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Abstract

This work investigates thoroughly a brane world scenario called ”Dark Bubble Cosmol-
ogy”, which differs in crucial aspects from other proposals in string phenomenology:
our four-dimensional universe rides an expanding bubble whose embedding naturally in-
duces a positive cosmological constant. This model avoids the Swampland constraints
of constructing fundamental de Sitter vacua based on pure compactifications of String
Theory and, at the same time, provides a concrete realization of a brane world with
an asymmetric inside-outside construction. The bubble represents a Coleman-de Luccia
or Brown-Teitelboim instanton which nucleates in an unstable five-dimensional Anti de
Sitter spacetime. This proposal therefore involves inducing four-dimensional gravity on
a brane which mediates the decay from a non-supersymmetric false AdS5 vacuum to a
lower energy vacuum.

In this thesis, brane world constructions based both on Type IIB and 0’B string theo-
ries are examined and a general mechanism to embed electromagnetic gauge fields living
on the brane is found. The latter requires a non-trivial interplay between gauge fields
on the brane and stringy fields in the bulk, and can be hopefully generalized to include
non-abelian gauge fields, with the perspective of embedding the full Standard Model of
Particle Physics in the Dark Bubble scenario. In the context of the (non-supersymmetric)
Type 0’B string theory, the Dark Bubble model yields precise predictions for the evo-
lution of the cosmological constant Λ and of the scale factor a. However, it turns out
this setup is incompatible with experimental observations and has to be discarded. A
Swampland approach is also justified, especially in connecting the emerging scales with
hypotheses on scale separation and the dark dimension.



Introduction

String Theory is the leading candidate for a consistent theory of Quantum Gravity,
namely a framework which combines together the two pillars of modern theoretical
physics: Einstein’s theory of General Relativity and Quantum Field Theory. To be
precise, the two theories are perfectly compatible up to very high energy scales: the
gravitational effective theory breaks down at the Planck scale MP = 1.22 × 1019 GeV1.
Hence, what is still lacking is a quantum theory which never ceases to be reliable in
any physical regime, and reduces to an Effective Field Theory which includes GR as
the leading gravitational sector. Indeed, treating the gravitational field as a quantum
spin-2 field and employing the usual techniques of QFT, such as renormalization, we en-
counter an infinite number of divergences: the theory is said to be non-renormalizable at
a perturbative quantum level. It is in this sense that GR and QFT are ”incompatible”.

The Standard Model of Particle Physics does not account for the gravitational inter-
action, nor does it provide a unified framework for all fundamental interactions. Gravity
can therefore only be treated as an EFT whose UV-completion is negligible at energy
scales far belowMP . We know, however, that quantum effects of gravity must play a role
in the extreme regions and events of our universe, such as close to black hole singularities
or during early cosmology (Big Bang, inflation, etc.).

String Theory represents in some sense the simplest and most conservative modifi-
cation of QFT and GR. The only new dynamical input can be summarized as follows:
the fundamental objects in nature are not pointlike, but one-dimensional. This axiom,
combined with the standard kinematics of general covariance and the usual procedure of
quantization, results in a consistent unified description of gravity and Yang-Mills theory
coupled to matter. The two sectors arise from the fact that the string can have two
possible topologies: it can be open or closed2. Open strings describe Yang-Mills theory,
while closed strings describe gravity. Since open strings can close up and vice versa,
gravity and Yang-Mills theory are automatically related dynamically. Moreover, String
Theory naturally incorporates most of the theoretical ideas for physics beyond the Stan-
dard Model (gauge unification, Supersymmetry, extra dimensions and so on). Some of
these ideas could be tested in the upcoming years, either in accelerator experiments or

1It may break down earlier, according to the species scale bounds of [1, 2].
2Heterotic strings also incorporate Yang-Mills interactions, albeit in a different manner.
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INTRODUCTION 2

by future cosmological and astrophysical observations.
Nevertheless, String Theory is far from being fully understood. We mostly understand

the theory at the perturbative level, and we have explored only a very limited corner of
string vacua in a possibly much larger landscape of possibilities.

One of the major open issues is how to build a phenomenologically realistic model of
our expanding (de Sitter-like) universe. Indeed, experimental observations of supernovae,
Cosmic Microwave Background, Baryon Acoustic Oscillations and Large-Scale Structure
indicate that our universe is expanding at an accelerating rate. The term “dark energy”
has appeared in the titles and abstracts of scientific papers in 1998 after announcements
about the discovery of this accelerated expansion, and it refers to our ignorance on the
very nature of this acceleration. Is it due to a cosmological constant (the famous Λ
in Einstein’s equations) or is it related to some kind of vacuum energy? Or else, is
there a scalar field slowly rolling along its potential responsible for this acceleration, as
in Quintessence [3, 4] models? Regardless of the answer, since the discovery of dark
energy, String Theory has been faced with the challenge of reproducing a small positive
vacuum energy. The dominant approach has been the reliance on a landscape of different
vacua [5] equipped with a transition mechanism such that the anthropic principle selects
our vacuum. This approach became calculable in String Theory with the construction of
KKLT [6], in which one can in principle achieve a landscape of scale-separated vacua, with
both positive and negative cosmological constants, by tuning flux numbers. However, the
latter is still very controversial and it is the subject of ongoing debate in the community.

There have also been numerous attempts to build (meta)stable dS vacua in String
Theory (see for instance [7, 8]), but they all require a great amount of fine-tuning. More-
over, these persistent difficulties in achieving (meta)stable dS solutions in String Theory
have led to conjecture3 that no such vacuum can exist4. Anti-de Sitter (AdS) vacua,
on the other hand, are common in String Theory, but there are reasons to believe that,
unless they are supersymmetric, they are unstable and must decay either perturbatively
or non-perturbatively [9].

Dark Bubble Cosmology [10–20] is an alternative approach to describe our universe
without dealing with standard compactification mechanisms: it is a brane world scenario
in which our Universe is embedded in a higher-dimensional spacetime and the Standard
Model of Particle Physics lives on the brane. Indeed, our Universe ”rides” an expanding
bubble in a five-dimensional Anti-de Sitter Spacetime and, since the time evolution of the
brane world takes place in the fifth dimension, lower-dimensional observers stuck on the
brane (us) experience a 4d expanding cosmology. The Dark Bubble therefore perfectly
realizes a four-dimensional de Sitter universe on the brane and 4d gravity simply arises
as an effective description on a dynamical object embedded in a higher dimensional space
time.

3See Section 1.5.
4At least at the boundary of moduli space.
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In Chapter 1, we will mention some basic concepts of String Theory, such as string
worldsheet theory, D-branes and string compactification. We will then examine the five
superstring theories and the three non-tachyonic non-supersymmetric theories, with a
particular attention to Type 0’B theory. We will also make a detour to explore the
conjectures of the Swampland program.

In Chapter 2, we will present the Dark Bubble model, describing its main features
and focusing on the way gravity is induced on the brane world. We will see how bubbles
of lower-energy vacuum nucleate from an unstable five-dimensional Anti-de Sitter space-
time, in agreement with the Weak Gravity Conjecture and the de Sitter Conjecture, and
how to realize radiation and matter fields on the brane.

Chapter 3 will be devoted to describing Vilenkin’s tunneling proposal and Hartle-
Hawking’s no-boundary proposal for a quantum beginning of the universe. We will then
show how the former proposal perfectly matches with the nucleation amplitudes in the
Dark Bubble model, meaning the tunneling event in 4d is just a shadow of a higher-
dimensional nucleation event.

In Chapter 4, we will describe a general mechanism to embed electromagnetic gauge
fields living on the brane and how the backreaction of the electromagnetic tensor on the
bubble modifies the brane geometry.

Finally, in Chapter 5 we will build a brane world model similar to the Dark Bubble,
using D3-branes in the non-supersymmetric Type 0’B string theory. We will see how,
in this construction, the cosmological ”constant” depends logarithmically on the cosmo-
logical scale-factor a, entailing a quasi-dS evolution for the braneworld. This model will
turn out to be incompatible with experimental evidence, and shall therefore be discarded.
However, it is a very neat construction and it is worth studying, as it provides us with
a deeper insight into Dark Bubble Cosmology itself.

Let us now set the stage for this intricate model, in which Cosmology and String
Theory are deeply intertwined, with a lightning-review of String Theory and its main
features.



Chapter 1

Elements of String Theory

In this Chapter, we will explore some of the main features of String Theory, empha-
sizing some aspects of the theory more and leaving others only briefly sketched. For a
satisfactory introduction to String Theory, we refer the reader to [21–25].

1.1 Bosonic formulation

String Theory is a quantum theory of 1-dimensional objects (strings) moving in a D-
dimensional spacetime. Strings sweep a 2d surface, the worldsheet, labelled by the spatial
coordinate σ and the time coordinate τ (0 ≤ σ ≤ π for open strings and 0 ≤ σ ≤ 2π
for closed strings). The worldsheet is embedded into spacetime by the fields Xµ(τ, σ).
The intrinsic length and mass scales of the theory are the string length ls and the string
mass scale Ms, given by

ls = 2π
√
α′, Ms =

1√
α′
. (1.1.1)

α′ is called Regge slope and it is the only free parameter of String Theory. In principle it
can take any value in the range 10−33cm (Planck length) ≤

√
α′ ≤ 10−17cm (TeV scale).

Apart from this dimensionful parameter, there are no free dimensionless parameters.
String Theory, in its bosonic formulation, is described by Polyakov action

SP = − 1

4πα

∫
dσdτ

√
−γγαβηMN∂αX

M∂βX
N , (1.1.2)

where M = 0, ..., D− 1 and α, β = τ, σ. In this equation, XM are the functions defining
the embedding of the worldsheet in spacetime, γαβ is the worldsheet metric, ηMN is the
spacetime Minkowski metric and the string tension is related to α′ via

T =
1

2πα′ . (1.1.3)

4



Elements of String Theory 5

Figure 1.1: Embedding into spacetime of the string worldsheet, parameterized by the
coordinates σ and τ .

Eq.(1.1.2) enjoys three important symmetries: D-dimensional Poincarè symmetry, dif-
feomorphisms invariance and Weyl rescaling invariance.

A deeper insight into bosonic String Theory is beyond the scope of this thesis. We
will therefore just mention that applying the rules of quantisation to the worldsheet
theory provides us with the Fock space of string excitations. The massless modes of
the bosonic sector include (among others): the vector boson of Yang-Mills Theory Aµν

(open string) and the spin-2 graviton hµν (closed string). In addition, there is a tower of
massive string excitations of mass

M2 =
1

α′ (N − 1) (1.1.4)

for the open sector and

M2 =
4

α′ (N − 1) (1.1.5)

for the closed sector, where N = 0, 1, 2, .... The appearance of the tachyon, the lowest
lying state of negative mass will be overcome by moving from the bosonic string theory
to superstring theory, in which no tachyons are present.

In the low-energy limit, at energies much lower than the string scaleMs, the effective
dynamics of the theory reduces to gauge interactions and gravity. Consistency of the
worldsheet theory predicts explicitly that to lowest order in

√
α′ the gravitational laws

are given by Einstein’s equations.
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Finally, let us mention that String Theory predicts the existence of higher-dimensional
objects called D-branes, which are hypersurfaces on which open strings can end. These
objects play a crucial role for the dynamics of the theory.

1.2 Superstring Theories

In order to have fermions in the spectrum of the theory, we need to add fermionic fields
to our worldsheet, employing the principle of Supersymmetry in the so-called RNS for-
malism: for each bosonic field XM , there is a corresponding superpartner ΨM or Ψ̃M

plus the gravitino ψa, which is the superpartner of the metric gab. The main peculiarity
of Superstring Theory respect to the purely bosonic theory consists in the possibility
to “project out” the tachyonic degrees of freedom and the remakable fact is that this
projection, called GSO projection [26], can lead to a completely supersymmetric spec-
trum in 10d. The GSO projection is thus essential for the consistency of the theory:
it eliminates the tachyons from the spectrum and, when spacetime supersymmetry is
preserved, leaves an equal number of bosons and fermions at each mass level. We will
discuss non-supersymmetric strings in the following sections in more detail.

The RNS action reads

SRNS =
1

4π

∫
d2σηMN

[
1

α′∂X
M ∂̄XN +ΨM ∂̄ΨN + Ψ̃M ∂̄Ψ̃N

]
, (1.2.1)

where we have used the euclidean worldsheet by sending τ → −iτ , and the derivatives
are with respect to the holomorphic coordinate z = eτ−iσ. The equations of motion for
Ψ and Ψ̄ admit two possible boundary conditions, dubbed Ramond and Neveu-Schwarz

R : ΨM(τ, 0) = ΨM(τ, 2π)

NS : ΨM(τ, 0) = −ΨM(τ, 2π). (1.2.2)

and similarly for Ψ̃. We can thus divide the fields in two sectors, the R-R sector and
the NS-NS sector. Very loosely speaking, the choice of the boundary conditions (1.2.2)
leads to different formulations of Superstring Theory.

Until 1995, there were five known Superstring Theories in 10d: Type I, Type IIA
and IIB, and the two heterotic theories E8 × E8 and SO(32). They seemed to be very
different from each other and the only known link between these theories was a stringy
symmetry called T-duality, relating Type IIA and Type IIB and the two heterotic ones.
That same year, Edward Witten shed light on an intricate web of dualities among all five
Superstring Theories, where an essential role was reserved for a new theory in 11d, whose
low-energy limit should be 11d Supergravity. In this picture, these five theories represent
various perturbatively defined limits of this 11-dimensional theory, which Witten called
M-theory [28]. Moreover, their low-energy limit is always a Supergravity theory.
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Figure 1.2: Schematic illustration taken from [27] of the intricate web of dualities among
all Superstring Theories and M-theory. Type IIA and Type IIB are related via T-duality,
as well as Heterotic SO(32) and E8 × E8, while Type I is related to Heterotic SO(32)
via S-duality.

We shall now quickly mention, for the sake of completeness and brevity, only the
main features and the field content of the five superstring theories.

• Type IIA: It contains only closed strings.

In the NS-NS sector, there is the metric Gµν , the antisymmetric 2-form Kalb-
Ramond field Bµν and the dilaton Φ.

In the R-R sector, there is a 1-form field C1 and a 3-form field C3.

We have to add to these bosonic fields also the RNS and NRS dilatinos λα and
gravitinos ψMα.

Type IIA contains Dp-branes with p even: D0, D2, D4, D6, D8.

• Type IIB: It contains only closed strings.

In the NS-NS sector, we still have Gµν , Bµν and the dilaton Φ.

In the R-R sector, we have a 0-form field C0 (axion), a 2-form field C2 and a 4-form
field C4.

Again, we have to add to these bosonic fields also the RNS and NRS dilatinos λα
and gravitinos ψMα.

Type IIB contains Dp-branes with p odd: D(-1), D1, D3, D5, D7, D9.

Type IIB and Type IIA are related via T-duality (for example compactifying the
10d theory on S1).

• Type I: Type I is derived by removing all the degrees of freedom from the Type
IIB theory that exhibit an odd behavior under worldsheet parity. We therefore
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retain only those states in Type IIB theory that remain unchanged when subjected
to worldsheet parity transformations. Practically, Type I∼Type IIB/Ω.

In the NS-NS sector, we have Gµν and the dilaton Φ.

In the R-R sector, we have the 2-form field C2.

In addition to these fields, we have 32 D9-branes. In fact, projecting out the odd
parity states, we generate negative RR charge which is only cancelled by adding
the D9-branes. These branes give rise to SO(32) gauge fields coming from open
strings, meaning that the spectrum of Type I contains both open and closed strings.

• Heterotic Theories: The SO(32) theory has 496 generators. In the NS-NS sector,
we have Gµν , Bµν and the dilaton Φ.

In addition to this, there are 496 gauge fields Aa
u, a = 1, ..., 496.

Type I and SO(32) are dual to each other under S-duality, while SO(32) and
E8 × E8 are related via T-duality. The latter theory is very interesting for a
realistic phenomenology.

Let us conclude this section by stating that D-branes are more than just hyperplanes
on which open strings end. They are by themselves dynamical objects which gravitate by
coupling to closed strings in the NS-NS sector (they have a mass) and which are charged
under RR p-form potentials. Indeed, brane dynamics can be captured in a low-energy
effective action for the world-volume of the Dp-brane of the form1

Seff = SDBI + SCS, (1.2.3)

where the DBI part represents the coupling to the NS-NS sector, while the CS term the
coupling to the R-R sector.

1.3 String compactifications

String Theory, as stated in the previous section, is consistently defined in ten dimensions2.
In order to extract any information about 4d physics, we need to understand the way
the 10d theory is compactified to these four dimensions; in other words, we need to
know the precise way in which the Standard Model and Einstein’s gravity reembedded
as low-energy limits in String Theory. The 10d spacetime is divided into an external
non-compact spacetime and an internal compact space

M10 = M6 ×M4. (1.3.1)

1See Chapter 4.
2To be more precise, non-geometric sectors also exist in the landscape. In this thesis we restrict to

purely geometric settings.
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The compactification scale is MC = 1/R, where R is the typical length scale associated
with the internal space, and it is considered to be much smaller than the string scale
Ms = 1/ls Early attempts involved mostly compactification of the heterotic string on
Calabi-Yau3 manifolds [29] or on exact (2, 0) backgrounds, and exceptionally type I
theory. With the introduction of D-branes, compactifications of the type-II String Theory
involving orientifolds and intersecting D-branes became the center of attention.

The current state of the art is that one can find semi-realistic models in both frame-
works, but several key issues remain open. Among them, one is the problem of moduli
stabilization: in any of these compactifications, the 4d low-energy action has a number
of massless fields with no potential. These would lead to long-range scalar forces un-
observed in nature. Furthermore, the couplings of other fields (like Yukawa couplings)
depend on their Vacuum Expectation Values. As a consequence, no predictions can be
made in these scenarios since the VEV of the moduli can take any value. Therefore,
there should be a mechanism that generates a potential for the moduli, stabilizing their
VEV’s.

The most studied mechanism within perturbative String Theory thus far is via fluxes:
turning on fluxes for some of the field strengths available in the theory generates a non
trivial potential for the moduli, which stabilize at their minima. The new issue that
arises is that fluxes backreact on the geometry, and whatever manifold was allowed in
the absence of fluxes, will generically be forbidden in their presence.

Much of what we know about stabilisation of moduli is done in Calabi-Yau com-
pactifications under a certain combination of 3-form fluxes whose backreaction on the
geometry just makes them conformal Calabi-Yau manifolds, where fluxes stabilize the
moduli corresponding to the complex structure of the manifold, as well as the dilaton.
To stabilize the other moduli, stringy corrections are invoked. The result is that one
can stabilize all moduli in a regime of parameters where the approximations can be
somehow trusted, but it is very hard to rigorously prove that the corrections not taken
into account do not destabilize the full system. Alternative approaches include rigid
constructions with no moduli besides the dilaton, although a deeper understanding of
these settings, alongside supersymmetry breaking, is required.

For comprehensive reviews of compactification in String Theory, we refer to [30, 31].

1.4 Non-supersymmetric String theories

Supersymmetry is a fundamental ingredient in String Theory. However, we do not ob-
serve it in nature, at least up to the energy scales we managed to investigate at LHC
(≃ 13TeV). This means that the phenomenon of SUSY-breaking plays a crucial role
in a full understanding of String Theory and Quantum Gravity in general. A deeper
understanding of the subtle issues related to SUSY-breaking in String Theory is the

3These special manifolds always allow for a Ricci-flat metric.
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first step to achieve a more complete picture of its underlying foundational principles
and more realistic phenomenological models. In this Section, we will briefly discuss the
relevant non-supersymmetric models in String Theory which do not contain tachyons in
their spectra, focusing mainly on the Type 0’B Theory, which will be of great use for the
brane world scenario we want to address in Chapter 5.

1.4.1 Tachyon-free vacuum amplitudes

Let us begin by constructing the relevant 10d string models starting from the 1-loop
vacuum amplitudes of their ”parent” models. While Type 0’B arises as a non-tachyonic
orbifold of the tachyonic type 0B, and SUSY is therefore absent at the outset, the
USp(32) model and the SO(16) × SO(16) heterotic models arise as projections of type
IIB and E8 × E8 superstrings respectively, meaning SUSY is broken at the string scale.

The following construction is based on the characters (O2n, V2n, S2n, C2n) of the level-1
affine so(2n) algebra

O2n ≡
ϑn

[
0
0

]
(0|τ) + ϑn

[
0
1/2

]
(0|τ)

2ηn(τ)
,

V2n ≡
ϑn

[
0
0

]
(0|τ)− ϑn

[
0
1/2

]
(0|τ)

2ηn(τ)
,

S2n ≡
ϑn

[
1/2
0

]
(0|τ) + i−nϑn

[
1/2
1/2

]
(0|τ)

2ηn(τ)
,

C2n ≡
ϑn

[
1/2
0

]
(0|τ)− i−nϑn

[
1/2
1/2

]
(0|τ)

2ηn(τ)
, (1.4.1)

where η(τ) ≡ q
1
24Π∞

n=1(1− qn) is the Dedekind η function and the Jacobi ϑ functions
are defined as

ϑ

[
α
β

]
(z|τ) ≡

∑
n∈Z

q
1
2
(n+α)2e2πi(n+α)(z−β). (1.4.2)

These characters encode degeneracies of states in various spacetime (or gauge) rep-
resentations, and can be used to express worldsheet partition functions. In particular,
1-loop vacuum amplitudes contain information about the single-particle spectrum. As
anticipated, in ten dimensions there are three non-tachyonic superstrings without (un-
broken) spacetime supersymmetry:
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• USp(32) model: Introduce the relevant orientifold projections via 1-loop vacuum
amplitudes, starting from the case of the Type I superstring. The torus amplitude

T1 =
1

2

∫
T

d2τ

τ 62

(V8 − S8)(V8 − S8)

|η(τ)|16
(1.4.3)

has to be added to the amplitudes pertaining to the open string and unoriented
sectors, which are associated to the Klein bottle, the annulus and the Moebius
strip

K =
1

2

∫ ∞

0

dτ2
τ 62

(V8 − S8)(2iτ2)

η8(2iτ2)
, (1.4.4)

A =
N2

2

∫ ∞

0

dτ2
τ 62

(V8 − S8)(i
τ2
2
)

η8( iτ2
2
)

, (1.4.5)

M =
εN

2

∫ ∞

0

dτ2
τ 62

(V̂8 − Ŝ8)(
iτ2
2
+ 1

2
)

η̂8( iτ2
2
+ 1

2
)

. (1.4.6)

The corresponding (loop-channel) UV divergences arise from tadpoles in the NS-NS
and R-R sectors, whose cancellation requires N = 32, ε = −1. We can obtain the
USp(32) model introducing an O9-plane with positive tension and charge together
with D9-branes, yielding a vanishing R-R tadpole. However, the NS-NS tadpole
is not cancelled, and thus SUSY is broken at the string scale4. This amounts to
changing a sign in the Moebius strip amplitude, which now becomes

MBSB =
εN

2

∫ ∞

0

dτ2
τ 62

(V̂8 + Ŝ8)(
iτ2
2
+ 1

2
)

η̂8( iτ2
2
+ 1

2
)

. (1.4.7)

In order to cancel the R-R tadpole, ε = 1 and N = 32, leading to a USp(32)
gauge group. Since the residual tension in the NS-NS tadpole does not cancel, the
low-energy physics of this model includes the Einstein-frame runaway exponential
potential

T

∫
d10x

√
−geγϕ, γ =

3

2
. (1.4.8)

• 0’B model: Starting from the 0B model, which is described by the torus amplitude

T0′B =

∫
T

d2τ

τ 62

O8O8 + V8V8 + S8S8 + C8C8

|η(τ)|16
(1.4.9)

4More precisely, SUSY is preserved in the closed-string sector, but it is non-linearly realized in the
open-sector via ”Brane Supersymmetry Breaking”.
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we can perform an orientifold projection to obtain the USp(32) type 0’B model.
This involves adding to half of (1.4.9) the open-sector amplitudes

K0′B =
1

2

∫ ∞

0

dτ2
τ 62

(−O8 + V8 + S8 − C8), (1.4.10)

A0′B =

∫ ∞

0

dτ2
τ 62
nnV8 −

n2 + n2

2
C8, (1.4.11)

M0′B =

∫ ∞

0

dτ2
τ 62

n+ n

2
Ĉ8, (1.4.12)

where tadpole cancellation fixes n = n = 32 and a U(32) gauge group. The cor-
responding O9-plane has vanishing tension, and therefore the relevant exponential
potential reads

1

2
T

∫
d10x

√
−geγϕ, γ =

3

2
. (1.4.13)

• SO(16)×SO(16) model: Starting from the torus amplitude of the E8 × E8 su-
perstring

THE =

∫
T

d2τ

τ 62

(V8 − S8)(O16 + S16)
2

|η(τ)|16
, (1.4.14)

we can project onto the states with even total fermion number. So, we have to add
to the projected torus amplitude its images under S and T modular transformations
in order to restore modular invariance. The final amplitude reads

TSO(16)×SO(16) =

∫
T

d2τ

τ 62

1

|η(τ)|16
[O8(V16C16 + C16V16) (1.4.15)

+ V8(O16O16 + S16S16)

− S8(O16S16 + S16O16)

− C8(V16V16 + C16C16)].

While tachyons are absent from the perturbative spectrum by virtue of level match-
ing, the 1-loop vacuum energy does not vanish and its value is of order one in string
units. In the string-frame low-energy effective action it appears as a cosmological
constant, and thus in Einstein frame it corresponds to a runaway exponential po-
tential

T

∫
d10x

√
−geγϕ, γ =

5

2
. (1.4.16)

It is therefore evident that the low-energy manifestation of gravitational tadpoles
in both the orientifold models and the SO(16) × SO(16) heterotic model can be
encompassed by the same type of exponential potential for the dilaton.
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1.4.2 Brane content and low-energy effective description

Similarly to Type I superstring, the USp(32) orientifold model contains charged D1-
branes and D5-branes, while the remaining values of p correspond to uncharged branes
whose stability can be addressed studying tachyonic excitations. In particular, a sin-
gle D3-brane and a single D4-brane are free of tachyons, while all other Dp-branes are
unstable due to the presence of tachyons.

The Type 0’B model contains charged Dp-branes with p odd, and while their world-
volume excitations are free of tachyons,Dp−Dq exchanges include tachyons for |p−q| < 4.
Even values of p correspond to uncharged branes. At leading order, theDp-Dp interaction
between charged branes vanishes, but we have to take into account the presence of the
D9-branes and O9-plane, which bring along non-trivial contributions.

Let us now introduce the low-energy effective description of our three non-supersymmetric
models. Both the orientifold models and the heterotic model can be described at low
energies by an Einstein-frame action of the form

S =
1

κ2D

∫
dDx

√
−g
(
R− 4

4−D
(∂ϕ)2 − V (ϕ)− f(ϕ)

2(p+ 2)!
H2

p+2

)
, (1.4.17)

where the bosonic fields include a dilaton ϕ and a (p + 2)-form field-strength Hp+2 =
dBp+1. In the relevant string models D = 10, while

V (ϕ) = Teγϕ, f(ϕ) = eαϕ. (1.4.18)

The low-energy dynamics of the orientifold models is described by the Einstein-frame
parameters D = 10, p = 1, γ = 3

2
, α = 1, while for the heterotic model D = 10, p = 1,

γ = 5
2
, α = −1.

The field equations derived from Eq. (1.4.17) read

RMN = T̃MN ,

2ϕ− V ′(ϕ)− f ′(ϕ)

2(p+ 2)!
H2

p+2 = 0, (1.4.19)

d ∗ (f(ϕ)Hp+2) = 0,

where the trace-reversed stress-energy tensor is

T̃MN = TMN − 1

D − 2
TA
A gMN , TMN ≡ δSmatter

δgMN
. (1.4.20)

For the action in Eq.(1.4.17), this implies

T̃MN =
4

D − 2
∂M∂Nϕ+

f(ϕ)

2(p+ 1)!
(H2

p+2)MN (1.4.21)

+
gMN

D − 2

(
V − p+ 1

2(p+ 2)!
f(ϕ)H2

p+2

)
. (1.4.22)
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Let us now study the interactions between these branes. There are some complemen-
tary regimes in which computations seem to be under control. In particular, considering
two parallel stacks of Np Dp-branes and Nq Dq-branes, some interesting cases are

• The probe regime Np ≫ Nq, in which we can replace the heavy stack of Np Dp-
branes with the corresponding back-reacted geometry probed by the Dq-branes.

• The string-amplitude regime Np, Nq = O(1), which needs to be described by per-
turbative string amplitudes

• The holographic regime, which is negligible for the purpose of this work.

Extremal branes of equal dimension strictly repel, realizing the WGC5 in the absence
of Supersymmetry, while the NS-NS interactions in the presence of at least one uncharged
stack are repulsive or attractive depending on the values of p and q [32].

1.4.3 Probe potentials and Weak Gravity

We will focus only on the probe regime, thus replacing the heavy brane stack with its
backreacted geometry. We will consider a string-frame world-volume action of the form

Sp = −Tp
∫
dp+1ζ

√
−j∗gSe−σϕ + µp

∫
Bp+1, (1.4.23)

where j is the embedding of the world-volume coordinates ζ in space-time. Its Einstein-
frame expression reads

Sp = −Tp
∫
dp+1ζ

√
−j∗gSe(

2(p+1)
D−2

−σ)ϕ + µp

∫
Bp+1, (1.4.24)

where σ = 1, 2 for D-branes and NS5-branes respectively.
The crucial point is that the heavy stack sources the AdS × S throat probed by the

light stack. Consider the dynamics of an extremal Dp-brane moving in an AdSp+2 × Sq

geometry. The dynamics at stake emerge spontaneously, since bubble nucleation entails
separation of pairs and antipairs of branes. It can be shown that like-charge branes are
repelled, while anti-branes are attracted, leading to brane-flux annihilation.

For convenience, let us work in Poincaré-like coordinates, where the Einstein-frame
metric of the AdS × S throat reads

ds2 =
L2

z2
(dz2 + dx21,p) +R2dΩ2

q. (1.4.25)

5See section 1.5
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Figure 1.3: Schematic representation taken from [32] of the interaction between a heavy
stack of N ≫ 1 branes and δN ≪ N probe branes. The heavy stack sources the AdS×S
throat probed by the light stack.

We can choose the world-volume embedding j : xµ = ζµ, z = Z(ζ), θi = θi0, with θ
i
0 fixed

coordinates on Sq. The action (1.4.24) then becomes

Sp = −τp
∫
dp+1ζ

(
L

Z

)p+1 [√
1 + ηµν∂µZ∂νZ − cL

p+ 1

µp

τp

]
, (1.4.26)

with the dressed tension τp ≡ Tpg
−α

2
s . Therefore, rigid branes are subject to the potential

Vprobe(Z) = τp

(
L

Z

)p+1
[
1− cLg

α
2
s

p+ 1

µp

Tp

]
(1.4.27)

= τp

(
L

Z

)p+1 [
1− ν0

µp

Tp

]
.

The presence of such a potential will reveal to be essential for the Dark Bubble
construction in Type 0’B String Theory.
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1.5 The Swampland Program

We conclude this chapter by introducing one of the main approaches to investigate the
nature of Quantum Gravity: the so-called Swampland program.

As we discussed, String Theory is a theory of Quantum Gravity. Seeing things from a
bottom-up perspective, we can start from QFT and build all kinds of low-energy EFTs.
Going up with the energy scales, gravitational quantum effects start to be relevant and
we have observed that many – actually, most – of these effective theories turn out to
be inconsistent when coupled to gravity. In other words, not everything is possible in
Quantum Gravity.

One might have hoped that String Theory would have been sufficiently constrained to
single out some very specific low-energy EFT as the only one compatible with Quantum
Gravity. This may still be the case, but we do not yet fully understand String Theory.
Within our current understanding, there is no principle which we know that can pick out
a specific such theory. Rather, it appears that the range of low-energy effective theories
that can arise in String Theory is huge. This is the so-called Landscape of String Theory.
Ironically, while the Landscape is huge, there is still not a single known way to embed
the Standard Model, of particle physics and cosmology, in String Theory. So while our
universe is in principle consistent with String Theory, in practice we still do not know
how its embedding could work in detail. It is therefore an important and interesting task
to work out the ‘details’ of this embedding, and this is a large part of the research field
of String Phenomenology.

The so-called Swampland program aims to determine the constraints that an EFT
must satisty in order to be consistent with a UV embedding in a Quantum Gravity
theory. These constraints are formulated in the form of Swampland conjectures. The
theories which do not respect these conjectures are said to be inconsistent or in the
Swampland, while the ”good” ones are said to belong to the Landscape.

The goal of the Swampland program is to identify Quantum Gravity constraints,
gather evidence to prove (or discard) them in a Quantum Gravity framework, try to
explain them in a model-independent way (microscopic interpretation) and understand
their phenomenological implications for low-energy physics. Even if the notion of the
Swampland is not restricted to String Theory only, the various conjectures are often
motivated by or checked in String Theory setups. In fact, String Theory represents the
perfect setup to rigorously test these conjectures, improving our understanding of new
possible String Theory compactifications.

A remarkable insight of the Swampland program is that it breaks with the logic of
naturalness, which is based on scale separation. Indeed, if Quantum Gravity imposes
non-trivial constraints on the IR (the low-energy physics), this constitutes the UV/IR
mixing which could explain the hierarchy problems that we observe in nature.

We will now briefly examine the most relevant conjectures, putting aside even the
slightest attempt of being exhaustive. For a detailed review of the Swampland program,



Elements of String Theory 17

we refer the reader to [33], [34] and [35].

Figure 1.4: Image taken from [33], which shows the set of low-energy EFTs which are
inconsistent with Quantum Gravity and are therefore in the Swampland. As we increase
the energy scale, only the theories which obey the Swampland constraints are consistent
and connected to Quantum gravity.

• No global symmetries: there are no global symmetries in Quantum Gravity
(any symmetry is either broken or gauged).

We define a global symmetry as a transformation described by a unitary local
operator U(g), g ∈ G such that:

1) satisfies a group law: U(g)U(g′) = U(gg′),

2) acts non-trivially on the Hilbert space: there exists a charged local operator
O(x) such that U †O(x)U(g) ̸= O(x),

3) commutes with the Hamiltonian (and thus the stress-energy tensor is neutral)
U †TµνU = Tµν ,

4) maps local operators into local operators.

• Completeness of spectrum: A gauge field coupled to gravity must contain
physical states with all possible gauge charges consistent with Dirac quantisation.
Quantum Gravity allows for a spectrum which contains all charged states of a
given representation (according to Dirac’s quantisation). As a consequence of this
conjecture, all continuous gauge groups must be compact.

There is a generalisation of this conjecture to include BPS states, which goes under
BPS completeness: if a charge can be populated by BPS states, then a BPS state
with this charge should be part of the physical spectrum.
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• Cobordism conjecture: It unifies the previous two. Two manifolds are said to
be cobordant (or in the same cobordism class) if their union is the boundary of
another compact manifold one dimension higher. Consider a (D-d)-dimensional
theory, where d is the number of compactified dimensions. Then all the cobordism
classes ΩQG

d of the d-dimensional theory must vanish, otherwise they would give
rise to a (D-d-1)-form global symmetry with charges M ∈ [ΩQG

d ]. It is equivalent
to say that Quantum Gravity is topologically trivial.

• Weak Gravity Conjecture (WGC): It provides phenomenological evidence by
providing an upper bound on the mass of the light charged states which appear
when trying to restore a global symmetry. Considering Maxwell theory coupled
to Einstein gravity (no massless scalar fields), the bound implies that gravity acts
weaker than the gauge force over this state (the charge is greater than the mass).
This is no longer true in the presence of massless scalar fields.

Electric WGC: given a gauge theory, weakly coupled to Einstein gravity, there
exists an electrically charged state with

Q

m
≥ Q
M

|extremal = O(1) (1.5.1)

in Planck units. Q and M are the charge and the mass of an extremal BH, and
Q = qg, where q is the quantized charge and g the gauge coupling.

Magnetic WGC: The EFT cutoff Λ is bounded from above by the gauge coupling

Λ ≤ gM
(d−2)/2
P , (1.5.2)

so that, given some EFT coupled to gravity, its cutoff is smaller than MP if the
gauge coupling is small. For a p-form gauge field

Λ ≤ (g2M
(d−2)
P )

1
2(p+1) ., (1.5.3)

We will make great use of the WGC for the purpose of the Dark Bubble model:
generalizing to a p-form gauge field, we automaticsally derive the existence of a
(p− 1)-brane of tension T satistfying

fabqaqb ≥ gij(∂ϕiT )(∂ϕjT ) +
p(d− p− 2)

d− 2
T 2, (1.5.4)

where the gauge charge is written explicitly in terms of the gauge kinetic function
fab and gauge quantized charges qa.

• Distance conjecture: The moduli space is non-compact. Given a point P in the
moduli space, there always exsits a point Q such that it is at infinite-distance from
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the P. Moreover, if we try to approach any infinite field distance limit, we get an
infinite tower of states becoming exponentially light:

M(Q) ∼M(P )e−λ∆ϕ, (1.5.5)

as ∆ϕ → ∞. Moreover, as we approach the long distance limits, our EFTs break
down. We can therefore express the distance conjecture in terms of the Quan-
tum Gravity cutoff, which goes exponentially to zero as ΛQG = Λ0e

−λ∆ϕ. As a
consequence, we get that EFTs are only valid for finite scalar field variations. Con-
sidering that Λ0 ≤ Mp, we get ∆ϕ ≤ 1

λ
log Mp

Λ
, we see that the maximum field

variation actually depends on the cutoff of the EFT. So the higher the cutoff of the
process changing the vev of the scalar, the smaller is the maximum field distance
that can be described within the effective field theory.

• Emergent String Conjecture: Any infinite distance limit is either a decom-
pactification limit or a limit in which there is a weakly coupled string becoming
tensionless. This means that the leading tower becoming light is either a KK tower
or some string excitation modes, such that the resolution in Quantum Gravity of
the EFT breaking down is given by growing an extra dimension or by considering
a string perturbation theory.

• AdS distance conjecture: It’s a generalization of the Distance conjecture. It
states that any AdS vacuum has an infinite tower of states becoming light in the
flat space limit Λ → 0, satisfying

m ∼ |Λ|α. (1.5.6)

A strong version of this conjecture implies that α = 1
2
if the vacuum is supersym-

metric, α ≥ 1
2
for non-supersymmetric AdS and α ≤ 1

2
for dS space.

• Emergence Proposal: All the kinetic terms in an EFT emerge from integrating
out the massive states up to some Quantum Gravity cut-off. This implies that
all fields are non-dynamical at the Quantum Gravity scale where gravity becomes
strongly coupled, hinting at some sort of UV topological description. This means
that there is no kinetic term to start with; it is only upon going to the IR and
integrating out the tower of states predicted by the Distance conjecture, that we
get some finite kinetic terms.

• AdS Instability Conjecture: This conjecture, originally applied to non-SUSY
AdS vacua, has been generalized to the fact that any non-SUSY vacuum is at best
metastable and has to decay eventually. This means SUSY is the only mechanism
to protect a vacuum from decaying in Quantum Gravity. Instabilities typically
arise when SUSY is broken, and can be perturbative or non-perturbative.
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This conjecture is closely related to the WGC, as the latter implies the presence of
a codimension-1 brane with a tension smaller than its charge in non-SUSY vacua,
which describes a bubble instability. According to this argument, any AdS non-
SUSY vacuum with fluxes should be at best metastable. Useless to say, a metastable
non-SUSY AdS vacuum will be the starting point of our brane world construction.

• dS conjecture A scalar potential of an EFT weakly coupled to Einstein gravity
must satisfy

MP
|∇V |
V

≥ c, (1.5.7)

where c is some O(1) constant. This implies that no dS vacua can exist in a weakly
coupled regime.

This is the most controversial and less accepted conjecture in the scientific commu-
nity. It was actually further refined by stating that the previous bound only needs
to be imposed if the following condition on the second derivative of the potential
is violated

min(∇i∇jV ) ≤ − c′V

M2
P

, (1.5.8)

with c′ another O(1) constant. This way, only dS minima (and not critical points
in general) are ruled out.

The dS conjecture is the reason to seek alternatives to describe our expanding
universe without the need to compactify to a stable or metastable dS vacua in
String Theory.

• Transplanckian Censorship Conjecture (TCC): The expansion of the uni-
verse must slow down before all Planckian modes are stretched beyonf the Hubble
size. This has two implications:

1) No dS minima can exist at the asymptotic boundaries of the moduli space. In the
asymptotic regimes, one recovers a bound constraining the asymptotic behaviour
of the potential

|∇V |
V

≥ 2√
(d− 1)(d− 2)

. (1.5.9)

2) A dS minimum can exist deep in the bulk, but it must be short-lived. The
lifetime τ for a metastable dS vacuum is bounded from above by

τ ≤ 1

H
log

MP

H
, (1.5.10)

where H is the Hubble scale.

The TCC is weaker than the dS conjecture and does not completely forbid the
existence of dS vacua, but only does so asymptotically.
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As more and more evidence for the Swampland conjectures is gathered from String
Theory setups, black hole physics and AdS/CFT, researchers are discovering an unex-
pected interplay of connections between these conjectures, which perhaps stems from
some kind of fundamental Swampland principle pointing directly at Quantum Gravity.
Finally, let us pose to ourselves a very important question: how universal is String The-
ory? This question is coupled to the Swampland program, since much of the evidence
that we have for the conjectures comes from String Theory. Therefore, at some point we
must ask whether our results are just an artifact of the lamppost we are looking under,
or whether the conjectures are more general and are actually reflecting inconsistencies in
Quantum Gravity. If we can show that the anomaly free theories which do not appear
in String Theory, do not appear for some underlying QG reason, namely they are incon-
sistent with a Swampland conjecture which is expected to be more general, this could
imply that we really get everything we can get in String Theory. At present, this seems
to be the case for highly supersymmetric setups. The idea that everything that can
possibly happen (i.e. that is not inconsistent with QG) does happen in String Theory is
called String Universality or the String Lamppost Principle. Certainly, it would
be very interesting indeed if this is the case and any consistent Quantum Gravity theory
is somehow connected to String Theory!



Chapter 2

Dark Bubble Cosmology

In this Chapter, we thoroughly examine the Dark Bubble scenario, explaining its most
relevant features and mechanisms. In particular, the focus will be on the way gravity
behaves on the brane world and on the induced cosmology on the bubble.

2.1 Introduction to the model

As stated in Chapter 1, consistency of the worldsheet theory requires that the total
number of dimensions in Superstring Theory be d = 10. The standard approach to deal
with the six extra dimensions that we do not perceive is to find a time-independent com-
pactification and extract low-energy four-dimensional effective field theories to describe
our universe, which we know is undergoing a phase of accelerated expansion (de Sitter
phase). However, the persistent difficulties in constructing a stable dS vacuum in String
Theory have led to conjecture that no (meta)stable dS vacuum can exist, at least at the
boundary of moduli space (see Section 1.5). AdS vacua, on the other hand, are common
in String Theory but there are reasons to believe that, unless they are supersymmetric,
they are unstable and must decay either perturbatively or non-perturbatively.

An alternative approach to describe our universe without dealing with the compact-
ification of these extra dimensions are the so-called brane world scenarios, in which our
Universe is embedded in a higher-dimensional spacetime (the bulk) and the Standard
Model of Particle Physics (or a generalization thereof) lives on a stack (D-)branes in a
the bulk.

There are many interesting brane world models which deserve to be studied and
investigated (see [36, 37] as an example). In this thesis, we will focus on the recent
model of Dark Bubble Cosmology, first proposed in 2019 by Ulf Danielsson, Souvik
Banerjee, Giuseppe Dibitetto, Suvendu Giri and Marjorie Schillo [11].

In this scenario, which combines together String Theory and cosmology in a beautiful
and intricate interplay, our universe rides a 4d bubble in a 5d Anti de Sitter spacetime.

22
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The latter, indeed, is unstable and decays non-perturbatively1, nucleating bubbles of
true2 vacuum. The Dark Bubble (DB) proposal therefore involves inducing 4d gravity
on a D3-brane, which corresponds to an expanding Coleman-de Luccia bubble [38] and
mediates the decay from a non-supersymmetric false AdS5 vacuum to a lower energy
vacuum. The DB scenario thus comes naturally whenever there is a codimension-1
brane present in the theory that can mediate the decay of the false AdS5.

The DB model differs from the Randall-Sundrum (RS) construction [36], in which
two insides of the bubble are glued together. Indeed, the Dark Bubble has an inside
and an outside. This changes the way gravity is realized on the brane, and needs the
presence of a growing mode in the bulk spacetime outside the bubble. This leads to 4d
matter being endpoints of strings stretching along the 5th dimension, whereas in the RS
model the 4d matter is localized on the brane.

Lower-dimensional observers (us) are confined on a (3+1)-dimensional brane and
perceive Einstein gravity as an effective 4d theory.

Figure 2.1: Pictorial representation of the Dark Bubble, with an inside/outside construc-
tion such that Λ− < Λ+. Strings extending all the way to the UV at infinity correspond
to massive particles in 4d.

Gravity on the bubble is spin-2 and not spin-0. The confusion may arise from the fact
that one may wrongly consider that gravity is localized, and not considering that sources,
such as stretched strings, holographically extend in the 5th direction (which is transverse
to the DB). These extended sources generate growing modes in the bulk outside of the

1By the WGC, all non-supersymmetric AdS vacua must decay.
2There is no guarantee that the nucleated bubble contains a true vacuum; the best we can say is

that the nucleated bubbles are bubbles of lower energy vacuum.
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bubble, which then yields a spin-2 graviton. Strings are essential to extract a consistent
effective theory of gravity on the brane. The value of G4 is finite and independent of
the possibly infinite volume of the extra dimensions3. Sources extend all the way to the
UV at infinity, and affect the spacetime all the way through non-normalizable modes.
It is possible to introduce a cutoff to restore normalizability, and low-energy physics is
not affected by this. Indeed, the mass of the matter fields turns out to be independent
of the size of the extra dimension through mass renormalization as the bubble traverses
along the extra dimension.

Uplifting gravitational waves on the DB to 5d and computing their backreaction
on 4d is equivalent to the backreaction considered purely in 4d. The crucial point we
need to emphasize is that 4d gravity arises as an effective description on a dynamical
object embedded in a higher dimensional space time. Indeed, the 4d Einstein equation
follows from the junction condition across the brane. The brane geometry is sourced
by the energy-momentum tensor of the brane itself (which for empty branes acts as a
cosmological constant) and by contributions from higher dimensional geometry. When
adding matter to the brane, the full back-reacted solution needs to be considered. This
leads to a net positive energy density, taking into account the extrinsic curvature through
the junction condition.

Stretched strings pulling on the brane look like particles in 4d. We can express the
mass of a particle in terms of the string tension. If we put a mass on top of the brane,
ignoring the backreaction, we would expect the brane to bend down towards the inside.
In RS there are two insides glued to each other, while in the DB model we have an
inside and an outside. This means the bending of the brane can be neatly explained
by a pulling string. If we have a string cloud (corresponding to dust in 4d), the pulling
is fully accounted for by the extrinsic curvature, reproducing FRLW cosmology with a
positive mass density.

The DB model realizes an effective dS vacuum4 with lower dimensional observers
confined to the bubble boundary, where they perceive an expanding FLRW cosmology
with a positive cosmological constant. Furthermore, an observer living on the DB sees
that it lasts longer than the Hubble time. The time scale relevant is the proper time
of the brane. For a large bubble there is a huge blue-shift due to the metric factor,
which ensures that cosmological times will pass while the proper radius of the bubble
only increases by the AdS radius.

Finally, we notice that the dynamics of the DB is perfectly consistent with Vilenkin’s
tunneling proposal in quantum cosmology, with the bubble nucleation in 5d AdS space-
time being identified with a 4d Big Bang event. The amplitude of bubble nucleation in
5d matched identically with Vilenkin’s tunneling amplitude in 4d quantum cosmology.

3There is no simple way to render G4 finite without the stringy sources of the DB.
4In the DB model, as soon as we have a tension of the brane that is smaller than the critical value,

we automatically get dS.
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This tunneling dynamics was embedded in a stringy model in order to obtain a small,
positive cosmological constant compatible with observations. What a lower-dimensional
observer would call the Big Bang has the bulk interpretation of a well-understood nu-
cleation event à la Brown-Teitelboim [39]. From the higher dimensional perspective, the
Big Bang does not appear as a singularity.

Let us now jump onto the Dark Bubble and, holding tightly to stretched strings,
prepare to embark on a cosmic ride.

2.2 Gravity on the Braneworld

In order for this composite spacetime to be a solution of the Einstein equations, the
stress-energy tensor on the shell needs to source a jump in the extrinsic curvature. The
Israel junction conditions [40] imply

σ =
3

8πG5

(√
k2− +

1 + ȧ2

a2
−
√
k2+ +

1 + ȧ2

a2

)
, (2.2.1)

where σ is the tension of the brane supporting the shell, while the cosmological constants
inside and outside the shell are given by Λ± = −6k2± = −6/L2

± and Λ− < Λ+ < 0 (or
k− > k+). The vacuum with higher energy can then decay through the nucleation of a
spherical Brown-Teitelboim instanton. In terms of the proper time τ on the shell located
at r = a(τ), the induced metric on the shell has a FLRW form:

ds2shell = −dτ 2 + a(τ)2dΩ2
3. (2.2.2)

For large k±, we find that
ȧ2

a2
≃ − 1

a2
+

8πG4

3
Λ4, (2.2.3)

which is just the Friedmann equation in the presence of a positive cosmological constant
Λ4 given by

Λ4 =
3(k− − k+)

8πG5
− σ. (2.2.4)

Moreover, we can perform the following identification

G4 =
2k−k+
k− − k+

G5. (2.2.5)

Gravity on the shell is described by 4d Einstein’s equations plus high energy corrections.
In general, the resulting Friedmann equation will be non-linear in the shell tension.
However, when the 5d cosmological constants k± are large compared to the 4d Hubble
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parameter, the tension of the shell approaches from below the extremal(critical) tension,
which results in a flat shell

σcr =
3(k− − k+)

8πG5

. (2.2.6)

Expanding in ϵ = 1 − σ/σcr, we recover the the usual Friedmann equation plus small
corrections which are independent of a(τ)

ȧ2

a2
= − 1

a2
+

8πG4

3
Λ4 +O(ϵ2), (2.2.7)

where Λ4 = σcr − σ. This represents a dS universe with positive spatial curvature.
This shows that in order to have an expanding dS bubble, the tension must be

subcritical (σ < σcr). The bubble nucleates with ȧ = 0, with its radius set by the 4d
cosmological constant. As a consequence, the universe starts with a size comparable to
the horizon scale, with the subsequent expansion further reducing the curvature.

2.2.1 Friedmann Cosmology

Let us now examine in detail how to obtain a dS4 cosmology as the induced 4d metric on
a codimension-1 bubble in AdS5. The 5d bulk geometries inside and outside the bubble
correspond to AdS5 vacua:

ds2± = g±µνdx
µdxν = −f(z)±dt2 +

dz2

f(z)±
+ z2dΩ2

3, (2.2.8)

where + or − refer to the inside and the outside of the bubble respectively, dΩ2
3 =

γijdx
idxj is the metric on S3 and f± for pure AdS5 is given by

f(z)± = 1 + k2±z
2. (2.2.9)

The constant k defines the AdS5 scale as LAdS = 1/k and the 5d cosmological constant
is given by Λ5 = −6k2. A false (outside) AdS5+ vacuum can decay to a true (inside)
AdS5− vacuum via the nucleation of a spherical Brown-Teitelboim instanton provided
k− > k+. Once nucleated, the bubble expands rapidly eating all of AdS5+ in finite time.

The bubble can be described by specifying its radius z = a(τ), where τ is some time
parameter on the bubble (proper time on the shell). We will assume the bubble to be
sufficiently large: ka ≫ 1. The induced metric on the bubble wall is exactly of the
FRLW form:

ds2ind = −N2(τ)dτ 2 + a(τ)2dΩ2
3, (2.2.10)
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where we introduced the lapse-function N to make time reparametrization invariance
manifest. The relation between the bulk time t and the brane time τ is

N2(τ) = f(a)ṫ2 − ȧ2

f(a)
(2.2.11)

= f(a)

(
∂t

∂τ

)2

−
(
∂a

∂τ

)2
1

f(a)
.

Assuming only spherical symmetry of the instanton and a brane of constant tension σ,
Israel’s junction condition gives a I order equation for the evolution of the radius, a(τ)
(expansion of the bubble):

σ =
3

κ5

(√
f−(a)

a2
+

ȧ2

N2a2
−
√
f+(a)

a2
ȧ2

N2a2

)
, (2.2.12)

where σ is the tension of the bubble wall. Expanding the square root, the first Friedmann
equation becomes

1

N2

(
ȧ

a

)2

=
κ4
3
ρΛ − 1

a2
, (2.2.13)

where the 4d gravitational constant is simply

κ4 =
2k−k+
k− − k+

κ5, (2.2.14)

and where the 4d cosmological constant is determined by ρΛ = σcr − σ.
σcr is the critical brane tension at which the bubble remains static

σcr =
3

κ5
(k− − k+). (2.2.15)

The critical tension σcr can be obtained in the limit that all 4d energy scales (set by
curvature and the Hubble scale) are small compared to 5d scales (k ≫ 1/a, k ≫ ȧ/a): the
brane appears as a spatially Minkowski space with a critical tension σcr. The Friedmann
equation only admits real solutions if σ < σcr. From the 5d perspective, this means that
bubbles with a tension greater than the critical one simply cannot nucleate.

The presence of mass in the bulk modifies theAdS5 metric, resulting in a Schwarzschild-
AdS solution where f(r) becomes

f(r) = 1 + k2±r
2 − 8G5M±

(3πr2)
, (2.2.16)

where M− and M+ are the masses measured inside and outside the bubble, respectively.
Through the space-space component of the junction condition, we see that matter in the
bulk contributes with a radiation term to the Friedmann equations

ȧ2

a2
≃ − 1

a2
+

8πG4

3

[
Λ4 +

1

2π2a4

(
M+

k+
− M−

k−

)]
, (2.2.17)
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where we drop terms higher order in ϵ and M±/k±. The time-time component of the
junction condition (i.e. the second Friedmann equation) can be combined with the
first Friedmann equation to reproduce the 4d continuity equation on the shell. We
can therefore identify the gravitational backreaction of bulk matter as the source of an
effective energy density with a radiation equation of state on the shell. If M+ > 0 on
the outside but M− = 0 on the inside, we get a positive density of radiation.

Adding matter is more complicated. As we have seen, 5d matter confined to the
shell yields a 1/a4 contribution to the Friedmann equation. The way to get a matter
contribution that goes like 1/a3 is to construct massive particles as strings ending on the
shell. The metric is then given by m−(r) = 0 for r < a and m+(r) = 0 for r > a, where
η is the effective tension of the strings. This gives an effective 4d matter with density
ρ = η/a3k+ on the shell. As the shell climbs up the throat, it eats the strings and the
massive particles represented by the endpoints are supplied with the required potential
energy to keep a constant rest mass.

If all of these massive particles annihilate into massless radiation on the shell, by 5d
energy conservation, m+ just outside the shell would be equal to the total mass of the
strings that vanished. Moreover, m−, evaluated on the shell, will increase dramatically
to represent the mass that was captured by the shell. The 4d observer only feels the
difference (m+ −m−), which will be determined via 4d energy conservation.

In this way, all processes on the shellworld will be like shadows of processes taking
place in 5d involving much larger energies.

To get a massive particle, we need a string that pulls upwards from the brane. With
a homogeneous distribution of these strings, one reproduces the Friedmann equations in
the presence of dust. The DB ”eats” the strings as it expands. The energy from the
strings is used so that the effective energy density on the bubble (and thus H2), decays
only as 1/a3 rather than 1/a4, as in the case of radiation:

H2 =
ȧ2

a2
≃ − 1

a2
+

8πG4

3

[
Λ4 +

1

2π2a4

(
M+

k+
− M−

k−

)
+

3

8πa3
τ

k+

]
. (2.2.18)

Thus, 4d physics is not localized to the shell; instead, it is described by the full 5d bulk
in which the strings stretch. The effective mass of a particle is given by τLAdS, where τ
is the string tension and LAdS = 1

k+
. therefore, the mass is independent of the length of

the string.
Putting everything together, if we consider a more general metric corresponding to a

gas of strings in Schwarzschild-AdS space, f(r) will be given by

f(r)± = 1 + k2±r
2 − κ5M±

3π2r2
− κ5α±

4πr
, (2.2.19)

and, using again the junction condition, we can identify several different contributions
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to Friedmann equation

1

N2

(
ȧ

a

)2

=
κ4
3
ρΛ +

κ4
3
ρra

−4 +
κ4
3
ρma

−3 − 1

a2
, (2.2.20)

where the vacuum energy ρΛ, the radiation density ρr and the matter density ρm find
their origin in the bulk geometry:

ρΛ ≈ σcr − σ ρr ≈
1

2π2

(
M+

k+
− M−

k−

)
ρm ≈ 3

8π

(
α+

k+
− α−

k−

)
. (2.2.21)

We conclude that a bulk black hole with mass M gives rise to radiation in the 4d world,
while a gas of stretched strings with average density α gives rise to dust.

Figure 2.2: Radially stretched strings attached to the expanding bubble correspond to
massive particles in the 4d Universe on the Dark Bubble.

Examining the size of the cosmological constant relative to our 4d reduced Planck
mass, we find

Λ4

M4
4

= 256π2G2
5σcrϵ

(
k−k+
k− − k+

)2

∼ ϵk3M−3
5 , (2.2.22)

where we used for simplicity to assume no large hierarchy between the interior and the
exterior AdS radii, leading to the approximation k− ∼ k+ ∼ (k−−k+) ∼ k. Thus, we see
that as long as the 5d spacetime is weakly curved (k < M5), the 4d cosmology will be
weakly curved as well. Moreover, we are interested in the case of a phenomenologically
relevant 4d cosmology, i.e. one with a cosmological constant problem, but we would like
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the fundamental AdS5 vacuum to be natural. In this case, a modest hierarchy k < M5

implies a tuning of the brane tension to be very nearly critical with ϵ ∼ 10−120. This
precise tuning, where the 4d cosmology presents the observed cosmological constant
problem but the 5d vacuum has no extreme hierarchies, guarantees that the lifetime of a
typical bubble before collisions with another bubble is longer than the 4d Hubble time.

We will consider collisions in a metastable AdS+ vacuum with initial conditions de-
fined such that at some time t = 0 the entire space is in the false vacuum. Then, not
only is a bubble guaranteed to nucleate as long as the decay rate is finite, but due to
the infinite spatial volume of the t = 0 surface, an infinite number of decays will occur.
Choosing the bubble where our universe lives to be at the center of AdS means that at
the same time another bubble will nucleate near the boundary of AdS. because the bub-
bles undergo constant proper acceleration, asymptoting to a lightcone, they will collide
in a time of order the AdS radius: tcollision ∼ L+, measured in the global time coordinate
(2.2.8).

It is interesting to compare this to the Hubble time, given in a 4d observer’s proper
time τH = H−1. The relation between these two coordinates can be found by insisting
that a point on the brane follows a timelike trajectory and results in

dt

dτ
=

√
f(r) + (∂rr)2

f(r)
. (2.2.23)

Neglecting the spatial coordinate so that H is constant and r(τ) = r0e
Hτ , one readily

finds global time as a function of proper time. Again, neglecting the decaying spatial
curvature, we have H ≈

√
Λ4/M4 ≈

√
ϵk. Since the bubble nucleates at rest, we also

have r0 = H−1 = τH . Then, converting to Hubble time in global coordinates, we find
tH = (e− 1)/ek +O(ϵ). Therefore

tH
tcollision

≈ e− 1

e
≈ 0.6, (2.2.24)

which indicates that we expect the braneworld cosmology to remain relatively uneventful
for longer than the age of the universe, but one cannot wait an arbitrarily long time before
a collision.

This result strongly depends on our choice of boundary conditions. Without the
assumption that the entire space is in the false vacuum at t = 0, we would find that
the lifetime of any point before the collision is zero due to the infinite volume of the
past lightcone. The boundary conditions considered here correspond to a cutoff in time,
before which the decay of the false vacuum is ”turned off”. We could alternatively replace
this cutoff in time with a spatial cutoff, such as a cutoff brane at large radial coordinate
similar to the two-brane RS scenario. A spatial cutoff also presents the opportunity for
tuning the lifetime before collision relative to the Hubble rate, exponentially increasing
the expected time until collision. Therefore, the possibility of constructing a finite-volume
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AdS may be more relevant for model building. On the other hand, brane collisions may
give rise to interesting phenomenology related to inflation and reheating.

Finally, we can estimate the number of d.o.f. on the shellworld centered in AdS-
Schwarzschild by considering how thermal equilibrium is established. For an AdS-
Schwarzschild metric outside the bubble with m = m+, the effective temperature just
outside the shell as measured by a distant observer, at r ≫ 1/k+, scales as T 4

+ ∼
m+k

2
+/r

4. in the interior of the bubble, all mass is in the form of a black hole with mass
m− (not necessarily equal to m+) with temperature T 4

− ∼ m−k
2
−/r

4. For the shell to be
in equilibrium we need T− = T+ = T , leading to m−k

2
− = m+k

2
+. Since k− > k+, we get

that m− < m+, meaning that the black hole has lost some mass due to the presence of
the shell.

Therefore, the energy density for radiation on the shell at a = r can be estimated as
ρ ∼ (m+L+−m−L−)/a

4 = (L3
+−L3

−)T
4/a4, implying the number of d.o.f. is ∝ L3

+−L3
−.

2.2.2 General case

A purely gravitational way of understanding the 4d theory on the bubble wall is obtained
using Gauss-Codazzi equations to study the induced Riemann curvature. We will use
Greek indices to refer to 5d (bulk) geometry and Latin indices for quantities associated
to the induced one. We finally find that it gives rise to 4d gravity.

In general, the different bulk metrics across the bubble’s wall cause the presence of
an energy-momentum tensor Sa

b on the brane. The second Isreael’s junction condition
implies

κ5Sab = [Kab −Khab]|−+, (2.2.25)

where [A]+− = A− −A+ and Kab = ∇βnαe
α
ae

β
b , with nα being a unit normal vector to the

wall and eαa its tangent vector. hab is the induced metric on the wall. Kab (with trace K)
represents the extrinsic curvature, which tells us about the bubble’s embedding in the
bulk geometry. For simplicity, we will consider the case where the wall is a simple empty
brane with Sab = −σhab.

Gauss-Codazzi equations read:

R
(5)
αβγδe

α
ae

β
b e

γ
c e

δ
d = R

(4)
abcd +KadKbc −KacKbd. (2.2.26)

Inserting this equation (and its contractions) into the thin-shell junction condition elim-
inates the extrinsic curvature in favor of the energy momentum tensor. Therefore:

8πG5Sab = ∆Kab −∆Khab, (2.2.27)

where Sab is the total stress-energy tensor on the shell, which includes Tbrane in addition
to the matter, radiation and cosmological constant induced from the 5d bulk. Assuming
that the extrinsic curvature on the brane is dominated by the 5d cosmological constant,
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we can write Kab = khab + τab, where hab is the induced metric on the brane and τab is
subleading compared to k. Therefore

G
(4)
ab = hab

[
16πG5σ

(
k+k−
k− − k+

)
− 3k+k−

]
(2.2.28)

+

(
k+k−
k− − k+

)[(
J +

ab

k+
− J −

ab

k−

)
− 1

2
hab

(
J +

k+
− J −

k−

)]
,

with Jab defined as
Jab = R

(5)
αβγδe

α
ae

β
b e

γ
c e

δ
dh

cd. (2.2.29)

Jab −R
(4)
ab = −3k2hab − k(2τab + τhab) +O

(
τ 2

k2

)
. (2.2.30)

Therefore, the 4d geometry is sourced by the bulk geometry through the tensor Jab: in
addition to the expected contributions to the Einstein equations coming from the stress
tensor on the brane, we have to include also contributions from 5d geometry via the J
tensor.

We can verify that this expression reproduces the FLRW case above: choose the bulk
metric to be asympotically AdS5 with matter and a uniformly dense cloud of strings

ds2± = −f(r)±dt2 +
dr2

f(r)±
+ r2dΩ2

3, (2.2.31)

where

f(r)± = 1 + k2±r
2 − 8G5M±

3πr2
− 2G5α±

r
. (2.2.32)

With this, the 4d Einstein tensor becomes

(G(4))ab = − 2k+k−

(
3− 8πG5

k− − k+
σ

)
︸ ︷︷ ︸

≡8πG4(σcrit−σ)≡8πG4Λ4

δab −
8G5

πa(τ)4

(
M+k− −M−k+

k− − k+

)
(δa0δ

0
b −

1

3
Σ3

i=1δ
a
i δ

i
b)

(2.2.33)

− 6G5

a(τ)3

(
α+k− − α−k+
k− − k+

)
(δa0δ

0
b )− 16πG5

(
k+k−
k− − k+

)
(Tbrane)

a
b

= −8πG4Λ4 −
4G4

πa(τ)4

(
M+

k+
− M−

k−

)
(δa0δ

0
b −

1

3
Σ3

i=1δ
a
i δ

i
b) (2.2.34)

− 3G4

a(τ)3

(
α+

k+
− α−

k−

)
(δa0δ

0
b )− 8πG4(Tbrane)

a
b

= 8πG4(T
(4))ab , (2.2.35)
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which are precisely the 4d Einstein equations, corresponding to a positive cosmological
constant, radiation, matter and additional world volume matter on the brane respec-
tively. Notice that the last term Tbrane contributes to the Einstein tensor with a negative
sign to the energy density (in fact, it contributes with the same sign as the components
of inside of the bubble, M− and α−). The added matter onto the brane gives rise to a
negative energy density in 4d, but it also backreacts on the 5d spacetime, thus yielding
a contribution to the extrinsic curvature which gives an overall positive 4d cosmological
constant.

Moreover, notice that also in pure AdS5, Jab has a contribution −3k2hab, which
contributes to a net cosmological constant given by

Λ4 = 6k+k− − κ4σ = κ4

(
3

κ5
(k− − k+)− σ

)
. (2.2.36)

In the 5d Einstein equation above we see how the bulk geometry induces matter in the
effective 4d theory, which then sources the 4d Einstein equations.

A localized matter source in 4d (such as a massive particle) is uplifted into a string
that stretches into the bulk. Contrary to the RS model, neither gravity nor matter
is localized to the brane but extends holographically into the bulk. The gravitational
attraction between two stretched strings in the bulk projects down to the gravitational
attraction between two point particles in 4d.

2.3 Differences with RS model

In the scenario developed by Randall and Sundrum [36], two identical AdS5 vacua are
glued together across a D3-brane. The 5d graviton has a zero mode confined on the brane
that gives rise to an effective 4d gravity despite the existence of large extra dimensions:
this solves the issue of finding scale-separated vacua. The DB model is a variation of this
scenario that starts with a metastable false AdS5 vacuum that non-perturbatively decays
to a supersymmetric true AdS5 vacuum through bubble nucleation. Here, a spherical
brane separates the two phases with an inside and an outside, and 4d observers confined
to the brane experience an effective dS4.

Consider an effective theory of 5d Einstein gravity with matter:

S =
1

2κ25

∫
dx5
√

−g(5)(R− 2Λ + Lm), (2.3.1)

where κ25 = 8πG5 is the reduced Newton’s constant in 5d. There are two relevant cases:

• Lm = 0: the maximally symmetric spacetime solution is AdS5

ds2 = e2A(z)ηµνdx
µdxν + dz2, (2.3.2)
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where A(z) = ±2kz is the warp factor and k =
√

−Λ
6

is the AdS curvature. The

holographic coordinate z ∈ (−∞,∞) increases monotonically from the center to
the boundary of AdS.

• Lm corresponds to a shell of matter located at z = 0, with AdS5 having curvature
k± on the two sides:

A(z) = ϵ+k+Θ(z)z + ϵ−k−Θ(−z)z. (2.3.3)

This corresponds to a shell with constant tension

Lm =
3

κ25
(ϵ+k+ − ϵ−k−)δ(z). (2.3.4)

Choosing ϵ− = −ϵ+ =1 and k− = k+ = k corresponds to RS. On the other hand,
if we do not have this symmetry on k and and ϵ+ = ϵ− = 1, we have the DB.

Figure 2.3: Figure taken from [15] plotting the warp factor for RS and the DB. For
the DB, the volume of radial slices decreases inward and increases outward, defining the
inside and the outside of the bubble respectively.

Dimensional reduction of the 5d action along the z direction gives G4:

G5 = G4

∫ z0

−∞
dze2(ϵ+k+Θ(z)+ϵ−k−Θ(−z))z (2.3.5)

=
G4

2

(
1

ϵ−k−
− 1

ϵ+k+

)
+G4

1

2ϵ+k+
e2ϵ+k+z0 . (2.3.6)

For RS, the second piece vanishes as z0 −→ ∞, so we get GRS
4 = G5k. For DB, instead,

the divergent second term is just the divergent volume of AdS as one approaches the
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boundary that has to be regulated, while the first term is regular and gives the correct
G4. The Gauss-Codazzi Eq. (2.2.26) describes the backreacted embedding of the brane
and automatically produces the correct, regulated value of the brane.

Matter in the brane contributes with a negative sign to the effective energy density in
4d, however, backreaction from the bulk, contributing to the extrinsic curvature, yields
a net positive energy density. We arrive to:

GDB
4 = 2G5

(
1

k+
− 1

k−

)−1

= G5
2k−k+
k− − k+

(2.3.7)

For DB, we get finite results only when the k+ and k− are different. It is exactly a phase
transition, with the nucleated brane separating two vacua with different cosmological
constant. Also, the presence of the outside AdS5 drives G4 to zero (our sources are
strings extending in the 5th direction, which produce non-normalizable gravitational
modes in the exterior).

In RS, spacetime has an exact Z2 symmetry across the bubble, but the bubble nucle-
ation process demands an inside/outside construction where there can be no Z2 symmetry
across the bubble.

Finally, as stated before, stretched strings pulling on the brane look like particles in
4d. Putting a mass on top of the brane and ignoring backreaction should make the brane
bend down towards the inside. For RS, due to the difference in sign, the bending is in
the other direction, away from the inside. In the DB there is an inside and an outside,
meaning that the bending of the brane can be explained by a pulling string.

2.4 Graviton propagator in momentum space

We now turn our attention to local gravitational physics on the 4d shell and compute
like in [12] the graviton propagator between 2 point particles on the brane to confirm
the presence of Einstein’s (spin-2) gravity on the bubble. We can show that, while the
massless graviton propagates in 5d, it has a 0-mode in its KK reduction that mediates an
effective gravitational theory at low energy. Thus, while scattering at high momenta will
probe the radial direction, low energy physics will appear 4-dimensional on the brane.

For simplicity, consider a bubble at late times, when the curvature is negligible, in
the Poincaré patch, written in domain-wall coordinates

ds2 = dz2 + a(z)2ηµνdx
µdxν , (2.4.1)

where a(z) = ezk± . In the DB model there an inside and an outside, so the warp factor
increases towards the boundary. This results in configurations of a potential such that
the 0-mode of the graviton is not normalizable due to divergence at the boundary of
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AdS. If we place a cutoff brane near the boundary, the non-normalizable5 mode causes
both branes to bend. This effect can be interpreted as localized sources induced on the
branes by the bulk modes. We identify these sources as the endpoints of the stretched
strings between the brane. The strings result in a relation between these two sources
which ensures continuity of the 0-mode across the branes (for example, there could be a
RS brane at ã(z) = ãRS which plays the role of a cut-off brane).

Consider perturbations hab of the bulk metric

ds2 = dz2 + a(z)2(ηab + hab(z, x
a))dxadxb, (2.4.2)

with a(z) = ekz, k being the AdS5 curvature. Now choose hab to be in the Lorentz gauge
∂ahab =

1
2
∂bh and define γ̄ab = γab − 1

2
ηabγ, where γab ≡ a(z)2hab.

After a Fourier transformation(
−p

2

a2
+ ∂2z − 4k2

)
χ̃ab(p, z) = −2κ25Σ̃ab, (2.4.3)

where χab and Σab are the traceless parts of γ̄ab and the stress tensor Tab respectively, and
the tildes are their Fourier transformations in the transverse directions. We can solve
for the corresponding Green’s functions ∆χ̃(p; a+, a−)

6 piece-wise, inside and outside the
shell in terms of modified Bessel functions K2 and I2, which diverge at large and small
a respectively.

Applying the same considerations as in [12], and working in the small momentum
limit, the Green’s function becomes

∆shell
χ̃ =

a2

p2

(
2k−k+
k− − k+

)
+O(p0) (2.4.4)

The leading order term gives the 0-mode of the 5d graviton with subleading corrections in
finite momentum. This 5d 0-mode corresponds to the 4d graviton, confirming Einstein’s
gravity on the DB.

The 0-mode of momentum-space graviton propagators, χ, with 3-momentum p, sat-
isfies the equation (

−p
2

ã2
+ ∂2z − 4k2

)
χ(p, z) = 0, (2.4.5)

which has solutions

χ(p, z) = A(p)I2

[
p

(kã)

]
+B(p)K2

[
p

(kã)

]
. (2.4.6)

5In AdS/CFT, normalizable modes are the bulk modes that decay with radial distance near the
boundary and can be interpreted as the expectation value of the corresponding operator on the QFT
on the boundary. Non-normalizable modes, instead, have the interpretation of sources. For instance,
for the graviton propagator normalizable modes correspond to the stress tensor, while non-normalizable
modescorrespond to the metric on the boundary.

6a± corresponds to the scale factor outside/inside the shell.
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Variation of the extrinsic curvature across the shell gives an additional boundary condi-
tion

χ̃′
−(p, ãb)− χ′

+(p, ãb)−
(σ
3

)
χ(p, ãb) = Σb, (2.4.7)

where ’ denotes derivative with respect to ã and Σb is a source on the shell.
The presence of stretched strings results in χ(p, z) ∝ K2 near the cut-off. This gives

χb =
Σbãb
p

[
K1(

p
ãbk−

)

K2(
p

ãbk−
)
−
K1(

p
ãbk+

)

K2(
p

ãbk+
)

]−1

(2.4.8)

= −G4
Σbã

2
b

p2 +O(p/abk±)3
. (2.4.9)

Therefore, we have reproduced the correct 1/p2 interaction for Newtonian gravity at small
p, including the correct constant G4, providing a consistency check for our scenario.

The tensor Σb appearing in the above equation is made of two parts:

Σb = Σbrane
b + Σstring

b . (2.4.10)

The first term Σbrane
b = Tµν − Tγµν/3 contains the contribution from the world-volume

fields confined to the shell with induced metric γµν . This gives a negative contribution
to the equation above, just as in Friedmann equation.

The other piece, Σstring
b , arises from the bending effect of the strings on the shell.

Viewing the effect of mass as a localized deformation, imparted by the endpoint of the
stretched string, the contribution from strings is of the form

Σstring
b ∼ −(α+/k+ − α−/k−), (2.4.11)

where α± is the energy carried by the strings. This follows from consistency with Fried-
mann equation when we identify α± with m±. Therefore Σstring

b yields a positive con-
tribution to χb. Therefore, strings are fundamental for the existence of a non-vanishing
0-mode and to ensure a well defined propagator realizing localized gravitational effects
on the shell-world.

Fourier transforming (2.4.4) back into position space gives

∆5 =

∫
d4p

(2π)4
eip(x−x̃)∆χ̃

a2
=
κ24
κ25

1

r
+ ..., (2.4.12)

where r is the radial coordinate in 4d. χab is the convolution of the scalar Green’s function
with the source:

χab = −2κ24

∫
√
gΣab∆5 (2.4.13)

So far we assumed the brane sits at ξ = 0. However, the brane bends in response to
a source: placing matter directly on the brane (or having a string pulling from inside)
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contributes with a negative sign to the stress tensor. As a result, the brane sits at
ξ = f(xa) instead of ξ = 0. Performing a coordinate transformation

ξ −→ ξ − f(xa), (2.4.14)

and a corresponding change in the worldvolume coordinates xa, brings back the brane
to ξ = 0 in these new coordinates. This contributes with additional terms to the metric
perturbation χab as well as to the stress-energy tensor Σab. These extra contributions
are not traceless. Demanding that the full stress tensor, including the contribution
from bending, be traceless then determines the amount of bending. If we perform the
computation in position space, this leads to

hab = −2κ24

∫
√
g(Tab −

1

2
ηabT )

1

r
+ ... (2.4.15)

With the negative sign as discussed above, this perfectly reproduces 4d Einstein gravity.
The above result crucially depends from the choice of boundary conditions.

2.5 Gravitational waves in Dark Bubble Cosmology

In the presence of spin-2 gravity on the 4d bubble, we expect to find tensor gravitational
waves. Let us now briefly review the construction of [17] gravitational waves on the Dark
Bubble, along with their uplift from 4d to 5d.

Since we want to write down the junction condition for our brane world, we are
obliged to find the backreaction of the waves on the bulk geometry. For this purpose,
we will work perturbatively in the metric

gµν = g(0)µν + ξg(1)µν + ξ2g(2)µν +O(ξ3), (2.5.1)

where ξ is a formal expansion parameter. The standard procedure is to solve Einstein’s
equation order by order in χ. Plugging the previous expression into Einstein equation,
we find:

Gµν + Λgµν =(G(0)
µν [g

(0)] + Λg(0)µν ) + ξ(G(1)
µν [g

(1)] + Λg(1)µν ) (2.5.2)

+ ξ2(G(2)
µν [g

(1)] +G(1)
µν [g

(2)] + Λg(2)µν ) +O(ξ3) = 0,

where G
(i)
µν [g(j)] denotes the i-th order variation of the Einstein tensor evaluated on the

j-th order metric perturbation, which is a quantity of order max(i, j) in ξ.

• At 0-th order, the Einstein Eq. simply yields the background geometry g
(0)
µν . We

will construct, for simplicity, a background of pure AdS.
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• Gravitational waves appear at first order in χ through the linearized Einstein equa-
tion, which can be understood as solutions to

(G(1)
µν [g

(1)] + Λg(1)µν ) = 0. (2.5.3)

Gravitational waves in the DB model must satisfy specific requirements that the
5d bulk induces a 4d metric on the DB constrained by junction conditions.

• The second order Einstein equation can now be written as

G(1)
µν [g

(2)] + Λg(2)µν = −G(2)
µν [g

(1)]. (2.5.4)

This can in principle be solved to give g(2). This tells us how the geometry reacts in
the presence of the gravitational wave g(1). The right-hand side can be interpreted
as an effective energy momentum tensor

⟨Tµν⟩ = −κ−1
D

〈
G(2)

µν [g
(1)]
〉
, (2.5.5)

where κD is the gravitational constant in D dimensions. This energy-momentum
tensor is quadratic in g(1). The averaging procedure has been done over several
wavelengths. Note an overall minus sign in the definition of ⟨Tµν⟩.
This effective energy-momentum term can also be captured by a backreacted back-
ground metric. This fact is of crucial importance as, once the backreaction is
accounted for, the junction condition will dictate how gravitational waves in the
bulk will affect the evolution of the 4d bubble.

2.5.1 Uplift of Gravitational Waves from 4d to 5d

Let us discuss gravitational waves and their backreaction on the metric, reviewing first
gravitational waves in an expanding flat or spherical FRLW topology. In the DB model,
the AdS scale k is assumed to be a UV scale that lies somewhere in between the scales
of particle physics and MP . Let us use for simplicity H ≪ k, meaning the Hubble scale
is much smaller than any such UV scale.

When the wavelength is sufficiently small, waves in a flat universe serve serve as proxy
for those in a spherical universe. In fact, high frequency waves only probe small regions
and do not feel the curvature at larger scales.

Gravitational waves are described by transverse-tracefree (TT) perturbations to the
metric ds2ind = N2(τ)dτ 2 + a(τ)2dΩ2

3. In conformal time gauge, these are:

ds2 = a2(η)[−dη2 + (γij + ξhij(η, x))dx
idxj], (2.5.6)

where η is the conformal time, ξ is the perturbation parameter, γij is the metric on a
spatial slice in xi-coordinates and hij corrseponds to transverse and trace-free perturba-
tions.
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For simplicity, let us ignore matter and radiation contributions and focus solely on a
pure dS cosmology with positive cosmological constant Λ4 only. We then have that the
4d Hubble constant is given by H2 = κ4ρΛ/3 = Λ4/3.

• In a flat dS universe, the scale factor is a(η) = − 1
Hη

with −∞ < η < 0. For
concreteness, we will consider a GW travelling in the x1 direction with either a
+ or a × polarization. The perturbation can be expanded into harmonics on the
spatial manifold. The I-order Einstein equation then yields a wave equation for
each mode separately. For a single mode h4d(η, x1) = eiqx1h4d(η), labelled by some
continuous wave number q, we find

d2h4d
dη2

+ 2Hdh4d
dη

+ q2h4d = 0, (2.5.7)

where H = − 1
η
is the conformal Hubble rate. Solutions are easily found and read

h4d(η) = −η cos(qη + ϕ0) +
1

q
sin(qη + ϕ0), (2.5.8)

where ϕ0 is an arbitrary phase. The wave h freezes out to a constant at late times.

• A closed dS universe is a bouncing cosmology with scale factor a(η) = − 1
H sin η

,

where −π/2 ≤ η < 0. The moment η = −π/2 is the bounce, which coincides
with the moment of nucleation. In a transverse-traceless gauge, 4d gravitational
waves on the DB (conformally R1 × S3) are given by hij = h4d(η)Yij, where η is
the conformal time on the DB and Yij are tensor spherical harmonics on S3. The
time-dependent solution was found in [17] and is a linear combination of

h4d1 (η) =
cos((n+ 1)η)

n+ 1
+ sin η sin(nη),

h4d2 (η) =
sin((n+ 1)η)

n+ 1
− sin η cos(nη), (2.5.9)

where n labels the wave number and 3 − n2 is the eigenvalue of the laplacian on
S3.

The gravitational waves, which perturb the metric at the first order, source an energy-
momentum tensor. At late times, this corresponds to curvature and radiation. The right
procedure to deal with gravitational waves is to solve Einstein’s equations to first order,
and then to identify the energy of the first order waves eith the second order piece
representing the failure of the first order waves to solve the vacuum equations. The
isotropic and wavelength-averaged energy-momentum tensor in 4d becomes

⟨T a
b ⟩iso =

7

8κ4a2


1 0 0 0
0 1

3
0 0

0 0 1
3

0
0 0 0 1

3

+
q2

4κ4H2a4


−1 0 0 0
0 1

3
0 0

0 0 1
3

0
0 0 0 1

3

 . (2.5.10)
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Notice how the first term goes like ∼ 1/a2, behaving like curvature in the Friedmann
equations, while the second one has an equation of state p = −ρ/3 and goes like ∼ 1/a4,
thus behaving like radiation.When the wavelength of the waves is larger than the horizon,
it freezes and the only remaining contribution is curvature.

Gravitational waves in AdS5 which are the uplift of the 4d waves are of the form
hij = h5d(t, z)Yij, where t and z are the global time coordinate and the radial direction
in AdS5 respectively7.

This wave is required to behave like the induced 4d one (2.5.9) and to be sourceless
(h5d(t, r) = 0 when r → 0). Imposing these boundary conditions, the resulting bulk
wave h5d is a linear combination of

h5d1 (t, z) =
(kz)n−1

(1 + k2z2)
n−1
2

[ 1
2
(1 + n)(2− n) + k2z2

(n+ 1)(1 + k2z2)
cos((n+ 1)kt) + sin(kt) sin(nkt)

]
,

(2.5.11)

h5d2 (t, z) =
(kz)n−1

(1 + k2z2)
n−1
2

[ 1
2
(1 + n)(2− n) + k2z2

(n+ 1)(1 + k2z2)
sin((n+ 1)kt)− sin(kt) sin(nkt)

]
.

Similar to 4d, this perturbation induces an energy-momentum tensor in AdS5 and has
components corresponding to radiation and flux

⟨T µ
ν ⟩rad =

k2n2t2

4κ5r2


−1 0 0 0 0
0 1

3
0 0 0

0 0 1
3

0 0
0 0 0 1

3
0

0 0 0 0 0

 , ⟨T µ
ν ⟩flux =

n2

8κ5r2


0 0 0 0 −2t

k2r3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2k2tr 0 0 0 0

 ,

(2.5.12)

⟨T µ
ν ⟩curv =

1

8κ5r2

(
7− n4

2k4r4

)

1 0 0 0 0

0 1
3
+O( n2

k2r2
) 0 0 0

0 0 1
3
+O( n2

k2r2
) 0 0

0 0 0 1
3
+O( n2

k2r2
) 0

0 0 0 0 1 +O( n2

k2r2
)


Here, the energy-momentum tensor has been averaged and made isotropic, analogously
to the 4d case (2.5.10). The first line corresponds to gravitational radiation. Notice that,
in particular, the t, r components of the flux different from zero indicate a flow of energy
in the direction in which the bubble expands, as expected. The second line corresponds
to waves that are frozen as they become larger than the horizon scale.

The energy-momentum (2.5.12) sources a backreaction on the 5d bulk metric, which
in turn induces a second order correction to the stress tensor on the bubble. The back-

7This is analogous to ds2± = −f(r)±dt
2+ dr2

f(r)±
+r2dΩ2

3 but withM± = α± = 0, thus f(r)± = 1+k2±r
2
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reacted metric is given by

ds2backreacted ≃ −[1 + k2r2 + ϵ2(q1 − q2k
2t2)]dt2 + [1+ k2r2 + ϵ2(q1 − q2k

2t2)]−1dr2 + r2dΩ2
3,

(2.5.13)

where |ϵ| ≪ 1 and the coefficients qi read q1 = − 7
24
, q2 = − q2

6
, q3 = − q2

12
.

This second order correction induced on the DB from the 5d backreaction is exactly
the same as what would have been obtained by directly solving Einstein’s equations in 4d
directly at second order. This result further establishes the consistency of the DB model
perturbatively in response to gravitational wave fluctuations.

2.6 AdS decay

We start from a metastable false AdS5 vacuum that non-perturbatively decays to a stable
supersymmetric AdS5 vacuum of lower energy through bubble nucleation8.

Recalling the conjectures of Section 1.5, let us make explicit the argument which con-
cludes that theWGC applied to a higher form gauge field implies that non-supersymmetric
AdS must decay. We can show that an extension of the higher formWGC to codimension-
1 branes is equivalent to the charge-to-tension relation required for AdS (supported by
flux) to be unstable to the nucleation of charged Dp-branes first derived by Brown-
Teitelboim (see [39, 41]). The Brown-Teitelboim instanton describes the nucleation of
a spherical, charged, codimension-1 membrane in a vacuum whose cosmological con-
stant is sourced (at least in part) by a top-form flux (i.e. a d-form field strength in
d-dimensions). The membrane nucleates and discharges a unit of flux, thus lowering the
value of the cosmological constant.

The instanton solution describes an energy-conserving configuration where the sphere
nucleates at rest at a finite size. The radius of the instanton is determined by the
condition that the energy freed-up in reducing the cosmological constant exactly balances
the energy cost of the tension of the membrane. Moreover, it was shown in [39] that
charged bubbles cannot nucleate in AdS for any arbitrary value of the membrane charge-
to-tensor ratio. This is because if the tension becomes large relative to the charge, the
critical bubble will have to grow so that the energy liberated in the volume of the bubble
is enough to ”pay” for the energy cost of nucleating the membrane. However, in AdS, at
large radial coordinate, the volume and the area of a sphere grow with the same power
of radius: making the bubble larger no longer balances the energy budget.

8The vacuum that nucleates could in principle be non-supersymmetric and unstable, but the process
will eventually with the nucleation of a stable supersymmetric AdS. Regardless of the stability of the
nucleating vacuum, since the bubble is a spacelike surface that asympotes to the lightcone, subsequent
decays on the interior of the bubble will never collide or interact with the original domain wall and are
irrelevant for our construction.
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The condition for being able to nucleate a bubble arises from the condition that the
radius of the critical bubble is real:

R∗ =

 2Λ̃+

(d− 1)(d− 2)
+ σ−2

p

(
1

d− 1

(
QpE+ − 1

2
Q2

p

)
−
M2−d

d σ2
p

2(d− 1)

)2
−1/2

, (2.6.1)

where d is the spacetime dimension, Md is the d-dimensional reduced Planck mass,
σp(Qp) is the tension (charge) of the Dp-brane, Λ̃+ is the cosmological constant exterior
to the bubble and Λd ≡ Λ̃dM

d−2
d .

E+ is the electric field associated to the top-form flux (F µ1...µd ∝ E+ε
µ1...µd). Since

this holds for membrane nucleation with codimension-1, in this result p = d− 2.
Let us consider the case that the cosmological constant outside the bubble is sourced

entirely by flux

Λ̃+ = −1

2
M2−d

d E2
+. (2.6.2)

Furthermore, we assume that there are a large number of units of flux

E+ = QpN, N ≫ 1. (2.6.3)

This is the limit where higher curvature corrections can be neglected in supergravity.
Solving the condition that the radius of nucleation is positive yields the inequality:

σ2
d−2 ≤

d− 2

d− 1
Q2

d−2M
d−2
d − (d− 2)(2d− 3)

(d− 1)2
Q2

d−2M
d−2
d

1

N
+O

(
1

N2

)
, (2.6.4)

where we have included the sub-leading correction in 1/N to illustrate that it is negative,
lowering the tension relative to the charge, and therefore will not provide a loophole for
violating the WGC.

All to all, the WGC for higher form fields can be written as

Q2
pM

d−2(p+2)
d ≥ (p+ 1)(d− p− 3)

d− 2

(
τp

M
(p+1)
d

)2

. (2.6.5)

This does not apply easily to the our case (d = 5, p = 3), because the right-hand side
becomes negative. This makes the inequality a trivial statement; however, a non-trivial
extension of this result, effectively replacing (d − p − 3) −→ |d − p − 3| for the case
p = d − 2, could be the correct guess. This is in perfect agreement with the N −→ ∞
limit of the previous σ2

d−2 inequality.
The saturation of this inequality corresponds to an extremal, flat, domain wall. This

flat domain wall does not have a finite Euclidean action and thus cannot nucleate in a
decay process, defining the boundary of stability.
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2.7 Embedding in String Theory

Finally, let us review a first attempt to embed the Dark Bubble model in String Theory
[17]. For an explicit and more accurate embedding of the DB model in String Theory, we
refer to the involved construction in [16], which makes use of rotating branes in the 5th
dimension. In this embedding, an unstable AdS configuration with large enough R-charge
chemical potential emits color D3-branes and tunnels through a potential barrier to a low
energy stable configuration. At lowest order, the universe living on the worldvolume of
the emitted D3-brane has a vanishing cosmological constant, and keeps growing up to a
maximal size before it starts contracting again. Considering also 1/N corrections, in line
with the WGC, we obtain a small cosmological constant compatible with observations.

We start by considering the decay of the non-supersymmetric Romans vacuum to
the supersymmetric AdS5 × S5 vacuum via the nucleation of a spherical (p, q)-5 brane.
Reducing this picture to 5d, where the (p, q)-5 brane is an S3, will result in an EFT with
gravitational interactions described in the previous sections.

The Romans vacuum is given by the reduction of Type IIB over a 5d Sasaki-Einstein
manifold seen as a U(1) fibration over a CP3 base. The vacuum results from a non-trivial
relative stretching of the fiber to the base and is supported by 3-form flux. This solution
has been identified with the SU(3)× U(1) invariant critical point of 5d supergravity.

While the consistent truncation to 5d supergravity is perturbatively stable at the
SU(3)×U(1) critical point, it is still possible that there are tachyonic modes which have
been truncated out. Due to the lack of supersymmetry, the instability is likely and has
been taken as a foregone conclusion. However, it is also possible that we remove the the
annoying tachyonic modes by taking an orbifold. The orbifold of the Romans vacuum
will decay into AdS5×S5/Zk, which is in general not supersymmetric and has a bubble of
nothing non-perturbative instabilty. Nevertheless, bubbles of nothing nucleating within
the true vacuum must remain inside the lightcone describing the braneworld trajectory
and will therefore not affect our scenario.

In addition to the self-dual 5-form flux present in the supersymmetric vacuum, the
Romans vacuum has non-zero 3-form flux G3 = F3+τH3, which breaks all supersymmetry
and leads to the squashing of the S5.

The 10d metric is given by the product AdS5 ×M5, where M5 is a specific fibration
over CP2

ds210 = ξ2ds2dS4
+

dξ2

1 + ξ2/L2
AdS

+ L2
5(νds

2
CP2 + ν−4e25), (2.7.1)

where LAdS parametrizes the the AdS scale, (L5) parametrizes the KK scale, ν controls
the relative fiber/base stretching and e5 is a 1-form satisfying de5 = J , where J is the
Kähler form for the unit CP2.
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The axion C0 is set to zero, while other fluxes read

F5 = α5(1 + ∗)vol5, (2.7.2)

G3 = α3F3 + β3H3 = dK = L5e
−3iϕK ∧ e5, (2.7.3)

where K is a holomorphic 2-form on CP2 and ϕ is the fiber coordinate. Solving the 10d
field equations yields:

SUSY : LAdS = L5, ν = 1, α5 =
4

gsL5

, (2.7.4)

����SUSY : LAdS =
211/10

33/5
L5, ν = (

2

3
)1/5, (2.7.5)

α5 =
1081/5

gsL5

, β3 = gsα3 =
34/5

23/10
1

L5

.

In order to compare them, let us now measure the curvature in the two vacua in 5d
Planck units:

M3
P =

L5
5π

3

(g2s(2π)
7α′4)

. (2.7.6)

Furthermore, we are interested in decay via nucleation of 5-branes which remove G(3)

but leave F(3) untouched. The flux quantisation condition thus reads∫
M5

F5 = (4π2α′)2N5 = α5L
5
5π

3. (2.7.7)

Thus, holding N5 fixed and using Planck units, we have

LAdS =

(
N5

π

)2/3

M−1
P ×

{
1
2
, SUSY

27/6

3
,����SUSY

. (2.7.8)

The important result of these calculations is the hierarchy of the potential energy (V ∝
L−2
AdS) between the two vacua:

10d −→ V���SUSY

VSUSY

=
9

213/3
< 1, (2.7.9)

which indicates that the supersymmetric vacuum lies below the non-supersymmetric one.
In order for a perturbative decay channel to exist, the (p, q)− 5 brane in the theory

which realizes the desired flux shift should have a tension σ < σext. Using the previous
relation, we can compute σext from

σext =M4
P

(
π

N5

)2/3(
6− 9

27/6

)
. (2.7.10)
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While the precise embedding of the five-branes which mediate this decay depends on
the orbifold needed to ensure perturbative stability (again, refer to [16]), we are able
to demonstrate the existence of such a decay channel by using SUGRA to obtain the
tension of the desired 5-brane. If we use the following superpotential and potential

W (ρ, χ) =
1

4ρ2
(
cosh(2χ)(ρ6 − 2)− (3ρ6 + 2)

)
, (2.7.11)

V (W ) = g2

(
1

8

∣∣∣∣∂W∂χ
∣∣∣∣2 + 1

48

∣∣∣∣ρ∂W∂ρ
∣∣∣∣2 − 1

3
|W |2

)
. (2.7.12)

The maximally symmetric critical point is at ρ = 1, χ = 0, and the Romans vacuum is
located at ρ = 1, χ∗ = arccosh(2)/2.

However, we notice that the hierarchy of thew vacua is reversed with respect to
Eq.(2.7.9), i.e.

V���SUSY

VSUSY

=
9

8
> 1. (2.7.13)

This is because moving in the χ direction corresponds to a deformation of the internal
manifold that does not preserve N5. However, since the superpotential is linear in the
fluxes, rescaling the superpotential such that the hierarchy (2.7.9) is recovered will also
amount to holding the 5-form flux fixed. Thus, we should use the superpotential of
(2.7.11) at the supersymmetric critical point, and W̃ = 2−

2
3W at the critical point

corresponding to the Romans vacuum.
To deduce the tension of the fundamental (p, q)-5 brane that can mediate the decay,

we can notice that there should be a BPS brane that sources the G(3) flux, the tension
of which will be given by the junction condition for an extremal brane, where k± are
associated to V+ = −g2W̃ 2 (1,χ∗)

3
and V− = −g2W̃ 2 (1,0)

3
. Again, since W is linear in

flux, and we have rescaled W̃ such that the difference relative to W is entirely due to
the change in 3-form flux, using the supersymmetric values for the potential gives the
effective 5d tension for the BPS brane that sources this change in flux numbers.

If we compare the tension of the BPS brane to the extremal tension (2.7.10), we find
σBPS < σext, so that the fundamental brane which sources the correct charge can also
facilitate the decay via a spherical bubble with finite Euclidean action.

2.8 Hierarchies from an explicit stringy embedding

We will now only mention the hierarchy of energy scales of the Dark Bubble model
as realized in the explicit embedding of [16] in Type IIB string theory, without paying
attention to numerical factors.

Starting from the 10d Planck length

l410 ∼ gsl
4
s , (2.8.1)
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and then reducing to 5d, we get
l35 ∼ l810/L

5. (2.8.2)

Indeed, the background we consider is a deformation of AdS5 × S5. There is no scale
separation and the length L sets the size of the S5 as well as of the curvature scale of
the non-compact AdS5.

The next step is to go down to 4d. In a standard dimensional reduction on a compact
dimension of size L, we would get l24 ∼ l5/L. This means that the lower-dimensional
Planck length is smaller than the higher-dimensional one: in other words, gravity is
weaker in the lower-dimensional theory.

In the DB model, however, there is an inside and an outside, leading to a 4d Planck
scale given by

l24 ∼
k−k+
k− − k+

l35, (2.8.3)

where k± = 1/L±. Moreover, if k− is close to k+, then l4 can be larger than l5. Indeed,
the hierarchy that we will find is

l10 ≫ l4 ≫ l5. (2.8.4)

The reason is that, in the model of [16], the background AdS5×S5 is dual to a background
of N D3-branes. One of these branes can nucleate and start to expand. By studying its
junction condition and imposing k− ∼ k+ ∼ k, this was found to correspond to

(k− − k+) ∼
k

N
∼ 1

NL
−→ l24 ∼

N

L
l35. (2.8.5)

It is a large N what ensures that l4 ≫ l5. Furthermore, the scale L of the background is
given by L2 ∼ l2s

√
gsN , which, using (2.8.1) and (2.8), is equivalent to

l35 ∼
L3

N2
. (2.8.6)

There is only one remaining relation to be fixed, which will determine N in terms of
the cosmological constant. The nucleated brane is supposed to be critical9, meaning its
tension is given by

T3 =
1

(2π)3gsl4s
. (2.8.7)

As argued in [16], we expect there to be corrections of order 1/N , in line with the WGC,
which will reduce the value of the cosmological constant. This will shift the tension from
its critical value and generate an effective 4d cosmological constant of magnitude

ρΛ ∼ 1

gsl4s

1

N
∼ 1

L4
. (2.8.8)

9if all numerical coefficients are restored, it exactly solves the conditions for a critical bubble σ =
3

8πG5
(k− − k+).
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From this, we get that L ∼ 10−5 m, which has the size of the Dark Dimension discussed
in [42]. This is a nice result, but we should keep in mind that in the DB model the
scalings do not arise from a hierarchy between a single mesoscopic dimension and the
other (scale-separated) ones. Instead, (2.8.8) arises from the peculiar relation between
the 5d and the 4d Planck scales in (2.8.3).

Using the previous relations, we can now express the 5d and the 4d Planck scales, the
4d Hubble length RH and the length scale L of AdS5 in terms of N and the 4d Planck
length as

RH ∼ Nl4, L ∼ N
1
2 l4, l10 ∼ N

1
4 l4, l5 ∼ N− 1

6 l4. (2.8.9)

Finally, we have ls ∼ l10/g
1
4
s , which fixes N ∼ 1060. From there, we find the non-trivial

prediction that the 10d Planck scale should sit at around 10 TeV, with the string scale
just below and a string coupling gs that is less than one but not too small.



Chapter 3

Bubble Nucleation in Quantum
Cosmology

In this Chapter, we shall examine how Dark Bubble Cosmology perfectly matches with
Vilenkin’s nucleation from nothing in a higher dimensional perspective. We will start
by reviewing the two main proposals for a quantum beginning of the universe, namely
Vilenkin’s and Hartle-Hawking’s proposal. We will then argue that only the former is
compatible with the Dark Bubble model.

3.1 Introduction

Quantum cosmology (see [43] for a review) aims at computing the wave function of a
closed universe

Ψ[hij(x),Φ(x),Σ]. (3.1.1)

This is the amplitude that the universe contains a three-surface Σ on which the three-
metric is hij(x) and the matter field configuration is ϕ(x). From this amplitude, then,
one would hope to extract various predictions concerning the outcome of large scale
observations. To fix the amplitude (3.1.1), we first needs a theory of dynamics, such as
General Relativity. From this, we can derive an equation analogous to the Schrödinger
equation, the so-called Wheeler-DeWitt equation, which the wave function of the universe
must satisfy.

This is clearly an ambitious program and several aspects of its basic principles re-
main a source of debate in the literature. One particular issue concerns the choice of
boundary conditions on the wave function. Just as in ordinary quantum mechanics,
boundary conditions (and normalisation) are needed in order to uniquely fix solutions
to Schrödinger’s equation. Such boundary conditions are often argued for by physical
principles or by more formal principles such as the self-adjointness of the Hamiltonian.
In quantum cosmology this is highly non-trivial to implement for several reasons. First

49
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of all, we do not know the full Hamiltonian since we lack the complete Hamiltonian
of quantum gravity. The common attitude is to ignore the UV completion of gravity
and to work in a semi-classical approximation, which is then further approximated by
a mini-superspace approach (a drastic cut in the number of degrees of freedom). Given
this, one can debate the choice of boundary conditions and reach various conclusions.
Two natural choices are the Vilenkin choice (i.e. the tunneling wave function) and the
Hartle-Hawking (HH) choice (i.e. no-boundary proposal). We will examine both pro-
posals, focusing mainly on the former and giving only the essential details of the latter,
emphasizing how the Dark Bubble perfectly agrees with Vilenkin’s one.

3.2 Vilenkin’s tunneling proposal

Standard cosmology gives a successful description of many features of the evolution of
the universe. However, many theoretical issues are not yet solved. One of these puzzles is
the fact that we would need very fine-tuned initial conditions at the Big Bang: we have to
postulate that the universe started in a perfectly homogeneous and isotropic state with
tiny density fluctuations which then evolve into galaxies. This fact, together with the
observation that the Universe appears to be very closely spatially flat, gives rise to the so-
called flatness and horizon problems [44]. These can be resolved if we take into account
a period of rapid expansion similar to the de Sitter solution, inflation: the Universe we
see today started as a very small bubble, enough so that all of its parts had time to
come into causal contact; it then underwent a period of (almost) exponential expansion,
during which the initial content of matter and radiation was almost entirely wiped out;
this fast growth then ended, leaving an essentially empty Universe (thus homogeneous
and isotropic) which also looked spatially flat inside the Hubble horizon; finally, matter
was produced again as a quantum process called reheating, which occurred in a radiation
dominated locally FLRW space-time. Nevertheless, the inflationary scenario does not
resolve the initial singularity problem of the Universe. Therefore, some proposals for
removing the singularity were presented using the Wheeler-deWitt equation.

In 1982, Vilenkin proposed a cosmological model [45], [46] in which the universe is
spontaneously created by quantum tunneling from nothing into a de Sitter space, where
by nothing we mean a state with no classical space-time. The Universe therefore entered
a de Sitter regime with finite initial scale factor as a quantum transition from a 4d
geometry.

This model does not have any Big bang singularity and does not require any initial
or boundary conditions. Moreover, it does not require any changes in the fundamental
equations of physics: it only gives a new interpretation to a well-known cosmological
solution.
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Figure 3.1: Graphic realization of Vilenkin’s proposal. An expanding de Sitter universe
is born via quantum tunneling from a compact Euclidean geometry.

Let us consider a model of matter fields interacting with gravity, where for simplicity
the matter fields are represented by a single Higgs field ϕ with an effective potential
V (ϕ). If ϕ = η is the true minimum of the effective potential, then we require that
V (η) ∼ 0, so that the cosmological constant is small today.

Besides ϕ = η, V (ϕ) can have other extrema. If ϕ = ϕ0 is such an extremum,
V ′(ϕ0) = 0, and ϕ = ϕ0 = const is a solution of the classical field equation for ϕ

□ϕ+ V ′(ϕ) = 0. (3.2.1)

The vacuum energy density at ϕ = ϕ0 will be non-vanishing (and positive) in general

ρV = V (ϕ0) > 0. (3.2.2)

Suppose that the universe starts in the symmetric vacuum state and is described by
a closed (k = 1) FLRW metric

ds2 = dt2 − a2(t)

[
dr2

(1− r2)
+ r2dΩ2

]
. (3.2.3)

Then, the scale factor a(t) can be derived from the evolution equation

ȧ2(t) + 1 =
8

3
πGNρΛa

2, (3.2.4)

whose solution is the de Sitter space

a(t) = H−1
Λ cosh(HΛt), (3.2.5)
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where ȧ = da
dt

and HΛ = (8πGNρΛ
3

). This solution describes a universe which is
contracting at t < 0, reaches its minimum size (amin = H−1

Λ ) at t = 0, and is expanding
at t > 0. This behaviour is similar to that of a bubble of true vacuum surrounded by a
false vacuum. The radius of the bubble is given by [47]

R = (R2
0 + t2)1/2. (3.2.6)

In the actual history of the universe, however, the t < 0 part is absent. In fact, the bubble
tunnels quantum mechanically from R = 0 to R = R0, and then evolves according to
(3.2.6) with t > 0. This suggests that the birth of the universe might be a quantum
tunneling effect: the universe might have emerged at the ”bounce point” having a finite
size (a = H−1

Λ ) and zero ”velocity” (ȧ = 0), while its following evolution is described by
(3.2.5) with t > 0.

It is known that a semiclassical description of quantum tunneling is given by the
bounce solution of Euclidean field equations, which can be obtained by replacing t −→
−iτ in the field equations. Normally, bounce solutions are used to describe a decay of a
quasi-stable state. If the decaying state is at the bottom of a potential well at x = x1,
then the bounce solution starts with x = x1 at t −→ −∞, bounces off the classical
turning point at the end of the barrier and returns to x = x1 at t −→ +∞.

The euclidean version of (3.2.4) is −ȧ2 + 1 = H2
Λa

2, and the solution is

a(t) = H−1
Λ cos(HΛt). (3.2.7)

Equations (3.2.3) and (3.2.7) describe a four-sphere (S4) of radius H−1
Λ . This is the

well-known de Sitter instanton [41].

Figure 3.2: Figure taken from [45], which schematically shows the birth of the inflationary
universe at a finite size from a 4d geometry without time. the classical evolution starts
at t = 0.
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The solution (3.2.7) bounces at the classical turning point (a = H−1
Λ ), but it does

not approach any initial state at t → ±∞. In fact, S4 is a compact space and the
solution (3.2.7) is defined only for |t| < π

2
HΛ. This compact instanton can therefore be

interpreted as describing the tunneling to the de Sitter space (3.2.5) with finite initial
scale factor from literally nothing.

This process is analogous to the creation of electron-positron pairs in a constant
electric field E, which involves the creation of a compact instanton, as is shown in
Fig.3.3.

Figure 3.3: Figure taken from [45], which schematically shows pair creation in the electric
field. The classically allowed trajectories, DE and AB, describe, respectively, an electron
moving forward in time and an electron moving backwards in time (a positron); the
semicircle BCD represents the instanton.

The instanton solution can be used to estimate the semiclassical probability P of pair
creation per unit length per unit time

P ∝ exp(−SE), (3.2.8)

where SE is the euclidean action for the corresponding instanton. Of course, the evalu-
ation of the probability P makes sense because the pair creation takes place in a back-
ground flat space; the instanton solution contributes to the imaginary part of the vacuum
energy.

For the de Sitter instanton, instead, it would be pointless to try to evaluate the
imaginary parts of the energy of nothing. Therefore, the only relevant question is whether
or not the spontaneous creation of universes is possible. The existence of the instanton
(3.2.7) suggests that it is.

The euclidean action of a de Sitter instanton is negative [48], SE = − 3
8G2

NρΛ
. A

natural conclusion would then be

P ∝ exp

(
3

8G2
NρΛ

)
. (3.2.9)
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Nonetheless, the correct answer seems to be P ∝ exp(−|SE|). The basic reason is that the
under-barrier wave function contains growing and decreasing exponentials with roughly
equal coefficients, but the growing exponential dominates. In the usual case of bubble
nucleation, the Euclidean action is positive definite, thus |SE| = SE.

The problem of determining the tunneling amplitude can be approached by solving
the Wheeler-deWitt equation, which is a functional differential equation on superspace
for the wave function of the Universe, Ψ[hij, ϕ]. In the following, we will work with a
minisuperspace model, in which we restrict the 3-geometry to be homogenoeus, isotropic
and closed, so that it is described by a single scale factor a. The scalar field ϕ is restricted
to constant value at one of the extrema of the effective potential: ϕ = ϕ0. Then, the
Wheeler-deWitt equation for Ψ(a) takes the form[

a−p ∂

∂a
ap
∂

∂a
−
(
3π

2G

)2

a2(1−H2a2)

]
Ψ(a) = 0, (3.2.10)

where the parameter p depends on one’s choice of factor ordering. Variation of p affects
Ψ only for a < G1/2. Since these values of a are unimportant for our discussion, we
can just set p = 0, so that eq. (3.2.10) takes the form of a one-dimensional Schrodinger
equation for a ”particle” described by coordinate a(t), having zero energy and moving
in a potential

U(a) =
1

2

(
3π

2G

)2

a2(1−H2a2). (3.2.11)

The WKB solutions of Eq.(3.2.10) in the classically allowed region (a > H−1) are

Ψ
(1)
± (a) = exp

(
±i
∫ a

H−1

p(a′)da′ ∓ iπ

4

)
(3.2.12)

and the under-barrier (0 < a < H−1) solutions are

Ψ
(2)
± (a) = exp

(
±i
∫ H−1

a

|p(a′)|da′
)
, (3.2.13)

where p(a) = (−2U(a))−1/2. Tunneling through the barrier corresponds to the choice of
the ”outgoing” wave for a > H−1

Ψ(a > H−1) ∼ Ψ
(1)
+ (a). (3.2.14)

The WKB connection formula gives the under-barrier wave function of the form

Ψ(a < H−1) ∼ Ψ
(2)
+ (a) +

i

2
Ψ

(2)
− (a). (3.2.15)
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Except in the immediate vicinity of a = H−1, the second term in Eq. (3.2.15) is negligible,

and Ψ(a > H−1) ≈ Ψ
(1)
+ (a). The wave function grows exponentially towards a = 0. The

tunneling amplitude is therefore proportional to

exp

(
−
∫ H−1

0

|p(a′)|da′
)

= exp

(
− 3

16G2ρΛ

)
(3.2.16)

which means the tunneling probability is with SE = − 3
8G2ρΛ

.

Notice that the semiclassical approximation is justified if |SE| ≪ 1 or ρΛ ≪ G−2 (a
condition which is satisfied in most Grand Unified Theories).

We have found that the tunneling probability is P ∝ exp
(
− 3

8G2ρΛ

)
, where ρΛ =

V (ϕ0) and ϕ0 is an extremum of the effective action. But what happens to the universe
after tunneling? The symmetric vacuum state is absolutely unstable. It can decay
via quantum tunneling or can be destabilized by quantum fluctuations of the Higgs (or
inflaton) field. This field starts rolling down the effective potential towards the ending
of the inflationary scenario, when reheating takes place.

3.3 Hartle-Hawking no-boundary proposal

In 1983, Hartle and Hawking proposed a new approach [49] to the definition of the
wave function of the Universe: they suggested that the wave function Ψ[hij, ϕ] is given
by a path integral over all compact Euclidean four-geometries and scalar field histories
bounded by the configuration [hij, ϕ]

Ψ[hij, ϕ] =

∫
C

[dg][dϕ] exp(−SE[g, ϕ]). (3.3.1)

In particular, they put forward a proposal for the wave function of the ”ground state”
or state of minimum excitation: the ground state amplitude for a three-geometry is
given by the path integral over all compact positive-definite four-geometries which have
the three-geometry as a boundary. The requirement that the Hamiltonian be hermitian,
then, defines the boundary conditions for the Wheeler-deWitt equation and the spectrum
of possible excited states. The ground state corresponds to de Sitter space in the classical
limit. There are excited states which represent universes which expand from zero volume,
reach a maximum size and then recollapse, but which have a finite (though very small)
probability of tunneling through a potential barrier to a de Sitter-type state of continual
expansion. The path integral approach allows us to handle situations in which the
topology of the three-manifold changes.

Let us briefly only mention some key ideas contained in [49]. In quantum mechanics,
the state of a system is determined by giving its wave function on an appropriate con-
figuration space. The possible wave functions can be constructed from the fundamental
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quantum-mechanical amplitude for a complete history of the system which may be re-
garded as the starting point for quantum theory. For instance, in the case of a single
particle, a history is a path x(t) and and the amplitude for a particular path is pro-
portional to exp(iS[x(t)]), where S[x(t)] is the classical action. The amplitude for more
restricted observations can be constructed by superposition; in particular, the amplitude
that the particle, having been prepared in a certain way, is located at position x and
nowhere else in time, is

ψ(x, t) = N

∫
C

[dx(t)] exp(iS[x(t)]), (3.3.2)

where N is a normalizing factor and the sum is over a class of paths which intersect x
at time t and which are weighted accordingly to the preparation of the system. The
oscillatory integral in Eq. (3.3.2) is not well defined, but can be made so by rotating the
time to imaginary values (t→ −iτ).

The ground state, or state of minimal excitation of the theory, is defined by the path
integral over the class of paths which have vanishing action in the far past. Thus, for
the ground state at t = 0 one would write

ψ0(x, 0) = N

∫
[dx(τ)] exp(−SE[x(τ)]), (3.3.3)

where SE[x(τ)] is the Euclidean action obtained from S sending t → −iτ . If in the
theory there is a well-defined time and a corresponding time-independent Hamiltonian,
this definition of ground state coincides with the lowest eigenfunction of the Hamiltonian.

The case of quantum fields is a straightforward generalization of quantum particle
mechanics: the wave function is a functional of the field configuration on a space-like
surface of constant time, Ψ = Ψ[ϕ(x), t], and the functional Ψ gives the amplitude that
a particular field distribution ϕ(x) occurs on this space-like surface. The rest of the
formalism is easily generalized. For instance, the ground-state wave functional is given
by

Ψ0[ϕ(x), 0)] = N

∫
[dϕ(x)] exp(−SE[ϕ(x)]), (3.3.4)

where the integral is over all Euclidean field configurations for τ < 0 which match ϕ(x)
on the surface τ = 0 and leave the action finite at Euclidean infinity.

When gravity enters the game, there are some modifications to be done. Focusing only
on spatially closed universes, there is no well-defined intrinsic measure of the location of
a space-like surface in the spacetime beyond that contained in the intrinsic or extrinsic
geometry of the surface itself. One therefore labels the wave-function by the three-metric
hij, writing Ψ = Ψ[hij]. Quantum dynamics is given by the functional integral

Ψ[hij] = N

∫
C

[dg(x)] exp(iS[g]), (3.3.5)
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where S now is the classical action for gravity including a cosmological constant Λ, and
the functional integral is over all four-geometries with a space-like boundary on which
the induced metric is hij and which to the past of that surface satisfy some appropriate
condition to define the state.

Eq. (3.3.5) implies a differential equation on the wave function: the Wheeler-deWitt
equation. the problem of specifying cosmological states then becomes the same as spec-
ifying boundary conditions for the solution of the Wheeler-deWitt equation. This said,
we can investigate which boundary conditions specify the ground state. In the quantum
treatment of closed universes, there is no well defined notion of ground state as a state
of lowest energy; it is still reasonable, however, to define a state of minimum excitation
corresponding to the classical notion of geometry of high symmetry.

The proposal of HH is the following: extend to gravity the Euclidean functional
integral construction of quantum mechanics and field theory. So, we can write for the
ground-state wave function

Ψ0[hij] = N

∫
[dg] exp(−SE[g]), (3.3.6)

where SE is the Euclidean action for gravity including a cosmological constant Λ. The
Euclidean four-geometries summed over must have a boundary on which the induced
metric is hij. The remaining specification of the class of the geometries which are summed
over determines the ground state: HH suggested that the sum should be taken over
compact geometries, meaning that the Universe does not have any boundaries in space or
time (at least in the Euclidean regime). There is thus no problem of boundary conditions.
We can interpret the functional integral over all compact four-geometries bounded by a
given three-geometry as giving the amplitude for that three-geometry to arise from a zero
three-geometry (a single point). Put differently, the ground state is the amplitude for the
Universe to appear from nothing.

The specification of the ground state wave function is a constraint on the other
states allowed in the theory (they must be such, for example, as to make the Wheeler-
deWitt equation hermitian in an appropriate norm). Moreover, we are able to use these
constraints to extrapolate the boundary conditions which determine the excited states of
the theory from those fixed for the ground state by Eq. (3.3.5). Therefore, we could in
principle determine all the allowed cosmological states. The wave functions which result
from this specification will not vanish on the singular, zero-volume three-geometries
which correspond to the Big Bang singularity. We can build a complete spectrum of
excited states which show that a closed universe similar to ours and endowed with a
cosmological constant can escape the Big Crunch and tunnel through an eternal de
Sitter expansion.

Representing, for simplicity, the matter degrees of freedom by a single scalar field
ϕ, we recover the definition (3.3.1) for the wave function Ψ. The sum is over a class
C of spacetimes with a compact boundary on which the induced metric is hij and field
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configurations which match ϕ on the boundary. The remaining specification of the class
C is the specification of the state.

The main difference with Vilenkin’s proposal is that the universe tunnels into a
Lorentzian state with no initial space-like boundary, since final geometries with a = 0
at the beginning are included, and no Lorentzian stage is assumed before the tunneling.
Recalling what we found for Vilenkin’s choice in Eq.s (3.2.14) and (3.2.15), we can
compare it with HH results. Starting from Eq. (3.3.1), the HH wave function is Ψ(a <

H−1) ∼ Ψ
(2)
− (a) and Ψ(a > H−1) ∼ Ψ

(1)
+ (a) + Ψ

(1)
− (a). This wave function corresponds

to a ”particle” bouncing off the potential barrier at a = H−1; under the barrier, Ψ(a)
is exponentially suppressed. Indeed, it describes a contracting and expanding Universe.
Thus, the HH approach automatically gives a time-symmetric picture of the Universe:
a contracting and reexpanding Universe in the case of de Sitter space and an oscillating
universe in more complicated mini-superspace models.

3.4 Comparing the two wave functions

Let us now examine both proposals and try to understand their difference in mini-
superspace. Consider, for simplicity, cosmologies driven by a pure positive cosmological
constant. Then the Friedmann equation for a 4d cosmology in case of positive spatial
curvature is

ȧ2 = −1 +
a2

R2
, (3.4.1)

where we are now introducing the de Sitter radius R and R−2 ≡ 8πGN

3
ρΛ = Λ. The mini-

superspace reduction of the Einstein-Hilbert action leading to the Friedmann equation
is given by

S =
6π2

8πGN

∫
dτN

(
−aȧ

2

N2
+ a− a3

R2

)
. (3.4.2)

N is the lapse function from the FLRW metric

ds2 = −N2(τ)dτ 2 + a2(τ)dΩ2
3, (3.4.3)

which acts as a Lagrange multiplier whose constraint reproduces (3.4.1). From the action,
we derive the canonical momentum p = −(12π2aȧ)/N ; quantizing using p −→ −i d

da
, the

Hamiltonian constraint becomes the Wheeler-deWitt equation

N

a

(
− 1

24π2

d2

da2
+ 6π2V (a)

)
Ψ(a) = 0, (3.4.4)

where the effective potential is given by V (a) = a2 − R−2a4. The plot of V (a) makes
explicit the analogy with tunneling through a barrier.
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Figure 3.4: Effective potential with two turning points: a = 0 and a = R

There are two turning points: a = 0 and a = R. The region between these turning
points is the so-called Euclidean region (I), while the region a > R (II) is classical.

The WKB solution is given by

Ψ
(a)
I =

1

|V (a)|1/4
(ceS(a,0)+de−S(a,0)

),

Ψ
(a)
II =

1

|V (a)|1/4
(AeS(a,R)+Be−S(a,R)

), (3.4.5)

where c, d, A,B are complex constants and where we defined

S(a, ai) ≡
12π2

8πGN

∫ a

ai

√
|V (a′)da′. (3.4.6)

A choice (c, d) or (A,B) reflects the choice of boundary conditions. We also need a
normalization to fix them completely, and a common one is

lim
a→∞

|V (a)|1/4Ψ(a) = 1. (3.4.7)

The HH choice selects the growing exponential in region I by taking (c, d) = (1, 0):

ΨHH(a) =
1

|V (a)|1/4

{
eS(a,0), Region I

2eS0 cos[S(a,R)− π
4
] Region II,

(3.4.8)

where S0 ≡ S(R, 0) = 4π2R2

8πGN
. This leads to the following nucleation probability

PHH ∝ e2S0 . (3.4.9)
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Vilenkin’s choice, instead, is defined selecting only outgoing waves in region II, namely
(A,B) = (0, B):

ΨV (a) ≈
1

|V (a)|1/4

{
eS0e−S(a,0)+iπ

4 , Region I

e−iS(a,R) Region II,
(3.4.10)

where we approximated c ≈ 0 since it is exponentially suppressed. Therefore

PV ∝ e−2S0 . (3.4.11)

Summarizing, the difference of the two proposals in mini-superspace can roughly
be described in the following way: at large scale-factor, the tunneling wave function
can be seen as purely “outgoing” waves, just as a wave function of a particle escaping
a radioactive nucleus. The no-boundary proposal instead has fine-tuned ingoing and
outgoing waves such that the wave function decreases towards the Big Bang singularity.

The amplitudes of the two wave functions behave very differently when we consider
their dependence on the cosmological constant Λ (in Planck units)

ΨV ≈ e−c/Λ ΨHH ≈ ec/Λ, (3.4.12)

with c a positive numerical constant. The amplitude for the no-boundary proposal peaks
at a small positive cosmological constant, while the opposite is true for the tunneling
wave function. This would suggest that the most naive interpretations of the wave
function might then be at odds with the tunneling wave function is one wants to address
the cosmological constant problem, but the discussion is still open.

The higher-dimensional Big-Bang interpretation in the Dark Bubble scenario is par-
ticularly interesting as it provides a connection with quantum cosmology [14]. What
a lower-dimensional observer would call the Big Bang has the bulk interpretation of a
well-understood nucleation event à la Brown-Teitelboim. From the higher dimensional
perspective, therefore, the Big Bang does not appear as a singularity. The Dark Bubble
model has the advantage of providing a UV completion of a 4d gravity on the bubble,
making it possible to explore the issue of boundary conditions. Keeping the scale factor
as the only dynamical variable, we can show that the amplitude of bubble nucleation in
5d perfectly matches Vilenkin’s tunneling amplitude in 4d quantum cosmology.

3.5 Matching the amplitudes

We will now argue that the choice of boundary conditions for the wave function in Quan-
tum Cosmology depends on the UV completion of General Relativity. Using the Dark
Bubble model, we will see that the corresponding boundary conditions are unambigu-
ously fixed by demanding consistency with the known physics of bubble nucleation and
this selects Vilenkin’s tunneling amplitude from a 4d point of view.
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Let us briefly describe the quantum nucleation of such a bubble in five dimensions.
The 5d action is given by

S =
1

κ5

∫
d5x
√

|g|(R(5) − 2Λ)− σ

∫
d4ζ
√

|η|+ 1

κ5

∮
d4x
√

|h|K. (3.5.1)

The second term describes the brane-shell with tension σ and induced metric η with
brane-coordinates ζ. The 5d metric is given by

ds2± = −A±(r)dt
2
± +

dr2

A±(r)
+ r2dΩ2

3, (3.5.2)

where A±(r) = 1 − Λ±
6
r2. The shell glues the two spacetimes together at a radial

coordinate r = a(τ) and its metric coincides with (3.4.3). From (3.5.2) and (3.4.3) we
can then deduce that

ṫ± =
dt±
dτ

=
β±
A±

, β± = (A±N
2 + ȧ2)1/2 (3.5.3)

The on-shell action receives three contributions: the bulk piece, the shell contribution
and the boundary term. Summing all the terms (and neglecting those which are not
relevant for the dynamics of the shell), we find the mini-superspace Lagrangian to be

L =
6π2

κ5

[
−a2ȧ tanh−1 ȧ

β
+ a2β

]−
+

− 2π2a3σN. (3.5.4)

Expanding to quadratic order in ȧ and using (2.2.1), Eq.(3.4.2) can be recovered. Let
us therefore study nucleation, where R will be the radius of the nucleated bubble.

We now argue that the physics of bubble nucleation in 5D then fixes the amplitude to
be of the tunneling type. The goal is simple: verify that Vilenkin’s tunneling amplitude
exactly matches the known Coleman-de Luccia amplitudes, as expected from the physical
picture of tunneling. There are a few different ways to calculate the nucleation probability
P = e−B that all yield the same result. Using the approach of Brown and Teitelboim [39],
for instance, we recover Vilenkin’s choice. The Euclidean instanton is then obtained by
integrating (3.5.1) over a O(5) symmetric ball of radius R, with a 4D sphere as boundary,

and corresponds to a bounce. Evaluating expression (6.4) in [39] with R
(5)
± = −20k2±,

which follows from the equations of motion, we find

B = σA4 +
1

κ5

[
4k2V5(R, k)−

4

R
βA4

]−
+

(3.5.5)

with A4 =
8π2R4

3
, and dV

dR
= A4

β
. Extremizing using dB

dR
= 0 implies the junction condition

and fixes R to the critical value. Expanding in large k, we then have

V5 =
A4

4k

(
1− 1

k2R2

)
. (3.5.6)
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Inserting this, and replacing κ5 by κ4 using (2.2.1), we recover Vilenkin’s choice

B =
24π2

κ4

∫ R

0

da

√
a2 − a4

R2
=

8π2R2

κ4
. (3.5.7)

Going back to the full expression, the canonical momentum is given by

cosh
( κ5p

6π2a2

)
=

β−β+ − ȧ2

N2
√
A−A+

, (3.5.8)

and the Hamiltonian plays the role of a constraint imposing the junction condition:

H = 2π2Na3
(
σ − 3(β− − β+)

aκ5

)
= 0. (3.5.9)

Expressed in terms of the canonical momentum the Hamiltonian constraint becomes

H = −6π2

κ5

(
A− + A+ − 2

√
A−A+ cosh(

κ5p

6π2a2
)
)1/2

+ 2π2Na3σ = 0 (3.5.10)

We can quantize the system to obtain the WdW-equation by making the replacement
p → − i

a3/2
d
da
a3/2. For general p the equation is of infinite order in p and turns into a

difference equation. We focus on the limit of small p, where the Hamiltonian becomes
quadratic in p. This is the limit that is relevant for the case of a small cosmological
constant compared to fundamental scales. In this limit, we recover (3.4.4)(

− 1

24π2

1

a3/2
d2

da2
(a3/2ψ) + 6π2V (a)

)
ψ = 0, (3.5.11)

with a different normalization of the wave function. Here, in fact, the wave function
ψ is supported in four spatial dimensions, and is related to the wave function in mini-
superspace through Ψ = a3/2ψ. Note that

∫
a3|ψ|2 =

∫
|Ψ|2 is used for normalization.

Discussion

We conclude that Vilenkin’s amplitude in quantum cosmology can be understood as the
nucleation probability of a bubble of true vacuum in an unstable AdS5 space. Our under-
standing of the physics of Coleman-de Luccia bubbles translates to an understanding of
more involved issues in quantum cosmology such as the choice of boundary conditions,
which affect the amplitudes. In this model there is no Big-Bang singularity to worry
about and all physics at all length scales that are involved in the process are essentially
understood. Indeed, the Big Bang singularity is not present in 5d and would correspond
to the zero size of the bubble, which is not a physical solution to worry about. The un-
determined coefficients in the mini-superspace wave function are then completely fixed,
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since it has to be consistent with the standard story of thin wall Coleman-de Luccia
tunneling (or the particular Brown-Teitelboim incarnation in this case). From the point
of view of a 4d observer, the nucleation of the closed bubble universe is a creation out of
nothing. From a 5d point of view, however, one still needs to explain the origin of the
AdS space time.

It is useful to compare the above results with the model of Karch-Randall [37]. There,
a closed dS universe is represented by a bubble with its inside identified with itself across
its boundary. Such a bubble has no outside and cannot nucleate into a pre-existing
space time. Interestingly, [50] concluded that the quantum creation of such a universe
would be described by the Hartle-Hawking amplitude. This is in contrast with the
nucleating bubbles we have considered, which tunnel into existence as a false vacuum
decays and thus need to be described by Vilenkin’s tunneling amplitude. The Swampland
conjectures and the difficulty to construct stable de Sitter vacua suggest that it is the
latter possibility that has a chance of being realized in String Theory [51].



Chapter 4

Embedding Electromagnetism in the
Bubble

One of the most important tasks we have to achieve in order to connect the Dark Bubble
model with phenomenology is trying to embed the Standard Model of Particle Physics
into our braneworld construction. A first step in realizing this consists in describing how
the electromagnetic gauge field ”lives” on the brane and induces a backreaction in the
bulk, which in turn will affect the motion of the brane. This has been realized in [18],
exploiting the action of the B field. In fact, the B field mediates the interplay between
the brane and the bulk: worldvolume fields backreact on the ambient universe in which
the bubble expands, which in turn affects the energy-momentum distribution and the
effective gravity induced on the brane. Let us briefly summarize this construction and
then move on to a more general setup.

4.1 DBI action with B field

Let us start from the Dirac-Born-Infeld action for the D3 brane

SD3 = −T3
∫
d4x
√

− det(g4 + τF), (4.1.1)

where α′ ≡ l2s is the string tension, T3 =
1

(2π)3α′2gs
and τ = 2πα′. Expanding for α′ ≪ 1,

we find

SDBI = −T3
∫
d4x
√
− det(g4)

(
1 +

τ 2

4
FµνFµν +O(F2)

)
= −

∫
d4x
√

− det(g4)

(
T3 + T3

τ 2

4
FµνFµν +O(F2)

)
= −

∫
d4x
√

− det(g4)

(
T3 +

1

4g2
FµνFµν +O(F2)

)
, (4.1.2)
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where g2 ≡ 2πgs is the gauge coupling. The second piece in this action corresponds to
the action of electromagnetism in 4d.

Now, recall that the gauge field on the brane can be written as τF = τF +B. Notice
that the conventions are such that τF and B are dimensionless. Obviously, B sources
a 3-form field H = dB. By varying the DBI action with respect to B, we get a source
term for H given simply by F . Since we are working with a shell of co-dimension one,
this means there is a jump in H across the shell. We assume that H vanishes inside
the shell and that the non-vanishing value outside is purely due to the presence of the
electromagnetic field on the brane.

The bulk equations we need to solve are obtained from the following bulk action,
with the DBI contribution included

S5 =
1

2κ5

∫
d5x
√

− det(g5)

(
R− 1

12gs
H2

)
− T3

∫
d5xδ(r − a[η])

√
− det(g4 + τF).

(4.1.3)
We are working in the 5d Einstein frame, where the dilaton coupling of the B field is
fixed to e−ϕ = g−1

s and, since the bulk metric is of the form ds25 = k2r2(−dt2 + dx2 +
dy2 + dz2) + dr2

k2r2
, the following relation holds

√
−g5 =

1

kr

√
−g4, (4.1.4)

where we are using the notation
√

− det(gd) ≡
√
−gd. We also assume that internal

moduli and the dilaton are stabilized.
If we expand for small α′, as we did in (4.1), we can write

S5 =
1

2κ5

∫
d5x

√
−g5

(
R− 1

12gs
H2

)
− T3

∫
d5xδ(r − a[η])

√
− det(g4 + τF)

=

∫
d5x

√
−g4

[
1

2κ5kr

(
R− 1

12gs
H2

)
−
(
T3 + T3

τ 2

4
FµνFµν

)
δ(r − a[η])

]
. (4.1.5)

Varying the action with respect to B we get

δBS5 =

∫
d5x

√
−g4

[
1

2κ5kr

(
− 1

12gs
δB(H

2)

)
− T3τ

2

4
δB(F2)δ(r − a[η])

]
. (4.1.6)

Noticing that δB(F2) = 2FδBBµν and δB(H
2) ≡ δB(HrµνH

rµν) = 2HrµνδBHrµν and
integrating by parts, we find

∂rH
rµν =

2κ5kr

π2α′ Fµνδ(r − a[η]). (4.1.7)

Integrating across the brane at r = a(η), we find

∆Hrµν
∣∣
r=a

= Hrµν
∣∣
r=a

=
2κ5ka

π2α′ Fµν

∣∣
r=a

, (4.1.8)
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which means that the electromagnetic waves on the brane source the H-field in the bulk
above the brane.

Let us now understand how to relate the 4d and the 5d field strengths to each other.
In particular, let us focus on electromagnetic waves propagating along z, with the electric
field polarized along y. Given a wave propagating in the z direction, and E,B respectively
polarized along x, y directions, we have

F tx =
E(t, z)
k2a4

, Fxz =
E(t, z)
k2a4

, (4.1.9)

where E is a dimensional function which determines the amplitude of the wave. We can
therefore identify the behavior of the H field strength on the brane, assuming there is no
H-field turned on inside the bubble. Imposing this boundary condition to (4.1.8) gives
us

∆Hrtx
∣∣
r=a

≡ h1(t, a, z) =
2κ5ka

π2α′ Ftx =
2κ5ka

π2α′k

E(t, z)
a3

,

∆Hrtx
∣∣
r=a

≡ h2(t, a, z) =
2κ5ka

π2α′ Fxz =
2κ5ka

π2α′k

E(t, z)
a3

. (4.1.10)

The H-field must solve the equations of motion, as well as the Bianchi identities away
from the brane:

∗d ∗H = 0 ⇒ ∇αH
αβγ = 0, (4.1.11)

∗dH = 0 ⇒ ϵαµνλκ ∂αH
µνλ = 0,

where * is the 5d Hodge star. However, it is not enough to turn on these components
of the bulk field: any non-trivial time dependence also requires the presence of H txz ≡
h3(t, r, z).

For the AdS background, in the limit of flat 4d spacetime, the equations of motion
become (

∂r +
3

r

)
h1 + ∂zh3 = 0,(

∂r +
3

r

)
h1 + ∂zh3 = 0, (4.1.12)

∂zh2 − ∂th1 = 0,

while the Bianchi identity reads

r2(∂th2 − ∂zh1) + k4∂r(r
6h3) = 0. (4.1.13)
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Let us choose a general ansatz for theH field strength, accounting for the aforementioned
H txz component that represents such a flux:

h1 = f1(t, z, x)k
−2r−3,

h2 = f2(t, z, x)k
−2r−3,

h3 = f3(t, z, x)k
−3r−4, (4.1.14)

with x = 2k3tr2 and fi(t, z, x) ≡ αi(t, x) sin(kn(t + z)) + βi(t, x) cos(kn(t + z)), where
αi and βi are dimensionless functions. With this ansatz, we find the solution to the
equations of motion and the Bianchi identity to order (knt)−1 but all orders in x, given
by

h1(t, z, x) =
α

k2r3
sin(kn(t+ z)) +

2β

k2r3

[
sin
(x
2
+ kn(t+ z)

)
− sin(kn(t+ z))

]
(4.1.15)

h2(t, z, x) = h1(t, z, x)−
βx

k2ntr3
cos
(x
2

)
sin(kn(t+ z)), (4.1.16)

h3(t, z, x) =
2βx

nk3r4
sin
(x
2
+ kn(t+ z)

)
, (4.1.17)

where α and β are now constants.

4.1.1 Energy-momentum tensor in the bulk

Varying the bulk part of the action (4.1.5) with respect to gµν , we obtain the energy-
momentum tensor for the electromagnetic fields

Tµν =
1

κ5

(
−1

2
gµνH

2 + 3HµαβH
αβ
ν

)
. (4.1.18)

So far, our computations have been for a single electromagnetic wave travelling in the
z direction, electric and magnetic fields accordingly polarized along x, y directions. A
uniform background of electomagnetic waves can be realized by accounting for all ingoing
and outgoing waves along some given distribution. Moreover, we should average over
waves travelling isotropically along x, y, z, with any possible polarization. The isotropic
energy-momentum tensor thus reads

⟨T µ
ν ⟩iso = ⟨T µ

ν ⟩rad + ⟨T µ
ν ⟩flux, (4.1.19)

where the radiation and flux contributions to the 5d energy-momentum tensor are given
by

⟨T µ
ν ⟩rad =

3α2

κ5k2r4


−1 0 0 0 0
0 1

3
0 0 0

0 0 1
3

0 0
0 0 0 1

3
0

0 0 0 0 0

 , ⟨T µ
ν ⟩flux =

3α2

κ5k2r4t


0 0 0 0 −β

αk4r3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
βr
α

0 0 0 0

 .

(4.1.20)
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Off-diagonal terms in the flux correspond to the energy flow in the radial direction,
which corresponds to a non-vanishing T t

r component. This energy flow is analogous to
the one along the radial direction in Eq. (2.5.12). Covariant conservation of this energy-
momentum tensor is guaranteed, as each component hi of the bulk field strength H solve
both their equation of motion (4.1.12) and the Bianchi identity (4.1.13).

Let us now calculate the backreaction and move on to matching parameters with the
4d Dark Bubble cosmology.

4.1.2 Backreaction

If there were no net flux along the tr direction, the metric would be very similar to
an AdS-Schwarzschild one, where f(r) = 1 + k2r2 − 1

r2
should be replaced by f̂(r) =

1 + k2r2 − log r
r2

. In 4d, this would correspond to a logarithmic increase of energy with
time on the brane, compared to the expected 1/a4 decay as the universe expands. This
is because the expanding bubble scoops up matter from bulk that is added to the brane.
To avoid this, we need the bulk matter to expand up along the throat of AdS, just as it
does in the case of gravitational waves.

The energy momentum tensor in the bulk which does the job has log r
r2

−→ log tr
r2

. Since
kt = − 1

Hr
on the bubble1, this gives the correct behavior in 4d. To be precise, the 5d

metric, in the flat 4d limit, is given by

ds2backreacted ≃ −f1(t, r)dt2 + f2(t, r)
−1dr2 + r2dΩ2

3, (4.1.21)

where

fi(t, r) ≡ k2r2 − ϵ2(log(−ξk2tr) + qi)

k2r2
, (4.1.22)

with qi undetermined numbers. This line invariant yields an energy momentum tensor
of the form

⟨T µ
ν ⟩rad =

3ϵ2

2κ5k2r4


−1 0 0 0 −1

k4r3t

0 1
3

0 0 0
0 0 1

3
0 0

0 0 0 1
3

0
r
t

0 0 0 0

 , (4.1.23)

provided q1 − q2 = 1
4
. Note that ξ is a free parameter that does not affect the energy

momentum tensor. Tuning it corresponds to changing a piece of the metric that is the
vacuum AdS-Schwarzschild background.

Let us now compare both the energy momentum tensor (4.1.19) and (4.1.23) to relate
the parameters α, β, ϵ. It is easy to see that

α = β =
ϵ√
2
. (4.1.24)

1On the brane η = kt = − 1
Hr .
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We can also express these coefficients in terms of the amplitude of the 4d electromagnetic
wave: comparing to Eq. (4.1.10), we can see that

α =
2κ5k

α′π2
E . (4.1.25)

Finally, the covariant conservation of the energy momentum tensor (4.1.23) is still re-
spected, as it coincides with that derived for the H field in (4.1.19) and it obeys the
Einstein equation.

4.1.3 Induced 4d energy momentum tensor on the bubble

Let us now study the backreaction of the bulk geometry, due to the presence of H field
strength, changes the motion the motion of the bubble wall, and hence the induced
energy momentum tensor.

We can equivalently arrive to the same conclusion by computing Israel’s second junc-
tion condition (2.2.25) or the Gauss-Codazzi equation. There will be two main contri-
butions to the 4d energy momentum tensor:

• A positive contribution coming from the extrinsic curvature,

• A piece that comes from the gauge field on the brane, which adds to the tension
and thus gives a negative contribution.

Israel’s second junction condition (2.2.25) yields an induced Friedmann equation of the
form (

ȧ

a

)2

δab =
Λ4

3
δab + ϵ2

κ4
6κ5k3a4

(3δa0δ
0
b − δai δ

i
b)

(
q2 + log

[
−ξ k+

H

])
(4.1.26)

+
κ4
3

(
FacFbc −

1

4
δabFijF ij

)
.

The left hand side is the usual geometrical evolution of the scale factor for late time
cosmologies (there is no contribution of the curvature term) in Friedmann equations,
while the right hand side corresponds to the energy momentum tensor associated with
the induced cosmology.

For indices a = b = 0, we obtain the first Friedmann equation, and the gauge field on
the brane (in the second line), gives a negative contribution to the energy density, just
like the brane tension does. This needs to be corrected to a positive contribution by the
first term due to the extrinsic curvature.
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Restricting the right hand side to be that of 4d electromagnetism in an expanding
cosmology2 and choosing the free parameter ξ so that −ξ k

H
= 1. This implies

ϵ2
q2

2a4κ5k3+
(3δa0δ

0
b − δai δ

i
b) +

(
FacFbc −

1

4
δabFijF ij

)
︸ ︷︷ ︸

⟨Ta
b ⟩iso

≡ −⟨T a
b ⟩iso. (4.1.27)

Using the relations (4.1.24), (4.1.25) and the fact that3

l24 ∼
N

L
l35, (4.1.28)

we can fix q2 to be

q2 =
k2+M

2
P

27TD3gs
Nπ, (4.1.29)

where N is the number of D3-branes in the 10d background.
Summarizing what we found, for the electromagnetic field the backreaction happens

through the H field that sources the term q2 in the metric. Electromagnetic radiation is
therefore accompanied by a non-trivial H field, with non-vanishing energy density in the
bulk. This yields a different bulk geometry.

Let us now consider electrostatic field configurations.

4.1.4 Un pliàge electrique

Consider a constant electric field E , pointing in the z-direction4. Such constant electric
field cannot be supported over an extended region. In practice, it could be realized as a
piece of an electric field far away from a localized source. In this case, the solutions of
the equations (4.1.12) are very simple, yielding

Hrtx
∣∣
r=a

≡ h1 =
γ

k2r3
, Hrxz

∣∣
r=a

≡ h2 = 0, H txz
∣∣
r=a

≡ h3 = 0, (4.1.30)

where γ ≈ E is a dimensionless constant. This sources a 5d energy-momentum tensor

⟨T µ
ν ⟩ ≃

γ2

κ5k2


− 1

r4
0 0 0 0

0 1
r4

0 0 0
0 0 1

r4
0 0

0 0 0 1
r4

0
0 0 0 0 − 1

r4

 , (4.1.31)

2We exclude for simplicity dark radiation contributions generated by adding a 5d black hole in the
background.

3See Section 2.8
4For simplicity, we ignore the expansion of the universe.
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which leads to the following backreaction in the bulk

ds2backreacted ≃ A(r)(−dt2 + dz2) +
1

A(r)2
dr2 +B(r)(dx2 + dy2), (4.1.32)

with

A(r) = (kr)2 − 2

3
γ2

log(kζr)

(kr)2
, (4.1.33)

B(r) = (kr)2 + γ2
log(kζr)

(kr)2
, (4.1.34)

where ζ is a constant. The next step consists in finding the embedding of the brane that
gives the correct induced metric in 4d corresponding to a constant electric field. To do
this, we must construct the constant electric field as a local approximation in a setup
containing a physical source.

Let us use the 4d metric of a point source, where we are far enough from the source
that the electric field can be considered constant in a big enough region5. The induced
4d metric we need in our embedded brane is thus

ds2 =−
(
1 +

Q2

ρ2

)
dt2 +

(
1 +

Q2

ρ2

)−1

dρ2 + ρ2dΩ2 (4.1.35)

−→−
(
1 +

Q2

ρ2

)
dt2 +

(
1 +

Q2

ρ2

)
dρ̃2 + ρ2dΩ2

−→−
(
1 +

Q2

z2

)
dt2 +

(
1 +

Q2

z2

)
dz̃2 + dx2 + dy2

∼
(
1 +

Q2

z̃2

)
dt2 +

(
1 +

Q2

z̃2

)
dz̃2 + dx2 + dy2.

The first arrow represents a coordinate transformation in the ρ direction, introducing
the new coordinate ρ, through dρ̃

dρ
= (1 + Q2

ρ2
)−1. For convenience, we express the result

using ρ(ρ̃). The second arrow means that we zoom in on x = ρϕ and y = ρθ small, with
the angles ϕ and θ small. We can then express the metric using Cartesian coordinates
where we write z̃ = ρ̃. Similarly, it is natural to write z = ρ. Finally, since Q2

z2
is small,

we can put z ∼ z̃. Now let us see if we can match this to the induced metric on a brane
embedded into Eq. (4.1.4).

Since the electric field giving rise to the metric in (4.1.4) is assumed to be constant
(for simplicity), we can only hope to match the induced metric in (4.1.36) over a short
interval. We choose to study the embedding close to z̃ = z̃1, where z̃1 is far away from

5We will not take into account any gravitational forces, so 1 ≫ Q2

r2 ≫ M
r . This is the relevant

situation for any realistic experiment.
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the source such that Q/z̃ is small. This means that r(z̃) = r1 + α(z̃ − z̃1) is almost
constant with α small. We set the asymptotic value of r at infinity to r0. Noting that
the dr2 piece of the bulk metric only contributes at quadratic order in α to the induced
metric, we see that the induced metric can be put in the form (4.1.36) provided that

k2r2 − 2γ2 log(kζr)

3k2r2
= k2r20

(
1 +

Q2

z2

)
, (4.1.36)

k2r2 +
γ2 log(kζr)

3k2r2
= k2r20. (4.1.37)

The first equation comes from matching dt2 and dz2, while the second comes from dx2 and
dy2. Here we have already made a conformal rescaling of x, y, z to match the equations
at 0-th order. This gives

r2

r20
= 1 +

Q2

3z2
, (4.1.38)

γ2 log(kζr)

3k2r2
= −k

2r20Q
2

3z2
. (4.1.39)

Due to our approximation for the bulk metric, using a constant electric field, these
equations are only valid close to a given point such as z = z1. The first of the two
equations give us r, for a given z, while the second equation determines ζ (changing z1
leads to a different ζ as a consequence of the approximation). We immediately see from
the first equation that r grows in the direction towards the charge sourcing the field.

The interpretation is simple. In order to capture the blue shift of the induced metric
as we approach the source, the brane must bend upwards to make use of the bulk blue
shift due to AdS. In this way the induced metric comes out right. The brane bends
upwards in the direction of increasing electric field but now it is caused by the presence
of the bulk B field. This gives rise to a backreaction in the bulk that makes the brane
bend upwards.

4.2 New fields in the game

If we also include to the brane action the contribution of the Chern-Simons term to the
brane action, we have to deal with new potentials and thus new fields in the bulk. The
full action for a Dp-brane is

SDp = −Tp
∫
Wp+1

dp+1x
√

− det(gµν + τFµν) + µp

∫
Wp+1

(Σncn) ∧

√
Â(TW )

Â(NW )
∧ e(τF),

(4.2.1)
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where Wp+1 is the worldvolume and the brane coupling µp isrelated to the charge of the
brane

µp =
(α′)−(p+1)/2

(2π)p
. (4.2.2)

The last term in the second piece of the action can be expanded as follows

eτF = 1 + τF +
τ 2

2
F ∧ F + .... (4.2.3)

In our case, we can write

SD3 = −T3
∫
W4

d4x
√

− det(gµν + τFµν) + µ3

∫
W3

(C4 + τF ∧ C2), (4.2.4)

where C2 and C4 are respectively a 2-form and a 4-form potential which correspond to
a 3-form field F(3) and a 5-form field F(5) in the bulk. The total action which contains
also the contribution from the bulk now has additional contributions

S5 =
1

2κ5

∫
d5x

√
−g5

(
R− 1

12gs
H2 − 1

12gs
F 2
(3) −

1

480gs
F 2
(5)

)
+ SD3 . (4.2.5)

Let us now study case by case what happens if we play with these potentials: first, we
will consider the case where B = 0 and C2 ̸= 0, and then what happens when both B
and C2 are present in the game.

• CASE 1: B = 0 and C2 ̸= 0

In this case τF = τF . First of all, the exterior product between F and C2 can be
expanded as

F ∧ C2 =
1

4
FµνCρσdx

µ ∧ dxν ∧ dxρ ∧ dxσ =
1

4
FµνCρσϵ

µνρσ
√
−g4d4x. (4.2.6)

Therefore, the variation of the action is

δS5 =
1

2κ5

∫
d5x

√
−g5

(
− 1

12gs
δ(F 2

(3))

)
+ µ3τ

∫
d4x

√
−g4δ

(
1

4
FµνCρσϵ

µνρσ

)
.

(4.2.7)
Recalling the relation in Eq. (4.1.4) and using d5x = d4xδ(r − a[η]), we can write∫

d5x
√
−g4

(
− 1

24gsκ5kr
δ(FrρσF

rρσ) +
µ3τ

4
δ(FµνCρσϵ

µνρσ)δ(r − a[η])

)
. (4.2.8)

If we proceed in the same way as in Eq. (4.1.6), we find that µ3 = −T3 and

∂rF
rρσ =

κ5kr

4π2α′ ϵ
µνρσFρσδ(r − a[η]). (4.2.9)
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Therefore, being ϵµνρσFρσ equal to the dual field-strength for the electromagnetic
tensor, F̃ µν ,

∆F rρσ
∣∣
r=a

= F rρσ
∣∣
r=a

=
κ5ka

4π2α′ F̃
µν
∣∣
r=a

. (4.2.10)

This means that the F(3) field in the bulk is sourced by the dual electromagnetic
field on the brane.

• CASE 2: B ̸= 0 and C2 ̸= 0

In this case, τF = τF +B, so, expanding the exterior product between F and C2

as

τF ∧ C2 = (τF +B) ∧ C2 =
1

4
(τFµν +Bµν)Cρσdx

µ ∧ dxν ∧ dxρ ∧ dxσ, (4.2.11)

we see there is a new coupling between B and C2. The equations of motion for B
imply

∂rH
rµν =

κ5kr

8π3α′2 [ϵ
µνρσCρσ + 2τFµν ] δ(r − a[η]),

=
κ5kr

8π3α′2

[
C̃µν + 2τFµν

]
δ(r − a[η]). (4.2.12)

while for C2 we obtain

∂rF
rρσ =

κ5kr

4π2α′Fµνϵ
µνρσδ(r − a[η]),

=
κ5kr

4π2α′ F̃
ρσδ(r − a[η]) (4.2.13)

Now, assuming C̃
∣∣
brane

vanishes on the brane, we recover this nice pair of equations

∆Hrµν =
2κ5ka

2π2α′ F
µν , (4.2.14)

∆F rρσ =
κ5ka

4π2α′ F̃
ρσ. (4.2.15)

All to all, if B and C vanish on the brane, the big picture is

∆H ∝ F, ∆F (3) ∝ F̃ , (4.2.16)

which means that H in the bulk is sourced by the electromagnetic field-strength on the
brane, while F (3) in the bulk is sourced by the dual electromagnetic tensor.
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Figure 4.1: Representation of the mechanism induced by the electromagnetic field. Elec-
tromagnetic waves on the brane source both the B and the C2-field in the bulk.

4.2.1 Same stress, same energy

To verify the consistency of the above result, we need to compute the stress-energy tensor
for the case of the dual field-strength. All the derivation of the backreacted metric and
of the backreacted stress-energy tensor we performed in Section 4.1.2 and 4.1.3 is still
perfectly valid if Tµν is invariant. In particular, we need the term(

FacFbc −
1

4
δabFijF ij

)
(4.2.17)

to be invariant, in order for the mechanism to be truly valid both for the B field and the
C2 field.

First, let us prove the invariance of the term F̃αβF̃
αβ ⊂ Tµν . Indeed,

F̃αβF̃
αβ =

(
1

2
ϵαβµνF

µν

)(
1

2
ϵαβρσFρσ

)
, (4.2.18)

=
1

4
4F µνδρµδ

σ
νFρσ,

= FµνF
µν ,

where in the second passage we have used the fact that ϵρσµνϵ
ρσαβ = 2!δν[µδ

β
ν]. We only

have to check that the term F̃µαF̃
α
ν ⊂ Tµν is equivalent to FµαF

α
ν . Indeed, using the



Embedding Electromagnetism in the Bubble 76

same steps as before,

F̃µαF̃
α
ν =

(
1

2
ϵµαρσF

ρσ

)(
gνµF̃

µα
)
, (4.2.19)

=
1

4
ϵµαρσϵ

µανλF ρσgνµFνλ,

= gρµFρσF
ρσ,

= FρσF
σ
µ . (4.2.20)

We have therefore proven the full validity of our results.
The appearance of the dual electromagnetic tensor in (4.2.15) is a clear indication

that we can have configurations of constant magnetic field. We can therefore check that
the exact same considerations of Section 4.1.4 apply, allowing us to realize a configuration
of constant magnetic field on the braneworld. In this case, the brane bends upwards in
the direction of increasing magnetic field, but now it is caused by the presence of the
bulk C2-field. This gives rise to a backreaction in the bulk that makes the brane bend
upwards.



Chapter 5

Construction from 0’B String
Theory

In Chapter 2, we have vastly discussed the Dark Bubble model and seen how to realize it
and embed it into Type IIB String Theory. However, recalling the non-supersymmetric
theories of Section 1.4, we can try to reproduce a braneworld model which is very similar
to the DB. The most natural theory which allows us to do so is Type 0’B, which contains
charged D3-branes whose near-horizon geometry in the probe regime is close to AdS5×S5.
We will see, however, that this new setup entails a drastic difference in the behavior of
the cosmological constant and eventually reveals to be incompatible with experimental
data. Anyway, it is a very neat construction, and we shall explore it with great detail.

5.1 D3-branes in the type 0′B model

For D3-branes in the type 0′B model, the relevant near-horizon geometry was studied in
[52–54]. More specifically, the model of [52, 53] involves an O’3-plane, but its contribution
is sub-leading for large fluxes. In [53] the authors found non-homogeneous deviations
from AdS5×RP5 which are suppressed, but not uniformly so, in the large-flux limit1. In
detail, in coordinates in which the (string-frame) metric takes the form2 [53]

ds2 = R2(u)
du2

u2
+
α′2 u2

R2(u)
dx21,3 + R̃2(u) dΩ2

5 , (5.1.1)

1Similar results in tachyonic type 0 strings were obtained in [55].
2The local expression in Eq. (5.1.1) does not account for the global distinction between S5 and RP5.

77
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the would-be AdS5 and RP5 curvature radii R(u) , R̃(u) and the dilaton ϕ(u) acquire a
dependence on the energy scale u that, in the large-flux limit, behaves as

R2(u)

R2
∞

∼ 1− 3

16
gs α

′T log

(
u

u0

)
, (5.1.2)

R̃2(u)

R2
∞

∼ 1− 3

16 4
√
8
g2s N α′T log

(
u

u0

)
, (5.1.3)

1

N
e−ϕ ∼ 1

gsN
+

3

8 4
√
8
gs α

′T log

(
u

u0

)
, (5.1.4)

where u0 is a reference scale, R2
∞ =

√
4πgsNα

′ is the supersymmetric value of the radii
and N ≫ 1 ought to be interpreted as the number of D3-branes sourcing the geometry.
In the large-N limit the ’t Hooft coupling λ = 4π gsN in the absence of the tadpole T
ought to be fixed, but the validity of the EFT description also requires λ≫ 1 [56], while
on account of the second of Eq. (5.1.2) g2s N ≪ 1.

Let us therefore consider probe-regime interactions between D3-branes, whose cor-
responding near-horizon throat deviates from AdS × S. Let us start by the solution in
Eq.s (5.1.1) and (5.1.2), embedding the probe world-volume parallel to the xµ according
to j : xµ = ζµ,u = U(ζ), θi = θi0, where the coordinate u is again an energy scale.

Recall the low-energy effective action of Eq. (1.4.17) for D3-branes in the 0’B model

S =
1

2κ210

∫
d10x

√
−g
(
R− 1

2
(∂ϕ)2 − Te

3
2
ϕ − 1

120
F 2
(5)

)
. (5.1.5)

The five-form R-R field strength F5 is self-dual, closed3, and reads

F5 = (1 + ⋆) f5N volS5 (5.1.6)

= f5N volS5 +
f5N

R̃(u)5

(
α′ u

R(u)

)3

d(α′u) ∧ d4x (5.1.7)

with volS5 the volume form of the unit 5-sphere (neglecting the global distinction with
the projective plane, which can be easily reinstated). The flux quantization condition

1

2κ210

∫
S5

F5 = µ3N , (5.1.8)

where µ3 is the charge of a single D3-brane, then fixes

f5 =
2κ210 µ3

Ω5

, (5.1.9)

3Since the orientifold projection removes the Kalb-Ramond form, no additional terms appear in the
Bianchi identity.
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and the relevant contribution to the potential C4, to be pulled back on the probe world-
volume, takes the form

C4 = c4(u) d
4x+ . . . (5.1.10)

where dC4 = F5 implies
c′4(u)

α′ =
f5N

R̃(u)5

(
α′ u

R(u)

)3

. (5.1.11)

Collecting all the ingredients, and using the string-frame worldvolume action for
N3 ≪ N static D3-branes parallel to the sources, the probe potential evaluates to

V D3
probe(U) = N3T3

(
α′ U

R(U)

)4

e−ϕ(U) −N3µ3 c4(U) , (5.1.12)

where once again T3 ensures the tension of a single D3-brane. The dominant contribution
in the EFT limit gs , g

2
s N ≪ 1, gsN ≫ 1 is

V D3
probe(U)

N3U4
∼ 16π α′2 T3 − f5 µ3

64 π2 g2s N
+

15 f5 µ3 α
′T

8192 4
√
8 π2

(5.1.13)

+
3 (64π α′2T3 − 5 f5 µ3)α

′T

2048 4
√
8π2

log

(
U

u0

)
.

As expected, substituting the supersymmetric values [54]

2κ210 = (2π)7 α′4 , T3 = µ3 =
1

(2π)3 α′2 (5.1.14)

for N3 ≪ N probes, and using Eq. (5.1.9), the leading term vanishes, on account of the
BPS property, while the remaining sub-leading terms reflect supersymmetry breaking
and their U -dependence simplifies to

V D3
sub-leading(U) ∝ U4

[
5− 4 log

(
U

u0

)]
. (5.1.15)

This potential is repulsive. As depicted in fig. (5.1), the potential in Eq. (5.1.15)

features a maximum at U = e
5
4u0, and the height of the potential barrier scales according

to u40. Therefore, even if the probe stack were initially located in the classically attractive
region, it would eventually tunnel to the repulsive region.

In order to compute all numerical factors, we need the NLO effective DBI-CS-WZ
Lagrangian (density), which takes the form

LNLO =
N3NU

4

2π2λ2

[
−
(
1 +

3λ2α′T

128 4
√
8π2N

log
U

u0

)√
1− λU̇2

U4
(5.1.16)

+ 1− 15λ2α′T

2048 4
√
8π2N

(
1− 4 log

U

u0

)]
, (5.1.17)

where once again λ ≡ 4πgsN and, in the 0’B model, α′T = 8/π2.
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Figure 5.1: Normalized probe potential in Eq. (5.1.13) in units of the reference scale u0.

5.2 Braneworld model

The worldvolume action can also be used to obtain Friedmann equations for the braneworld
model, casting the induced metric on the brane in a cosmological guise. For the Poincaré-
like patch, the appropriate form is ds2brane = −dτ 2 + a(τ)2dx2 with flat spacelike slices.

From the equation of motion of the NLO brane Lagrangian one can recover the
Friedmann equation with the precise numerical factors (to NLO). The pullback of the
10d metric gives a 4d cosmology with scale factor

a(t) =
α′U(t)

R(U(t))
, (5.2.1)

while the cosmological time satisfies(
dτ

dt

)2

= − R(U)2

U2
U̇2 +

α′2U2

R(U)2
. (5.2.2)

The Lagrangian yields the on-shell conserved Hamiltonian

H ∼ N3NU
4

2π2λ2

 1√
1− λU̇2

U4

− 1 +
3λ2 α′T

2048 4
√
8π2N

(
5− 4 log

U

u0

) , (5.2.3)
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once again re-expanded to NLO. Defining now

ϵ ≡ 3λ2 α′T

256 4
√
8π2N

=
3α′T

16 4
√
8
g2sN

0’B
=

3

2
7
4π2

g2sN ≈ 0.09 g2sN , (5.2.4)

one finds

H ∼ N3NU
4

2π2λ2

 1√
1− λU̇2

U4

− 1 +
ϵ

2

(
5

4
− log

U

u0

) . (5.2.5)

By conservation, at late times the term in square brackets vanishes, since the prefactor
U → ∞ as the brane expands (in more standard coordinates, Z → 0+). Thus, to leading
order,

a ∼ α′U

R∞
, H2 ∼ λU̇2

R2
∞U

4
∼ ϵR−2

∞ log

(
a

a∗

)
, (5.2.6)

including the numerical factor in ϵ and absorbing the 5/4 in the reference scale factor
a∗. All in all, to NLO

H2 = ϵM2 log

(
a

a∗

)
, (5.2.7)

whereM ≡ R−1
∞ denotes the EFT cutoff (if there is an EFT description on the braneworld)

and ϵ ≡ O(1)g2sN ≪ 1 with a calculable positive order-one prefactor. The arbitrary ref-
erence scale a∗ disappears by fixing the initial time so that a(0) = a0 is the scale factor
today, and similarly H(0) = H0. The resulting (today-accelerating branch of the) solu-
tion takes the form

a(τ) = a0 exp

(
H0 τ +

ϵM2τ 2

4

)
, (5.2.8)

whereas the branch that decelerates at present time would have a minus sign in front of
the linear term in τ . The link between the Hubble scale H2

0 ∝ Λ and the EFT scaleM is

then captured by the slow-roll parameter ϵV = ϵH ≡ Ḣ
H2 , where ηH = 0 since H is linear

in τ and ηH ∝ Ḧ.

5.2.1 Scales in the game

The 10d solution should be reliable for bulk coordinates g2sN log u
u0

≲ 1, which, to

leading order, translates into ϵ log a
a∗

≲ 1 Since a∗ = a0 exp
(
− H2

0

ϵM2

)
is fixed by the

initial conditions, one finds τ ≲ 2
ϵM

(
1− H0

M

)
to leading order in ϵ. Correspondingly, the

Hubble rate in the regime of validity is bounded by H ≲M , namely the EFT is expected
to be reliable. This result is a nice, but unsurprising, cross-check. Imposing however
that the maximal cosmological time for the EFT validity be greater than the age of the
universe, one has 1

H0
≲ 2

ϵM

(
1− H0

M

)
, so that H0 ≲ M ≲ H0/ϵ, always up to order-one
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factors. Actually, the upper bound on M arises without using a particular value of a∗ at
leading order in ϵ, as expected.

In string units 1 = Ms ∝ α′− 1
2 , the scalings with gs and N of the various scales in

the game are given by

M ∼ 1

R∞
∼ g

− 1
4

s N− 1
4 , (5.2.9)

MPl ∼
(
R6

g2sN

) 1
2

∼ g
− 1

4
s N

1
4 , (5.2.10)

M5 ∼
(
R5

g2s

) 1
3

∼ g
− 1

4
s N

5
12 , (5.2.11)

where MPl denotes the 4d Planck scale. It derives from the dark bubble relation
M2

Pl ∼ M3
5R/N , where M3

5 = M8
sR

5/g2s as above is the 5d Planck scale. In 4d Planck
units,

M

MPl

∼ N− 1
2 ≪ 1 , (5.2.12)

M5

MPl

∼ N
1
6 ≫ 1 . (5.2.13)

Since gsN ≳ 1 for perturbative control, ϵ ≳ 1
N
, so that the above bounds can be extended

to
H0

MPl

≲
M

MPl

≲
H0

ϵMPl

≲
H0

MPl

N . (5.2.14)

Hence, in 4d Planck units one finds

Λ
1
2 ∼ H0 ≲M ≲ H

1
3
0 ∼ Λ

1
6 , (5.2.15)

where this time we left the 4d Planck scale implicit. According to the considerations
in [42], the lower bound onM is consistent with the Higuchi bound [57], while the upper

bound in our case is M ∼ Λ
1
6 MPl ≈ 100 MeV instead of Λ

1
4 MPl ≈ 3 meV.

The validity of these arguments for a braneworld model, as opposed to a compact-
ification, should be assessed with more care. For instance, the argument for the upper
bound with exponent 1

d
= 1

4
stems from considerations on the effective potential gener-

ated by a tower of light states, whose appearance, according to the distance conjecture(s)
generally affects the bulk rather than a braneworld. The smallness of the quasi-dS dark
energy in our construction is not necessarily related to the smallness of the bulk AdS
scale, although in this case they both are and one can apply the AdS version of the
distance conjecture. In particular, in the bulk (quasi-)AdS5 there is a light tower of KK
states with masses mKK ∼ R−1

∞ ∼ M , and the bound of [42] would then take the form
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M/M5 ≲ (ΛAdS/M
2
5 )

1
5 ∼ (M/M5)

2
5 , which is satisfied since M/M5 ≪ 1. On the other

hand, if this tower dominates the species bound, one obtains the species scale

Λsp =
Mpl√
N(Λsp)

∼M
5
7 ≲ Λ

5
42 ≈ 100 TeV (5.2.16)

as a QG cutoff in the spirit of [42].

The slow-roll parameter today then reads ϵH = Ḣ
H2

0
= ϵM2

2H2
0
∼ ϵ M2

Λ
, so that Λ ≲ ϵH ≲

Λ− 2
3 4d in Planck units. In particular, in the controlled regime

10−122 ≲ ϵH ≲ 1081 , (5.2.17)

a very large window of possible values In fact, imposing that ϵH ≲ 1 to be compatible
with the standard cosmological models, one finds M ≲ H0√

ϵ
≲ Λ

1
2N

1
2 ∼ Λ

1
2/M , thus

M ≲ Λ
1
4 . Within the restricted window Λ

1
2 ≲ M ≲ Λ

1
4 , which coincides with that

of [42], the species scale driven by KK modes of the S5 is then bounded according to

M
5
7 ≲ Λ

5
28 ≈ 10 MeV.

5.3 Cosmological interpretation

The behavior of the scale factor (5.2.8) indicates a quasi-dS evolution. We would like
to understand if it is possible to reproduce this behavior considering the equations of
motion of some homogeneous scalar field ϕ subject to an effective potential V (ϕ).

Consider a scalar field ϕ(x, t). Using FLRW metric in flat space

ds2 = −c2dt2 + a2(t)dx2, (5.3.1)

the action for the scalar field reads

S =

∫
d4xa3(t)

[
1

2
∂µϕ∂

µϕ− V (ϕ)

]
. (5.3.2)

Since we are interested only in spatially homogeneous solutions, ϕ(x, t) = ϕ(t) and

S =

∫
d4xa3(t)

[
1

2
ϕ̇2 − V (ϕ)

]
. (5.3.3)

The equations of motion are

ϕ̈+ 3Hϕ̇+
∂V

∂ϕ
= 0, (5.3.4)

which look like a harmonic oscillator, where the extra term 3Hϕ̇ looks like a friction
term.
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Computing the Hamiltonian, we get that the density of the scalar field is

ρϕ =
1

2
ϕ̇2 + V (ϕ). (5.3.5)

ρϕ determines the evolution of a(t) through the Friedmann equation

H2 =
8πG

3
ρϕ =

8πG

3

(
1

2
ϕ̇2 + V (ϕ)

)
. (5.3.6)

Using the continuity equation ρ̇+ 3H(ρ+ p) = 0, we find the pressure of the scalar field
to be

Pϕ =
1

2
ϕ̇2 − V (ϕ). (5.3.7)

If we define the state parameter as ω =
Pϕ

ρϕ
, we see clearly that this does not fit into

our usual classification of fluids with P = ωρ for some constant ω. Instead, we have
something more dynamical to deal with.

After some manipulation of the above equations, we get

ä

a
= −8πG

3
(ϕ̇2 − V (ϕ)). (5.3.8)

Notice that, in the limit V (ϕ) ≫ ϕ̇2, Pϕ ≈ −ρϕ, which is exactly the case of dark energy.
Imposing the slow-roll condition V (ϕ) ≫ 1

2
ϕ̇2 and requiring this exponential expan-

sion to last long enough
ϕ̈≪ Hϕ̇, (5.3.9)

the Eq.s (5.3.4) and (5.3.6) become

H2 ≈ 8πG

3
V (ϕ), (5.3.10)

3Hϕ̇ ≈ −∂V
∂ϕ

. (5.3.11)

These are now straightforward to solve and the problem simply boils down to picking
the right choice of the potential V (ϕ) in order to reproduce the quasi-de Sitter evolution
(5.2.8).

However, there is no guarantee that we can always use the slow-roll approximation.
Indeed, let us try to compute the potential in the most general case. Taking the time
derivative of (5.3.6), we get

2ḢH =
8πG

3
ϕ̈ϕ̇+

8πG

3

∂V

∂ϕ
ϕ̇. (5.3.12)
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Substituting the expression for ∂V
∂ϕ

in (5.3.4), the second derivatives of ϕ w.r.t. time
cancel out and we end up with

4πGϕ̇2 = −Ḣ, (5.3.13)

which has no real solutions.
This result holds even if we have a multi-field scalar potential. Consider the following

lagrangian density

L =
1

2
gij(ϕ)∂µϕ

i∂µϕj − V (ϕ), (5.3.14)

where gij is a metric in field space and the spacetime metric gµν is encoded in the partial
derivatives of ϕ. Euler-Lagrange equations read

∂L
∂(∂µϕ)

= ∂µ(gij(ϕ)∂
µϕj) (5.3.15)

= ∂µgij(ϕ)∂
µϕj + gij(ϕ)2ϕ.

We can rewrite Eq.s (5.3.4) and (5.3.6) in a more general manner

2ϕk + Γk
ij∂µϕ

i∂µϕj = −gkj(ϕ) ∂V
∂ϕj

, (5.3.16)

H2 =
8πG

3
(V (ϕ) +

1

2
gij(ϕ)ϕ̇

iϕ̇j), (5.3.17)

where the Christoffel symbols are defined as Γk
ij = 1

2
gkl(∂jgil + ∂igjl − ∂lgij). Since we

are interested only in spatially homogeneous solutions, ϕi(x, t) = ϕi(t), (5.3.16) becomes

ϕ̈k + 3Hϕ̇k + Γk
ijϕ̇

iϕ̇j = −gkj(ϕ) ∂V
∂ϕj

. (5.3.18)

(5.3.18) can be recast as

ϕ̈kϕ̇k + 3Hϕ̇2 + gliΓ
l
kjϕ̇

iϕ̇jϕ̇k = −gkj(ϕ) ∂V
∂ϕj

ϕ̇k (5.3.19)

On the other hand, taking the time derivative of (5.3.17), we get

∂V

∂ϕk

ϕ̇k + gijϕ̈
iϕ̇j =

3

8πG
(2HḢ)− gliΓ

l
kjϕ̇

iϕ̇jϕ̇k. (5.3.20)

Finally, substituting the expression for ∂V
∂ϕk ϕ̇

k in (5.3.19), we get

3

4πG
Ḣ − Γϕ̇ϕ̇ϕ̇

H
+ 3ϕ̇2 +

Γϕ̇ϕ̇ϕ̇

H
= 0. (5.3.21)

The terms with Γ cancel-off and we are left with the same expression as in Eq.(5.3.13).
We have therefore proved a no-go for scalar potentials: no effective scalar potential

is able to reproduce the time evolution of the braneworld (5.2.8).
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5.3.1 Evoking phantom scalars

In this Section, we claim that there might be a way to get around the no-go for scalar
potentials. Indeed, for models of scalar driven accelerated expansion, the first derivative
of the Hubble radius must necessarily decrease. This can be directly seen from the
equation of state

w =
Pϕ

ρϕ
=

1
2
ϕ̇2 − V (ϕ)

1
2
ϕ̇2 + V (ϕ)

≥ −1. (5.3.22)

We recall how different cosmological solutions depend on the equation of state as

• w > −1 : a ≃ τ
2

3(w+1) ,

• w = −1 : a ≃ eH0τ ,

• w < −1 : a ≃ (τs − τ)
2

3(w+1) ,

where τs denote the time of the singularity.
As we can see, models with w < −1 lead to space-time singularities. In such a

universe, the comoving particle horizon shrinks to zero size in finite time, and all objects
in the universe would be causally disconnected. This is usually referred to as Big Rip.
From the Friedmann equations

H2 =
ρ

3M2
Pl

, Ḣ = − ρ

2M2
Pl

(1 + w) (5.3.23)

we can derive the relation

w = −1− 2

3

Ḣ

H2
(5.3.24)

and we can then compute the equation of state from Eq. (5.2.8) as

w0′B = −1− ϵM2

3

(
H0 +

ϵM2

2
τ

)2 . (5.3.25)

We can note that the equation of state always satisfies w < −1, but approaches pure dS
(w = −1) at late times τ → ∞. In fact, the logarithmic dependence on the scale factor
in Eq.(5.2.7) denotes that the space time singularity sits at infinite time, and further
more, that the derivatives of the Hubble scale vanish at infinite time. This corresponds
to a specific scenario of Big Rip often dubbed Little Sibling of Big Rip (LSBR). This
behaviour corresponds to an abrupt event rather than a future space-time singularity.
At this event, the Hubble rate and the scale factor blow up but the cosmic derivative of
the Hubble rate does not [58]. Consequently, this abrupt event takes place at an infinite
cosmic time where the scalar curvature diverges.
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A simple realization of such scenario is by introducing a phantom scalar field, as
canonically normalized scalar field with a scalar potential, but with the ”wrong” sign in
the kinetic energy. In this sense, the phantom scalar field can be viewed as a particular
case of the K-essence models [59] with K = −X. Its Lagrangian is then

S =

∫
d4xa3(t)

[
−1

2
∂µϕ∂

µϕ− V (ϕ)

]
, (5.3.26)

As described in [60], this can also be described by a d = 4 theory including only gravity
and a 3-form field with a potential. Such a theory does not lead to a loss of unitarity, but
can, in some regimes, violate the Wheeler-DeWitt equation. For cosmological solutions
this simplifies to

S =

∫
d4xa3(t)

[
−1

2
ϕ̇2 − V (ϕ)

]
, (5.3.27)

leading to an equation of state

w =
Pϕ

ρϕ
=

−1
2
ϕ̇2 − V (ϕ)

−1
2
ϕ̇2 + V (ϕ)

. (5.3.28)

We can see that for dominant potential energy, V (ϕ) > ϕ̇2/2, the equation of state always
satisfies w < −1. For a Hubble scale H = H0 + ϵM2 τ

2
, the Friedmann equations for the

phantom scalar lead to

V (ϕ) = 3M2
Pl

(
H0 + ϵM2 τ

2

)2
+

1

2
ϕ̇2, ϕ̇ =

√
ϵM2M2

Pl

4
. (5.3.29)

Appropriately choosing the integration constant for ϕ as

ϕ =
2H0MPl√
ϵM2

+

√
ϵM2M2

Pl

4
τ, (5.3.30)

we can finally recast our results as a theory of cosmic acceleration driven by a phantom
scalar with a quadratic potential

V (ϕ) = ϵ
M2

2
M2

Pl + ϵ
3M2

4
ϕ2, (5.3.31)

recovering the results found in slowroll approximation. This was previously noted in [61].
Now, it is clear that a solution to Eq. (5.3.13) exists for non slow-roll solutions

precisely for the phantom scalar considered. Within slow-roll approximation we have as
equation of motion

ϕ̈+ 3Hϕ̇− V ′ ≃ 3Hϕ̇− V ′ = 0 (5.3.32)
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Using this, we can then write the slow roll parameters for the phantom scalar

ε = − Ḣ

H2
≃ −1

2

ϕ̇2

H2
≃ εV = −1

2

(
V ′

V

)2

, (5.3.33)

η = − ε̇

Hε
≃ −2

(
V ′

V

)2

+ 2

(
V ′′

V

)
≃ 4εV − 2ηV . (5.3.34)

After redefining the fields in (5.3.31) and substituting the latter in (5.3.33) and
(5.3.34), we get

ϵ = −1

2

(
2ϕ

2
3
+ ϕ2

)2

, (5.3.35)

η = −2

(
2ϕ

2
3
+ ϕ2

)2

+
4

2
3
+ ϕ2

, (5.3.36)

where for simplicity we take MPl = 1.

5.4 Inflating the bubble

One could ask is there is any place for inflation in the Dark Bubble Model. Let us focus
on the braneworld model in Type 0’B String Theory. From Eq. (5.2.8), we see that the
Hubble parameter H contains a logarithmic dependence on the scale factor a. This could
be phenomenologically interesting to embed the inflationary paradigm in this scenario.

Consider a scalar field ϕ with the quadratic potential we derived before, which we
write for simplicity as

V (ϕ) = V0 + V1ϕ
2 (5.4.1)

We now try to do cosmological perturbation theory with the phantom scalar. For this
we express the field as a background term, satisfying the Friedmann equations plus a
perturbation

ϕ(x, t) = ϕ0(t) +
δϕ(t, x)

a
(5.4.2)

Upon computing the equation of motion for the perturbation we arrive at

δϕ′′ +
(
k2 − a

a′′

)
δϕ = 0, (5.4.3)

where we have assumed spatially flat gauge, as well as slow-roll for the background field.
We can immediately note that the equation for the perturbation is independent on the
sign of the kinetic energy, this allows us to immediately use the usual results for scalar
inflation, while keeping in mind the sign of the slow roll parameter. At horizon crossing
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we find the corresponding scalar and tensor power spectra. For isotropic perturbations,
the result is the same even if one chooses a different effective realization (e.g. vector
field inflation), as the equations for the perturbations remain the same.

Pζ =

(
H2

2πϕ̇2
0

)2

= − H2

8π2ε
(5.4.4)

PT = 2
H2

π2
. (5.4.5)

It is then straightforward to compute the spectral tilt and tensor-to-scalar ratio

ns − 1 =
dPζ/dt

HPζ

= −2ϵ− η (5.4.6)

r =
PT

Pζ

= −16ϵ. (5.4.7)

With experimentally constrained values given by

ns − 1 = −0.035± 0.004,

r < 0.03 (5.4.8)

We can immediately notice that unless 1 ≫ η ≫ −ϵ, the scalar spectrum will be blue
shifted, corresponding to ns > 1, which is experimentally ruled out. In order to relate the
relevant quantities to experimental data, we must compute such quantities some number
of e-folds Ne (around 60) before the end of inflation. For the case of the bubble, which
leads to eternal inflation, one must introduce an additional mechanism for inflation to
end. We keep the assumption of such mechanism general, and assume some field value
ϕ∗ Ne e-folds before the end of inflation. For the potential considered in (5.4.1), we have

ns − 1 = −4V1 (V0 − 2V1ϕ
2
∗)

(V0 + V1ϕ2
∗)

2 (5.4.9)

r =
32V 2

1 ϕ
2
∗

(V0 + V1ϕ2
∗)

2 (5.4.10)

In order to satisfy the experimental bounds we require V1ϕ
2 ≪ V0, meaning that ϕ∗

must be close to the minimum of the potential. This is typically not possible in scalar
inflation, since the inflaton rolls down towards the minimum. For a phantom field, the
negative kinetic energy instead makes the field roll up, away from the minimum. With
this we obtain

ns − 1 ≃ −4V1
V0

(5.4.11)
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r =
32V 2

1 ϕ
2
∗

V 2
0

. (5.4.12)

If we fit these expressions with the experimental data (5.4.8), we notice that the regime
proposed for fitting experimental data is away from the full solution. For the full solution,
we have Ḣ = const, which is valid in the regime V1ϕ

2 > V0. As long as we remain within
slow-roll ε ≪ 1 there should be a scalar realization, so we can try to compute ε,η (and
with that ns and r) directly from the full expression for a in (5.2.8).

ε = −
ϵM2

2

(H0 +
ϵM2

2
τ)2

(5.4.13)

η = − ϵM2

(H0 +
ϵM2

2
τ)2

(5.4.14)

We can see that both slow-roll parameters are negative at all times, this will translate
into a blue-shifted spectral tilt, incompatible with observation. We would also
like to comment that, in the case of a 3-form realization, the spectral tilt is given by [62]

ns ≃ −2ε− 3

2
η, (5.4.15)

and as such the spectrum is also blue-shifted.
Finally, let us comment that it could be interesting to explore inflation in the braneworld

using the tools of f(R) inflation. The f(R) model hypothesizes that, during the inflation-
ary epoch, the energy density is not dominated by a scalar field (i.e. the inflaton), but
that the exponential expansion is due to the way gravity behaves at very high energies,
and the effective action takes the form

S =

∫
d4
√
−g
[
M2

P

2
f(R) + Lm

]
, (5.4.16)

Computations seem to work in the slow-roll approximation. However, if we consider
a more general scenario, since f(R) can always be recast as a theory of EH gravity plus
a canonically normalized scalar field, it can never lead to accelerated expansion with
w < −1 and this framework has to be discarded as well.

5.5 Bounds on late time acceleration

Late time cosmology refers to the current epoch of the universe, in which an accelerated
expansion rate is observed. Bounds depend on the specific model, for time independent
dark energy (w0CDM), the present day equation of motion is bounded as [63]

w0 = −1.028± 0.031. (5.5.1)
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This can in principle correspond to (5.3.25), evaluated at late times, such that w0′B ≃ −1.
Perhaps a more interesting scenario is given by w0waCDM , where the scale dependence
of dark energy is given by be parameterized as

w = w0 + (1− a)wa, (5.5.2)

with
w0 = −0.957± 0.08, wa = −0.29+0.32

−0.26 (5.5.3)

Appropriately choosing H0 as the present day Hubble constant and τ = 0 as present
time, we can expand the equation of state as

w0′B ≃ −1− ϵM2

3H2
0

− (1− a)
ϵ2M4

3H4
0

. (5.5.4)

Given the value of Hubble today

H0 ≃ 5.9× 10−61MPl, (5.5.5)

this imposes the bound
ϵM2 ≲ 3.87× 10−122MPl (5.5.6)

In other words, ϵM2 has to be, at most, of the order of the cosmological constant. This
can then be used to impose bounds on the string coupling gs and the number of stacked
D3-branes sourcing the geometry, N , as

ϵM2 ≃ g2sM
2
Pl < 10−122M2

Pl, (5.5.7)

with then
gs ≲ 10−61 , N ≳ 1061. (5.5.8)

This sets the scales in the model as

M < Ms < M10 < MPl ≪M5, (5.5.9)

with
M ≲ meV , M10 ≲ TeV. (5.5.10)

Such scales could then in principle realize the dark dimension scenario, of a single meso-
scopic extra dimension of order microns, similar to the results of [18]. The key difference
in this work, is the non zero ϵ, coming from the uncancelled dilaton tadpole of 0′B String
Theory. This then strongly constraints the value of the string coupling, and makes it
unfeasible to realize SM gauge couplings on the brane.

As a toy model, we explore the possible scales coming from realizing a similar scenario,
with the SM localized on a stack of NS5 branes. This requires replacing the S5 with
another suitable Einstein manifold with non trivial H1,1 cohomology class, such that one
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can wrap the additional two dimensions on a 2-cycle Σ2 as part of its worldvolume Σ5+1.
In this case, the brane action is given by

LNS5 ≃ −N5TNS5

(
α′ U

R(U)

)4

e−2ϕ(U)R̃(U)2

√
1− λU̇2

U4
. (5.5.11)

LNS5 ≃ −N5N
2U4

2π3λ5/2

(
1 +

9λ2α′T

256 4
√
8π2N

log
U

u0

)√
1− λU̇2

U4
(5.5.12)

From this expression we can read ϵ as

ϵ ≃ g2sN, (5.5.13)

which is the same scaling as for the D3 branes. In fact, by looking at the DBI action
for p-branes one could expect the dependence on gs, N to be generic since the leading
contribution coming from Eq. (5.1.2) is of the form g2sN . In the case of NS5 branes
there is the further complication of lacking a CS term. Since the equation implied by
energy conservation at large U is purely algebraic, this suggests that it is not an inflating
solution.

It was however argued in [64] that S-dualising the Wess-Zumino action of a stack of
D5 branes, including corrections to order α′, leads to an action for NS5 branes containing
the term

SNS5
WZ ⊂ N5µ5

∫
Σ5+1

Tr (2πα′C4 ∧ F) , (5.5.14)

where F is the field strength on the NS5 brane. This is not vanishing if there is induced
charge on the brane, such that

Qeff ≃
∫
Σ2

F . (5.5.15)

The charge should then be chosen in a way such that the leading order contributions from
the DBI and CS actions cancel out. In this case we can repeat the procedure detailed in
Section 5.2 to again obtain LSRB cosmological solutions.

5.6 Electromagnetism in 0’B

The mechanism we have seen to embed electromagnetic gauge fields on the brane was de-
veloped in a Type IIB embedding, which involves D3-branes, the B-field and the C2-field.
All our considerations apply to the braneworld model built in the non-supersymmetric
0′B Theory, with the exception that, given that there is no B-field in this theory, the
only relevant field is C2. The only equation which governs the interplay between the
brane and the bulk is therefore (4.2.15).

Of course these considerations do not really apply, since the braneworld model in
Type 0’B was ruled out due to incompatibility with experimental observations.



Conclusion

Outlook

The Dark Bubble model is an intricate but dynamically natural construction which
represents an alternative to the paradigm of standard compactification in String Theory.
It is a cosmological scenario which makes extensive use of elements from String Theory,
such as strings and branes, and can be very well embedded in Type IIB and in Type
0’B string theories. Whereas in the former case there is no conflict with phenomenology
(at least thus far), the latter construction, albeit very elegant, is incompatible with
cosmological observations and has to be discarded.

In this thesis work, we found a general mechanism to embed electromagnetic gauge
fields living on the brane. The two fields responsible for this interplay are the Kalb-
Ramond field Bµν and the Ramond-Ramond field C

(2)
µν . This represents a first step

towards a complete description of the Standard Model in the Dark Bubble scenario.
Moreover, we provided a no-go result for D3-brane worlds arising from Type 0’B

Theory: the evolution of the scale-factor a(τ) indicates a quasi-dS evolution of the brane
world, which seems promising for embedding inflation in the picture; however, we find a
blue-shifted spectral tilt, incompatible with observations.

Bubbles and the Swampland

We have largely discussed how some of the conjectures of the Swampland program per-
fectly resonate with the Dark Bubble model. Although they are not a priori required to
hold on the brane world itself, they apply to the ambient bulk spacetime. Indeed, the de
Sitter Conjecture (even in its milder formulation) was a main reason for other attempts
to realize a dS universe, which do not involve (approximately) time-independent string
compactifications. Moreover, the Weak Gravity Conjecture turned out to be crucial
for the decay of the initial non-supersymmetric AdS vacuum and the realization of a
codimension-1 brane with a tension smaller than the critical one, thus realizing a small
and positive cosmological constant.

However, the Dark Bubble model does not have much to say about the Distance

93



CONCLUSION 94

Conjecture. In fact, moduli corresponding to the five internal dimensions beyond AdS5

should be stabilized, while the radius of the brane bubble expanding in the fifth dimension
corresponds to the scale factor in the 4d cosmology. Regarding the Trans-Planckian
Censorship Conjecture, we notice that the bubble wall moves an infinitesimal distance
(of order AdS length) in the fifth dimension over large e-folds of expansion in 4d. Since
the distance traversed never exceeds a few AdS lengths, questions of runaway moduli
or approaching the boundaries of moduli space never arise. Indeed, remember that,
according to the Dark Bubble scenario, we live on the brane! We cannot therefore say
much about infinite distance limits or global symmetries, since gravity in 4d is ”fake”.

Finally, let us mention that, in agreement with the Cobordism Conjecture, the two
AdS spacetimes (the ”inside” and the ”outside” of the bubble) are indeed connected –
in this case, by a codimension-1 brane –, since otherwise a global symmetry associated
to the flux would be present. As should happen in Quantum Gravity, this symmetry is
broken by these branes.

Future directions

We have made a first attempt in constructing a general mechanism to embed EM gauge
fields on the brane world, but much work remains to be done in embedding the full
Standard Model of Particle Physics. Generalizing the electromagnetic mechanism to
other non-abelian gauge fields is not trivial at all, and may be either the turning point
for this model or spell its own doom. Reproducing all the ingredients of the Standard
Model along with all known mechanisms, such as Spontaneous Symmetry Breaking,
and the correct energy scales is the only way to determine whether this model can be
phenomenologically viable or not.

We unraveled the brane world construction of the Dark Bubble model in Type 0’B.
This setup was particularly promising to account for a natural description of inflation on
the bubble, but eventually had to be discarded for being incompatible with experimental
observations. Nonetheless, the question of whether inflation can be realized in the Dark
Bubble remains. While inflation is a quasi-dS phase, an exact dS period of inflation is
now completely ruled out by ns = 0.968 ± 0.006 [65]. Therefore, additional ingredients
will be necessary to alter the spectral tilt and find an instance of slow-roll inflation
consistent with observations. Interestingly, the eventuality of bubble collisions provides
potentially promising pathways for inflationary model building. It was shown in [66]
that brane collisions can result in free passage for the branes for a certain range of
relativistic scattering velocity. Additionally, open strings stretching between the branes
will be created in the collision. The model [67] makes use of repeated collisions of
this sort to provide an explanation for certain anomalies in the CMB power spectrum.
Finally, due to the creation of massive particles, collisions potentially provide a transition
from a cosmological constant to a matter domination era. Matter interactions and the
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realization of the Standard Model of Particle Physics is another important issue. The
presence of branes and stretched strings suggest that the familiar D-brane constructions
of gauge theories will be relevant.

An important new feature is that it is now obvious that we need more than just
fundamental strings. The endpoint of a string of tension T appears as a particle of mass
T/k in the four-dimensional shell-world. Assuming a large five-dimensional cosmological
constant (with no hierarchy across the shell) and setting a lower limit on the tension of
strings at (TeV)2, sets a lower limit on the particle mass to be of the order of magnitude
of 0.1 eV, which is, interestingly enough, of the same order of magnitude as the estimated
mass of neutrinos. This is an encouraging and non-trivial observation. The low tension
excludes fundamental strings and suggests that the five-dimensional stretched strings
need to be either topological defects or gauge strings. To derive four-dimensional effec-
tive field theories matching the Standard Model will be an interesting, but challenging,
problem.

Moreover, it would be equally interesting to see if the Dark Bubble allows for the
presence of axions, whose couplings are of the type

C0 ∧ F ∧ F. (5.6.1)

The way axions behave in this setup is yet to be determined, and they might not be
localized on the brane (see [68] for an example).

Finally, the incorporation of black holes into our model is an interesting direction for
future research. The formation of a four-dimensional black hole is expected to proceed
through the collision of stretched strings in five dimensions. Hence, one would expect a
black hole to correspond to a five-dimensional black string ending on the brane world. A
problem with such a solution is that it may suffer from a Gregory-Laflamme instability
[69]. In four dimensions, it was argued [70] that black holes can be replaced by horizon-
less black shells. If there is an instability of Minkowski space towards the formation of
a bubble of AdS-space, it can be argued that a transition can be stimulated to occur if
matter threatens to form a black hole. It was also argued that such black shells can be
stable and thus correspond to a viable alternative to a black hole. The uplift of such a
transition, with the black string replaced by a black tube, seems to be a natural outcome
in our model.

Finally, what about holography? Even if great progress has been made in [19], a full
understanding of the Dark Bubble model from the holographic perspective is yet missing.
Among the open issues, a deeper understanding of the relation between the field theory
on the bubble and the one on the holographic boundary is required. Furthermore, non-
supersymmetric AdS cannot be dual to a CFT [9], although it may be dual to an RG
flow [71]. We leave these ideas and questions for future work.



Appendix

Tools of Differential Geometry

Let us briefly introduce some concepts of differential geometry which are very useful in
the study of String Theory. A useful concept is that of differential forms. A p-form ω
is a totally antisymmetric tensor of rank p

C(p) =
1

p!
Cµ1...µpdx

µ1 ∧ ... ∧ dxµp , (5.6.2)

where the wedge product ∧ between a p-form and a q-form is defined by

A(p) ∧B(q) = C(p+q) (5.6.3)

and

C(p+q)
µ1...µp+q

=
(p+ q)!

p!q!
A[µ1...µpBµp+1...µp+q ]. (5.6.4)

Consequently, A(p) ∧B(q) = (−1)pqB(q) ∧ A(p) and [A(p), B(q)] = −(−1)pq[B(q), A(p)].
We can define the exterior derivative as an operator d which maps a p-form into

a (p+1)-form

C(p) =
1

p!
Cµ1...µpdx

µ1 ∧ ... ∧ dxµp −→ dC(p) =
1

p!
dCµ1...µpdx

µ1 ∧ ... ∧ dxµp (5.6.5)

=
1

p!
∂µ1Cµ2...µp+1dx

µ1 ∧ ... ∧ dxµp+1 , (5.6.6)

such that C
(p)
µ1...µp+1 = (p + 1)∂[µ1Cµ2...µp+1]. Here the square brackets denote normalized

antisymmetrization

[µ1...µp] =
1

p!
(even permutations of (12...p)− odd permutations of (12...p)). (5.6.7)

Finally, the exterior derivative is nilpotent d2C(p) = 0.
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A p-form is C(p) exact if there exists a (p-1)-form B(p−1) such that C(p) = dB(p−1)

and it is closed if dC(p) = 0. We can define the p-th cohomology group of the
n-dimensional manifold M as the quotient

Hp(M) =
closed p-forms

exact p-forms
. (5.6.8)

Exact forms are said to be cohomologically trivial. The dimension of Hp(M) is called
the p-th Betti number and is an important topological invariant of M related to Euler’s
characteristic χ.

We can write a version of Stoke’s theorem for differential forms. If Γ(p+1) is a
(p+ 1)-dimensional submanifold of M and ∂Γ(p+1) denotes its p-dimensional boundary,
then ∫

Γ(p+1)

dC(p) =

∫
∂Γ(p+1)

C(p). (5.6.9)

The operation of taking the boundary of a p-dimensional submanifold of M is there-
fore dual to taking the exterior derivative of a p-form. A p-fold with ∂Γp = 0 is called a
p-cycle, and a p-fold which is the boundary of another (p+1)-dimensional submanifold
Γp = ∂Ωp+1 is called a p-boundary. The object object Ωp+1 is a (p+1)-chain. One can
then define the p-th homology group of M as the set

Hp(M) =
p-cycles

p-boundaries
, (5.6.10)

with dimension bp = dimHp(M).
The de Rahm dual of a p-fold Γp is defined as the (n-p)-form δ(n−p)Γp such that for

each p-form ω(p) the following relation holds∫
Γ(p+1)

ω(p) =

∫
M
ω(p) ∧ δ(n−p)(Γp). (5.6.11)

This gives rise to a one-to-one correspondence between homology and cohomology. In
particular, bp = bp.

A crucial notion to understand duality is the Hodge * operator, which maps a
p-form into its dual (n-p)-form

∗ : p-form −→ (n-p)-form

C(p) −→ ∗C(p) =

√
|g|

p!(n− p)!
Cµ1...µpϵ

µ1...µp
νp+1...νn

dxνp+1 ∧ ... ∧ dxνn , (5.6.12)

where we defined the totally antisymmetric tensor ϵµ1...µn to be ±1 if (µ1...µn) are
even/odd permutations of (1, ..., n) and 0 in the other cases.
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Finally, let us make contact to String Theory and consider some examples of p-
form fields. in the bosonic string, there is only the Kalb-Ramond 2-form potential
B = 1

2
Bµνdx

µdxν . In superstring theory, there are the R-R form potentials C(1) and C(3)

in Type IIA and C(0), C(2) and C(4) in Type IIB.
These higher-rank form fields can be interpreted as generalisations of the electromag-

netic 1-form gauge potential A = Aµdx
µ. Indeed, the field strength

F (p+1) = dC(p) (5.6.13)

is invariant under the abelian gauge transformation

C(p) → C(p) + dχ(p−1), (5.6.14)

due to nilpotency of the exterior derivative. The so-defined field-strength is closed be-
cause

dF (p+1) = d(dC(p)) = 0, (5.6.15)

a relation dubbed Bianchi identity.
The canonical kinetic term of the field-strength can compactly be written as

Skin = − 1

2(p+ 1)!

∫
dnx
√

|g|Fµ1...µp+1F
µ1...µp+1 = −1

2

∫
F ∧ ∗F. (5.6.16)

The following relation holds
F (p+1) = ∗F̃ (n−p−1), (5.6.17)

meaning that a p-form potential is dual to an (n-p-2)-form potential. This is the gener-
alization of electric-magnetic duality in 4d.

Finally, a p-form couples naturally to a p-fold via

Scoupled = µp

∫
Γp

C(p). (5.6.18)

where µp is the charge of Γp. This is the natural generalisation of the coupling of the
1-form potential A(1) to a point particle.
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Brief Review of General Relativity and Cosmology

Let us start by defining some important quantities in the study of GR.

• We can define the connection between the Christoffel symbols and the metric as

Γσ
µν =

1

2
gσα [gµα,ν + gνα,µ − gµν,α] . (5.6.19)

• The mathematical quantity which allows us to define the curvature of a manifold
is called the Riemann tensor

Rµν = Rρ
µρν = Γα

µν,α − Γα
µα,ν + Γα

βαΓ
β
µν − Γα

βνΓ
α
µα . (5.6.20)

The Riemann tensor will vanish if and only if the metric is perfectly flat. Moreover,
it allows us to define other quantities

• the Ricci tensor
Rλ

µλν = Rµν , (5.6.21)

• the Ricci scalar
R = Rµ

ν = gµνRµν , (5.6.22)

• the Einstein tensor

Gµν = Rµν −
1

2
Rgµν . (5.6.23)

Einstein equations

The theory of General Relativity is governed by the Einstein-Hilbert action

S =
1

16πG

∫
d4x

√
−g [R(gµν , ∂ρgµν , ∂σ∂ρgµν)− 2Λ] + SM , (5.6.24)

The SM part of the action contains all the matter sources, which in the standard
model of cosmology come down to baryons, dark matter, photons and neutrinos. SM is
usually written from a Lagrangian

SM =

∫
d4x

√
−gLM(gµν) . (5.6.25)

Applying the variational principle on this action with respect to the metric gµν , we obtain
the Einstein equations

Gµν + Λgµν = 8πGTµν , (5.6.26)
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which are ten (with only six independent) partial differential equations. Tµν is the
energy-momentum tensor, which comes from the functional derivative of the SM part of
the Einstein-Hilbert action with respect to the metric gµν

T µν ≡ − 2√
−g

δ(
√
−gLM)

δgµν
. (5.6.27)

For a perfect fluid with four-velocity uµ, Tµν is given by

T µν = ρuµuν + p(gµν + uµuν) = (ρ+ p)uµuν + pgµν , (5.6.28)

where ρ and P are, respectively, the density and the pressure of the fluid. Moreover, in
the rest frame of the fluid the four-velocity uµ = (1, 0, 0, 0) and dτ = dt, which means
that

T µν =

[
ρ 0
0 pgij

]
, (5.6.29)

and
T µ
ν = diag(−ρ, p, p, p) . (5.6.30)

Moreover, the following continuity equation holds:

∇µT
µ
ν = 0 . (5.6.31)

Einstein equations contain an interpretation of gravity as the geometry of space-time: the
energy-momentum tensor determines the curvature of space-time, which in turn affects
the matter motion. Finally, the cosmological constant Λ that enters in the Einstein
equations entails the contribution of vacuum energy, an energy density characteristic of
empty space.

FLRW metric

The metric which describe an isotropic and homogeneous Universe in expansion is iden-
tified by the Friedmann-Lemâıtre-Robertson-Walker metric

ds2 = −dt2 + a(t)2
[

dr2

1− kr2
+ r2(dθ2 + sin2(θ)dϕ2

]
(5.6.32)

≡ −dt2 + a(t)2dΣ2 , (5.6.33)

where the origin r = 0 is totally arbitrary and t is the proper time of an observer moving
along with the cosmic fluid at constant r, θ and ϕ. These coordinates are known as
comoving coordinates, and only a comoving observer will think that the Universe looks
isotropic.
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The function a(t) is called the cosmic scale factor, and describes the expansion of
the Universe starting from the initial value a0 = 0 to a conventional value of a(t0) = 1,
corresponding to the present day (t0 is the age of the Universe). The parameter k is
called the curvature constant and describes the curvature, and therefore the size, of the
spatial surfaces. k could indeed take any real value, but it is common to normalize
it to k = 0,±1 and absorb the physical size of the manifold into the scale factor a(t).
Depending on the value of the curvature scalar, it is possible to introduce new coordinates
such that the topology of the hypersurface Σ is apparent from the line element dσ2

• The k = 0 case corresponds to no curvature on Σ

dσ2 = dr2 + r2dΩ2 = dx2 + dy2 + dz2 , (5.6.34)

and Σ is called flat (euclidean geometry).

• The k = +1 case corresponds to constant positive curvature on Σ

r = sin(X) ⇒ dσ2 = dX2 + sin2(X)dΩ2 , (5.6.35)

and Σ is a three-dimensional sphere (spherical geometry).

• The k = −1 case corresponds to constant negative curvature on Σ

r = sinh(φ) ⇒ dσ2 = dφ2 + sinh2(φ)dΩ2 , (5.6.36)

and Σ is a three-dimensional hyperboloid (hyperbolic geometry).

Friedmann equations

The Einstein equations

Tµν −
1

2
Rgµν = 8πGTµν (5.6.37)

evaluated on the FLRW metric are the so-called Friedmann equations

3

[(
ȧ

a

)2

+
k

a2

]
= 8πGNρ ⇒ H2 =

8πGN

3
ρ− k

a2
, (5.6.38)

3
ä

a
= −4πGN(ρ+ 3P ) ⇒ Ḣ +H2 = −4πGN

3
(ρ+ 3P ) , (5.6.39)

where ρ = ρ(t) is the total energy density of all components of the cosmic fluid and
P = P (t) the total pressure. The Friedmann equations should be solved to find a(t),
which depends on the components considered through ρ and P . It is useful to define the
density parameter

Ω =
8πGN

3H2
ρ =

ρ

ρcritical
, (5.6.40)
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where the critical density is

ρcritical =
3H2

8πGN

. (5.6.41)

The Friedmann equation (5.6.38) can therefore be written as

Ω− 1 =
k

H2a2
. (5.6.42)

The density parameter Ω contains the information on the topology of the Universe.
Indeed

• ρ < ρcritical ⇐⇒ Ω < 1 ⇐⇒ k = −1 ⇐⇒ Open Universe

• ρ = ρcritical ⇐⇒ Ω = 1 ⇐⇒ k = 0 ⇐⇒ Flat Universe

• ρ > ρcritical ⇐⇒ Ω > 1 ⇐⇒ k = 1 ⇐⇒ Closed Universe .

The density parameter, then, tells us which of the three FLRW geometries describes
our Universe. Determining it observationally is crucial: recent measurements of the CMB
anisotropy suggest that Ω is very close to 1.

Cosmic fluids

Assuming again that the Universe is permeated with an ideal cosmic fluid of matter and
energy, the energy-momentum tensor has the form (5.6.30). The 0-component of the
continuity eq.(5.6.31) equation yields

ρ̇+ 3H(ρ+ p) = 0. (5.6.43)

We can assume our fluid is barotropic, meaning it obeys the following equation of state

p = ωρ , (5.6.44)

where the parameter ω is called state parameter and is a constant value independent
of time. Energy conservation then reads

ρ̇

ρ
= −3(1 + ω)

ȧ

a
=⇒ ρ ∝ a−3(1+ω) . (5.6.45)

Until not too long ago, the present Universe was believed to be dominated by ordinary
matter (dust), while the primordial one by radiation. However, the expansion of the
Universe is accelerating (ä > 0), a fact which is incompatible with the gravitational
effect of matter. Among the possible sources responsible of this acceleration, it has been
hypothesised the so-called dark energy, encompassed in the cosmological constant Λ.

The components of the cosmic fluid therefore are
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• Dust: pressureless matter, or non-relativistic matter almost exactly at rest with
the cosmic frame. In this case other forces beside gravity are absent, and ω = 0
(so that p = 0). Eq.(5.6.45) therefore yields

ρmatter =
E

V
∝ a−3 , (5.6.46)

which is interpreted as the decrease in the number density of particles as the
Universe expands

• Radiation: pure electromagnetic radiation or highly-relativistic matter. Since the
mass is totally negligible, so is the energy-momentum trace

T = −ρ+ 3p = 0 , (5.6.47)

which implies

p =
1

3
ρ ⇒ ω =

1

3
. (5.6.48)

Eq. (5.6.45) yields

ρrad =
E

V
∝ a−4 . (5.6.49)

This is because the number density of photons decreases in the same way as the
number density of non-relativistic particeles, but individual photons lose energy as
E ∝ a−1 as they redshift.

• Vacuum energy: a fluid with equation of state

ρ = −p = Λ

8πG
, ω = −1 . (5.6.50)

The energy density of this fluid is therefore constant

ρΛ ∝ 1 . (5.6.51)

Let us now examine the behaviour of the scale factor a(t) in a flat (k = 0) universe
dominated by these cosmic fluids.

• For a flat, matter dominated Universe, we have

ρm ∼ 1

a3
⇒ ȧ2

a2
∼ 1

a3
⇒

√
ada ∼ dt ⇒ t ∼ a3/2 , (5.6.52)

thus a ∼ t2/3.
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• For a flat, radiation dominated Universe, instead

ρr ∼
1

a4
⇒ ȧ2

a2
∼ 1

a4
⇒ ada ∼ dt ⇒ t ∼ a2 , (5.6.53)

thus a ∼ t1/2.

• Finally, for a flat and empty Universe, with only a positive vacuum energy present,
we obtain the extact solution

ρΛ ∼ Λ ⇒ ȧ2

a2
∼ Λ

3
⇒

√
Λ

3
∼ ȧ

a
≡ H0 ⇒ a ∼ eH0t , (5.6.54)

where H0 is now a true cosmological constant. This universe, subject to a constant
exponential expansion, is dubbed de Sitter (dS) Universe.

The ΛCDM model

The solutions of the Friedmann equations for dust and radiation show a common be-
haviour. According to the inflation theory, the Universe started from a singularity and
is expanding ever since (at least until a maximum scale factor). The standard model of
cosmology is divided into two parts

• a primordial stage, behind the Last Scattering Surface, very well described by the
theory of inflation [44],

• a later stage during which large scale structures such as clusters and galaxies came
into being, described by the ΛCDM model. This model can be summarized as
following: the dark matter is cold and the dark energy has a constant energy
density, which means ω = −1.

The observations collected so far denote the fact that the present Universe is spatially
flat with Ω ≃ 1, which corresponds to an average density

ρ0 = ρcritical ≃ 10−29g/cm3 , (5.6.55)

equivalent to about 6 protons per square cubic meter. Three sources that contribute to
ρ0 have been identified as

• Regular baryonic matter, approximated by a fluid made of dust and estimated
through the luminosity of galaxies,

ρmatter

ρ0
≃ 5% , (5.6.56)
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• Nonbaryonic dark matter, which behaves like dust (gravitationally), but can’t
be directly detected

ρDM

ρ0
≃ 25% . (5.6.57)

• Dark energy, with the equation of state of the vacuum,

ρDE

ρ0
≃ 70%. (5.6.58)

In terms of the fractional densities, we can estimate that Ω0
M = (0.3±0.1), Ω0

rad = 9·10−5

and Ω0
DE = (0.7 ± 0.1). Note that the value of Ω0

m is given by the sum of the baryonic
matter and the dark matter contribution Ω0

M = Ω0
matter + Ω0

DM = (0.0486 + 0.2589).
The Universe has gone through three different epochs, each one governed by a different

component.

Figure 5.2: Evolution of Ωr, Ωm and ΩΛ for ΛCDM as functions of the cosmological
time t. The scale factor is a = 1 at final value of time in the plot.. The dark energy
density is increasing at late times, while radiation density becomes negligible.

• Radiation dominated epoch: the radiation is prevalent up to redshift z ≃ 104;
given the high speed with which it decreases, its density becomes soon negligible.

• Matter dominated epoch: baryonic matter and dark matter are the dominant
components from z ≃ 104 until z ≃ 0.7.

• Dark energy epoch: the dark energy density is very small but fixed, as it is con-
stantly generated by the vacuum itself, and becomes dominant when the expansion
of the Universe has decreased the density of the other components.
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