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Abstract

I present the first experimental implementation for Fourier-domain optical coherence
tomography (OCT) using undetected mid-infrared photons in the high-gain regime. The
core component is a custom-designed, aperiodically poled Potassium Titanyl Phosphate
(KTiOPO4) crystal, enabling broadband parametric down-conversion (PDC) with high
amplification. After discussing the theoretical background of classical OCT, nonlinear
processes, PDC, and interference with undetected photons, I report the experimental
performance of my setup. It achieves a typical signal-to-noise ratio (SNR) of ≈ 40 dB,
axial resolution of ≈ 30 µm, depth range of ≈ 320 µm, and macroscopic lateral resolution
of ≈ 3.3 mm. I demonstrate the setup’s capability to resolve real microstructures and
its advantage over classical OCT in operating with samples obscured by a Germanium
window. Additionally, I confirm the high-gain regime’s potential for strong signal power,
allowing detection with standard Si power meters and time-gated measurements.
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Introduction

Optical coherence tomography (OCT) is a powerful and well-established investigation
technique, able to provide real-time, non-invasive, and noncontact cross-sectional imag-
ing of a large plethora of different samples. Basically, OCT exploits a Michelson-type
interferometer: the probing light beam is sent to a beam splitter, which conveys the two
output beams into different perpendicular paths, the reference arm and the sample arm.
A conceptual scheme is illustrated in Figure 1 [1].

Figure 1: A very simple scheme illustrating the fundamental design for classical OCT.
The heart of the setup is the beam splitter, which splits the incoming light source into two
beams, propagating perpendicularly. The first one moves along the sample arm, probes
the sample and eventually gets reflected; the second one propagates along the reference
arm, which ends with the reference mirror. We can then collect the interference pattern of
the two beams after backscattering to reconstruct the cross-sectional image of the sample.

We usually refer to the sample arm direction as axial direction, whereas the perpen-
dicular one is called transverse direction. If interference occurs between the backscattered
beams, it will yield spatial information about the sample microstructure. Thus, we can
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exploit the interference pattern’s detection for imaging reconstruction. By performing
an axial scan, often indicated as A-scan, we can acquire the depth profile of the sample
under investigation. Alternatively, we can move transversely the beam (or equivalently
the sample) in order to obtain its transverse profile, which is known as B-scan. By com-
bining these two modalities, we can reconstruct a full 2D cross-sectional image of the
sample. It is possible to generate 3D volumetric data as well, generalizing the proce-
dure to an additional dimension [1]. OCT can be achieved in two alternative modalities,
Time-domain (TD) OCT and, more commonly, FD (Fourier-domain) OCT. In the first
case, the detector is usually a simple photodetector; in the second one, it is instead re-
placed by a spectrometer. The differences between these approaches will be elucidated
in the next chapter.

Since its invention in the late 1980s [2], OCT has proved revolutionary in the study
of organic microstructures, especially in the field of ophthalmology, allowing the achieve-
ment of fundamental results like imaging cross-sections of the human retina [3]. Technical
and theoretical upgrades have led to continuous improvement in this technique’s perfor-
mance, which stands alone among competing non-destructive investigation methods.
Among the others, some unprecedented advantages are:

• high-resolution, which, at the state of the art, lies in the range 1 − 15 µm. Thus,
it is approximately one-two orders of magnitude finer than standard ultrasound
imaging [1];

• enhanced sample penetration when compared to confocal microscopy, an extremely
accurate technique (up to 1 µm depth resolution can be achieved) but with limited
depth range (some hundreds of micrometers for biological tissues). On the opposite,
commercial OCT setups can reach up to 1− 2 mm penetration depth [1];

• independence of the axial resolution on the focusing (another significant limit affect-
ing confocal microscopy). In particular, it will be shown that the depth resolution
strictly depends on the sample beam bandwidth. For example, in the Gaussian
beam approximation, we have that

FWHMz =
2 ln 2

π

λ2c
∆λ

, (1)

where FWHMz is the depth resolution (formally, the full width at half maximum
of the OCT peak), λc the central wavelength of the source, ∆λ its bandwidth (this
last one is defined as the full width at half maximum of the spectrum [4]);

• When compared to X-ray computed tomography or magnetic resonance imaging,
OCT is superior in terms of cost, safety, contrast, and resolution. Moreover, we do
not need to encapsulate the sample, nor move or rotate the detector [5].
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Inevitably, all these promising features have been responsible for increasing interest
in OCT beyond the clinical medical field: today, it has been involved in a huge number
of diverse sectors, from cultural heritage conservation to material characterization, from
industrial quality control to fluid sensing. A list of promising applications can be found
in the abstract collection of the symposium on OCT for non-destructive testing [6]. A
fundamental limit to this process is that OCT applications have been restricted to the
visible and near-infrared regions (up to 1.5 µm, NIR from now on) so far, which are
optimized for the biological tissues but proved extremely ineffective for probing highly
scattering materials, like oil paints, micro-porous materials, or alumina-based ceramics.
The main physical reason lies in the high scattering contribution at such low wavelengths,
drastically affecting the depth range and thus making OCT inappropriate.

This issue can be addressed by extending the OCT exploitable range up to the mid-
infrared region (MIR from now on) since the scattering loss is predicted to be much
lower at these frequencies (more in detail, it should be ∝ 1/λ4, at least assuming the
particle is small in comparison to the wavelength [7]). The potential of MIR OCT has
been especially emphasized for the probing of highly scattering novel ceramic materials,
predicting a notable enhancement of the depth penetration already by shifting the prob-
ing wavelength to 2− 4 µm, according to Montecarlo simulations [8]. Spectral ranges up
to 5 µm are the most promising ones since they are immediately below the critical region
5 − 7.5 µm, where water absorption highly affects the performance [9]. This technique
could be beneficial when materials that do not transmit in the NIR are involved as well
(e.g. Ge, whose transmission curve is available in [10]).

It is thus a matter of fact that achieving this result would be extremely beneficial
for high-precision fabrication and investigation. However, this is probably the most
demanding challenge OCT has had to face since its invention.

The main difficulty lies in the fact that the current implementations of this technique
rely on the usage of semiconductors (for example HgCdTe and InSb) for both detectors
and light sources. Operating in the MIR spectral region then requires matching the
bandgap with an energy an order of magnitude lower than that of the visible, while
competing with the thermal noise. This fundamentally affects the performance of the
setup, making current MIR operating devices highly expensive (cryogenic cooling is
required for both sources and detectors) and unable to compete with the performance of
their NIR counterparts in terms of sensitivity and noise [11].

MIR OCT was first achieved in 2007 by [12]: their system involved a broadband
quantum cascade laser source (InGaAs/AlInAs), continuously emitting in the 6− 8 µm
wavelength range, and a liquid nitrogen cooled HgCdTe detector. The axial resolution
resulted in around 30 µm, with a dynamic range (defined as the ratio between the
maximum and the minimum measurable optical power of the interference) of around
30 dB, significantly lower than the ones reported for standard OCT, 90 dB to 140 dB
[13], and heavily affected by the modulation of the spectral shape. Many attempts have
been made to enhance the effectiveness of this setup by employing alternative sources
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(superluminescent quantum cascade laser [14], supercontinuum sources [15], or novel
ultrafast optical parametric oscillators (OPOs) [9]) or detectors (low-cost pyroelectric
detector [16]). However, despite significant developments in terms of the signal-to-noise
ratio SNR (e.g. 81.7 dB in [16]) and acquisition time, the limitations are still far from
being overcome, with the axial resolution typically lying in the range 30 − 50 µm. A
radical paradigm shift is thus necessary.

Recently, approaches to circumvent the need for MIR detectors have emerged. They
rely on broadband upconversion, in other words, the spectrum shifting from the MIR re-
gion to the NIR region before detection. Different proposals to achieve efficient frequency
shift exist, mainly involving sum-frequency generation [17], [18] or difference-frequency
generation [19] inside properly poled nonlinear crystals. In this way, we can replace inef-
ficient MIR detectors with better-performing Si detectors. Combining this strategy with
the usage of a supercontinuum source, Israelsen et al. managed to achieve a remarkable
axial resolution of 8.6 µm and a 60 dB sensitivity [18]. However, the setup was limited by
the need to use a sophisticated broadband MIR laser as main source, as well as to employ
an additional high-power laser for the upconversion setup, increasing the complexity of
the system. Moreover, the upconversion module was characterized by a radially varying
spatial mode profile, forcing the authors to use a multimode fiber and thus limiting the
performance of the spectrometer. Yagi et al. [19] managed to achieve similar perfor-
mance, with a notable enhancement in the A-scan rate, by adapting the upconversion
time-stretched infrared spectroscopy setup from [20] to OCT. However, they had to de-
velop a suitable MIR laser, opting for a complex difference-frequency generation (DFG)
source realized with a femtosecond mode-locked Yb fiber laser as a master oscillator. A
simpler design would be preferable.

Thanks to the undetected photons technique, nonlinear and quantum optics may
offer another innovative approach. By replacing the beam splitter of the Michelson-type
interferometer with a χ(2) nonlinear crystal (adopting the design in figure 2), we can
exploit the resulting idler and signal beams (produced in the SPDC process) respectively
as sample and reference beams. In this geometry, the interference at the output will be
due to the phase delays of all three photons (the pump, signal, and idler), allowing us
to analyze the idler reflection of the sample without detecting the idler photons but just
considering the signal photons [21]. In this way, we can circumvent both the necessity
for MIR sources and detectors, plus we considerably simplify the experimental design
compared to the techniques above.

Paterova et al. successfully achieved MIR OCT (3 µm) with undetected photons in
[22]. However, the setup suffered from the narrow bandwidth of their tunable source,
achieving an axial resolution limited at 93 µm. A promising result was accomplished by
Vanselow et al. in [23]: by employing a nonlinear ppKTP (periodically poled Potassium
Titanyl Phosphate KTiOPO4) crystal characterized by ultra-broadband SPDC spectra,
they managed to demonstrate MIR OCT with 10 µm axial resolution and 20 µm lateral
resolution. Moreover, they achieved the shot-noise level of detection, observing 106 times
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Figure 2: Simple illustration of the experimental scheme to perform OCT with undetected
photons. The beam splitter of the usual setup (the one in figure 1) is replaced by dichroic
mirrors (DM). The nonlinear source is inserted between them, in order to generate the
idler, which propagates along the sample arm, and the signal, which goes into the refer-
ence arm.

more sensitivity at equal integration time and probe power. In [23], the problem of having
a sufficiently large idler bandwidth was solved, even if the design of nonlinear crystals
can be further optimized. However, these results are still affected by the intrinsic limits
of operating in the low-gain regime of PDC. Under this condition, the number of photons
per mode generated inside the nonlinear crystal is much smaller than one [24]. Thus,
the measurement inevitably requires high-sensitivity detectors [25].

On the contrary, the high parametric gain regime is characterized by several (easily
more than 10) photons per mode, to be precise the generation rate and the number of
produced photons increase exponentially along the nonlinear medium [26]. The average
power to be detected rises to µW or mW level, making it possible to use ordinary detec-
tors (i.e. Si-based power meters)[27]. Moreover, the seeding effect inside the nonlinear
crystal lets us have a weak, non-invasive idler beam to probe the sample and an amplified
signal beam easier to detect [28]. Machado et al. [24] have demonstrated NIR OCT (idler
centered at λI = 1.55 µm, signal at 810 nm) with undetected photons in the high-gain
regime. Their work was unfortunately affected by severe limitations, in particular the
narrow bandwidth, constraining the depth resolution to ≈ 30 µm and the depth range
to ≈ 300 µm. Hashimoto et al. [28] have addressed these limitations by employing
an aperiodically poled lithium niobate (APLN) crystal, achieving ultrabroad bandwidth
spontaneous parametric down-conversion (SPDC) spectra (experimentally determined to
be ≈ 30 THz) and a consequent axial resolution of 11 µm. However, their work was still
restricted to the NIR region.

In this work, I report a novel experimental setup to perform MIR OCT with un-
detected photons in the high-gain regime, realized in collaboration with Prof. Dr.
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Chekhova’s research group, and in particular with my co-supervisor Dr.Hashimoto, at
Max Planck Institute for the Science of Light. To do this, we rearranged the setup
in [29], successfully employed to realize Fourier-transform infrared spectroscopy (FTIR)
with undetected photons, making it suitable for OCT measurements. An important fea-
ture of the project is its nonlinear source, a KTP crystal whose poling period is chirped
along the pump propagation (apKTP), characterized by a promisingly large idler band-
width (around 0.8 µm with the central wavelength at ≈ 3 µm) and granting high-gain
parametric amplification.

My thesis is divided into the following parts: the first chapter is dedicated to the
classical OCT technique, providing an overview of the fundamental working principles,
advantages and limits of the current state of the art, fields of application, and, eventually,
alternative proposals to perform mid-IR OCT; the second one focuses on the description
and explanation of quantum nonlinear processes as well as nonlinear sources, providing
the background needed to understand imaging with undetected photons fully; eventually,
the third chapter illustrates in detail my activity, going into the description of the setup,
explaining data processing and experimental expedients, and comparing the final results
with the ones obtained in similar scientific works.
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Chapter 1

Optical Coherence Tomography

1.1 OCT: fundamental aspects

1.1.1 OCT potential

Optical Coherence Tomography, OCT in short, was developed and successfully applied
to study biological tissues in [2]. Already at this early stage, it proved to be a promising
alternative to other non-invasive investigation techniques (e.g. magnetic resonance imag-
ing, x-ray computed tomography, confocal microscopy): it offered extremely high depth
resolution, around 17 µm, detection sensitivity as low as 10 fW (that is the minimum
detectable reflected optical power), and fast acquisition time, approximately 200 ms,
while overcoming the need for ultrashort pulse laser sources (in contrast to alternative
time-domain techniques). Moreover, its axial resolution proved to be independent of the
available numerical aperture (one of the main limitations of confocal microscopy), allow-
ing it to operate with a narrow beam diameter (around 9 µm). It is interesting to notice
that, already in [2], the authors identify the scattering as one of the main limitations
to OCT since it drastically affects the penetration depth. In particular, they underline
this fact when analyzing fatty-calcified samples, in which scattering arose as the main
responsible for the reduced penetration range. Since then, continuous upgrades have
further optimized OCT, which is now an indispensable imaging technique in medical
diagnostics. To better understand the role it plays, it can be useful to compare graph-
ically its performance with ultrasound imaging and confocal microscopy since it shares
common features with both of them. A plot is reported in Figure 1.1, taken from [1].

Thus, OCT lies somewhere in between the operative ranges of prominent competing
techniques, achieving an axial resolution comparable with the one of confocal microscopy,
while guaranteeing the same penetration depth as ultrasound imaging. This makes it
irreplaceable for the diagnostics and the treatment of ocular diseases [30]. Moreover, even
if the depth range is still limited up to 2−3 mm because of scattering and absorption, this
deficiency can be addressed by integrating OCT with various instruments, like catheters
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Figure 1.1: Pictorial comparison between the performances of main imaging techniques
in medical diagnostics. Taken from [1].

or endoscopes, making internal body imaging possible as well [1].
Conceptually, ultrasound imaging and OCT are very similar. In both cases, the prob-

ing beam is directed onto the sample, it gets backscattered or back-reflected according
to the acoustic/optical properties of the sample’s layering structure, and, eventually, it
brings spatial information which can be decoded by measuring the echo time. The main
physical difference lies in the speed of the beam, which leads to important implications.
While for ultrasound the measurements of echoes require a time resolution of around
102 ns, which is compatible with the electronic detection limits, the detection of echo
time delays using a light beam would need a time resolution of about 30 fs, very diffi-
cult to detect directly. Thus, alternative measurement methods are necessary: the most
employed is low-coherence interferometry [1].

1.1.2 Low-coherence interferometry

Interferometry has been known as one of the most reliable and precise measurement
techniques for a long time. It allowed us to achieve fundamental results in physics,
like the Michelson and Morley experiment or the detection of gravitational waves. The
general idea is measuring the interference pattern between two beams, the first one
probing the sample, and the second one propagating along a known fixed reference path.
If we call Es the sample arm field, and Er the reference arm one, the output intensity
will be given by

I = (Er + Es)(Er + Es)
∗. (1.1)
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For the moment, we simplify this general result by considering just one single reflecting
layer (the formal demonstration is in the next chapter)

I ∝ |Es|2 + |Er|2 + 2|Er||Es| cos(k∆L+ ϕ), (1.2)

with ∆L being the optical path difference OPD (in the general case, we would have
many values of ∆L). The key aspect of low-coherence interferometry is the employment
of a low temporal coherence source: if we used a high-coherence pump, interference
would be detected for a wide range of OPDs, in other words across all the sample’s
length. We would then lose any possibility of resolving its single regions or layers. On
the contrary, low-coherence light is characterized by statistical phase fluctuations above
a certain distance, the coherence length lcoh. This means that interference will happen
just for OPD < lcoh: if we then operate with sufficiently low lcoh, we will be able to select
just the region of the sample satisfying this coherence gate condition, being able to get
information about its internal structure. If we now recall the usual relation [31]

lcoh ∝
1

∆λ
, (1.3)

we can immediately deduce that a broad emission spectrum must characterize a low-
coherence source.

1.1.3 TD-OCT and FD-OCT

Low-coherence interferometry OCT can be achieved with two distinct approaches: Time-
domain (TD) and Fourier-domain (FD) OCT. In both cases, the experimental setup is
essentially the one depicted in figure 1.

In TD-OCT, we usually collect the output intensity using a simple photodetector.
Therefore, interference can be detected only when the OPD between the sample beam
and the reference beam is smaller than the coherence length of the source. If the sample
is composed of multiple reflecting layers and lcoh is smaller than their distance, we can
simply move the reference (or, equivalently, the sample) to change the region of the
sample for which the condition OPD < lcoh is satisfied. By doing so, we can measure
interference for all backscattering layers, and resolve each one’s position by identifying
all maxima of interference (corresponding to various OPD = 0). In this way, we are
able to reconstruct the whole reflectivity profile in depth (A-scan). An explanatory
representation is reported in figure 1.2.

En face TD-OCT exists as well: in this case, we collect one-dimensional reflectivity
profiles moving the spot transversally while keeping the axial coordinate unchanged. This
approach is needed when we want to collect a constant depth scan image in real-time
[32].

In FD-OCT we measure and interrogate the interference spectrum over a wide range
of wavelengths instead. In this case, lcoh still dictates the minimum resolvable distance,
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Figure 1.2: Simple illustration of TD-OCT working principle. Each reflecting layer can
be probed by changing the OPD, since lcoh < δz.

but the interference can be recorded along the whole sample at once, with the depth range
becoming primarily limited by the measurement conditions. The main advantage is that
we can reconstruct the complete depth profile after one single measurement, without the
need to implement mechanical scanning, but just by resolving the contribution of each
layer to the global interference pattern exploiting Fourier analysis. Even FD-OCT can
be achieved using two different approaches[32]:

• Spectrometer-Based OCT (SB-OCT): this technique relies on the setup in figure 1,
with the detector being a spectrometer. The key idea is to exploit Fourier analysis
to decode the spatial information hidden in the low-coherence interferometer out-
put. In general, the interference spectrum will be characterized by a precise mod-
ulation pattern, with maxima and minima at certain wavelengths. The distance
between adjacent maxima (it is not correct to talk of period, since the modula-
tion may not be periodical), and so the number of peaks within the spectrometer
range, depends on the OPD [33]. Therefore, when we image a real multilayered
sample, each layer will give its contribution to the modulation figure depending on
its depth (provided the usual OPD < lcoh condition is satisfied). By performing a
fast Fourier transform of the interference pattern, we can eventually decrypt the
spatial profile encoded inside it. It must be added that the spectrometer plays a
crucial role in this process, converting the optical input into a processable elec-
trical output. A critical limitation is then the resolution δλ of the spectrometer,
which must be fine enough to sample the succession of maxima and minima in the
channeled spectrum.

• Swept-Source OCT (SS-OCT): in this technique, the usual setup is modified re-
placing the broadband source with a swept source, typically a tunable laser, and
employing a photodetector like in TD-OCT. The purpose is to reconstruct the
interference pattern by rapidly sweeping the wavelength range, so exploiting the
tunable source. The photo-detected signal will be more and more similar to the
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channeled spectrum the narrower the source bandwidth is. The minimum require-
ment is that the δλ is smaller than the spectral distance between adjacent peaks.
In this way, we no longer have the need for a broadband spectral source.

SB-OCT is by far the prevailing modality of FD-OCT. However, in recent years the
interest in it has notably increased, owing to the availability of new effective tunable
sources [32]. In particular, SS-OCT proved to be highly effective for the realization of
ultra-high speed OCT, reaching the record line rate of 5 MHz [34].

FD-OCT offers a fundamental advantage compared to TD-OCT: it delivers the re-
flectivity for all axial points at once. Therefore, it is definitely superior in terms of the
acquisition rate, reaching a line rate of ≈ 300 kHz, three times larger than the one for
TD-OCT [32]. However, this net advantage comes with some shortcomings:

• roll-off: the sensitivity of an OCT system is mainly determined by the amount
of superimposition between the wavetrain reflected by the reference and the one
coming from the sample [32]. In TD-OCT, we are continuously moving the refer-
ence/sample position, changing the OPD until we get the maximum interference
condition OPD = 0 for a certain reflecting layer (this position is usually referred
to as the zero path difference position ZPD). Clearly, this condition corresponds to
a perfect superimposition of the two wavetrains; therefore the sensitivity does not
vary with the depth. On the contrary, in FD-OCT we keep fixed both reference
and sample positions. Let us consider a simple two-layer sample, having a certain
length ∆z. The wavetrains coming from the front and the back will be charac-
terized by a certain spatial extension, which we may define as the length after
which the wave loses intensity. This distance is certainly longer than the coherence
length of the source, nonetheless it is finite. In particular, it may be interpreted as
a sort of counterpart of the coherence length: it dictates the maximum OPD below
which interference can be recorded in the operative range of wavelengths [32]. We
will therefore call it CL for simplicity. CL mainly depends on the experimental,
measurement conditions. Figure 1.3 pictorially describes the process

For example, in SB-OCT it is given by the dispersion/diffraction process inside the
spectrometer, whereas in SS-OCT it is inversely proportional to the linewidth δλ
emitted by the source [32]. Now, if we want to visualize the two OCT peaks, it is
necessary to have superimposition between both sample-coming wavetrains and the
reference wavetrain. Figure 1.3 clearly shows that this condition will be satisfied
with maximum sensitivity just if CL > 2∆z, and only for the optimal OPD = 0
between the front layer and the reference mirror. In most real applications it
is difficult to achieve very high CL, therefore the nonperfect superimposition is
inevitable.

• En face scans: FD-OCT produces just A-scans. Therefore, it is impossible to
produce real-time scans at a fixed depth using this technique. Normally, we can
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Figure 1.3: Simple illustration of FD-OCT working principle. In order to be able to
resolve both the front layer and the back layer, we need the two reflected wave trains to
interfere with the one coming back from the reference. Since typically CL ≈ 2∆z, this
means we will have inevitably not perfect superimposition with increasing depth.

reconstruct them after collecting the data for the whole volume. It is then sufficient
to slice them while keeping the depth coordinate fixed. This limit has been ad-
dressed by several studies, like [35], in which they achieved multi MHz A-scan line
rates. However, direct en face TD-OCT still results preferable for this purpose.

1.2 FD-OCT: mathematical description

1.2.1 OCT spectrum

This section aims to provide the basic mathematical tools and results to describe FD-
OCT. I will just focus on this implementation of OCT, since it is the most widely used and
the one of interest in my experimental activity. The following considerations are perfectly
valid for both SB-OCT and SS-OCT, which are equivalent from a signal processing view
[36]. The main reference is [36], therefore the notation and the way results are shown
will be almost analogous.

Firstly, it can be useful to recall the setup for FD-OCT, already reported in figure
1. The broadband source can be mathematically described by a certain spectral in-
tensity distribution, which is a function S(k) of the wavenumber k = 2π

λ
satisfying the

normalization condition ∫
S(k) dk = P0, (1.4)
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with P0 being the power of the source. It emits electromagnetic radiation inside the
interferometer, with an input intensity given by

Iin = |Ein|2 = (
√
S(k)eiϕ(k))(

√
S(k)eiϕ(k))∗, (1.5)

where Ein is the input electric field, ϕ(k) stands for the initial randomly distributed phase.
For simplicity, we assume the propagation of the wave to be one-dimensional, rectilinear,
and of plane scalar waves, therefore neglecting any contribution of the polarization. The
light travels to the beam splitter, which we consider without losses, and is characterized
by reflection coefficient α and transmission coefficient 1 − α. Then, it is separated into
the sample beam and the reference beam. We assume the two arms to have equal length
L, with the reference mirror being characterized by a field reflectivity rr, and the sample
being a generic reflecting material. Its field reflectivity rs can be described as a complex
function a(z), with z being the depth. Now we can reconstruct the expressions for the
two electric fields after reflection. A fundamental consideration we can make is that their
time dependence eiωt can be neglected: in fact, we are interested just in the intensity
detection process, which averages out this term operating on a large number of optical
cycles [36]. Moreover, common paths between sample and reference fields are negligible
as well, since their contribution will be absent in the output [36]. These considerations
let us write the reference arm field Er(k) as

Er(k) =
√
α(1− α)rr

√
S(k)eiϕ(k)eik2L, (1.6)

with the additional phase term eik2L due to propagation in and out the reference arm.
For the sample arm field Es(k), we have to pay attention to the propagation inside
the material. Each reflecting layer at depth z will contribute with its field reflectivity
a(z) and with a phase term eikn(z)2z, with n(z) being the generic expression for the
refractive index and 2z being the total distance. Moreover, we will have an additional
phase contribution eiπ for the sample arm field traveling through the beamsplitter [37].
Therefore, we can write

Es(k) =
√
α(1− α)

√
S(k)eiπeiϕ(k)eik2L

∫ +∞

−∞
a(z)eikn(z)2z dz. (1.7)

Equations 1.6 and 1.7 can be used to calculate the total intensity output, which is given
by

Iout(k) = (Er(k) + Es(k))(Er(k) + Es(k))
∗. (1.8)

Since we are interested in the interference term, however, it is convenient to work already
with

Iint(k) = Er(k)E
∗
s (k) + E∗

r (k)Es(k). (1.9)

Displacing the sample such that z > 0 and assuming n(z) = 1 for simplicity, we get

Iint(k) = α(1− α)S(k)rr[e
−iπ

∫ +∞

0

a∗(z)e−ik2z dz + eiπ
∫ +∞

0

a(z)eik2z dz]. (1.10)
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Noticing that the integral terms correspond to the Fourier transform, we can rewrite it
as

Iint(k) = α(1− α)S(k)rrFk(ã(z)), (1.11)

with ã(z) = a∗(z)e−iπ + a(−z)eiπ being the symmetric representation of the reflectivity,

Fk representing the Fourier transform of ˜a(z) for the Fourier pair 2z → k. Therefore, if
we apply the inverse Fourier transform at both parts of Equation 1.11 and exploit the
convolution theorem, we get

ĩ(2z) = α(1− α)rrF−1
2z (S(k))⊛ a(z), (1.12)

with ⊛ representing the convolution operation. Equation 1.12 is the fundamental relation
of FD-OCT, stating the connection between the reflectivity, the inverse Fourier transform
of the source spectrum, and the depth-dependent OCT spectrum. It allows us to calculate
the expected OCT signal |̃i(z)| for any arbitrary S(k) and a(z), giving information about
both the amplitude and its FWHMz, in other words, the spatial resolution.

1.2.2 Single-reflecting layer and Gaussian beam axial resolution

This model allows us to achieve two notable results, the expression of the output intensity
for a single reflecting layer (Equation 1.2) and the one for the axial resolution in the case
of a Gaussian beam (Equation 1). For the first one, it is sufficient to rewrite the sample
arm field considering a(z) = rsδ(z − zs), where rs is the field reflectivity of the single
layer, zs its position. Therefore, Equation 1.7 becomes

Es(k) =
√
α(1− α)S(k)eiπeiϕ(k)eik2Lrse

ikn(zs)2zs . (1.13)

Using n(zs) = 1 for simplicity and calculating the total intensity as in 1.8 we get

Iout(k) = α(1− α)S(k)(r2r + r2s + 2rrrs cos(k2zs + ϕ)), (1.14)

with the π phase being generalized to any phase shift ϕ [38]. We have then demonstrated
Equation 1.2, as well as the proportionality between the period in the wavenumber
domain and the path difference length. Moreover, we can notice that the interference’s
contribution to the intensity (so to the signal), given by

Isig(k) = α(1− α)S(k)(2rrrs cos(k2zs + ϕ)), (1.15)

is proportional to rs (thus to
√
Rs where Rs is the reflectance).

In order to obtain Equation 1, we need to start from the result 1.12. Assuming again
the sample is a simple reflecting layer, we can write

|i(z)| = α(1− α)rrrs|F−1
2z (S(k))|, (1.16)
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which is proportional to the field reflectivity rs. Consequently, we deduce that the
amplitude in the OCT spectrum is in general proportional to rs =

√
Rs. If we continue

the calculation for a Gaussian S(k)

S(k) =
1√
2πσ2

k

e
− (k−kc)

2

2σ2
k , (1.17)

we find

|i(z)| = α(1− α)rrrs|
e−ikc2z

4π
e−(2z)2σ2

k/2|, (1.18)

which is a gaussian distribution with standard deviation σz =
1

2σk
. Therefore, its FWHMz

(i.e. the axial resolution) will be given by

FWHMz = 2
√
2 ln 2σz =

√
2 ln 2

σk
=

4 ln 2

FWHMk

. (1.19)

Assuming that the bandwidth is small compared to the central value, ∆k = FWHMk ≪
kc, and remembering the relationship k = 2π

λ
, we can write:

∆k ≈ dk = |dk
dλ

dλ| = 2π

λ2
∆λ. (1.20)

Since λ ≈ λc for the condition ∆λ≪ λc, we finally have:

FWHMz =
4 ln 2

∆k
=

2 ln 2

π

λ2

∆λ
=

2 ln 2

π

λ2c
∆λ

. (1.21)

1.2.3 Visibility

We recall Equation 1.14:

Iout(k) = α(1− α)S(k)(r2r + r2s + 2rrrs cos(2kzs + ϕ))

A fundamental quantity to describe OCT performance is the visibility V , which is defined
as

V =
Imaxout − Iminout

Imaxout + Iminout

. (1.22)

Thus, for a simple reflecting layer, we have:

V =
2rrrs
r2r + r2s

. (1.23)

This expression allows us to rewrite Equation 1.14 as

Iout(k) = α(1− α)S(k)(r2r + r2s)(1 + V cos(2kzs + ϕ)). (1.24)
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The visibility quantifies the quality of the interference, and how easy distinguishing
maxima and minima is. Therefore, it is intrinsically related to the performance of the
OCT.

Multiplying both sides of Equation 1.24 by AtI/hνc, with A being the area of the
detector, tI the duration of the measurement, νc corresponding to the central frequency,
we can pass to the number of photons at the output

Nout(k) = α(1− α)
S(k)AtI
hνc

(r2r + r2s)(1 + V cos(2kzs + ϕ)) =

= K(k)(1 + V cos(2kzs + ϕ)), (1.25)

with K(k) the number of photons detected when the spectrum is not modulated by the
cosine. This relation is extremely important since we will find it is valid even for some
quantum-OCT implementations (even if the expression for VIS might change).

1.2.4 Signal to Noise Ratio Modeling

Now we can propose a model for the OCT signal-to-noise ratio (SNR), one of the main
figures of merit we have to consider for any investigation technique. In OCT, SNR
is typically defined as the square of the ratio between the peak amplitude in Fourier-
transformed data I and the standard deviation σ [39], i.e.

SNR = (
I

σ
)2. (1.26)

Thus, this parameter corresponds to our ability to distinguish the OCT signal from the
background. The SNR is often expressed in dB, according to the formula

SNRdB = 20 log

(
I

σ

)
dB. (1.27)

The detection process is inextricably connected to the SNR estimation. We assume that
the detector is made up of N pixels, with the n-th one detecting the central wave number
kn and a total number of photons

Nout(kn) = K(kn)(1 + V cos(2knzs + ϕ)), (1.28)

according to equation 1.25. Referring to [36], we consider each n-th spectrum as a
properly normalized square function, such that

∑N
n S(kn) = P0. For simplicity, we take

S(kn) = P0/N for any n. Moreover, we work after proper k value shifting, in such a
way that the n-th pixel operates in the range [(n − 1)∆k;n∆k], with ∆k = kmax−kmin

N
.

After the shifting, we will have the spectrum completely in the range [0; 2kc], with kc the
central wavenumber. Eventually, we neglect the additional phase ϕ, which is irrelevant
in the following considerations.
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The OCT signal is related just to the interference term, in general given by Equation
1.9. Applying it to a single reflecting layer we get

Nsig(kn) = α(1− α)
S(kn)tI
hνc

2rrrs cos(2knzs) =

= K(kn)V cos

(
2π

n

N
qs

)
, (1.29)

with qs =
2kczs
π

.
Applying the FFT to 1.29 (see Appendix A for explicit calculations), we get a fully

real OCT signal, having two peaks (symmetric around the 0) with amplitude

Nsig(n) = IOCT =
1

2N
KtotV , (1.30)

Ktot representing the total number of detected photons. It is worth stressing that this
formula is in agreement with the proportionality to rs found in Equation 1.15, in fact:

1

2N
KtotV =

1

2N
α(1− α)

S(k)tI
hνc

(r2r + r2s) ∗
2rrrs
r2r + r2s

∝ rs. (1.31)

At this point, we can consider the noise and define the theoretical shot-noise level. The
noise must be considered in the absence of any interferometric signal [36]. In this case,
each n-th channel detects a mean number of photons

Nnonint(n) = K(n) =
Ktot

N
. (1.32)

For a sufficiently high number of counts (more than 30 [23]), we can consider the shot
noise data in each channel approximately Gaussian, with both mean and variance equal
toNnonint(n). We can associate to the shot-noise the random variableN(n): furthermore,
we can easily treat N(n) as a zero mean Gaussian variable, after a shifting of Nnonint(n).
The contribution to the OCT spectrum ofN(n) can be calculated by applying the inverse
FFT

in(q) =
1

N

N−1∑
n=0

N(n)ei2πqn/N . (1.33)

It can be shown (see Appendices B and C) that the real part Re[in(q)] and the imaginary
part Im[in(q)] are uncorrelated Gaussian random variables, having equal variances

σ2
Re[(in(q))] = σ2

Im[in(q)] = Ktot/2N
2. (1.34)

We can then find the variance for |in(q)| =
√

Re[(in(q))]2 + Im[in(q)]2, that is a variable
distributed accordingly to the Rayleigh distribution with variance (as shown in [40])

σ2
|in(q)| =

Ktot

2N2
(2− π

2
). (1.35)
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Finally, combining Equations 1.30 and 1.35 we find

SNRid = (IOCT/σOCT )
2 =

1

4− π
V2Ktot. (1.36)

Equation 1.36 describes the ideal SNR whenever the number of detected photons can be
written as in equation 1.25. It is therefore an important limit to understand how well
our OCT setup performs.

1.2.5 Normalization with the non-interference spectrum

As discussed, the result in Equation 1.30 is obtained for a well-normalized rectangular
spectrum. However, in a real scenario, S(k) might have any shape, making invalid
any generalization. Nonetheless, if we divide the interference spectrum by the non-
interference one in the same conditions we get:

Nout(k)

Nnon−interf (k)
= Π(k)(1 + V cos(2kzs + ϕ)), (1.37)

where Π(k) is the rectangular function equal to 1 over its domain. However, this comes
at a cost, since we lose the usual proportionality between the signal amplitude and
the sample’s field reflectivity rs. If we use a single reference non-interference spectrum,
instead, we preserve the proportionality, but the shape of S(k) might change between the
two measurements because of the variation of the sample. However, this slow variation
should affect the FFT just for the DC component, so it can be easily addressed in the
analysis phase.

Dividing by a reference non-interference spectrum is a standard normalization strat-
egy [23][41], which allows the removal of artifacts in the OCT spectrum, making the
signal more distinguishable.

1.2.6 Depth range and lateral resolution

Up to now, the axial resolution and the SNR were considered. Two additional figures of
merit that must be taken into account to characterize the performance of an OCT setup
are the depth range and the lateral resolution.

The depth range is defined as the maximum depth that can be probed, i.e. half of the
maximum OPD still detectable in the OCT spectrum. Two physical boundaries dictate
the depth range value: the Nyquist condition and the need to resolve the modulation of
the interference pattern.

The Nyquist condition requires a value of the sampling frequency high enough to
correctly reconstruct the interference pattern. This is, in general, an oscillating function
in k-domain, like the one described by Equation 1.25, valid for a single reflecting layer. If
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we consider this simplest case, we can notice that the equivalent of the angular frequency
is given by 2zs. The Nyquist theorem states that, in order to reconstruct the frequency
ν of the sampled signal correctly, we need to use a sampling frequency νs ≥ νNy = 2ν.
In this case, this condition holds in k-domain, therefore

νNy = 2ν =
2zs
π
. (1.38)

Since the sampling frequency in our case is given by the inverse of the sampling period
in the k-domain τks , the Nyquist condition becomes

1

τks
≥ 2zs

π
. (1.39)

Exploiting k = 2π
λ
, we get τks =

2π
λ2
τλs , with τλs being the sampling period in λ-domain.

Replacing τks expression we find

zs ≤
λ2

4τλs
. (1.40)

Considering N sampled points throughout the bandwidth ∆λ [42], we finally get

zs ≤
1

4

λ2

∆λ
N. (1.41)

The Nyquist condition is not sufficient, though. We have also an additional condition
related to the necessity to resolve the average fringe distance in the interference pattern,
which provides both another upper limit and a lower limit. The average fringe distance
corresponds to the periodicity in k-space, therefore it is given by

τk =
1

νk
=
π

zs
(1.42)

This value must be, at the same time, larger than the spectrometer’s resolution but
smaller than the probing beam bandwidth [24]. The spectrometer’s resolution in k-space
is related to the one in the λ-domain as δk1 =

2π
λ2
δλsp, where δλsp is the minimum resolv-

able spectral distance. More precisely, it is defined as the FWHM of the spectrometer’s
response function [43]. On the other hand, the probing beam bandwidth in k-domain
can be estimated as δk2 =

2π
λ2
∆λ. Therefore, we obtain

δk1 ≤ τk ≤ δk2
2π

λ2
δλsp ≤

π

zs
≤ 2π

λ2
∆λ

1

2

λ2

∆λ
≤ zs ≤

1

2

λ2

δλsp
(1.43)
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Both conditions 1.41 and 1.43 must be carefully taken into account since they represent
fundamental and very general limitations. Nonetheless, they are just theoretical bound-
aries: an experimental determination of the effective depth range, reconstructing the
roll-off curve, is thus indispensable.

The lateral resolution δx is defined as the FWHM of the sample beam’s intensity
profile function I(r, z) [42], with z = zs. This function describes how the intensity of the
beam, which propagates along the z direction, changes according to z and to the radial
position r. If we consider the Gaussian beam approximation, i.e.

I(r, z) =
P

πw(z)2/2
e
− 2r2

w(z)2 (1.44)

where P is the optical power, w(z) the beam radius (it varies owing to diffraction), we
thus get [44]

δx =
√
2 ln 2w(zs) (1.45)

In most cases the beam is highly focused, therefore we can take

δx =
√
2 ln 2w0 (1.46)

with w0 the minimum radius, also called the beam waist [42]. In most cases, the lateral
resolution is determined experimentally, performing for instance a knife-edge measure-
ment [23]. This strategy will be deepened in the experimental results.

1.3 Mid-infrared OCT

Classical OCT is optimized to work in the NIR range, more precisely between 700 and
1500 nm. Both detectors and broadband sources operating in this region are available,
with high efficiency and relatively low cost. Since the biotissue transparency window
goes from approximately 700 to 1300 nm [8], it is easy to explain the success of OCT
in biomedical applications. However, the peculiar features of this technique make it
extremely promising for any non-destructive testing (NDT) application: the sample is
probed just with a light beam, avoiding any contact and granting a reasonably long
depth range, remarkable axial and lateral resolutions, fast acquisition rate, and fine
detection sensitivity [1]. For this reason, the interest in alternative applications of OCT
has recently emerged, ranging from artworks inspection to material characterization,
from fluid sensing to strain field characterization [8]. The main constraint to the OCT’s
success in these fields, especially in key industrial applications like micromanufacturing,
is that its high efficiency is limited to the NIR range. The fabrication of ceramic multi-
layered microdevices, which would deeply benefit from the OCT’s features, mostly relies
on the usage of highly scattering materials like alumina and zirconia. Thus, standard
probing wavelengths up to 1.5 µm can just provide seriously limited penetration depths
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[8]. Consonantly, standard OCT proves to be largely ineffective for the investigation of
devices based on materials that do not transmit in the NIR range, like Silicon-based and
Germanium-based integrated circuits [45] or Silicon carbide components [46].

These severe limitations can be overcome by extending the exploitable range of
wavelengths to the MIR region, thus limiting the scattering and accessing the high-
transmission range for semiconductors. As already stated in the introduction, this is
a considerable scientific challenge, since the current state-of-the-art for both detectors
and sources operating in the MIR range is far from being competitive with their NIR
counterparts.

It is worth reporting the most notable results demonstrated for MIR OCT ”classical”
implementations. I use the term ”classical” indicating that they rely on developing a
standard OCT setup, replacing the ordinary NIR operating components with their MIR
equivalent.

The current state-of-the-art implementation was reported by Zorin et al. in [16].
They realized a MIR operating FD-OCT setup, relying on a super-continuous laser as
the source and a low-cost LiTaO3 pyroelectric focal linear array to record the spectral
interference patterns. Their source emitted in the range 1.1 − 4.4 µm, reduced to the
optimal 3.75−4.25 µm for OCT measurements. The characterization of the performance
showed a remarkable sensitivity of 81.7 dB, but limited axial resolution ≈ 50 µm (de-
termined by the coherence length) and depth range ≈ 1.1 mm (related to the spectral
resolution and the beam’s depth of focus). Finally, they proved the capacity of resolving
the back layers in a multilayered ceramic structure, a net advantage with respect to
commercially available OCT setups.
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Chapter 2

OCT and nonlinear processes

Since the challenges in developing highly efficient detectors and sources operating in
the MIR region are fundamental, inevitably dictating severe limitations for the classical
implementation performance, most recent studies have focused on a radically different
approach. The idea is to circumvent the necessity for such kinds of devices. In the
upconversion technique, explained later on in this chapter, the sample is probed in the
MIR region, but the back reflected light is upconverted to the visible or NIR region
before detection. In OCT with undetected photons technique, instead, this advantage is
combined with no necessity to have a MIR operating source as well (the details will be
deepened in the next chapter). These counterintuitive results are made possible by the
so-called nonlinear processes.

2.1 Nonlinear processes

Nonlinear processes are peculiar optical processes that can happen just inside materials
for which the induced polarization depends nonlinearly on the electric field strength.
This means that the standard equation of linear optics

P⃗ (t) = ϵ0χE⃗(t), (2.1)

where χ is the susceptibility tensor, is no longer valid. To rewrite the polarization, we
assume that we can write the optical electric field applied to a certain material as the
sum over its frequency components E⃗(ωn) (referring to [47])

E⃗(r⃗, t) =
∑
n

E⃗(ωn) =
∑
n

E⃗ne
i(k⃗nr⃗−ωnt) + c.c. (2.2)

Analogously, we can write the polarization vector as

P⃗ (r⃗, t) =
∑
n

P⃗ne
i(k⃗nr⃗−ωnt) + c.c. (2.3)
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Since the sum is performed over positive frequencies, we can use a simple change of
notation to remove the complex conjugate

E⃗(−ωn) = E⃗∗(ωn). (2.4)

We define the first-order susceptibility tensor χ(1) as the one fulfilling

P
(1)
i (ωn) = ϵ0

∑
j

χ
(1)
ij (ωn)Ej(ωn). (2.5)

Analogously, we define the second-order susceptibility χ(2) using

P
(2)
i (ωn + ωm) = ϵ0

∑
jk

∑
(nm)

χ
(2)
ijk(ωn + ωm;ωn, ωm)Ej(ωn)Ek(ωm). (2.6)

In this case, since the amplitude E(ωn) is associated with the dependence e−iωnt, whereas
E(ωm) to the e−iωmt one, their product will oscillate at the sum-frequency ωn+ωm, from
which the notation. Higher-order susceptibilities can be defined as well, with χ(3) being
a fourth-rank tensor and so on. We can now consider some processes associated with
χ(2).

(a) Geometry and energy-level diagram for
the SFG process.

(b) Geometry and energy-level diagram for
the DFG process.

(c) Geometry and energy-level diagram for
the SHG process.

Figure 2.1: Summarizing schemes for the main nonlinear processes.

A summarizing image for all the processes is reported in Figure 2.1:

• Sum-frequency generation: Let the input fields have frequencies ω1 and ω2 and the
output frequency be ω3 = ω1 + ω2. Thus, by applying Equation 2.6 we find [47]

P
(2)
i (ω3) = ϵ0

∑
jk

[χ
(2)
ijk(ω3;ω1, ω2)Ej(ω1)Ek(ω2) + χ

(2)
ijk(ω3;ω2, ω1)Ej(ω2)Ek(ω1)].

(2.7)
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In most cases, χ(2) is characterized by intrinsic permutation symmetries [47], there-
fore we assume for simplicity

χ
(2)
ijk(ω3;ω1, ω2) = χ

(2)
ijk(ω3;ω2, ω1), (2.8)

from which we find the final expression for the polarization associated with the
process

P
(2)
i (ω3) = 2ϵ0

∑
jk

χ
(2)
ijk(ω3;ω1, ω2)Ej(ω1)Ek(ω2). (2.9)

Sum-frequency generation (SFG) corresponds to the frequency sum-up of the two
input waves. One important application is the generation of tunable ultraviolet
radiation, by exploiting the SFG between two input beams in the visible range.

• Second-harmonic generation: let us consider now the special SFG case with ω1 =
ω2, ω3 = 2ω1. We find

P
(2)
i (ω3) = ϵ0

∑
jk

χ
(2)
ijk(2ω1;ω1, ω1)Ej(ω1)Ek(ω1), (2.10)

losing the 2 factor (this result might seem counterintuitive, but it is just a conse-

quence of the convention from [47] that χ
(2)
ijk(ω3;ω1, ω2) must approach χ

(2)
ijk(ω3;ω1, ω1)

for ω1 approaching ω2). SHG can be experimentally extremely efficient. That is
why it is commonly used to convert the wavelength of a fixed-frequency laser to a
different region of the electromagnetic spectrum [47].

• Difference-frequency generation: DFG is an alternative form of SFG, in which the
output frequency is ω3 = ω1 − ω2. In this case, we will have

P
(2)
i (ω3) = ϵ0

∑
jk

[χ
(2)
ijk(ω3;ω1, ω2)]Ej(ω1)E

∗
k(ω2) + χ

(2)
ijk(ω3;ω2, ω1)E

∗
j (ω2)Ek(ω1)].

(2.11)
Indices jk are still dummy in this expression, therefore if χ(2) symmetry is preserved
we find

P
(2)
i (ω3) = 2ϵ0

∑
jk

χ
(2)
ijk(ω3;ω1, ω2)Ej(ω1)E

∗
k(ω2). (2.12)

All these processes can happen only if they satisfy both energy and momentum conser-
vation {

ℏω3 = ℏω1 + ℏω2

ℏk⃗3 = ℏk⃗1 + ℏk⃗2
, (2.13)

usually referred to as phase-matching conditions in this context. A more detailed expla-
nation of the physical reason behind the phase-matching conditions will be given in the
next section.
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Nonlinear processes will be significant just if the χ(2) term is non-negligible. A rough
estimation of χ(2) order of magnitude can be obtained by assuming that the nonlinearity
has an electronic origin. In this case, we expect the lowest order correction term P⃗ (2)

to be comparable with the linear response P⃗ (1) when the intensity of the applied field
is of the order of the atomic electric field Eat =

e
4πϵ0a20

, with a0 the Bohr radius [47].

Therefore, we have
χ(2) ≈ χ(1)/Eat. (2.14)

Since for condensed matter χ(1) is in the order of the unity, we get

χ(2) ≈ 2× 10−12m/V, (2.15)

which is not far from experimentally determined values. An important result can be
also demonstrated by analyzing the symmetry properties of the χ(2) tensor: it vanishes
identically for all media that display inversion symmetry, like liquids, gases, amorphous
solids, or many crystals. That is why noncentrosymmetric crystals play a crucial role in
quantum optics.

We have seen that in nonlinear materials the response of the medium to the incoming
radiation can cause the development of new frequency components, not present in the in-
put field. The physical reason can be qualitatively described like this: when the material
is subject to the external field, electrical charges with opposite signs rearrange forming
some induced dipoles, which oscillate according to the incoming radiation [48]. In a non-
linear medium, their response will be nonlinear, therefore containing components at new
frequencies (for example, at ω3 = ω1+ω2 for SFG). In most cases, each dipole would pro-
duce its independent radiation pattern, without interacting with the surrounding ones.
However, if the relative phasing of the dipoles is correct (phase-matching conditions), all
the radiated fields will superimpose constructively, determining the formation of a beam
with a well-defined frequency, different from the input ones [48]. To better understand
the phase-matching condition, a precise description of the wave propagation inside the
nonlinear medium is necessary.

2.1.1 Wave propagation in nonlinear optical media and phase-
matching conditions

The main references for this subsection will be [48] and [49]. In particular, I will consider
just the SFG process, since it is the one of main interest for my application (and the
more general one). Let us consider the Maxwell equations inside the nonlinear medium,
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for regions without free charges or free currents
∇D⃗ = 0

∇B⃗ = 0

∇× E⃗ = −∂B⃗
∂t

∇× H⃗ = ∂D⃗
∂t

(2.16)

with
B⃗ = µ0H⃗ , D⃗ = ϵ0E⃗ + P⃗ . (2.17)

In order to find the wave propagation equation, we can apply the curl operator to the
rotor of the electric field, getting

∇×∇× E⃗ = −∇× ∂B⃗

∂t
= − ∂

∂t
∇× B⃗. (2.18)

By combining Equations 2.16 and 2.17 and remembering c2 = 1/ϵ0µ0 we find

∇2E⃗ − 1

c2
∂2

∂t2
E⃗ =

1

ϵ0c2
∂2P⃗

∂t2
. (2.19)

This is the wave propagation equation inside a nonlinear optical medium, where the
polarization can be decomposed in its linear and nonlinear components as

P⃗ = P⃗ (L) + P⃗ (NL) (2.20)

or alternatively as

∇2E⃗ − 1

ϵ0c2
∂2

∂t2
D⃗ = 0 (2.21)

with
D⃗ = ϵ0E⃗ + P⃗ = ϵ0E⃗ + P⃗L + P⃗NL = D⃗(1) + P⃗ (NL) (2.22)

This final form is particularly useful in the case of a lossless, dispersionless medium,
because it allows us to easily write D⃗(1) = ϵ0ϵ

(1)E⃗ introducing the frequency-independent
dielectric tensor ϵ(1) (scalar for an isotropic material). Therefore, we find the equation

−∇2E⃗ +
ϵ(1)

c2
∂2E⃗

∂t2
= − 1

ϵ0c2
∂2P⃗ (NL)

∂t2
. (2.23)

For a dispersive medium, Equation 2.23 must hold for all frequency components. Thus,

∇2E⃗(ωn)−
ϵ(1)(ωn)

c2
∂2E⃗(ωn)

∂t2
=

1

ϵ0c2
∂2P⃗ (NL)

∂t2
. (2.24)
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We can now build a model for SFG searching a solution for Equation 2.24, with
P⃗ (NL) ≈ P⃗ (2). We will consider the input beams collimated, monochromatic, and con-
tinuous for simplicity, propagating along the z direction.

If we have an SFG process with input frequencies ω1 and ω2, output ω3 = ω1 + ω2,
each component must satisfy the propagation equation, in particular the component

E⃗3(z, t) = E3(z)ẑe
i(k3z−ω3t) + c.c. (2.25)

(with standard definitions k3 =
n3ω3

c
, n2

3 = ϵ(1)(ω3), ẑ the unit vector along z-direction).

The component P⃗3 of the polarization vector will be given by P⃗
(2)
3 (z, t) = P

(2)
3 (z)ẑei((k1+k2)z−ω3t)+

c.c defined accordingly to Equation 2.9, i.e. with

P
(2)
3 (z) = 2ϵ0χ

(2)E1(z)E2(z) = 4ϵ0deffE1(z)E2(z), (2.26)

introducing deff =
1
2
χ(2). Using Equation 2.26 inside 2.24, we find

∂2E3

∂z2
+ 2ik3

∂E3

∂z
= −4deffω

2
3

c2
E1E2e

i(k1+k2−k3)z. (2.27)

Usually, the amplitude E3(z) slowly depends on the coordinate z, thus we can neglect
the first term. We finally find

dE3

dz
=

2ideffω
2
3

k3c2
E1E2e

i∆kz, (2.28)

where we have introduced the wavevector mismatch

∆k = k1 + k2 − k3. (2.29)

If we have ∆k = 0, the perfect phase matching condition, the amplitude E3 will in-
crease linearly with z. If the condition is not perfectly satisfied, we have to perform the
integration of the exponential term over the length of the crystal L, finding

E3(L) =
2ideffω

2
3E1E2

k3c2
(
ei∆kL − 1

i∆k
). (2.30)

If we calculate the intensity I = |E|2 we get

I3 =
8d2effω

2
3I1I2

n1n2n3ϵ0c2
L2sinc2(

∆kL

2
). (2.31)

The wavevector mismatch effect is thus completely described by the sinc2 factor, which
is plotted in figure 2.2.
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Figure 2.2: Plot of the sinc2 function, describing the effect of the wavevector mismatch
in the intensity of the SFG process.

Experimentally, perfect phase-matching is thus described by{
ω3 = ω1 + ω2

n3ω3

c
= n1ω1

c
+ n2ω2

c

. (2.32)

For most materials, both equalities cannot be achieved simultaneously, since in normal
dispersion conditions we have that ω1 < ω2 < ω3 implies n1(ω1) < n2(ω2) < n3(ω3). This
operative condition is possible just for birefringent crystals, which are characterized by
two (uniaxial crystal) or three (biaxial crystal) different refractive indices along different
directions [49].

2.1.2 Parametric down-conversion

Parametric down-conversion (PDC) is another fundamental nonlinear process. In this
case, a photon, called pump, spontaneously converts into a pair of entangled photons
each one at a lower energy, referred to as signal and idler. The corresponding diagram
is reported in Figure 2.3.

The process must fulfill the usual phase-matching conditions{
ωp = ωi + ωs

∆k⃗ = k⃗p − k⃗i − k⃗s = 0
. (2.33)

The discovery of PDC was the final achievement of a series of fundamental theoreti-
cal [50][51][52] and experimental [53][54][55][56]works, published between the 1960s and
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Figure 2.3: Diagram for the PDC process. An incoming photon with frequency ωp decays
into a couple of photons at lower energies (idler and signal).

1970s. Since then, this process has become the essential backbone of many quantum
optics experiments in a huge variety of different fields, like quantum metrology [57],
quantum cryptography [58], and quantum computing [59]. PDC is intrinsically different
from the processes just described because it implies the spontaneous, ”ex-nihilo” creation
of an additional photon in a particular mode. At first sight, it might simply seem the
reverse-time process of SFG. However, this statement is misleading, because it neglects
some additional features of PDC related to its purely quantum nature. In fact, as I will
show in the next subsection, a classical model for this process is impossible.

2.1.3 Parametric amplification and non-classicality of paramet-
ric down-conversion

To prove that PDC cannot be described in the classical framework, we start again from
Equation 2.24, but using as outputs E⃗1(z, t) and E⃗2(z, t). By doing so, we find the
differential equations

dE1

dz
=

2ideffω
2
1

k1c2
E3E

∗
2e

−i∆kz (2.34)

dE2

dz
=

2ideffω
2
2

k2c2
E3E

∗
1e

−i∆kz. (2.35)

They can be solved assuming perfect phase-matching, finding the relations [49]

E2(z) = i

√
ω2n1

ω1n2

E3

|E3|
E∗

1(0)sinh(αz) (2.36)

E1(z) = E1(0)cosh(αz) (2.37)

α =
χ(2)|E3|

c

√
ω2ω1

n2n1

. (2.38)
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These results mean that E2(z) and E1(z) are different from 0 if and only if E1(0) is
non-null. Consequently, the classical process having E1 and E2 as outputs necessarily
needs E3 and E1 as inputs. The phenomenon described in this way, whose scheme is
represented in Figure 2.4, is thus something inherently different from PDC, normally
called parametric amplification.

Figure 2.4: Diagram for the parametric amplification process. The amplification of the
signal can happen only if we have a non-null seeded signal as input.

Parametric amplification is a key process in a large plethora of fields, including spec-
troscopy, generation of ultrafast laser pulses, quantum communication, and nonlinear
microscopy.

2.1.4 Fock states and creation/annihilation operators

Before describing the PDC process, it is worth recalling some fundamental concepts in
quantum optics.

The electromagnetic field propagation is described by Maxwell’s equations, with each
independent solution being called optical mode [60]. If we rewrite the electromagnetic
radiation using its Fourier expansion for all the accessible optical modes and solve the
propagation equation, it can be shown that each component can be treated equivalently
to a quantum harmonic oscillator [61]. Thus, the number of photons for each mode com-
pletely describes the transport of energy and information [60]. We can adopt the second
quantization formalism to describe a generic multi-photon ensemble, using the so-called
Fock states in the form

∣∣n1, n2, ..., nµ, ...
〉
, where each nµ indicates the occupation number

for the µ-th optical mode [62]. These Fock states form a basis for the Hilbert space of the
electromagnetic field. Moreover, since each optical mode can be treated equivalently to a
quantum oscillator, we can introduce the associated creation/annihilation operators â†µ,
âµ. These operators can be easily applied to the Fock states, according to the relations

â†µ
∣∣n1, n2, ..., nµ, ...

〉
=

√
nµ + 1

∣∣n1, n2, ..., nµ + 1, ...
〉
, (2.39)

âµ
∣∣n1, n2, ..., nµ, ...

〉
=

√
nµ

∣∣n1, n2, ..., nµ − 1, ...
〉
, (2.40)

and their commutation relations are
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[âµ, âµ′ ] = [â†µ, â
†
µ′
] = 0, (2.41)

[âµ, â
†
µ′
] = δµµ′ . (2.42)

The creation/annihilation operators can be used to write explicitly the Fourier compo-
nents of the electromagnetic field. For simplicity, just transversal modes are usually
considered, assuming that the optical mode µ is uniquely defined by the wavevector k⃗µ.
In this case, we can write the operators associated to the electromagnetic field as

Ê(+)
µ (r⃗, t) =

∑
µ

Ck⃗µe
i(k⃗µr⃗−ωµt)âk⃗µ(r⃗), (2.43)

Ê(−)
µ (r⃗, t) = (Ê(+)

µ (r⃗, t))†, (2.44)

with Ck⃗µ being the proper decomposition coefficient.

Eventually, we also introduce the photon-number operator N̂µ for each mode µ. This
is defined by

â†µâµ = N̂µ, (2.45)

and its action on Fock states is given by

N̂µ

∣∣n1, n2, ..., nµ, ...
〉
= nµ

∣∣n1, n2, ..., nµ, ...
〉
. (2.46)

For conciseness, we can also introduce the notation

|n⟩µ =
∣∣0, 0.., nµ, 0, ...〉 , (2.47)

|0⟩ = |vac⟩ = |0, 0, ...⟩ . (2.48)

(2.49)

2.1.5 Quantum description: low-gain vs high-gain

At this point, we can introduce the general PDC Hamiltonian [63]

ĤPDC =

∫
d3rχ(2)(r⃗)Ê(+)

p (r⃗, t)Ê(−)
s (r⃗, t)Ê

(−)
i (r⃗, t) + H.c. (2.50)

simultaneously describing both PDC and SFG processes and where various operators
Ê

(+,−)
p,s,i are defined according to the equations 2.43 and 2.44 (where the sum can be

converted to an integral over dk⃗µp,s,i if the modes are dense enough in k-space). In
most cases, the pump is assumed to be a classical plane-wave [64] propagating along
the z axis, notably simplifying the calculation. It is important to highlight that, in the
general expression of the Hamiltonian, both χ(2) and the various creation/annihilation
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operators â are functions of the position. This is fundamental to understand how the
crystal structure affects the process.

The general Hamiltonian allows us to describe the evolution of the creation/annihilation
operators solving the Heisenberg equations. Before doing so, we adopt a more comfort-
able notation (valid for undepleted pump, collinearity of the process, conservation of the
polarization): we write the frequencies of idler and signal as ωi = ω0 + Ω, ωs = ω0 − Ω
respectively, introducing ω0 = ωp/2 and the detuning frequency Ω. The phase mismatch

will be then given by ∆(Ω) = kp−k(Ω)−k(−Ω). The field operators E
(+)
s,i (z, t) will then

satisfy [65]

E
(+)
s,i (z, t) ∝

∫
â(±Ω, z)ei(k(±Ω)z−(ω0±Ω)t)d(±Ω), (2.51)

where the sum in Equation 2.43 can be converted into an integral since the modes are
densely packed in k-space, â(+Ω, z) = âk⃗s , and â(−Ω, z) = âk⃗i . An important theoretical
result is that the explicit dependence of each â on z and ∆(Ω) can be found by solving
the following system of differential equations [65]:{

∂â(Ω,z)
∂z

= χ(2)(z)Epâ
†(−Ω, z)ei∆(Ω)z

∂â†(−Ω,z)
∂z

= χ(2)∗(z)E∗
p â(Ω, z)e

−i∆(−Ω)z
. (2.52)

This system admits a single solution when we take into account known boundary con-
ditions at z = 0, expressable in the form of special unitary transformations (called
Bogolyubov transformations) for the down-converted photons creation and annihilation
operators. More precisely, these transformations are in the form [65]{

â(Ω, L) = U(Ω)â(Ω, 0) + V (Ω)â†(−Ω, 0)

â†(Ω, L) = U∗(Ω)â†(Ω, 0) + V ∗(Ω)â(−Ω, 0)
, (2.53)

where L is the length of the nonlinear crystal, U(±Ω) and V (±Ω) are four complex
numbers defining the transformation. These numbers can be found solving in the complex
domain the system 2.52. Therefore, in general, they are dependent on χ(2)(z), ∆(Ω),
Ep, and L. Additionally, unitarity requires |U(±Ω)|2 − |V (±Ω)|2 = 1, U(Ω/V (Ω) =
U(−Ω)/V (−Ω). Thus, the degrees of freedom of the solution reduce up to four purely
real parameters. [64] showed that we can use

r(Ω) = ln
(
|U(Ω)|+ |V (Ω)|

)
,

ψ0(Ω) =
1

2
arg[U−1(Ω)V (Ω)],

ψL(Ω) =
1

2
arg[U(Ω)V (−Ω)],

κ(Ω) =
1

2
arg[U(Ω)U−1(−Ω)]. (2.54)
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r(Ω) takes the name of squeezing parameter or parametric gain, the other terms are
called squeezing angles. It is important to notice that r,ψ0,ψL are even functions of Ω,
while κ is odd. The physical meaning of r is a key aspect and will be soon clarified.
Rewriting U(Ω) and V (Ω) in terms of these new variables, we find [65]

U(Ω) = ei[ψ
L(Ω)−ψ0(Ω)+κ(Ω)] cosh r(Ω), (2.55)

V (Ω) = ei[ψ
L(Ω)+ψ0(Ω)+κ(Ω)] sinh r(Ω). (2.56)

We can finally calculate the expected output photon number corresponding to the de-
tuning frequency Ω. This is defined by the expectation number ⟨N(Ω, L⟩) = N(Ω)δ(Ω−
Ω

′
) = ⟨â†(Ω, L)â(Ω′

, L)⟩. Substituting Equations 2.55,2.56 into 2.53, and using the usual
commutation relation [â(Ω, z)â†(Ω

′
, z)] = δ(Ω − Ω

′
), we can find (see the Appendix D

for details)
⟨N(Ω, L)⟩ = Ns,i(Ω) = sinh2 r(Ω), (2.57)

which defines the output spectra S(ω0±Ω) (provided normalization dividing by max⟨Ns,i⟩[26]).
The parametric gain r is then directly related to the number of photons in each mode

after the PDC process. Moreover, if we wrote explicitly all dependences we would have
r = r(Ω,∆(Ω), χ(2)(z), Ep, L) and, in particular, it can be shown that r ∝ Ep [65]; this
shows how the crystal design, the pump, and the phase-matching conditions affect the
squeezing parameter and, so, the shape of the PDC spectra.

In the limit of r → 0 we have that ⟨N⟩ → r2: this condition corresponds to the
so-called low-gain regime, or spontaneous parametric down-conversion. On the contrary,
if r ≫ 1. The dependence is purely exponential (∝ sinh2(r). This condition corresponds
to the high-gain regime. A comparison between r2 and sinh2 r functions is reported in
Figure 2.5 for clarity.

Figure 2.5: Comparison of functions y = x2 and y = sinh2 x

The typical parametric gain in SPDC is of the order of 10−3−10−4 for CW lasers. In
this case, the number of generated photons inside the crystal is too small to increase the
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generation rate, which remains constant along the whole crystal [26]. If the gain becomes
bigger than 1 (a good reference for experimental value is [66], in which the parametric
gain is found to be 3.9 < r < 6.5), instead, the large photons number generated at the
beginning of the crystal further enhance the generation rate, seeding the production at
the end [26]. A schematic representation comparing the generation of photons in the
low-gain and high-gain regimes is reported in Figure 2.6.

Figure 2.6: A pictorial comparison between the generation photons in low-gain regime
(left) and high-gain regime (right). Taken from [26].

I would like to make some final considerations about the SPDC limit r → 0. Since r2,
associated with the number of down-converted photons, is ≪ 1, we might consider it as
the probability associated with the PDC process happening. I will exploit this analogy
later in the context of the SU(1,1) interferometer. Moreover, ⟨N⟩ → r2 ∝ |Ep|2, thus its
intensity is proportional to the pump power.

We can now summarize the most important conclusions:

• All the PDC processes can be mathematically described by introducing the para-
metric gain r(Ω). In particular, the number of down-converted photons (directly
related to the output spectrum) is given by sinh2(r(Ω));

• The parameter r(Ω), in general, depends on the detuning frequency, the phase-
matching conditions, the geometry and length of the crystal, and the pump inten-
sity (Ip ∝ |Ep|2);

• Low-gain PDC is characterized by a low number of generated photons per mode.
Mathematically, this corresponds to a low parametric gain value, which allows us
to work in the limit sinh2 r → r2. Its intensity is linearly dependent on the pump
intensity;

• High-gain PDC is characterized by a large number of photons per mode, a con-
dition mathematically corresponding to a large r. In this case, the high number
of generated photons at the beginning of the crystal further enhances the total
generation rate.
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2.2 Quasi-phase-matching and aperiodically poled non-

linear crystals

To have a better understanding of the role played by the crystal design structure in deter-
mining the parametric gain r, we will focus on the class of nonlinear crystals effectively
involved in the project: aperiodically poled nonlinear crystals with quasi-phase-matching
(QPM). For this purpose, I will mainly refer to [65] and supplementary material in [28].
Let us recall the notation used in the previous subsection, in particular, the phase mis-
match

∆(Ω) = kp − k(Ω)− k(−Ω). (2.58)

The PDC process can happen just for those frequencies Ω that fulfill the phase-matching
condition

∆(Ω) ≈ 0 (2.59)

In most cases, this results in a narrow-band spectrum of available frequencies, which is
inappropriate for OCT. Suppose now it is impossible to achieve phase-matching for a
certain frequency ω0 + Ω in a determined nonlinear crystal. Starting from its original
structure, we can design and produce a layered structure characterized by periodical
χ(2), with each layer having Λ/2 width.To achieve this, it is fundamental to provide an
inversion of the crystal structure for each subsequent layer (the resulting structure is
illustrated in Figure 2.7).

Figure 2.7: Schematic representation of a periodically poled nonlinear crystal. The red
arrows represent the inversion of the crystal structure for each subsequent layer. The
black arrows, instead, represent pump, signal, and idler photons.

In this way, the χ(2) gets the form [65]

χ(2)(z) = χ0sgn(sinKz) =
−iχ0

π

+∞∑
n=−∞

1− (−1)n

n
einKz, (2.60)
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with K = 2π
Λ

being the spatial frequency of this artificial grating, usually called inverse
grating vector, and the second equality corresponding to the Fourier series expansion.
On the contrary, Λ describes the spatial period.

The QPM method involves choosing the appropriate K such that

K = ∆(Ω). (2.61)

Substituting Equation 2.60 into the system 2.52, we find{
∂â(Ω,z)
∂z

=
∑+∞

n=−∞
−iχ0

π
1−(−1)n

n
Epâ

†(−Ω, z)ei(∆(Ω)+n∆(Ω))z

∂â†(−Ω,z)
∂z

=
∑+∞

n=−∞
iχ∗

0

π
1−(−1)n

n
E∗
p â(Ω, z)e

−i(∆(−Ω)+n∆(−Ω))z,
(2.62)

where the phase-mismatch is compensated just for n = −1, while all other terms in n
become negligible [65].

Quite several techniques to produce these kinds of periodically oriented crystals exist
[67], e.g. the stacking of different nonlinear crystals [68] or the periodic implantations of
ions [69]. The most popular method relies on the nonlinear crystal to be ferroelectric.
In this case, we can apply a time-constant external field with, in principle, any desired
spatial periodicity. For its ferroelectric properties, the crystal will then rearrange its
internal structure accordingly, keeping it when the external field is removed. Crystals
fabricated in this way are called periodically poled crystals.

The same building procedure can allow us to achieve a non-constant grating profile
along the crystal, i.e. K = K(z). This way, different parts of the crystals will show QPM
at different frequencies. These structures are called aperiodically poled crystals, as the
apKTP crystal employed in my project (Figure 2.8 shows the general scheme for their
structure).

Figure 2.8: Schematic representation of an aperiodically poled nonlinear crystal.

Mathematical modeling is possible when the spatial frequency modulation is weak,
that is the width Λ(z) is a slowly varying function in z. In this case, we can write the
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χ(2) as

χ(2)(z) = χ0sgn[sin

∫ z

0

K(z
′
)dz

′
] =

≈ −iχ0

π

+∞∑
n=−∞

1− (−1)n

n
ein

∫ z
0 K(z

′
)dz

′

. (2.63)

If we proceed as above to rewrite the system 2.52, considering just the n = −1 term, we
find ∂â(Ω,z)

∂z
= −iχ0Ep

π
(−2)â†(−Ω, z)ei(∆(Ω)z−

∫ z
0 K(z

′
)dz

′
)

∂â†(−Ω,z)
∂z

=
iχ∗

0E
∗
p

π
(−2)â(Ω, z)e−i(∆(−Ω)z−

∫ z
0 K(z

′
)dz

′
)
. (2.64)

Introducing ξ = 2χ0Ep

π
we finally have∂â(Ω,z)
∂z

= +iξâ†(−Ω, z)ei(∆(Ω)z−
∫ z
0 K(z

′
)dz

′
)

∂â†(−Ω,z)
∂z

= −iξ∗â(Ω, z)e−i(∆(−Ω)z−
∫ z
0 K(z

′
)dz

′
)
. (2.65)

This system can be solved (considering boundary conditions at z = 0) as already de-
scribed in the previous subsection. In particular, it can be shown that the complex
numbers characterizing the Bogolyubov transformation are in the form [65]

U(Ω) ∝ ei[k(Ω)−k0+ 1
2
∆(Ω)]L− i

2

∫ L
0 K(z)dz, (2.66)

V (Ω) ∝ ei[k(Ω)−k0+ 1
2
∆(Ω)]L− i

2

∫ L
0 K(z)dz. (2.67)

2.3 Upconversion mid-infrared OCT

Nonlinear processes guarantee the possibility of converting the wavelength of an optical
beam. This can be an extremely useful feature to achieve efficient MIR OCT, since one
of the main issues is related to the difficulties in the direct (or homodyine) detection of
MIR radiation. More specifically, upconversion MIR OCT relies on the upconversion of
the probing wavelength (in the MIR range) to the ordinary NIR range, allowing us to
use ordinary detectors to measure the interference patterns. As explained previously, the
upconversion can be achieved by exploiting an SFG or a DFG process inside a nonlinear
crystal.

In [18], Israelsen et al. reported a novel upconversion MIR OCT setup, reported in
Figure 2.9.

It relied on a custom MIR SC source (MOPA laser), producing a continuous spectrum
from 0.9 to 4.7 µm, and an in-house developed broadband upconversion module. This
included a MgO-doped periodically poled lithium niobate (PPLN) crystal and a CW
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Figure 2.9: The experimental setup realized by Istraelsen et al. to perform upconversion
MIR OCT. Taken from [18].

laser centered at 1064 nm, which was used as the second input for the SFG process
(together with the light coming back from the interferometer’s arms). The module was
developed to convert the MIR input, more specifically in the large bandwidth 3576−4625
nm, to the narrow NIR band 820− 865 nm. It was then possible to use a standard 800
nm spectrometer to sample the interference patterns. Their setup showed remarkable
performance, with an axial resolution of 8.6 µm (limited by the bandwidth detectable
with the upconversion module), a depth range of ≈ 8.6 mm (limited by the spectral
resolution), and an SNR around 65 dB. They also proved the possibility of resolving
the internal structure of highly complex samples, like the Europay, Mastercard, Visa
(EMV) chip and the near-field communication antenna embedded in a credit card. Yagi
et al. used a similar approach in [19]. In this case, the source is a homemade MIR laser,
providing broadband radiation in the 3 − 4 µm range, while the upconversion module
relies on the DFG process inside a MgO-doped PPLN crystal. The second input for the
DFG was generated by a fs pulsed Yb-fiber laser, centered at 1037 nm. Their setup
offered an axial resolution of 11.6 µm (again limited by the upconversion module), a
depth range of 1.2 mm (related to the linewidth of the pulses for upconversion), and a
sensitivity of 55 dB. In both studies, the main limitations lie in the necessity to employ
both a complex and expensive MIR source and a second high-power laser to achieve the
upconversion process.
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Chapter 3

OCT with undetected photons

A proposal to overcome the intrinsic limits of upconversion techniques, which still relies
on the powerful features of nonlinear optics, is interference with undetected photons.
Firstly proposed in [70], this experimental technique grants the opportunity to probe the
sample with one beam at a certain wavelength and get all the information by detecting a
separate beam, at a different wavelength[71]. In this way, we can circumvent at once both
the necessity for generation and detection in the MIR region. The typical interferometric
scheme exploited for this technique is the so-called SU(1,1) interferometer, reported in
Figure 3.1.

Figure 3.1: Schematic design of a SU(1,1) interferometer.

Clearly, it is equivalent to the OCT with undetected photons scheme already illus-
trated in Figure 2, in which we exploit the reflection through the same nonlinear crystal

42



instead of the transmission across a second one.
The PDC process inside the crystal Q1 provides idler in the MIR region and signal in

the visible/NIR region, while using a standard laser as the pump. Then, the idler is used
to probe the sample, whereas the signal is taken as the reference. The passage through
the second crystal Q2 determines the interference between the two beams: we can thus
measure just one of them (i.e. the signal) to reconstruct the interference pattern.

Since the SU(1,1) geometry is indispensable for my project, it is worth analyzing
more in detail its specific features.

3.1 SU(1,1) interferometer for OCT

3.1.1 Mach-Zehnder and SU(1,1) interferometers, single- pho-
ton picture

First, I would like to consider the SU(1,1) interferometer in the single photon picture,
which is particularly intuitive. Moreover, it is convenient to start from its ”linear”
counterpart: the Mach-Zehnder interferometer. The term ”linear” refers to the fact
that we have no nonlinear elements: as we can see from the scheme in Figure 3.2, this
interferometer relies just on the splitting of the source beam into two paths, thanks to a
first beam splitter, which are then recombined at a second beam splitter before detection
[71].

Figure 3.2: The schematic for a Mach-Zehnder interferometer.

The phase shifter ϕ along the A path is used to model relative optical delays between
the two beams, whereas T along the B path is just a generic transmittance T = |T |eiγ.
In principle, the system is completely equivalent to one using just a single beam splitter,
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provided that both the beams are reflected back to it before detection (adding a reference
mirror along A and replacing T with R). This last design corresponds exactly to the
standard setup for classical OCT, already illustrated in Figure 1.

If we consider a single photon entering the interferometer, and provided the path
difference between A and B is shorter than the coherence length, its state after the first
beam splitter will be described by the superimposition

|ψ⟩ = 1√
2
(|1⟩A |0⟩B e

iϕ) +
1√
2
(|T |eiγ |1⟩B +

√
1− |T |2 |0⟩B) |0⟩A , (3.1)

where A and B subscripts correspond to A and B paths respectively. This state is then
the input for the second beam splitter, whose output |ψout⟩ can be measured along the
paths C and D. We can calculate the expected count rates SC , SD using{

SC = ⟨ψout| N̂C |ψout⟩
SD = ⟨ψout| N̂D |ψout⟩

. (3.2)

The final result is found to be [71]

SC,D =
(1 + |T |2)± 2|T | cos(ϕ− γ)

4
. (3.3)

By scanning ϕ, we can calculate the visibility as

V =
Smax − Smin
Smax + Smin

=
2|T |

1 + |T |2
, (3.4)

which is compatible with the result shown in Equation 1.25.
We consider now the SU(1,1) interferometer. In this case, the two beam splitters

of the Mach-Zehnder interferometer are replaced with the two nonlinear media Q1 and
Q2. It is important to notice that signal and idler paths from Q1 are perfectly aligned
with the ones at Q2. For now, we assume to be in the low-gain regime, to simplify the
calculations. The total SPDC quantum state before Q2 is then given by

|ψ⟩ = |T |(|1⟩S e
iϕ |1⟩I e

iγ) +
√

1− |T |2(|1⟩S e
iϕ |0⟩I), (3.5)

where the two terms account for the idler passing or not passing across the transmittance
T . Notice that if we calculate the count rate in the signal mode SS at this point we get

⟨ψ| N̂S |ψ⟩ = 1, (3.6)

which means we have no interference. |ψ⟩ can be then used as the input wavefunction
for the second crystal, together with the pump. r2 ≪ 1 descibes the probability of
|ψ⟩ changing because of the PDC process in Q2. Thus, we can assume this state is
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kept fixed at the output. However, we have to consider the additional presence of the
pump and the SPDC process acting on it (in this case, we have many photons, and thus
the PDC process becomes non-negligible). Consequently, we will have the total output
wavefunction

|ψout⟩ ≈
1√
2
(|T | |1⟩S e

iϕ |1⟩I e
iγ +

√
1− |T |2 |1⟩S e

iϕ |0⟩I + |1⟩S |1⟩I), (3.7)

where the 1√
2
factor accounts for normalization. We can now calculate the final count

rate in the signal mode as

SoutS = ⟨ψout| N̂S |ψout⟩ =
= 1 + |T | cos(ϕ+ γ). (3.8)

By scanning the phase ϕ, we find a visibility

V = |T |, (3.9)

compatible with the calculations in [23].
A more general approach requires treating the two passages across the nonlinear

media using the Bogolyubov transformations.

3.1.2 SU(1,1) interferometer with Bogolyubov transformations

To precisely describe interference from an SU(1,1) interferometer, we need to recover
the mathematical treatise in sections 2.1, 2.2. It is sufficient to consider what happens
to the creation/annihilation operators associated to the PDC process after two passages
through the nonlinear medium. This is shown in [28] Supplementary material. Let us
analyze the general case with two crystals, with length L and displaced at a distance d
like in figure 3.3.

Figure 3.3: Schematic representation of the passage through the two nonlinear crystals
of a SU(1,1) interferometer.
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The annihilation operator evolution after each crystal is given by the Bogolyubov
transformations:

â(Ω, L) = U1(Ω)â(Ω, 0) + V1(Ω)â
†(−Ω, 0), (3.10)

â(Ω, zout) = U2(Ω)â(Ω, L+ d) + V2(Ω)â
†(−Ω, L+ d), (3.11)

with zout = 2L + d, each Un, Vn factor satisfying unitarity and the relations already
described. We introduce then the complex ”transmittance” between the two crystals
T (Ω) = TA(Ω)e

iϕ(Ω), with TA(Ω) being the transmittance amplitude crossed by the com-
ponent at ω0 + Ω, ϕ being the phase acquired. The quotation marks indicate that this
term is not necessarily related to a physical transmittance: in an OCT experiment with
undetected photons, it would correspond to the reflectance of the sample. We eventually
introduce the associated complex ”reflectance”, defined by the relation |T |2 + |R|2 = 1.
This term allows us to write how the annihilation operators evolve in the space between
the crystals

â(Ω, L+ d) = T (Ω)â(Ω, L) +R(Ω)âvac(Ω). (3.12)

where the second term accounts for the absorption in the sample. By combining all these
equations we finally find (explicit calculations in Appendix E):

â(Ω, zout) = Uintâ(Ω, 0)+Vint(Ω)â
†(−Ω, 0)+U2(Ω)R(Ω)âvac(Ω)+V2(Ω)R

∗(−Ω)â†vac(−Ω),
(3.13)

where

Uint(Ω) = U2(Ω)U1(Ω)T (Ω) + V2(Ω)V
∗
1 (−Ω)T ∗(−Ω), (3.14)

Vint(Ω) = U2(Ω)V1(Ω)T (Ω) + V2(Ω)U
∗
1 (−Ω)T ∗(−Ω). (3.15)

The expression of â(Ω, zout) allows us to calculate the output spectrum S(ω0 + Ω) as
⟨â†(Ω, zout)â(Ω, zout)⟩. We find

S(ω0 + Ω) = |Vint(Ω)|2 + |V2(Ω)R(−Ω)|2. (3.16)

Finally, recalling the relations 2.54, assuming that the pump is undepleted |U1| =
|U2|,|V1| = |V2|, r2 = r1 = r, and working for Ω > 0, TA(+Ω) = 1, TA(−Ω) = TA
(just the idler travels across a sample) we find the final result (see Appendix F for the
whole calculation)

S(ω0 + Ω) =
sinh2 2r(Ω)

2
(
1 + T 2

A

2
+ TA cos

(
τ(ω0 − Ω) + ρ(Ω)

)
) + sinh2 r(Ω)(1− T 2

A),

(3.17)
where τ = 2zs

c
accounts for the additional distance traveled by the idler. ρ(Ω) is a

quadratic term responsible for the chirping of the spectral interferogram with respect to
the frequency [28].
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3.1.3 Mid-infrared OCT in the low-gain regime

We can rewrite Equation 3.17 in the limit of low-gain regime r ≪ 1 → sinh r ≈ r. In
this case

S(ω0 + Ω) ≈ 4r2(Ω)

2
(
1 + T 2

A

2
+ TA cos

(
τ(ω0 − Ω) + ρ(Ω)

)
) + r2(Ω)(1− T 2

A) =

= 2r2(1 + TA cos
(
τ(ω0 − Ω) + ρ(Ω)

)
), (3.18)

which is consistent with the result in Equation 3.8 and the spectrum shown in [23], with
a visibility V = TA. Recalling that ωs = ω0 + Ω we can thus write the number of signal
photons as

N(ωs) = N0(1 + TA cos
(
τωs + ϕ(ωs)

)
), (3.19)

where the coefficient N0 is the number of signal photons when we have no oscillation.
This is completely equivalent to the already found expression for the classical OCT in
Equation 1.25, with V = TA, τ = 2zs/c. We have therefore proved the possibility of
applying OCT in the low-gain regime.

3.1.4 Mid-infrared OCT in the high gain regime

In the high-gain regime, we have that sinh2(2r) ≫ sinh2 r, thus the interference spectrum
3.17 can be rewritten neglecting the last term

S(ω0 + Ω) ≈ sinh2 2r

2
(
1 + T 2

A

2
+ TA cos

(
τ(ω0 − Ω) + ρ(Ω)

)
). (3.20)

We can then proceed in the calculation exactly as in the low-gain regime, finding

N(ωs) = N0(1 +
2TA

1 + T 2
A

cos
(
τωs + ϕ(ωs)

)
), (3.21)

which is again analogous to the classical OCT spectrum 1.25, with the visibility being
given by V = 2TA

1+T 2
A
. These results are compatible with the ones derived in the Supple-

mentary Material of [28] and they can be used to describe the expected behavior for my
experimental setup.

3.2 Existing implementations of OCT with unde-

tected photons with SU(1,1) interferometer

Many works have proved the potential of SU(1,1) interferometry to realize OCT with
undetected photons. The general schematic of the setup, employable for both TD and
FD OCT, is the one illustrated in Figure 3.4.
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Figure 3.4: The usual experimental schematic to achieve OCT with undetected photons.
DM stands for dichroic mirror, L stands for lens.

The pump is firstly focused by the lens L1 into the nonlinear crystal. The PDC
process generates idler and signal beams at different wavelengths, which get separated
by the dichroic mirror DM2. In this way, the pump and signal beams are sent into the
reference arm, where they get back-reflected by the reference mirror. On the contrary,
the idler beam is conveyed into the idler arm, where it gets collimated or focused into the
sample using the lens L2 and, eventually, gets reflected. All the beams come then back to
the nonlinear medium, where they interfere. Finally, the signal beam is isolated using the
second dichroic mirror DM1 and the measurement is performed by using a photodetector
or a spectrometer. The main conceptual difference between various proposals lies in
the choice of the nonlinear medium. The proof-of-concept for infrared TD-OCT with
undetected photons in the low-gain regime was reported by Paterova et al. in [22].
Their setup relied on the collinear PDC process inside a PPLN crystal. Different crystal
designs were evaluated, with the idler central wavelength ranging from ≈ 1.5 µm up to
≈ 3 µm (so with this last one in the MIR range). The pump was an ordinary Nd:YAG
(Yttrium-Aluminum Garnet) CW laser, with the central wavelength at 532 nm or 488 nm
depending on the crystal design used. Moreover, both a notch filter and a bandpass filter
were inserted before the detector (a CCD camera) to remove the noise. The setup suffered
from the narrow bandwidth of the tunable source, resulting in an axial resolution of ≈ 93
µm. Nonetheless, it was successfully applied to a high variety of samples, including a Si
window and a microscope resolution target test.

The state-of-the-art for OCT with undetected photons in the low-gain regime was
achieved by Vanselow et al. in [23]. Their setup, designed to perform FD-OCT, is
reported in Figure 3.5.

In this case, the three beams were collimated by using an off-axis parabolic mirror
(OAP), with the idler getting then focused into the sample to achieve high lateral res-
olution. The pump was a frequency-doubled Nd:YAG CW laser, centered at 660 nm
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Figure 3.5: The optical setup realized by Vanselow et al. The inset shows a typical raw
interference spectrum and the corresponding OCT spectrum. Taken from [23].

and with a maximum power of 500 mW. The spectrometer was a commercial uncooled
spectrometer, providing a very good spectral resolution around 0.11 nm. By exploiting
the PDC process inside a ppKTP crystal, granting broadband idler and signal (from 3.3
to 4.2 µm and from 785 to 823 nm respectively), they achieved an axial resolution of
10.1 µm, a depth range around 2.8 mm, and an SNR equal to 47 dB at 8 ms integration
time. Moreover, they demonstrated the setup to be shot-noise limited and managed to
resolve the internal structure of a high-interest multilayered alumina sample.

In [72], Roeder et al. have recently shown NIR TD-OCT after replacing the usual
bulk nonlinear crystal with a PPLN waveguide. This nonlinear medium provided high
brightness and the possibility to optimize the SNR by adjusting the relative gain of
the two PDC processes, compensating the losses inside the interferometer. The PDC
process provided idler and signal centered at 1360 nm and 830 nm respectively, using
a commercial CW laser centered at 514 nm as the pump. The detection was achieved
by using a commercial, inexpensive photodetector. The main limitation was the axial
resolution, which resulted in ≈ 0.2 mm, owing to the waveguide’s narrow bandwidth.

Machado et al. proved for the first time both TD and FD NIR OCT with undetected
photons in the high-gain regime (r ≈ 4.8) in [24]. Their setup relied on the usage of
a PPLN crystal, providing broadband idler (8 nm bandwidth centered at 810 nm) and
signal (30 nm bandwidth centered at 1550 nm). The pump was a pulsed Nd:YAG laser,
generating 18 ps long pulses centered at 532 nm, with a repetition rate of 1 kHz. They
successfully resolved a thick microscope glass slide with d = 100 µm and exploited the
seeding effect to achieve a high signal photon number (≈ 4 × 105 photons per pulse)
while preserving limited idler power (1.6 fJ per pulse). However, their system suffered
from limited axial resolution, around ≈ 30 µm (determined by the signal bandwidth),
and depth range, ≈ 300 µm (related to the spectrometer resolution).

Hashimoto et al. addressed these limitations in [28], adopting the setup reported in
Figure 3.6.

In this case, the nonlinear medium was an aperiodically poled lithium niobate crystal,
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Figure 3.6: The optical setup realized by Hashimoto et al. HWP stands for half wave
plate, DM for dichroic mirror. Taken from [28].

providing further enhanced idler and signal bandwidths (experimentally found to be
≈ 30 THz, with central wavelengths equal to 1565 nm and 796 nm respectively) and,
consequently, a better axial resolution, around ≈ 11 µm. The pump was again a ps-
pulsed pulsed laser, centered at 532 nm and with an average pump power equal to 1
mW. The average signal power at the output was found to be ≈ 10 µW, making it
possible to use an ordinary Si power meter for the measurement. The setup successfully
resolved very thin films of lithium niobate and cover glass, with thicknesses of 7 and
102 µm respectively. However, it suffered from the limited depth range ≈ 300 µm, still
determined by the spectrometer resolution.
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Chapter 4

Mid-infrared OCT with undetected
photons in the high-gain regime

4.1 Introduction

We have analyzed in detail the existing approaches to achieve MIR OCT, carefully consid-
ering the advantages and disadvantages of each of them. The ”classical” implementations
are still far from being comparable with their NIR counterpart, despite significant im-
provements achieved using novel devices (supercontinuum sources, OPOs, or pyroelectric
array detectors). The upconversion scheme shows promise, as it avoids the need for a
MIR detector and achieves axial resolution as low as ≈ 10 µm and a satisfying scan rate.
However, it has significant limitations, including the need for an MIR source and the
intrinsic drawbacks of the upconversion scheme. Eventually, MIR OCT with undetected
photons, implemented up to now just in the low-gain regime, showed remarkable per-
formance, with an axial resolution ≈ 10 µm, shot-noise level of detection. Nonetheless,
the low-gain regime prevents the use of ordinary detectors, being intrinsically defined by
low signal power. The solution I explore in this project is the implementation of a MIR
OCT interferometer with undetected photons, operating in the high-gain regime.

The high-gain regime is characterized by the seeding effect, which opens the possi-
bility of achieving high signal power (measurable using ordinary detectors, like Si power
meters) without giving up on probing the sample with a low-power, non-invasive idler.
Since the high-gain regime is inherently defined by a larger number of photons per mode
than the low-gain regime, we can conclude that it should grant higher SNR at parity of
noise (and other measurement conditions).

The theoretical description of OCT with undetected photons in the high-gain regime
was reported in the previous chapter, together with a review of the first implementations,
limited up to now to the NIR range. Here, I describe in detail my work to develop and
test the first experimental setup achieving MIR OCT with undetected photons in the
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high-gain regime.

4.2 Experimental setup and methodology

4.2.1 Optical scheme and components

The main setup for my project has been realized by adapting the design in [29], previously
employed for FTIR (Fourier-transform infrared) spectroscopy. The scheme is illustrated
in Figure 4.1.

Figure 4.1: The optical setup realized to perform MIR-OCT with undetected photons in
the high-gain regime. HW stands for half-wave plate, PBS for polarizing beam splitter,
L for lens, DM for dichroic mirror, and LPF for low-pass filter.

This design is conceptually analogous to the one presented in Figure 2, with the
sample placed along the idler arm and the reference, mirror (spherical with f = 100
mm) along the signal arm.

The input light is generated by a 15 − ps pulsed laser, centered at 532 nm and
with a repetition rate of 1 kHz (Ekspla, PL2210A-1K-SH/TH). The beam passes then
through a first half-wave plate, a polarizing beam splitter (PBS), and a second half-wave
plate. Since the input pump is linearly polarized, the purpose of the first half-wave
plate is to change the polarization angle and thus the amount of light transmitted by
the PBS. In this way, we can control the input pump power. The second half-wave
plate, instead, is aligned such that the polarization angle matches the optic axis of the

52



crystal, required to have the phase matching conditions for PDC1. The light is then
focused into the crystal using a focal lens with f = 200 mm (L1 in Figure 4.1), achieving
high-gain PDC. Immediately after the lens, we can use a Si power meter (Thorlabs,
S130VC) to measure the pump power. The apKTP (aperiodically poled Potassium
Titanyl Phosphate KTiOPO4) crystal (provided by Raicol Crystals) has a poling period
gradually increasing from 12.3 to 14.0 µm and will be described in detail in the next
subsection. It is mounted on a movable two-axis stage to optimize the alignment and
the PDC process.

A first dichroic mirror (DM1 in Figure 4.1) separates the idler beam (centered at ≈ 3
µm) from the signal (centered at ≈ 630 nm) and pump beams. The idler beam reaches
the sample after being collimated by using a f = 100 mm CaF2 lens (L2 in Figure 4.1).
This choice results in a macroscopic idler beam size, which affects the lateral resolution,
expected to be in the mm range, and makes the idler more susceptible to scattering.
Nevertheless, other important applications of the MIR-OCT, such as probing materials
containing non-transmitting layers in the NIR region, should not be limited by it.

The sample is mounted on a motorized stage, allowing motion along both the z−axis
(depth) and the perpendicular x−direction (vertical in the figure) for B-scan measure-
ment.

The back-reflected idler reaches the nonlinear crystal a second time, together with the
signal and the pump coming back from the reference mirror. This determines a second
PDC process, completing the SU(1,1) interferometer. The signal spectrum at this point
is described by the formula in Equation 3.20, containing all the information about the
back-reflecting internal structure of the sample.

To separate the signal beam from the other beams and carry out the measurement, a
second dichroic mirror (DM2) and a scheme consisting of a collimating lens (f = 100 mm,
L3 in Figure), two long pass filters (Thorlabs, FGL570 (cut-off of 570 nm) and Thorlabs,
FELH0550 (cut-off at 550 nm)), and a focusing lens (f = 100 mm, L4 in Figure) are
employed. The focused signal beam is then properly coupled into a multimode fiber with
a core size of 200 µm and finally connected to the spectrometer. The PDC process inside
the crystal is spatially multimode. Therefore, a multimode fiber is needed to collect all
the spatial modes and get a sufficient amount of signal in the spectrometer. In general,
a trade-off exists between the size of the fiber’s core and the spectrometer resolution.
Achieving a high resolution requires the usage of a narrow exit slit of the monochromator,
reducing the amount of light reaching the detector but increasing the ability to resolve
close spectral features. A narrow core fiber is needed as well, to preserve the high spatial
coherence of the light [73]. On the contrary, using a wide core size in combination with
a large exit slit increases the intensity of the broad peak, but limits the best achievable
spectral resolution. The optimal core size of 200 µm was chosen considering the balance

1When the polarization angle has to match the optic axis of the crystal to satisfy the phase matching
conditions, we say that the PDC is of type 0. This is the case for our nonlinear crystal
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between these two aspects.
The measurements of the interference spectra were performed by using an optical

spectrum analyzer OS (Yokogawa, AQ6374).
One of the key aims of this project is to realize an OCT setup operating in the MIR

range. A fundamental aspect of this work is then to compare the performance of the
realized setup to the one of an ordinary NIR OCT setup. This comparison can help
identify new applications that are not possible for the classical OCT implementations.
To facilitate this comparison, I realized a NIR-OCT setup as well, described in detail in
Appendix G.

4.2.2 The apKTP crystal

The heart of the interferometer is the nonlinear apKTP crystal. Its experimental char-
acterization was previously performed in [29], to which I refer for detailed specifications.

KTP crystals are promising nonlinear materials, characterized by large χ(2), thermally
stable phase-matching, low dielectric constant, and broad acceptance angles [74].

In my setup, the KTP crystal was designed to have a chirped poling period along the
crystal axis. The grating vector K (defined as 2π

Λ
) linearly decreases from 510 rad/mm

(i.e. Λ = 12.3 µm) to 449 rad/mm (Λ = 14.0 µm). The chirp rate is ζ = 6.1 rad/mm2.
The crystal was fabricated using a mask designed according to the profiles reported

in Figure 4.2a. Figure 4.2b shows the resulting microscopic images of the long and short
periods respectively. The linear chirping was achieved by employing a piecewise-constant
quasi-linear profile, characterized by a local period increment of 25 nm [29]. From the
design, it is evident that the crystal can be oriented in a short-long or a long-short
direction, depending on the spatial period of the first region encountered by the pump
beam.

(a) The mask design’s schematic, showing
the variation of grating vector and poling
period. Taken from [29].

(b) Microscopic images showing the fabri-
cated apKTP. above the long poling period
is shown, below the short one. Taken from
[29].
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The signal spectrum resulting from the first PDC (i.e. one passage through the
crystal) was measured in [29]. The results are shown in Figure 4.3a, which compares the
simulated data (dotted line) to the experimental ones (solid line). The idler spectrum,
instead, is reported only from simulations’ results. The plot is illustrated in Figure 4.3b.

(a) A comparison between the experimen-
tal data (solid line) and the simulated ones
(dotted line) for the first PDC signal spec-
trum of the fabricated apKTP. Taken from
[29].

(b) The simulated data for the idler first
PDC spectrum for the fabricated apKTP.
Taken from [29].

From the simulations, the spectra are expected to span approximately the ranges
624nm ≤ λs ≤ 660nm and 2.74µm ≤ λi ≤ 3.60µm. The measured signal spectrum
is in good agreement with the simulated one, although it is affected by detrimental
processes at high gain (e.g. at high pump power). The first issue is bandwidth narrowing:
depending on the orientation of the crystal (short-long or long-short), the intensity at
either the shorter or longer wavelength increases much more rapidly than the other,
resulting in an overall shrinking of the spectrum. This phenomenon is thought to be
caused by the depletion of the number of signal photons inside the crystal, owing to
the emergence of additional nonlinear effects at high power, possibly the coincidental
phase-matched pump-signal SFG [29]. The second issue is a time decrease in the signal
intensity: this process is probably due to gray tracking effects. These effects are well
known for KTP materials: they are fatigue damages caused by the internal defects of
the crystal, associated with the reduction of nonlinear properties [74]. Both these effects
must be carefully accounted for during the measurement process.

4.2.3 Samples description

I performed preliminary measurements (SNR estimation, roll-off curve, axial resolu-
tion...) using a standard flat silver mirror as the sample. To demonstrate that the
realized MIR-OCT setup could perform FD-OCT and resolve microstructures, I em-
ployed a ”stepped” Al sample and a thin Si layer:
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• The Al stepped sample is shown in Figure 4.4, together with its schematics. It
is characterized by a step height of ≈ 100 µm, separating two highly parallel and
flat surfaces. The sample was kindly provided by the Max Planck Institute for the
Science of Light’s mechanical workshop.

Figure 4.4: Photo and schematic design of the Al stepped sample

• The Si thin layer was cut from a 3-inch Si wafer, (50 ± 10) µm thin, and is
double-side polished (Waferworld, SKU 1034). For the measurement, the layer
was mounted on a silica flat window. This is shown in Figure 4.5. The window
was carefully chosen to ensure it had no measurable reflectance at the probing
wavelength, guaranteeing that the entire back-reflected light effectively came from
the layer.

Figure 4.5: Photo of the cut Si layer, carefully attached to the flat SiO2 window for
measurement.

Choosing a suitable sample to demonstrate the advantages of MIR-OCT over NIR-OCT
was challenging. As previously mentioned, the macroscopic size of the idler beam made
the system highly affected by scattering, making it impossible to successfully measure
highly scattering materials like alumina or zirconia. However, germanium (Ge) is a
suitable candidate: this material is characterized by very low transmittance in the NIR
region, as shown in Figure 4.6.
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Figure 4.6: Ge transmission curve, reported over NIR and MIR ranges. Taken from [75].

Despite most applications relying on very thin active layers of Ge (≈ nm), the inactive
Ge substrate is usually much larger, making it difficult to realize effective NIR OCT. For
example, in germanium solar cells the total Ge substrate thickness is around 175 µm,
even though the emitting layer typically lies in the range of 150 − 250 nm [76]. If we
wanted to probe the underlying structure using classical OCT, we would rely only on
the transmitted portion of the light, which is expected to be around T 2(1.5µm) = 0.0069
(considering forward and backward transmissions) [77]. This makes NIR OCT highly
ineffective.

In the MIR range, however, Ge’s transmittance is known to increase significantly.
Therefore, I decided to test whether our setup could successfully resolve structures behind
a Ge window. In particular, I used a broadband anti-reflective (BBAR) coated Ge
window (AR coating range: 3−12 µm), with a thickness of 1 mm and a size of 1/2-inch,
double-side polished (Edmund Optics, 83-347). The transmission at the idler central
wavelength declared by the constructor is T (3µm) ≈ 0.93

4.2.4 General methodology and preliminary measurements

The measurement procedure is quite standardized for both the MIR-OCT and NIR-OCT
setups. It involves mounting the sample in the idler arm, adjusting its orientation and
position in order to maximize the superimposition between the back-reflected beams,
changing its z-coordinate to identify the ZPD position (corresponding to the maximum
of interference), and eventually slightly moving it within the depth range. The alignment
procedure is considered in further detail in Appendix H for the MIR-OCT setup.

Once aligned, we can measure the interference and non-interference patterns. The
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non-interference pattern is needed to properly remove the background, as explained in
section 1.2.5. It can be obtained by moving the sample far away from the ZPD, at a
distance longer than the depth range (in my case, preliminary analysis showed a depth
range ≈ 350 µm for the MIR-OCT setup, ≈ 2.5 mm for the NIR setup. Thus, the sample
was moved of ≈ 500 µm and ≈ 5 mm respectively).

Initially, I used the silver mirror as the sample, to evaluate the performance of both
setups. More specifically, I made the following preliminary measurements for the MIR
OCT setup:

1. SNR versus averaging times: the averaging times parameter is a setting of the OSA,
which quantifies how many measurements the spectrometer must average for each
wavelength value [78]. I will use the less ambiguous term ”number of averages”
from now on

• I sampled ten interference spectra for each number of averages, operating at
a fixed position of the sample (≈ 100 µm from the ZPD) and a fixed pump
power (1.03±0.02 mW). This value was chosen as a good compromise between
having a sufficient SNR and limiting gray tracking effects. It was therefore
roughly retrieved for all subsequent measurements.

• After completing each set of 10 measurements, the crystal was slightly shifted
perpendicularly with respect to the beam direction, changing the focusing
point inside it. This operation helps to mitigate the gray-tracking effects
without changing the global spectral shape

• This measurement justified the number of averages chosen for the following
measurements (discussion in the following sections): 30.

2. Roll-off curve: The roll-off curve reconstruction is fundamental, as it shows the
possibility of performing FD-OCT, measuring the depth range, and understanding
the behavior of axial resolution and SNR at different depths. Two procedures
were adopted. In the first, the roll-off profile was reconstructed by measuring the
inference spectrum for each depth just once, to simulate an FD-OCT measurement.
In the second case, I sampled ten spectra for each depth value, analogously to the
SNR versus averaging times measurement. This second strategy aims to find the
statistical uncertainties associated with the axial resolution and the SNR.

3. SNR versus signal power: Determining this curve allows us to understand which is
the dominant noise source in the setup.

• The procedure was analogous to the SNR versus averaging times measure-
ment, i.e. sampling ten spectra for each signal power value at a fixed depth
and pump power. In this case, the depth was roughly 150 µm.
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• The signal power was modified by moving a variable Neutral Density (ND)
filter, placed in front of the detector.

4. Lateral resolution measurement: A D-shaped mirror was used as the sample for
this purpose.

• The idea is to perform a so-called knife-edge measurement: if we place the
D-shaped mirror as in Figure 4.7 and perform a B-scan (moving in the x-
direction), we expect to observe the reflection (and so the corresponding OCT
peak) just moving towards the half where the mirror is present.

Figure 4.7: Photo of the D-shaped mirror employed as the sample to estimate the idler
beam size. The blue arrow indicates the x-direction for the B-scan.

• If we plot the OCT peak height as a function of the lateral position, we expect
to observe an erfc profile, whose shape is directly related to the beam size.
(See Appendix I for the derivation)

• To obtain the OCT heights versus lateral positions function, various inter-
ference spectra were measured at a fixed depth, slightly changing the lateral
position using the motorized stage. In this case, I chose to decrease the num-
ber of samples for each lateral position to one, owing to the large number of
points required to perform an effective nonlinear fit. The uncertainty associ-
ated with each OCT height was calculated assuming that the relative uncer-
tainty is equal to that found for a single measurement (i.e. using the standard
deviation instead of the standard deviation of the mean) of the normal mirror
at the same depth.

For the NIR OCT setup, I limited the preliminary measurements to the roll-off curve
measurement, as it is used solely for comparison. The aim was to estimate the axial res-
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olution, SNR, and depth range and compare them to the typical values for commercially
available OCT setups. In this case, the averaging times value was set equal to 1, as the
SNR was already sufficient.

The main setting parameters chosen for the OSA were the measurement span (620−
650 nm for the MIR setup, 1300 − 1700 nm for the NIR setup), the spectral resolution
(for both setups δλsp = 0.5 nm), the sampling period (0.1 nm for both setups), and the
sensitivity mode (HIGH2). All these choices are justified and deepened in Appendix J.

4.2.5 Samples measurement

After completing preliminary evaluations, I used both the MIR OCT and NIR OCT
setups to measure the stepped Al sample and the Si layer.

The stepped Al should behave as a single reflective layer, with the depth depending
on the lateral position. To highlight this feature, it was necessary to perform a whole
B-scan. The procedure is completely analogous to the ones described above: all A-scans
were reconstructed at a fixed position of the sample (the one maximizing the SNR) and
fixed pump power. After measuring each interference pattern, the lateral position was
changed by using the motorized stage. Each A-scan was measured just once.

For the Si layer, the main purpose was to resolve its thickness. Since the thickness
should not change with the lateral position, this coordinate was kept fixed. In the case
of the MIR OCT setup, I sampled different A-scans at slightly different depths, in order
to emphasize the consistent displacement of the two peaks. Moreover, each A-scan was
sampled ten times, to have more statistics and increase the SNR.

The second fundamental objective was to show the effective advantage of the MIR-
OCT setup, which is able to overcome the presence of the Ge window in the idler arm. To
achieve this, I first measured the A-scan for the silver mirror before and after mounting
the Ge window, for both the NIR OCT and the MIR OCT setups. Ge has a group index
ng(1.5µm) = 4.265, ng(3µm) = 4.0959 [77]. Therefore, after mounting the window it was
necessary to move the sample along the z−direction to compensate for the additional
path and retrieve the interference. Since we expect to see nothing in the case of the NIR
OCT setup due to the extremely low transmittance, several positions (spanning ±2mm
around the expected one zf = z0 − ng ∗ 1mm) were considered to ensure that the results
were not affected by the chosen position of the sample.

Then, I also measured a second time the A-scan for the Si layer in both cases, to show
that the MIR-OCT setup is still able to resolve a microstructure even with the presence
of the Ge window. Again, ten measurements were performed to enhance the SNR.

The reconstruction of the OCT spectra starting from the measured interference spec-
tra is described in detail in Appendix K. Essentially, each interference pattern was prop-
erly processed and transformed using the inverse Fast-Fourier-Transform (iFFT) to re-
construct the corresponding OCT spectrum. Figure 4.8 shows three interference spectra,
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measured for three different depths of the mirror (expected steps of ≈ 60 µm), and the
corresponding OCT spectra.

Figure 4.8: Three experimentally sampled interference spectra corresponding to three
different axial positions of a silver mirror. On the right, the resulting OCT spectra are
shown.

4.3 Results and discussion

4.3.1 Results of preliminary measurements for MIR-OCT setup

Before discussing the main results, it is worth mentioning the signal power and visibility
found for the standard measurement conditions. I evaluated them in detail just for the
SNR vs number of averages measurements, as they are expected to be roughly preserved
in other cases. The visibility was found to be V = 0.813± 0.007, while the signal power
was 9.0± 0.5 nW (calculated from the interference spectra).

The measurement of SNR vs number of averages yielded the results reported in Figure
4.9a and 4.9b.
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(a) Behavior of the SNR vs the number of
averages set on the OSA. The uncertainties
are the statistical ones. The orange line
corresponds to the linear fit for the points
up to 10 averages.

(b) Behavior of the noise σ vs the number
of averages set on the OSA. The uncertain-
ties are the statistical ones.

Figure 4.9: Results for a different number of averages.

The first plot shows the value of the SNR vs the number of averages, while the
second one shows more in detail the behavior of σ, i.e. the noise calculated as the
standard deviation of the data in the OCT spectrum far away from the main peak [23].
As expected, the number of averages increases the SNR. For a number of averages up to
10, we observe an optimal agreement with the theoretical linear behavior, related to the
fact that the random noise responsible for σ decreases as the square root of the number
of averages [79]). The linearity is confirmed by the fit performed in this region (the fifth
experimental point can be excluded using the Chauvenet criterion), with an extremely
high determination coefficient R2 = 0.999. However, for a higher number of averages,
we observe a decrease in the slope, compatible with the emergence of some systematic
effects that do not average out. Since the OSA noise characterization does not show such
features (more in detail in Appendix L), we can suppose data processing is responsible
for them. In particular, a noncorrect experimental evaluation of the noninterference
spectrum (possibly connected to gray-tracking effects during the measurement) might
explain the observed disagreement from the linear increase. The behavior of σ seems to
show a saturation in the noise decrease above 15 averages. After this value, the variation
of the SNR is just due to the small increase in the OCT peak height. The main condition
for the optimal choice of the number of averages is then > 15. Additionally, this number
should be chosen in order not to determine a too-long measurement time. These two
factors led me to choose 30 (The corresponding measurement time for each interference
spectrum in the MIR OCT setup case (with the settings previously indicated) is around
150 s).

Figure 4.10a reports the roll-off curve obtained for a single measurement for each
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position, while Figure 4.10b shows the dependence of the axial resolution on the depth,
studied with higher statistics.

(a) The measured roll-off curve for the
MIR-OCT setup.

(b) The dependence of the axial resolution
on the depth. The error bars correspond to
the statistical uncertainty.

Figure 4.10: Characterization of the FD-OCT roll-off.

The first plot shows how the SNR decreases with the position. The depth range is
found to be ≈ 320 µm, where the SNR is still high enough to resolve the mirror OCT
peak. It can be noticed that the optimal position seems to be at ≈ 100 µm from the
ZPD. Nearer peaks are affected by smaller SNR and broadening, probably owing to the
effect of some residual DC component. These features are confirmed by Figure 4.10b.
In this case, the axial resolution seems quite constant in the range 100 − 300 µm from
the ZPD, with the average value FWHMz = (33.8± 0.1) µm. It increases rapidly when
moving at nearer or farther depths, showing high uncertainty in the second case. To fully
understand the origin of these effects, I decided to compare the experimental roll-off with
a simulated one. The discussion and interpretation of these findings are reported in the
corresponding subsection.

Eventually, the roll-off curve measurement allows us to study the uncertainty on the
peak position as well. This is shown in Figure 4.11.

As expected, the statistical uncertainty is almost constant up to ≈ 250 µm, where it
rapidly diverges since we are approaching the depth range. The average value far away
from this limit, corresponding to the red line in the figure, was found to be (0.4 ± 0.2)
µm. We can now multiply this value by

√
10 (where 10 is the number of measurements)

to estimate the average uncertainty on the mirror position provided by a single A-scan

δz ≈ 1.3µm (4.1)

The SNR vs Signal Power curve is reported in Figure 4.12a, together with the corre-
sponding I vs Signal Power plot in Figure 4.12b (I corresponds to the height of the OCT
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Figure 4.11: Dependence of the error on the mirror position (calculated as the standard
deviation of the mean) on the roll-off. The red line indicates the average value of the
uncertainty, calculated in the range of positions 0.1− 0.25 mm.

peak). Firstly, it is worth underlining that the difference between the SNR values shown
here and those found for the averaging times characterization is just due to the roll-off.
These measurements were performed with the mirror at a depth (165.1± 0.5) µm, while
the previous ones were at (96.3± 0.4) µm.

(a) The SNR dependence on the Signal
Power. The uncertainties are the statis-
tical ones.

(b) The behavior of the OCT height I vs the
Signal power. The orange line represents
the linear fit.

Figure 4.12: Results of the characterization at different signal powers

The behavior of the SNR shows a probable variation of the dominant noise term. To
confirm this, it is necessary to verify the expected curve for I. In this case, the data seem
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to confirm the theoretical linearity, with the linear fit validated by the high determination
coefficient R2 = 0.983. This means that the behavior of the SNR is connected just to
the dominating noise, which seems to drastically change between low signal power and
high signal power regions.

Since the shot-noise level (expected to determine an SNR around 100 dB using Equa-
tion 1.36) is far from the observed condition, we can conclude that the dominant noise
must be different. In particular, both detector noise and Relative Intensity Noise (RIN)
of the signal pulses are possible candidates. Since the detector noise is constant with
the signal power, it will be responsible for a quadratic dependence of the SNR on it. On
the contrary, RIN is proportional to the signal power, therefore it will give a constant
contribution to the SNR. A reasonable explanation of the observed behavior is then that
the dominant noise changes from the detector’s noise to RIN, with the second one pre-
vailing above ≈ 5 nW. RIN was found to be dominant in [29] as well. Finally, the results
of the knife-edge measurement are reported. Figure 4.13 shows the dependence of the
OCT peak’s height on the lateral position. The orange line corresponds to the fit with
the expected behavior in the Gaussian beam assumption, given by

f(D) = a(1− erf((D − z)f)) + b, (4.2)

which is justified in Appendix I. The fit is validated by the R2 = 0.981. The FWHM of
its derivative allows us to estimate the lateral resolution, resulting in δx = (3.3 ± 0.5)
mm.

Since the NIR OCT technique is well established, the preliminary analysis of the real-
ized setup is reported in Appendix M. Its performance guarantees an axial resolution as
good as 6.7 µm and a depth range around 2.4 mm, values compatible with commercially
available OCT setups [1].

4.3.2 Comparison with simulations and interpretation of the
results

The MIR-OCT setup shows severe limitations in terms of axial resolution and depth
range. It is therefore fundamental to understand the main physical factors affecting its
performance. To do so, I compared the experimental results of the characterization to
the ones achieved by simulating the interference spectra.

The simulated spectra were calculated by taking into account the shape of the exper-
imental non-interference spectrum, the theoretical interference pattern (given by Equa-
tion 1.25 for the NIR-OCT setup, by Equation 3.20 for the MIR-OCT setup), and the
limited spectral resolution. The code is described in more detail in the Appendix N.

The simulated spectra were eventually analyzed to reconstruct the corresponding
OCT spectra, using the same method employed for experimental data processing. Firstly,
the validity of the simulation code was verified for the NIR OCT setup, as reported in
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Figure 4.13: The dependence of the OCT peak’s height on the lateral position for the D-
shaped mirror. The orange line corresponds to the fit with the expected behavior (Gaussian
beam assumption).

detail in Appendix N. In the case of the MIR OCT setup, this direct comparison might
be misleading, since the chirping factor ρ(Ω) is assumed to be null in the simulation.
It is thus more meaningful to compare the resulting OCT spectra, which are shown in
Figure 4.14.

Figure 4.14: Comparison between a simulated OCT spectrum and an experimental one
for the MIR-OCT setup. The sample is the silver mirror R ≈ 1, displaced at depth
z = 91 µm

We can see that the agreement is really good, with very similar FWHMs (experi-
mental: 30 µm, simulated: 24 µm) despite the absence of any noise in the simulation.
This allows us to conclude that the axial resolution is primarily limited by the signal
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bandwidth and the usage of the Hanning window, with no significant losses of other
nature.

Figure 4.15 shows the simulated roll-off curve for the MIR OCT. We can see that the
decrease in the OCT signal is very similar to the experimental one

Figure 4.15: Simulated roll-off for the MIR-OCT setup, assuming δλsp = 0.6 nm.

Since the limited spectral resolution is the only element that can affect its behavior
in the simulated data, we can affirm that it is the primary limitation in the experimental
setup. This is confirmed by the simulated roll-off in Figure 4.16, in which δλsp is assumed
to be 0.3 nm.2

Figure 4.16: Simulated roll-off for the MIR-OCT setup, assuming δλsp = 0.3 nm.

2Experimentally, we can think of achieving a better spectral resolution by using a smaller core-size
fiber. However, in principle, this will also affect the power conveyed to the OSA, possibly worsening the
SNR. Therefore, the comparison done here can not be realized practically. The purpose is just to show
that the spectral resolution is the main limitation of the depth range.
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It is important to notice that other factors that may negatively affect the roll-off are
the chirping factor and the noise, which are neglected in the simulation.

Eventually, it is important to notice that the worsening of the axial resolution at low
and high depths does not appear in the simulated data for the MIR OCT setup. At
low depths, this phenomenon is probably due to the presence of a residual DC compo-
nent, which can be determined by both gray tracking effects during the measurement
and the chirping. At high depths, instead, the large fluctuations observed suggest the
phenomenon is mainly related to the decrease in the SNR.

4.3.3 Samples measurement results

Figure 4.17 shows the B-scan of the Al stepped sample, obtained with the MIR OCT
setup.

Figure 4.17: B-scan of the stepped Al sample, obtained by using the MIR OCT setup.
Two OCT spectra corresponding to different lateral positions are shown as well

I added the A-scans corresponding to two lateral positions (x = 8 mm and x = 15
mm) for clarity. The SNR is sufficient to resolve the microstructure, operating sufficiently
near the ZPD position. The broadening in the region on the right is due to the residual
DC component, as already explained. We can also notice that the reflective layer appears
slightly tilted (the surface is not perfectly perpendicular to the beam) and that both the
peaks corresponding to the different heights appear between x = 12 mm and x = 14 mm
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(owing to the macroscopic size of the idler beam). The step height can be calculated as
the distance between the two surfaces. To obtain it, I first performed a linear fit of the
left and right layers visible in the B-scan. The results are reported in Figure 4.18.

Figure 4.18: The linear fits corresponding to the two surfaces of the Al stepped sample,
obtained from the experimental B-scan measured with the MIR OCT setup.

By using the two linear equations resulting from the fits to estimate the angular
coefficient of the sample with respect to the beam direction and the distance between
the layers, we get

L = (100± 3)µm, (4.3)

where the uncertainty was calculated as two times the one in Equation 4.1, i.e. the one
associated with a generic distance measured using the MIR setup (difference of the peaks’
positions)3. The B-scan was realized using the NIR OCT setup as well. The results are
shown in Figure 4.19.

We can use the NIR OCT results to evaluate again the step height, proceeding anal-
ogously to the MIR case. We thus find

L = (94.7± 0.6)µm, (4.4)

This value is in very good agreement with the estimation obtained from the MIR OCT
measurement, with the formal incompatibility of 2 µm being easily explainable by con-
sidering the bigger uncertainty associated with the positions in the left halves of the
B-scans and the possible presence of small imperfections in the sample.

The thin Si layer measurements for the MIR OCT setup are shown in Figure 4.20.

3Rigorously, the uncertainty should be calculated starting from the ones associated with the fitting
parameters. However, the calculation in this case resulted highly underestimated ≈ 0.3 µm.
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Figure 4.19: B-scan of the stepped Al sample, obtained by using the NIR OCT setup.

Figure 4.20: Three A-scans of the thin Si layer, found thanks to the MIR OCT setup.
The position of the sample was changed by steps of 20 µm.

Three OCT spectra, each one obtained after moving the sample of 20 µm, are shown.
The doublet peak is clearly distinguishable and shows a displacement consistent with the
mechanical one. The three estimations of the distance between the two peaks ((172± 3)
µm, (171 ± 3) µm, and (177 ± 3) µm must be divided by the refractive index of the Si
(furnished by [77].), giving

d1 = (172± 3)µm/nSi(3µm) = (49.6± 0.9)µm, (4.5)

d2 = (49.3± 0.9)µm, (4.6)

d3 = (51.0± 0.9)µm. (4.7)

All these estimations are compatible with the expectation value.
The Si layer was measured with the NIR OCT setup as well. The resulting OCT
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spectrum is reported in Figure 4.21 and the estimated thickness is

d = (198.1± 0.6)µm/nSi(1.5µm) = (54.5± 0.2)µm. (4.8)

This value is in good agreement with the ones estimated from the MIR OCT measure-
ment. The formal disagreement might be easily explained by an underestimation of the
uncertainties (also connected to the slight tilting of the sample with respect to the beam)

Figure 4.21: A-scan of the thin Si layer, found thanks to the NIR OCT setup.

4.3.4 MIR setup advantage: Ge window measurements

The MIR OCT setup should still be able to resolve the sample after inserting the Ge
window along the idler arm, as previously explained. Figure 4.22 compares the resulting
OCT spectra obtained using the silver mirror as a sample, before and after the Ge window
mounting.

It clearly shows that the MIR OCT setup works as expected, being still able to
identify the reflecting layer without any significant modification in terms of SNR or axial
resolution.

Figure 4.23 shows instead the same comparison achieved using the NIR OCT setup.
The system fails completely to recognize the mirror after inserting the window, as

expected. The absence of any peaks was verified for several depths of the sample. More-
over, I also confirmed that the alignment remained appropriate during the entire process
since after removing the window it was easy to recover the mirror’s OCT peak. We can
then conclude that, while standard NIR OCT setups are intrinsically unable to work in
the presence of Ge layers, the MIR OCT setup reported in this project is still operative
under this condition.
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Figure 4.22: The A-scans for the silver mirror measured with the MIR OCT setup, before
and after the Ge window along the idler arm. The horizontal shift is not connected to
the Ge thickness, since the mirror position was adjusted separately in the two cases.

Figure 4.23: The A-scans for the silver mirror measured with the NIR OCT setup, before
and after the Ge window along the idler arm.

To further prove this, I verified that the MIR OCT setup is even able to resolve the
thin Si layer in the presence of the Ge window. The results are shown in Figure 4.24,
in which the doublet of peaks with the expected distance is clearly recognizable despite
the unfortunately quite high low-depth noise.

More in detail, the measured distance in this case is given by (181 ± 3) µm, corre-
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Figure 4.24: The resulting averaged A-scan for the Si layer behind the Ge window, which
was obtained by using the MIR OCT setup.

sponding to a Si thickness of
d = (52.2± 0.9)µm, (4.9)

compatible with the previous results.

4.3.5 High-gain advantage

It is difficult to properly compare the performance of the current setup with the state-of-
the-art one for the OCT with undetected photons in the low-gain regime [23]. The main
reason is that the two setups suffer from different noise conditions (RIN and detector
noise in my case, shot-noise level in Vanselow et al. case), have diverse fiber connection
types (multimode fiber vs single-mode fiber), detection apparatus, and type of pump
(pulsed laser versus CW laser). Thus, any direct comparison between the detected signal
powers or the SNR would not be accurate. Nonetheless, the realized high-gain MIR OCT
setup showed two remarkable novelties. The first one is the possibility to measure the
average signal power directly using an ordinary Si power meter. The value found of circa
9 nW (for a pump power of ≈ 1 mW) already proves this achievement. The second one
is related to the nature of the pump. My source is a ps-pulsed laser, with a repetition
frequency of 1 kHz. This means that the measured signal photon number depends on the
number of pulses reaching the detector during the measurement. For integration times
shorter than the period of the laser (≈ 1 ms) and longer than the pulse duration (≈ 20
ps), we will have then a constant number of signal photons, therefore unchanged SNR.
This condition is no longer valid for the low-gain case, in which the usage of the CW
laser makes the number of signal photons linear with the integration time [23]. This is
an important advantage for time-gated measurements, which are already performed with
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frequencies up to 300000 A-scan/s (corresponding to an integration time smaller than 3
µs) using ultrahigh speed CMOS line scan camera for ophthalmology applications[80].

More decisive conclusions about the performances cannot be made without further
investigations.

4.4 Conclusion and outlook

My project achieved the following main results:

• To the best of my knowledge, I realized the first experimental implementation for
Fourier-domain OCT with MIR photons, operating in the PDC high-gain regime;

• The both designed and built setup relied on an aperiodically poled nonlinear crystal
(apKTP), granting broad bandwidth and high-gain PDC spectra, with the idler
centered at a wavelength of approximately 3 µm, in the MIR range;

• I performed the characterization of the setup’s performance, demonstrating a typ-
ical SNR of approximately 40 dB, axial resolution as low as ≈ 30 µm, and depth
range of approximately 320 µm.

• I successfully used the setup for some real interest samples. More specifically, I
reconstructed the B-scan of a stepped-Al sample with a height of ≈ 100 µm and
measured the thickness of a thin Si layer ≈ 50 µm thick;

• I built a classical NIR OCT setup to compare its performance to the MIR OCT
one and verify the agreement between the measurements;

• I showed the advantage of operating with the MIR OCT setup over the NIR OCT
one when dealing with the presence of a Ge window along the sample arm.

Significant improvements might be achieved by optimizing the crystal’s design. By
modifying the aperiodical profile function, we can provide broader PDC spectra, thus
enhancing the axial resolution. Adopting a less common but more efficient windowing
strategy (like the one suggested in [81]) could also positively affect the FWHM of the
OCT peaks.

The lateral resolution can be upgraded by modifying the setup to the focusing ge-
ometry, thus focusing the idler beam into the sample instead of simply collimating it.
However, this choice might decisively decrease the amount of signal and worsen the SNR.
Since this effect cannot be simply compensated by increasing the pump power, due to
the emergence of gray-tracking effects, further investigations are needed. The same can
be stated for the depth range improvement. In principle, the OSA spectral resolution
can be enhanced by employing smaller core-size fibers. However, this can also affect
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the detected signal power and the SNR, finding the same condition as above. Again, a
precise characterization of the trade-off between gray-tracking, pump power, and SNR
is needed.

75



Scientific acknolewdgements

I deeply thank my supervisor, Prof. Francesco Minardi, and my co-supervisors, Prof.
Maria Chekhova and Dr. Kazuki Hashimoto. Their fruitful indications and precious
teaching were fundamental for realizing this thesis. I also thank the whole Chekhova’s
research group for their continuous support, Prof. D. B. Horoshko and Prof. M. I.
Kolobov for developing the theoretical background for this work, Yoad Michael and
Ziv Gefen for furnishing the nonlinear crystal, Michael Frosz and Azim-Onur Yazici for
letting us use the FTIR spectrometer for samples inspection, and Kyoohyun Kim for
letting us use the microscope to analyze the apKTP crystal.

76



Ringraziamenti

Non posso poi che ringraziare tutte le persone che, nel corso di questi anni, hanno
scelto di darmi la loro vicinanza, il loro affetto, un supporto incondizionato rendendomi
felice di quello che sono. Ringrazio la mia famiglia, mia madre Patrizia, mio padre
Carlo Alberto, mia sorella Annaluce; mia zia Daniela, mio cugino Alessandro e mio zio
Gianluca; ringrazio i miei compagni di liceo e di tante avventure Matteo, Chengxin,
Marco e Cristiano; ringrazio le straordinarie persone con cui ho condiviso i miei anni a
Bologna Davide, Rebecca, Giulia, Riccardo, Marco, Nicola e tutta la comunità collegiale.
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Appendix A

Peak value of the OCT signal

We want to calculate the inverse FFT of Equation 1.29. In particular, we can focus on
the cos term. Thus, we can write

i(q) =
1

N

N−1∑
n=0

cos

(
2πnq0
N

)
ei2πqn/N

=
1

2N
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ei2πqn/N(ei2πnq0/N + e−i2πnq0/N)

=
1

2N

N−1∑
n=0

(ei2π(q+q0)/N)n + (ei2π(q−q0)/N)n

=
1

2N

N−1∑
n=0

(
1− ei2π(q+q0)

1− ei2π(q+q0)/N
+

1− ei2π(q−q0)

1− ei2π(q−q0)/N
) (A.1)

This expression has a peak for positive q when the second term’s denominator is null,
thus for q = q0 (q0 can be then interpreted as the position of the reflecting layer). Using
L’Hopital’s rule to calculate the limit of the second term for q → q0, we get

i(q0) =
1

2N

N−1∑
n=0

lim
q→q0

1− ei2π(q−q0)

1− ei2π(q−q0)/N

i(q0) =
1

2N

N−1∑
n=0

−2πi

−2πi/N

i(q0) =
1

2
(A.2)

Using this result, we find

Nsig(n) =
1

2
K(kn)VIS (A.3)
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Appendix B

Correlation of Real and Imaginary
Part of the OCT Signal

We have to show that the real part and the imaginary part of in(q), defined as in Equation
1.33, are uncorrelated. Their correlation is given by

⟨Re(in)Im(in)⟩ =

=
1

N2
⟨
N−1∑
n=0

N(n) cos

(
2πnq

N

)N−1∑
l=0

N(l) sin

(
2πlq

N

)
⟩

=
1

N2

N−1∑
n=0

N−1∑
l=0

cos

(
2πnq

N

)
sin

(
2πlq

N

)
⟨N(n)N(l)⟩

=
1

N2

N−1∑
n=0

N−1∑
l=0

cos

(
2πqn

N

)
sin

(
2πql

N

)
σ2
Nδ(n− l)

=
σ2
N

N2

N−1∑
n=0

cos

(
2πqn

N

)
sin

(
2πqn

N

)

=
σ2

2N2

N−1∑
n=0

sin

(
4πqn

N

)
(B.1)

which is 0 for q, n integers.
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Appendix C

Variance of Real and Imaginary
Part of OCT Signal

We have to calculate the variance for the real part of in(q) defined as in 1.33. We can
proceed as follows:

σ2
Re[in(q)] = ⟨(Re[in(q)])

2⟩

=
1

N2
⟨
N−1∑
n=0

N(n) cos

(
2πqn

N

)N−1∑
l=0

N(l) cos

(
2πql

N

)
⟩

=
1

N2

N−1∑
n=0

N−1∑
l=0

cos

(
2πqn

N

)
cos

(
2πql

N

)
⟨N(n)N(l)⟩

=
1

N2

N−1∑
n=0

N−1∑
l=0

cos

(
2πqn

N

)
cos

(
2πql

N

)
σ2
Nδ(n− l)

=
σ2
N

N2

N−1∑
n=0

cos2(
2πqn

N
) (C.1)

Since σ2
N = Nnoise(n) = Ktot/N , and the sum goes to N

2
, we found the desired result.
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Appendix D

Explicit calculation of ⟨N(Ω, L)⟩

Firstly, we recall that the creation/annihilation operators fulfill

[â(Ω, z), â(Ω
′
, z)] = [â†(Ω, z), â†(Ω

′
, z)] = 0 (D.1)

â†(Ω, z)â(Ω, z) = N̂(Ω, z) (D.2)

[â(Ω, z), â†(Ω
′
, z)] = δ(Ω− Ω

′
) (D.3)

Secondly, we can notice that the expectation value must be calculated on the wave
function at the beginning of the crystal, where we have no PDC. Thus∣∣ψ(t = 0)

〉
=

∣∣0(Ω)〉 (D.4)

We can now proceed with the calculation (already considering Ω = Ω
′
), using the ex-

pression for â(Ω, L) given by 2.53

⟨N(Ω, L)⟩ = ⟨0| â†(Ω, L)â(Ω, L) |0⟩ =
= ⟨0| (U∗(Ω)â†(Ω, 0) + V ∗(Ω)â(−Ω, 0))(U(Ω)â(Ω, 0) + V (Ω)â†(−Ω, 0)) |0⟩ =
= ⟨0| |U(Ω)|2â†(Ω, 0)â(Ω, 0) + |V (Ω)|2â(−Ω, 0)â†(−Ω, 0) |0⟩ =
= ⟨0| |U(Ω)|2N̂(Ω) |0⟩+ ⟨0| |V (Ω)|2([â(Ω, z), â†(Ω, z)] + â†(−Ω, 0)â(−Ω, 0)) |0⟩ =
= ⟨0| |V (Ω)|2 |0⟩+ ⟨0| N̂(−Ω, 0) |0⟩ =
= |V (Ω)|2 (D.5)

Remembering the expression for V given by Equation 2.56, we find the desired result.
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Appendix E

Explicit calculation of â(Ω, zout)

We can simply replace the explicit expressions for â(Ω, L + d), â(Ω, L) in the one for
â(Ω, zout). We then get

â(Ω, zout) = U2(Ω)T (Ω)â(Ω, L) + U2(Ω)R(Ω)âvac(Ω)+

+ V2(Ω)T
∗(−Ω)â†(−Ω, L) + V2(Ω)R

∗(−Ω)â†vac(−Ω) =

= U2(Ω)T (Ω)U1(Ω)â(Ω, 0) + U2(Ω)T (Ω)V1(Ω)â
†(−Ω, 0)+

+ V2(Ω)T
∗(−Ω)U∗

1 (−Ω)â†(−Ω, 0) + V2(Ω)T
∗(−Ω)V ∗

1 (−Ω)â(Ω, 0)+

+ U2(Ω)R(Ω)âvac(Ω) + V2(Ω)R
∗(−Ω)â†vac(−Ω) =

= â(Ω, 0)Uint(Ω) + â†(−Ω, 0)Vint(Ω) + +U2(Ω)R(Ω)âvac(Ω) + V2(Ω)R
∗(−Ω)â†vac(−Ω)

(E.1)

as used in the main text.
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Appendix F

Explicit calculation of S(ω0 + Ω)

We have to calculate the expectation value of the number operator. Again, the state at
z = 0 is expected to have no photons at the modes ω0 + Ω, ω0 − Ω. Therefore,

S(ω0 + Ω) = ⟨0| â†(Ω, zout)â(Ω, zout) |0⟩ =
= ⟨0| (U∗

int(Ω)â
†(Ω, 0) + V ∗

int(Ω)â(−Ω, 0) + U∗
2 (Ω)R

∗(Ω)â†vac(Ω) + V ∗
2 (Ω)R(−Ω)âvac(−Ω))

(Uint(Ω)â(Ω, 0) + Vint(Ω)â
†(−Ω, 0) + U2(Ω)R(Ω)âvac(Ω) + V2(Ω)R

∗(−Ω)â†vac(−Ω)) |0⟩ =
= ⟨0| |Vint(Ω)|2â(−Ω, 0)â†(−Ω, 0) + |V2(Ω)|2|R(−Ω)|2âvac(−Ω)â†vac(−Ω)) |0⟩ =
= ⟨0| |Vint(Ω)|2(1 + N̂(−Ω, 0)) + |V2(Ω)|2|R(−Ω)|2(1 + N̂vac(−Ω)) |0⟩ =
= |Vint(Ω)|2 + |V2(Ω)|2|R(−Ω)|2 (F.1)

Remembering Vint(Ω) = U2(Ω)V1(Ω)T (Ω) + V2(Ω)U
∗
1 (−Ω)T ∗(−Ω), we find

|Vint|2(Ω) = (U∗
2 (Ω)V

∗
1 (Ω)T

∗(Ω) + V ∗
2 (Ω)U1(−Ω)T (−Ω))(U2(Ω)V1(Ω)T (Ω) + V2(Ω)U

∗
1 (−Ω)T ∗(−Ω)) =

= |U2(Ω)|2|V1(Ω)|2|T (Ω)|2 + |V2(Ω)|2|U1(−Ω)|2|T (−Ω)|2+
+ U∗

1 (−Ω)U∗
2 (Ω)V

∗
1 (Ω)V2(Ω)T

∗(Ω)T ∗(−Ω) + U1(−Ω)U2(Ω)V1(Ω)V
∗
2 (Ω)T (Ω)T (−Ω)

(F.2)

This expression is extremely long and complex, so it is convenient to treat various terms
separately. Firstly, we recall that various Un, Vn terms satisfy

Un(Ω) = ei[ψ
L
n (Ω)−ψ0

n(Ω)+κn(Ω)] cosh r(Ω) (F.3)

Vn(Ω) = ei[ψ
L
n (Ω)+ψ0

n(Ω)+κn(Ω)] sinh rn(Ω) (F.4)
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where rn,ψ
L
n ,ψ

0
n are even, κ odd in Ω. We also recall that the pump is assumed to be

undepleted, thus r1 = r2 = r Considering terms containing them separately we get

|U2(Ω)|2|V1(Ω)|2 = cosh2 r(Ω) sinh2 r(Ω) =
sinh2 2r(Ω)

4
(F.5)

|V2(Ω)|2|U1(−Ω)|2 = sinh2 r(Ω) cosh2 r(−Ω) =
sinh2 2r(Ω)

4
(F.6)

U∗
1 (−Ω)U∗

2 (Ω)V
∗
1 (Ω)V2(Ω) = e−i[ψ

L
1 (Ω)−ψ0

1(Ω)−κ1(Ω)] cosh r(Ω)e−i[ψ
L
2 (Ω)−ψ0

2(Ω)+κ2(Ω)] cosh r(Ω)

e−i[ψ
L
1 (Ω)+ψ0

1(Ω)+κ1(Ω)] sinh r(Ω)ei[ψ
L
2 (Ω)ψ0

2(Ω)+κ2(Ω)] sinh r(Ω) =

= e−i[2ψ
L
1 (Ω)−2ψ0

2(Ω)] sinh
2 2r(Ω)

4
(F.7)

U1(−Ω)U2(Ω)V1(Ω)V
∗
2 (Ω) = ei[ψ

L
1 (Ω)−ψ0

1(Ω)−κ1(Ω)] cosh r(Ω)ei[ψ
L
2 (Ω)−ψo

2(Ω)+κ2(Ω)] cosh r(Ω)

ei[ψ
L
1 (Ω)+ψ0

1(Ω)+κ1(Ω)] sinh r(Ω)e−i[ψ
L
2 (Ω)+ψ0

2(Ω)+κ2(Ω)] sinh r(Ω) =

= ei[2ψ
L
1 (Ω)−2ψ0

2 ]
sinh2 2r(Ω)

4
(F.8)

Let us now focus on the behavior of T (Ω) = TA(Ω)e
iϕ(Ω). TA is the transmittance

amplitude acquired by the field at ω0 + Ω, ϕ(Ω) the total phase. Understanding the
behavior of TA(Ω) is simple: in most cases, just the idler passes through a sample.
Therefore TA(Ω) = 1,TA(−Ω) = TA. ϕ(Ω) has a common contribution for both signal and
idler instead, given by their common path. If we call this distance L0, the corresponding
ϕ0(±Ω) = L0

c
Ω. Additionally, for the idler, we have to take into account the passage

through the sample. We can express this term by adding ϕadd(−Ω) = τ(ω0−Ω)+ϕs(−Ω).
In the OCT case, τ is given by 2zs/c. More compactly, we can write

ϕ(Ω) = τ0Ω + τ(ω0 + Ω)θ(−Ω) + ϕ0(Ω)θ(−Ω) (F.9)

with θ(Ω) being the step function{
θ(Ω) = 1 Ω > 0

θ(Ω) = 0 otherwise
(F.10)
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Now we can rewrite explicitly the terms in T (Ω) and R(Ω) (exploiting |T (Ω)|2+|R(Ω)|2 =
1)

|T (Ω)|2 = 1 (F.11)

|T (−Ω)|2 = T 2
A (F.12)

T ∗(Ω)T ∗(−Ω) = TAe
−iτ0Ωe−i(−τ0Ω+τ(ω0−Ω)+ϕs(−Ω)) =

= TAe
−i(τ(ω0−Ω)+ϕs(−Ω)) (F.13)

T (Ω)T (−Ω) = TAe
iτ0Ωei(−τ0Ω+τ(ω0−Ω)+ϕs(−Ω)) =

= TAe
i(τ(ω0−Ω)+ϕs(−Ω)) (F.14)

|R(−Ω)|2 = 1− T 2
A (F.15)

Finally, combining everything we can write:

|Vint(Ω)|2 + |V2(Ω)|2|R(−Ω)|2 = sinh2 2r(Ω)

4
+

sinh2 2r(Ω)

4
T 2
A + e−i[2ψ

L
1 (Ω)−2ψ0

2(Ω)]

sinh2 2r(Ω)

4
TAe

−i(τ(ω0−Ω)+ϕs(−Ω)) + ei[2ψ
L
1 (Ω)−2ψ0

2 ]
sinh2 2r(Ω)

4
TAe

i(τ(ω0−Ω)+ϕs(−Ω)) + sinh2 r(Ω)(1− T 2
A) =

=
sinh2 2r

4
(1 + T 2

A + TAe
−i[τ(ω0−Ω)+(ϕs(−Ω)+2ψL

1 (Ω)−2ψ0
2(Ω))]+

+ e+i[τ(ω0−Ω)+(ϕs(−Ω)+2ψL
1 (Ω)−2ψ0

2(Ω))]) + sinh2 r(Ω)(1− T 2
A) (F.16)

We introduce ρ(Ω) = ϕs(Ω) + 2ψL1 (Ω)− 2ψ0
2(Ω), then

S(ω0 +Ω) =
sinh2 2r

2
(
1 + T 2

A

2
+ TA cos

(
τ(ω0 − Ω) + ρ(Ω)

)
) + sinh2 r(Ω)(1− T 2

A) (F.17)
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Appendix G

NIR-OCT setup

The realized classical NIR OCT setup is illustrated in Figure G.1.

Figure G.1: The optical setup realized to perform classical NIR-OCT.

In this setup, the source is a broadband white light source (Thorlabs, SLS201L/M),
which allows probing the sample up to a central wavelength of 1.5 µm, the standard one
in commercially available NIR OCT setups [1]. The beam is then collimated and sent to
a 50:50 beam splitter, the heart of the interferometer. An iris is placed along this path,
to achieve a beam size comparable to that of the MIR-OCT setup. The light is then
divided into reference and sample arms. the reference arm ends with a flat silver mirror,
while the sample arm with the sample (mounted on a two-axis stage). Reflected light
from both arms is sent back to the beam splitter and conveyed to the fiber coupler, which
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is connected to the spectrometer via an optical fiber as the one used for the MIR-OCT
case.
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Appendix H

Description of the alignment
procedure for the MIR OCT setup

The alignment procedure consists of the following main steps:

1. Ensure the sample is securely mounted along the idler arm.

2. Optimize the alignment of the crystal, reference mirror, and detection part (spatial
filter + fiber coupler). The crystal position is crucial in both the z and x directions.
Adjusting the z-position modifies the focusing point of the lens on the crystal,
slightly altering the OPA process. The x-position must be carefully chosen to
avoid defective regions of the crystal or to compensate for gray-tracking effects.

3. Install a short-pass filter (cutoff wavelength at 600 nm) along the reference path.
This filter blocks the signal beam along the reference arm, leaving only the pump
beam. The detected signal power at the output of the interferometer will then be
determined solely by the DFG process between the back-reflected pump and the
idler.

4. Adjust the sample’s orientation and position to maximize the DFG process between
the idler and the pump. Both the inclination and the z-position are critical in this
step.

5. Remove the short-pass filter and monitor the output spectrum of the interferometer
in real-time while slowly moving the z-position of the sample (minimum speed and
acceleration for the employed motorized stage are 0.001 mm/s and 0.004 mm2/s,
respectively). As you approach the ZPD, the interference pattern becomes clearly
distinguishable.

6. Fine-tune the alignment to maximize the visibility of the interference pattern.
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The alignment procedure was realized while using a visible spectrometer instead of the
OSA (Avantes, Avaspec 3648). The main reason is its fast data sampling, which allows
for real-time monitoring. However, its limited spectral resolution makes it impossible to
correctly resolve the interference fringes, making the usage of the OSA for the measure-
ment indispensable.

It is worth explaining that, to connect the Avaspec 3648 to the fiber coupler, an addi-
tional connection consisting of an FCPC to SMA adapter and an additional multimode
fiber with 400 mum core size was needed.
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Appendix I

Knife edge measurement

The knife edge measurement is a general methodology that allows determining the op-
tical beam size up to the micrometric range [82]. The fundamental principle is using
a thin object (the knife edge) to partially block the beam. In this way, we modify the
transmitted optical power P , which will depend on the position of the object. By slightly
moving the knife edge in one direction, we can scan the different P values: the shape of
the curve will be related to the beam size. This is mathematically equivalent to dealing
with a non-completely reflective sample (like the D-shaped mirror) and measuring the
reflected power while moving it. From Equation 1.30, we know that the OCT signal is
proportional to the detected interference intensity, thus to the power. The dependence
of I on the lateral position should be therefore completely equivalent to the power’s one.
In my specific case, we additionally have to take into account that we are working with
an undetected photons scheme, thus without directly measuring the idler. Nonetheless,
Equation 3.20 suggests that the linear proportionality between I and the back-reflected
power of the idler is preserved. This means that changes in the idler power, which we
cannot measure directly, are reflected proportionally in the OCT signal intensity that we
do measure.

Now, let us consider the simplest case of a Gaussian beam. The intensity is then
described by the Equation 1.44, which depends on the coordinates z, along the propaga-
tion of the beam, and r, along the radial direction. In the knife-edge measurement, the
coordinate z is fixed, thus we can take w(z) = w and decompose r2 = x2 + y2. Calling
P

πw2/2
= I0, we find

I(x, y) = I0e
− 2x2+2y2

w2
x+w2

y (I.1)

with wx, wy being the components of w along x and y respectively. If we now work in
the coordinate system centered in the middle of the beam, we can easily write the power
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before putting the knife edge as

P =

∫ +∞

−∞

∫ +∞

−∞
dxdyI(x, y) = I0

∫ +∞

−∞
dxe

− 2x2

w2
x

∫ +∞

−∞
dye

− 2y2

w2
y (I.2)

We now displaced the knife edge, considering just the motion along the x-axis for sim-
plicity (it can be easily generalized). When the knife edge is at the position x = D, we
have

P (D) = I0

∫ +∞

D

dxe
− 2x2

w2
x

∫ +∞

−∞
dye

− 2y2

w2
y (I.3)

Calculating the integrals, we find

P (D) =
I0wxwyπ

4
erfc(

D
√
2

wx
) (I.4)

with the coefficient being the transmitted power without the knife edge P0, erfc = 1−erf.
To take into account the possible displacement between the coordinate system and the
position x = D0 of the beam, we can simply rewrite

P (D) = P0erfc(
(D −D0)

√
2

w
) (I.5)

where the subscript of the beam radius was removed for generalization. If we now
calculate the derivative of the Equation I.5, we find

d

dD
P0erfc(

(D −D0)
√
2

w
) = −P0

d

dD
erf(

(D −D0)
√
2

w
) =

= −P0(−
2√
π
e−

2(D−D0)
2

w2 )

√
2

w
=

2P0√
2πw

2

e
− (D−D0)

2

2w2
4 (I.6)

which is the expression of a Gaussian with σ = w
2
. Thus, its FWHM will be

FWHM = 2
√
2 ln 2σ =

√
2 ln 2w (I.7)

compatible with the definition of the lateral resolution given in Equation 1.45.
This treatise shows that if we reconstruct the behavior in Equation I.5, we can find

the lateral resolution as the FWHM of its derivative. The fit function was chosen to be

f(D) = a(1− erf((D − z) ∗ f)) + b (I.8)

which is perfectly equivalent to I.5 with an additional offset factor to take into account
possible experimental shiftings.

The uncertainty on the FWHM was calculated using the confidence intervals of the
parameters resulting from the fit. Since an analytical expression for the uncertainty
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is difficult to find, I realized a simple Montecarlo simulation, producing 10000 f(D)
functions with the parameters a, b, z, and f randomly distributed within their confidence
intervals. Eventually, I calculated for each one the FWHM of the derivative, finding
its standard deviation. This value was chosen as the uncertainty associated with the
estimation of the lateral resolution.
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Appendix J

Details for power meter and
spectrometers settings

It is important to specify the settings chosen for the two main measurement instruments:
the Si power meter and the two spectrometers.

The S130VC power meter model operates in the range 200−1100 nm. It is equipped
with a 15−Hz radio-frequency (RF) low-pass filtering, which extends the usual power
range (500 pW-0.5 mW) up to 50 mW. Since the typical pump power in my case was
around 1 mW, I employed the filter for all measurements.

The Avaspec 3648 operates in the wavelength range of (250−1100) nm, thus covering
the whole signal spectrum for the used apKTP. The main feature I have exploited for
my project is its fast data sampling [83]. In particular, I set an integration time of 100
ms (corresponding to circa 10 spectra/s).

The AQ6374 OSA is a high-performance spectrometer, ideal for the precise measure-
ment of the interfering signal spectra. The main parameters I considered for the project
were:

• Span: the sampled interval of wavelengths. For the MIR-OCT setup, it was chosen
based on the non-interference spectrum shape (620 − 650) nm; for the NIR-OCT
setup, it was chosen to achieve a central probing wavelength and an axial resolution
comparable to those of commercially available OCT systems (1300− 1700) nm.

• Spectral resolution: This parameter was dictated by the core size of the multimode
fiber, according to the User’s manual [78]. For my 200 µm core fiber, the optimal
setting spectral resolution is δλsp = 0.5 nm. The actual spectral resolution is set
according to the monochromator slit width (so depending on the measured central
wavelength), thus it may be slightly different than the setting one [78]. It can be
read directly on the OSA and, in my case, was 0.6 nm for the MIR-OCT setup,
0.42 nm for the NIR-OCT one.

93



• Sampling points: This parameter determines the number of sampling points within
the chosen span, thus affecting the Nyquist frequency. For both MIR-OCT and
NIR-OCT setups, I chose to operate with a sampling period of 0.1 nm. Using
Equation 1.40), the maximum depth ranges can be calculated: ≈ 998 µm for the
MIR-OCT setup, ≈ 5625 µm for the NIR-OCT setup. I will show that both these
values are significantly larger than the actual depth ranges determined from the
roll-off curves: therefore, the Nyquist condition is surely satisfied.

• Sensitivity setting: The AQ6374 can provide high-sensitivity measurements by
switching the sensor accordingly to the sensitivity mode chosen and the detected
range of wavelengths [78]. I chose to use HIGH2 mode. This modality auto-
matically switches between the short-wavelength sensor (operating in the range
350− 900 nm) and the wide-band sensor (operating in the range 1000− 1750 nm).

Finally, it is worth stressing that the dark counts were evaluated and properly subtracted
when using both spectrometers.
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Appendix K

Data analysis procedure

The adopted data analysis procedure to reconstruct the OCT spectra starting from the
sampled patterns is inspired by the one available in the Supplementary material of [23].
It consists of the following steps:

1. Preliminary comparison of the interference and non-interference spectra. In my
case, the non-interference spectrum was sampled three times for each different
sample, to compensate for possible variations of the S(k) shape. In this case,
we might lose the direct proportionality between the height of the OCT peak
and the square root of the reflectivity of the sample, as explained in the theory
part. However, since I am interested just in the A-scan reconstruction it should be
irrelevant. Already at this stage, it is possible to calculate the total signal power
by simply adding all y−axis entries (since the ”show power” mode was chosen)

2. Perform the division between the two spectra

3. Subtract the mean, which is responsible for the residual DC component after the
FFT

4. Restrict the operative range to the region where the interference fringes were clearly
visible, to minimize high-frequency and low-frequency noise. This region was typ-
ically found to be 623 − 645 nm. This step inevitably affects the final axial res-
olution, thus it is important to balance between the reduction of noise and the
corresponding decrease in the FWHM

5. At this stage, visibility can be calculated, by simply applying the definition

6. Pass from the wavelength domain to the frequency domain. It is important to
perform interpolation in this step, to preserve equal space points along the x−axis.
The reason is that the FFT algorithm requires a linear relationship between the
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data points. However, the simple conversion from wavelengths to frequencies does
not grant it.

The frequency step size was chosen to be equal to the largest step in frequencies
in the original spectrum [23].

7. Apply the Hilbert transform to the resulting pattern. This strategy allows us to
compensate for the chirping term ρ(Ω) by multiplying the transformed spectrum
by a phase term quadratic in frequency e−iη(2π(f−fc))

2
[84] (where fc is the central

frequency). The optimal dispersion coefficient η was found to be equal to 12500×
10−30 1/Hz2. It is worth highlighting that the positive sign of alpha must be used
when the idler arm path is longer than the reference one. If, instead, it is smaller,
the sign should be changed

8. Both windowing and zero-padding are applied to the Hilbert-transformed spectra.
In particular, the Hanning window function was chosen, since it is the standard
one for preliminary spectral shaping in OCT [85]. Nonetheless, it is important to
underline that the Hanning window is known to be associated with a worsening of
the axial resolution. The study [81] compares the effects on the FWHM when using
the Rectangular window and the Hanning window, before applying the inverse FFT
to some simulated interference spectra. The results, reported in Figure K.1, show
a much clearer peak in the second case, but at the cost of a significative worsening
of the axial resolution from 0.0024 to 0.0041.

Figure K.1: The comparison between the performances of the rectangular window and
Hanning window applied to some simulated interference patterns. Taken from [81].

9. Apply the inverse Fast Fourier Transform implemented in the NumPy library and
convert the result from the time domain to the depth domain.

It is also important to underline how we can proceed to calculate the various figures of
merit:
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• The signal power can be simply calculated as the sum of the y-entries of the inter-
ference spectrum

• The visibility can be found from the interference data as well, by using the definition
(Equation 1.22)
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Appendix L

Characterization of OSA noise

To verify if the OSA is responsible for some systematic noise, possibly explaining the
discrepancy between the expected linear dependence of the SNR on the number of aver-
ages and the observed saturation, I measured the pure electrical noise by removing any
input. In the absence of any signal, the sampled data should oscillate around the 0 with
standard deviation equal to the pure electrical noise. If we have no systematic effects, we
expect the standard deviation value to scale as 1/

√
N , with N the number of averages.

The experimental plot with the corresponding y = 1/
√
x fit is reported in Figure L.1

Figure L.1: The measured standard deviation in the absence of any input at varying
number of averages. The orange line corresponds to the fit with the expected function
y = 1/

√
N .

At a high number of averages (> 30), a discrepancy from the expected behavior is
observed, possibly indicating the presence of some systematic contributions. Nonetheless,
the fit is in extremely good agreement with the data below 30 averages. Since this is the
region in which I operated, we can conclude that the detector is not responsible for the
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observed saturation of the SNR.
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Appendix M

Results of preliminary
measurements for NIR-OCT setup

In the case of the NIR-OCT setup, just an essential characterization was performed. An
example of the OCT spectrum is reported in Figure M.1a, while Figure M.1b shows the
roll-off curve. The NIR-OCT setup displays high SNR (≈ 64.7 dB for depths < 100 µm),
long depth range ≈ 2.5 mm, and a very stable axial resolution (6.7± 0.2) µm.

(a) Example of OCT spectrum obtained
with the NIR setup, with the silver mirror
at z ≈ 102 µm from the ZPD position.

(b) The experimental roll-off curve for the
NIR-OCT setup.

Figure M.1: Characterization of the NIR-OCT setup performance.

The performance can be then considered comparable to the ones of commercially
available setups [1]. It is worth noticing that the noninterference spectra are very flat in
the measured range (1.3-1.7 µm), despite presenting some anomalies at around 1.38 µm
as shown in Figure M.2.
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Figure M.2: An example of non-interference spectrum measured using the NIR-OCT
setup. We can notice the irregular behavior due to the water absorption peak at around
1.38 µm.

This is compatible with the known absorption spectrum of water vapor [86][87].
Nonetheless, the standard analysis procedure satisfactorily compensates for this effect.
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Appendix N

Interference spectra simulation and
validation for NIR OCT setup

In general, the theory allows us to write the interference spectra as the product between
the non-interference ones and the proper interference pattern. Moreover, we should take
into account the finite resolution of the spectrometer’s response function which might
slightly reshape the spectrum during the measurement. To simulate both these effects,
I proceeded accordingly to the following steps:

• Experimental sampling of the non-interference spectrum. Since the OSA fur-
nished it, this spectrum is already given by the convolution between the true
non-interference spectrum and the response function of the spectrometer.

• Mathematical simulation of the interference pattern, using the theoretical expres-
sions.

• In general, the experimental interference spectrum is given by the convolution
between

1. the product of the non-interference spectrum and the interference pattern

2. the spectrometer’s response function

However, the response function has a low spectral resolution: this means we can
approximate the convolution of the product as the product of the convolutions

• Since we already have the convoluted non-interference spectrum, it is sufficient to
convolve the calculated interference pattern with the response function, which was
simulated to be a Lorentzian with FWHM equal to the spectral resolution

• For the MIR-OCT simulated spectra, the chirping ρ(Ω) was taken null for simplicity
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• The noise was taken null for simplicity in the simulations.

Figure N.1 shows the optimal agreement between experimental and simulated interfer-
ence spectra for the NIR OCT setup, validating the written code.

Figure N.1: Comparison between the experimental and the simulated interference spectra
for the NIR-OCT setup, using the silver mirror (R ≈ 1) as the sample at z = 31 µm.
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