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Abstract

Since the start of modern Astrophysics and Cosmology, two mysteries have been puz-
zling researchers: dark energy and dark matter. While many possibilities exist, due
to its non-interacting nature – only through the gravitational field – little progress has
been made. In order to tackle this, researchers have been trying to get clearer answers
through the study of exotic ultra-compact objects and/or alternative gravity models. On
the alternative model side, one of the approaches is to consider higher curvature terms
and/or bosonic scalar fields. The latter provides a possible explanation for the highly
accelerated expansion of the early Universe (inflation) and the non-vanishing cosmolog-
ical constant at the current times. The theories of modified gravity that include extra
scalar fields, so-called scalar-tensor theories, present some interesting phenomenology.
An intriguing possibility occurs when the additional scalar field is non-minimally cou-
pled to the gravitational sector. The interaction between a scalar field and the strong
spacetime curvature of a black hole (BH) originates what is known as scalarization. The
latter endows BHs surrounded by a real scalar field with interesting and distinct char-
acteristics. Alternatively, low-compactness objects that do not have enough curvature
can be helped by the presence of a positive cosmological constant, allowing objects like
galaxies and galaxy clusters to suffer scalarization, adding an extra mass profile outside
of the observable matter. It then follows the possibility of the matter profile coming
from the scalarized low-density objects in the presence of a cosmological constant to
mimic the observed dark matter. For this study, we will consider scalarized objects in an
extended scalar-tensor theory where the scalar field is non-minimal coupled through a
quartic coupling function to the Gauss-Bonnet invariant and in the presence of a positive
cosmological constant. Firstly, the equations of motion for the metric and the scalar field
were obtained from the action. Then, through the numerical method Runge-Kutta with
a shooting method, the profiles of the scalar field between the Schwarzschild horizon and
the cosmological horizon were derived for various values of the coupling constant β and
Λ. Finally, plots of β related to the main parameters of the problem have been extracted
from the results of the integration and the plots of BH evolutionary branches.
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Abstract

Fin dalla nascita dell’Astrofisica e della Cosmologia moderne, due misteri hanno affas-
cinato i ricercatori: l’energia oscura e la materia oscura. Sebbene esistano molte possi-
bilità, a causa della loro natura non interagente – solo attraverso effetti gravitazionali
– sono stati fatti pochi progressi. Per affrontare questo problema, i ricercatori hanno
cercato di ottenere risposte più chiare attraverso lo studio di oggetti ultra-compatti
esotici e/o modelli di gravità alternativi. Nel campo dei modelli alternativi, uno degli
approcci è considerare termini di curvatura più elevati e/o campi scalari bosonici. Questi
ultimi forniscono una possibile spiegazione per l’espansione accelerata dell’Universo pri-
mordiale (inflazione) e il valore non nullo della costante cosmologica ai giorni nostri. Le
teorie della gravità modificata che includono campi scalari aggiuntivi, le cosiddette teorie
scalari-tensoriali, presentano una fenomenologia interessante. Un’intrigante possibilità si
verifica quando il campo scalare aggiuntivo è accoppiato in modo non minimale al settore
gravitazionale. L’interazione tra un campo scalare e la forte curvatura dello spaziotempo
di un buco nero origina un fenomeno noto come scalarizzazione. Quest’ultima fa s̀ı che
i buchi neri risultino circondati da un campo scalare reale con caratteristiche peculiari e
distintive. In alternativa, oggetti non cos̀ı compatti da generare una curvatura sufficiente
possono essere aiutati dalla presenza di una costante cosmologica positiva, permettendo
a strutture come galassie e ammassi di galassie di subire la scalarizzazione, aggiungendo
un profilo di massa extra al di fuori della materia osservabile. Vi è quindi la possibilità
che il profilo di materia derivato dagli oggetti a bassa densità scalarizzati grazie alla
presenza di una costante cosmologica possa imitare la materia oscura osservata. Per
questo studio, considereremo la scalarizzazione che oggetti a bassa densità subiscono
nel contesto teorico di una teoria scalare-tensore estesa dove il campo scalare è accop-
piato in modo non minimale attraverso una funzione d’accoppiamento di quarto grado
all’invariante di Gauss-Bonnet e in presenza di una costante cosmologica positiva. In
primo luogo, si sono derivate a partire dall’azione le equazioni del moto per la metrica
e il campo scalare. Poi, attraverso il metodo numerico Runge-Kutta con un metodo di
shooting, sono stati derivati i profili del campo scalare tra l’orizzonte di Schwarzschild e
l’orizzonte cosmologico, per vari valori della costante di accoppiamento β e Λ. Infine, dai
risultati dell’integrazione e dai grafici dei rami evolutivi dei buchi neri sono stati estratti
i grafici che relazionano β ai principali parametri del problema.
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Chapter 1

Introduction

Since its formulation in 1915, Einstein’s General Relativity (GR) has successfully pre-
dicted numerous phenomena such as gravitational redshift [32], gravitational deflection
of light [90], and perihelion precession of Mercury [91]. On the strong gravity regime,
recent gravitational wave detection from ground-base interferometers (e.g. the LIGO-
VIRGO collaboration [2]) and the observations from the Event Horizon Telescope (EHT)
collaboration [28] have indicated a population of extremely compact objects, known as
black holes (BH), at different mass scales, and confirmed the existence of gravitational
waves, as predicted by GR [31]. Such objects provide a natural “laboratory” to probe
and test the strong gravity regime, whereas it would have been impossible to do on Earth
or at the Solar System scale.

Nowadays, observational and theoretical reasons have led to the question of whether
GR is the complete theory of gravity [86]. While GR describes gravity, the Standard
Model unfolds the other three fundamental interactions, strong, electromagnetic, and
weak interactions, unifying these last two. On one side there is GR, the classical theory
of gravity that however ignores quantum physics aspects. On the other side, the Standard
Model of particle physics is a quantum field theory. What is missing, from a theoretical
point of view, is a consistent theory of quantum gravity. By trying to describe the
gravitational field from a standard quantum field theory perspective, it appears the fact
that GR is not a renormalizable theory, making it difficult to quantize gravity. Moreover,
it foresees the presence of spacetime singularities such as the ones at the center of BHs,
where the laws of physics break down because of the intense gravitational force and
infinite curvature of spacetime [43]. Additionally, the standard cosmological model, aka
ΛCDM model, is based on GR as the theory to describe the gravitational interaction;
however, it requires additional components in order to match observational constraints at
different scales and environments. For instance, to explain the formation of large-scale
structure in the early Universe (e.g. [76]), the galaxy rotation curves (e.g. [48]) and
the anisotropies in the cosmic microwave background (CMB), a collisionless, cold dark
matter (CDM) component has been introduced, which should account for the ∼ 26% of
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CHAPTER 1. INTRODUCTION

the matter-density budget in the Universe [3]. In addition, the accelerated expansion of
the Universe [9, 77] is explained with the presence of a dark energy component (DE),
which dominates the cosmological energy-density (∼ 68%). Both CDM and DE are still
completely unknown and undetected directly.

In an endeavor to explain the observed Universe, several alternatives/modifications
of GR have emerged. According to Lovelock’s theorem [58], Einstein’s field equations
(with a cosmological constant) are the only possible second-order Euler-Lagrange equa-
tions derived from a Lagrangian scalar density in four dimensions (4D hereafter) that is
constructed solely from the metric. Thus, evading the assumptions of Lovelock’s theo-
rem offers many different possibilities for exploring deviations from GR. In this way, an
alternative theory of gravity ends up freeing new degrees of freedom. One of these may
be to include new, so far undetected, fundamental fields.

In particular, by including scalar fields along with the metric tensor field, one obtains
a set of modified gravity theories known as scalar-tensor theories. In this framework,
the additional scalar field is dynamical, and non-minimally coupled to the curvature
of spacetime. In scalar-tensor theories, the action typically includes a scalar field (ϕ)
that couples to the Ricci scalar (R) of the spacetime metric, with a kinetic term and
a potential. These theories aim at explaining the observable Universe and address the
problem of the cosmological constant (extremely small and yet nonzero), introducing a
decaying cosmological “constant” [40].

Extended scalar-tensor theories (ESTTs) are an extension of the previous theories,
allowing for more general interactions involving the scalar field and new terms: the
Lagrangians contain possible algebraic invariants of second-order with a non-minimal
coupled dynamical scalar field. They are at most quadratic in the second derivatives
of the scalar field and they allow higher-order equations of motion. This study takes
into account extended scalar-tensor-Gauss-Bonnet gravity (ESTGB) where the scalar
field is non-minimally coupled to the Gauss-Bonnet invariant (GB) [41]. The latter is a
particular combination of curvature terms resulting in a topological invariant in 4D. This
means that the integral over a closed manifold of the GB term is a constant characterizing
the manifold; however, when the GB invariant is coupled to the scalar field it is able
to dynamically contribute to the equation of motion, and so modify the dynamics of
gravity. In particular, the GB term is the only second-order curvature correction that
leads to equations of motion that are still of second-order, as in GR (and so it does not
introduce ghosts, see e.g. [73]).

These theories come with a peculiar mechanism that describes the behavior of the
scalar field concerning the surrounding large curvature environment. Indeed, while scalar
fields are thought to be suppressed in the weak gravity regime (GR is restored), they
could be non-vanishing near compact objects. Whenever the curvature of spacetime is
strong enough, the coupling of the scalar field to the intense gravitational field - generated
by the strong curvature of space-time around compact objects - leads to a phenomenon
called scalarization in which, under specific conditions, these compact objects can exhibit
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CHAPTER 1. INTRODUCTION

around them a real scalar field. For values of the curvature large enough (above some
threshold), the non-minimal coupling of the scalar field and the spacetime curvature
becomes stronger and the scalar field could acquire a sufficiently negative effective mass,
leading to a tachyonic instability. While in physics, the mass squared of a particle or field
is usually positive, leading to stable oscillatory behavior, a negative mass squared makes
the field experience exponential growth instead of oscillation. This instability indicates
a phase transition of the system to a new branch of stable solution characterized by a
non-trivial scalar field configuration (see Fig. 1.1).

Figure 1.1: Compact objects can exhibit a non-trivial scalar configuration since the
extremely high curvature around them triggers scalarization through the non-minimal
coupling between the scalar field and curvature term.

In ESTGB, the scalarization mechanism allows for circumventing the no-hair con-
jecture, which in the framework of GR states that BH can be completely described by
only three externally observable classical parameters: mass, electric charge, and angular
momentum [83, 53, 12]. In other words, according to GR, no additional “hair” can ex-
ist outside the BH event horizon, where “hair” is the colloquial word referring to other
information or fields; however, in some modified gravity theories characterized by the
presence of higher-curvature terms, such as the quadratic GB invariant, BH can grow
“hair” under certain constraints [6, 10]. These constraints are concerned, for example,
with the form of the coupling function, leading to different types of scalarization.

In the dilatonic type (Einstein-dilaton-Gauss-Bonnet theory) [85] the form of the
coupling function can be linear, f(ϕ) = αϕ (α the coupling constant), or exponential,
f(ϕ) = 1

α
(1 − eαϕ). In this case, a scalar field is always present, BHs always have hair,

and they never reduce to the Schwarzschild solution.
In the case of spontaneous scalarization [5, 36] the couplings can be of the form

f(ϕ) = αϕ2, f(ϕ) = 1
2α

(1−e−αϕ2), and it admits both BH solutions of GR - Schwarzschild
vacuum - and hairy BHs - scalarized Schwarzschild. As they are simultaneously present,
it is possible to go from vacuum to scalarized solutions thanks to any small perturbation
(quantum fluctuations) that enhance the GB curvature invariant. When the GR BH
becomes linearly unstable below a certain BH mass, the scalarized solution is preferred.
This mechanism resembles a phase transition between two configurations: scalar field
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CHAPTER 1. INTRODUCTION

activated under strong-gravity regimes and inefficient in weak-gravity regimes.
Interestingly, non-linear scalarization can also exist. Characterized by non-linear

coupling functions such as f(ϕ) = βϕ4, f(ϕ) = 1
4α

(1− eβϕ
4
) (even power and higher than

2). In this case, Schwarzschild solutions exist and are always linearly stable, while they
are unstable against non-linear (large) perturbations. Non-linear instability leads to the
formation of new BHs with scalar hair, and at least two scalarized solutions exist. It
is said to be non-linear since this time one needs non-linear, stronger, perturbations to
transition to these new branches.

Generalizations of these theories have led to considering the effects of mass and the
presence of non-zero potential for the scalar field on the scalarization mechanism and its
conditions[75, 62].

Finally, it is also intriguing to study the behavior under a mixture of linear and
non-linear, such as it can be f(ϕ) = αϕ2 + βϕ4.

While scalarization is a phenomenon that concerns sufficiently compact objects and
the high curvature of spacetime they cause (BH and Neutron Star), low-compactness
objects can suffer scalarization when helped by a positive cosmological constant. As a
consequence, galaxies and galaxy clusters could present an additional mass profile other
than the observable matter. There is then the possibility that this additional mass profile
from scalarized low-compactness objects in the presence of positive cosmological constant
could account for dark matter.
This study follows the scalarization of BHs and searches then for the scalarized cosmo-
logical horizon in the framework of ESTGB gravity and a positive cosmological constant.
In particular, it has been considered the case of non-linear scalarization with a quartic
coupling function f(ϕ) = βϕ4.
The first section is dedicated to the review of the steps that have led to the formula-
tion of GR and its main concepts. Inside the GR mathematical framework, the most
mysterious and exotic prediction of this theory is explored: BHs, from the simplest -
non-rotating and uncharged Schwarzschild BH - to the most general solution - rotating
and electrically charged Kerr-Newmann BH.
Starting from the second section, the question of how it is possible to overcome GR is ad-
dressed: Lovelock’s theorem and Ostrogradsky’s theorem are stated, followed by a brief
presentation of the possible applications of scalar fields in the most recent developments
in physics. Regarding scalar fields in the context of modified gravity, it is important to
present then the scalarization mechanism.
The field of scalar-tensor theories is vast, but since this study focuses in particular on
the ESTGB with a positive cosmological constant, the GB invariant is presented.
The last part of this thesis reports the steps followed to obtain results from this model,
from the setting of the equations to their numerical integration. Finally, the main plots
that have been obtained are shown, concerning the main parameters of the problem such
as the value of the cosmological constant, the radius of the cosmological horizon, and
the amplitude of the scalar field.
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Chapter 2

Classical General Relativity

Historically speaking, Newton’s mechanics and its Galilean Principle of Relativity have
been established for decades: “The laws of (Newtonian) mechanics are the same for
all inertial observers”. In Newton’s theory, time and space are absolute and separate
entities. In addition, gravity is described as a force that acts at a distance and instanta-
neously between two masses, it is proportional to the product of the masses and inversely
proportional to the square of the distance between them. With Newton’s gravity, we can
successfully explain and predict the orbit of planets and objects on Earth.

In the 19th century Maxwell formulated his theory of electromagnetism, predicting
the light to travel at a fixed velocity, denoted with the letter c. However, on one side
the theory did not specify any frame of reference in which the laws were valid, on the
other the light could not travel at c in every frame of reference according to Galileo’s
transformations. This question led to the well-known search for the ether, hypothesized
to be the privileged frame, even though it was never found. To solve this dilemma, in
1905 Einstein formulated the theory of Special Relativity (SR). This theory is based on
two postulates:

• The speed of light in a vacuum is independent of the observer;

• The laws of physics are the same for all inertial observers.

The Galilean Principle of Relativity is thus incompatible: Galilean velocity composi-
tion formula would predict unbounded velocities, whereas the speed of light is taken to
be fixed in the vacuum. As a consequence, the Galilean transformations were replaced
by Lorentz (Poincaré) transformations to relate space and time coordinates when chang-
ing from one inertial frame of reference to another: space and time thus merge into a
single entity, spacetime; phenomena such as relativity of simultaneity, time dilation, and
length contraction arise when moving between different inertial reference frames. Even
if simultaneity is relative, with SR Einstein ensured that the cause-effect sequence would
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CHAPTER 2. CLASSICAL GENERAL RELATIVITY

have remained the same in all frames of reference. However, SR also has its limitations:
it does not address an accelerating frame of reference, and it does not include gravity.

A turning point in the formulation of GR (as a generalization of the previous one) has
been the elaboration of the Einstein Equivalence Principle (EEP1, known as the famous
Einstein’s mental experiment of an object inside an elevator): “Motion in a uniform
gravitational field can not be distinguished from free fall” (see Fig. 2.1). In other words,
no local experiment can tell whether the observer is freely falling or is not subjected to
any gravitational attraction at all.

Figure 2.1: Objects falling freely in gravity field all accelerate by the same amount, so
they move the same way as if they were in a region of zero gravity - “weightless”.

If the effects of gravity seem to vanish in a free fall motion, then the effects experienced
in an accelerated frame of reference appear similar to gravity. What we perceive as
gravitational force is actually the result of being in a non-inertial (accelerated) frame of
reference. It is precisely this close connection between acceleration and gravity that has
led to the description of gravity no longer as a force at a distance (Newton’s gravity) but
rather as a geometric property of spacetime (see Fig. 2.2).

More specifically, gravity is geometrically interpreted as the effect of the curvature
of spacetime, and what causes the curvature are mass and energy (they are a source
of gravity). In turn, the motion of objects and propagation of light are influenced by
how spacetime is curved. Furthermore, GR manages to include every frame of reference
(accelerating and inertial) thanks to the mathematical framework of differential geometry
“The laws of physics are the same in all reference frames (for all observers)”. This
implies the mathematical requirement that all physical laws be expressed in terms of

1Its precursor is the Equivalence Principle in the Galilean (or Newtonian) form, also known as Weak
Equivalence Principle (WEP). It states “For all physical objects, the gravitational charge (mass) mg

equals the inertial mass mi”. This means that every object falls at the same rate in a gravitational field,
independent of the composition of the object, as Galileo has demonstrated.
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CHAPTER 2. CLASSICAL GENERAL RELATIVITY

Figure 2.2: Newton described gravity as a force that acts at a distance and instanta-
neously, while Einstein introduced a geometrical interpretation of gravity as the curvature
of spacetime caused by mass and energy

tensor in the sense of differential geometry, so they are covariant under any arbitrary
smooth coordinate transformation.

In this way, the formulation of GR must be compatible with SR. The mathemati-
cal interpretation of the EEP leads to identifying the free-falling reference frame with
the inertial frames of SR. According to SR, physics in these frames must be locally
described by tensorial equations in the sense of the local Lorentz group. Then, accord-
ing to the Principle of General Covariance “The laws of physics in a general reference
frame are obtained from the laws of Special Relativity by replacing tensor quantities of
the Lorentz group with tensor quantities of the spacetime manifold”. Practically, this
means interpreting tensors under the Lorentz group as tensors under general coordinate
transformations, replacing the Minkowski metric of SR with a generic metric tensor and
the partial derivative with the metric covariant derivative.

Finally, having set the physical idea under gravitational interaction and the mathe-
matical framework of differential geometry, Einstein’s field equations describe how mass
and energy distribution curve spacetime:

Gµν + Λgµν = Rµν −
1

2
Rgµν + Λgµν =

8πGN

c4
Tµν . (2.1)

In the expression above GN is the gravitational constant, Λ is the cosmological constant,
Gµν = Rµν − 1

2
Rgµν is the Einstein Tensor, Tµν is the stress-energy tensor, R is the

Ricci scalar and Rµν is the Ricci tensor. In particular, the latter are contractions of the
Riemann tensor. The characterization of each one is explained below:

• Riemann Tensor (Rµνρδ): the Riemann tensor is a (1, 3)-tensor that defines com-
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CHAPTER 2. CLASSICAL GENERAL RELATIVITY

pletely2 the curvature of a manifold in a way that is intrinsic (does not need to see
manifolds in a larger space and it is independent from the coordinates). Indeed the
Riemann tensor uses holonomy to detect curvature. Considering manifolds with-
out torsion (symmetric affine connection and null covariant derivative of the metric

tensor) and three vector fields on it, W⃗ , V⃗ , A⃗, the Riemann tensor is defined as
follows:

R(V⃗ , W⃗ ) = [∇V⃗ ,∇W⃗ ]A⃗ . (2.2)

Specifically, these objects in differential geometry describe how base vectors trans-
form as they are parallel transported on a manifold. The Riemann tensor defines
curvature, in particular, as the effect of the parallel transport of a vector field along
a closed loop. Considering on a manifold a closed loop built from two vector fields
that commute (W⃗ and V⃗ in Eq. 2.2), the Riemann tensor takes the two vector
fields that identify the directions of the loop and the parallel transported vector
(A⃗ in Eq. 2.2) as arguments. As a result, it gives a vector that measures how A⃗
has changed after the parallel transport around that loop. If all its components
vanish, Rσ

µνρ = 0, it means there is no holonomy, the parallelly transported vector
has the same orientation between the beginning and the end of the loop, and so
the manifold is flat. Otherwise, if there are some non-vanishing components, it
indicates the presence of holonomy, meaning the vector does not return to itself
due to the curvature of the manifold.

There is also another way the Riemann tensor discloses the curvature of spacetime
and it is called geodesic deviation: on curved manifolds, geodesics3 that are par-
allel at first naturally come closer or spread out over space. The Riemann tensor
measures the relative acceleration between geodesics (how fast they come closer
or move away). Therefore, it can be said that the Riemann Tensor completely
describes spacetime and how it is curved; it encrypts spacetime shape.

In terms of the affine connection Γ

Rσ
µνρ =

∂Γσ
µρ

∂xν
−

∂Γσ
νµ

∂xρ
+ Γσ

νλΓλ
µρ − Γσ

ρλΓλ
νµ . (2.3)

The affine connection, also known as Christoffel symbols, is expressed in terms of
the inverse metric and first-order partial derivatives of the metric:

Γα
µλ =

1

2
gαν
{∂gµν
∂xλ

+
∂gλν
∂xµ

− ∂gµλ
∂xν

}
, (2.4)

and gαν indicates the inverse of the metric tensor.

2All other entities that describe curvature can be obtained from it.
3Lines composed by the union of infinitesimal parallel transport of a vector with respect to itself

∇V⃗ V⃗ = 0.
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CHAPTER 2. CLASSICAL GENERAL RELATIVITY

• Ricci tensor (Rµν): the Ricci tensor is the contraction of the Riemann tensor Rαβ =

Rρ
αρβ (sum over the index above and the index below in the middle). In this way,

the Ricci tensor can be thought of as a contraction of the Riemann tensor from the
4× 4× 4× 4 elements of the Riemann tensor to the 4× 4 of the Ricci tensor. The
Ricci tensor is a (0, 2)-tensor, a function that takes two vectors and gives a scalar
as a result.

In particular, the physical interpretation of the Ricci tensor can be seen by cal-
culating it on two identical vectors: R(V⃗ , V⃗ ) is the proportionality constant that

relates volumes and their second derivative rate of change in the direction V⃗ . While
the Riemann tensor controls a vector along its parallel transport, the Ricci tensor
governs the evolution of small volumes parallelly transported along geodetic curves.
Ultimately, the Ricci tensor detects changes in areas/volumes.

If the geodesics converge, areas and volumes become smaller in the direction V⃗ and
it is said that space has positive Ricci curvature in that direction, R(V⃗ , V⃗ ) > 0;
if the geodesics diverge, areas and volumes become bigger and space has negative
Ricci curvature R(V⃗ , V⃗ ) < 0. Finally, space has R(V⃗ , V⃗ ) = 0 if areas and volumes
remain the same. It is important to notice that Rαβ = 0 does not mean the space
is flat, but just that space does not cause changes in areas and volumes along
geodesics.

• Ricci scalar (R): Ricci scalar is the contraction of the Ricci tensor with the space-
time metric and it is a curvature invariant of a Riemannian manifold that gives
global curvature: R = gµνRµν or R = gµνgρτRρµτν . It is a (0, 0)-tensor, so a func-
tion that associates to every point of the Riemannian manifold a real number that
is determined by the intrinsic geometry of the manifold . This number charac-
terizes the overall geometry of spacetime, measuring how volumes and areas are
distorted: if space has R > 0 (positive curvature), the area of a circle of the same
radius is smaller than the one in a Euclidean space, else R > 0 (negative curvature)
means the area of a circle of same radius in that space is bigger than the one in a
Euclidean space. Finally, if R = 0 the space is flat.

In GR, the metric gµν in a 4D Lorentzian manifold (the spacetime) is a 4 × 4 matrix
that describes its geometric and causal structure. A metric is a dynamical object, so
Einstein’s field equations tell how spacetime changes (the independent variables describe
time evolution and spatial distribution), given a distribution of mass-energy densities.
Namely, Eq. 2.1 is a set of ten-independent4 second-order differential equations for the
metric (both sides are symmetric two-index tensors). However, the Bianchi identity,

4The metric tensor gµν in 4D has 16 independent component as each index can go from 0 to 3, but
since it is symmetric, gµν = gνµ, the independent components are just 10.
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CHAPTER 2. CLASSICAL GENERAL RELATIVITY

which is a property of the Einstein tensor (and assures the conservation of the energy-
momentum tensor)

∇µGµν = 0 , (2.5)

(with Gµν being the Einstein Tensor) reduced them to only six independent equations, as
the expression above encloses four constraints. In Einstein’s field Eqs. 2.1, one can think
of the left-hand side as the geometrical description of spacetime and the right-hand side
as the content of matter and energy. It is also important to underline that the Newtonian
limit is restored under the following conditions:

• Particles are moving slowly with respect to the speed of light;

• The gravitational field is weak and can be considered as a perturbation of flat
space;

• The gravitational field is static.

Einstein’s field equations are also non-linear. Therefore, it is very difficult to find a
solution: exact solutions can be found only under assumptions such as symmetries and
matter content that simplify the problem. For example, Schwarzschild found the solution
that bears his name in the vacuum (Tµν = 0) assuming spherical symmetry and static
(see Sec. 2.1.1).

Once the components of the metric tensor are found, and so how the spacetime’s
curvature is, it is possible to obtain the trajectories followed by massive particles or
light. Indeed the geodesic equation is

d2xµ

dλ2
+ Γµ

να

dxν

dλ

dxα

dλ
= 0 , (2.6)

where λ can be considered as the proper time for the massive particle or as a generic affine
parameter for light. In this case, geodesics represent paths on 4D spacetime followed by
a particle that is subjected only to gravity and so generalize the concept of a “straight
line” of flat spacetime to a generic manifold (curved manifold). Indeed geodesics are
defined as the shortest distance possible between two points on a Riemannian manifold.
The geodesic equation is of second-order, as Newton’s law of mechanics, and the affine
connection can be seen as the “force” that acts on the object (gravity).

David Hilbert was the first to realize that it was possible to derive Einstein’s field
equations through the principle of least action. This principle is widely used in physics,
from classical to quantum mechanics, and also in GR. It states that a physical system
follows the path between two states for which the action is minimized. Indeed the action
is defined as the integral of the Lagrangian between two states, where the Lagrangian
represents an energy function that encloses the dynamics of the physical system. In
such a way, the action is a functional that takes the behaviour of a system and returns
a scalar. The idea is that since objects that travel in spacetime follow geodesics, the

13
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principle of least action should describe the evolution of a system in a given spacetime.
The Einstein-Hilbert action of spacetime is the following,

S =

∫
dx4

√
−g

[
1

16πGN

R + LM

]
, (2.7)

in which LM is the contribution from mass densities and g indicates the determinant
of the metric. To minimize the action, the variation with respect to the inverse metric
must be zero:

δS =

∫
dx4

[
c4

16πGN

δ(
√
−gR)

δgµν
+

R√
−g

δ(
√
−gLM)

δgµν

]
δgµν

=

∫
dx4

√
−g

[
c4

16πGN

(
δR

δgµν
+

R√
−g

δ
√
−g

δgµν

)
+

1√
−g

δ(
√
gLM)

δgµν

]
δgµν = 0 .

(2.8)

Since the equation above should be true for all variations δgµν , this implies

δR

δgµν
+

R√
−g

δ
√
−g

δgµν
= −16πGN

c4
1√
−g

δ(
√
−gLM)

δgµν
. (2.9)

The right-hand side is defined as proportional to the stress-energy tensor

Tµν = −2
1√
−g

δ(
√
−gLM)

δgµν
= −2

LM

δgµν
+ gµνLM . (2.10)

To calculate the left-hand side, it is needed the variation of the Ricci scalar and the
determinant of the metric. For this to work, the variation in the Riemann curvature
tensor, ∂Rρ

σµν , is first calculated, and then it is contracted. From the expression of the
Riemann tensor in Eq. 2.3, its variation can be obtained using the product rule and
linearity of derivatives:

δRρ
σµν = ∂µδΓρ

νσ − ∂νδΓρ
µσ + δΓρ

µλΓλ
νσ + Γρ

µλδΓλ
νσ − δΓρ

νλΓλ
µσ − Γρ

νλδΓλ
µσ , (2.11)

where δΓρ
νµ is the difference of two Christoffel symbols. Even if the Christoffel symbols

(see Eq. 2.4) are not tensor, the variation δΓρ
νµ is a tensor. Indeed the extra derivative

term in the transformation of Γρ
µν , which is independent of the metric, cancels out when

evaluating the difference of two Christoffel symbols with gµν and gµν + δgµν . Therefore,
its covariant derivative is:

∇λ(δΓρ
νµ) = ∂λδΓρ

νµ + Γρ
σλδΓσ

νµ − Γσ
νλδΓρ

σµ − Γσ
µλδΓρ

νσ . (2.12)

The variation of the Riemann curvature tensor becomes

δRρ
σµν = ∇µ(δΓρ

νµ) −∇ν(δΓρ
µσ) . (2.13)
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Its contraction leads to:

δRµν ≡ δRρ
µρν = ∇ρ(δΓρ

νµ) −∇ν(δΓρ
ρµ) . (2.14)

This expression can then be used to find the variation of the Ricci scalar,

δR = Rµνδg
µν + gµνδRµν = Rµνδg

µν + ∇σ(gµνδΓρ
νµ − gµσδΓρ

ρµ) , (2.15)

having
∇σg

µν = 0 . (2.16)

Since
√
−g∇σ(gµνδΓδ

νµ − gµσδΓρ
ρµ) is a total derivative, it does not contribute to the

action. Indeed, according to the divergence theorem, this term yields a boundary term
when integrated, and since the variation of the metric δgνµ vanishes at the boundary, it
disappears. Thus, we can derive:

δR

δgµν
= Rµν . (2.17)

Jacob’s formula can be exploited to determine the variation of the determinant,

δg = δDet(gµν) = ggµνδgµν . (2.18)

In this case, it becomes

δ
√
−g = − 1

2
√
−g

δg =
1

2

√
−g(gµνδgµν) = −1

2

√
−g(gµνδg

µν) , (2.19)

having
gµνδg

µν = −gµνδgµν . (2.20)

The final result for the variation of the determinant of the metric is:

1√
−g

δ
√
−g

δgµν
= −1

2
gµν . (2.21)

Putting together all the terms

δR

δgµν
+

R√
−g

δ
√
−g

δgµν
= −16πGN

c4
1√
−g

δ(
√
−gLM)

δgµν
, (2.22)

gives finally

Rµν −
1

2
Rgµν =

8πGN

c4
Tµν . (2.23)

When the cosmological constant Λ is included, the action becomes

S =

∫
dx4

√
−g

[
c4

16πGN

(R− 2Λ) + LM

]
. (2.24)
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Taking the variation of the action with respect to the inverse metric as before and using
the least action principle

δS =

∫
dx4

[√
−g

2K

δR

δgµν
+

R

2K

δ
√
−g

δgµν
− Λ

K

δ
√
−g

δgµν
+
√
−g

δLM

δgµν
+ LM

δ
√
−g

δgµν

]
δgµν = 0 ,

(2.25)
1

2K

δR

δgµν
+

R

2K

1√
−g

δ
√
−g

δgµν
− Λ

K

1√
−g

δ
√
−g

δgµν
+

δLM

δgµν
+

LM√
−g

δ
√
−g

δgµν
= 0 , (2.26)

where it has been used K = 8πGN

c4
to simplify the notation. Using Eq. 2.17, 2.21 and

2.10 found before

1

2K
Rµν +

R

2K

−gµν
2

+
Λ

K

−gµν
2

+ (
δLM

δgµν
+ LM

−gµν
2

) = 0 , (2.27)

Rµν −
R

2
gµν + Λgµν + K(2

δLM

δgµν
− LMgµν) = 0 , (2.28)

Rµν −
R

2
gµν + Λgµν −

8πGN

c4
Tµν = 0 . (2.29)

To summarize what is the conceptual core of GR, gravity has gained a geometrical
interpretation in terms of the spacetime curvature (which is flat in SR); energy, in all its
variants, determines the curvature of spacetime, which in turn modifies the motion of
particles. Einstein’s equations of motion and the geodesic equation, which dictates how
particles move through spacetime, form instead the core of the mathematical formulation
of GR: the solution of Einstein’s field equations describes how spacetime is curved by
the energy content, allowing us to calculate how particles move across space and time.

2.1 Black Holes

In the 18th century, Michell [67] and Laplace [57] introduced the concept of “dark star”,
making use of Newton’s gravitational laws and the corpuscular theory of light. According
to them, these objects would be so massive and compact that the escape velocity would
have to be greater than the light speed, making them dark.

With the advent of GR,“dark stars” have been seen in a new “light”, and their
description has evolved into what is now known as BHs. BHs are predicted by GR,
but since their formulation, these solutions have raised perplexity due to the enigmatic
phenomena they imply. They are defined as the region of spacetime characterized by the
presence of the event horizon, a boundary of spacetime that separates events that can
communicate with distant observers from those that cannot (see Fig. 2.3).

This means that everything that crosses the event horizon will never again be able to
reverse its course and that everything within it is trapped and can never reach outside
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Figure 2.3: For a BH to exist there is no necessity for a singularity as long as a horizon
is formed. The BH is the horizon.

observers. For this reason, the term BH refers to the event horizon: not even light can
leave this boundary and reach us as distant observers. The formation of such a horizon
follows from the collapse of matter in a region where the curvature, and therefore the
gravity, is so intense (tending to infinity in the singularity) to trap even the light.

Another important aspect that characterizes BHs in the framework of GR is the
no-hair theorem. The no-hair theorem asserts that all stationary BH solutions of the
Einstein-Maxwell field equations are completely identified by their mass, electric charge,
and angular momentum. This means that if any two BHs share the same value for
these parameters, then they are indistinguishable. Its importance lies in the fact that it
provides a framework where to test GR. The aim is to use advanced tools and techniques
to measure with high precision properties of BHs, searching for possible violations of
this theorem. This is made more difficult by the fact that, due to their nature, BHs
can not be directly detected, but for example, a BH presence can be inferred through
its gravitational effects on the surrounding or through gravitational waves produced
during their merges. BH studies are still far from a complete understanding of these
exotic objects. One approach to address this is by formulating different BH models
with various types of gravity. Indeed, they provide the perfect natural ‘laboratory’ for
studying gravity in the strong-field regime. BHs in modified gravity theories are thought
to affect the large-scale structure and the overall dynamics of the Universe. It remains
an open question whether we can detect deviations from GR under the influence of a
scalar field in BH thermodynamics (properties such as entropy and temperature), BH
shadows, or gravitational wave signals from their mergers.
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2.1.1 Schwarzschild solution

In 1916 Karl Schwarzschild found what can be considered as the simplest BH solution.
The Schwarzschild metric is indeed a solution to the Einstein equation in the vacuum
(Tµν = 05), which describes spacetime around a spherically symmetric mass:

ds2 = −
(

1 − 2GNM

r

)
dt2 +

dr2

1 − 2GNM
r

+ r2
(
dθ2 + sin2 θdϕ2

)
, (2.30)

having c = 1, where {t, r, θ, ϕ} are the Schwarzschild coordinates, adapted to the spher-
ical symmetry of spacetime (in particular r is the areal radius), GN is the Newton’s
constant and M the Newtonian mass. Associated with this solution, there is a charac-
teristic length scale, the Schwarzschild radius, that defines the size of the event horizon:

RH =
2GNM

c2
= 2GNM . (2.31)

Moreover, this solution is characterized by asymptotic flatness: when r ≫ 2GNM
Minkowski flat metric is restored. The closer you get to RH , the more these ob-
servers deviate from being inertial observers. As the Birkhoff theorem demonstrates,
the Schwarzschild solution is also the unique and more general possible with the con-
ditions above. Therefore, it defines the spacetime outside every non-rotating spherical
symmetrical source without charge. When being sufficiently distant, there is no obser-
vational difference between the gravitational field caused by a BH or any other spherical
source (for example, a star or a planet) with the same mass. However, some peculiar
phenomena occur when it is possible to approach the Schwarzschild radius RH . This is
the case only for BHs, extremely dense and compact objects that are entirely contained
within RH . As it can be noticed by Eq. 2.30, the metric has two singularities at r = RH

and r = 0 (see Fig. 2.4).
The first one is a coordinate singularity and can be removed by a coordinate trans-

formation. One way to verify that RH is not a special region for spacetime is to calculate
the curvature scalars6 (quantities that are independent of the choice of coordinates). The
easiest one would be the Ricci scalar R, but in this case (asymptotically flat spacetime)
it is necessarily null, and the same is for the contraction of the Riemann Tensor with
itself, RµνR

µν . What can be used is instead the Kretschmann scalar (local curvature)
for the Schwarzschild solution:

RµνρσRµνρσ =
48G2

NM
2

r6
, (2.32)

that calculated in RH does not diverge. Moreover, when considering radially infalling
geodesics, they can cross RH without problems: a particle which falls radially reaches and

5Taking the trace of Einstein’s tensor (with Λ = 0.) we get R = 0. In this way the Einstein vacuum
equations simplify to Rµν = 0.

6All curvature scalars can be built from the Riemann Tensor.
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Figure 2.4: In the image it is represented not only the coordinate singularity (event
horizon) and the physical singularity at the center but also the photon sphere and the
accretion disk. The photon sphere is a boundary where photons are trapped in circular
unstable orbits. The accretion disk is formed by diffuse material (gas and dust) orbiting
around the BH, spiraling inward, and heated by friction. This is the cause of electro-
magnetic radiation, often in the X-ray.

crosses the Schwarzschild radius in a finite proper-time, while the fact that the coordinate
time diverges is another symptom of the fact that the Schwarzschild coordinates are not
suitable for describing the totality of the trajectory. Lastly, it is possible to estimate the
radial tidal force from the components of the Riemann tensor:

δr̈

δr
≃ GNM

r3
, (2.33)

and see that they have a finite value in RH . All these considerations lead to the conclusion
that RH is not a boundary between two distinct manifolds, but rather the Schwarzschild
manifold is unique and requires at least two charts7 to be covered.

Completely different is instead the singularity at r = 0, as it is a true physical sin-
gularity, where the curvature of spacetime becomes infinite and spacetime itself breaks
down. There, invariant curvature scalars become infinite, and geodesics are incomplete.
At that point, even the radial tidal forces diverge. Thus, r = 0 is the gravitational
singularity at the center of BH, enclosed by the event horizon at the distance RH , just
a coordinate singularity. This latter is a boundary in spacetime but, at least locally,
it does not show any peculiarity: in case an astronaut happens to survive crossing the
horizon of Schwarzschild, he cannot notice anything strange or different (the components
of the Riemann tensor in a local inertial system are also finite in r = RH); however, the

7A chart is defined as the set (A, ψ), being A a subset of the manifold M (A ⫅ M) and ψ an
invertible continuous map ψ : A→ Rn.
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Schwarzschild horizon is a causal horizon, and the astronaut cannot reverse course. In-
deed, using the Schwarzschild coordinates t, r, θ, ϕ in the domain r > RH , the metric has
signature −,+,+,+, while in the domain r < RH the signature is +,−,+,+. Further-
more, for r → R+

H , gtt → 0 e grr → +∞ while for r → R−
H , gtt → 0 e grr → −∞8.

This demonstrates that gtt and grr change sign across RH and, for r < RH , t is a spatial
coordinate and r become a time-like coordinate. Since particles must follow a time-like
trajectory, once they have crossed RH , they will be forced to follow a trajectory that
continuously evolves r, inevitably directed towards r = 0 and, therefore, towards the
center.

This fate is also common to any photon that is within the Schwarzschild radius: if
a particle that has crossed RH emits a photon, it will also be forced to follow a direct
trajectory forward in “time”, that is towards decreasing values of the r coordinate. The
meaning of all of this is that the singularity r = 0 is in the future of any time or light-like
trajectory inside RH , i.e. all particles and photons are destined to precipitate inevitably
towards the center.

This shows how everything that crosses the Schwarzschild radius remains trapped
inside, with no way to get out of it and thus no way to communicate with any observer
outside RH . From it, the definition of the Schwarzschild radius as the Schwarzschild
horizon. At the Schwarzschild horizon, distant observers experience the effects of grav-
itational time dilation and gravitational redshift, as predicted by Einstein. The first
one comes from the fact that, as it has already been said, the time component of the
Schwarzschild solution diverges when approaching RH . From the viewpoint of an asymp-
totically inertial observer placed at r ≫ RH , the time component is their proper time.
Therefore, the particle takes an infinite amount of time to reach the Schwarzschild ra-
dius, and in fact, he would never see it cross it. In other words, clocks near a BH would
appear to tick slower than those farther away from the BH.

At the same time, if the particle is sending light signals, the gravitational redshift in
the Schwarzschild metric is described by the following expression:

ωn = ωs

√
1 − vn
1 + vn

√
1 − RH

rn
, (2.34)

where ωn is the frequency of the n-th emission that an asymptotically inertial observer
receives. The first square root is the contribution from the Doppler effect for a particle
falling with velocity vn, and the second square root represents the gravitational redshift
effect (see Fig. 2.5). As a consequence, asymptotically inertial observers receive fainter
light signals at increasing intervals until r → RH , where their intensity decreases to zero
(the energy of the emitted photon is redshifted) and the receive interval tends to infinity
(the particle appears to freeze at the event horizon). Hence, we would observe a particle
that slows down more and more as it gets closer to the Schwarzschild radius, and that

8This is indeed what defines a horizon: the grr component of the metric diverges.
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sends light signals tending more and more toward the red wavelengths until the photon
that starts from the Schwarzschild radius spends all its energy before it can be detected
by us (it is said to undergo an infinite gravitational redshift, its frequency approaches
zero). Eventually, the falling object fades away until it can no longer be seen and we
would never see the particle actually reaching and crossing RH .

Figure 2.5: Imaging a probe that is radially falling towards a BH and is emitting light
signals, their wavelength will be stretched due to the gravitational redshift effect.

2.1.2 Reissner-Noström solution

Schwarzschild’s BHs refer to the simplest type, of spherical symmetry, with just mass
and without any electric charge or angular momentum. But this is not the only one.
There exist also solutions that describe more general BHs. Non-rotating and spherically
symmetric BHs with an electric charge are described by the Reissner-Noström (RN)
metric, a static and stationary solution to the Einstein-Maxwell field equations.
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In Schwarzschild-like coordinates t, r, θ, ϕ:

ds2 = −
(

1 − RH

r
+

R2
Q

r2

)
dt2 +

dr2

1 − RH

r
+

R2
Q

r2

+ r2
(
dθ2 + sin2 θdϕ2

)
, (2.35)

where RH is defined as in Eq. 2.31, while RQ is the characteristic length scale corre-
sponding to an electric charge Q given by:

R2
Q =

Q2GN

4πε0c4
, (2.36)

with ε0 the electric permissivity in the vacuum. In particular, RN BHs have two con-
centric event horizons (see Fig. 2.6), identified by the following equation9:

r± =
1

2

(
RH ±

√
R2

H − 4R2
Q

)
. (2.37)

These two event horizons become degenerate for 2RQ = RH , indicating an extremal BH.
It can not exist a BH with 2RQ > RH as if the charge is greater than the mass, then the
term under the square root becomes negative and no physical horizons could exist.

Figure 2.6: In the image there are represented the two horizons that characterized a
non-rotating and spherically symmetric BH

2.1.3 Kerr-Newmann solution

Finally, the most general known solution for a BH, which has both angular momentum
and charge is the Kerr-Neumann BH (see Fig. 2.7). Indeed, the Kerr-Neumann metric is

9The radius at which the component grr diverges defines the horizons.
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a vacuum solution of the Einstein-Maxwell field equations that describes the spacetime
geometry around a mass that is electrically charged and rotating. In the Boyer-Lindquist
coordinates:

ds2 = −
(
dr2

∆
+ dθ2

)
ρ2 + (cdt− a sin2 θdϕ)2

∆

ρ2
− ((r2 + a2)dϕ− acdt)2

sin2 θ

ρ2
, (2.38)

where RH is defined as in Eq. 2.31, RQ as in Eq. 2.36, and

a =
J

Mc
, ρ2 = r2 + a2 cos2 θ, ∆ = r2 −RHr + a2 + R2

Q . (2.39)

Even if the mass M of a BH can take any positive value, its total electric charge Q and
angular momentum J are constrained by the mass following the condition below:

Q2

4πε0
+

c2J2

GNM
⩽ GNM

2 . (2.40)

For a non-rotating BH, the singularity takes the shape of a single point, while for a
rotating BH, it is smeared out to form a ring singularity that lies in the plane of rotation.
In both cases, the singular region has zero volume, contains all the mass of the BH, and
therefore has infinite density.
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Figure 2.7: The picture shows schematically the structure of a Kerr-Newmann BH. In
particular, it presents the ergosphere, a region of spacetime that surrounds rotating BHs,
due to frame-dragging. It can be noticed that it coincides with the event horizon at the
poles while it enlarges on the equatorial plane. Inside the ergosphere, an object cannot
stand still, but it moves in the direction of the BH rotation. Indeed, that object would
have to move faster than the speed of light in the opposite direction to just stand still.
In the image, it can also be noticed the ring singularity.
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Chapter 3

Beyond GR

In the introduction, some of the mysteries and questions that modern physics is struggling
with were presented. In particular, GR does not fully describe DM and DE on a large
cosmological scale since it predicts their effects but does not go inside their fundamental
nature. For this reason, the idea that corrections are needed in order to have a complete
theory of gravity that is able to explain all the observable universe is of growing interest
[71, 24, 72]. As GR correctly describes the gravitational interaction in high curvature
and reduces to Newton’s theory of gravity - which has been verified to correctly describe
interactions in low curvature and small scales - the future perspective is to extend GR
in those regimes where nowadays it seems to fail. This section aim is to present some
of the paths that researchers are following to build a consistent theory of gravity and
discover the true nature of our Universe.

There exist two fundamental theorems that guide the development of the gravitational
action for other possible theories: Lovelock’s theorem [59] and Ostrogradky’s theorem
[69, 92]. While the former states the uniqueness of GR under precise conditions, thus
laying the foundations for finding alternative ways beyond GR, the latter restricts the
equations of motion (EOM) to be at most second-order in order to avoid runaway negative
energy.

3.1 Lovelock’s theorem

Lovelock’s theorem (1971) states that, in 4D, the only second-order Euler-Lagrange equa-
tions for a metric which are derivable from an action that contains only the 4D metric and
its derivatives up to the second-order are the Einstein’s field equations. In other words,
Lovelock assures that GR is the only gravity theory in 4D that satisfies the following
assumptions:

• Second-order equation of motion for the metric;
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• Spacetime is 4D;

• Locality;

• No extra fields, which means that only the metric is involved in the gravitational
action, and there are no extra degrees of freedom;

• Covariance, meaning that laws of physics are invariant under arbitrary differen-
tiable coordinate transformations.

Therefore, to go beyond GR and elaborate alternative gravity models, one must abandon
some of these assumptions. Since any gravitational theory other than GR can be thought
of as a possible way around Lovelock’s theorem, it is evident how modifications of GR
separate in many different branches. Examples of these are:

• Beyond second order EOM;

• Higher dimensional spacetime;

• Non-local theories;

• Add new field content and extra degrees of freedom (scalar, vector, tensor).

Every proposed model takes into consideration one or more of these possible modifica-
tions to GR. By changing the nature of the constraints of the theory, it ends up freeing
new degrees of freedom.

Lovelock also expanded his thoughts on higher dimensions, elaborating the most
general metric theory of gravity in N -dimensions (ND hereafter) that satisfy the following
conditions:

• Symmetric;

• Divergence-free;

• Depends on metric and its derivatives up to the second-order.

He studied what could be, in any given ND, the most general combinations of geometric
invariants that one can add in the action, such as it yields to second-order EOM. The
resulting unique ND theory of gravity, which has the same properties as GR, contains
non-linear corrections to the Einstein-Hilbert Lagrangian. These corrections account
for the additional dimensions and ensure that the theory reduces to Einstein’s GR in
4D spacetime. As it can be seen in Tab. 3.1, these corrections are different ways of
contracting the Riemann tensor, while in 4D, the only independent scalar constructed
out of the Riemann tensor, Rµνσρ, that will give EOM that are not higher than second-
order for the metric, is the Ricci scalar R. These additional terms are known as Lovelock
invariants: they generalized the Eintein-Hilbert action of GR, and led to modified field
equations.
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Table 3.1: Unique gravity Lagrangians in higher dimensional spacetimes

Spacetime Unique gravity Lagrangian
D=3, 4 LI = R + Λ

D=5, 6
LII = LI + αGBLGB

LGB = RαβγδRαβγδ−4RαβRαβ+R2

D=7, 8 LIII = LII + R3 + 3RRµναβRαβµν − 12RRµνRµν + 24RµναβRαµRβν

+16RµνRναR
α
µ + 24RµναβRαβνρR

ρ
µ + 8Rµν

αρR
αβ
νσR

ρσ
µβ + 2RαβρσR

µναβRρσ
µν

Thus, Lovelock’s work has led to the natural generalization of Einstein’s GR to higher
dimensions. Lovelock’s gravity indicates the most general metric theory of gravity in ND
spacetime yielding second-order EOM. The formulation of the Lovelock’s gravity in ND
is the following:

L =
√
−g

n=j∑
n=0

αnRn, Rn =
1

2n
δµ1,ν1·µnνn
α1β1·αnβn

n∏
i=1

Rαiβi
µiνi , (3.1)

where
δµ1,ν1·µnνn
α1β1·αnβn

(2n)!δµ1

[α1
δν1β1

· δµn
αn
δνnβn]

, (3.2)

is the generalized Kronecker delta (anti-symmetric product of Kronecker deltas), Rαiβi
µiνi

is the Riemann tensor, and j is such that D = 2j+2 for even dimensions and D = 2j+1
for odd dimensions. The action in higher dimensions is thus given by Euler densities
which are polynomials in the Riemann tensor (Lovelock invariants) and give second-
order EOM.

3.2 Ostrogradsky’s theorem

Ostrogradsky’s theorem establishes the importance of having EOM at most of the second-
order. Indeed, he showed that, otherwise, non-degenerate Lagrangians with time-derivatives
higher than the first lead to Hamiltonians that are unbounded from below. These dy-
namical systems can not be physical, leading to Ostrogradksy instabilities: the energy of
the system can have any arbitrarily negative value. Ostrogradsky’s theorem can be seen
as an explanation for why physical phenomena are all described by differential equations
of second-order (Newton’s equations of motion, Maxwell’s equations, Einstein’s equa-
tions...). For example, it can be considered a Lagrangian which depends on q(t), the
generalized coordinates of the system (for example, θ for a simple pendulum), and its
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first (generalized velocities) and second time-derivatives:

L ≡ L(q, q̇, q̈) . (3.3)

The Euler-Lagrange equation is

∂L

∂q
− d

dt

∂L

∂q̇
− d2

dt2
∂L

∂q̈
= 0 . (3.4)

Assuming non-degeneracy, ∂2L
∂q̈2

̸= 0, then

q(4) = F (q, q̇, q̈, q(3)) → q = G(t, q0, q̇0, q̈0, q
(3)
0 ) . (3.5)

The equations of motion are of fourth-order, and since the solution depends on four initial
conditions, there must be four canonical coordinates. In particular, non-degeneracy im-
plies that the phase space transformation can be inverted, and the canonical coordinates
can be expressed in terms of q and vice versa. They are given by:

Q1 ≡ q , Q2 ≡ q̇ , P1 ≡
∂L

∂q̇
− d

dt

∂L

∂q̇
, P2 ≡

∂L

∂q̈
. (3.6)

The Hamiltonian is defined in the standard way as:

H(X1, X2, P1, P2) =P1Q̇1 + P2Q̇2 − L(Q1, Q2, Q̇2)

=P1Q̇1 + P2f(Q1, Q2, P2) − L(Q1, Q2, f(Q1, Q2, P2)) , (3.7)

where (due to nondegeneracy)

Q̇2 = f(Q1, Q2, P2) . (3.8)

The Hamiltonian is linear in the canonical momentum variable P1, it is unbounded
from below, and hence the system can not be stable as it could have a negative energy
value (Ostrogradsky instability). Thus, when building new scalar-tensor theories, the
requirement of EOM of second-order is one of the most important constrain to impose
in order to have a theory of gravity free from Ostrogradsky instability.

3.3 Scalar Fields

As has already been mentioned in the previous section, one possible way to overcome
Lovelock’s theorem, and so GR, is to introduce new degrees of freedom. This can be
done, for example, by introducing new scalar, vectorial, or tensorial fundamental fields.
In particular, scalar fields are recently being employed in many realms of physics: they
appear in unified theories (string theory) and many alternative theories of gravity. They
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have been of particular interest because of the new possibility they open to study and
interpret the Universe. Some of them are thought to be at the very basics of the Universe
[78, 81, 14, 65, 64, 42, 87].

In the Standard Model of particle physics, the Higgs boson was finally detected in
2012 by ATLAS and CMS [27]. This is a massive scalar field with the role of giving mass
to elementary particles through the Higgs mechanism.

Scalar fields have been also employed in the development of quantum gravity, in the
attempt to unify GR and quantum mechanics [34].

In Cosmology, during the inflationary period, a scalar field is the possible responsible
for the non-adiabatic cosmic expansion of the Universe in its early history [94]. Its
physical nature is still under debate, but there might be connections with the Higgs
boson itself [84], the dilaton field of string theory in the context of quantum gravity [56],
or even with the modified theories of gravity [79].

In the framework of gravitation, including scalar fields, either in the matter or in the
gravitational sector of the theory, can provide an alternative theory of gravity addressing
some of the still open questions. One of the most important is to give an explanation for
the late accelerated expansion and to investigate the role and origin of DE. Moreover,
it seems from observations that it has to be taken into account also a large quantity of
non-baryonic matter, known as DM (see Sec. 1). Again, scalar fields are investigated as
possible candidates for both DM and DE [80, 42].

Scalar-tensor theories introduce a scalar field non-minimally coupled with various
curvature terms in the Lagrangian. In such a way, the gravitational interaction is affected
by the presence of the scalar field and this leads to phenomena that mimic the effect
of DE and DM. When building a scalar-tensor model, one must always be subjected
to Ostrograsky’s theorem (see Sec. 3.2) and ensure that it yields second-order EOM. In
particular, this is the case of the extended scalar-tensor theories. While scalar-tensor
theories are generally referred to as theories whose Lagrangian contains a scalar field
that is non-minimally coupled to the Ricci scalar and possibly its kinetic and potential
energy, extended scalar-tensor theories are considered as a generalization since they also
include higher-order derivatives of the metric and scalar field.

Containing higher-order derivatives allows for more intricate interactions between the
scalar field and the curvature of spacetime, but it can also lead to instabilities due to
higher-order EOM (unphysical solutions with negative energy). Indeed, following the
principle of least action to obtain the Euler-Lagrange equations, higher-order derivatives
in the Lagrangian contribute with additional derivatives in the EOM. This is why such
theories should be built with constraints to avoid this kind of instability brought by
higher-order derivative terms. Lastly, scalar-tensor theories are also subject to observa-
tional constraints, such as local tests of gravity. This means that the effects of such scalar
fields should be suppressed at scales where GR is well tested (laboratories on Earth and
the Solar System). In this context, the scalarization mechanism is particularly inter-
esting for theories that include scalar fields that are non-minimally coupled to gravity.
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According to this mechanism, scalar fields become activated in strong-gravity regimes
(high curvature), while their effects are absent in the weak-gravity regime. In this way,
it is possible to restore GR.

3.3.1 Scalarization

In the framework of scalar-tensor theories and extended scalar-tensor theories, scalariza-
tion would provide a mechanism able to leave scalar imprints detectable by our exper-
iments. Indeed, an intriguing future achievement would be to test GR and BH models
through precision astrophysical observations, especially in the field of gravitational waves,
and eventually reveal the existence of new fundamental fields [50, 17]. As has already
been mentioned (see Sec.3), one of the most immediate ways to modify GR is to intro-
duce a scalar field that is non-minimally coupled to gravity. However, such fields have
remained so far undetected. This is why, in general, scalar-tensor theories come with
some observational constraints: in the weak gravity regime, GR must be restored since
this theory has successfully passed every test in that regime (e.g. Earth laboratories,
Solar System observations) [26]. Nonetheless, such theories are also characterized by the
fact that certain conditions and interactions can lead to a non-trivial configuration for
the scalar field thanks to the coupling of the scalar field with matter or curvature of the
spacetime. This coupling can cause the scalar field to become significant under specific
circumstances, leading to observable effects that differ from those predicted by GR.

Scalarization is a mechanism with many different shades: it can be triggered by
a strong coupling between the scalar field and the spacetime curvature (non-vanishing
scalar field near compact objects such as BH and Neutron Stars [82]), by changes in the
surrounding environment (for example in a binary neutron stars system [74]) or by the
increasing coupling between the scalar field and matter fields. In what follows, just the
scalarization due to the non-minimal coupling with curvature terms is considered. More-
over, it is possible to distinguish between spontaneous scalarization, simply due to the
instabilities of the system that cause the scalar field to grow, and induced scalarization,
which is triggered by external factors.

In this case, a strong gravitational field, such as the one near BHs, can act as a trigger
for scalarization: in the presence of a region of intense spacetime curvature, the coupling
between the scalar field and the spacetime curvature can become so strong that the scalar
field is excited, becomes unstable and grows significantly. As a result, BHs could develop
a non-trivial scalar configuration, or in other words, “grow hair”. Thus, these theories
would be able to evade the no-hair conjecture, admitting new branches of solutions
with respect to GR. In particular, it has been shown that generalized gravity theories
with higher-curvature terms, such as the quadratic Gauss-Bonnet term, non-minimally
coupled to the scalar field can evade both the old no-hair conjecture and the novel no-hair
conjecture [5, 52]. The first one was conceived in the context of GR and states that every
BH can be described by only three external observable properties, mass, electric charge,
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and angular momentum [13]. The second one has been developed successively, with the
discovery of BHs with Yang-Mills [89] or Skyrme fields, and extends to the introduction
of additional fields like scalar fields [61]. Among ESTTs, the coupling function between
the GB term and the scalar field plays an important role in the scalarization mechanism
since it determines how the scalar field interacts with gravity. When gravity (curvature)
exceeds a certain threshold, it activates the scalar field (scalarization is triggered) - while
it does not exist in weak gravity - and different types of coupling functions can lead to
novel hairy BHs through different types of scalarization under certain conditions.

In the Einstein-dilaton-Gauss-Bonnet theory, the linear or exponential coupling func-

tions f(ϕ) = αϕ or f(ϕ) = 1
α

(1− eαϕ) (with α the coupling constant) lead to BHs always
surrounded with hairs [53, 55, 85, 54, 55]. In other words, it does not admit Schwarzschild
BH solutions, but all static and stationary, spherically symmetric BH solutions in this
theory have non-trivial scalar field configurations. Since ϕ(r) = 0 does not solve the field
equations, the condition on the coupling function must be:

df(ϕ)

dϕ

∣∣∣
ϕ=0

̸= 0 . (3.9)

Spontaneous scalarization [36, 82, 5] is instead characterized by couplings such as

f(ϕ) = αϕ2 and f(ϕ) = 1
2α

(1 − e−αϕ2
). It was found that, below a certain critical mass,

the Schwarzschild BH becomes linearly unstable as a solution in the ESTGB theory,
and new branches of scalarized BH develop [70]. The scalarized branches form a discrete
family of solutions labeled by the number of nodes or zeroes of the scalar field profile. The
phase transition is triggered in the strong-gravity regime by a tachyonic instability: due
to the non-minimal coupling of the scalar field with the spacetime curvature, whenever
the gravitational field (and so the spacetime curvature) exceeds some threshold, the
scalar field could acquire a sufficiently negative effective mass. This makes the scalar
field unstable, and thus it grows under small perturbations. At that point, scalarized
solutions are energetically and entropically more stable than the Schwarzschild BHs, and
they are so preferred. The effective mass is given by the term

d2f(ϕ)

dϕ2
I , (3.10)

obtained from the linearized Klein-Gordon equation, and it must be

df(ϕ)

dϕ

∣∣∣
ϕ=0

= 0 , (3.11)

d2f(ϕ)

dϕ2

∣∣∣
ϕ=0

̸= 0 , (3.12)

which are the conditions for the coupling function to have spontaneous scalarization. The
fact that the scalar field exists only in regions of strong curvature of spacetime allows
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us to restore GR in the weak field regime, thus satisfying observational constraints. In
the case of spontaneous scalarization (ignited by tachyonic instability), both free-scalar
solution and scalarized solution can exist as equilibrium solutions and even a small
perturbation can lead to the transition from one to the other. The literature of BH
spontaneous scalarization has been largely extended: they have also studied rotating
BH [30, 46, 47, 33, 16, 29], charged BH [51, 21, 39, 8], spinning and charged BH [45] and
spin-induced scalarization (if the dimensionless spin parameter exceeds a critical value,
the effective mass squared of the scalar field becomes negative) [37, 4]. In the case of
scalarization of asymptotically flat, charged BH (RN BH) in the Einstein-Maxwell-scalar
models (EMS)1, a sufficiently large charge-to-mass ratio makes RN BH unstable under
scalar perturbations.

Non-linear scalarization [35] is possible when the coupling functions contain higher
and even power of the scalar field: f(ϕ) = βϕ4 or f(ϕ) = 1

4β
(1 − e−βϕ4

). In this case,
Schwarzschild BHs are stable solutions under linear perturbations and at least two types
of scalarized Schwarzschild solutions are admissible. This time, the transition is made
possible by large non-linear perturbations. The same phenomenon in the context of EMS
is described in [18, 19]. This time, the condition on the coupling function should be:

d2f(ϕ)

dϕ2

∣∣∣
ϕ=0

= 0 . (3.13)

Recently, more extensions within the scalarization process have gained interest. For
example, it is possible to consider a mixture of linear and non-linear scalarization in
order to investigate how the higher-order power of the scalar field affects the properties
of the scalarized BHs and their stability [68, 15]. Moreover, the presence of mass or self-
interaction terms can quench or suppress scalarization leading to scalarized solutions
under different conditions [75].

For future research, it is important to build different models to study scalarization
and evolution of the scalar field under various conditions. Through scalarization, ESTTs
introduce novel hairy BH solutions with respect to GR (BHs with a non-trivial scalar
configuration), and, at least from a theoretical point of view, these would carry distinct
and different characteristics. Indeed, the shadow of a BH, as the one detected by the
Event Horizon Telescope (EHT) [7], can be influenced by the presence of a scalar field,
showing differences in the shape or size as predicted by GR. Furthermore, scalar fields
could leave their imprints in gravitational wave signals (for example modifications in
the amplitude, phase, and frequency) [50]. In addition to that, it can be considered
also deviations in the orbital dynamics around scalarized compact objects [38], accretion
disks of BH [22] or pulsar timing [66], or even X-ray and radio emission from neutron
stars and BH accretion disks [93]. The hope is in the future to reach sufficient precision
in the experimental and observational field to test the theoretical models.

1Non-minimal coupling between the scalar field and the Maxwell invariant FµνF
µν .
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3.4 Gauss-Bonnet Scalar-Tensor theory

Among ESTTs, this study considers the ESTGB, which includes a scalar field non-
minimally coupled with the GB term. This latter is a particular combination of curvature
scalars,

I = R2 − 4RµνR
µν + RµνρδR

µνρδ , (3.14)

which is a property of spacetime and contains corrections to the curvature, similar to a
Taylor series. Indeed, it introduces overall second-order correction to the curvature (a
combination of the second derivative of the metric).

The GB invariant is composed of three quantities that mathematically describe the
curvature of spacetime (of any Riemannian manifold2). In particular, it is a quadratic
combination of the following curvature tensors: R the Ricci scalar, Rµν the Ricci tensor,
and Rµνρδ the Riemann tensor (see Sec. 2). The fact that the GB term contains quadratic
combinations of the curvature tensors makes it a higher-order correction compared to
the linear Einstein-Hilbert action, which contains only the Ricci scalar.

When the GB is integrated over a 4D spacetime manifold, the result is a constant
called the Euler number. This latter is a topological invariant that describes the space’s
shape and structure. Consequently, when varying the action to obtain the equation of
motion (principle of least action), its contribution vanishes. Indeed, in 4D, the GB term
is topological, thus its integral reduces to a boundary integral according to the divergence
theorem, and this latter identically vanishes. Only in higher dimensions the GB term
is non-trivial. However, scalar-tensor theory in 4D manages to make I contribute to
gravitational dynamics by multiplying it by a function of the scalar field. In this way,
the GB invariant is the unique quadratic curvature combination that still gives second-
order equations in the metric (higher orders cancel each other out, and Ostrogradsky’s
theorem is satisfied). Therefore, the modified gravity with ESTGB arises by combining
the GB invariant with the Einstein-Hilbert action; the former represents a higher-order
curvature term and introduces corrections to the gravitational field equations, keeping
them of second-order in the derivatives of the metric.

3.4.1 Setting the equations

The general action of the ESTGB theory in vacuum that has been considered in this
study is the following:

S =
1

16π

∫
dx4

√
−g
[
2R− 2Λ − ∂µϕ∂

µϕ + f(ϕ)I
]
. (3.15)

In this expression, the Lagrangian density does not contain only the Ricci curvature
(as in the original Einstein-Hilbert action) but also the cosmological constant, Λ, the

2Differentiable manifold with a metric tensor that defines a positive inner product on the tangent
space of each point.
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kinetic term of the scalar field, ∂µϕ∂
µϕ, and a higher-order curvature term non-minimally

coupled to a function of the spin-0 field. This coupling is needed, otherwise, the GB
invariant, I, would not enter the dynamics and, in 4D, its contribution to EOM would
just vanish. Indeed, the integral of the GB invariant would be equal to a constant with
a value that depends on the Euler characteristic3 of the manifold and its contribution
would tend to zero upon extremization. As has already been mentioned above (see Sec. 1,
the coupling function considered is non-linear:

f(ϕ) = βϕ4 . (3.16)

By varying the action in Eq. 3.15 with respect to the metric tensor gµν and the scalar field
ϕ it is possible to obtain respectively the gravitational field equations and the equation
for the scalar field:

Gµν + Λgµν = Rµν −
1

2
gµνR + Λgµν = Tµν , (3.17)

2ϕ = −f,ϕ I . (3.18)

In particular, in Eq. 3.17, Tµν is the stress-energy tensor that takes into account the
variation of the ϕ-dependent part of the action with respect to the metric, and in Eq. 3.18
2 indicates the D’Alambert operator, while f,ϕ indicates the derivative with respect to
the scalar field ϕ.

The computations that follow have been resolved using the computational software
program Wolfram Mathematica [49]. Firstly, since the interest is aimed at finding reg-
ular, static, asymptotically flat BH solutions with a non-trivial scalar field, which are
spherically symmetric, the appropriate metric ansatz is established. The ansatz to the
solution of the second-order differential equation for the metric that can be obtained
from the variation of the action with respect to the metric, using Schwarzschild-like
coordinates (t, r, θ, ϕ), is

ds2 = −σ(r)2H(r)dt2 +
dr2

H(r)
+ r2(dθ2 + sin2 θdφ2) , (3.19)

gµν =


−σ(r)2H(r) 0 0 0

0 1
H(r)

0 0

0 0 r2 0
0 0 0 r2 sin2 θ

 . (3.20)

The spacetime metric is not constant but has functions that depend on the radius from
the center of the coordinate system, and that describe the structure of spacetime and

3A topological invariant, a number that describes a topological space’s shape or structure regardless
of the way it is bent.
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how gravity works. In particular, H(r) = 1 − 2m(r)
r

− Λr2

3
is related to the gravitational

potential, while σ(r) is associated with the energy density (everywhere equal to 1 for a
BH). H(r) and σ(r) are unknowns to find. It is then computed also the determinant
indicated with g, as

√
−g = r2σ(r) sin θ appears in the expression of the action. The

next step is then to explicit the connection between Christoffel symbols and the metric
tensor (the former is a combination of the derivatives of the latter).

In this way, it is then possible to compute all the curvature identities that compose
the GB invariant: the Riemann tensor, which depends only on the Christoffel symbols
as Eq. 2.3 shows, and the Ricci tensor and Ricci scalar from Riemann tensor contrac-
tions. During this computation, it has been noticed that total derivative terms in the
Lagrangian density can be removed. It is a property of the variational principle the fact
that the EOM do not change by adding to the functional a total derivative: in this case,
applying the divergence theorem, the integral of a total derivative reduces to a boundary
integral (integral in a lower dimension), but variations of the field at the boundaries are
zero.

Finally, the expression of the effective Lagrangian is put together as written inside the
action integral, where the scalar field ϕ also appears. Using the variational method on
the effective Lagrangian it is possible to obtain the differential Euler-Lagrange equations
obeyed by H(r), σ(r) and the scalar field ϕ(r). The Euler-Lagrange equations for H(r)
and σ(r) are exactly the Einstein field equations with the metric ansatz introduced before
(Eq. 3.19) and where the stress-energy tensor takes into account the scalar field and the
GB term. The modified Einstein field equations that can be obtained by varying the
modified Einstein-Hilbert action with respect to the metric are therefore

Gµν + Λgµν − (Tϕ)µν − (TGB)µν = 0 , (3.21)

where Gµν = Rµν − 1
2
gµνR is the Einstein tensor; (Tϕ)µν is the energy-momentum

tensor of a minimally coupled scalar, and (TGB)µν represents the contribution from the
GB (Eq. 3.14) term. The expression for (Tϕ)µν is:

(Tϕ)µν = −1

2
gµν∂ρϕ∂

ρϕ + ∂µϕ∂νϕ , (3.22)

and the expression for (TGB)µν is:

(TGB)µν = −1

2
(gρµgλν + gλµgρν)ηκλαβ

ϵργωτ√
−g

Rωταβ∇γ∂κf , (3.23)

(see [5]). From the computations with Wolfram Mathematica the field equations for
H(r) and σ(r) are:

H ′(r) =
1 − r2Λ + H(r){−1 − ϕ′(r)2[r2 + 4(−1 + H(r))f ′′(ϕ(r))] − 4(−1 + H(r)f ′(ϕ(r))ϕ′′(r)}

r + 2(−1 + 3H(r))f ′(ϕ(r))ϕ′(r)
(3.24)
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σ′(r) =
σ(r){ϕ′(r)2[r2 + 2(−1 + H(r)f ′′(ϕ(r)] + 2(−1 + H(r))f ′(ϕ(r))ϕ′′(r)}

r + 2(−1 + 3H(r))f ′(ϕ(r))ϕ′(r)
.

(3.25)
The EOM for the scalar field can be computed instead by varying the same action

with respect to the scalar field. It is the relativistic wave equation (aka Klein-Gordon
equation) that describes the dynamics of bosons (with spin-0). In this case:

1√
−g

∂µ

[
gµν

√
−g∂νϕ(r)

]
− 1

4

∂f(ϕ(r))

∂ϕ
I = 0 . (3.26)

The Kretchmann scalar RµνδλR
µνδλ, the Virial identity [44] and the Smarr relation are

identities used to check the numerics of the solutions. The computed Virial identity is:

−{4σ(r)(r2[−1 + r(3r − 2rh)Λ] + 4(−1 + 3H(r))f ′(ϕ(r))2ϕ′(r)2[1 + r(−3r + 2rh)Λ

r + 2(−1 + 3H(r))f ′(ϕ(r))ϕ′(r))2
+

(3.27)

+H(r)(−2 + 6r2Λ − 4rrhΛ + H(r)(−1 + r(r − 2rh)ϕ′(r)2)]]

r + 2(−1 + 3H(r))f ′(ϕ(r))ϕ′(r))2
+

2f ′(ϕ(r))ϕ′(r)[2r(1 + r(−3r + 2rh)Λ] + H(r)[rh + r[−7 + r(17r − 11rh)Λ]

r + 2(−1 + 3H(r))f ′(ϕ(r))ϕ′(r))2
+

+H(r)[r − rh − r2(r + rh)ϕ′(r)2)]]}
r + 2(−1 + 3H(r))f ′(ϕ(r))ϕ′(r))2

= 0 .

The Smarr formula relates the mass of the BH (M) with other physical properties like
entropy, angular momentum, and electric charge. In this case, the last two properties
are null, then the relation is:

M = 2THSH + Ms , (3.28)

where TH is the Hawking temperature, Ms is the contribution of the scalar field and its
coupling:

Ms = 4πΛ2f(ϕ) . (3.29)

The entropy SH is calculated as:

SH =
1

4
AH =

1

4
4πRH , (3.30)

with RH being the Schwarzschild radius.

3.4.2 Obtaining solutions

The search for BH solutions with a non-trivial scalar field continues by determining a set
of asymptotic solutions near the event horizon (rh) and near the cosmological horizon (rc).
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These solutions set the boundary condition for the numerical integration and constraints
for the theory. Near the event horizon, H(rh) = 0, it is possible to expand the metric
functions and the scalar field as standard Taylor expansions for r very close to rh:

σ(r) = d0 + d1(r − rh) + d2(r − rh)2 + ... ,

H(r) = h1(r − rh) + h2(r − rh)2 + ... ,

ϕ(r) = p0 + p1(r − rh) + p2(r − rh) + ... .

(3.31)

It can be noticed that it has been put h0 = 0. This is one of the boundary conditions that
needs to be imposed since it means that H(r = rh) = 0 and so that the grr component
of the metric diverges, establishing at that radius the event horizon. Indeed, as already
mentioned in Sec. 2.1.1, the event horizon is a coordinate singularity that covers the
physical singularity. It is then possible to find the coefficients of each expansion by
evaluating the power series expansion of the difference between the derivative of the
expanded functions and the expressions found previously (see Sec. 3.4.1) for r very close
to rh until the first order. By doing this, for the scalar field ϕ(r), it turns out that there
are three possibilities for the value of the variation of the scalar field at the event horizon
rh (polynomial equation of third grade in p1):

p1 =
1

2f,ϕ (p0)
, p1 =

1 −
√

1 − 24f,ϕ (p0)2

4f,ϕ (p0)
, p1 =

1 +
√

1 − 24f,ϕ (p0)2

4f,ϕ (p0)
. (3.32)

The first term makes every contribution from H(r) equal to zero, the second one makes
the field grow, which can be considered not physical, and finally, the third one is the
correct one to consider because makes the scalar field decay. One constraint on the form
of the coupling function arises from the demand that the first derivative of the scalar field
on the horizon must be real, meaning that the term under square root must be positive.
It can also be noticed that to simplify this computation, it can be put rh = 1, which
fixes the scale. Indeed BHs are scale-invariant, meaning that the physics that describes
them is independent of their size.

Finally, all the coefficients of the expansions are obtained as functions of the param-
eters d0 and p0, respectively the amplitude of σ(r), and the scalar field at the event
horizon:

h1 = − 1

2p1f,ϕ (p0)
, (3.33)

d1 =
d0p1f, ,ϕ (p0)

f,ϕ (p0)
. (3.34)

The parameter d0 is obtained from the numerics, while p0 is an unknown parameter of
a boundary value problem: p0 is solved by a numerical method that chooses the correct
value that makes the two boundary conditions (BC) to be obeyed. In this case, the
boundary conditions are H(rc) = H(rh) = 0 and have a scalar field that is finite and
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smooth at those horizons. Eqs. 3.31 define a BH horizon with a regular scalar field,
provided that conditions on p1 and the coupling function are satisfied. The same can be
done for r = rc= cosmological horizon, explaining the expansions of the metric functions
and the scalar field:

σ(r) = dc + d1(r − rc) + d2(r − rc)
2 + ... ,

H(r) = h1(r − rc) + h2(r − rc)
2 + ... ,

ϕ(r) = pc + p1(r − rc) + p2(r − rc) + ... ,

(3.35)

where again imposing H(r = rc) = 0 is equivalent to establish the cosmological horizon
at r = rc as a boundary condition. The method that has been followed to find the
coefficients is the same as above: the power series to the first order of the difference
between the derivative of the expansions around rc and the expressions found previously
(see Sec. 3.4.1), always in rc, are computed. Then, by equalizing their expressions to
zero it is possible to obtain a formulation for the coefficients of the expansions around
rc. Thus, the following expressions for the coefficient were found:

h1 =
1

rc − 2p1f,ϕ (pc)
, (3.36)

d1 =
d0p

2
1(r

2
c − 2f, ,ϕ (pc))

rc − 2p1f,ϕ (pc)
, (3.37)

p1 =
rc

2f,ϕ (pc)
, p1 =

r2c −
√

r6c − 24r2cf,ϕ (pc)2

4r2cf,ϕ (pc)
, p1 =

r3c +
√

r6c − 24r2cf,ϕ (pc)2

4r2cf,ϕ (pc)
. (3.38)

The construction of the asymptotic solution at rh and rc can give valuable insight into
understanding the solution. However, due to the complexity of the equations, only
through numerical integration it will be possible to search for solutions that obey the
smooth connection.

Once the expression for H ′(r), σ′(r) and ϕ′′(r) are obtained, their integration must
be computed through numerical methods since H(r), σ(r), ϕ(r) do not have known an-
alytical form. The method used to integrate is Runge-Kutta, while the secant method is
used as a Shooting method to guarantee that the solution obeys the boundary condition.
The Runge-Kutta method is a numerical method used to solve complicated differential
equations coming from mathematical and physical models. Given the value of a cer-
tain function at a starting point and given its derivative, it calculates the function in
a success of points using calculations of the derivatives in intermediate points. These
intermediate points are used to find out the tendency, and the value of the function
in one step away from the starting point is a weighted average of the derivative of the
function in these intermediate points. In such way, ϕ(r)′′, H ′(r) and σ′(r) are integrated
recursively from a certain radial coordinate value rn to the point that is one step away,
rn+1, with the Runge-Kutta method (imagining to discretize the integration interval in a
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1D grid). The order of the Runge-Kutta method determines its accuracy and how many
intermediate points have been used. The Runge-Kutta method of first order can be re-
duced to the Euler method, and the Heun’s method can be thought of as a second-order
Runge-Kutta; including more trial steps, the method becomes more accurate, meaning
that the local and total truncation error becomes smaller. The most known member of
the Runge-Kutta family is the 4th order Runge-Kutta method. Supposing that we have a
differential equation of the type y′ = f(t, y), then yn+1 given below is the approximation
for y(tn+1) given by this numerical method (see Fig.3.1):

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4) , (3.39)

where h is the step such that tn+1 = tn + h and ki are the various slopes given by

k1 = f(tn, yn) ,

k2 = f(tn +
h

2
, yn + h

k1
2

) ,

k3 = f(tn +
h

2
, yn + h

k2
2

) ,

k4 = f(tn + h, yn + hk3) . (3.40)

Figure 3.1: The image shows the slopes used in the four stages of the 4th Runge-Kutta
method: the derivative of the function at the starting point, the derivative at the middle
point, firstly calculated from the starting point, then calculated using the slope obtained
at the previous step, finally the derivative calculated at the ending point.
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The fact that is a 4th order method means that the total accumulated error is on
the order of O(h4). The coefficients are found by imposing algebraic conditions, known
as order conditions, that ensure the method accurately approximates the solution in
the prescribed order. The various derivatives at the intermediate points are calculated
iteratively from the previous point’s calculations, with the effect of gaining more accuracy.
The largest weights are given to the derivatives calculated at the midpoint. For a general
Runge-Kutta method, the expression for the next value computation becomes

yn+1 = yn + h
s∑

i=1

biki , (3.41)

where h is the step size, s indicates the number of intermediate stages, bi are the weights
associated to each stage and ki represent the intermediate slope:

ki = f

(
tn + cih, yn + h

i−1∑
j=1

aijkj

)
for i = 1, 2, . . . , s . (3.42)

The coefficients aij, ci can be derived from the Butcher tableau. For a further pre-
sentation on the topic of differential equations and the Runge-Kutta method see [23].
Since the problem is tackled through several steps, often a balance between accuracy
and computational time is required, which is not established a priori but depends on the
problem.

In particular, in this case, they have been used the 5th and 6th order Runge-Kutta
methods (respectively with six and seven stages) with an adaptive step size. This means
that the step between the two points in which the function is calculated can be very big
if, in that region, the function is constant, while it must be very small if the function
oscillates a lot to correctly describe the intricate profile. The more suitable step is found
by evaluating the difference between 5th and 6th Runge-Kutta methods and evaluating
whether it is less than the established tolerance. Once the biggest step under the accuracy
is found, ϕ(r), ϕ′(r), H(r), and σ(r) are obtained in the point that is one step away from
the previous. Then the cycle continues considering what’s just calculated as the starting
values for the next iteration. The integration goes on from the Schwarzschild radius (rh)
to the cosmological horizon (rc), hence until H(r) = 0 that is the boundary condition
for the cosmological horizon. The integration then continues from there to two times the
cosmological horizon as a guarantee of the correct asymptotic behavior.

The computation of this integration gives a result in the profiles ϕ(r), H(r), σ(r)
(see Fig. 3.2), and the aim of the Shooting method is then to guarantee the boundary
conditions at rh and rc. Indeed, guessed a value for ϕ0 to integrate (value of the scalar
field at rh), the value obtained for ϕc (value of the scalar field at rc) after the integration
has to be equal to the expectations and it has to be continuous at rc. If it is not, then
a new initial condition ϕ0 is injected by the Shooting method into the integration and
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this cycle can finish when the boundary conditions are obeyed. The method used to
compute the new guess for ϕ0 from the previous ones is the secant method (aka discrete
Newton’s method), a recursive algorithm to find the roots of a function. In this case, the
secant method is used to find the roots of the function given by the difference between
pf = 1E − 6 and pt. The latter is a difference between two values of the first derivative
of the scalar field at the cosmological horizon, the one obtained from the integration
until rc and the one obtained instead from its expression calculated in the value of rc
resulting from the integration. The value of ϕ0 is changed in each iteration, obtained
from the two guesses before using the secant method. It is indeed found as the variable
for which the function goes to zero and so the cycle of the Shooting method finishes
when pf − pt < tolerance.

Figure 3.2: The trends as functions of r, obtained from the numerical integration, with
a fixed value of β and λ, parameters of the integration

Fig. 3.2 shows how the profile of H(r) (red) has two nodes (intersection with the radial
axis) at values r = 1rh and r = 1.8rh, thus indicating the value of the radial coordinate
for the Schwarzschild radius and for the cosmological horizon. At the same time, the
scalar field (blue) presents one node more or less at value r = 1.2rh and the stronger
decrease near small values of r, as can be seen from the derivative (black). In particular,
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it does not vanish at the rc pointed out by H(r), a sign of the scalarization it suffers.
This could indicate a probable contribution of the scalar field to the dynamics of the
Universe. As expected from the profile of the scalar field, its first derivative (black) is
steep for small values of r where the scalar field decreases more rapidly. By varying the
value of the coupling constant β and Λ, various profiles for the scalar field in the function
of the coordinate r were obtained, such as the one in Fig. 3.2.

Figure 3.3: Domain of existence: each curve is for a different value of β, where it is
possible to recognize the two branches of scalarized solutions. In particular, it can be
noticed that the branches are more extended for smaller values of β and that the ”turning
point” is found at increasing values of Λ.

For a fixed β, they have been collected values of p0, pc, Λ and rc (there is always rh = 1
fixed) and they have been used to build some plots with Wolfram Mathematica tool, such
as the BHs evolutionary branches ϕ0(Λ) (see Fig. 3.3, ϕH and ϕ0 are used with the same
meaning and they correspond to p0 in the code used for calculations, representing the
physical quantity of the scalar field at the Schwarzschild radius rh). Indeed these latter
show two branches that stand for the two scalarized solutions expected by the non-linear
scalarization. The smaller β, the more extended the branches of solutions, meaning the
scalar field can undergo scalarization over a broader range of Λ. Since β represents the
strength of the coupling between the scalar field and the GB curvature term, a smaller β
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leads to a weaker influence of the curvature on the scalar field configuration. This makes
it possible to have a non-trivial scalar field configuration even far away from the source
of strong curvature. Moreover, a bigger Λ indicates a more rapid expansion. Thus, a
bigger value of the scalar field at the Schwarzschild radius would be required to have
a scalar field even at the cosmological horizon. From those, it has been searched for
the “turning point” that in turn corresponds to the minimum Λ for which the curvature
of the De Sitter spacetime4 is sufficient to produce a non-trivial scalar configuration.
Indeed, scalarization is mainly driven by the combined action of the three parameters β,
Λ, and the BH mass/radii. The quartic function considered has introduced a non-linear
interaction between the scalar field and the curvature, where the coupling constant β
determines the strength of the interaction between the scalar field and the GB term:
higher β means stronger coupling. At the same time, as the cosmological constant
increases, the overall curvature of the spacetime also increases.

Once the minimum Λ and the corresponding rc, p0, and pc have been obtained for
each β, it has been underlined the correlation between each of them and β (see Fig. 3.4,
Fig. 3.5, Fig. 3.6, Fig. 3.7).

Figure 3.4: Relation between the cosmological constant, Λ, and the coupling constant of
the quartic coupling function, β. In particular, for each β, the value of Λ is the minimum
able to induce scalarization.

4De Sitter space is the maximally symmetric vacuum solution of Einstein’s field equations with a
positive cosmological constant Λ (which corresponds to a positive vacuum energy density and negative
pressure). It is the simplest cosmological model consistent with the observed accelerated expansion
of the Universe. The curvature of De Sitter space is directly connected to the cosmological constant
through R = 4Λ.
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Figure 3.5: Relation between the value of the scalar field at the Schwarzschild horizon,
p0, and the coupling parameter, β.

Of particular interest is the correlation between the cosmological constant Λ and the
coupling constant β; indeed, an increasing Λ corresponds to a decreasing β. This means
that if Λ grows, then also the acceleration that it drives increases, and the cosmological
horizon5 shrinks. Consequently, a minor β is needed to have the same level of scalariza-
tion. This can be summarized by saying that the minimum Λ gives the largest possible
cosmological horizon able to endow scalarization: a smaller Λ means a slower rate of
acceleration, allowing the universe to expand more before the horizon is reached. This
results in a larger observable universe.

The fact that this minimum value of Λ is larger for a smaller value of β is in accordance
also with the considerations of Fig. 3.3. The value of the scalar field at the Schwarzschild
radius corresponding to that minimum value of Λ is plotted in Fig. 3.5. This latter
shows a clear and regular decrease. Indeed, it is reasonable to think that the amplitude
of the scalar field, the shooting parameter of the integration, should be larger when the
coupling to the curvature is weaker, in order to maintain the same level of scalarization.
Developing the integration, the values of the scalar field at the cosmological horizon will
then be bigger in absolute value (more negative, see also Fig. 3.2) for smaller values of
the coupling constant β, since these latter are associated to a bigger value of Λ and so
to a smaller cosmological horizon. This is what can be seen in Fig. 3.6. Finally, Fig. 3.7
shows how the cosmological horizon shrinks for smaller values of β, while it enlarges as
β increases: a great value of Λ indicates a greater acceleration, making the observable

5The cosmological horizon is defined as the maximum distance from which light or any other form
of radiation can reach an observer. It is also known as De Sitter horizon.
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Figure 3.6: Relation between the value of the scalar field at the cosmological horizon,
pc, and the coupling parameter β.

Universe smaller. Then, in order to have a scalarized cosmological horizon, the largest
possible, a smaller value of β is required. The value of rc plotted represents for each β
the largest cosmological horizon possible. However, it presents more discontinuity with
respect to the plots above, especially for the extremal values of β. This can be a symptom
of the presence of a different behavior for the scalar field in these extreme conditions or
a reduced efficiency of the numerical methods used to integrate.
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Figure 3.7: Relation between the radial coordinate of the cosmological horizon, rΛ, and
the coupling parameter, β.
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Chapter 4

Conclusion

The purpose of this essay was to study the scalarization of the cosmological horizon in
the context of ESTGB theory with a quartic coupling function f(ϕ) = βϕ4. First, the
modified Einstein field equations and the EOM for the scalar field have been obtained
for this theory. Proceeding by integration with the use of the numerical method Runge-
Kutta and the secant method as the Shooting method, it has been possible to further
obtain the profile of the scalar field as a function of the radial coordinate, from the
Schwarzschild radius to the cosmological horizon, for different values of the cosmological
constant Λ and β.

For each β it has also been plotted the values of the scalar field at the Schwarzschild
horizon corresponding to different cosmological constant values. After locating the two
non-trivial solutions for the scalar field expected by a non-linear interaction with the GB
term, it has been searched for the minimum value of the cosmological constant which
endows scalarization. Finally, it has been collected for each β this precise value of Λ
together with the corresponding values of p0, pc, and rc. This has made it possible to
compare the results produced and obtain different scenarios.

This study comes with the recent efforts that modern Astrophysics and Cosmology
are making to explain the mystery of DE and DM. Identifying the behavior of the scalar
field with variations of Λ and β can be interesting in developing a more profound un-
derstanding of the relation between geometry and field dynamics in such scalar-tensor
theories as ESTGB. The presence of the scalar field could contribute to the accelerated
expansion of the Universe and to its overall content, possibly mimicking DM and DE.
Indeed it is expected for the scalar field to alter the effect of the cosmological constant
and to influence the large-scale structure of the Universe. The physics field of modified
gravity is elaborating many new and different models that, at least from a theoreti-
cal point of view, introduce deviation from GR. Hopefully, in the future, the scientific
community will be able to detect such deviations due to new fundamental fields. More
precisely, it has already been mentioned how scalar fields could leave their imprints on
extremely compact objects. At the level of cosmological observations instead, not only
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the Cosmic Microwave Background (CMB) could hide clues about scalar fields (Simons
Observatory and CMB-S4 [1] would provide precise surveys of the CMB), but also cos-
mic structures can be influenced by the presence of scalar fields and so observations of
galaxy and cluster distribution and other large-scale structures can lead to discoveries
(Dark Energy Spectrum Instrument - DESI [88] - and Euclid mission will map the large-
scale structures of the universe with an unexperienced detail). At the moment LIGO
(ground-based detector) and LISA (space-based detector that will be launched in 2035)
interferometers are among the greatest observational projects to measure the presence
of non-trivial scalar field through gravitational wave signals [63]. In particular, LISA
will be able to detect gravitational waves emitted from Extreme Mass Ratio Inspirals,
where a lighter object orbits around a much heavier object. Since the additional scalar
field that surrounds compact objects is strictly connected to gravity, it is expected to
leave imprints on gravitational waves emitted during the inspiral. Detecting its effect
and deviations from GR would be a turning point in favor of the scalar-tensor theories.
Moreover, as many different scalar-tensor theories exist, confronting the observed pa-
rameters (in this case they would be parameters that characterized gravitational waves)
with the predicted ones it should be possible to constrain those parameters and test the
validity of different theories [11].

Challenges in the field of scalar-tensor theories and scalarization models come from
the importance of finding a way to suitably reproduce the evolution of the observed
Universe, from the inflationary scenario of the early Universe, through the evolution of
perturbations until the formation of the current large-scale structure. This can lead in
particular to the necessity of finding constraints on such theories. Cosmological models
built on such theories could furnish alternative explanations to the current observational
picture. Future attempts will also regard the exploration of whether and how scalar
fields can be candidates for DM and DE. Another possibility is to study generalizations
to other fields, such as vectorial or tensorial (vectorization and tensorization). This
however comes with the difficulty to control extra degrees of freedom. Furthermore,
studies of scalarization on compact objects such as neutron stars and BHs have inspired
the exploration of the effects of putting together scalarization models in more complex
astrophysical scenarios. Studies on scalarization as an effect of scalar-tensor theories can
be expanded by considering different ways of igniting it and its behavior on different types
of BHs (e.g. charged, spinning, or both, consider non-zero potential for the scalar field,
effects of mass). Through theoretical studies and numerical simulations, the possible
descriptions of our Universe extend, offering predictions that remain to be tested and
constrained with future observations.
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