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Abstract

The de Sitter spacetime is of fundamental importance in the field of cosmology, as it
serves to model both the primordial and current expansion of the Universe. The quan-
tum theory of inflation posits that the anisotropies of the cosmic microwave background
and of the large-scale structure originate from primordial quantum fluctuations, which
are imprinted in correlators at the end of inflation. A holographic correspondence be-
tween the de Sitter bulk and its conformal boundary would provide a powerful com-
putational tool and a deeper understanding of a quantum field theory embedded in de
Sitter space. Nevertheless, while numerous useful results in the context of AdS/CFT
have already been obtained, the dS case presents a distinctive behaviour due to the con-
formal boundary being a spacelike hypersurface at time infinity, which gives rise to an
Euclidean dual CFT. One may circumvent this problem by exploiting a map between
Schwinger-Keldysh boundary propagators in dS and those in Euclidean AdS. These are
linked by an analytical continuation, which becomes a simple phase shift in the Mellin-
Barnes representation. From this relation, it is possible to express Schwinger-Keldysh
diagrams in dS at all orders in perturbation theory as a sum of Witten diagrams in EAdS.
By utilising the EAdS spacetime as an intermediary, a perturbative dS/CFT correspon-
dence can be constructed. Following the presentation of these core results, the thesis will
proceed to present an original computation achieved via the aforementioned holographic
approach. The objective is to compute the anomalous dimensions of double-trace op-
erators of the boundary CFT, which are associated with exchanges of bound states in
the bulk. This boundary quantity is a means of encoding information on the stability
of bound states and their mass spectrum. It will be demonstrated that even such dS
anomalous dimensions can be expressed in terms of the related anomalous dimensions in
the EAdS.

Lo spaziotempo di de Sitter è di fondamentale importanza nel campo della cosmolo-
gia, in quanto modella sia l’espansione primordiale che quella attuale dell’Universo. La
teoria quantistica dell’inflazione sostiene che le anisotropie della radiazione cosmica di
fondo e della struttura su larga scala hanno origine da fluttuazioni quantistiche primor-
diali, che vengono impresse nei correlatori alla fine dell’inflazione. Una corrispondenza
olografica tra il bulk del de Sitter e il suo contorno conforme fornirebbe un potente stru-
mento di calcolo e una comprensione più approfondita per una QFT nello spaziotempo
di de Sitter. Tuttavia, mentre sono già stati ottenuti numerosi risultati utili nel contesto
dell’AdS/CFT, il caso dS presenta un comportamento peculiare dovuto al fatto che il
confine conforme è un’ipersuperficie spaziale all’infinito temporale, che dà origine a una
CFT euclidea. Si può aggirare questo problema sfruttando una mappa tra i propaga-
tori di confine (nel formalismo di Schwinger-Keldysh) nel dS e quelli nell’AdS euclideo.
Questi sono legati da una continuazione analitica, che diventa un semplice spostamento
di fase nella rappresentazione di Mellin-Barnes. Da questa relazione è possibile esprimere



i diagrammi di Schwinger-Keldysh in dS, a tutti gli ordini perturbativi, come una somma
di diagrammi di Witten nell’EAdS. Utilizzando lo spaziotempo EAdS come intermediario
è possibile costruire una corrispondenza perturbativa dS/CFT. Dopo la presentazione di
questi risultati fondamentali, la tesi seguirà con la presentazione di un calcolo originale
ottenuto tramite il suddetto approccio olografico. L’obiettivo è quello di calcolare le
dimensioni anomale degli operatori a doppia traccia della CFT di contorno, che sono
associati agli scambi di stati legati nello spaziotempo interno. Questa quantità del con-
torno è un mezzo per codificare informazioni sulla stabilità degli stati legati e sul loro
spettro di massa. Si dimostrerà che anche queste dimensioni anomale del dS possono
essere espresse in termini delle relative dimensioni anomale dell’EAdS.
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Introduction

Since its first presentation in 1998 by J. Maldacena [1], the AdS/CFT correspondence
has gained increasing interest in various branches of Physics, from cosmology and quan-
tum gravity to particle and condensed matter physics, constituting a very active field of
research today.
The original idea of relating a string theory weakly coupled to gravity, embedded in the
bulk of a 5-dimensional Anti-de Sitter spacetime, with a strongly coupled conformal field
theory embedded in the boundary at spatial infinity, soon led to the idea that we were
not dealing with a mere mathematical coincidence, but with a relationship of profound
physical significance. In fact, this correspondence was soon interpreted as a realisation
of the so-called holographic principle. Conceived by Gerard t’Hooft in 1993 [2] in
relation to the study of the entropy of black holes, it consists of the hypothesis that the
physical information contained in a volume of space is proportional to the surface area
enclosing it, and consequently encoded in a boundary theory, just as in Maldacena’s
work. It suggests that quantum fields in the boundary somehow codify physics of one
spatial dimension: the geometrical structure, the fields’ propagation and the interaction
between these two, i.e. gravity.
Over the past twenty-six years, the AdS/CFT correspondence has been enhanced with
significant formal outcomes, expanded to encompass more comprehensive quantum field
theories and spacetime dimensions, and applied in a variety of phenomenological con-
texts, particularly in the field of black hole physics. A sophisticated mathematical ap-
paratus, founded upon the powerful techniques characteristic of conformal theories, has
emerged alongside a multitude of implementations in physics of fundamental interactions.

The main limitation of AdS/CFT correspondence is the fact that it regards a space-
time with a negative cosmological constant. This is the opposite situation of two of the
most important periods of our Universe’s history: the current era of cosmological ex-
pansion and the inflationary one. In fact, in both cases, it is described (approximately)
by a de Sitter manifold, i.e. an exponentially expanding spacetime due to a positive
cosmological constant.
However, while the peculiar geometry of AdS allows an exact conformal bootstrap of
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correlators of the boundary CFT, fundamentally based on the construction of a state-
operator correspondence, the dS case presents a more challenging situation, where such
conditions are still not achieved.
Further, an even more cumbersome and exotic property of a possible dS/CFT correspon-
dence is the unitarity on the boundary. Indeed, the essential difference between dS and
AdS regards the nature of the conformal invariant boundary: while in AdS it is located
at spatial infinity and is a timelike hypersurface, in dS it corresponds to the infinite
time limit, thus to a spacelike hypersurface. In other words, a possible dual CFT in the
de Sitter case would have no Minkowskian time coordinate, being instead an Euclidean
theory. For this reason the causality structure of the desitterian boundary dual theory
is still unclear, needing further exploration.

While on one hand this is a big complication to the construction of a holographic
theory describing our Universe, from the other it offers some unique and unexpected
opportunities.
For first, dS/CFT would lead to a holographic reduction of the temporal coordinate:
evolution in time would be encoded in a theory without time, or, from the opposite view
point, time would be emergent [3]. Emergence of time is taken in account in various
quantum gravity/cosmology theories, like the no-boundary proposal ; however, it is still
a speculative idea, lacking of a full and accurate description.
A second and already concrete advantage coming from the dS/CFT problematic geo-
metrical structure, regards its astonishing and immediate application to inflationary
cosmology.

As will be presented later on, inflationary models of the primordial Universe involve
an approximate desitterian expansion which, due to a phase transition mechanism, spon-
taneously breaks at a point in time evolution [4]. Quantum fluctuations generated during
inflation are frozen in time at its end, later becoming experimentally observable1 in what
is called the Hot Big Bang. This way we have a sort of window on the primordial era,
which involved very high energy scales, of the order of 1014GeV, provided that we are
able to compute inflationary quantum correlators in the late-time limit.
For this reason, the dS complication of forcing the dual CFT to be in the future time limit
is, in the inflation theory context, a benefit2. The dS/CFT approach will be therefore
suited for inflationary applications.

This thesis presents a specific approach used to construct a (until now) perturbative
dS/CFT, valid at all orders. It is based on exploit the already rich variety of AdS/CFT

1At least indirectly, due to transfer processes caused by interactions emerging in the Hot Big Bang.
2As said, in inflation the spacetime is never exactly dS and always has a finite time t∗ in which the

exponential evolution breaks. This hypersurface behaves as the future time one of the exact dS for an
observer out of the inflationary era looking to the past. So the holographic approach can be still applied
assuming t∗ → +∞.
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results, building a method to map a generic Feynman diagram of a QFT embedded in a
dSd+1 spacetime to a finite sum of Witten diagrams3 of the same QFT embedded in an
Euclidean AdSd+1 [5]. This map is completely general and valid for whatever diagram,
at all orders in perturbation theory, including also spin and derivative interactions. It
proves itself to be a powerful method to compute even multiple-loop diagrams, while the
direct perturbative approach in dS gives limited results up to 1-loop.

In chapter 1, the most important characteristics of desitterian quantum field theory
will be presented: starting with the dS geometrical structure and peculiarities, with a
point of view on the physical implications, we will proceed to derive the field behaviour
both at classical and quantum levels.
After having explored the free theory kinematics, we will introduce interactions, showing
the inappropriateness of usual scattering theory in the inflationary context. Finally, the
Schwinger-Keldysh formalism will be fully presented.

Chapter 2 will be the core of the thesis, presenting the above mentioned dS↔ EAdS
method. After having reviewed some notions of AdS/CFT, we will introduce the initial
and simple relation linking the two bulk theories, deriving step by step its consequences.
The final result will be a direct relation between propagators of the two theories, which
could be applied directly to relate diagrams.
Then, we will focus to the study of exchange diagrams, deriving their mapping relation
with different approaches, the most important being the conformal bootstrap. Finally,
the relation with the boundary CFT will be treated.

In chapter 3 will present the application of the previously built holographic approach
to derive an original result still lacking in current literature: the anomalous dimensions
γdS0,l of double-trace operators [OO]0,l, with null radial quantum number, induced by a dS
4-point diagram of an exchanged scalar massive field. These quantities characterise the
interactive behaviour of bound states in the bulk, providing information to their stability
and mass spectrum.
We will proceed first defining formally the anomalous dimension and presenting a method
to extract it from the boundary CFT. At this point the map to EAdS will be useful,
making us able to proceed with the full computation of its general formula.

3Witten diagrams are AdS Feynman diagrams with all the external legs on its conformal boundary.
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Chapter 1

Quantum fields in de Sitter

The spacetime of de Sitter is of fundamental importance in inflationary cosmology, as
it describes an empty Universe with a positive cosmological constant, which in slow-roll
models makes a good approximation for the early moments of Universe evolution [4].
Unlike the exact dS spacetime, where the exponential expansion never ends, in slow-roll
inflation it stops at a finite time as an effect of the potential of the inflaton scalar field ϕ,
whose gravitational coupling drives the metric evolution. A typical inflationary action,
involving a minimal coupling with gravity, is:

S =

∫
d4x
√
−g
(
M2

p

2
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

)
, (1.0.1)

where V (ϕ) is the potential and gµν is assumed to be a FLRW metric:

ds2 = −dt2 + a2 (t)
(
dχ2 + Φ

(
χ2
) (
dθ2 + sin2 θ dφ2

))
, (1.0.2)

Φ
(
χ2
)
=


sinh2 χ , χ ∈ [0,+∞) , open

χ2 , χ ∈ [0,+∞) , flat

sin2 χ , χ ∈
[
−π

2
, π
2

]
, close

(1.0.3)

with the form of Φ (χ2) defining the global topology.

Hubble parameter H (t) := ȧ(t)
a(t)

is then dynamical and satisfies the Freedman equation:

H2 (t) =
1

3

(
1

2
ϕ̇2 + V (ϕ)

)
. (1.0.4)

An exact de Sitter Universe has H (t) = const and expands at a constant exponential
rate. Deviations from dS are encoded in the slow-roll parameter

ε := − Ḣ

H2
, (1.0.5)
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Figure 1.1: Slow-roll potential of the inflaton ϕ. de Sitter era is characterized by V (ϕ) ≈ const
and the formation of the quantum fluctuations which will generate the CMB anisotropies.
These fluctuations are frozen in time evolution at ϕend due to exponential expansion. Finally,
ϕ reaches a potential minimum and decays in SM particles.

with dS limit being at ε→ 0, dynamically verified when

ϕ̇2 ≪ V (ϕ) ,

V (ϕ) ≈ 0 .
(1.0.6)

Then, in this case 1.0.4 implies a (t) ≈ eHt.
Inflation theory requires a desitterian era for an enough amount of time1. Slow-roll
models satisfy this requirement via a potential of the type shown in Figure 1.1, having
a slightly decreasing behaviour generating a long-time non-equilibrium dS era, followed
by a minimum. When ϕ̇2 ≈ V (ϕ) inflation ends and ϕ is led to decay in Standard Model
particles starting a process called reheating.

Thanks to the exponential expansion, quantum fluctuations of the inflaton (and of
other possible extra fields) generated in the early stages are frozen at the end of inflation,
creating the seeds for anisotropies we measure in Hot Big Bang remnants, like CMB or
LSS2.

1Enough time such that far points of the measured Hot Big Bang surface could have been in causal
contact in the past.

2They refer respectively to the Cosmic Microwave Background, i.e. the last scattered electromagnetic
radiation when Universe became transparent to it (recombination era), and to Large Scale Structures,
such as the distributions of galaxies.
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For this reason, a clear understanding and control of quantum evolution in the bulk
of inflation, encoded in the cosmological correlators, is crucial to derive prediction
for the cosmological observables, like the power spectra or the bispectra of the involved
fields. An exact inflationary QFT needs to take into account the entire potential, which
usually can be done through a numerical approach. Nevertheless, the dS limit is a good
approximation for most models and, as will be shown in this work, allows a strong and
promising control of the primordial fluctuations.

In this section, we begin by reviewing the geometry and symmetries of dS spacetime.
We show then the peculiar behaviour of quantum fields embedded in it, like the past and
future time limit, the instability and the unitary irreducible representations.
We will then introduce the in-in formalism, which is the key tool for computing cosmo-
logical correlators in perturbation theory and will allow us to build the dS/CFT in a
later chapter.

1.1 De Sitter geometry

The most general definition of the (d+1)-dimensional de Sitter spacetime3 (dSd+1) is to
represent it implicitly as an hyperboloid embedded in a (d + 2)-dimensional Minkowski
spacetime (Md+2) [6, 7]:

−
(
X0
)2

+
(
X1
)2

+ · · ·+
(
Xd+1

)2
= L2 . (1.1.1)

For the ambient spacetime we assume the following signature convention for the metric:

ds2 = ηMNdX
MdXN , ηMN = diag (− + ... + +) , M,N = 0, · · · , d+ 1 . (1.1.2)

The parameter L is called dS radius and is related to the expansion rate of the described
spacetime. A 3D graphical representation of dS manifold for d = 2 is shown in Figure
1.2.
Due to constraint 1.1.1, theMd+2 distance between two points can be given in terms of
theMd+2 scalar product:

|X1 −X2|2 = 2L2 − 2X1 ·X2 . (1.1.3)

So it is common work with the hyperbolic distance:

P (X1, X2) =
X1 ·X2

L2
=
ηMNX

M
1 X

N
2

L2
, (1.1.4)

3The choice of working with (d + 1) dimensions will be convenient in building the correspondence
with a d-dimensional CFT embedded on the boundary of dSd+1.
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Figure 1.2: Three dimensional graphical representation of the dS3 hyperboloid. L is the
radius of the minimal S2 spatial hypersurface (in closed slicing).

or the geodesics distance D (X1, X2), defined such that:

P (X1, X2) ≡ cos
D (X1, X2)

L
. (1.1.5)

The manifold such defined is strongly symmetric: equation 1.1.1 is clearly invariant
under the special orthochronous Lorentz group SO(1, d + 1), which is then inherited
from Md+2 as the isometry group of dSd+1. Also, each point of the manifold is left
unchanged by a SO(1, d) transformation, so that dSd+1 could be defined by SO(1, d +
1)/SO(1, d)4. For this reason dSd+1 is a homogeneous and isotropic spacetime, which
implies it to be maximally symmetric [8].

We can now prove dS represents an empty spacetime with a positive cosmological
constant Λ.
For maximally symmetric spacetimes the curvature of the manifold is the same at each
point and in any direction, i.e. the Ricci scalar R is a constant over dSd+1 and the
Riemann tensor can be proven to have always the following form5:

Rαβγδ =
R

d(d+ 1)
(gαγgβδ − gαδgβγ) , (1.1.6)

4This is in complete analogy with the Euclidean (d + 1)-dimensional sphere, defined by SO(d +
2)/SO(d + 1). Indeed, the two manifold are simply related by a Wick rotation of the X0 coordinate,
with L becoming the radius of the sphere.

5Assuming the following convention: Rα
βγδ = ∂γΓ

α
δβ − ∂δΓα

γβ + Γα
γλΓ

λ
δβ − Γα

δλΓ
λ
γβ .
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so the Ricci tensor is:

Rαβ = Rλ
αλβ =

R

d+ 1
gαβ , (1.1.7)

so that curvature is completely coded by R.
We can now inspect the consequences for the Einstein tensor Gαβ:

Gαβ = Rαβ −
1

2
Rgαβ = − d− 1

2 (d+ 1)
Rgαβ , (1.1.8)

but R is a constant and can be proven, using a parametrization of the metric, to be

R =
d (d+ 1)

2L2
. (1.1.9)

So Gαβ clearly satisfies the Einstein equation for an empty Universe with a positive
cosmological constant depending just on L:

Gαβ = −Λgαβ , (1.1.10)

Λ =
d (d− 1)

2L2
. (1.1.11)

The constraint 1.1.1 can be solved by a number of parametrizations of the XM . Let’s
show the most important ones.

Global coordinates

A set of coordinates (t, θi) covering the whole hyperboloid is given by the following:

X0 = L sinh
t

L
, X i = niL cosh

t

L
, i = 1, · · · , d+ 1 . (1.1.12)

where −∞ < t < +∞ and ni is a unit vector which can be parametrized as follows6:

n1 = cos θ1, −π
2
< θ1 <

π

2
,

n2 = sin θ1 cos θ2, −π
2
< θ2 <

π

2
,

· · ·

nd−1 = sin θ1 sin θ2 · · · sin θd−2 cos θd−1, −π
2
< θd−1 <

π

2
,

nd = sin θ1 sin θ2 · · · sin θd−1 cos θd, −π < θd ≤ π ,

nd+1 = sin θ1 sin θ2 · · · sin θd−1 sin θd .

(1.1.13)

6Actually the coordinates (t, θi) can not be properly ”global”, covering the whole manifold, as for each
spatial section the angular coordinates leave the poles uncovered, as can be seen from their definition
intervals.
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The structure of 1.1.13 reminds us of the usual spherical coordinates. Indeed the global
metric of dSd+1 is:

ds2 = −dt2 + L2 cosh2

(
t

L

)
dΩ2

d (1.1.14)

with

dΩ2
d =

d∑
j=1

(
j−1∏
i=1

sin2 θi

)
dθ2j (1.1.15)

which is the metric of a Sd space.
Then dSd+1 spacetime in global coordinates behaves as a d-dimensional spatial sphere
which is contracting exponentially from −∞ to t = 0, when it reaches a minimum volume
proportional to L, then expanding exponentially from t = 0 to +∞. The metric is of
the type of a closed FLRW one and for this reason it is called the closed slicing of dS
spacetime.

Conformal coordinates

It is useful to move to a set of coordinates which makes evident the causal structure of
dSd+1. To do this we start from 1.1.12 making this transformation:

cosh2 t

L
=

1

cos2 τ
, (1.1.16)

where τ is defined in the interval (−π/2, π/2). The global conformal metric is:

ds2 =
L2

cos2 τ

(
−dτ 2 + dΩ2

d

)
. (1.1.17)

This is related via a conformal transformation to the Einstein static Universe metric:
ds̃2 = −dτ 2 + dΩ2

d . Also, dSd+1 shares with the latter the same cylindrical topology :
R× Sd.

This relation could be used for tracing a Penrose diagram of dSd+1.
Focusing for now on the case d > 2, we can expand the spatial line element and consider
just the θ1 direction, getting the line element of a 2-dimensional Minkowski spacetime
compactified to a square:

ds̃2 = −dτ 2 + dθ21 , −π
2
< τ, θ1 <

π

2
. (1.1.18)

Then, we can represent in a simple way the Penrose diagram of dSd+1 by a square
where each point represents a Sd−1 sphere, as it is depicted in Figure 1.3. Causality
is expressed by null trajectories dτ = ±dθ1. The vertical edges at θ1 = ±π/2 do not
coincide as they represent worldlines of the North and South poles of the Sd sphere7, so

7So, on these edges, the Sd−1 sphere is shrunk to a point.
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Figure 1.3: Penrose diagram of dSd+1 for d > 2. Each point of the square represents a Sd−1

sphere, while a line at τ = const represents a Sd sphere. The points θ1 = ±π/2 are the two
distinguished north and south poles of Sd.

the cylindrical topology is not manifest. It could be made evident selecting θd instead
of θ1, as in this case the definition interval of the spatial coordinate is (−π, π] and the
vertical edges θd = ±π coincide. However we would get a non-flat metric, changing the
causality structure of the diagram.

Instead, for d = 2 both the cylindrical topology is manifest and flatness is preserved,
as in this case there is just one spatial coordinate and we get a rectangular Penrose
diagram:

ds̃2 = −dτ 2 + θ2 , −π
2
< τ <

π

2
, −π < θ ≤ π . (1.1.19)

Differently to Minkowski, de Sitter presents regions causally forbidden to observers;
in other words, it presents horizons.
InM all the inertial observers, starting from whatever point of spacetime, can causally
access to all the possible events. Indeed, after an enough amount of time, the past light
cone of a Minkowskian inertial observer will cover an event before out of his reach, making
possible the arriving of signals from it. on the other hand, going enough backward in
time, the future light cone covered any possible future event, so that it could be causally
affected by the observer.
In dS the situation is complicated by its exponential expansion and contraction: due to
this, every possible observer, fixed on a certain space point, will be characterized by two
particular regions of past and future dependence. Events out of these regions can not
respectively affect or be affected by the observer.
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Figure 1.4: Causality for an observer at rest on N: a. region of past dependence, collecting
events able to affect N; b. region of future dependence, collecting events N can influence; c.
causal patch of N, collecting events N can communicate to.

Figure 1.4 shows this property for an observer located on the North pole of dSd+1.
I+ and I− represent the spacelike hypersurfaces respectively at future and past time
infinity. Diagram a shows a light ray starting from S at I− and reaching N exactly at
I+. If it starts at finite time it will never reach N. This light ray traces a horizon for
the observer sit at rest on N, limiting its past dependence region O−: inner events can
affect N, while outer ones can not. Analogously, diagram b shows the future dependence
region of the same observer, O+, limited by the light ray from (I−,N) to (I+, S), which
contains the events N can influence physically.
Then, intersection O+ ∩ O−, shown in c, is the whole region in full causal contact with
N, being possible for it to extract information from every point sending a physical signal
and receiving a response. It is called the northern causal patch (or causal diamond). on
the other hand, the southern causal patch is completely inaccessible to N.

Expanding and contracting Poincaré patches

The two sets of coordinates now presented have the property to cover two distinguished
patches of whole dSd+1: the expanding Poincaré patch (EPP) and the contracting one
(CPP).
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The EPP coordinates (t+, x
i) for dSd+1 are the following:

X0 = L sinh
t+
L

+
δijx

ixj

2L
e

t+
L ,

X i = xi e
t+
L , i = 1, · · · , d ,

Xd+1 = −L cosh
t+
L

+
δijx

ixj

2L
e

t+
L .

(1.1.20)

with the definition intervals −∞ < t+ < +∞ and −∞ < xi < +∞ ∀i = 1, · · · , d.
The resulting EPP metric is:

ds2+ = −dt2+ + e
2t+
L δijdx

idxj . (1.1.21)

Differently to the global case, which was a spherical foliation of dSd+1, this metric man-
ifests EPP is a flat foliation8. In particular, it is a flat FLRW type metric, with a scale

factor a(t+) = e
t+
L growing exponentially in time. This behaviour justifies the name of

expanding patch.
From 1.1.21 it is manifest that dS spacetime models the approximate exponential expan-
sion proper of slow-roll inflationary models, with L coding the expansion rate, i.e. the
Hubble parameter:

H =
1

L
, (1.1.22)

which is H ≈ const in the slow-roll phase[4]. For L→ +∞, a(t+)→ 1 and we recover a
Minkowskian spacetime.

It can be shown 1.1.20 does not cover the whole manifold noticing −X0 + Xd+1 =

−L e
t+
L ≤ 0. Then, in this parametrization it is always X0 ≥ Xd+1, so EPP covers just

half of dSd+1 and is geodesically incomplete. Inspecting this patch using global conformal
coordinates, we can visualize it in the Penrose diagram. Using 1.1.12, 1.1.13 and choosing
θi = π/2 for i = 2, · · · , d we have

X0 = L sinh
t

L
, Xd+1 = L sin θ1 cosh

t

L
, (1.1.23)

and the patch is defined by

tanh
t

L
≥ sin θ1 . (1.1.24)

Using now 1.1.16:
sin τ ≥ sin θ1 , (1.1.25)

which in the interval (−π/2, π/2) implies τ ≥ θ1. Then EPP coincides with the O+ patch
of an observer at rest on the South pole.

8For this reason these are also called planar coordinates.
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Figure 1.5: EPP and CPP are shown in the global Penrose diagram of dSd+1, including various
hypersurfaces at fixed conformal time. Future/past time infinity hypersurfaces I± correspond
to η± → 0. The light ray from (I−, S) to (I+,N) traces the boundary between the two patches
and corresponds to η± → ∓∞.

Analogously, CPP coordinates are obtained just inverting the time direction, defining
the new coordinate t− ≡ −t+:

X0 = −L sinh
t−
L

+
δijx

ixj

2L
e−

t−
L ,

X i = xi e−
t−
L , i = 1, · · · , d− 1 ,

Xd = −L cosh
t−
L

+
δijx

ixj

2L
e−

t−
L ,

(1.1.26)

ds2− = −dt2− + e−
2t−
L δijdx

idxj , (1.1.27)

which cover the other half9 X0 ≤ Xd and now the scale factor decreases exponentially
in time. Again, they constitute a flat slicing of the spacetime.

Even these sets of coordinates have a correspondent set of conformal ones. Defining
the conformal times

η± = ∓L e∓
t±
L , −∞ < η+ < 0 , 0 < η− < +∞ , (1.1.28)

9This is the O− region of the observer on N.
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where again η+ parametrises the EPP and η− the CPP, we get again a metric conformal
toMd+1:

ds̃2± =

(
L

η±

)2 (
−dη2± + δijdx

idxj
)
, (1.1.29)

and the scale factor is now expressed in terms of η±:

a(η±) = ∓
L

η±
= e±

t±
L . (1.1.30)

Counter-intuitively, the two hypersurfaces given by the limits η± → 0 do not coincide:
referring to the the Penrose diagram, η+ → 0 (t+ → +∞) corresponds to I+, while
η− → 0 (t− → −∞) to I−. on the other hand, η± → ∓∞ limits EPP and CPP and is
the light-like hypersurface linking (I−, S) to (I+,N). All of this is depicted in Figure 1.5
together with intermediate lines of η± = const.

In next chapters we will adopt the EPP conformal coordinates. This is motivated by
two reasons: being our interest on modelling the inflationary era, we prefer to focus just
on the exponentially expanding phase of dS, neglecting the CPP; also, EPP provides a
flat slicing, which, while in an exact dS spacetime10 is just a choice and is equivalent to
other foliations, in the actual contest of inflation it is picked out as a preferred reference
frame due to the matter content11.
Moreover, as in inflation theory dS evolution is truncated at a finite time η∗ < 0 and fol-
lowed by an expansion era dominated by matter and radiation, a more realistic conformal
diagram describing an inflationary spacetime is shown in Figure 1.6.

Static coordinates

Despite dS has not a global timelike Killing vector, it is possible to construct a set of
coordinates covering just the causal patch with a invariance under time translation.
Let’s take a set of d+ 1 parameters

(
t̄, r, θ̄i

)
, such that:

X0 =
√
L2 − r2 sinh t̄

L
,

X i = rni , i = 1, · · · , d ,

Xd+1 =
√
L2 − r2 cosh t̄

L
,

(1.1.31)

10This requires the Universe to be completely empty.
11In particular, matter can be seen as a perturbation of dS spacetime content. Its average rest frame

selects a specific foliation: in inflationary models this turns out to be the flat one (in agreement with
experimental measurements).
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Figure 1.6: Penrose diagram of a model of truncated dSd+1 spacetime. The upper yellow
part is aMd+1 spacetime that for ease of representation is depicted with a cylinder topology
(doubling the radial coordinate).

In inflationary cosmology the truncation is due to a phase transition on a stable
vacuum of the inflaton field.

where −∞ < t̄ < +∞ , 0 ≤ r < L and ni is a unit vector representing a point of a Sd−1

sphere and parametrized by θ̄i , i = 1, · · · , d− 1, in analogy with 1.1.13.
The static metric is:

ds2 = −
(
1− r2

L2

)
dt̄2 +

(
1− r2

L2

)−1

dr2 + r2dΩ2
d−1 . (1.1.32)

This is a Schwarzschild-like metric: it presents an horizon for r → L and is invariant un-
der t̄ translations. With this choice of r’s definition interval the patch covered is just the
causal diamond of an observer at rest on N, with this latter given by r = 0. The Killing
vector ∂/∂t̄ is timelike12 and future pointing, then it allows to define time evolution.
However, 1.1.31 describes a reference frame of a non-inertial observer at generic r posi-
tion, or of an inertial one but at fixed r = 0. For this reason it is preferred to work with
EPP (conformal) coordinates, which describe the point of view of an inertial observer.

Hyperbolic coordinates

Other than the closed and flat slicings of dS, it is possible to foliate it in hyperbolic
spatial sections, getting an open FLRW metric. It is gained using the parametrization

12It becomes null for r → L.
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(
t̂, χ, θ̂i

)
:

X0 = L sinh
t̂

L
coshχ ,

X i = niL sinh
t̂

L
sinhχ , i = 1, · · · , d ,

Xd+1 = L cosh
t̂

L
,

(1.1.33)

where −∞ < t̂ < +∞, 0 < χ < +∞ and ni is a unit vector representing a point of a
Sd−1 sphere and parametrized by θ̂i , i = 1, · · · , d− 1, in analogy with 1.1.13.
The hyperbolic metric is:

ds2 = −dt̂2 + L2 sinh2

(
t̂

L

)(
dχ2 + sinh2 χdΩ2

d−1

)
, (1.1.34)

which is, as claimed, an open FLRW type with a scale factor a
(
t̂
)
= L

∣∣sinh (t̂/L)∣∣.
Even these do not cover the whole dSd+1 manifold, as it is always Xd+1 > 0.

1.2 Symmetries and representations

In previous section we have seen dSd+1 is a maximally symmetric spacetime and its
isometry group is SO (1, d+ 1) [9]. This is as well isomorphic to the symmetry group of
an Euclidean conformal field theory (ECFT) on Rd. Related Lie algebra so (1, d+ 1) is
defined by the basis of generators:

LAB = −LBA , A,B = 0, 1, · · · , d+ 1 , (1.2.1)

and their commutators:

[LAB, LCD] = ηBCLAD − ηACLBD + ηADLBC − ηBDLAC , (1.2.2)

with ηAB = diag (−+ · · ·+).

In the case of Euclidean CFT on Rd, 1.2.1 can be physically interpreted decomposing
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them as follows [10]:

Lij = Jij = xi
∂

∂xj
− xj ∂

∂xi
,

L0,d+1 = D = xi
∂

∂xi
,

Ld+1,i =
Pi +Ki

2
,

L0,i =
Pi −Ki

2
,

Pi =
∂

∂xi
, Ki = 2xixj

∂

∂xj
− x2 ∂

∂xi
,

(1.2.3)

where i = 1, · · · , d , x2 = δijx
ixj and we have assumed a representation acting on Rd

fields.
Here the Jij are Rd-rotations, Pi are Rd-translations, D is the dilation, while the Ki are
the special conformal transformations in Rd. Commutation relations take the form:

[D,Pi] = Pi ,

[D,Ki] = −Ki ,

[Ki, Pj] = 2δijD − 2Mij ,

[Mij, Pk] = δjkPi − δikPj ,

[Mij, Kk] = δjkKi − δikKj ,

[Mij,Mkl] = δjkMil − δikMjl + δilMjk − δjlMik ,

(1.2.4)

and the remaining vanish.

General elements of SO (1, d+ 1) can be then expressed via the exponential repre-
sentation. Looking at 1.2.4 some non-trivial subgroups can be recognised: {Mij} form
the subgroup of rotations SO (d), {Mij, Pk} the Poincaré group in Rd, {Mij, Pk, D} the
group SO (d+ 1), which is its maximal compact subgroup.

Killing vectors and conformal limit

It is useful to present SO (1, d+ 1) infinitesimal generators in a representation acting on
dSd+1 fields (then acting on the metric), i.e. in the form of Killing vector fields, whose
action is defined via the Lie dragging. This makes manifest how a set coordinates could
hide manifold’s isometries13. Let’s consider those of our main interest, the EPP ones14.

13Of course a change of coordinates never break an isometry, but just transforms the Killing vector
fields besides the metric. After the transformation, these could get a form with no immediate physical
interpretation, making difficult to recognize isometries via a first look on the metric.

14From now on we will use the notation t instead of t+ for the EPP time.
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Being dSd+1 maximally symmetric, the number of Killing vector fields is n = (d+1)(d+2)
2

[8]. As 1.1.21 is a FLRWmetric, so we expect it to be invariant under spatial Rd rotations
and translations Killing vector fields Jij and Pi defined in 1.2.3. Each component of
these generators is meant to be a vector field on dSd+1; also, they are a number of
d+ d(d−1)

2
= d(d+1)

2
, so the remaining are d+ 1.

To check this and derive the others it is convenient to start from the ambient coordinates
XM , where the 1.2.1 are simply represented by:

LAB = XA
∂

∂XB
−XB

∂

∂XA
, (1.2.5)

evidently satisfying the 1.2.2. The next step is to apply the 1.1.20, deriving the fields
∂/∂XA in function of ∂/∂t and ∂/∂xi and assembling the result.
The found Killing vectors are:

Lij = xi
∂

∂xj
− xj ∂

∂xi
≡ Jij , (1.2.6)

L0,d+1 = L
∂

∂t
− xi ∂

∂xi
, (1.2.7)

Ld+1,i = xi
∂

∂t
− 1

2L

[(
−x2 + L2 − L2 e−

2t
L

) ∂

∂xi
+ 2xixj

∂

∂xj

]
, (1.2.8)

L0,i = −xi
∂

∂t
− 1

2L

[(
x2 + L2 + L2 e−

2t
L

) ∂

∂xi
− 2xixj

∂

∂xj

]
. (1.2.9)

Summing and subtracting 1.2.8 and 1.2.9:

Ld+1,i + L0,i = −L
∂

∂xi
∝ Pi , (1.2.10)

Ld+1,i − L0,i = 2xi
∂

∂t
+

(
x2

L
+ L e−

2t
L

)
∂

∂xi
− 2xixj

L

∂

∂xj
. (1.2.11)

Except for 1.2.6 and 1.2.10, which are expected due to the FLRW structure, EPP Killing
vector fields may appear far from the conformal ones 1.2.3. The difference is not a matter
of group structure15, but of chosen representation and coordinates. Instead, it is clear
the lack of translation or boost symmetries along the EPP t coordinate.

It is very interesting to take the t → +∞ limit of the above Killing vector fields. In
this case they are projected to the limit spacelike hypersurface I+, described just by the
xi, i = 1, · · · , d. On I+, ∂/∂t vector components are suppressed; the non trivial results
are:

L0,d+1 = −xi
∂

∂xi
∝ D , (1.2.12)

15Indeed, in both cases, we have started from the same formal definition of the generators and they
both do satisfy same commutation relation 1.2.2.
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Ld+1,i − L0,i = −
1

L

(
2xixj

∂

∂xj
− x2 ∂

∂xi

)
∝ Ki . (1.2.13)

So on the future time infinity limit we recover Killing vector fields proportional to 1.2.3,
i.e. I+ is a manifold with a d-dimensional Euclidean conformal symmetry. Then it is
called the conformal boundary of dSd+1 expanding Poincaré patch. This will be the
boundary used to construct the holographic dS/CFT correspondence.

Unitary irreducible representations

Unitary irreducible representations (UIRs) are very important to build a QFT, as enable
to define particle states and construct Hilbert one-particle spaces using the Wigner’s
principle of classification, as commonly done in Minkowskian QFT [11, 9].

To impose unitarity, the representation of the Lie algebra must be anti-hermitian:

L†
MN = −LMN . (1.2.14)

Also, unitarity and non-compactness of SO (1, d+ 1) impose every possible its UIRs to
be infinite-dimensional. So we have to search for representations acting on elements of
Hilbert spaces |ψ (x) ; i, j, · · ·⟩, where i, j, · · · are an indefinite number of extra discrete
or continuous indices (e.g. the spin).
Spatial translation invariance allows always to get a state for general x starting from
|ψ (0) ; · · ·⟩, so we can classify UIRs focusing these latter.

Wigner classification starts from defining the quadratic Casimir C2:

C2 =
1

2
LMNL

MN = −D2 +
(Pi +Ki)

2

4
− (Pi −Ki)

2

4
+

1

2
JijJ

ij

= D (d−D) + PiKi +
1

2
JijJ

ij ,

(1.2.15)

C2 commutes with all the SO (1, d+ 1) generators, then different irreducible representa-
tions (IRs) are labeled by its eigenvalues c: C2 |ψ (0) ; c; i, j, · · ·⟩ = c |ψ (0) ; c; i, j, · · ·⟩.
Then we have to analyse eigenvalues of the operators appearing in the right hand of
1.2.15 under the imposition of unitarity and irreducibility.

The term CSO(d) :=
1
2
JijJ

ij is the quadratic Casimir of the compact SO (d) subgroup.
As before, SO (d) IRs are classified by CSO(d) eigenvalues, labeled by the highest weight
vector of integers s = (s1, s2, · · · , sr), with s1 ≥ s2 ≥ · · · ≥ |sr| and r =

⌊
d
2

⌋
. However

we are interest just on the single-row representation, i.e. when s = (s, 0, · · · , 0), s ∈ N,
which describes particles with integer spin. In this case the eigenvalues are equal to
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−s (s+ d− 2).
As searched IRs include spin, which is a finite-dimensional representation of SO (d),
Schur’s lemma implies that, in such representation, every element of SO (1, d+ 1) com-
muting with Jij is a multiple of the identity operator on the spin index [10]. This is
the case for CSO(d), D and Ki, so in 1.2.15 we can set them equal to (or depending on)
complex constant values, labeling SO (1, d+ 1) IRs:

CSO(d) = −s (s+ d− 2) Ispin + · · · , (1.2.16)

D = ∆̄ Ispin + · · · , (1.2.17)

Ki = κi Ispin + · · · , (1.2.18)

where Ispin is the identity acting on the spin index and the dots indicate operators
acting on the spatial wave function ψ (x). ∆̄ is called the scaling dimension of the
representation.

These values are constrained by group structure 1.2.4 and unitarity. The first impose
all the κi to be null, due to the commutator

[D,Ki] = −Ki , (1.2.19)

which in the spin part is

−κi Ispin =
[
∆̄ Ispin, κi Ispin

]
= 0 (1.2.20)

Defining the conformal dimension ∆ such that ∆̄ = d−∆, now C2 eigenvalues become:

c = ∆(d−∆)− s (s+ d− 2) . (1.2.21)

So SO (1, d+ 1) UIRs are labelled by two constant values: ∆ ∈ C, s ∈ N. We can start
to build a one-particle Hilbert space starting from a primary state |∆, 0⟩s:

D |∆, 0⟩s = (d−∆) |∆, 0⟩s
Ki |∆, 0⟩s = 0 ,

1

2
JijJ

ij |∆, 0⟩s = −s (s+ d− 2) |∆, 0⟩s .
(1.2.22)

This can be translated to a general x position:

|∆,x⟩s = ex·P |∆, 0⟩s . (1.2.23)

Finally, a general state is defined by a given wave function ψ (x)16:

|ψ (x) ;∆⟩s =
∫
ddxψ (x) |∆,x⟩s . (1.2.24)

16To guarantee the consistency of the representation, i.e. that SO (1, d+ 1) elements could actu-

ally act on the Hilbert space vectors, ψ (x) should be a smooth function and satisfy: ψ (x)
x→∞−−−−→

1
x2∆

∑∞
n=0 C

(n)
(

x
x2

)
, where C(n) is a homogeneous polynomial of grade n.
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From now on we will restrict our analysis to scalar representations (s = 0).

Unitarity condition 1.2.14 translates the inner product structure:

⟨ψ1 (x) ;∆|ψ2 (y) ;∆⟩ =
∫
ddxddy ψ∗

1 (x) ⟨∆,x|∆,y⟩ψ2 (y) , (1.2.25)

where the kernel K∆ (x,y) := ⟨∆,x|∆,y⟩ is to be chosen such to satisfy unitarity in the
form of differential equations. For example, one of these equations is:

⟨∆,x|P †
i |∆,y⟩ = −⟨∆,x|Pi|∆,y⟩ =⇒

(
∂

∂xi
+

∂

∂yi

)
K∆ (x,y) = 0 . (1.2.26)

The whole set of unitarity conditions constraints both the kernel form and the related
allowed values of ∆.
For scalar particles, the results are two classes of possible values [5]:

1. Principal series: ∆ = d
2
+ iµ, µ ∈ R. In this case the inner product becomes

the usual one:

⟨ψ1; ∆|ψ2; ∆⟩ =
∫
ddxψ∗

1 (x)ψ2 (x) . (1.2.27)

In a free scalar theory this series describe massive particles, with the mass parametrized
by µ. In this case the mass is given by:

m =
1

L

√
∆(d−∆) =

1

L

√
d2

4
+ µ2 , (1.2.28)

so it is always mL ≥ d
2
, and the equality concerns the case of a conformally coupled

scalar field.

2. Complementary series: ∆ ∈ R , 0 ≤ ∆ < d
2
. In this case the inner product

(in Fourier representation) is:

⟨ψ1; ∆|ψ2; ∆⟩ =
∫

ddp

(2π)d
ψ∗
1 (p)ψ2 (p) |p|2∆̄−d , (1.2.29)

This case describes particles with 0 ≤ mL < d
2
.

For s ̸= 0, the range of ∆ in the complementary series is 0 < ∆ < d−2
2
. Also,

this more general case present a third class, the discrete series: ∆ = d
2
+ iµ , µ =

± i
2
(d− 4 + 2 (s− r)).

This case describes so-called partially massless particles of spin s and depth r, but will
not be further treated in this work.
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1.3 Free scalar quantum fields

We are now ready to build a quantum field theory embedded on de Sitter spacetime. The
simplest case is that of a free massless scalar field, which simply emerges in inflation
theory considering quantum fluctuations over the vacuum and allow already to compute
important cosmological observables, as the power spectrum, related to free propagators.
The model can be enriched adding mass and self-interactions: in particular the cubic term
is important for the computation of non-Gaussianities (encoded in 3-point correlation
functions and bispectra). While adding a mass the theory remains free and the treatment
is substantially analogous to the massless case17, for interactions a perturbative formalism
appropriate to the cosmological context will be needed. This will be done in the next
section.

Now, we need to build a QFT on dSd+1 coherent with slow-roll models presented in the
introduction of this chapter. We should, therefore, start from the classical inflationary
action 1.0.1, generalizing it from 4 to d + 1 dimensions and adapting it to the study of
quantum fluctuations of ϕ over the approximate dS vacuum characterizing the expansion
phase. This can be formalised using a background field method:

ϕ (t,x) = ϕ̄ (t) + φ (t,x) , (1.3.1)

where ϕ̄ is the homogeneous inflaton background and φ is the perturbation to be quan-
tized.

For now the coordinates (t,x) have not been specified. However, due to the grav-
itational coupling, to proceed with the inflaton quantization it is necessary to fix the
gauge of gµν , i.e. the set of coordinates. A good choice of them allow to neglect the
quantization of metric fluctuations δgµν in dS limit: indeed, choosing a spatially flat
metric gij = a2 (t) δij, the coupling φ - δgµν vanishes for ε→ 0.
Finally, we can choose a conformal time coordinate η. The resulting action involves a
free massless scalar field embedded on an exact dSd+1 spacetime, and the coordinates
could be interpreted as a EPP or CPP ones18:

S[φ] =
∫
dη ddx

√
−g
(
−1

2
gµν∂µφ∂νφ

)
=

∫
dη ddx ad−1 (η)

(
1

2
φ̇2 − 1

2
|∇φ|2

)
,

(1.3.2)

where the metric is given by 1.1.29 and g := det (gµν) = −a2(d+1). Recall the EPP scale
factor is a (η) = −L

η
= − 1

Hη
.

17The only peculiarity will be to distinguish between the principal and complementary series.
18For the reason explained in 1.1, we choose the EPP coordinates. Also, we omit the ”+” subscript

on the time coordinate for ease of presentation.
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As said mass and interactions can be added to the QFT maintaining effects of the
potential on φ (so not only on the background ϕ̄). In particular, the mass term −1

2
m2φ2

does not complicate the computation of both classical waves and quantum propagators.
Then, it is convenient for ease of presentation to already consider it in the following.
The updated action for a massive scalar field on dSd+1 is:

Sm[φ] =
∫
dη ddx

√
−g
(
−1

2
gµν∂µφ∂νφ−

1

2
m2φ2

)
=

∫
dη ddx ad−1 (η)

(
1

2
φ̇2 − 1

2
|∇φ|2 − 1

2
a2 (η)m2φ2

)
.

(1.3.3)

Classical waves

For first it is necessary and instructive to study the classical behaviour of field pertur-
bations. To construct a classical field theory on a curved spacetime we proceed similarly
to the flat case [6]. From 1.3.3 we can derive the equation of motion:

φ̈+ (d− 1)
ȧ

a
φ̇−∇2φ+ a2 (η)m2φ2 = 0 . (1.3.4)

In dSd+1 we can exploit translation invariance of spatial coordinates to work in Fourier
representation. Using the ansatz φ (η,x) = φk (η) e

±ik·x, the equation of motion for a
Fourier mode with momentum k is:

φ̈k −
d− 1

η
φ̇k +

(
k2 +

m2L2

η2

)
φk = 0 , (1.3.5)

with k := |k|.
1.3.5 can be further simplified by the defining the canonically-normalized field φk (η) ≡
a (η)

1−d
2 uk (η), obtaining an harmonic-oscillator-like wave equation:

ük +

(
k2 − λ2

η2

)
uk = 0 , (1.3.6)

where λ := i
√
m2L2 − d2−1

4
. This equation is conceivable as a Klein-Gordon equation

with a tachyonic and time-dependent ”mass” term iλ/η, characterising the dS field kine-
matics.

The next step consists in analysing the time boundary behaviour, which, besides
allowing us to choose appropriate boundary conditions (or vacuum state upon quantiza-
tion), is interesting for an interpretation of starting and ending inflationary spacetimes.
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At past infinity, η → −∞, the mass term tends to 0 and the previous reduces to a
Minkowskian wave equation:

ük + k2uk = 0 . (1.3.7)

This behaviour is understood in terms of the Equivalence Principle. Indeed, in this limit,
the comoving Hubble radius RH (η), measuring the distance (in comoving coordinates)
at which relative expansions becomes superluminal, surpasses in scale any other wave
mode:

RH (η) := (aH)−1 = −η
η→−∞
≫ k−1 . (1.3.8)

In other words, at the beginning of exponential expansion, dS EPP behaves as a Minkowski
spacetime and modes’ sizes appear small compared to the physical reference scale of the
system. Then we deal with a UV limit of the theory: relevant modes are at k → +∞.
A general solution of 1.3.7 is the linear combination:

uk (η) = A
1√
2k

eikη +B
1√
2k

e−ikη , (1.3.9)

which in terms of φk:

φk (η) =
A√
2k

∣∣∣ η
L

∣∣∣ d−1
2

eikη +
B√
2k

∣∣∣ η
L

∣∣∣ d−1
2

e−ikη , (1.3.10)

where A and B are free complex parameters and we used a common normalisation
convention19. Then, we expect the solutions of 1.3.6 and 1.3.5 to tend to these in the
kη → −∞ limit.

At future infinity, η → 0, the k2 term can be neglected respect to the ”mass” one20:

ük −
λ2

η2
uk = 0 . (1.3.11)

In this case dSd+1 is expanding very fast and RH has shrunk, making relevant modes
very large in size compared to it: k−1 ≫ −η . In this case the theory has an IR limit. A
non-normalised general solution is

uk (η) = C |η|
1
2
+iµ +D |η|

1
2
−iµ , (1.3.12)

where µ =
√
m2L2 − d2

4
. Returning to the original field φk, we have

φk (η) =
C

L
d−1
2

|η|
d
2
+iµ +

D

L
d−1
2

|η|
d
2
−iµ . (1.3.13)

19This is motivated by the fact that 1√
2k

e±ikη has Wronskian normalised to i.
20Except when m2L2 = d2−1

4 , in which case we have again equation 1.3.7 and resulting φk decays as

∝ η d−1
2

η→0−−−→ 0.
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We can see µ is exactly the representation index defined in previous section, returning
the principal series for real values, the complementary for imaginary values. Also, we find
the two terms in 1.3.13 scale with the conformal dimension ∆ or the scaling dimension
∆̄ of a given UIR. These two types of future limit behaviour will be fundamental in
the next chapters and are called respectively the Dirichlet and Neumann boundary
conditions. ∆ and ∆̄ are most often named with the following more intuitive notation:

∆± :=
d

2
± iµ . (1.3.14)

Classical waves in the principal series (mL ≥ d/2) oscillate and decay in the future
limit21; for the complementary series, when 0 < mL < d/2, they just decay exponentially;
the very exceptional case is for mL = 0, which presents a different boundary behaviour:

φk (η) =
C

L
d−1
2

|η|d + D

L
d−1
2

|η|0 → 0 + const . (1.3.15)

Therefore, massless scalar waves in the far future of dSd+1 are stretched to large scales
and are frozen in time, not propagating. This is the most peculiar property of de Sitter
QFT and it is at the basis of inflation theory: the spatial distribution of inflaton quantum
fluctuations on the vacuum state, generated during inflation, are fixed at the end of it.
At reheating, regions of higher energy density are seeds for gravitational collapse and
cluster formation, making a strong link between CMB/LSS anisotropies and inflaton
field ones.

Complete solutions of 1.3.6 are given by linear combinations of Bessel functions. Dif-
ferent combinations correspond to different choices of boundary conditions, i.e. of coef-
ficients (A,B,C,D), which are related such to have just two degrees of freedom, being
1.3.6 a second order differential equation.
For example, solutions proportional to Bessel functions of the first type Jiµ (η) or of
second type Yiµ (η) correspond to null either C or D but non vanishing both A and B.
Vice versa, specific linear combination of these latter, called first and second type Hankel
functions22, correspond to waves with vanishing either A or B but both C,D different
from 0, thus representing single Minkowskian modes in the past limit, also known as
Bunch-Davies modes.

Choosing boundary conditions consist, therefore, in fixing the two degrees of freedom
defining a specific solution. One of them is fixed by normalisation, while the remaining
involves a more physical choice, based for example in the interpretation of a specific limit,
as happens for Bunch-Davies modes. This will be further discussed in next subsection.

21The oscillating behaviour is directly seen in non-conformal time t, as η±iµ ∝ e∓iµt.
22They are simply H

(1)
iµ := Jiµ + iYiµ and H

(2)
iµ := Jiµ − iYiµ .
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Quantization and vacuum choice

Then main difference of a field theory embedded on a curved spacetime respect to a
usual flat one emerges upon quantization. In general, it is due to the different symmetry
structure of the curved spacetime, which not always possesses Killing vectors of immedi-
ate physical interpretation or even does not have a globally timelike one, preventing the
definition of an energy-like conserved quantity. This, in turn, is strictly related to the
choice of the vacuum state, which in Minkowskian QFT is done choosing the one with
minimum energy [12].
We have seen EPP does not provide a globally timelike Killing vector. In the next we
will see the set of dS vacua and the physical reasons behind picking a specific one.

To proceed with the canonical quantization of φ the first step is to find the momentum
conjugate field. It is convenient to keep working with the canonically-normalized u (η) :=

a
d−1
2 (η)φ (η). Then, the Lagrangian is

L =
1

2
u̇2 − 1

2
|∇u|2 + 1

2

d2 − 1

8

ä

a
u2 , (1.3.16)

which returns the equation of motion 1.3.6. The momentum conjugate field is:

π (η) :=
δL
δu̇

(η) = u̇ (η) . (1.3.17)

Quantization is now straightforward. u and π are promoted to quantum operators and
the following equal-time commutators are defined23:

[û (η,x1) , π̂ (η,x2)] = iδ(d) (x1 − x2) , (1.3.18)

[ûk1 (η) , π̂k2 (η)] = i (2π)d δ(d) (k1 + k2) . (1.3.19)

Now û (η,x) can be expanded in modes defining creation and annihilation operators :

û (η,x) =

∫
ddk

(2π)d

(
u∗k (η) âk + uk (η) â

†
−k

)
eik·x , (1.3.20)

where uk (η) is a solution of 1.3.6 and u∗k (η) is its complex conjugate. If we want to work
in a convention coherent with common Minkowskian QFT, i.e. asking:[

âk1 , â
†
k2

]
= (2π)d δ(d) (k1 − k2) , (1.3.21)

we must impose the Wronskian condition on the mode function scalar product:

(uk (η) , u
∗
k (η)) := ∂ηuk(η)u

∗
k(η)− uk(η)∂ηu∗k(η) = i , (1.3.22)

23Of course the second is derived from the first going via a Fourier transforamtion of the spatial
coordinates.
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fixing the normalisation of uk (η).

As explained in previous subsection, this condition leaves one boundary parameter
unfixed. From a quantum point of view this means there is an ambiguity on the vacuum
definition. This latter is defined as the state |0⟩ such that:

âk |0⟩ = 0 ∀k . (1.3.23)

Being âk defined in function of chosen mode function uk, it is clear different choice of
this latter correspond to different vacua states (and, therefore, different ”particle” states
|1k1 , 1k2 , · · ·⟩ built via creation operators). In usual flat QFT this choice is done picking
the mode correspond to unique minimum Minkowskian energy (given by E = ⟨0|Ĥ|0⟩
where Ĥ is the Hamiltonian):

c1
1√
2k

eiEt + c2
1√
2k

e−iEt minimum E−−−−−−→ 1√
2k

eiEt . (1.3.24)

But, as explained, there is not an analogous derivation in dS, so we should base our
choice on a different physical reference. The most reasonable idea is to pick the mode
function/vacuum state which returns 1.3.24 in the UV limit kη → −∞. This is exactly
the Bunch-Davies (BD) mode (with A = 1 and B = 0) defined previously, which is
proportional to a second type Hankel function:

uk(η) =

√
π

4
e−iπ

4
(1+2iµ)(−η)

1
2 H

(2)
iµ (−kη) . (1.3.25)

All others modes satisfying the Wronskian condition give different but physically ac-
ceptable vacua state. They constitute a one-parameter family of states, called α-vacua.
These are relevant in cosmology, and one important line of open research tries to derive
the formal and phenomenological differences among them, with the aim to select the
true Universe vacuum [13].

Finally, it is important to remind that particle interpretation is not proper on a
curved spacetime. In fact, in this context, particle’s detection is an observer-dependent
phenomenon: e.g., a BD vacuum |0⟩BD appear as a ”particle” vacuum for an observer
located at past time infinity, as it tends to coincide with the local Minkowski vacuum
|0⟩M−∞

: BD ⟨0|0⟩M−∞
= 1 and BD ⟨0|1k1 , 1k2 , · · ·⟩M−∞

= 0 for every possible excited
state.
But this is not anymore the case for an observer located at finite η or at I+, whose local
vacuum |0⟩Mη

is much different from the BD one, giving non-null transition amplitudes

with (some) excited states: BD ⟨0|1k1 , 1k2 , · · ·⟩Mη
̸= 0.

For the following of this work we will always assume the Bunch-Davies vacuum,
omitting the ”BD” subscript on it.
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Free propagators

We can now finish the presentation of free QFT in dS presenting results for Wightman
and Feynman propagators [14]. These are important for two reasons: allow to derive the
most important cosmological observable, the power spectrum, related to distribution
of temperature oscillations in the CMB; are the building blocks for the perturbative
computation of n-point functions in interactive theories.

The Wightman propagators (or Wightman 2-point functions) are used to define the
other type of propagators, such as retarded, advanced and Feynman ones. They are
simply defined as:

W (x1, x2) := ⟨0|φ̂(x1)φ̂(x2)|0⟩ , (1.3.26)

where x1,2 := (η1,2,x1,2). This function obeys the Bessel equation 1.3.4 and is invariant
under SO((1, d+ 1) transformation, then it is a function of the normalised invariant
hyperbolic distance P (x1, x2). This in, in turn, can be usefully parametrized via:

σ (x1, x2) :=
1 + P (x1, x2)

2

=
1 + cos D(x1,x2)

L

2

= 1 +
(η1 − η2)2 − (x1 − x2)

2

4η1η2
,

(1.3.27)

which takes values in [0, 1], with σ = 1 when x1 = x2.

Under this, equation 1.3.4 becomes an Euler’s hypergeometric differential equation:[
σ(1− σ) ∂2σ −

(
d+ 1

2

)
(2σ − 1) ∂σ −m2L2

]
W (σ) = 0. (1.3.28)

The general solution is a linear combination of two Gaussian hypergeometric functions
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2F1 (a, b; c; z)
24:

W (σ) = A 2F1

(
d

2
+ iµ,

d

2
− iµ; d+ 1

2
;σ

)
+B 2F1

(
d

2
+ iµ,

d

2
− iµ; d+ 1

2
; 1− σ

)
.

(1.3.31)
In the Bunch-Davies vacuum we have B = 0 and

A =
1

Ld−1

Γ
(
d
2
+ iµ

)
Γ
(
d
2
− iµ

)
(4π)

d+1
2 Γ

(
d+1
2

) , (1.3.32)

where this latter has been determined imposing a coincidence with flat space propagator
in the short-distance limit σ → 1. Thus, the Wightman dSd+1 propagator in BD vacuum
is given by

W (σ) =
1

Ld−1

Γ
(
d
2
+ iµ

)
Γ
(
d
2
− iµ

)
(4π)

d+1
2 Γ

(
d+1
2

) 2F1

(
d

2
+ iµ,

d

2
− iµ; d+ 1

2
;σ

)
, (1.3.33)

and it is singular in σ = 1.

Being W dependent on σ, which is symmetric under arguments permutation, it has
lost the original operator ordering present in its definition 1.3.26. However, to define
time-order propagators characterized by different singularity structures, we have to rein-
troduce operator ordering analytically continuing W (σ) and exploiting the branch cut
on (1,+∞) via a iε prescription (ε > 0). Using

⟨0|φ̂(η1,x1)φ̂(η2,x2)|0⟩ = lim
ε→0
⟨0|φ̂(η1 − iε,x1)φ̂(η2 + iε,x2)|0⟩ , (1.3.34)

we can define:

σ± (x1, x2) = 1− (x1 − x2)
2 − (η1 − η2)2 ∓ i sgn(η1 − η2) ε

4η1η2
, (1.3.35)

then the new ordered Wightman functions are:

⟨0|φ̂(x1)φ̂(x2)|0⟩ ≡ W (σ−) , (1.3.36)

24These are special functions defined by:

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
(1.3.29)

where a, b, c are integers and z ∈ C, |z| < 1. The symbol (m)n denotes the Pochhammer symbol :

(m)n =

{
1 if n = 0

m(m+ 1) · · · (m+ n− 1) if n > 0 .
(1.3.30)

It can be analytically continued to |z| ≥ 1 with a branch cut on the (1,+∞) interval of the real axis.
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⟨0|φ̂(x2)φ̂(x1)|0⟩ ≡ W (σ+) . (1.3.37)

Thanks to the symmetry property 2F1 (z
∗) = 2F

∗
1 (z) ∀z ∈ C, we have the useful relation:

W (σ+) = W ∗(σ−) , (1.3.38)

thank to which in the following we can use the simpler notation W (x1, x2) defined in
1.3.26, using the complex conjugate when the reverse time ordering is needed.
Starting from them it is possible to define the other propagators studied in QFT. In the
next section we will use the time-ordered and anti-time-ordered propagators, respectively:

⟨0|T φ̂(x1)φ̂(x2)|0⟩ = θ(η1 − η2)W (x1, x2) + θ(η2 − η1)W ∗ (x1, x2) , (1.3.39)

⟨0|T φ̂(x1)φ̂(x2)|0⟩ = θ(η1 − η2)W ∗ (x1, x2) + θ(η2 − η1)W (x1, x2) , (1.3.40)

where T and T̄ are respectively the time and anti-time ordering operators. The first one
is indicated by Π (x1, x2), while the second is simply Π∗ (x1, x2). In the following we will
call these Feynman or bulk-to-bulk propagators, describing causal propagation in the
bulk of dSd+1.

We finish this section deriving the power spectrum. First of all, it is defined via the
Fourier transform of the 2-point correlation function at equal time. Fixing, for simplicity,
one spatial coordinate to the origin, this function is:

⟨0|φ̂(η,x)φ̂(η, 0)|0⟩ =
∫

ddk

(2π)d
ddk′

(2π)d
⟨0|φ̂k(η)φ̂k′(η)|0⟩ eik·x . (1.3.41)

Using the following decomposition, where25 fk := a (η)
1−d
2 uk :

φ̂k(η) = f ∗
k(η) âk + fk(η) â

†
−k , (1.3.42)

we get
⟨0|φ̂k(η)φ̂k′(η)|0⟩ = (2π)dδ(d)(k+ k′) |fk(η)|2 . (1.3.43)

Therefore, we can recognize the power spectrum:

Pφ (k) ≡ |fk (η) |2 . (1.3.44)

So it is the modulus squared of the BD mode function. This is actually dependent only
on k = |k|, thanks to dS spatial isotropy, so in the following we will use fk(η) and uk(η)
instead of fk(η) and uk(η).

25This mode function was called φk in previous sections, but here we change its name to distinguish
it from the Fourier mode operator φ̂k, which is actually a combination of the mode function and its
complex conjugate.
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1.4 Schwinger-Keldysh formalism

The introduction of interaction terms in the potential of quantum fluctuations V (φ) –
like self-interactions (φ3, φ4); terms with derivatives (∂µφ∂

µφ); interactions with other
fields

(
φ2χ2, φψ̄ψ

)
– needs a perturbative approach analogous to the Feynman diagrams

used in flat QFT.
This latter is specifically built with the final aim of computing scattering matrices, in
view of an application on particle physics which has historically been the main bench
test of quantum field theory [15]. In particular, common Feynman diagrams, by means
of the Wick theorem, allows a perturbative expansion of the Dyson Formula, which in
turns provides n-point time-ordered correlators of the interactive theory. Finally, via the
LSZ Formula, these give the transition amplitude between two asymptotically free in and
out particle states, or, in other terms, the S-matrix:

Sβα = ⟨β|T e−i
∫+∞
−∞ dtHint|α⟩ , (1.4.1)

where |α⟩ , |β⟩ are asymptotically free particle states.

However, this common approach is useless in cosmology. In the previous case it is
meaningful to impose free mode boundary conditions both in future e past infinity, as
in Minkowski spacetime can always be designed, in principle, a scattering experiment
with preparation of the initial state and measure of the final one, till they are enough
far away in time and space.
Instead, in dS the time dependence of the Hamiltonian makes impossible to set proper
asymptotic free wave packets: spacetime expansion acts as background field interacting
with φ everywhere and in every moment, impossible to decouple even asymptotically,
and producing a continuous and endless production of particles. Things are exacerbated
by the fact that a single observer in dS does not have access to a complete Cauchy
surface.
But even assuming to define a formally correct approach to scattering in dS, it would be
phenomenologically and experimentally useless as we would never have the possibility of
preparing an initial states in inflation.

Rather than this, we can assume the hypothesis Universe started at a certain initial
vacuum state and then study its possible evolution. Therefore, a more interesting and
better posed goal in inflationary physics, than S-matrix, is the expectation value of an
observable O at a certain time η in the chosen initial vacuum |Ω⟩ of the interacting
theory26:

⟨O(η)⟩ := ⟨Ω|O(η)|Ω⟩ . (1.4.2)

26O can be a single operator or a product of operators at same time instant. It is possible to extend
the formalism to product of operators at different times just inserting evolution operators between them,
but they are note much used in cosmology.
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In the context of inflation, such functions are called cosmological correlators, while the
related approach is called Schwinger-Keldysh or in-in formalism.

The Master Formula

The defined function 1.4.2 is very similar to a correlation function ⟨Ω|T φ̂(x1)φ̂(x2) · · · φ̂(xn)|Ω⟩
in flat QFT. The key difference is subtle: these latter assume the bra ⟨Ω| to be a future
infinity state and |Ω⟩ a past one, so in this case they are related to the free theory vacuum
|0⟩ as:

|Ω⟩ ∝ FM (t0,−∞) |0⟩ , ⟨Ω| ∝ ⟨0|FM (+∞, t0) ̸= [FM (t0,−∞) |0⟩]† , (1.4.3)

where, assuming interaction picture, FM is the time evolution operator (TEO) of states
(in Minkowskian QFT) and t0 is the reference time at which |Ω⟩ ≡ |0⟩.
on the other hand, 1.4.2 is a common expectation value, so both ⟨Ω| and |Ω⟩ are consid-
ered at past infinity.

To derive a formula for 1.4.2 suitable for perturbation theory it is convenient to work
in interaction picture, as commonly done in flat QFT. Splitting the total Hamiltonian in
a free and an interaction parts Htot = H0 +Hint, observables in interaction picture are
defined as:

OI(η) := U †
0(η, η0)O(η0)U0(η, η0) , U0 (η, η0) = e−iH0(η−η0) , (1.4.4)

where U0 is the TEO of the free theory, leading the evolution of observables in interaction
pictures.
Being, instead, U the TEO of observables in the Heisenberg picture (or of states in the
Schrödinger one), we have:

⟨Ω|O(η)|Ω⟩ = ⟨Ω|U †(η, η0)O(η0)U(η, η0)|Ω⟩
= ⟨Ω|F †(η, η0)OI(η)F (η, η0)|Ω⟩ ,

(1.4.5)

with F defined as:
F (η, η0) := U †

0(η, η0)U(η, η0) , (1.4.6)

implying the differential equation

dF

dη
(η, η0) = −iHI

int (η)F (η, η0) , (1.4.7)

where HI
int is Hint in interaction picture. This is equivalent to the integral equation

F (η, ηi) = T e

(
−i

∫ η
ηi

dη′ HI
int(η

′)
)
, (1.4.8)
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where T is the time ordering operator. It is clear F (η, η0) leads the evolution of states
in interaction picture: |ψI (η)⟩ = F (η, η0) |ψI (η0)⟩.

Choosing η0 such that |ΩI (η0)⟩ ≡ |Ω⟩ and using 1.4.5 we have:

⟨O(η)⟩ = ⟨Ω|O(η)|Ω⟩ = ⟨ΩI(η)|OI(η)|ΩI(η)⟩

= ⟨Ω|T e
i
∫ η
η0

dη′ HI
int(η

′)
OI(η)T e

−i
∫ η
η0

dη′ HI
int(η

′)|Ω⟩ , ∀ η .
(1.4.9)

The next step consists in finding a suitable relation between |Ω⟩ and the free theory BD
vacuum |0⟩, valid at least in the η → −∞ limit. We already know |0⟩ does not minimize
globally H0 (it is neither an eigenvector of it); nevertheless, it reproduces asymptotically
the Minkowski vacuum, so we can assume it a minimum energy eigenvector of H0 in
the past infinity. An analogous argument could be done for |Ω⟩ as minimum energy
eigenvector of Htot for η → −∞.
Taking now a complete set of Htot past-infinity approximate eigenvectors |N⟩, including
|Ω⟩, we can express |0⟩ proceeding as:

lim
η0→−∞

e−iHtot(η−η0) |0⟩ =
∑
N

e−iEN (η−η0) |N⟩ ⟨N |0⟩

= e−iEΩ(η−ηo) |Ω⟩ ⟨Ω|0⟩+
∑
N ′ ̸=Ω

e−iEN′ (η−η0) |N ′⟩ ⟨N ′|0⟩ ,

where Htot is assumed to be evaluated also near to past infinity. To get rid of the N ′ ̸= Ω
terms we can slightly rotate η in the complex:

η 7→ η− := η(1− iε) , ε > 0 , (1.4.10)

by which a decaying exponential factor eεENη0 appear in front of each term of 1.4.10.
Reversing the expression for |Ω⟩:

|Ω⟩ = lim
η−0 →−∞

[
eiEΩ(η

−−η−0 )

⟨Ω|0⟩

(
e−iHtot(η−−η−0 ) |0⟩ −

∑
N ′ ̸=Ω

e−iEN′(η−−η−0 ) |N ′⟩ ⟨N ′|0⟩

)]

= lim
η−0 →−∞

eiEΩ(η
−−η−0 )

⟨Ω|0⟩
e−iHtot(η−−η−0 ) |0⟩ ,

(1.4.11)
where the vanishing of the N ′ ̸= Ω terms is due to EΩ being the minimum eigenvalue.
So, the searched relation is:

lim
η−0 →−∞

e−iHtot(η−−η−0 ) |Ω⟩ = lim
η−0 →−∞

e−iHtot(η−−η−0 )

⟨Ω|0⟩
|0⟩ . (1.4.12)
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Applying this to 1.4.9, together with the prescription 1.4.10, and choosing η0 → −∞ we
get:

⟨O(η)⟩ = 1

|⟨Ω|0⟩|2
⟨0|T e

i
∫ η

−∞+ dη′ HI
int(η

′)
OI(η)T e

−i
∫ η

−∞− dη′ HI
int(η

′)|0⟩ , (1.4.13)

where −∞ := −∞ (1± iε). The prefactor |⟨Ω|0⟩|−2 can be easily fixed assuming the
identity as operator, gaining:

⟨Ω|Ω⟩ = ⟨0|F
†F |0⟩

| ⟨Ω|0⟩ |2
=
⟨0|0⟩
| ⟨Ω|0⟩ |2

=⇒ | ⟨Ω|0⟩ |2 = ⟨0|0⟩
⟨Ω|Ω⟩

= 1. (1.4.14)

Therefore we have finally derived the Master Formula of the Schwinger-Keldysh for-
malism:

⟨O(η)⟩ = ⟨0|T e
i
∫ η

−∞+ dη′ HI
int(η

′)
OI(η)T e

−i
∫ η

−∞− dη′ HI
int(η

′)|0⟩ . (1.4.15)

It is the analogous of the Dyson Formula used in scattering theory, which expresses
in-out states transition amplitudes via free correlation functions. The above, instead,
gives in-in expectation values and is used in all phenomenological situations where these
are preferred respect to the scattering approach, like, other than cosmology, for thermal
QFT or when the vacuum of the theory is a non-equilibrium one. The difference with
1.4.1 from an intuitive point of view is that here the BD vacuum |0⟩ is evolved from
past infinity to η via the interaction Hamiltonian, then OI(η) is applied on this resulting
state, to be after evolved back to past infinity and finally evaluated with the original |0⟩.
The integration contour of η′ proceeding on the complex plane as −∞− → η → −∞+ is
called in-in contour.

As for the Dyson one, also the Master Formula can be directly applied in perturbation
theory, expanding the two integrals in powers of the coupling constants of the various
interaction terms. The leading order in Hint is:

⟨O(η)⟩(1) = 2 Im

(∫ η

−∞
dη′ ⟨0|O(η)Hint(η

′)|0⟩
)
, (1.4.16)

while the second order is

⟨O(η)⟩(2) =
∫ η

−∞
dη′
∫ η

−∞
dη′′ ⟨0|Hint(η

′)O(η)Hint(η
′′)|0⟩

− 2Re

(∫ η

−∞
dη′
∫ η′

−∞
dη′′ ⟨0|Hint(η

′)Hint(η
′′)O(η)|0⟩

)
.

(1.4.17)
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Feynman diagrams and Feynman rules

After having perturbatively expanded the time-ordered exponentials in 1.4.15, substitut-
ing Hint terms and going in Fourier representation, we get n-point correlation functions
of the free theory to be computed. This can be afforded using the Wick theorem: a n-
point correlator ⟨0|φ̂k1 (η1) , φ̂k2 (η2) , · · · , φ̂kn (ηn) |0⟩ is equal to the sum over all possible
combinations of Wick contractions between the n field operators. A Wick contraction is
defined as:

φk(η)φk′(η′) = f ∗
k (η)fk(η

′)δ(d)(k+ k′) ≡ Wk(η, η
′)δ(d)(k+ k′) , (1.4.18)

where Wk(η, η
′) is the Fourier transform, along spatial coordinates, of the Wightman

propagator 1.3.26.

The next step of the in-in formalism construction are completely analogous to per-
turbative flat QFT. Indeed, thanks to Wick decomposition, it is possible to trace a set
of Feynman rules for a diagrammatic representation of the terms constituting the per-
turbative expansion27. The resulting in-in Feynman diagrams are distinguished from
the scattering ones due to the reference time instant η∗ of the correlator ⟨O (η∗)⟩. As
we are using in-in formalism in the context of inflation, we are interested on correlators
defined on the reheating surface: for this reason η∗ is here called final time instant28.
Another important difference is that, while in scattering theory free propagators are all
of the Feynman type, here diagrams are built with both Feynman and Wightman ones.
Finally, we can apply Fourier transformation for the spatial coordinates thanks to their
translation symmetry, but not on the temporal one, so these diagrams are partially in
position space.

Given a cosmological correlator at final time η∗ and the interaction Hamiltonian Hint,
a connected Feynman diagram belonging to its perturbative expansion is constructed
following these rules:

1. Consider a plane with η coordinate on the vertical axis, running along the complete
in-in contour (−∞−,−∞+), while spatial coordinates on the horizontal one.

2. Trace an horizontal line at η = η∗, representing the final time surface Σ and dividing

27In particular we will focus just on the connected part of in-in correlators, which is that involving
interaction processes.

28However this name could be misleading, as in-in formalism is very general and does not require at all
to be strictly applied to compute correlators on ”final” hypersurfaces, like commonly done in inflation
theory (where exponential expansion is truncated at a finite time). In fact, we could assume to work in
an exact dS which has no finite future time boundary: in this case η∗ would be just an arbitrary time
instant on which the correlator is defined and has not any ”final” behaviour.
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the in-in contour in two branches: the ”+” one for (−∞−, η∗); the ”−” one for
(η∗,−∞+).

3. Trace the diagram, imposing external legs to end on Σ, while interaction vertexes
stay on the bulk.

4. For each vertex placed on one of the two branches, it must be considered another
diagram with that vertex placed on the other branch.

5. Lines ending on or crossing Σ represent Wightman propagatorsWk (η1, η2), with the
assumption η1 > η2; lines entirely contained in + represent time-ordered Feynman
propagators29 Πk (η1, η2), while those in − represent the anti-time-ordered ones
Π∗

k (η1, η2) = Πk (η2, η1).

6. Each vertex in + provides a factor −iV and an integration
∫ η∗

−∞− dη a
d(η), while

those in − a factor iV† and an integration
∫ η∗

−∞+ dη a
d+1(η), where the integration

variable η is the vertex temporal coordinate and V is the functional derivative of
the Hamiltonian interaction term times a Dirac delta for total spatial momentum
conservation.

7. Include an integration over each loop momentum.

8. Divide by the symmetry factors of the diagram.

An important and general property of this machinery is that the sum of two diagram
being one the reflection of the other respect Σ is simply given by two times the real
part of one of them (which is, of course, the same for both).Examples of in-in Feynman
diagrams are shown in Figure 1.7.

Although formally well defined and very general, this perturbative approach is of
limited power in the case of dS quantum field theory. The limitation is mainly due to
the analytical complexity of desitterian propagators, which is further increased even in
the simplest integrations involved in computations of Feynman diagrams. Most of the
times these diagrams are not analytically computable and quite always involves special
functions, forcing the use of numerical solutions. Also, difficulties increase with higher
orders: at the present day, the perturbative approach on dS does not give analytical
results beyond one-loop order. Other possible factors of complexity are the spin and
mass of involved particles.
These are the main practical reasons under the research of a different and less direct

29Fourier space Feynman propagators, here considered, are defined as in 1.3.39, but with Wk (η1, η2)
instead of W (x1, x2)
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Figure 1.7: Examples of in-in Feynman diagrams. Diagram a. shows a contact diagram
of a φ4 interaction with the vertex in the + branch; b. shows an exchange diagram of a φ3

interaction with both vertexes in +; c. is the same exchange diagram but with a vertex in +
and the other in − branch.

approach, which could circumvent the direct computation of Feynman diagrams. For-
tunately, de Sitter spacetime is already provided with a property with a strong compu-
tational power, that is its conformal symmetry. It is well known that conformal field
theories allow a good control of correlators at a non-perturbative level, completely fixing
3-point functions just by conformal symmetry (the so-called conformal bootstrap)
[10]. The holographic approach goes exactly in this direction, exploiting the conformal
symmetry on the dSd+1 time boundary.

Example of application

To both show as the above Feynman rules actually work and how they are very limited
to produce analytical results, in this subsection we will present an application to a scalar
theory with a cubic interaction, approaching perturbatively a 3-point cosmological cor-
relator.
Schwinger-Keldysh 3- point functions, computed on the reheating hypersurface, are the
main interest in the study of inflationary interactions (also known as ”cosmological col-
lider physics”), as they express the leading order in the non-Gaussianities of cosmological
observables. While fields’ power spectra, i.e. 2-point functions, encode just the Gaus-
sian behaviour, cosmological 3-point functions are a measure of the dynamics in the first
stages of Universe history [16].
In phenomenology the 3-point function is expressed in the bispectrum Bφ, defined such
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Figure 1.8: The two contact diagrams constituting the leading order of
⟨φk1(η

∗)φk2(η
∗)φk3(η

∗)⟩ in a scalar theory with a cubic interaction. These are related
by a reflection respect to Σ, so their sum is equal to 2Re (A±).

as:

⟨φk1φk2φk3⟩ ≡ (2π)3δ(3)(k1 + k2 + k3)
(2π2)2

(k1k2k3)2
Bφ(k1, k2, k3) . (1.4.19)

The full action with a cubic interaction is:

S =

∫
dη ddx

(
−1

2
(∂φ)2 − 1

2
m2φ2 − g

3!
φ3

)
. (1.4.20)

Thank to the absence of interactions with derivatives, we have Hint = Lint = − g
3!
φ3 and

the vertex is simply the interaction coupling constant V = g. For simplicity we assume
d = 3.
From 1.3.25 we derive the BD mode function:

fk(η) = L−1

√
π

4
e−iπ

4
(1+2iµ)(−η)

3
2 H

(2)
iµ (−kη) , (1.4.21)

necessary to derive Wightman propagators.

In this example, we aim to compute a 3-point cosmological correlator at leading order
(tree level): ⟨φk1(η

∗)φk2(η
∗)φk3(η

∗)⟩(1).
It consists in just the two diagrams A+ and A− shown in Figure 1.8: they are called
”contact” diagrams as represent the correlation of three excitations of the field φ, at
the instant η∗, which have been in contact in the past or will be in the future. The
reflection symmetry respect to Σ allows to compute just one of the two diagrams, being
A+ + A− = 2Re (A±).
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Then, we proceed computing A+:

A+ = −iV
∫ η∗

−∞−
dη a4(η)Wk1(η

∗, η)Wk2(η
∗, η)Wk3(η

∗, η)

= −ig f ∗
k1
(η∗)f ∗

k2
(η∗)f ∗

k3
(η∗)

∫ η∗

−∞−
dη a4(η) fk1(η)fk2(η)fk3(η)

= − iπ
3g

64L2
e3πRe(µ) (−η∗)

9
2

3∏
i=1

H
(2)∗
iµ (−kiη∗)

∫ η∗

−∞−
dη (−η)

1
2

3∏
i=1

H
(2)
iµ (−kiη) .

(1.4.22)

Here we face the first computational complication: the above formula involves an
integration of three Hankel functions and it is of difficult analytical solution. There exists
a solution in terms of Appell’s function F4 [17], which is however a special function still
not completely studied. There are, instead, particular values of µ for which the diagram
is of easier treatment. For example, computations simplify much if we assume a mixed
interaction with two scalar fields conformally coupled to gravity and one scalar of generic
mass. Even simpler cases are those corresponding to a massless or conformally coupled
one30. We will now approach this latter case, which is the simplest one.

The condition for a conformally coupled field in dSd+1 is just iµ = 1
2
. In this case

1.4.21 reduces to the much more simpler:

fk(η) = L−1(−η) e
ikη

√
2k

, (1.4.23)

giving the integral:

A+ = − ig (η∗)3

8L2 k1k2k3

∫ η∗

−∞−

dη

η
ei(k1+k2+k3)η = − ig (η∗)3

8L2 k1k2k3
log(i (k1 + k2 + k3) η∗) ,

(1.4.24)
which can be easily calculated via a Wick rotation η → iη. Note, also, that it presents a
logarithmic IR divergence for η∗ → 0, making compulsory the introduction of a cut-off
at finite final time. This singularity is removed when we pass to the complete correlator
taking the real part of the diagram. Recalling logarithm’s branch cut, we have the final
result:

⟨φk1(η
∗)φk2(η

∗)φk3(η
∗)⟩(1) = πg

8L2

(η∗)3

k1k2k3
. (1.4.25)

30In these cases we assume all the three fields of the correlator to be of the same type.
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Chapter 2

Building dS/CFT

The AdS/CFT duality is able to describe the AdSd+1 bulk processes through boundary
correlators of a CFTd theory, which are determined by conformal bootstrap. Being the
conformal boundary of AdS is a timelike hypersurface, its correspondent CFT is a usual
casual theory, with one time direction.
on the other hand, the fundamental difference of dS/CFT with the previous case regards
exactly the causal structure of the conformal boundary. This latter is the hypersurface
gained taking the future infinite limit in the time direction of the expanding Poincaré
patch. It is clearly a spacelike one, constraining the boundary CFT to be an Euclidean
theory1. In this chapter we will analyse the properties of this boundary theory starting
from its holographic construction.

A way to bypass (at least perturbatively) the explained difficulties for a direct dS/CFT
consists in exploiting an intermediate map between in-in Feynman diagrams in dSd+1 and
Witten diagrams in the Euclidean AdSd+1 [5]. As seen, the latter enjoys a well estab-
lished relation to the ECFT counterpart, making possible a perturbative holographic
description of quantum field theory in dS.

2.1 Mapping propagators

The before mentioned map is built expressing the main ingredient of in-in diagrams, i.e.
free dS propagators, in terms of EAdS propagators. To achieve this goal, it will be crucial
to exploit a powerful mathematical tool which is technical core of this construction: the

1In other words, the time direction of the ECFT will be imaginary.
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Mellin transform. It exploits the dilatation symmetry, which in (A)dS2 substitute
the time translation one, representing most of the involved functions in a Fourier-like
manner, simplifying all the computations.
After this step we will be able to apply the relation to contact and exchange diagrams,
which are the most important ones in cosmological QFT.

Note: spinning representations. In the previous introductory chapters we have
neglected spin (which is allowed for UIRs) for ease of presentation. In the next it is
necessary to reintroduce it for both completeness and non-triviality of the results. Thus
are here shown the relevant modifications to the notation due to spin3 J ̸= 0.
The mass of the representation in the dS case is

m2L2 = ∆+∆− + J , (2.1.1)

while in AdS
m2R2 = −

(
∆+∆− + J

)
, (2.1.2)

and it is still ∆± = d
2
± iµ. In both cases the future limit behaviour of the spinning field

φJ is:
lim
λ→0

φJ(λ,x) = χ+(x)λ∆
+−J + χ−(x)λ∆

−−J , (2.1.3)

where λ is either η or z, and χ± are respectively the Dirichlet and Neumann boundary
conditions’ spatial components.

AdS/CFT correspondence

Before proceeding with the construction of the dS − EAdS map, it is useful to review
some important properties and results regarding QFT in AdS which will be useful later
[18].
The AdSd+1 spacetime is defined as the set of points ofMd+2 satisfying the constraint:

−
(
X0
)2

+
(
X1
)2

+ · · · −
(
Xd+1

)2
= −R2 , (2.1.4)

where R is the AdSd+1 radius. In analogy to the dS case, it is evident that the AdSd+1

symmetry group coincides with the group leaving invariant 2.1.4: SO (2, d). This is
as well the Lorenztian conformal symmetry group. In global conformal coordinates:

2In the following the adjective ”Euclidean”, or prefix ”E”, could be sometime omitted for ease of
presentation. Nevertheless, we will always work in Euclidean signature of AdS spacetime, except if
explicitly specified.

3In the following we use J and not s for the spin to not make confusion with the Mellin variable.
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−∞ < t < +∞, 0 ≤ r < π
2
, Ωd−1, where the latter indicates the set of angular

coordinates of a sphere Sd−1. The global metric then is:

ds2 =
R2

cos2 r

(
−dt2 + dr2 + sin2 r dΩ2

d−1

)
, (2.1.5)

and describes a cylinder directed along time t, sliced in hyperbolic spatial hypersurfaces4.

To embed a QFT in AdSd+1 it is convenient to work in Euclidean signature Wick
rotating Xd+1, being careful to perform later an inverse Wick rotation to return to the
original Lorentzian AdSd+1. The EAdSd+1 manifold satisfies then:

−
(
X0
)2

+
(
X1
)2

+ · · ·+
(
Xd+1

)2
= −R2 , X0 > 0 . (2.1.6)

Here the symmetry group is again SO (1, d+ 1), being the Euclidean conformal group.
In this case we have an analogous of dSd+1 EPP coordinates but with an Euclidean
signature:

ds2 =
R2

z2
(
dz2 + dx2

)
, (2.1.7)

with z > 0, called the radial coordinate, and x ∈ Rd.

The limit z → +∞ corresponds to the conformal boundary. Taking this limit for
all the radial coordinates in propagators or correlators gives functions with a structure
satisfying conformal symmetry. For example, taking a QFT in (E)AdS with a cubic
interaction term, the two point function is:

⟨φ(x1)φ(x2)⟩ =
1

(x1 − x2)2∆
+O(g2) , (2.1.8)

where ∆ is the scaling dimension of φ. This is exactly the usual form a conformal 2-point
correlator of a CFTd theory.
The 3-point functions takes also a CFTd form:

⟨φ1(x1)φ2(x2)φ3(x3)⟩ =
C123

|x12|∆1+∆2−∆3|x13|∆1+∆3−∆2|x23|∆2+∆3−∆1
+O(g3) , (2.1.9)

where xij := ||xi−xj|| and C123 is a structure constant proportional to the cubic vertex.

In a general CFT the form of correlators involving four or more fields is not completely
fixed by conformal symmetry. The 4-point function is in general:

⟨φ1(x1)φ2(x2)φ3(x3)φ4(x4)⟩ =
A(u, v)

(x212)
∆(x234)

∆
, (2.1.10)

4In addition, the hyperbolic foliation is the only allowed in AdS.
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where A(u, v) is an unconstrained function of the two harmonic ratios:

u :=
x212x

2
34

x213x
2
24

, v =
x214x

2
23

x213x
2
24

. (2.1.11)

Nevertheless, another peculiarity of conformal field theories it that the 4-point functions
can be expanded in a series of functions called conformal blocks, encoding contribu-
tions to the correlators brought by operators of the theory [10]:

⟨φ1(x1)φ2(x2)φ3(x3)φ4(x4)⟩ =
∑
k

C12kCk34G∆k,lk(u, v) . (2.1.12)

In a CFT and in (E)AdS the above series converges. This is proven thanks to very
crucial feature of these theories: the state-operator correspondence. In few words,
it consists in the possibility of building a map between states and local operators in the
theory, which depends on the spacetime geometry where the theory is embedded. In the
case of flat CFTd each state corresponds to a time constant sphere of Rd−1 centred on
the origin. Shrinking the sphere very near to the origin corresponds to taking a t→ −∞
limit, imposes a localized boundary condition and, therefore, define a local operator cor-
respondent to the original state.
Expression 2.1.12 can be expressed in terms of local operators, taking the name of oper-
ator product expansion (OPE).

Such a construction is possible in (E)AdS if we take a time constant half sphere
shrinking to the conformal boundary at spatial infinity, thanks to the hyperbolic spatial
geometry.
An analogous method would not work for dS, as if we push a time constant hypersurface
in the conformal boundary direction, it will grow instead of shrink, making impossible
the definition of a local operator on I+. Until now a desitterian state-operator corre-
spondence is lacking, so without the guarantee of convergence of the conformal block,
dS can not still enjoy a non-perturbative holographic correspondence. Nevertheless, the
dS ↔ EAdS method here presented allows dS QFT to borrow the AdS/CFT results at
all orders in perturbation theory.

Analytic continuation

The map which is at the core of this dS-EAdS QFT relation is built simply starting
from a geometrical relation, which is the analytic continuation between the dSd+1 EPP
metric and the EAdSd+1 one

5, via Wick rotation of, respectively, the temporal and radial

5As in the previous chapter, we proceed working in conformal coordinates.

44



coordinates and their radii:

z = −ηe±
iπ
2 , R = −iL, (2.1.13)

ds2dS =
L2

η2
(
−dη2 + dx2

)
←→ ds2EAdS =

R2

z2
(
dz2 + dx2

)
, (2.1.14)

where the ± in the z transformation is related to which one of the ± branches of the in-in
contour we are working with. Being now clear the relation between L and R, henceforth
we will assume L = 1 as it will not be relevant anymore.
At this point there are two possible ways of proceeding: one consists in finding a relation
between boundary correlators in EAdSd+1 and Schwinger-Keldysh boundary correlators
of dSd+1, which is the one we will follow; the second, instead, finds a relation between
the same EAdSd+1 functions and dSd+1 wavefunction coefficients, defined in the so-called
”wavefunction of the Universe” approach [19]. The two methods are equivalent as one
could compute dS boundary correlators via wavefunction coefficients expectation values
[20].

The above relation can be immediately applied to bulk-to-boundary propagators in
(A)dS, which are defined taking the infinite limit of the temporal (radial) coordinate
of one of the two arguments of a bulk-to-bulk propagator. Then, an (A)dS bulk-to-
boundary propagator for a field of conformal dimension ∆ and spin J is:

K
(A)dS
∆,J (λ,x;x′) := lim

λ′→0
Π

(A)dS
∆,J (λ,x;λ′,x′) , (2.1.15)

where again λ = η, z and ∆ could be either ∆±. KdS
∆,s reduces to the Wightman prop-

agator, being one of the two extremes fixed on the final surface of the in-in contour6,
nevertheless paying attention to which branch the free extreme is positioned. For this
reason we define the more accurate notation for KdS

∆,J propagators:

K+
∆,J (η,x;x

′) := lim
η′→0

W (η,x; η′,x′) , K−
∆,J (η,x;x

′) := lim
η′→0

W ∗ (η,x; η′,x′) .

(2.1.16)
Under the condition of setting the Bunch-Davies vacuum for all fields, the analytic
continuation relates bulk-to-boundary propagators of the two theories [21]:

K±
∆,J (η,x;x

′) = cdS-AdS
∆ e∓∆

iπ
2 KAdS

∆,J

(
−η e±

iπ
2 ,x;x′

)
, (2.1.17)

where the exponential factor is typical of a tensorial dilatation transformation and
cdS−AdS
∆ changes the normalisation in going from EAdSd+1 to dSd+1:

cdS-AdS
∆ =

CdS
∆,J

CAdS
∆,J

=
Γ
(
d
2
−∆

)
Γ
(
∆− d

2
+ 1
)

2π
=

1

2
csc
((

d
2
−∆

)
π
)
, (2.1.18)

6It is important to stress that from now on the final surface of the in-in contour coincides with the
conformal boundary I+.
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with C
(A)dS
∆,J being the normalization coefficients of K

(A)dS
∆,J :

CdS
∆,J =

∆+ J − 1

∆− 1

Γ
(
d
2
−∆

)
Γ(∆)

2π
d+1
2

, (2.1.19)

CAdS
∆,J =

∆+ J − 1

∆− 1

Γ(∆)

2π
d
2Γ
(
∆− d

2
+ 1
) . (2.1.20)

In order to extend this relation to bulk-to-bulk propagators, we need a bridge between
them and the bulk-to-boundary ones. This is provided by harmonic functions ΩAdS

ν,J ,
which are the analogue of Wightman functions in AdS, thus satisfying the homogeneous
wave equation:

(
∇2 −m2

)
ΩAdS

ν,J (x1, x2) =

(
∇2 +

(
d

2
+ iν

)(
d

2
− iν

)
+ J

)
ΩAdS

ν,J (x1, x2) = 0 ,

(2.1.21)
where ∇2 is the EAdSd+1 Laplacian. Also, they are trace-less, have a null divergence and
form an orthogonal basis parametrized by ν and J . From the case J = 0 it is evident
their analogy to Wightman functions [22]:

ΩAdS
ν,0 (x1, x2) =

1

Γ(iν)Γ(−iν)
Γ
(
d
2
+ iν

)
Γ
(
d
2
− iν

)
(4π)

d+1
2 Γ

(
d+1
2

) 2F1

(
d

2
+ iν,

d

2
− iν; d+ 1

2
;σAdS

)
,

(2.1.22)
where, similarly to 1.3.27, σAdS is:

σAdS = 1− (z1 + z2)
2 + (x1 − x2)

2

4z1z2
. (2.1.23)

These functions can be written in terms of KAdS
∆,J via the so-called split representation

[23]:

ΩAdS
ν,J (z1,x1; z2,x2) =

ν2

π

∫
ddx′KAdS

d
2
+iν,J

(z1,x1;x
′)KAdS

d
2
−iν,J

(z2,x2;x
′) , (2.1.24)

whose name is motivated by the fact the two bulk-to-boundary correlators are integrated
over a contact point on the boundary.
In turn, harmonic functions can be used to express bulk-to-bulk EAdSd+1 propagators
in the form of a spectral decomposition. This relation must be distinguished for the two
∆± conditions. For the Dirichlet:

ΠAdS
∆+,J(x1, x2) =

∫ +∞

−∞

dν

ν2 +
(
∆+ − d

2

)2 ΩAdS
ν,J (x1, x2) + contact , (2.1.25)
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with ”contact” expressing a series of contact terms, i.e. contributions in which the
propagator shrinks to a point, arising from harmonic functions with inferior spin or from
additional derivatives interactions7 [21].
For the Neumann we have:

ΠAdS
∆−,J(x1, x2) =

2πi

µ
ΩAdS

µ,J (x1, x2) +

∫ +∞

−∞

dν

ν2 +
(
∆+ − d

2

)2 ΩAdS
ν,J (x1, x2) + contact .

(2.1.26)
Put together, 2.1.25 and 2.1.26 provide a inverse relation for ΩAdS

ν,J in function of ΠAdS
∆,J :

ΩAdS
ν,J (x1, x2) =

iν

2π

(
ΠAdS

d
2
+iν,J

(x1, x2)− ΠAdS
d
2
−iν,J

(x1, x2)
)
. (2.1.27)

Using now 2.1.17 in 2.1.24, it is straightforward to analytically continue ΩAdS
ν,J to

dSd+1, paying attention to distinguish the in-in branches for each of the two points of
the harmonic function, so defining the new harmonic function in dS:

Ω±,±̂
ν,J (η1,x1; η2,x2) := cdS-AdS

d
2
+iν

cdS-AdS
d
2
−iν

e∓iπ
2 (

d
2
+iν) e∓̂iπ

2 (
d
2
−iν)

· ΩAdS
ν,J

(
−η1 e±iπ

2 ,x1;−η2 e±̂iπ
2 ,x2

)
.

(2.1.28)

The relation with in-in bulk-to-boundary propagators is analogous to 2.1.24:

Ω±,±̂
ν,J (η1,x1; η2,x2) =

ν2

π

∫
ddx′K±

d
2
+iν,J

(η1,x1;x
′)K±̂

d
2
−iν,J

(η2,x2;x
′) . (2.1.29)

Using directly 2.1.28 with the EAdS spectral decomposition would involve also the
two exponential factors in the integration. A much powerful method to approach this
step requires the introduction of a new mathematical object.

The Mellin-Barnes representation

The Mellin-Barnes representation is the analogous of the Fourier one when, along a di-
rection (or coordinate), instead of translation invariance there is a scale invariance.
Besides the physical meaning of momentum space, the Fourier transform F is a mathe-
matical tool of natural application when a physical system is invariant under translation

7So, when inserted in Keldysh/Witten diagrams, they generate contact diagrams involving fields of
inferior spin or derivative interactions.
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of one or more coordinates. Taken a generic function of single variable f(x) ∈ L2 (R, dx),
the direct and inverse Fourier transforms are:

f(k) = F {f(x)} :=
∫ +∞

−∞
dx f(x) e−ikx , (2.1.30)

f(x) = F−1 {f(k)} :=
∫ +∞

−∞

dk

2π
f(k) e+ikx . (2.1.31)

In particular, the last one takes also the name of Fourier representation of f(x). The
completely delocalized wave functions e±ikx absorb the position dependence and form an
orthonormal basis of eigenvectors of translation generator Px = −i∂x of eigenvalues ±k.
If the physical system is symmetric under translations, integrations involving translation
invariant measures dx in momentum space are simply reduced to Dirac deltas expressing
momentum conservation:∫

ddx e−ix·
∑n

i=1 ki = (2π)d δ(d)

(
n∑

i=1

ki

)
. (2.1.32)

In this manner, in addition to make explicit important conservation properties, we can
significantly simplify analytical computations, for example avoiding to deal with Bessel
functions for free propagators in Minkowskian QFT.

We have seen dS and (E)AdS present a dilatation symmetry along respectively the
temporal and radial coordinates8, so the Mellin-Barnes representation is the most ap-
propriate framework to treat functions of them.
The Mellin transform M of a function f(z) ∈ L2

(
(0,+∞) , dz

z

)
is defined as9 [24]:

f(s) =M{f(z)} :=
∫ +∞

0

dz

z
f(z) z2s−

d
2 , (2.1.33)

where and its inverse, which is as well the Mellin-Barnes representation of f(z), is:

f(z) =M−1 {f(s)} :=
∫ +i∞

−i∞

ds

2πi
2 f(s) z−(2s− d

2
) , (2.1.34)

which are normalized to get the identity when applied one after the other. The Mellin
variable s is imaginary and is the analogue of momentum k. This time the integration

measure dz
z
is scale invariant, makingM preserving this symmetry. Monomials z±(2s−

d
2)

take the place of Fourier modes, constituting an orthonormal basis of eigenvectors of

8At least in global coordinates
9This definition directly adapt to functions of the EAdSd+1 z coordinate; in the case of function of

η the interval of definition and integration is (−∞, 0).
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dilatations generator D = z∂z, of eigenvalues ±
(
2s− d

2

)
. Finally, in scale invariant

integrals of Mellin transformed functions, the z-like variables decouple and produce Dirac
deltas conserving s, due to the property:∫ ∞

0

dz

zd+d̄+1
z−

∑n
i=1(2si− d

2) = 2πi δ

(
d+ d̄+

n∑
i=1

(
2si −

d

2

))
, (2.1.35)

where in general there should be considered an extra scaling dimension d̄, due to tensorial
or derivative vertex interactions10.

Then, working in both Mellin and Fourier representations, the former for the scale
invariant coordinate, the latter for translation invariant ones, we derive that each n-
points vertex, in Keldysh or Witten diagrams, the integral over η or z is simply solved
in a conservation delta function like:

2πi δ

(
d+ d̄+

(
2s1 −

d

2

)
+ . . .+

(
2sn −

d

2

))
(2π)d δ(d)(k1 + . . .+ kn) . (2.1.36)

Bulk-to-bulk propagators

Now we can approach the relations 2.1.17 and 2.1.29 in Mellin space.
Bulk-to-boundary propagators are represented as:

KAdS
∆,J (z,k) =

∫ +i∞

−i∞

ds

2πi
KAdS

∆,J (s,k) z
−2s+ d

2 , (2.1.37)

K±
∆,J(η,k) =

∫ +i∞

−i∞

ds

2πi
K±

∆,J(s,k) (−η)
−2s+ d

2 , (2.1.38)

where we name s the external Mellin variable, to make clear it refers to a boundary leg.
For the harmonic function there are two Mellin variables:

ΩAdS
ν,J (z,k; z̄, k̄) =

∫ +i∞

−i∞

du

2πi

dū

2πi
ΩAdS

ν,J (u,k; ū, k̄) z−2u+ d
2 z̄−2ū+ d

2 , (2.1.39)

Ω±,±̂
ν,J (η,k; η̄, k̄) =

∫ +i∞

−i∞

du

2πi

dū

2πi
Ω±,±̂

ν,J (u,k; ū, k̄) (−η)−2u+ d
2 (−η̄)−2ū+ d

2 , (2.1.40)

where this time u, ū are called internal Mellin variables, as they are conjugated to bulk
points.

10In this work we can always assume d̄ = 0.
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The analytic continuation of bulk-to-boundary propagators is Mellin space reduces to
a simple phase shift:

K±
∆,J (s,k) = cdS-AdS

∆ e
∓
(
s+

1
2

(
∆−d

2

))
πi
KAdS

∆,J (s,k) . (2.1.41)

To express the split representation of harmonic functions in a suitable way for further
applications, we can use both Fourier and Mellin transforms. Now 2.1.24 and 2.1.29
become:

ΩAdS
ν,J (u,p; ū,−p) = ν2

π
KAdS

d
2
+iν,J

(u,p)KAdS
d
2
−iν,J

(ū,−p) , (2.1.42)

Ω±,±̂
ν,J (u,p; ū,−p) = ν2

π
K±

d
2
+iν,J

(u,p)K±
d
2
−iν,J

(ū,−p) , (2.1.43)

having used a Dirac delta on momenta. It is worth noting they are factorised in u and
ū.
Eventually, even for harmonic functions in Mellin space we have simple phase shifting
relation between dS and EAdS ones:

Ω±,±̂
ν,J (u,p; ū,−p) = cdS-AdS

d
2
+iν

cdS-AdS
d
2
−iν

e∓(u+
iν
2 )πi e∓̂(ū−

iν
2 )πi ΩAdS

ν,J (u,p; ū,−p). (2.1.44)

We are now ready to work on bulk-to-bulk propagators, preparing them for dS-EAdS
relation, which will be the basis to relate diagrams.
For first, let’s Fourier and Mellin transform ΠAdS

∆±,J (η,x; η̄, x̄):

ΠAdS
∆±,J(z,k; z̄, k̄) =

∫ +i∞

−i∞

du

2πi

dū

2πi
ΠAdS

∆±,J(u,k; ū, k̄) z
−2u+ d

2 z̄−2ū+ d
2 . (2.1.45)

Inserting this and 2.1.42 in the spectral decomposition of both Dirichlet and Neumann
propagators, 2.1.25-2.1.26, and integrating on ν, we get a common simple expression:

ΠAdS
∆±,J(u,p; ū,−p) = csc (π (u+ ū)) ω∆±(u, ū) Γ(iµ) Γ(−iµ) ΩAdS

µ,J (u,p; ū,−p) . (2.1.46)

The term csc (π (u+ ū)), being the only which couples u and ū, is interpreted to account
for contact terms contributing to the exchanged propagator.
The factor ω∆± is a projector to one of the two ∆± boundary conditions:

ω∆±(u, ū) = 2 sin

(
π

(
u∓ iµ

2

))
sin

(
π

(
ū∓ iµ

2

))
, (2.1.47)

so, a linear combination αω∆+ + βω∆− can be used to define propagators with general
boundary conditions:

ΠAdS
α∆++β∆−,J(u,p; ū,−p) = csc (π (u+ ū)) (αω∆+(u, ū) + βω∆−(u, ū))

· Γ(iµ)Γ(−iµ) ΩAdS
µ,J (u,p; ū,−p) .

(2.1.48)
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Now, using 2.1.44 inside 2.1.48, we obtain the definition of a (Mellin transformed)
dSd+1 bulk-to-bulk propagator with general boundary condition (b.c.) [25], so to
not be confused with the Bunch-Davies Feynman propagator:

Π±,±̂
α∆++β∆−,J(u,p; ū,−p) = csc (π(u+ ū))

[
α±,±̂ω∆+(u, ū) + β±,±̂ω∆−(u, ū)

]
· Γ(iµ)Γ(−iµ) Ω±±̂

µ,J (u,p; ū,−p) ,
(2.1.49)

which in terms of ΠAdS
∆±,J is:

Π±,±̂
α∆++β∆−,J(u,p; ū,−p) = cdS-AdS

d
2
+iν

cdS-AdS
d
2
−iν

e∓(u+
iµ
2 )πi e∓̂(ū−

iµ
2 )πi

·
[
α±,±̂ΠAdS

d
2
+iµ,J

(u,p; ū,−p) + β±,±̂ΠAdS
d
2
−iµ,J

(u,p; ū,−p)
]
.

(2.1.50)

But all this construction is based on the assumption of choosing the BD vacuum11

on dSd+1, so we have to find appropriate values for α±,±̂ and β±,±̂. To do this, we
exploit two relations found in[14, 21], linking dSd+1 (Bunch-Davies) Wightman/Feynman
propagators and EAdSd+1 harmonic functions:

W dS
µ,J(η,p; η̄,−p) ≡ Π±∓

µ,J (η,p; η̄,−p) =

= Γ(+iµ)Γ(−iµ) ΩAdS
µ,J

(
−η e±

iπ
2 ,p;−η̄ e±̂

iπ
2 ,−p

)
,

(2.1.51)

ΠdS
µ,J(η,p; η̄,−p) ≡ Π±±

µ,J (η,p; η̄,−p) =

=Γ(+iµ)Γ(−iµ)
[
θ(η̄ − η) ΩAdS

µ,J

(
−η e±

iπ
2 ,p;−η̄ e±̂

iπ
2 ,−p

)
+ θ(η − η̄) ΩAdS

µ,J

(
−η̄ e∓̂

iπ
2 ,p;−η e∓

iπ
2 ,−p

) ]
,

(2.1.52)

which, going in Mellin space and using 2.1.27, after some computations give:

α±± =
1

cdS-AdS
d
2
−iµ

e±πµ, β±± =
1

cdS-AdS
d
2
+iµ

e∓πµ,

α±∓ =
1

cdS-AdS
d
2
−iµ

e∓πµ, β±∓ =
1

cdS-AdS
d
2
+iµ

e∓πµ,
(2.1.53)

11Indeed, as bulk-to-bulk propagators are solutions of the inhomogeneous (with a Dirac delta source)
equation of motion, which is a second order differential equation, they can have just two degrees of
freedom: one is fixed by normalization, the other by vacuum choice. As BD vacuum fixes the early-time
behaviour as a Minkowskian limit, the late-time behaviour is fixed to be a specific linear combination
of Dirichlet and Neumann modes.
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or, more compactly:

α±̂ := α±±̂ =
1

cdS-AdS
d
2
−iµ

e±̂πµ, (2.1.54)

β± := β±±̂ =
1

cdS-AdS
d
2
+iµ

e∓πµ . (2.1.55)

The final relation between dSd+1 and EAdSd+1 bulk-to-bulk propagators is:

Π±±̂
µ,J (η,p; η̄,−p) = cdS-AdS

d
2
+iµ

e∓
iπ
2 (

d
2
+iµ) e∓̂

iπ
2 (

d
2
+iµ)ΠAdS

d
2
+iµ,J

(
−η e±

iπ
2 ,p;−η̄ e±̂

iπ
2 ,−p

)
+ (µ→ −µ) ,

(2.1.56)
which is is symmetric under ∆+ ↔ ∆−. Or, in Mellin space:

Π±±̂
µ,J (u,p; ū,−p) = cdS-AdS

d
2
+iµ

e∓(u+
iµ
2 )πi e∓̂(u+

iµ
2 )πiΠAdS

d
2
+iµ,J

(u,p; ū,−p)

+ (µ→ −µ) ,
(2.1.57)

So, while ΠAdS
α∆++β∆−,J can be defined in a general linear combination of Dirichlet and

Neumann boundary conditions, for Π±±̂
µ,J this freedom is fixed by the choice of the vacuum

and its relation with the former depends on the branches on which its extremes are
located.
The importance of this result stays in the possibility of use it in perturbation theory,
directly substituting it in Schwinger-Keldysh diagrams, which are therefore related to a
sum of EAdS Witten diagrams [25]. These, in turn, are related to conformal boundary
correlators of an ECFT, leading to a perturbative holographic dS/CFT correspondence.

2.2 Exchange diagrams

In subsection 1.4 we have shown an application of perturbative QFT in dS to compute
a cubic contact diagram in the expansion of the 3-point correlator. When we move to
4-point correlators a new type of diagrams, rich of physical information, appear: the
exchange diagrams. These are characterized by the propagation of a virtual particle
in the bulk, providing then information on the mass spectrum of an interactive theory.
They are a good trial bench for the above construction, involving both bulk-to-boundary
and bulk-to-bulk propagators. Furthermore, from the boundary ECFT perspective they
are not trivial, being related to the conformal block expansion.
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Example with scalar fields

Here we present, as an example, an application of the dS− EAdS diagrams relation for
an exchange diagram of scalar fields via a cubic interaction without derivatives. We
can assume, without exceedingly complications, five different scalar field: we name them
φi , i = 1, · · · , 4 for the external legs, φ for the exchanged one. The cubic interactions
could also be distinguished as g12φφ1φ2φ and g34φφ3φ4φ.
Working in Mellin and Fourier spaces, the considered Witten diagram in a general bound-
ary condition is:

AAdS
α∆++β∆−,0(s1,k1, s2,k2, s3,k3, s4,k4) =

= g12φ 2πi δ

(
−d
2
+ 2s1 + 2s2 + 2u

)
(2π)dδ(d)(k1 + k2 + p)

· g34φ 2πi δ
(
−d
2
+ 2ū+ 2s3 + 2s4

)
(2π)dδ(d)(k3 + k4 − p)

·KAdS
∆1,0

(s1,k1)K
AdS
∆2,0

(s2,k2)Π
AdS
α∆++β∆−,0(u,p; ū,−p)KAdS

∆3,0
(s3,k3)K

AdS
∆4,0

(s4,k4) ,
(2.2.1)

while the in-in diagrams, in all the four possible combination respect to the vertexes
positions in the two branches of the in-in contour, are:

A±±̂
µ,0 (s1,k1, s2,k2,s3,k3, s4,k4) =

= g12φ 2πi δ

(
−d
2
+ 2s1 + 2s2 + 2u

)
(2π)dδ(d)(k1 + k2 + p)

· g34φ 2πi δ
(
−d
2
+ 2ū+ 2s3 + 2s4

)
(2π)dδ(d)(k3 + k4 − p)

·K±
∆1,0

(s1,k1)K
±
∆2,0

(s2,k2)Π
±±̂
µ,0 (u,p; ū,−p)K±̂

∆3,0
(s3,k3)K

±̂
∆4,0

(s4,k4) .
(2.2.2)

Using the machinery developed in the previous section, the problem has to be approached
using relations 2.1.41, 2.1.57 to express each of the A±±̂

µ,0 in terms of the AAdS
∆±,0. After the

substitutions, recalling ∆± = d
2
± iµ, 2.2.2 becomes:

A±±̂
µ,0 (s1,k1, s2,k2,s3,k3, s4,k4) =

=

(
4∏

i=1

cdS−AdS
∆i

)
cdS−AdS

d
2
+iµ

e∓iπ
2 (∆1+∆2+

d
2
+iµ−d) e∓̂iπ

2 (∆3+∆4+
d
2
+iµ−d)

· AAdS
∆+,0(s1,k1, s2,k2, s3,k3, s4,k4) + (µ→ −µ) .

(2.2.3)

We recall that the full in-in diagram is composed by the sum of all the above ±, ±̂
combinations, i.e. AdS

µ,0 =
∑

±,±̂ (±i) (±̂i)A±±̂
µ,0 , where the(±i) (±̂i) coefficients are proper
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of in-in Feynman diagrams in Mellin space. The aim is, therefore, to express AdS
µ,0 as a

sum of Witten diagrams. This involves a sum of eight Witten diagrams, then recollected
in a linear combination of the two with Dirichlet/Neumann boundary conditions:

AdS
µ,0(s1,k1, s2,k2,s3,k3, s4,k4) = 4

(
4∏

i=1

cdS−AdS
∆i

)
cdS−AdS

d
2
+iµ

· sin
[(
−d+∆1 +∆2 +∆+

) π
2

]
sin
[(
−d+∆3 +∆4 +∆+

) π
2

]
· AAdS

∆+,0(s1,k1, s2,k2, s3,k3, s4,k4) + (µ→ −µ) .
(2.2.4)

Factorisation via cutting rules

It is worth to use this example to show a general property of both in-in and Witten
diagrams, made evident by the use of the Mellin representation. This regard the possi-
bility of factorise such diagrams in a product of smaller ones putting on-shell internal
propagators, i.e. via cutting rules.

The on-shell limit of the EAdS propagator 2.1.46, in the two ∆± boundary conditions,
can be taken via the usual cutting (or Cutkosky) rules, i.e. taking the discontinuity12 of
it respect to the momentum squared p2. The final result is:

Discp2
[
ΠAdS

∆±,J(u,p; ū,−p)
]
= ω∆±(u, ū) Γ(iµ) Γ(−iµ) ΩAdS

µ,J (u,p; ū,−p) , (2.2.6)

which is equal to 2.1.46 divided by the csc (π (u+ ū)) factor. We can see it is manifestly
factorised in u and ū, considering 2.1.47 and the split representation of the harmonic
function 2.1.42. Then, in EAdSd+1 the on-shell ΠAdS

∆±,J are proportional to a decou-
pled product of two bulk-to-boundary propagators, so having an analogous of the split
representation for them. For general linear combinations of them, having a boundary
condition factor ω(α,β) := αω∆+ + βω∆− , the on-shell propagator is not factorised and is
given by 2.2.6 with ω∆± replaced by ω(α,β).
This applies also for dSd+1 Wightman and Feynman propagators: using 2.1.49, the result
is

Discp2
[
Π±±̂

µ,J (u,p; ū,−p)
]
= ωBD(u, ū) Γ(iµ)Γ(−iµ) Ω±±̂

µ,J (u,p; ū,−p) , (2.2.7)

where ωBD(u, ū) := α±̂ω∆+(u, ū) + β±ω∆−(u, ū) is the projector on the BD vacuum.

12The discontinuity for of a generic function f(z) is defined as:

Discz [f(z)] =
i

2
f
(
eiπz

)
− f

(
e−iπz

)
. (2.2.5)
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It is clear that applying the cutting rules to an exchange diagrams, computing the
discontinuity respect to the internal line, we maintain the above splitting structure, with
a boundary condition factor multiplying a product of ”split” diagrams. For the example
above, we have:

Discp2
[
AAdS

α∆++β∆−,0(s1,k1, s2,k2; s3,k3, s4,k4)
]
=

Γ(1 + iµ)Γ(1− iµ)
π

ω(α,β)(u, ū)

· FAdS
∆1,∆2,∆+(s1,k1, s2, u,p)F

AdS
∆−,∆3,∆4

(ū,−p, s3,k3, s4,k4) ,
(2.2.8)

Discp2
[
A±±̂

µ,0 (s1,k1, s2,k2; s3,k3, s4,k4)
]
= (±i)(±̂i) Γ(1 + iµ)Γ(1− iµ)

π
ωBD(u, ū)

· F±
∆1,∆2,∆+(s1,k1, s2, u,p)F

±̂
∆−,∆3,∆4

(ū,−p, s3,k3, s4,k4) ,

(2.2.9)
where we have defined the 3-point contact diagrams:

F •
∆i,∆j ,∆k(si,ki, sj,kj, u,p) =− gijϕ (2πi) δ

(
−d
2
+ 2si + 2sj + 2u

)
(2π)dδ(d)(ki + kj + p)

·K•
∆i,0

(si,ki)K
•
∆j ,0

(sj,kj)K
•
∆k,0(u,p) ,

(2.2.10)
with i, j = 1, · · · , 4; k = ± and • = AdS,±, ±̂.
This useful decomposition is represented in Figure 2.1. The discontinuity of the full dS
diagram is again the sum:

Discp2
[
AdS

µ,0(s1,k1, s2,k2 ; s3,k3, s4,k4)] =

=
∑
±±̂

(±i)(±̂i)Discp2
[
A±±̂

µ,0 (s1,k1, s2,k2; s3,k3, s4,k4)
]
.

(2.2.11)
Hence, a general cut (EA)dS exchange diagram, in Mellin-Barnes representation, is equal
to a linear combination of products of split diagrams, factorised in the internal Mellin
variables.
Instead, the original diagrams in Mellin space are simply re-obtained multiplying 2.2.8
and 2.2.11 for the overall factor csc (π (u+ ū)), which reintroduce a coupling between u
and ū. Now, performing an inverse Mellin transform, to return in position space, involves
a possibly non-trivial integral, which is the analogue of the flat QFT dispersion formula.

Conformal bootstrap

The factorisation result, derived via cutting rules in the special case of only scalar fields,
can be proven in a more general and meaningful way for exchanges of spinning particles13.

13The following derivation can be further applied to theories involving derivative interactions.
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Figure 2.1: Cutting rules for (EA)dSd+1 exchange diagrams. Thanks to the split representa-
tion of harmonic functions, they can be expressed as linear combinations of 3-point diagrams.

This different approach proceeds to derive the form of bulk exchanges just from assuming
the boundary structure of the theory to be conformal [26]. We do not need then to solve
the bulk QFT, as done in the previous chapter where we started from the dSd+1 wave
equation and directly computed an in-in diagram via integration over conformal time.
Building the computation of (EA)dSd+1 diagrams from ECFTd solutions, the conformal
bootstrap institutes the essence of the holographic correspondence.
In addition, this common approach to the two theories will allow to establish a general
relation between dSd+1 and EAdSd+1 exchange diagrams.

We have seen that 4-point correlators of a general (E)CFT can be expanded in terms
of conformal blocks. These contributions are UIRs of the conformal group SO (1, d+ 1).
In the holographic perspective, if a ECFTd is interpreted as a theory embedded on the
conformal boundary of a (EA)dSd+1 spacetime, then such conformal blocks could be
seen as bulk exchanges of particles on a certain channel. They satisfy the operatorial
representation of the Casimir equation 1.2.15, with C2 assumed to be a constant. This
can be seen as an eigenvalue differential equation of the quadratic Casimir operator of
SO (1, d+ 1).
Working in embedding coordinates XM , PN ∈ Md+2, with the convention that X rep-
resents a point of the (EA)dSd+1 bulk while P a point of its conformal boundary, the
Casimir equation for a s-channel contribution of a ECFTd 4-point boundary correlator
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is: (
1

2
LMNLMN − C2

)
G(P1, P2, P3, P4) = 0 , (2.2.12)

where we recall the eigenvalues’ parametrization C2 = ∆+∆− − J (J + d− 2) and the
differential operators LMN are assumed to act on P1,2.
General solutions of it are:

G(Pi) = αG∆+,J(Pi) + β G∆−,J(Pi) , (2.2.13)

with α, β being free coefficients and G∆±,J the conformal block:

G∆±,J(Pi) ∼ P
∆±−J−∆1−∆2/2
12 , (2.2.14)

in the (P1 − P2)
2 → 0 limit.

The link with bulk exchanges comes formally from the result that the Casimir equation
applied to a general bulk (EA)dSd+1 field φJ (X) reduces to the homogeneous wave
equation [27]:(

1

2
LMNLMN − C2

)
φJ (X) = 0 =⇒

(
∇2 −m2

)
φJ (X) = 0 . (2.2.15)

The homogeneous equation eigenvectors are the harmonic functions Ω
(AdS),±±̂
µ,J . In Mellin

space, these can be independently related, via 2.2.6, to on-shell bulk-to-bulk propagators
with ∆± boundary conditions14. In turn, we have seen it is possible to obtain general
boundary conditions via linear combinations of the ω∆± projectors, and then on-shell
exchange diagram just multiplying by the four bulk-to-boundary propagators.

This proves that the request of conformal symmetry and the choice of boundary
conditions impose the form of bulk exchanges in terms of (EA)dSd+1 harmonic functions.

A whole exchange diagram AAdS,±±̂ results to be a function of four points Pi i = 1, · · · , 4
of the conformal boundary written in terms of solutions of the Casimir equation (in
Mellin-Barnes representation). This suggests that we could express AAdS,±±̂ in terms
of conformal blocks, instead of harmonic functions. The conformal bootstrap, as well
the holographic approach, resides in this change of ingredients to compute a diagram:
instead of using a bulk function, to be computed solving the wave equation , we use a
solution of the conformal Casimir equation 2.2.12 applied on the boundary. Choosing a
certain b.c. for the Casimir eigenfunction 2.2.13, corresponds to choose a related b.c. for
a solution of the bulk homogeneous wave equation; in Mellin space, the b.c. is encoded
in the projector prefactor ω(α,β) multiplying the harmonic function.

14This result, based on the spectral decomposition 2.1.46, is still independent by factorisation, i.e.
split representation, of harmonic functions in bulk-to-boundary propagators.
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To put at work this method, we need now to find a boundary dual to harmonic

functions Ω
(AdS),±±̂
µ,J , miming their properties.

Heuristically, if we want to reproduce all the properties of the previous section results
2.2.8-2.2.11, the remaining element is the on-shell diagram’s factorizability. This descend
from the split representation of harmonic functions. Thus, we can base the research of
their duals imposing an analogous of split representation for elements of 2.2.13. The
linear combination satisfying this is given by [28]:

Fµ,J(Pi) =
1

2

(
G∆+,J(Pi) +

N∆−,J

N∆+,J

G∆−,J(Pi)

)
, (2.2.16)

where Fµ,J is called conformal partial wave (CPW) and is the only single-valued
linear combination of conformal blocks in Euclidean CFT. The coefficients are given by:

N∆±,J =
Γ(∆± − 1)

Γ
(
∆±−∆∓

2

) Γ
(

∆±+J
2
− a
)
Γ
(

∆±+J
2

+ a
)
Γ
(

∆±+J
2
− b
)
Γ
(

∆±+J
2

+ b
)

2π2Γ(∆± + J − 1)Γ(∆± + J)
.

(2.2.17)
This is the dual of the bulk harmonic function and has an analogous split representation:

Fµ,J (x1,x2;x3,x4) ∝
∫
ddx′F∆1,∆2,∆+ (x1,x2,x

′)F∆−,∆3,∆4
(x′,x3,x4) , (2.2.18)

or in Fourier representation:

Fµ,J(k1,k2,p;−p,k3,k4) ∝ F∆1,∆2,∆+(k1,k2,p)F∆−,∆3,∆4
(−p,k3,k4) , (2.2.19)

where F∆i,∆j ,∆k are ECFTd 3-point boundary correlators15, while the normalization is
arbitrary and can be chosen, for example, to reproduce the factorization of the bulk ex-
change. As the conformal symmetry group SO (1, d+ 1), which acts both on (EA)dSd+1

and on ECFTd, completely constraints the 3-point diagrams, it is clear that the F∆i,∆j ,∆k

coincide with the related contact diagrams of the two bulk theories. Going in Mellin space
and acting with the b.c. projectors on the Fµ,J we can get general boundary conditions.

Using this peculiar functions to construct a factorisation in the bulk requires gradual
steps. For first, we start relating them to on-shell exchange diagram in EAdSd+1.
Going to Fourier space, as in EAdS we are free to choose whatever b.c. for the ex-
changed particle, we can assume one with the CPW boundary condition, such that the
discontinuity of the diagram amplitude is equal to the CPW itself:

Discp2
[
AAdS

CPW (k1,k2,p;−p,k3,k4)
]
= FAdS

µ,J (k1,k2,p;−p,k3,k4) , (2.2.20)

15We omitted spin indexes for ease of presentation.
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where the factorization is immediate as inherited from the CPW:

FAdS
µ,J (k1,k2,p;−p,k3,k4) = FAdS

∆1,∆2,∆+,J1,J2,J
(k1,k2,p)× FAdS

∆−,∆3,∆4,J4,J3,J
(−p,k3,k4) .

(2.2.21)
Here the FAdS

∆i,∆j ,∆k,Ji,Jj ,J
are 3-point contact Witten diagrams. They can be in turn

bootstrapped, as conformal symmetry completely fixes 3-point correlators up to nor-
malization. This latter is fixed via the cubic coupling constant g of the EAdSd+1 bulk
QFT.

To extend the relation 2.2.20 to a general b.c., the crucial tool, as in previous section,
is the Mellin-Barnes representation. Then we can act with the general projector 2.1.47
on the CPW, to project it on ∆± boundary conditions and form linear combinations of
them:

Discp2
[
AAdS

α∆++β∆−,J (s1,k1, s2,k2, u,p; ū,−p, s3,k3, s4,k4)
]
=

=
Γ (1 + iµ) Γ (1− iµ)

π
(αω∆+ (u, ū) + βω∆− (u, ū))

FAdS
µ,J (s1,k1, s2,k2, u,p; ū,−p, s3,k3, s4,k4) ,

(2.2.22)

which is in agreement with 2.2.8.

Moving to dSd+1 is now straightforward, as it needs just to select the BD b.c.:

Discp2
[
A±,±̂

µ,J (s1,k1, s2,k2, u,p; ū,−p, s3,k3, s4,k4)
]
=

=
Γ (1 + iµ) Γ (1− iµ)

π

(
α±̂ω∆+ (u, ū) + β±ω∆− (u, ū)

)
F±,±̂

µ,J (s1,k1, s2,k2, u,p; ū,−p, s3,k3, s4,k4) ,

(2.2.23)

where the CPW has a new normalisation adapted to dS 3-point contact diagrams:

F±±̂
µ,J (s1,k1, s2,k2, u,p; ū,−p, s3k3, s4k4) = F±

∆1,∆2,∆+,J1,J2,J
(s1k1, s2k2, u,p)

· F ±̂
∆−,∆3,∆4,J4,J3,J

(ū,−p, s3k3, s4k4) .

(2.2.24)
Using the analytic continuation of bulk-to-boundary propagators 2.1.41, in Mellin space
they are related to the FAdS

∆i,∆j ,∆k,Ji,Jj ,J
as:

F±
∆1∆2∆3

(s1,k1, s2,k2, s3,k3) =

(
3∏

j=1

cdS-AdS
∆j

)
e∓(

d
4
+ 1

2

∑3
j=1(∆j− d

2))πi

· FAdS
∆1∆2∆3

(s1,k1, s2,k2, s3,k3) .

(2.2.25)

Now these on-shell exchange functions have to be related to their off-shell version.
While the former is related to solutions of the (EA)dSd+1 homogeneous wave equation,
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the latter, instead, to the inhomogeneous one. Then, the physical difference between
on-shell and full exchange functions is the locality condition, introduced by the source of
the inhomogeneous equation.
Computing the dispersion formula in Mellin space:

f(a) =

∫
dz

π

1

z − a
Discf(z) , (2.2.26)

we find that again this relation is encoded in the prefactor csc (π (u+ ū)), as expected,
thus expressing the locality of the bulk QFTs.

As we have general formulas relating AAdS
α∆++β∆−,J and A±,±̂

µ,J to the respectively 3-point
contact diagrams, a relation between these two exchange diagrams involves a comparison
on (EA)dSd+1 contact diagrams normalizations.

Eventually, after summing over ±, ±̂ combinations, the searched relation is:

AdS
µ,J =

λdS∆1∆2∆+λdS∆+∆3∆4

λAdS
∆1∆2∆+λAdS

∆+∆3∆4

cdS-AdS
∆+ AAdS

∆+,J +
λdS∆1∆2∆−λdS∆−∆3∆4

λAdS
∆1∆2∆−λAdS

∆−∆3∆4

cdS-AdS
∆− AAdS

∆−,J , (2.2.27)

where the coefficients come from the 3-point diagrams normalisation and from the ex-
ponential prefactors in 2.2.25. Their expressions are:

λAdS
∆1∆2∆3

= −g
3∏

j=1

1

2Γ
(
∆j − d

2
+ 1
) , (2.2.28)

where g is the coupling constant of the cubic interaction;

λdS∆1∆2∆3
= λAdS

∆1∆2∆3
× 2

(
3∏

j=1

cdS-AdS
∆j

)
sin

[(
d

4
+

1

2

3∑
j=1

(
∆j + Jj −

d

2

))
π

]
. (2.2.29)

Therefore, the total coefficients are:

λdS∆1,3∆2,4∆±

λAdS
∆1,3∆2,4∆±

=2 cdS-AdS
∆1,3

cdS-AdS
∆2,4

cdS-AdS
∆±

· sin
[(
−d+∆1,3 +∆2,4 +∆± + J1,3 + J2,4 + J

2

)
π

]
,

(2.2.30)

recalling the change in normalisation cdS−AdS
∆ is given by 2.1.18.

We can note 2.2.27 to be symmetric under ∆+ ↔ ∆− and that for J, Ji = 0 it recovers
the previous result 2.2.4. The relation is graphically illustrated in Figure 2.2.

This relation is just a simple example of how the analytic continuation can map dS
QFT to the EAdS one. It could be further applied to loop diagrams or even to whatever
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Figure 2.2: Relation between (EA)dSd+1 exchange diagrams: an exchange Schwinger-Keldysh
diagram in dSd+1 is equal to the linear combination of Dirichlet/Neumann exchange Witten
diagrams in EAdSd+1, where the exchanged states are related via ∆± = d

2 ± iµ.

order in perturbation theory. The general approach is that seen in the subsection 2.2,
i.e. to work in Mellin space and to substitute dS bulk-to-boundary and bulk-to-bulk
propagators via relations 2.1.41 and 2.1.57.
In addition, the possibility of conformal bootstrap introduces a third framework, the
ECFTd, for computing the same objects, which has a wealth of strong results, often
valid even non-perturbatively, typical of conformal field theories.

Exchanges in dS/CFT

With regard to the mere relationship between the dS QFT and its dual ECFT, it is
important to emphasize the contribution made by the dS−EAdS map here constructed.
Indeed, we have seen the possibility of bootstrapping via conformal symmetry the ex-

change diagrams A±,±̂
µ,J using the CPWs F±,±̂

µ,J , solutions of the Casimir equation of an
ECFTd properly normalized, proportional (in Mellin space) to the product of two 3-point
contact diagrams. In the whole previous derivation we never had the need of the above
mentioned map to reach the wanted results. In fact, it has been primarily a relevant but
collateral result of computing dS diagrams, or at most a useful shortcut.
We want now to show the how this map enforces a holographic dS/CFT, surmounting
some problems of a direct approach.

The fact that in-in dS diagrams can be generally expressed as linear combinations
of Witten diagrams, allows to inherit some of the strong holographic properties of this
latter.
A first simpler implication is that, using 2.2.27, a dSd+1 exchange diagram can expanded
in conformal blocks via the Euclidean AdS/CFT expansion. From what we have seen
in previous subsection, conformal blocks G∆±,J are proportional to on-shell exchange
amplitudes in the ∆± b.c., which could be interpreted as them to be the boundary
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dual of a specific particle exchange contributing to a 4-point boundary correlator. The
proportionality is:

AAdS
∆±,J

∣∣∣∣
on-shell

=
λAdS
∆1∆2∆+λAdS

∆3∆4∆+

CAdS
∆±,J

G∆±,J , (2.2.31)

where CAdS
∆±,J is the same of 2.1.20.

Instead, a full exchange diagram presents, other than the previous on-shell term,
presents a infinite sum of conformal blocks related to exchanges of excited states, e.g.
bound states, with increasing scaling dimension. From the CFT perspective, these states
correspond to the so-called double-trace operators. Also, they encode the contact
terms of the full-exchange. The general formula is:

AAdS
∆±,J =

λAdS
∆1∆2∆±λAdS

∆3∆4∆±

CAdS
∆±,J

G∆±,J

+
J∑

J ′=0

∞∑
n=0

(s)an,J ′G∆1+∆2+2n+J ′,J ′ +
J∑

J ′=0

∞∑
n=0

(s)bn,J ′G∆3+∆4+2n+J ′,J ′ .

(2.2.32)

Then, the dSd+1 conformal block expansion is:

AdS
µ,J =

λdS∆1∆2∆+λdS∆3∆4∆+

CdS
∆+,J

G∆+,J +
λdS∆1∆2∆−λdS∆3∆4∆−

CdS
∆−,J

G∆−,J

+2

(
4∏

i=1

cdS-AdS
∆i

)
sin

((
−d+ 2J +∆1 +∆2 +∆3 +∆4 + J1 + J2 + J3 + J4

2

)
π

)

·

[
J∑

J ′=0

∞∑
n=0

(s)an,J ′G∆1+∆2+2n+J ′,J ′ +
J∑

J ′=0

∞∑
n=0

(s)bn,J ′G∆3+∆4+2n+J ′,J ′

]
.

(2.2.33)
Analogous t and u channels conformal block expansion, in both theories, can be derive
[25].

Another important feature transmitted to dS/CFT comes from EAdS boundary cor-
relators being single-valued. Not by accident, we have already encountered this property
for CPWs of the ECFTd: indeed, thanks to their single-valuedness, these boundary cor-
relators can be expanded along a basis of CPWs of the boundary theory16.
Expanding perturbatively boundary correlators of the mapped dS theory, these main-
tain the single-valuedness as well the CPW expansion. A general expression for a CFT
4-point function expanded in CPWs is:

⟨O1O2O3O4⟩ = (non-normalisable) +
∑
J

∫ +∞

−∞
dν aJ(ν)Fν,J , (2.2.34)

16Equivalently, it is clear they can be expanded in harmonic functions, being also these single-valued.
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where the second term is normalisable and depends by the spectral density aJ(ν). If we
translate this expansion in conformal blocks, we find the poles of aJ(ν) give the OPE
coefficients. The analyticity of this functions is therefore crucial for the existence of the
OPE, and thus of convergent conformal block expansion [29].

For example, in the normalisable b.c., the exchange amplitude AAdS
∆+,J CPW expansion

is:

AAdS
∆+,J =

∫ +∞

−∞

dν

ν2 +
(
∆+ − d

2

)2 ν2π FAdS
ν,J + contact , (2.2.35)

while to obtain the one for the non-normalisable we could use the relation 2.1.26. The
final result is:

AAdS
∆−,J = 2µiFAdS

µ,J + AAdS
∆+,J , (2.2.36)

where we can see it provides the non-normalisable part of the Neumann exchange.
In this case the spectral density is a meromorphic function also at a non-perturbative
level, guaranteeing the exactness of the AdS/CFT correspondence.

The dS− EAdS map we have built guarantees aJ(ν) is meromorphic at all orders in
perturbation theory in the dS case, but not at non-perturbative level, with no guaranties
that the conformal block expansion 2.2.33 converges. Ultimately, using again relation
2.2.27, the CPW expansion for the dSd+1 exchange diagram is:

AdS
µ,J =

(
4∏

i=1

cdS-AdS
∆i

)[
−8µi cdS-AdS

∆+ sin

(
−d+∆1 +∆2 +∆− + J1 + J2 + J

2
π

)
sin

(
−d+∆3 +∆4 +∆− + J3 + J4 + J

2
π

)
FAdS

µ,J

+2 sin

(
−d+∆1 +∆2 +∆3 +∆4 + J1 + J2 + J3 + J4 + 2J

2
π

)
·
∫ +∞

−∞

dν

ν2 +
(
∆+ − d

2

)2 ν2π FAdS
ν,J

]
.

(2.2.37)
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Chapter 3

Anomalous dimensions of
double-trace operators in dS

In the previous chapter we have seen the conformal bootstrap method at work to compute
dSd+1 exchange diagrams and derive them in terms of the analogous Witten diagrams,
finding the core result 2.2.27. Successively, thanks to such relation, we have managed
to express the desitterian exchange in a conformal block expansion valid in perturbation
theory. Even if we do not have state-operator correspondence, it is worth to analyze this
expansion, trying to interpret the double-trace operators as dual to exchanges of bound
states in the bulk. Such application of the dS/CFT machinery is of great importance
for inflationary phenomenology, as could provide information on the inflationary particle
physics: from the mass spectrum, to the stability of bound state or resonances or, more
generally, about inflationary kinematics and dynamics.

In this chapter we will address the original computation of a specific quantity char-
acterising double-trace1operators in dS/CFT: the anomalous dimension γl,n. In par-
ticular, the specific case we will consider regards double-trace operators contributing (in
the boundary perspective) to an exchange of a massive scalar field by mediated by a
non-derivative interaction.

We will start revising the concept of anomalous dimension and the method we will
use to derive it perturbatively . This latter will be based on the dS − EAdS map:
analogously to the diagram itself, we will prove that even the anomalous dimension γdSl,n
of the dSd+1 theory can be expressed as a sum of EAdSd+1 ones, γAdS

l,n , with different
boundary conditions.

1These are also known in literature as double-twist operators.
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3.1 Anomalous dimensions

We have seen in section 2.1 that conformal symmetry fixes a 4-point correlators in terms
of conformal blocks, which, from the bulk point of view, are related to on-shell exchanges.
The conformal block expansion can be done along s, t or u channels, without changing
the resulting correlator. This property is called crossing symmetry and constraints
the shape of conformal block.
For example, the t − s channels crossing symmetry for a correlator of scalar primary
operators ⟨O(x1)O(x2)O(x3)O(x4)⟩, with equal conformal dimension ∆, is expressed by
the equation:

u∆

(
1 +

∑
τ ′,l′

aτ ′,l′Gτ ′,l′(v, u)

)
︸ ︷︷ ︸

t channel

= v∆

(
1 +

∑
τ,l

aτ,lGτ,l(u, v)

)
︸ ︷︷ ︸

s channel

, (3.1.1)

where here conformal blocks are functions of the cross ratios:

u :=
x212x

2
34

x213x
2
24

, v =
x214x

2
23

x213x
2
24

. (3.1.2)

Each conformal block term, indicated by spin l and twist2 τ := ∆ − l, include a series
composed by the lowest weight primary operator with such data, plus its descendant
operators.
In the expansion, among the primary operators we find composite operators of the form

[OO]n,l = O∂i1 . . . ∂iℓ
(
∂2
)n
O + . . . , (3.1.3)

where the . . . represent terms of a similar schematic form required to make the operator
primary and ia = 1, . . . , d. These operators are referred to in the literature as double-trace
operators. In (EA)dSd+1 space, these operators correspond to bound states of the single
particle dual to the operator O, with n and l being relative radial and angular momentum
quantum numbers. The scaling dimension of the double-trace operators (3.1.3) takes the
form

∆[OO]n,l
= 2∆+ 2n+ l + γn,l , (3.1.4)

where γn,l is the anomalous dimension. In a free CFT it is always γn,l ≡ 0, so it depends
by the interactions involved: in the (EA)dSd+1 case they are strictly related to the
dynamical behaviour of spacetime.

2For ease of presentation, referring to the conformal blocks, here we use l instead of J for the spin,
and we substitute the conformal dimension with the twist.
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In fact, for l → ∞ double-trace operators represent states asymptotic to free bound
states [30]. In this limit, in fact, the CFT behaves as mean field theory, and the twist of
the double-trace operator considered above remains finite and tends to:

τ
(0)
n,l = 2∆+ 2n , (3.1.5)

while the coefficient an,l := aτn,l,l of the conformal block related to [OO]n,l tends to [31]:

a
(0)
n,l =

2l(−1)n(∆)2n
(
−d

2
+∆+ 1

)2
n
(n+∆)2l

l!n!
(
d
2
+ l
)
n
(d− 2n− 2∆)n(l + 2n+ 2∆− 1)l

(
−d

2
+ l + n+ 2∆

)
n

. (3.1.6)

Perturbing this limit in orders of
(
1
l

)
, the twist acquires an anomalous dimension factor

τn,l = τ
(0)
n,l + γn,l, which is:

γn,l = −
c
(0)
n

Jτ ′

(
1 +

∞∑
k=1

c
(k)
n

J2k

)
, (3.1.7)

where J is called conformal spin and is defined by:

J2 =
(
l +

τn,l
2

)(
l +

τn,l
2
− 1
)
, (3.1.8)

and the coefficients c
(k)
n encode the perturbative corrections in function of n.

In the following section we will compute the anomalous dimension of double-trace
operators (3.1.3) induced by the exchange of a particle in de Sitter space. To this end,
one needs to determine the conformal block expansion of an exchange diagram in the
crossed channel and the method we shall follow is based on the computation of crossing
kernels of conformal partial waves.

Being the AdS/CFT correspondence exact, we can directly apply these anomalous di-
mensions’ results for AdS exchanges, with an immediate bulk interpretation. Combining
this with the dS−EAdS map presented in the previous chapter, it could be derived an ex-
act expression for the anomalous dimensions of double-trace operators related to a dSd+1

exchange, which has never been presented in literature. To avoid many mathematical
technicalities, we will focus to the simpler case of four scalar identical fields exchanging
a scalar massive field, and we will limit to compute the anomalous dimensions for n = 0.

3.2 Crossing kernel method

Let’s present now the crossing kernel method, which will allow us to derive a closed
analytical expression for anomalous dimensions of double-trace operators induced by a
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single-particle exchange. We will start from a desitterian exchange diagram of four scalar
fields, exchanging a scalar field with conformal dimension ∆′. We have already presented
its s channel conformal block expansion in 2.2.33, in terms of EAdS conformal blocks.
Now we need to present the t channel exchange one; this can be further expanded in
both t and s channel conformal blocks. Naming the diagram3 as (t)AdS

∆′,0(v, u), the former
expansion is4 [32]:

(t)AdS
∆′,0(v, u) =

(t)a∆′ G∆′(v, u) +
∞∑
n=0

(t)a∆1+∆2+2nG∆1+∆2+2n(v, u)

+
∞∑
n=0

(t)b∆3+∆4+2nG∆3+∆4+2n(v, u) ,

(3.2.1)

where the (t) subscript indicate the expansion channel and we omitted the spin subscript
for conformal block and their coefficients. The first term represents the on-shell ∆′

exchange.
The s channel expansion is:

(t)AdS
∆′,0(v, u) =

∞∑
l=0

∞∑
n=0

(s)a∆1+∆2+2n+lG∆1+∆2+2n+l(u, v)

+
∞∑
l=0

∞∑
n=0

(s)b∆3+∆4+2n+lG∆3+∆4+2n+l(u, v) ,

(3.2.2)

where in this case are involved spinning double-trace operators.
These last two expressions are valid for ∆1 + ∆2 −∆3 −∆4 ̸= 2n , n ∈ Z. But we are
interested in the case in which all the boundary operators are identical, so this condition
is not satisfied. In this case we have [33]:

(t)AdS
∆′,0(v, u) =

∞∑
l=0

∞∑
n=0

(s)a2∆+2n+lG2∆+2n+l(u, v)

+
∞∑
l=0

∞∑
n=0

(s)a
(0)
2∆+2n+l

(s)γdSn,l ∂G2∆+2n+l(u, v) ,

(3.2.3)

3To label the conformal dimension of the exchanged field, instead of µ here we use the equivalent
index ∆′, being they related by ∆′ = d

2 + iµ, as seen in section 1.2.
4Again, in the terms inside the sum over n, the index 2∆ + 2n is not here expressing the actual

conformal dimensions but just indicating the conformal block.
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where in the derivative conformal block, ∂G, the derivative acts respect to its total
conformal dimension. (t)AdS

∆′,0 can be expanded in the u→ 0 limit [30]:

(u
v

)∆
(t)AdS

∆′,0(v, u) =u
∆

∞∑
l=0

∞∑
n=0

(
(s)γdSn,l
2

a
(0)
2∆+2n+l f2∆+2n,l(v) log u

+
(s)γdSn,l
2

a
(0)
2∆+2n+l ∂nf2∆+2n,l(v) + a2∆+2n+l f2∆+2n,l(v) +O(u)

)
,

(3.2.4)
where f2∆+2n,l(v) is the called the collinear conformal block :

fτ,l(v) := lim
u→0

u−τ/2Gτ,l(u, v) = (1− v)l 2F1

(
τ + 2l

2
,
τ + 2l

2
, τ + 2l; 1− v

)
. (3.2.5)

Assuming now n = 0, to find the anomalous dimension we have to determine the
coefficient of the u∆ log u term, naming it α(v):

α(v) :=
∞∑
l=0

(s)γdS0,l
2

a
(0)
2∆+l f2∆,l(v) . (3.2.6)

Once again, the crucial ingredient in the derivation will be the Mellin-Barnes represen-
tation. This will allow to derive coefficient 3.2.6 via the computation of a residue of the
Mellin integrand. To implement it we have to Mellin transform directly the exchange
diagram. This must satisfy the following structure imposed by conformal symmetry:

(t)AdS
∆′,0(v, u) =

A(u, v)
(x212)

∆(x234)
∆
, (3.2.7)

then, the Mellin-Barnes representation is [34]5:

A(u, v) =
∫ +i∞

−i∞

ds

2πi

dt

2πi
ρ(s, t)M(s, t)u

t
2v−

s+t
2 , (3.2.8)

ρ(s, t) := Γ

(
2∆− t

2

)2

Γ
(
−s
2

)2
Γ

(
t+ s

2

)2

, (3.2.9)

where the integrand has been appropriately factorised such that ρ(s, t), called Mellin
measure, encodes constraints imposed by conformal symmetry, while the functionM(s, t)
encodes the dynamics of the diagram. This latter is called Mellin amplitude and is a

5Actually, in [34], the Mellin amplitude is defined as a representation of a full 4-point conformal
correlators. Nevertheless, for the following treatment, it is just important that it satisfies the structure
3.2.7, which already the case for an exchange diagram.
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peculiar version of the Mellin-Barnes representation suited for functions of harmonic
ratios in CFT.
We can see that for t = 2∆ the integrand of 3.2.8, call it I, has a pole, due to the first
gamma function, while the u factor gets the searched power, u∆. Instead, a log term in
a residue can be generated by a double pole, which is the case t = 2∆, thus:

It=2∆ = · · ·+ 2u∆ log u

(
Γ
(
−s
2

)2
Γ

(
s+ 2∆

2

)2

M (s, 2∆) v−
s
2
−∆

)
+ · · · . (3.2.10)

Note that M (s, 2∆) coincides with the Mellin amplitude related to α(v):

α(v) =

∫ +i∞

−i∞

ds

4πi
ρ̃(s)α(s) v−

s+2∆
2 ,

ρ̃(s) = Γ
(
−s
2

)2
Γ

(
s+ 2

2
∆

)2

.

(3.2.11)

It is clear, comparing 3.2.11 with 3.2.10, that α(s) ≡M (s, 2∆).
Now the problem consists in extracting a single anomalous dimension from the sum in
3.2.6 and computing the Mellin amplitude.

Extraction of γ
(s)
0,l

A good starting point to achieve this goal is to exploit a property of the collinear confor-
mal blocks. It has been proved that they can be expanded in terms of a set of orthogonal
functions Qτ,l(s) [34]:

fτ,l(v) =

∫ +i∞

−i∞

ds

4πi
v−

s+τ
2 ρ∆̃(s, τ)Qτ,l(s) . (3.2.12)

This functions are expressed in terms of Hanh polynomials Q
(a,b,c,d)
l (s) as [35]:

Qτ,l(s) = (−1)ll!
(
N

(τ,τ+τ1−τ2−τ3+τ4,−τ1+τ2,τ3−τ4)
l

)−1

Q
(τ,τ+τ1−τ2−τ3+τ4,−τ1+τ2,τ3−τ4)
l (s) .

(3.2.13)

where N
(τ,τ+τ1−τ2−τ3+τ4,−τ1+τ2,τ3−τ4)
l is a normalization prefactor composed by gamma

functions and the τi are the twists of the external legs.
Hahn polynomial are orthogonal respect to the Mellin-Barnes scalar product [36]:

⟨f(s)g(s)⟩a,b,c,d =
∫ +i∞

−i∞

ds

4πi
Γ

(
s+ a

2

)
Γ

(
s+ b

2

)
Γ

(
c− s
2

)
Γ

(
d− s
2

)
f(s) g(s) ,

(3.2.14)
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and are normalized by:〈
Q

(a,b,c,d)
l (s)Q(a,b,c,d)

n (s)
〉
= δl,n

·
(−1)nn4n! Γ

(
a+c
2

+ n
)
Γ
(
a+d
2

+ n
)
Γ
(
b+c
2

+ n
)
Γ
(
b+d
2

+ n
)(

a+b+c+d
2

+ n− 1
)
n
Γ
(
a+b+c+d

2
+ 2n

) ,

(3.2.15)

where the coefficient to the Kronecker delta is exactly N
(a,b,c,d)
l .

Using 3.2.12, the Mellin amplitude is:

α(s) =
∞∑
l=0

(s)γdS0,l
2

a
(0)
2∆+lQ2∆,l(s) . (3.2.16)

The orthogonality allows to extract a generic coefficient of the above sum, containing the
anomalous dimension for fixed l. Using τi = τ = ∆ , ∀i = 1, · · · , 4, the involved Hahn
polynomial is Q

(2∆,2∆,0,0)
l (s). For ease of presentation, we rename the normalization as

Nl := N
(τ,τ+τ1−τ2−τ3+τ4,−τ1+τ2,τ3−τ4)
l , and compute the scalar product:〈

α(s), Q
(2∆,2∆,0,0)
l (s)

〉
=

∫ +i∞

−i∞

ds

4πi
ρ̃ (s, 2∆)α(s)Q

(2∆,2∆,0,0)
l

=
∞∑
s=0

(s)γdS0,l
2

a
(0)
2∆+s

(−1)ss!
Ns

·
∫ +i∞

−i∞

ds

4πi
Γ
(
−s
2

)2
Γ

(
s+ 2∆

2

)2 (
Q

(2∆,2∆,0,0)
l

)2
︸ ︷︷ ︸

δllNl

=
(s)γdS0,l
2

a
(0)
2∆+l(−1)

ll! .

(3.2.17)

Recalling that α(s) ≡M (s, 2∆), the anomalous dimension is given by:

1

2
(s)γdS0,l a

(0)
2∆+l =

(−1)l

l!

∫ +i∞

−i∞

ds

4πi
ρ̃ (s, 2∆) M (s, 2∆) Q

(2∆,2∆,0,0)
l . (3.2.18)

The OPE coefficient in the mean field limit is given by the general expression 3.1.6,
with a

(0)
2∆+l ≡ a

(0)
0,l :

a
(0)
2∆+l =

2l(∆)2l
l!(2∆ + l − 1)l

, (3.2.19)

gaining the final formula:

(s)γdS0,l =
(−1)l(2∆ + l − 1)l

2l−1(∆)2l

∫ +i∞

−i∞

ds

4πi
ρ̃ (s, 2∆) M (s, 2∆) Q

(2∆,2∆,0,0)
l . (3.2.20)
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Mellin amplitude

We need to find an expression for M(s, 2∆) in terms of known, or at least computable,
objects of the boundary ECFT or of the bulk de Sitter QFT. By 3.2.8, it is defined as
the Mellin transform of the exchange diagram (t)AdS

∆′,0(v, u).

On the other hand, we already know that (t)AdS
∆′,0(v, u) can be expressed in terms of the

Witten diagrams (t)AAdS
∆±,0(v, u) via the map 2.2.276. As this is a linear combination, it

is clear that it extends trivially to Mellin amplitudes:

(t)AdS
∆′,0(s, t) =

λdS∆∆∆+λdS∆+∆∆

λAdS
∆∆∆+λAdS

∆+∆∆

cdS-AdS
∆+︸ ︷︷ ︸

Λ+

(t)AAdS
∆+,0(s, t) +

λdS∆∆∆−λdS∆−∆∆

λAdS
∆∆∆−λAdS

∆−∆∆

cdS-AdS
∆−︸ ︷︷ ︸

Λ−

(t)AAdS
∆−,0(s, t) ,

(3.2.21)
where (t)AdS

∆′,0(s, t) ≡ M(s, t), and we renamed the two coefficients as Λ± for ease of
presentation.
Finally, we have also seen that such amplitudes enjoy a conformal partial wave expansion.
Embedding it under Mellin-Barnes representation would lead to the searched relation,
giving M(s, 2∆) in terms of functions fixed by conformal bootstrap. Before to apply the
CPW expansions for AdS diagrams we need to Mellin transform the general CPW using
the same measure ρ(s, t) used for Mellin amplitudes (t)A

(A)dS
∆′,0 (s, t) [36]:

(t)FAdS
ν,0 (u, v) =

∫ +i∞

−i∞

ds

4πi

dt

4πi
ρ(s, t) (t)FAdS

ν,0 (s, t)u
t
2v−

s+t
2 . (3.2.22)

Now we can assemble 3.2.21 with the CPW expansions seen in previous chapter, 2.2.35
and 2.2.36, properly converted in Mellin space. Therefore we have:

(t)AdS
∆′,0(s, t) =

(
Λ+ + Λ−) (t)AAdS

∆+,0(s, t) +
(
2µiΛ−) (t)FAdS

µ,0 (s, t)

=
(
Λ+ + Λ−) ∫ +∞

−∞

dν

ν2 +
(
∆+ − d

2

)2 ν2π (t)FAdS
ν,0 (s, t) +

(
2µiΛ−) (t)FAdS

µ,0 (s, t) ,

(3.2.23)
where contact terms are absent due to l′ = 0.

Inserting this in 3.2.20, we get the anomalous dimension in terms of AdS CPWs:

(s)γdS0,l =
(
Λ+ + Λ−) (−1)l(2∆ + l − 1)l

2l−1(∆)2l

∫ +i∞

−i∞

ds

4πi
ρ̃ (s, 2∆) (t)AAdS

∆+,0(s, 2∆)Q
(2∆,2∆,0,0)
l

+
(
2µiΛ−) (−1)l(2∆ + l − 1)l

2l−1(∆)2l

∫ +i∞

−i∞

ds

4πi
ρ̃ (s, 2∆) (t)FAdS

µ,0 (s, 2∆)Q
(2∆,2∆,0,0)
l .

(3.2.24)

6Recall that here we assume ∆i ≡ ∆ , ∀i = 1, · · · , 4.
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The integral in the second term is called the crossing kernel of the CPW (t)FAdS
µ,0 (s, t),

defined as [30]:

(t)Jµ,0|l(t) =
(−1)l

l!

∫ +i∞

−i∞

ds

4πi
ρ̃(s, t) (t)FAdS

µ,0 (s, t)Q
(t,t,0,0)
l (s) . (3.2.25)

Then, the anomalous dimension is directly expressed in terms of crossing kernels of
CPWs:

(s)γdS0,l =
(
Λ+ + Λ−) l!(2∆ + l − 1)l

2l−1(∆)2l

∫ +∞

−∞

dν

ν2 −
(
∆+ − d

2

)2 ν2π (t)Jν,0|l(2∆)

+
(
2µiΛ−) l!(2∆ + l − 1)l

2l−1(∆)2l

(t)Jµ,0|l(2∆) ,

(3.2.26)

where the spectral integral in the first term encodes the contribution from the nor-
malisable AdS Dirichlet b.c., while the second is a contribution from the single CPW
(t)FAdS

µ,0 (s, t), which accounts for the non-normalisable part of the Neumann b.c.

Both (t)Jµ,l′|l(t) and
(t)I∆′,l′|l(t) have been computed in literature for a wide class of

cases [30, 36]. Following these computation methods, we can now proceed computing
their analytic expressions in our specific case.

3.3 Computation of the crossing kernel

To derive the crossing kernel 3.2.25 we have to start from the conformal partial waves.
They are defined by 2.2.16 up to normalisation. However we have already used some
relations involving (t)FAdS

µ,0 (s, t) while defining the objects which led to the crossing kernel
definition, so we have to impose the normalization coherently with them.
Indeed, we have indirectly defined these CPWs via relation 2.2.36. From it we get:

(t)FAdS
µ,0 (s, t) =

2µ

i

(
(t)AAdS

∆+,0(s, t)− (t)AAdS
∆−,0(s, t)

)
. (3.3.1)

If now we perform an inverse Mellin transform, returning to the xi coordinates, the
CPW will be proportional to the harmonic function ΩAdS

µ,0 via relation 2.1.27. Then,
using the split representation 2.1.42, we find the expected proportionality with the 3-
point diagrams FAdS

∆i,∆j ,∆k
in momentum space:

(t)FAdS
µ,0 (s1,k1, s2,k2, u,p, ū,−p, s3,k3, s4,k4) = FAdS

∆,∆, d
2
+iµ

(s1,k1, s2,k2, u,p)

· FAdS
d
2
−iµ,∆,∆

(ū,−p, s3,k3, s4,k4) ,

(3.3.2)
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where, in the case of all scalar fields, the 3-point diagrams have the general form[5]:

FAdS
∆1∆2∆3

(s1,k1, s2,k2, s3,k3) =− g iπ δ
(
d

4
− s1 − s2 − s3

)
(2π)dδ(3)(k1 + k2 + k3)

·
3∏

j=1

KAdS
∆j ,0

(sj,kj) ,

(3.3.3)
and the scalar bulk-to-boundary propagators in Mellin space are:

KAdS
∆i,0

(si,ki) =
Γ
(
si +

1
2

(
d
2
−∆i

))
Γ
(
si − 1

2

(
d
2
−∆i

))
2Γ
(
∆i − d

2
+ 1
) (

ki
2

)−2si+∆i− d
2

. (3.3.4)

These expressions have to be recast in terms of the Mellin variables (s, t) related to
the harmonic ratios. The resulting CPW7is[36]:

(t)FAdS
µ,0 (s, t) =

π
d
2 g2

64µ2 Γ
(
∆− d

2
+ 1
)4

Γ (iµ) Γ (−iµ) Γ
(
d
4
+ iµ

2

)2
Γ
(
d
4
− iµ

2

)2
·
Γ
(
s+t+d−τ−2∆

2

)
Γ
(
s+t+τ−2∆

2

)
Γ
(
s+t
2

)2 .

(3.3.6)

Inserting this expression in the 3.2.25, the crossing kernel can be derived up to in-
tegration. This integral can be solved analytically, but its development is long and
complicated, involving Mellin-Barnes integrals of hypergeometric functions. We present
here the final result for t = 2∆:

(t)Jµ,0|l(2∆) =
(−2)lπ d

2 g2(∆)2l

64 l!µ2 (2∆ + l − 1)l Γ (iµ) Γ (−iµ) Γ
(
d
2

)
Γ
(
∆− d

2
+ 1
)4

· 4F3

(
−l, 2∆ + l − 1, d

4
− iµ

2
, d
4
+ iµ

2

∆,∆, d
2

; 1

)
,

(3.3.7)

where 4F3 is a generalised hypergeometric function, defined as[24]:

4F3

(
a1, a2, a3, a4

b1, b2, b3
; z

)
=

∞∑
k=0

(a1)k(a2)k(a3)k(a4)k
(b1)k(b2)k(b3)k

zk

k!
, (3.3.8)

7With regard to the function (t)M0,0,0,0|0(s, t) and the coefficients κ d
2−iµ , α0,0,0;∆,∆, d2+iµ defined in

[36], this CPW is equal to:

(t)FAdS
µ,0 (s, t) = λAdS

∆,∆, d2+iν
λAdS

d
2−iν,∆,∆

π
d
2

κ d
2−iµα0,0,0;∆,∆, d2+iµ

(t)M0,0,0,0|0(s, t) , (3.3.5)

where the λAdS
∆i,∆j ,∆k

are the 3-point Witten diagram normalizations 2.2.28.

73



and it is convergent for |z| < 1 , z ∈ C.

3.4 Computation of the spectral integral

The first term of 3.2.24 contain a spectral integral of crossing kernels. To evaluate it, it
is convenient to set a preparatory normalisation, defining [30]:

(t)Iµ,0|l(t) =

∫ +∞

−∞

dν

2π
χ(ν) (t)Ĵ d

2
+iν,0|l(t) , (3.4.1)

where the spectral function is:

χ(ν) =
1

ν2 − µ2

ν2

π
λAdS
∆,∆, d

2
+iν
λAdS

d
2
−iν,∆,∆

, (3.4.2)

with λ∆i,∆j ,∆k
defined as in 2.2.28, and iµ = ∆+ − d

2
= ∆′ − d

2
. In other words, we

are redefining the crossing kernel, extracting the 3-point Witten diagram normalizations.
The reason to do this is that the new (t)Ĵ d

2
+iν,l′|l(t) can be expressed as a sum of Wilson

polynomials.
These are defined as:

Wn(x
2; a, b, c, d) =

= (a+ b)n(a+ c)n(a+ d)n 4F3

(
−n, a+ b+ c+ d+ n− 1, a+ ix, a− ix

a+ b, a+ c, a+ d
; 1

)
,

(3.4.3)
In general we have:

(t)Ĵ d
2
+iν,l′|l(t) =

N∑
j=1

βj(t)Wj

(
ν2; a1, a2, a3, a4

)
, (3.4.4)

with the ai , i = 1, · · · , 4 suited parameters. The number N of terms depends on l′ but
not on l. For l′ = 0 we have just one Wilson polynomial in the decomposition. These
functions have the very nice property to be orthogonal respect to the Wilson measure
wai(ν), which is encoded in χ(ν):

wai(ν) =
Γ
(
a1 ± iν

2

)
Γ
(
a2 ± iν

2

)
Γ
(
a3 ± iν

2

)
Γ
(
a4 ± iν

2

)
Γ(±iν)

, (3.4.5)

i.e., for two functions of ν2:

⟨p(ν2)|q(ν2)⟩ =
∫ +∞

−∞

dν

2π
wai(ν) p(ν

2) q(ν2) . (3.4.6)
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Therefore, under these definitions, the spectral integral takes the form of a scalar product:

(t)Iτ ′,l′|l(t) =

〈
1

ν2 − µ2

∣∣∣∣∣(t)Ĵ d
2
+iν,l′|l(t)

〉
. (3.4.7)

The next step consists in defining a seed integral to which we can refer more compli-
cated ones, making possible the analytical solution of the general 3.4.7.

ϕl(ai) =

〈
1

4

Γ
(
a5 ± iν

2

)
Γ
(
1 + a6 ± iν

2

)∣∣∣∣∣Wl(ν
2; ai)

〉

=

∫ +∞

−∞

dν

2π
wai(ν)

1

4

Γ
(
a5 ± iν

2

)
Γ
(
1 + a6 ± iν

2

)Wl(ν
2; ai) ,

(3.4.8)

which has the general result

ϕl(ai) = Γ(a1 + a2)Γ(a1 + a3)Γ(a1 + a4)Γ(a1 + a5)Γ(a2 + a5)Γ(a3 + a5)Γ(a4 + a5)

· Γ(a2 + a3 + l)Γ(a2 + a4 + l)Γ(a3 + a4 + l)Γ(a6 − a5 + l + 1)

Γ(1− a5 + a6)
ψ(a; b, c, d, e, f) ,

(3.4.9)
where the function ψ(a; b, c, d, e, f) is the Wilson function, defined by

ψ(a; b, c, d, e, f) = Γ(a+ 1) [Γ(1 + a− b)Γ(1 + a− c)Γ(1 + a− d)
· Γ(1 + a− e)Γ(1 + a− f)Γ(2 + 2a− b− c− d− e− f)]−1

· 7F6

(
a, 1 + a

2
, b, c, d, e, f

a
2
, 1 + a− b, 1 + a− c, 1 + a− d, 1 + a− e, 1 + a− f

; 1

)
.

(3.4.10)

The generalised hypergeometric function 7F6 is defined as 3.3.8, but with 7 Pochham-
mer symbols on the numerator and 6 on the denominator. Finally, the parameters
a, b, · · · , f are determined by:

a = a1 + a2 + a3 + a4 + 2a5 + l − 1,

b = a1 + a5,

c = a2 + a5,

d = a3 + a5,

e = a4 + a5,

f = a1 + a2 + a3 + a4 + a5 − a6 + l − 1 .

(3.4.11)
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For our purposes we will always assume a5 = a6 = iµ
2
, as in this case the bra in 3.4.8

becomes:
1

4

Γ
(
a5 ± iν

2

)
Γ
(
1 + a6 ± iν

2

) =
1

ν2 − µ2
, (3.4.12)

then, exploiting the Wilson polynomial decomposition, we can always reduce the inte-
gration in a linear combination of seed integrals.

In our case, (t)Ĵ d
2
+iν,0|l(t) is equal to:

(t)Ĵ d
2
+iν,0|l(t) |l(t)⟩ = a

(0)
0,l β(t)Wl(ν

2; a1, a2, a3, a4) , (3.4.13)

with

β(t) =
(−1)l 22∆−t π

d
2 Γ(∆)2Γ

(
l +∆− 1

2

)
Γ
(
l + t

2

)
Γ(l + t− 1)

Γ
(
t
2

)2
Γ(l +∆)Γ(l + 2∆− 1)Γ

(
l + t

2
− 1

2

)
Γ
(
d
2
+ t− 2∆

) , (3.4.14)

a1 =
d

4
−∆+

t

2
, a2 =

d

4
−∆+

t

2
, a3 = ∆− d

4
, a4 = ∆− d

4
. (3.4.15)

Then, the analytical result for the crossing kernel is:

(t)Iµ,0|l(t) = −a(0)0,l

(−1)l 22∆−t π
d
2 Γ(∆)2 g2 Γ

(
l +∆− 1

2

)
Γ
(
l + t

2

)
Γ(l + t− 1)

Γ
(
t
2

)2
Γ(l +∆)Γ(l + 2∆− 1) Γ

(
l + t

2
− 1

2

)
Γ
(
d
2
+ t− 2∆

)
· ϕl

(
d

4
−∆+

t

2
,
d

4
−∆+

t

2
,∆− d
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(3.4.16)

Evaluating this for t = 2∆ we get:

(t)I∆′,0|l(2∆) = −a(0)0,l
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2
, i
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2

)
.

(3.4.17)
Substituting both 3.4.17 and 3.3.7 in 3.2.24, we get the final result for the anomalous
dimension of a double-trace operator [OO]0,l belonging to the s channel expansion of a
t channel exchange of a massive scalar in dSd+1:

(s)γdS0,l =
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(3.4.18)
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with the coefficients Λ± computed using 2.2.30 and 2.1.18.

To summarise: the just computed anomalous dimensions give the complete scaling
dimension of the double-trace operators in the OPE dual to a desitterian exchange. The
analysis of their properties and of the consequences of the result 3.4.18 could proceed in
various directions, with both formal and phenomenological applications. For sure, the
most immediate and important would regard the extraction of information about the
stability of bound states.
Indeed, analysing the complete scaling dimension of [OO]0,l, in function of l and or of
the external dimension ∆, we could explore its behaviour respect to the dS unitarity
constraints presented in section 1.2: stable states would necessarily fit into one of the
possible unitary series, while the unstable ones would violate them.
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Conclusions

Despite its potential capability of probing the highest energy scales ever existed in the
history of Universe, leading to a better understanding on various branches of open re-
search (primordial cosmology, beyond Standard Model physics, string theory, quantum
gravity), the quantum field theory on de Sitter spacetime has been decades too much
underdeveloped. Without the possibility of derive enough efficient predictions on cos-
mological observables from the dynamical hypotheses of inflationary models, primordial
cosmology has been severed, limiting its main business Gaussianities and power spectra.
As we have seen in this thesis, to directly address the study of dynamical fields embed-
ded in the inflationary presents multiple limits and difficulties. For first one have, in
fact, to circumvent the impossibility of preparing a scattering experiment, changing the
whole formalism describing interactions in the theory. But the worst problem regards
the mathematical complexity of dS QFT, making unfeasible the analytical computation
of general 1-loop, or even tree-level, Feynman diagrams.

It is for such reasons that desitterian QFT needs an innovative approach. This work
has presented a promising one which has an immediate application to cosmology. Indeed,
besides its intrinsic interest for some of the most deep questions of nowadays physics,
the holographic principle fits extremely well the exotic observational conditions of infla-
tionary era. Even if perturbative, this holographic approach seems to bring a revolution
on the amount of information we are today able to extract from the newborn Universe.
Exploiting an already beaten path, AdS/CFT correspondence, the dS/CFT is a young
and promising formal theory with a huge potential of application.
On the other hand, it is astonishing how this very general approach comes from a simple
geometrical relation of analytic continuation. Further, we have seen how the key tool to
deal with dS quantum physics, perturbatively or not, is the Mellin-Barnes representation,
which suits well the symmetries of this spacetime.

This representation, together with these two fundamental results:

K±
∆,J (s,k) = cdS-AdS

∆ e
∓
(
s+

1
2

(
∆−d

2

))
πi
KAdS

∆,J (s,k) , (3.4.19)
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Π±±̂
µ,J (u,p; ū,−p) = cdS-AdS

d
2
+iµ

e∓(u+
iµ
2 )πi e∓̂(u+

iµ
2 )πiΠAdS

d
2
+iµ,J

(u,p; ū,−p)

+ (µ→ −µ) ,
(3.4.20)

are what needed to translate whatever dS diagram in an EAdS one, and vice-versa.
The built machinery allows a perturbative computation of desitterian Schwinger-Keldysh
correlators, with the help of tools provided by AdS/CFT correspondence.

We have then focused on exchange diagrams, as they encode much physical informa-
tion of the bulk theory. We so derived the other very general relation:

AdS
µ,J =

λdS∆1∆2∆+λdS∆+∆3∆4

λAdS
∆1∆2∆+λAdS

∆+∆3∆4

cdS-AdS
∆+ AAdS

∆+,J +
λdS∆1∆2∆−λdS∆−∆3∆4

λAdS
∆1∆2∆−λAdS

∆−∆3∆4

cdS-AdS
∆− AAdS

∆−,J . (3.4.21)

Finally, to witness the application capability of the results derived in chapter 2, we
have pushed this method to the computation of an intrinsic and original quantity of the
boundary CFT, the anomalous dimension induced by a desitterian exchange of a massive
scalar field. These are extra terms in the scaling dimension of composite operators
appearing in the OPE of the boundary CFT, related to the exchange of bound states
in dual bulk theory. Besides its importance as a formal exemplification, the anomalous
dimension could be further investigated to extract physical information on the mass
spectrum of bound states, as well to their stability in the dS spacetime. We recall here
the found expression:
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(3.4.22)

Further developments in dS/CFT physics could range from the phenomenological
applications in the inflationary models, but also in dark energy models describing the
current expanding era, to a largeness of formal extensions and secondary results. To cite
the most important: the still obscure unitarity and causality structure of the boundary
CFT, which are strongly related to the topic of time emergence, as well of quantum grav-
ity; the possibility to extend the holographic approach to all values of the cosmological
constant, i.e. to even to flat spacetime [37, 38, 39]; the search, via the dS− EAdS map,
for a non-perturbative and exact dS/CFT.
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