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Abstract

Circa 10−6 secondi dopo il Big Bang, l’universo si è trovato in condizioni di temperatura
e densità di energia estremamente elevate, in uno stato deconfinato di quark e gluoni
noto come plasma di quark e gluoni. Questo stato può essere ricreato al Large Hadron
Collider attraverso collisioni di ioni pesanti, il cui studio rappresenta uno dei principali
obiettivi dell’esperimento ALICE.
I quark charm and beauty sono ideali per studiare il plasma di quark e gluoni, perché,
a causa della loro elevata massa, vengono prodotti all’inizio della collisione e rimangono
presenti durante tutta l’evoluzione del sistema. Inoltre, misurare la produzione degli
adroni charmati, consente anche di investigare i rapporti fra i vari adroni che vengono
prodotti in funzione del momento trasverso, utili nella comprensione dei meccanismi di
adronizzazione dei quark charm. In particolare, misure di ALICE in collisioni pp hanno
mostrato un aumento nella produzione di barioni charmati rispetto alle previsioni teo-
riche basate sull’universalità del processo di frammentazione. Nuovi modelli sono stati
proposti per spiegare i risultati di ALICE, che riproducono generalmente l’andamento
dei dati, ma differiscono nella regione di basso impulso trasverso. Risulta quindi fonda-
mentale ottenere misure sperimentali precise proprio in questa regione, per discriminare
fra i modelli proposti.
In questo lavoro di tesi è stato ricostruito il segnale del barione charmato Λ+

c a partire
dai dati sperimentali raccolti da ALICE con collisioni pp a

√
s = 13TeV nell’intervallo di

impulso trasverso 1 < pT < 2GeV/c. A causa dell’elevato fondo combinatoriale e della
breve vita media del barione Λ+

c è stato necessario l’uso di reti neurali implementate in
TMVA per ricostruire il segnale. Diverse versioni dell’algoritmo sono state implemen-
tate e testate, permettendo di ricavare lo yield, cioè il numero effettivo di barioni Λ+

c

ricostruiti.
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Introduction

Understanding nature is one of the main goals of science. In the reductionist approach,
one tries to explain all manifestations of reality using a compact set of relations. Such
an approach has proved to be successful in pinning down fundamental interactions, and
discovering the basic building blocks of the universe. We have found that the physical
principles become simpler and simpler, not in the sense that the mathematics gets easier
or that we always find fewer particles in the list of the elementary ones, but rather the
fact that the discovered rules become increasingly coherent and universal. This provides
an important insight, as the simplicity and beauty which are found in the fundamental
laws mirrors something that is deeply built into the logical structure of the universe.
Our knowledge on fundamental physics is encoded in the Standard Model (SM), a frame-
work of particle physics that describes the electromagnetic, weak and strong interactions.
Quantum Chromodynamics (QCD) in particular describe the strong interaction. To get
a comprehensive understanding of QCD is important to study extended systems subject
to the strong force, that present features that do not directly arise from the laws govern-
ing microscopic interactions. As a parallel, in condensed matter physics, phenomena like
magnetism and superconductivity improved the comprehension of the electromagnetic
interaction. A system like this for QCD is the quark-gluon plasma, a state of matter
in which quarks and gluons are bounded only weakly and are free to move. Quark-
gluon plasma is also fascinating because it is believed that the universe was in such state
about 10−6 s after the Big Bang. Nowadays, it is replicated at the Large Hadron Col-
lider (LHC) with heavy-ions collisions at CERN, in Geneva. The ALICE experiment is
optimized to study these collisions: recreating this primordial state of matter and un-
derstanding its evolution will allow us to clarify questions about how matter is organized
and the mechanism that confine quarks and gluons. The ALICE Collaboration carries
out a comprehensive study of the particles produced by heavy-ions, proton-nucleus and
proton-proton collisions, both as a comparison with nucleus-nucleus collisions and in
their own right.
Specifically, measurements of the production cross sections of heavy-flavor (charm and
beauty) hadrons are interesting because they are created at the very initial stage of a
collision, so they experience the whole evolution of quark-gluon plasma and can provide
important information for this research area. Recent analysis of ALICE data have shown
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that, with respect to e+e− and ep collisions, there is an unexpected enhancement of the
baryon production in pp collisions, that serves as a basis to comprehend the higher mul-
tiplicity heavy-ions collisions. New theoretical models have been created to explain this
result and in order to discriminate between them it is essential to get precise values of
baryon production. Doing this for the Λ+

c baryon, whose quark content is udc, is not
trivial, especially at low transverse momentum. The Λ+

c baryon has a short mean life:
cτ ≈ 60 µm, so after it is created in the interaction point of the collision, it decays after
it has travelled a small stretch. The small displacement of the decay vertex of Λ+

c from
the interaction vertex is below the detector resolution, making a topological selection
inadequate. Moreover, there is a high percentage of background, so these two issues
make the use of alternative reconstruction and selection techniques to extract a signifi-
cant signal necessary. In this thesis, the signal of Λ+

c was reconstructed using machine
learning techniques, in particular with neural networks, used within TMVA, a toolkit
integrated in ROOT.
The thesis is structured in the following chapters: in chapter 1, the theoretical back-
ground is presented together with the experimental results that motivated the analysis.
Chapter 2 consists in a description of ALICE and its detectors that provided data for
this work. In chapter 3 an overview of neural networks is outlined, while in chapter 4
the analysis is described and the output plots are shown. Finally, in the conclusions the
achieved results are summarized.
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Chapter 1

QGP and hadronisation of heavy
flavor quarks

1.1 The Standard Model

According to our current understanding, the matter around us interacts through four
fundamental forces: gravitational, weak, electromagnetic and strong interactions. The
elementary blocks of matter are fermions, particles with half-integer spin, and their in-
teractions are mediated through the exchange of force carriers, gauge bosons, which
have integer spin. The Standard Model (SM) provides a framework for modern particle
physics, describing elementary particles and three of the fundamental interactions that
govern them. In the SM there are twelve fermions and five bosons; a schematic repre-
sentation is depicted in figure 1.1. Each boson is associated with a specific interaction:
the photon mediates the electromagnetic one, the strong nuclear force is carried by the
gluons, and the weak nuclear one by the W and Z bosons. Each interaction has an
associated charge that particles must have in order to participate: electric charge for the
electromagnetic force, color charge for the strong force, and weak charge for the weak
one.
Fermions are the particles that make up matter. They are categorized into three gener-
ations. Each generation contains two leptons and two quarks, with the main difference
being that quarks have a color charge, whereas leptons do not. The lightest and most
stable particles make up the first generation, whereas the heavier and less-stable parti-
cles belong to the second and third generations. Quarks come in six flavors: up, down,
strange, charm, beauty, and top.
The Higgs field and the spontaneous symmetry breaking was introduced with the so-
called Brout-Englert-Higgs mechanism to explain the fact that the weak force carriers,
the W and Z bosons, are massive. Later it turned out that the other elementary par-
ticles also acquire masses by interacting with the Higgs boson: the stronger a particle
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CHAPTER 1 1.1. THE STANDARD MODEL

Figure 1.1: Fundamental particles of the Standard Model of particle physics.

interacts with the Higgs field, the heavier the particle ends up being. The Higgs boson
is the only known elementary particle with spin 0 [1]. For each of these particles, there
exists a corresponding antiparticle with opposite charges (some particles are their own
antiparticle, such as the photon).
The Standard Model has successfully explained most experimental results and precisely
predicted a wide range of phenomena. The Large Hadron Collider (LHC), the world’s
largest and most powerful particle accelerator, has played a crucial role in confirming the
predictions of the SM. For instance, the predicted existence of the Higgs boson was con-
firmed by the observations made in 2012 by the ATLAS and CMS detectors at the LHC.
However, there are also important questions that so far are not addressed by this theory,
like dark matter, the asymmetry between matter and antimatter, the great difference in
mass among the three generations and gravity. In fact, gravitational interaction is de-
scribed by the general theory of relativity, but it is not included in the Standard Model.
Ongoing experiments at the LHC provide valuable insights to answer these questions
and in further testing the Standard Model [2, 3].
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CHAPTER 1 1.2. QUANTUM CHROMODYNAMICS

1.2 Quantum Chromodynamics

The strong interaction between quarks and gluons is formulated as a non-abelian gauge
field theory called Quantum Chromodynamics (QCD) based on the invariance under
SU(3)c group transformations.
In QCD, color plays the role of electric charge in QED and the force between quarks is
mediated by the exchange of eight massless gluons of spin 1. Unlike electrodynamics,
where there is only one kind of electric charge, there are three kinds of charges, conven-
tionally referred to as color charges: red, green and blue. In the fundamental vertex q
→ q+ g the color of the quark may change. Since color is always conserved, this means
that the gluon must carry away the difference, in fact each gluon carries a color and
an anticolor charge. Since gluons themselves carry color (unlike the photon, which is
electrically neutral), they couple directly to other gluons, and hence in addition to the
fundamental quark-gluon vertex, we also have primitive gluon-gluon vertices. To rep-
resent more complicated process two or more fundamental vertices, illustrated in figure
1.2, are combined. The direct gluon-gluon coupling makes chromodynamics a lot more

Figure 1.2: Feynman diagrams for the quark–gluon vertex (left), three-gluon interaction
(middle) and four-gluon interaction (right).

complicated than electrodynamics but also far richer, with the possibility of hadronic
states formed only by gluons, the so-called glueballs.

The strong coupling constant αS for the strong force depends on the momentum
transfer Q2 (that’s why it is called running coupling constant). It can be described as
follows:

αS(Q
2) =

16π2

(11− 2
3
Nf ) lnQ2/Λ2

QCD

(1.1)

where ΛQCD is the scale parameter and Nf is the number of light quarks. Experimental
results of αS measurements are showed in figure 1.3. At high energy the coupling is
sufficiently weak so that it can be treated with a perturbative approach, already tested
in QED. This phenomenon in which the interaction weakens as the distance decreases
(large Q2), is known as asymptotic freedom. Instead at large distances, when αS ≳ 1
the perturbative QCD (pQCD) is doomed because it turns out that the more complex
Feynman diagrams should contribute more and more.
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CHAPTER 1 1.2. QUANTUM CHROMODYNAMICS

Figure 1.3: Summary of measurements of αS as a function of the energy scale Q. The
respective degree of QCD perturbation theory used in the extraction of αS is indicated
in brackets. Figure taken from [4].

Another important characteristic of QCD is that no naturally occurring particles
carry color. Quarks are confined in colorless packages of a pair of quark and antiquark
(mesons) or three quarks or antiquarks (baryons). This characteristic that quarks can
exist only in the form of colorless combinations is called color confinement. The confine-
ment of gluons limits the range of the strong interaction to a few femtometers, although
at high energy densities and temperatures the strong bond between quarks and gluons
weakens, allowing colored partons to propagate over longer distances. This was likely
the situation in the early universe as well.
The quasistatic potential between two quarks within a hadron can be parametrized in
the following form:

VS = −4

3

αS

r
+Kr (1.2)

The Coulomb-type term dominates at small distances. It is not divergent, as αS is not
constant, but decrease with decreasing distance. This makes the radius of hadrons finite,
as an equilibrium position is reached. The second term, which linearly increases with
the distance r between the two quarks, gives rise to an elastic-type force. It is related to
the interaction between gluons and manifests itself by the confinement of quarks within
hadrons. The effect of this term is illustrated in figure 1.4 [5], [6].
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CHAPTER 1 1.3. QUARK-GLUON PLASMA

Figure 1.4: The interaction between two relatively distant quarks can be thought as an
elastic force: when they reach a separation distance of around 10−15 m (the diameter of
an hadron), the strong interaction becomes so great that new quark-antiquarks pairs are
produced. Note that the springs in the figure does not represent gluons, but rather the
elastic force.

1.3 Quark-Gluon Plasma

Shortly after the idea of asymptotic freedom was introduced, researchers realized its
fascinating consequence for the properties of hot and dense matter, and the fact that
the discovery of asymptotic freedom paved the way to our current understanding of the
evolution of the early universe. For a few millionths of a second, about 10−6 s after the
Big Bang, the universe was filled with an incredibly hot, dense soup made of all kinds
of particles moving at near light speed. This mixture was dominated by quarks and
gluons. In those first evanescent moments of extreme temperature, however, quarks and
gluons were only weakly bound, free to move independently in a state known as quark-
gluon plasma (QGP). This phase lasted until the QGP transitioned to hadronic matter,
a condition that happened at around T ≈ 200MeV ≈ 1012K and lead to the formation
of the ordinary matter we are familiar with nowadays. This transition is related to the
spontaneous breaking of the chiral symmetry in the theory of strong interactions.
To recreate these early-universe conditions, powerful accelerators collide massive ions,
such as lead nuclei. In these heavy-ion collisions the hundreds of protons and neutrons
in two such nuclei smash into one another at energies of the order of 1TeV − 10TeV.
In these collisions, the formed quark-gluon plasma instantly cools, and the partons re-
combine into ordinary matter which rapidly go away in all directions.
The extreme conditions of the QGP-hadronic matter transition occur also in the core of
neutron stars. A potential phase diagram is depicted in figure 1.5 [7, 8].
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CHAPTER 1 1.3. QUARK-GLUON PLASMA

Figure 1.5: Schematic representation of QCD phase diagram. The baryochemical poten-
tial µB is the energy needed to increase the baryon number by one unit at fixed volume
and entropy of the system and is proportional to the net baryon density of the system.

1.3.1 Role of heavy flavor hadrons

Despite the fact that we have a good qualitative understanding about the space-time
evolution of the system, there are many open questions when it comes to a quantitative
analysis. Heavy flavor hadrons have turned out to be an almost ideal probe to study the
time evolution of the QGP due to the following reasons:

• Charm and beauty quarks are produced predominantly via hard-scattering pro-
cesses in the early stages of the nucleus-nucleus collisions. In fact, due to their
high mass, charm and beauty quarks can’t be produced from QGP interactions,
but only by hard collisions of the partons that belong to the colliding nuclei. These
quarks experience the full system evolution, so in the end the heavy-flavor hadrons
containing a c or b quark carry a memory of their interaction history.

• The heavy quarks masses (mc = 1.5GeV and mb = 4.5GeV) are much larger
than the QCD cutoff (energy threshold below which pQCD cannot be applied),
which is ΛQCD ≈ 300MeV. Therefore their production can be well described by
perturbative QCD.

• The heavy quarks mass is much larger than the typical temperature of the QGP
medium, which is about a couple hundred of MeV, estimated by the spectrum of
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CHAPTER 1
1.4. EVOLUTION OF HEAVY-ION COLLISIONS: HADRONISATION OF THE

QGP

directly produced photons. Consequently, the mass of heavy quarks changes a little
in the hot medium and their number is conserved during the evolution.

In addition, measurements of the production of charm hadrons in high-energy hadronic
collisions provide important tests for calculations based on pQCD. Moreover, investiga-
tions of the production ratios of different hadron species as a function of the transverse
momentum can shed light on the charm-quark hadronisation mechanism. With these
advantages, heavy flavor physics has attracted a lot of attention from both the theoret-
ical and experimental communities and several models have been advanced to describe
the heavy flavor observables [9, 10].

1.4 Evolution of heavy-ion collisions: hadronisation

of the QGP

Collisions of heavy-ions with ultra-relativistic energies are used to create the QGP in the
laboratory. The evolution of a heavy-ion collision is commonly described in terms of a
series of stages:

1. Initial state, defined by the wave functions of the projectiles, which are universal
and independent of any specific scattering process.

2. Large-Q2 (Q2 being the four momentum transfer squared) interactions of partons:
high momentum gluons and high momentum mass quarks are created. As they have
short wavelengths, they will interact with other quarks and gluons on a microscopic
level.

3. Smaller-Q2 interactions generating a pre-equilibrated parton gas.

4. Equilibrium and explosive expansion of the QGP that reaches the pseudo-critical
level of the transition (≈ 0.5GeV/fm3 − 1GeV/fm3)

5. Hadron formation, the QGP transitions to a hadron gas. The hadronisation in-
volves quarks and gluons processes characterised by small momentum transfers
and hence large values of the strong coupling costant, such that a perturbative ap-
proach is not applicable. Thus phenomenological models come into play to explain
the process. At LHC energies the hadronisation occurs 7 fm/c − 10 fm/c after the
initial collision.

6. Chemical freeze out of hadrons: after hadronisation, the created hadrons can still
interact via inelastic processes, implying that the overall chemical composition can
evolve further, until the temperature of the chemical freeze-out is reached. At this
point, particle composition is fixed but elastic interactions can still continue.

11



CHAPTER 1
1.4. EVOLUTION OF HEAVY-ION COLLISIONS: HADRONISATION OF THE

QGP

7. Hadronic interactions that subsequently freeze-out kinetically, which is achieved at
the time t of t ≳ 10 fm/c. At this point, the particle momenta are fixed.

8. The system vanishes into free-streaming of particles that propagate towards the
detector, where they will be measured ≈ 1015fm/c after the initial collision.

Before they interact, the nuclei at the LHC will be highly Lorentz contracted. The
impact parameter b is the distance between the centres of the colliding nuclei. It is
closely related to the number of nucleons in the nuclei that participate in an inelastic
interaction. Nucleons not participating in the collision are defined as spectators, and
continue travelling approximately along the beam direction after the collision. For the
initial state of any given collision the multiplicity, which simply is the addition of the
number of charged hadrons in a broad momentum range, can be determined. When b is
small the multiplicity is high and the collision is referred to as central, while collisions
with large impact parameters are labeled as peripheral. The high-energy beams of the

Figure 1.6: The evolution of a heavy-ion collision at LHC energies. The yellow cone in-
dicates the parton fragmentation processes, that lead to jets, partonic showers that arise
from these high energy partons, and eventually fragment into experimentally observable
hadrons. Figure taken from [11].

LHC provide an unprecedented opportunity to study QGP in the laboratory, with the
highest centre of mass energy in Pb-Pb collisions achieved of 5.02 TeV. This in principle
allows for the hottest, densest, and longest ever lived QGP formed in the laboratory
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CHAPTER 1 1.5. HEAVY FLAVOR HADRONIZATION IN PP COLLISIONS

to be probed using the ALICE detector. Also proton-proton collisions have provided
opportunities for studying QCD interactions in few-body systems.

1.4.1 Small systems and searches for thresholds of QGP forma-
tion

Proton-proton collisions, together with collisions of p-Pb were originally conceived as
essential references for the ultra-relativistic heavy-ion collisions. These simpler systems
provide opportunities to investigate QCD in few-body systems. For instance, inclusive
and heavy-flavour jet cross sections offer a way to test perturbative QCD, while mea-
surements of the production of identified hadrons can be used to test the universality
(collision-system independence) of parton-to-hardon fragmentation functions (FFs). In
addition, these collisions provide insights into the thresholds for QGP formation.
Unlike heavy-ion collisions, high multiplicity events in pp collisions are not expected to
result from a trivial increase in the amount of colliding matter, for example by decreas-
ing the impact parameter b: there are always only two nucleons that participate in the
interaction. Instead, high multiplicity events may be associated with energy densities
high enough that allow the formation of QGP. Indeed, the highest number of particles
produced in such collisions are comparable to peripheral heavy-ion collisions at lower
energies, where QGP is known to form. However, it is not clear a priori whether and
to what extent QGP effects are present in these events, therefore more specific measure-
ments are needed to further explore the underlying physics [11].

1.5 Heavy flavor hadronization in pp collisions

Measurements of heavy-flavour (i.e. charm and beauty) hadron production in ultra-
relativistic pp collisions provide fundamental tests of perturbative quantum chromody-
namics calculations. For instance, the QGP is not expected to exist in small hadronic
collision systems, however, some features like the enhancement of baryon production
similar to Pb-Pb collisions has been observed in pp collisions. These phenomena chal-
lenge our current understanding of QGP formed only in nucleus-nucleus collisions and
of charm hadronisation.
The transverse momentum (pT ) differential production cross section of heavy-flavour
hadrons is usually calculated in QCD by the factorization into three separate compo-
nents.

1. The first ingredient correspond to the distribution functions of quarks and gluons
(PDFs), which describe the probability distributions of the parton momentum
fractions in the proton.
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CHAPTER 1 1.5. HEAVY FLAVOR HADRONIZATION IN PP COLLISIONS

2. The second term is the cross section for the partons in the protons to produce a
charm or beauty quark, which defines the scattering probability calculated as a
perturbative series expansion in the strong coupling constant (αs). As mc and mb

are much larger than ΛQCD the cross section can be calculated using pQCD.

3. The third ingredient take into account the hadronisation and corresponds to the
fragmentation function (FF), which parametrises the non-perturbative transition
of a heavy quark into a hadron. It characterises the hadronisation of a quark to a
specific hadron species. The FFs cannot be calculated with pQCD, but luckily it
has been shown that they should be universal, i.e. independent of the collision sys-
tem. Therefore they can be determined from measurements in e+e− collisions and
are then applied in cross section calculations. Although, with the last experimental
results, the universality of FFs has been put into discussion.

Hadron-to-hadron production ratios within the charm sector, like Λ+
c /D

0, are useful to
probe hadronisation effects, since in theoretical calculations the first two points are com-
mon to all charmed hadrons so their effects almost fully cancel in the yield ratios.
Fragmentation functions describe the probability that a hadron is created from a parton
with large momentum in the vacuum. However, several puzzling observations lead to the
conclusion that the fragmentation process is not sufficient to explain hadron production
in high energy pp/heavy-ions collisions at the energies reached by LHC. Actually it is not
a surprise that a hadronisation picture that assumes a single parton fragmenting in the
vacuum has to fail: the vacuum fragmentation starts by producing additional partons
through radiation, but in the environment generated by heavy-ion (and maybe also by
high multiplicity pp collisions), a hot and very dense fireball of deconfined quarks and
gluons is created, so the formation of bound states can directly start from the medium
partons themselves.
Another hadronisation mechanism that needs to be taken into account is recombination,
also known as coalescence, in which quarks that are close to each other in phase space,
can simply recombine into hadrons with transverse momentum equal to the sum of the
momenta of the initial partons, as shown in figure 1.7. Recombination models are built
on the assumption that quarks can be treated as effective degrees of freedom having a
dynamical mass approaching the constituent mass, while gluons disappear as dynamical
degrees of freedom and are converted into qq pairs. The probability of finding two or
three partons close together in phase space decreases as the transverse momentum of
the final state hadron increases. Consequently, the recombination process is expected
to dominate over fragmentation at low and intermediate pT (up to few GeV/c), while
at higher momenta fragmentation is the main phenomenon. The transition where frag-
mentation starts to prevail over recombination is expected to take place at higher values
of pT for baryons as compared to mesons and this insight can explain the experimental
results that see an enhancement of baryons over mesons at intermediate pT . In addition,
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CHAPTER 1 1.5. HEAVY FLAVOR HADRONIZATION IN PP COLLISIONS

Figure 1.7: The competing effects of recombination and fragmentation on a final-state
pT distribution are shown.

recombination plays a larger role in central collisions, as they more greatly favor the
transition to QGP, while fragmentation is typically seen in peripheral collisions.

1.5.1 Experimental results of charmed hadrons in pp collisions

In this section is shown that calculations using FFs tuned on e+e− collision data, do not
adequately describe the production of charm baryons at midrapidity in pp collisions at
the LHC. Instead, the measurements can only be described by model calculations that
account for novel hadronisation mechanisms. In contrast, meson ratios are consistent
with results from e+e− collisions [12].

Many models that explain the current experimental result had arisen, but the avail-
able precision of the data is insufficient to fully distinguish between the pictures. It is
particularly interesting to extend the measurements of the baryon-to-meson ratio Λ+

c /D
0

down to lower transverse momenta, as this allows for a comparison with theoretical pre-
dictions in a kinematic region where the models calculations differ from each other.

Figure 1.8 shows the Λ+
c

D0
ratio as a function of pT at midrapidity (|y| < 0.5) in pp

collisions at
√
s = 13TeV measured by the ALICE experiment at LHC. In the top panel,

the ratio measurements taken at different center of mass energies are reported, while in
the bottom panel the experimental points are compared with several model calculations.

The measured Λ+
c

D0
ratios show significant deviations from the values measured in e+e− and

e-p collisions, with an enhancement in the yield ratio up to a factor 2-5 for pT < 8GeV/c.
The Monash tune of PYTHIA, that adopts hadronisation fractions based on FFs from
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CHAPTER 1 1.5. HEAVY FLAVOR HADRONIZATION IN PP COLLISIONS

e+e− collisions, underestimates the production rates of Λ+
c baryons by a factor of 2 to

10, depending on pT in the region pT < 12GeV/c.

Several models that correctly predicts a relative increase of charmed baryon produc-
tion compared to mesons in pp collisions at LHC have been proposed in recent years,
including: PYTHIA8 with color reconnection, SHM+RQM (statistical hadronisation
model with relativistic quark model) and the Catania and QCM model, that implement
quark recombination. Instead the POWLANG model, that assumes the formation of a
small, deconfined, and expanding fireball in pp collisions qualitatively describe the data,
but especially in the interval 0 < pT < 1 GeV/c POWLANG tends to underestimate the
measurement.

Overall the current precision and granularity of the measurements does not discrim-
inate among the model calculations that describe charm hadronisation at the LHC em-
ploying new mechanisms, but they confirm the baryon-to-meson enhancement compared
to e+e− results.

In the end, the results indicate that the measured Λ+
c /D

0 ratios at midrapidity in pp
collisions at

√
s = 5.02 TeV and 13 TeV are described by the predictions provided by

these model calculations and are compatible within uncertainty. Thus, with the current
uncertainties, no significant energy dependence is observed in pp collisions at midrapidity
at the LHC. [12, 13].
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Figure 1.8: Top panel: ratio between the pT -differential production cross sections at
midrapidity (|y| < 0.5) of prompt Λ+

c baryons and D0 mesons in pp collisions at
√
s =

5.02TeV, 7TeV and 13TeV. Bottom panel: ratio between the pT -differential production
cross sections at midrapidity of prompt Λ+

c and D0 mesons in pp collisions at
√
s =

13TeV compared with the prediction from PYTHIA8 Monash tune, PYTHIA8 CR-
BLC Mode 0, 2 and 3, SHM+RQM, Catania, QCM and POWLANG models. Figures
taken from [12].
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Chapter 2

ALICE: A Large Ion Collider
Experiment

The ALICE experiment was proposed in 1993, to study strongly-interacting matter at
extreme energy densities and temperatures. The aim is analyse the QGP, a decon-
fined state of quarks and gluons created in heavy-ions collisions. At the same time
ALICE is studying proton-proton and proton-nucleus collisions both as a comparison
with nucleus-nucleus collisions and in their own right and specific aspects of pp physics
gained progressively more importance with time [11].

In 2021, ALICE completed a significant upgrade of its detectors to further enhance
its capabilities and continue its scientific journey at the LHC in Run 3 and 4, until
the end of 2032. At the same time, upgrade plans are being made for ALICE 3, the
next-generation experiment for LHC Runs 5 and 6.

2.1 LHC

The accelerator complex at CERN (visible in figure 2.1) is a succession of machines
designed to progressively increase the beam’s energy. Each machine injects the beam
into the next one, which takes over to bring the beam to an even higher energy, and so
on. The last element of this chain is LHC (Large Hadron Collider), the world’s largest
and most powerful particles accelerator in the world. The construction of the LHC was
approved in December 1994. LHC re-uses the tunnel that was built for CERN’s previous
big accelerator, LEP, dismantled in 2000.

Among the main goals of LHC there is the study of Higgs boson in detail, the search
for evidence of supersymmetry, that could provide a unified description of all the fun-
damental forces, the exploration of matter-antimatter imbalance, trying to access dark
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Figure 2.1: The accelerator complex at CERN.

matter and dark energy and study the quark-gluon plasma.

At the LHC, the particles form two beams that are accelerated up to the total colli-
sion energy of 5.36TeV per nucleon pair ([14]) and 13TeV for protons and collide at four
points where the four main experiments (ALICE, ATLAS, CMS and LHCb) take place.
ALICE focuses on measuring and analysing lead-ion collisions for studying QGP. ATLAS
and CMS are general-purpose detectors designed to cover the widest possible range of
physics, while LHCb is specialized in the study of the asymmetry between matter and
antimatter present in interactions involving bottom quarks.

The hadrons in the LHC circulate around the ring in well-defined bunches. Under
nominal operating conditions, each proton beam consists of 2808 bunches, with each
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bunch containing about 1011 particles. As the bunches circulate they are squeezed and
expanded along the ring, with the size varying from a few centimetres long and a millime-
ter wide when far from a collision point, to being squeezed up to 20 µm near a interaction
point to optimize the collisions chances. Inside the collider, particles travel around in a
vacuum tube and are guided using a strong magnetic field (up to 8.3 T) generated and
maintained by superconducting electromagnetic devices. In particular, dipole magnets
are responsible for bending and tightening the particles’ trajectory, so that the beams
remain stable and aligned, while quadrupole magnets focus the beam before it enters in
a detector. Magnets are also employed for particle detection, for example through the
amount of deflection caused by the magnetic field in the detector.

The LHC’s main magnets operate at superfluid helium temperature of 1.9 K. Cryo-
genic techniques are used to cool the superconducting magnets and, in particle detectors,
they are in charge of keeping heavy gases such as argon or krypton in a liquid state for
particle detection, for example in calorimeters. One of superfluid helium’s remarkable
properties is its very high thermal conductivity, making it an excellent coolant.

The collider also has tree separate vacuum systems: one for the beam pipes, ensuring
that the beams doesn’t collide with gas molecules inside the accelerator, while the other
two are for the insulation of the cryogenically cooled magnets and the helium distribution
line. For the latter two cases vacuum act as a thermal insulator, to minimize the amount
of heat from the surrounding room-temperature environment to the cryogenic parts,
that are kept at 1.9 K. The insulating vacuum has a pressure equivalent to 10−6 mbar,
while in the beam pipes there is an ultra-high vacuum, with a pressure of the order of
10−10 − 10−11 mbar, a vacuum almost as rarefied as that found on the surface of the
Moon [15].

2.2 Overview of ALICE

Being the only detector specifically devoted to QGP studies, ALICE was designed to
access a large number of specific observables in a wide transverse momentum range, in
order to shed light on the various stages of the evolution of the heavy-ion collisions, from
the initial state to the QGP phase to the mechanism that confine quarks and gluons into
hadronic matter.

ALICE is optimized for the physics requirements and experimental conditions ex-
pected in nucleus-nucleus collisions at the LHC. The most stringent design constraint is
the extreme particle multiplicity, with a range of several thousands of tracks produced
by heavy-ion collisions. Also a large dynamic range is required for momentum measure-
ment, spanning more than three orders of magnitude from tens of MeV/c to over 100
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GeV/c. Particle Identification (PID) over much of this momentum range is essential and
basically all the known PID techniques are employed in ALICE. With respect to ATLAS
or CMS, ALICE is slow in acquiring data, for its nature it is focused on precision, and
hopes to discriminate the thousands of particles produced by pp or heavy-ion collisions.
Indeed, it provides excellent capabilities in tracking, for primary and secondary vertex
reconstruction.

The overall dimensions of the detector are 16 × 16 × 26 m3 with a total weight of
approximately 10000 tons. An overview of the detector with its subdetectors is shown
in figure 2.2. It consists of two main parts: the central barrel, which measures hadrons,

Figure 2.2: The ALICE experimental apparatus with the names of the main sub-
detectors.

electrons, and photons, and a forward muon spectrometer. The central part covers polar
angles from 45◦ to 135◦ and is embedded in a large solenoid magnet. From the inside
out, the barrel detectors include:

1. Inner Tracking Systems (ITS)

2. Cylindrical Time-Projection Chamber (TPC)

3. Transition Radiation Detector (TRD)
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4. Three particle identification arrays of Time-of-Flight (TOF)

5. The High Momentum Particle Identification Detector, a ring imaging Cherenkov
(HMPID)

6. The Electromagnetic Calorimeter (EMCal)

7. The Photon Spectrometer (PHOS)

All detectors expect HMPID and the two calorimeters cover the full azimuth angle. The
forward muon arm, that covers the range from 2◦ to 9◦ consists of a complex arrange-
ment of absorbers, a large dipole magnet, and fourteen planes of tracking and triggering
chambers. Moreover there are several smaller detectors for global event characterization
and triggering located at small angles and an array of scintillators (ACORDE) used to
trigger on cosmic rays.
A detailed overview of ALICE, its performances and results can be found in Refs. [15,
16].
In the following sections, only the detectors that measured the variables used in this
analysis are described.

2.3 ITS: Inner Tracking System

The Inner Tracking System, whose layout is pictured in figure 2.3, is a cylindrically-
shaped silicon tracker that surrounds the interaction region. It consists of six layers,
with radius ranging from 4 cm to 43 cm, covering the pseudo-rapidity range |η| < 0.9.
The outer radius is determined by the necessity to match tracks with those from the
TPC, and the inner radius is the minimum allowed by the size of the beam pipe. The
main tasks of the ITS are:

• Determination of the primary vertex with a high resolution, better than 100 mi-
crometer.

• Reconstruction of secondary vertices, where short-lived hadrons like Λ+
c decay.

• Tracking and identification of particles with low-momentum (below 200MeV/c)
that are missed by the TPC.

• Improve the momentum and angle resolution for particles reconstructed by the
TPC.

The ITS is made up of six layers of silicon detectors. Because of the high particle density
in heavy-ion collisions, the innermost two layers, where there are about 50 particles
per cm2, are composed of Silicon Pixel Detectors (SPD), responsible for determining the
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Figure 2.3: Layout of the ITS. The beam line is along the z direction.

position of the primary vertex. For the following two layers Silicon Drift Detectors (SDD)
were chosen and double-sided Silicon micro-Strip Detectors (SSD) for the two outer
layers, where the track density is expected to be below one particle per cm2. The four
outer layers have analogue readout and therefore can be used for particle identification
by measuring dE

dx
in the non relativistic region. To measure the separation between

the interaction and the secondary vertex (that is the decay vertex of heavy flavoured
hadrons) the ITS provides a resolution on the track impact parameter of the order of
few tens of µm, although this is not always sufficient, as for the case of the Λ+

c baryon
[17].

2.4 TPC: Time Projection Chamber

The Time Projection Chamber (TPC) is a device that uses a combination of electric
and magnetic fields, together with a volume of gas, to perform a three-dimensional re-
construction of the particle’s track. A negative high-voltage electrode plane located at
the centre divide the chamber in two halves and establishes a uniform electric field E
from the two ends to the centre that accelerate the electrons towards the endplates. The
strong magnetic field B is aligned in one direction and therefore is parallel and antipar-
allel to E in the two sections of the chamber.

The ALICE TPC (whose schematic is shown in figure 2.4) is the central tracking
detector, with an active volume that has an inner radius of about 85 cm, an outer radius of
about 250 cm and an overall length along the beam direction of 500 cm. It is supplied with
a uniform electrostatic field of 400V cm−1 and a 0.5T magnetic field. The gas inside the
detector, a Ne-CO2-N2 mixture at atmospheric pressure, is ionized by charged particles
traversing the detector. The formed electrons from ionisation drift under the influence
of the electric and magnetic field making a helical trajectory towards the endplates of
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Figure 2.4: Schematic of the TPC, figure taken from [18].

the cylinder, which are segmented layers of proportional counters. The measurement of
the arrival point and time of the electrons give a three-dimensional image of the original
particle track, and the momenta can be estimated from the track curvature. The ALICE
TPC is specifically designed to measure tracks with transverse momentum ranging from
0.1GeV/c to 100GeV/c. It takes into account that each lead nuclei collision produces
approximately 104 charged particles, which traverse the TPC at nearly the speed of
light. The TPC offers excellent spatial resolution, though it requires longer dead time
compared to other detectors. It also has remarkable PID capabilities, with a resolution
better than 5%, via the information of the specific energy loss, dE

dx
(an example is shown

in figure 2.5), described by the Bethe-Bloch formula [18].

Figure 2.5: Specific energy loss (dEdx ) versus particle momentum in the TPC in pp colli-
sions at

√
s = 13TeV. The solid lines represent the expected trends for different particle

species, according to the Bethe-Bloch formula.
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2.5 TOF: Time Of Flight

The Time Of Flight is an essential system for particle identification, that can provide the
speed of any charged particle by measuring the travelling time t over a known distance L.
This information is then combined with the momentum p, obtained with other detectors,
to calculate the particle’s mass:

β =
v

c
=

L

tc
=

1√(
mc
p

)2

+ 1

−→ m =
p

c

√
c2t2

L2
− 1 (2.1)

Specifically, in ALICE the TOF system covers a cylindrical surface of 141 m2 with an
inner radius of 3.7 m, a pseudorapidity range of |η| < 0.9 and a full azimuthal cover-
age. It is designed to identify charged particles with an intermediate momentum range
(0.5 < pT < 4GeV/c) and in order to accomplish this, the TOF exploits the Multigap
Resistive Plate Chamber (MRPC) technology, capable of an intrinsic time resolution
better than 50 ps with an efficiency close to 100%. The whole system, illustrated in fig-
ure 2.6, is made of 1593 MRPCs, subdivided into 18 sectors, each covering an azimuthal
angle of 20◦. In each MRPC there is a gas maintained at atmospheric pressure and con-

Figure 2.6: Layout of the TOF system, the MRPCs are subdivided into 18 supermodules.

tained in a narrow space between parallel plates of high resistivity, that in ALICE are
made of soda-lime commercial glass. A high potential difference is maintained between
the two external plates, so that when a charged particle passes through the detector it
produces ionisation that is drifted towards the electrodes, producing an avalanche. The
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high resistivity of the electrodes ensures that the discharge does not spread out too much.
The advantage of using MRPCs instead of the standard RPCs (that consists of only two
plates separated by a gas layer) is that in the MRPCs the gas gap between the electrodes
is divided by means of internal plates which are physical barriers stopping the avalanche
growing too big, so it is possible to apply a very strong electric field that ensures a very
good time resolution [19].

The PID capabilities measured by the TOF detector in pp collisions at
√
s = 13TeV

are shown in figure 2.7 [3].

Figure 2.7: Measurements of β of charged particles by TOF as a function of momentum
in pp collisions at

√
s = 13TeV.
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Neural networks

Machine learning is a method of data analysis that automates analytical model build-
ing by learning from data. Using algorithms that iteratively learn from data, machine
learning allows computers to find hidden insights without being explicitly programmed
where to look. Machine learning is used in a wide variety of topics, such as fraud detec-
tion, pattern and image recognition, recommendation engines and, most importantly, it
became an essential tool for data analysis in physics.
Neural networks (represented in 3.1) are a way of modeling biological neuron systems
mathematically. These networks can then be used to solve tasks that many other types
of algorithms cannot. The concept of deep learning simply refers to neural networks

Figure 3.1: Neural network composed of many layers: the first is the input layer, the
last is the output layer and those in the middle are the hidden layers.

with more than one hidden layer. There are different types of machine learning, in this
thesis the supervised learning paradigm was adopted. Supervised learning algorithms
are trained using labeled examples, such as a set of inputs with the corresponding cor-
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rect outputs, and the algorithm learns by comparing its actual outputs with the correct
ones to find errors. Then the model is modified accordingly, by adjusting the weights
and bias values in the network. At the beginning, the data are splitted into two por-
tions: the training set, used to fit a model, and a testing sample for the measurement of
the goodness of the model. Is it possible to introduce also a validation set to evaluate
performance and possibly optimise the network before proceeding to the testing phase
[20]. In high-energy physics, simulated Monte Carlo events are frequently employed for
these three samples, and the performance on the testing sample is compared against
experimental data, which remains unseen during training.

3.1 Perceptron model and sigmoid neurons

The simplest artificial neuron is the so-called perceptron [21], a basic representation is
showed in figure 3.2. A perceptron takes several binary inputs xi and produces a single
binary output. There are weights wi associated to every input, expressing the importance
of them, and there is a bias b, another term that is a measure of how easy it is to get
the perceptron to output a 1. The weighted and biased input w · x + b is then passed

Figure 3.2: Schematic representation of the perceptron model: each input has an ad-
justable weights and the sum of all weighted inputs and biases is passed to the activation
function f(X), whose output is y.

to an activation function, that allows us to set boundaries for the overall output value
and introduce non-linearity in the network. In the basic perceptron model the activation
function is simply the step function (figure 3.3a) and thus the output is:

output =

{
0 if w · x+ b ≤ 0

1 if w · x+ b > 0
(3.1)

Perceptrons can be used as a method for weighing evidence to make decisions and can
also compute the elementary logic gate NAND and hence any logic function, thanks to
the universality of NAND. Of course, perceptrons aren’t just merely a new type of NAND
gate, but it is possible to devise learning algorithms which can automatically tune the
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weights and biases of a network of artificial neurons and thanks to this feature the use of
artificial neurons open up to a whole new different and powerful way to solve problems.
A slightly more complicated artificial neuron, yet more useful for understanding the
learning process, is the sigmoid neuron. Each input of the sigmoid neuron can take any
values between 0 and 1 and the activation function used is the sigmoid function (see
figure 3.3b):

σ(w · x+ b) = σ(z) ≡ 1

1 + e−z
(3.2)

the shape of this function is basically a smoothed step function, so that small changes
in the weights and bias cause only a small change in the output:

∆output ≈
∑
j

∂output

∂wj

∆wj +
∂output

∂b
∆b (3.3)

(a) Step function (b) Sigmoid function

Figure 3.3: Two types of activation functions.

3.2 Gradient and stochastic gradient descent

The aim is to develop an algorithm that is capable of finding weights and biases so that
the network’s output closely matches the right answer y(x) for each training input x.
To assess how well this is being achieved, a cost function (or loss function) is defined,
with the purpose of expressing the discrepancy between the network output and the
real value. The loss function deployed in the analysis performed in this thesis is the
categorical cross-entropy. It is used in multi-class classification tasks and works pretty
well with the softmax activation function. The functional form is:

C(y, p) = −
N∑
c=1

yc ln(pc) (3.4)
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where pc is the predicted probability, yc is the truth value and the sum is extended to
all the different categories. The goal is to minimize this function and this is done by
an algorithm known as gradient descent. Often the cost function has a lot of variables,
and it is not tempting to use calculus and find the minimum analytically. What is done
instead is repeatedly compute the gradient of the cost function ∇C and then move in
the opposite direction.
The stochastic gradient descent is a variation of the classic one that can be used when
the number of training inputs is very large and consequently calculating the gradient
of the cost function is time and computationally consuming. In this case the training
data are randomly shuffled and then divided into a whole bunch of mini-batches. The
gradient is then estimated according only by the mini-batch sample. The result it is
not gonna be the actual gradient of the cost function, so it is not the most efficient
step downhill, but each mini batch does give a pretty good approximation, and more
importantly, it donates a significant computational speedup. An epoch of the training
is completed when the training inputs are exhausted.
Backpropagation is a fast algorithm for computing the gradient of the cost function. It
consists simply in a smart application of the chain rule, that allows starting from the
output layer to move backwards and calculate the error vector of each layer, a quantity
strictly related to the gradient of the loss function.

3.3 Evaluating performances

The code for training and applying various machine learning algorithms can be written
in just a few lines. After the setup, it’s important to evaluate some figures of merit to
get insight of the performances of our model.
The receiver operating characteristic curve, or ROC curve, is a representation of the
capacity of a binary classifier to separate the two classes, as its discrimination threshold
is changed. It shows the relation between the true positive rate against the false positive
rate. In the context of signal and background, it typically plots signal efficiency versus
background rejection (i.e. 1 -efficiency). To compare classifiers, the area under the curve
(AUC), can be computed: the closer the AUC value is to 1, the better the separation is,
while random guessing corresponds to an AUC of 0.5. An example is depicted in figure
3.4. Another interesting parameter to analyze is the significance S:

S =
s√
s+ b

(3.5)

where s (b) is the sum of signal (background) events. Usually the significance is computed
above a cut value on the discriminant output, scanning its full range. Typically it goes
through a maximum before starting to decrease when the statistics become too small.
The maximum significance corresponds to the optimal value on which to cut on the
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Figure 3.4: Example ROC curves. The dashed green line corresponds to random guess-
ing.

discriminant output to get the best possible analysis, by suppressing the background by
a large factor while leaving the signal events relatively intact.
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Chapter 4

Λ+
c reconstruction

The study of the production of charmed baryon is fundamental to probe the formation
of QGP and the theoretical expectations of QCD. The data provided by the ALICE
experiment showed that the baryon production observed in pp collisions at the LHC can
only be described by model calculations that account for novel hadronisation mechanism
[12]. Determining the production of Λ+

c down to low transverse momenta is particularly
important because we can compare the different theoretical predictions in a kinematic
region where the models calculations differ from each other.
The Λ+

c baryon is composed of the quarks udc, with quantum numbers I(JP ) = 0(1/2+).
Its mass is 2286.46(14)MeV/c2 and its mean lifetime is 2.024(31) × 10−13 s. The decay
channel considered here, Λ+

c → pK+
0 , illustred in figure 4.1, has a branching ratio of

1.59(8)%.

Figure 4.1: The decay considered in this analysis: Λ+
c → pK0

s , that happens for weak
interaction. The K0

s in turn decays into two pions, also due to weak interaction: K0
s →

π+π−. ALICE detectors can only directly detect the two pions and the protons.

Determining how many Λ+
c are produced is not easy, due to the low signal to back-

ground ratio. In addition, for tracks with low transverse momentum, the spatial reso-
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lution of the ITS is about 100 µm, and it is higher compared to the average distance
travelled by Λ+

c , that, due to its short lifetime, is about cτ ≈ 60 µm. This doesn’t allow
to distinguish the primary vertex from the second, so to reconstruct the signal of Λ+

c

and combine the information coming from experimental data sophisticated techniques
are needed. An invariant mass analysis may be performed to determine the original
particle’s mass and therefore identify Λ+

c particles. The idea is that if the obtained value
is consistent with the true mass of the decaying particle, a Λ+

c particle is considered
detected, otherwise it is only a random combination of independent tracks. However,
there is a problem with this approach: since many particles are produced in the experi-
ment, a large background of false candidates may result in invariant masses close to the
actual value, making it an intricate task to distinguish the actual Λ+

c signal. For this
reason machine learning techniques were employed to separate the real signal of Λ+

c from
the background, which consists of every possible combination of particles that are not
products of Λ+

c decay, but exhibit similar features. In particular, TMVA was used to
classify the events as either signal or background, where each event is a combination of
particles with characteristics that are potentially compatible with a Λ+

c decay.

4.1 Tensorflow and Keras

TensorFlow is an open source library for numerical computation and deep learning de-
veloped by Google, with TF 2.0 being officially released in late 2019. It supports various
programming languages [22], although Python tends to dominate. Keras is a high-level
python library that can use a variety of deep learning libraries underneath, such as Ten-
sorFlow. Due to the huge popularity of Keras, when TF 2.0 was released, Keras was
adopted as the official API (Application Programming Interface) for Tensorflow [23].

4.2 TMVA

In high-energy physics multivariate classification methods based on machine learning
techniques have become a fundamental ingredient to most analyses. Integrated into
the analysis framework ROOT, TMVA (Toolkit for Multivariate Analysis) is a toolkit
which hosts a large variety of multivariate classification algorithms [24]. All multivariate
techniques in TMVA follow the supervised learning paradigm. A typical TMVA analysis,
both for classification and regression tasks, consists of two independent phases: the
training phase, where the multivariate methods are trained, tested and evaluated, and
an application phase, where the chosen methods are applied to the concrete problem
they have been trained for. Also a pre-analysis is made that calculates the correlation
matrix of the input variables. Although TMVA is specifically designed for high-energy
physics, its application is not limited to this field.
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4.2.1 PyMVA

PyMVA is the interface of TMVA for third-party multivariate tools based on Python. It
is created to make powerful external libraries easily accessible with a direct integration
into the TMVA workflow. Thanks to this interface it is possible to book Keras methods,
like the Sequential model used in this thesis.

4.2.2 Training phase

At the beginning of the program, a Factory object is created. The input data sets used
for training and testing of the multivariate methods are passed to the Factory (TMVA
supports ROOT TTree objects) and the input variables used for training are registered
with the Factory thanks to the Add Variable method. Additionally, “spectator” vari-
ables can be defined: these are part of the dataset but are excluded from training and
evaluation. Spectator variables can be useful for tasks like correlation tests. The input
events are randomly split into two ROOT Trees, one dedicated to the training and the
other for testing. It is possible to apply selection requirements (cuts) upon the input
events, based on any variable present in the data sets. TMVA can internally renormalise
the signal and background training weights such that their respective sums of effective
events is equal. After, all methods are booked via the Factory: this concludes the ini-
tialisation of the Factory phase and no further specific multivariate actions are left to
do. The methods are trained with the command:

factory->TrainAllMethods();

and the training results are stored in the weight files. Subsequently, the methods are
tested and in the case of a signal/background classification task they provide scalar
outputs according to which an event can be classified as either signal or background
with the command

factory->TestAllMethods();

Finally, the performance evaluation in terms of signal efficiency, background rejection,
ROC curves and other parameters is done by invoking the command:

factory->EvaluateAllMethods();

4.2.3 Application phase

The application of training results to a data set with unknown sample composition
is governed by the Reader object. In the initialisation phase, the input variables are
registered and the preferred multivariate methods are booked. As booking argument,
the name of the weight files is given. The weight file provides for each of the methods
full and consistent configuration according to the training setup and results.
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4.3 Input data and variables

During the training phase, the data sample used for signal events were taken from pp col-
lisions simulated by the Monte Carlo generator PYTHIA8 [25]. To optimize the statistic
significance in these simulations it was required the presence of at least one Λ+

c decaying
via the hadronic decay channel under consideration. Also the ALICE’s detectors were
incorporated, simulating the interactions between particles and the detector materials as
accurately as possible, as well as the generation of the corresponding detector response
signals. The simulation of the ALICE detector and particle propagation was carried out
using the GEANT3 software [26]. The background data sample was derived from actual
measurements taken by ALICE during its second data-taking phase (run 2) between 2016
and 2018 and the same data was used for the application after the algorithm has been
trained and tested. During the training phase, to make sure only background data were
selected, only data points that gave a reconstructed invariant mass that was outside an
interval of 3σ around the known mass of Λ+

c were employed.

Choosing the variables that the neural network uses for training is a delicate step,
since exactly these variables are the instruments to distinguish if an event is signal or
background. There are two main criteria that help to determine if a certain variable
is suitable for training the algorithm. The first is checking how different the variable’s
distributions for signal and background are: if the two distributions are significantly dis-
tinct, then the variable is good to discriminate between signal and background events.
The second important aspect to consider is the presence of spurious correlations between
the input variables and the prediction of the model, as in general these unwanted corre-
lations make the model lack from robustness and generalization. In fact, the algorithm
may end up relying on these spurious dependencies to classify events, leading to incor-
rect decisions, as the model is not learning the true distinguishing physical features of
the signal. The variables tested for correlation and whose distributions in signal and
background have been analyzed are listed below. In this context, the potential proton is
the “bachelor” particle and the potential K0

S is the V 0 particle.

• massK0S: invariant mass of the V 0 particle. It is obtained by finding two particles
coming from the same vertex with opposite charge and reconstructing the mass
of the particle that generated them, with energy and momentum conservation,
assuming the particles’ masses are mπ = 139MeV/c [27]. The expected value for
the signal events is the K0

s mass: mK0
S
≈ 497MeV/c2.

• tImpParBach: impact parameter of the bachelor particle, defined as the mini-
mum distance from the bachelor track and the primary vertex, on the plane that
is normal to the track.

• tImpParV0: impact parameter of the V 0 particle.
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• ctK0S: cτ for the V 0. The expected value for K0
s is approximately 2.68 cm.

• cosPAK0S: cosine of the angle between the reconstructed direction of V 0 and the
line connecting the primary vertex to the secondary. It’s expected to be close to 1.

• nSigmapr: this PID variable accounts for the probability, in units of standard de-
viations, that the bachelor particle is actually a proton, combining the information
from the TOF and the TPC. According to the TOF, this probability is obtained
by comparing the time it takes for the bachelor particle to reach the TOF, with
respect to that of a real proton. In case of the TPC detector, this value is obtained
by comparing the energy loss dE

dx
of the bachelor particle, with respect to that lost

by real protons. For candidates where the TOF information is missing, because of
detector’s inefficiency, bad matching of the track or simply in case of low momen-
tum particles which cannot reach the TOF inner radius due to the magnetic field,
this variable is exactly the value provided by the TPC; otherwise, the value from
the TOF and the TPC are summed up in quadrature.

• dcaV0: it is the ”Distance of Closest Approach” of the V 0 particle, the recon-
structed minimum distance of the two daughter particles of V 0.

• bachelorPt: transverse momentum of the bachelor particle.

• V0Pt: transverse momentum of the V 0 particle.

• LcPt: transverse momentum of Λ+
c . This is used only as a cut variable, to select

the momentum interval from 1GeV/c to 2GeV/c.

• massLc2K0Sp: Reconstructed mass Λ+
c , at this stage is only used for the cor-

relation matrix, to check the degree of correlation of the other variables to this
one.

• asymmPt: it is a combination of V0Pt and LcPt, it has no precise physical mean-
ing but its definition and explanation on why it is used can be found below.

The variables distribution for signal and background were plotted, results are visible in
figure 4.2; to be noted that some distributions have been drawn with a logarithmic scale
on the y axis.
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Figure 4.2: Input variables distribution in pT range [1,2] GeV/c2.

The transverse momentum of the bachelor, pt(bachelor) and the V 0, pt(V0), stand out
in a remarkable shape difference between signal and background distribution. However,
these variables are correlated to the transverse momentum of the Λ+

c up to 21-23%, as
well to the Λ+

c reconstructed mass up to 14%, as can be seen from the correlation matrix
in figure 4.3, so they are not suitable for the analysis. To overcome this problem it was
introduced this new variable called AsymmPt, defined in the following way:

pt(bachelor)− pt(V
0)

pt(bachelor) + pt(V 0)
(4.1)

that keeps the property of having nice different distributions for the signal and back-
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Figure 4.3: Correlation matrices of the input variables calculated on the training signal
data (left) and on the training background data (right).

ground, like the transverse momentum of the bachelor and the V 0, but it is not correlated
to the reconstructed invariant mass. To evaluate the positive impact of AsymmPt, two
independent training of the model, with and without AsymmPt, were done and applied
to the data.

4.4 Description and training of the model

The algorithm trained for the analysis was Keras Sequential model, imported in TMVA
thanks to PyMVA (4.2.1). The following lines describe the model configuration:

# Define model

model = Sequential()

model.add(Dense(64, activation='relu', input_dim=7))

model.add(Dense(2, activation='softmax'))

# Set loss and optimizer

model.compile(loss='categorical_crossentropy',

optimizer=SGD(learning_rate=0.01),

weighted_metrics=['accuracy', ])

The two layers that composed the network are densely connected, meaning it is a feed-
forward network where every neuron is connected to every other neuron in the next layer.
The parameters inside Dense indicate the number of neurons and the activation function
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in the layer. The first layer has the Rectified Linear Unit (ReLU) activation function,
that is f(x) = max(0, x), while the second has the softmax function S(z), that is defined
like this:

S(z) =
ezi∑
j e

zj
(4.2)

and whose output is interpreted as a probability of a certain event to be background
or signal. In the compilation of the model, the optimizer is asking how to perform the
gradient descent, while the loss requires that we indicate the desired loss function. In
this case, the stochastic gradient descent was computed and categorical cross-entropy
was used as a cost function.

4.4.1 Controlling overtraining

Overtraining, or overfitting, is what happens when a classifier learns too much about the
specific details of the training sample, while these features are not representative of the
underlying distributions. This often results in low error on the training set but high error
on test set, because the classifier does not generalise well. To check if the model suffered
from overtraining, the classifier output distributions for the training and test set were
plotted and superimposed. The response of the model is a continuous output where 0
means the model thinks has an 100% fidelity of classifying the event as background, and
1 that is 100% sure that is signal. Intermediate values represent the probability of the
event of being a signal. As can be seen from figure 4.4 the are no significant differences
in the two sets, so the model generalise well to unseen data. The overtraining test was
performed on both the classifiers, the one trained with the variable AsymmPt and the one
without.

(a) (b)

Figure 4.4: Test and training output distribution, (a) without AsymmPt, (b) with
AsymmPt.
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4.4.2 ROC curve

In figure 4.5 the receiver operating characteristic (ROC) curves are plotted for the two
classifiers. The classifier trained with the additional variable has better performances for
all the range of signal efficiency, even if it is a small difference.
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Figure 4.5: ROC curves, the area under the curve for the green one is 0.797, for the red
one is 0.819.

4.4.3 Cut efficiencies

To calculate the probability of a Λ+
c being produced in high energy pp collisions, it is

necessary to measure how many of these particles appear in our data. This measurement
is made particularly challenging due to the high combinatorial background, specifically
at low transverse momenta. So the first step in estimating the particles number is apply
a cut on the output response, that allows to eliminate a relevant part of the background
without possibly lose too many signal events. TMVA supplies a graph (figure 4.6) that
display signal and background efficiencies, obtained from cutting on the classifier outputs,
versus the cut value. The graph also shows the signal purity, the product of signal
efficiency and purity, which correspond to the expected number of signal and background
events before cutting and the significance. Also the optimal cuts according to the best
significance are shown.
To compare the two classifiers it was applied a cut to maintain the same efficiency of 90%.
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The cut on the output for the first model without AsymmPt is 0.071 and for the second
with AsymmPt is 0.074. Of course, the efficiency is calculated on the testing data set,
whose output is known, so it is only an esteem for the experimental data on which the
algorithm is applied. Additionally, TMVA provides an accurate cut value that maximizes
the significance and the analyses was done also with these cut values, corresponding to
0.0992 (without AsymmPt) and 0.1181 (with AsymmPt).
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Figure 4.6: Classifier cut efficiencies estimated for 10000 signal events and 1000000
background events, (a) without AsymmPt, (b) with AsymmPt.
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4.5 Application and analysis

After the two versions of the algorithm were trained and tested, they were applied to real
data of pp collisions at center of mass energy of 13TeV. The events processed during
this phase were of the order of 30 millions, and the algorithm took several hours to run
through all of them. The application macro created two histograms: a one-dimensional
histogram representing the distribution of the PyKeras responses, and a two-dimensional
histogram that allows to analyze how the output is correlated to the invariant mass. Ide-
ally, in the region of the correct mass of Λ+

c the model should have assigned a score closer
to 1. By projecting the two-dimensional histogram it was possible to recover the mass
invariant histogram, ready to be fitted.
The background was modelled with a third degree polynomial function and the fit back-
ground function was subtracted from the histogram. The obtained shape, representing
the signal, was fitted with a gaussian, whose width σ is mainly due to the track resolution
of ALICE detectors and for this reason fixed at the expected value from the simulation
(σ = 0.076MeV/c2). The results with the cut on the classifier response made to maintain
the efficiency at 90% are visible in figure 4.7. The Λ+

c mass, the yield, that is the actual
number of Λ+

c calculated through the integral of the histogram and the significance for
both methods are summarized in table 4.1. The classifier that has been trained adding

Mass of Λ+
c (MeV/c2) Yield Significance

Without AsymmPt 2.2890± 0.0010 9645± 1009 7.68
With AsymmPt 2.2888± 0.0009 9808± 962 8.18

Table 4.1: Main fitting results of the analysis conducted with a cut of the output of the
classifier that set the efficiency at 90%.

the variable AsymmPt performed better and gave a slightly more precise result, as can be
seen by comparing the signal-to-noise (S/B) ratio (0.0069 with and 0.0062 without the
AsymmPt variable) and the significance (8.18 and 7.68). Furthermore, even with regard
to statistical uncertainty, the analysis with the AsymmPt variable seems slightly better
(10% versus 11%). However, the results appear to be quite similar, like the ROC curves
suggested (figure 4.5), with little difference between the two classifier.

An analogous analysis was performed with the only change being the cut value of
the classifier response. TMVA accurately calculates the optimal cut value that maximize
the significance, as shown in figure 4.6. These values were adopted in this version, with
0.0992 for the classifier trained without AsymmPt, and 0.1181 for the other one. In this
case, the signal efficiencies on the training set were 0.8313 (without AsymmPt) and 0.7917
(with AsymmPt). Table 4.2 compares quantitatively the outcomes, and the fit results are
displayed in figure 4.8.
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Mass of Λ+
c (MeV/c2) Yield Significance

Without AsymmPt 2.2888± 0.0009 9600± 917 8.28
With AsymmPt 2.2886± 0.0009 8756± 825 8.48

Table 4.2: Main fitting results of the analysis conducted with a cut of the output of the
classifier that maximized the significance.

Both versions lead overall to similar outcomes, with the main difference being the
yield in the second analysis version with AsymmPt, that is 8756 ± 825 (see table 4.2).
Although this is the lowest yield obtained, it is not unexpected since the cut value
was the highest compared to the other ones, and the value is compatible with the rest
within the uncertainty. However, even if only slightly, the performance provided by the
algorithm with the AsymmPt variable is better in this case too, with an S/B ratio of
0.0084 against 0.0074 (+14%) and a significance of 8.48 against 8.28 (+2.4%).
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Figure 4.7: Mass invariant histogram with the background fitted with a third degree
polynomial function on the left, on the right there is the mass invariant histogram with
the background subtracted and fitted with a gaussian. The figure (a) represents the fit
results without using AsymmPt, in figure (b) it is depicted the outcome of the analysis
made with the variable AsymmPt. A cut value that set the efficiency of 90% was applied
to the labeling algorithm.
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Figure 4.8: Mass invariant histogram with the classifier output cut that maximize the
significance. The background fitted with a third degree polynomial function is on the left,
on the right there is the mass invariant histogram with the background subtracted and
fitted with a gaussian. The figure (a) represents the fit results without using AsymmPt,
in figure (b) it is depicted the outcome of the analysis made with the variable AsymmPt.

45



Conclusions

Recent measurements made at ALICE in proton-proton collisions revealed that there
is a significantly larger fraction of charm quarks hadronising to baryons, compared to
e+e− and ep collisions. This challenges the assumption that fragmentation functions are
universal and can therefore be deduced from e+e− results. To correctly interpret the
data, other hadronisation mechanisms beyond the fragmentation process need to be con-
sidered and theoretical hypothesis have been proposed, each of them relying on different
assumptions. These models are able to reproduce in general the data, but differ at low
transverse momenta, therefore especially at low pT obtaining precise values of baryon
production is essential to understand which model aligns best with ALICE outcomes.

In this present work, the Λ+
c signal was reconstructed via the decay channel Λ+

c →
pK0

s in the transverse momentum region of 1 < pT < 2GeV/c in pp collisions at√
s = 13TeV using a neural network model in TMVA. The employment of machine

learning was necessary due to the low signal-to-background ratio and the short lifetime
of Λ+

c . The machine learning algorithm was trained twice: with and without an ad-
ditional variable that presented itself as a potentially privileged candidate for training
the algorithm, because of the different distribution for the signal and background in
the training phase. Both versions were applied to real, experimental data to test their
effectiveness. A cut was applied on the classifier response to chop out a good portion of
the background, and the analysis was performed firstly by balancing efficiency and then
by optimizing the significance with the appropriate cuts. The background was modelled
with a third degree polynomial and the mass invariant signal was fitted with a gaussian.
Finally, the yield was extracted with the integral of the gaussian and in all versions, the
extracted yields were found to be compatible with each other within the uncertainties.
The analysis performed with the additional variable was slightly better, showing im-
proved values for the signal-to-background ratio, statistical significance, and statistical
uncertainty; however, the improvement is not sufficient to significantly enhance the cur-
rent precision of the extracted signal, which is not capable of favoring any specific model.
Future work aims to improve precision and hopefully contribute to the understanding of
charm-baryon production in small system at LHC.
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Besides that, the discovery of enhanced baryon production in pp collision, as well as
other similarities observed in Pb–Pb collisions, raises questions about the conventional
view that QGP is only formed in heavy-ions collisions. Therefore, further experimental
and theoretical efforts are needed to fully understand the charm quark hadronisation
mechanisms and the underlying dynamics in hadronic collisions at the LHC. Future
work, maybe with the upgraded ALICE experiments (ALICE 2 and ALICE 3) will be
crucial in addressing these questions.
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qualcosa per strada. A Gio, alla nostra amicizia, al tuo entusiasmo e genuinità, alla
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