01 -1.01 1.63 1.12 2.36

URB d02 -0.12 1.65 0.57 1.46

URB larger d02 -0.40 1.22 0.50 1.21

URB d03 0.65 1.58 0.35 1.43

URB larger d03 0.38 1.55 0.21 1.20

Table C.6: BIAS for the simulation introducing the specific urban parametrization and its
variation with larger domains, described in Section 2.4, referred to the selected locations.
This Table is referred to in Section 3.1.

Simulation Domain BOI MEZ STG SPT

URB d01 1.22 1.54 1.74 1.71

URB larger d01 1.28 1.64 1.85 1.74

ERA5 d01 1.86 1.66 1.96 2.86

URB d02 1.51 1.76 2.04 1.86

URB larger d02 1.48 1.80 1.96 1.86

URB d03 2.11 1.75 1.84 1.77

URB larger d03 2.07 1.78 1.63 1.70

Table C.7: RMSE for the simulation introducing the specific urban parametrization
and its variation with larger domains, described in Section 2.4, referred to the selected
locations. This Table is referred to in Section 3.1.
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