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Abstract

In this Master Degree Thesis we study the Curvaton Mechanism to generate cur-

vature perturbations in String Inflation. First of all, we introduce basic bosonic

string theory, which works in 26 dimensions, and then extend it to its 10D su-

persymmetric version in the RNS formalism. In doing so, we study the spectrum

of this theory and we focus in particular on Type IIB superstring theory and the

compactification of its 6 extra dimensions. After a brief Mathematical introduc-

tion, we focus on the moduli fields which arise from the extra dimensions. We

investigate how to stabilise them in order to get a correct and phenomenologically

viable inflationary scenario. In particular, we consider 2 models where the infla-

ton is a Kähler modulus: Non-perturbative and Loop Blow-Up inflation. Finally,

we focus on the second model and check if the saxion associated to the inflaton

4-cycle volume can behave as a curvaton field. Its isocurvature perturbations get

converted into standard curvature fluctuations when the axion decays. We find

the conditions under which this contribution is subdominant with respect to the

one arising from inflaton fluctuations, hence guaranteeing compatibility with ob-

servational constraints from the Planck satellite.
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Abstract (Italian Version)

In questa tesi magistrale implementeremo il meccanismo di curvatone per generare

perturbazioni scalari in uno scenario di inflazione in teoria delle stringhe. All’inizio

introdurremo la basica teoria delle stringhe bosoniche che necessita di 26D, poi la

estenderemo alla sua controparte supersimmetrica in 10D nel formalismo RNS.

Nel frattempo studieremo lo spettro di questa teoria e ci concentreremo in parti-

colare nella teoria delle superstringhe Type IIB e nella compattificazione delle sue

6 dimensioni extra. Dopo una piccola introduzione Matematica, ci concentreremo

sui moduli, campi che provengono dalle dimensioni extra. Studieremo poi come

stabilizzarli in modo da ottenere un corretto scenario inflazionario fenomenologica-

mente valido. In particolare studieremo nel dettaglio 2 modelli nei quali l’inflatone

è un modulo di Kähler: Non-Perturbative e Loop Blow-Up inflation. Infine ci con-

centreremo sul secondo modello e verificheremo che l’assione partner del modulo

che misura il volume del 4-ciclo inflazionario può comportarsi da curvatone. Le

sue perturbazioni di entropia vengono convertite nelle perturbazioni standard di

curvatura quando l’assione decade. Troveremo le condizioni per le quali il con-

tributo dell’assione alle perturbazioni scalari è non dominante rispetto a quello

dell’inflatone, garantendo quindi la compatibilità con i valori osservati dal satellite

Planck.
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Introduction

CMB Power Spectrum and Anisotropies are two of the most evident smoking guns

of the inflationary theory consistency. In the years a lot of models have been pro-

posed and succeeded to generate the right amplitude of the CMB power spectra

but a lot failed. Among the models that failed the phenomenological check some

have very interesting features so David H. Lyth and David Wands introduced in

[33] the curvaton mechanism, an alternative mechanism where the curvature per-

turbations can be generated converting isocurvature perturbations of a field called

curvaton at the decay of the field itself. This mechanism can reinstate ruled out

scenarios, release other bounds on it (for example, making the curvaton gener-

ate the whole curvature perturbations we are more free to fine tune parameters

on inflaton dynamics ) or even compromise the ones which satisfy observational

bounds. In fact, if the model features such a field and it already satisfied the

Planck satellite value for CMB amplitude, then the risk to generate extra curva-

ture perturbation can break the phenomenological viability of the scenario. In this

thesis we are going to implement such a mechanism in String Inflationary scenario.

The need of string theory in such scenarios arises from the fact that the ultraviolet

(UV) behaviour of gravity is not known and so even of inflation is not well known

from classical Quantum Field Theory. In fact, a Quantum Field Theory including

gravity will lead to a non-renormalisable UV divergencies, while string theory is a

frameworkfeaturing renormalisable finite theory which naturally includes General

Relativity and, in particular, graviton in its spectrum. Through the almost 60

years in which string theory has been developed, many versions of it grew up. The

first one, which is the bosonic string theory features the need of 26 dimensions,

a tachyon and even doesn’t include fermions in the spectrum which leads to a

xiii



problematic nature of it. Including supersymmetry (in particular we are going to

study the Type IIB Superstring Theory) the problems of the fermions absence

and of the tachyon have been solved and the necessary and sufficient dimensions

fall down to 10. Since our spacetime features only 4D, a natural question can

be where the other 6D are. The main idea is that these additional dimensions

are compactified, through the Kaluza-Klein Compactification method, to a special

complex kind of manifold called Calabi-Yau threefold such that the 10D theory

becomes a 4D Effective Field Theory. From the additional degrees of freedom of

the 10D theory, in particular from the perturbations of the 6D Calabi-Yau metric,

a lot of fields, called moduli arise naturally with even a large amount of axions

from the string spectrum. Moduli are divided into 3 classes: Kähler moduli

which control the deformations of the metric changing Kähler form, Complex

Structure moduli which control the deformations of the metric changing Com-

plex Structure and axio-dilaton which includes the dilaton and a form arising

from the string spectrum. These moduli, since their mathematic nature, have a

strong geometric meaning, in fact their vacuum expectation value controls the di-

mension of the Calabi-Yau and, in particular the Kähler ones, of the cycles which

are contained in it. However there is a problem, since in the 4D EFT (at tree level

and considering no fluxes in the Calabi-Yau) all these moduli are flat directions

in the scalar potential and so their vacuum expectation value is undefined leading

to a Calabi-Yau that can leave the compactification limit. In addition to this,

being these moduli massless and so not decaying, we should have noticed even

fifth forces arising from them. What stabilise these moduli are UV effects like

3-form fluxes, loop effects from strings or non-perturbative effects from instantons

or branes. Fluxes will stabilise the axio-dilaton and the complex structure moduli,

perturnative and non-perturbative effects can stabilise the Kähler moduli and the

axions. Given the string theoretical framework, there are different methods to

stabilise all these Kähler moduli which lead to different inflationary models. We

are going to consider the LVS scenario for Type IIB String Theory which features

an Anti-de-Sitter non-supersymmetric minimum, brought to Slightly de Sitter by

adding an uplift term. In particular, working in this scenario we are going to

study the Loop Blow-Up model which includes a big cycle modulus regulating the

overall volume and small cycles which solve singularities and which work as holes



in a Swiss-cheese. Here the Kähler moduli are stabilised by the work of both non-

perturbative and perturbative effects, both from (α′)3 corrections and from string

loop ones and, in particular, the real part of these moduli will be our inflaton

which has the correct inflationary potential because of the string loop correction.

We finally implement the curvaton in this model by using as candidate the axion

which is the imaginary counterpart of the inflaton. At this point, given a choice of

parameters which is necessary for Loop Blow-Up consistency, the model already

satisfies the observational values for the CMB power spectrum amplitude, so we

need to check that the curvaton gives subleading values of curvature perturbation

in order to keep the model consistent.

The structure of the thesis is almost self consistent: in chapter 1 we are going to

study Bosonic String theory, highlighting its problems and how to solve them by

the introduction of supersymmetry in it and, in particular, analyzing the spectrum

and the different theories that arise from the possible choices in it. In 2 we are

going to introduce a little bit of Mathematical background needed for understand-

ing complex geometry and then we are going to study how to apply it on string

compactifications and, in the end, we will inspect the moduli space and how to

stabilise them in the 2 main different approaches (LVS and KKLT) using various

possible corrections. In 3 we are going to study the model in which we include

the curvaton both from the point of view of potential and from the one of observ-

ables trying to understand how it fits consistently the phenomenological bounds.

Finally, in 4 we are going to study the behaviour and the dynamics of the axion

which is the curvaton candidate during the inflation and, finally, we are going to

use it as a proper curvaton verifying for which values of the free parameters the

model keeps its consistency.
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Chapter 1

Bosonic String Theory and RNS

Superstrings

In this first chapter, following [6], [28] and, for the Supersymmetry part [36], we

are going to give some fundamental informations on Bosonic String Theory and

RNS formalism for Superstring Theory ending up with GSO Projection and the

closed string Bosonic Spectrum.

1.1 The string action

The string action is nothing more then a generalization of a point like particle

action, in this section we will start with the relativistic particle and reach finally

the Polyakov action.

1.1.1 Relativistic point particle and generalization to p-

branes

If we imagine a relativistic particle of mass m moving in a D-dimensional space-

time we can imagine the problem as a variational problem where we minimize the

action, clearly proportional to invariant length of particle’s trajectory since motion

1



CHAPTER 1. BOSONIC STRING THEORY AND RNS SUPERSTRINGS

-and so the worldline- is along geodesics.

S0 = −α
∫
ds (1.1)

with α = const and ℏ = c = 1.

We recall that S0 must be [S0] = 0 ⇒ [α] = 1 ⇒ α = m the line element can

instead be written as:

ds2 = −gµν(X)dXµdXν ; (1.2)

µ, ν = 0, ..., D − 1 (1.3)

Xµ(τ) is usually called the world-line of the particle and it’s the particle’s trajec-

tory itself. Since the action is independent on the choice of parametrization we

can write it as:

S0 = −m
∫ √

−gµν(X)ẊµẊνdτ (1.4)

where Ẋµ = dXµ

dτ
. Since S0 in this form contains square root it’s difficult to quantize

and for m=0 particles is equal to 0 too. So we can introduce an auxiliary part

called einbein e(τ):

S̃0 =
1

2

∫
dτ(e−1Ẋ2 −m2e) (1.5)

where we have Ẋ2 = gµνẊ
µẊν . Since S̃0 is parametrization invariant, einbein

must transform as e→ e′ = e+ d(ξe)
dt

.

In addition to this by searching for the equation of motion for the einbein:

δS̃0

δe(τ)
= 0 ⇒ m2e2 + Ẋ2 = 0 (1.6)

so we get that on-shell (substituting the value of e(τ) from equation of motion)

S0 = S̃0.

We can generalize now the action S̃0 to the case of a string sweeping a two-

dimensional world sheet -in analogy of a particle on the world-line- and, more

generally, of a p-brane spanning a (p+1)-dimensional world volume where p must

be less than D dimension of spacetime.

2



1.1. THE STRING ACTION

The action in this case takes the form of:

Sp = −Tp
∫
dµp (1.7)

where dµp =
√

−detGαβd
p+1σ where Gαβ = gµν∂αX

µ∂βX
ν α, β = 0, ..., p induced

metric, so, since the action is mass-dimensionless, [dµp] = −P − 1 ⇒ [Tp] = p+ 1

in natural units. Tp is called p-brane tension.

1.1.2 Nambu-Goto and Polyakov actions

We now deal with a string so a 1-brane propagating in D-dimensional Minkowski

spacetime. String will sweep the 2-dimensional surface previously called world-

sheet which is parametrized, in analogy to world-line with 1 more dimension, by

2 coordinates: σ0 = τ timelike and σ1 = σ spacelike.

Figure 1.1: Worldsheet spanning of strings and Worldvolume spanning of branes.

If σ is periodic, string is said to be closed, if it covers just a finite interval

σ ∈ [−t, t] t ∈ R string is said to be open. The string world-sheet is clearly

embedded inside spacetime, called target space, and this embetting is described

3



CHAPTER 1. BOSONIC STRING THEORY AND RNS SUPERSTRINGS

by functions Xµ(σ, τ). Using these latter, the action describing a string propa-

gating in a Minkowski spacetime is a generalization of p-brane action Sp obtained

previously, which is called Nambu-Goto action:

SNG = −T
∫
dσdτ

√
(Ẋ ·X ′)2 − Ẋ2X ′2 (1.8)

where Ẋµ = ∂Xµ

∂τ
and X ′µ = ∂Xµ

∂σ
and Ẋ ·X ′ = ηµνẊ

µX ′ν .

Figure 1.2: Xµ embedding map.

So the classical string motion minimizes (extremizes in a more general sense) the

world-sheet area in the same way the particle’s one minimizes length of world-line

while moving on a geodesic. Even though Nambu-Goto action can be interpreted

as the area of string world-sheet, due to square root, quantizing it is very difficult

so what is used to do as in [6] is to obtain another equivalent action called string

sigma model action or Polyakov action by introducing an auxiliary world-sheet

metric hαβ(σ, τ) analogously to the einbein on the particle case:

h = det(hαβ) and hαβ = (h−1)αβ (1.9)

with this, we can rewrite the action, classically equivalent to Nambu-Goto as:

SP = −1

2
T

∫
d2σ

√
−hhαβηµν∂αXµ∂βX

ν (1.10)

4



1.1. THE STRING ACTION

1.1.3 Symmetries of Polyakov action

Polyakov action for bosonic string in Minkowski spacetime

SP = −1

2
T

∫
d2σ

√
−hhαβ∂αXµ∂βXν (1.11)

has 3 main symmetries+1 gauge redundancy:

• Poincarè symmetry :

This symmetry is global, the action remains invariant while the world-sheet

embedding transforms as:

δXµ = aµνX
ν + bµ and δhαβ = 0 (1.12)

where the parameters aµν describe infinitesimal Lorentz transformations and

bµ infinitesimal space-time translation

• Reparametrization on the world-sheet :

Changing τ and σ the action remains unaffected, in particular:

σα → fα(σ) = σ′α and hαβ(σ) =
∂fγ

∂σα
∂f δ

σβ
hγδ(σ

′) (1.13)

is a local symmetry called diffeomorphism (infinitely differentiable trans-

formations with infinitely differentiable inverse ones) which leaves SP invari-

ant.

• Weyl Transformations :

These are local transformations of the form:

hαβ → eϕ(σ,τ)hαβ and δXµ = 0 (1.14)

since
√
−h→ eϕ(σ,τ)

√
−h transformation cancels with hαβ → eϕ(σ,τ)hαβ.

Last two local symmetries can be used to choose a gauge in order to fix the 4

components of hαβ metric of the world-sheet (3 independent since this metric is

5



CHAPTER 1. BOSONIC STRING THEORY AND RNS SUPERSTRINGS

a symmetric matrix). Using the reparametrization invariance of the action on we

can fix 2 components out of 3 of

hαβ =

(
h00 h01

h10 h11

)
(1.15)

This reparametrization invariance so leaves only one degree of freedom which is

analogous to have the metric as conformally flat:

hαβ = eϕ(σ,τ)ηαβ (1.16)

but using Weyl rescaling invariance we can eliminate that exponential resulting in

a metric of the world-sheet looking like if we set ϕ(σ, τ) = 0:

hαβ = ηαβ =

(
−1 0

0 1

)
(1.17)

the action, since now on
√
−h = 1 and hαβ = ηαβ, takes the form:

SP =
T

2

∫
d2σ(Ẋ2 −X ′2) (1.18)

This procedure to obtain a flat world-sheet metric is possible only when χ(Σ) = 0

(Euler Characteristic of the world-sheet Σ vanishes) so when topological obstruc-

tions like holes are not present. This can happen both in freely propagating closed

string case for which worldsheet is a cylinder and in freely propagating open string

when it is an infinite strip. However, this is not the end of the gauge freedom story,

there is a redundancy yet due to the fact that there is still a gauge transformations

class that preserves the choice of the metric, which is:

σ → ξ(σ) Coordinate Transformation (1.19)

hαβ → eϕhαβ Compensating Weyl Rescaling (1.20)

6



1.1. THE STRING ACTION

as stated in [37], these coordinate reparametrizations change the world-sheet metric

in such a way:

ηαβ → η′αβ = Ω2(σ)ηαβ (1.21)

compensated by the Weyl rescaling. How to fix all the gauge freedom will be seen

in light cone gauge chapter 1.4.

1.1.4 Equations of motion

Let us suppose that we have no topological obstruction so we can set our hαβ = ηαβ

the action is then the already seen:

SP =
T

2

∫
d2σ(Ẋ2 −X ′2) =

T

2

∫
d2σ((∂τ − ∂σ)X)2 (1.22)

by varying this action with the respect to Xµ we obtain:

δXµSP =
T

2

∫
d2σ(2Ẋµ∂τδXµ − 2X ′µ∂σδXµ) = T

∫
d2σ(∂2τX

µ − ∂2σX
µ)δXµ+

(1.23)

+boundary terms = T

∫
d2σ(∂2τ − ∂2σ)X

µδXµ (1.24)

since δXµ ̸= 0 for arbitrarity of the variation (∂2τ − ∂2σ)X
µ = 0 so

∂α∂
αXµ = 0 with α = 0, 1 (1.25)

Which is nothing more than the 2D wave equation.

There are constraints for this equation of motion, they come from the non gauge

fixed Polyakov action. From that action in fact we could have derived the equation

of motion for our hαβ and seen that this field can be eliminated, like the einbein in

the particle case. Since the world-sheet metric is just an auxiliary field that can be

eliminated, it is not physical and thus has no kinetic term so the energy momentum

tensor, which is then conserved under spacetime traslation of the action, is:

Tαβ = − 2

T

1√
−h

δSP
δhαβ

= ∂αX · ∂βX − 1

2
hαβh

γδ∂γX · ∂δX = 0 (1.26)

so the energy momentum tensor vanishes using the equation of motion for hαβ.

7



CHAPTER 1. BOSONIC STRING THEORY AND RNS SUPERSTRINGS

In the gauge hαβ = ηαβ called conformal gauge, this condition becomes a constraint

we have to impose since we gauge fixed the world-sheet metric:

Tαβ = 0 ⇒ T01 = T10 = Ẋ ·X ′ = 0 and T00 = T11 =
1

2
(Ẋ2 +X ′2) = 0 (1.27)

summing the components we get to the unique constraint:

0 = 2Ẋ ·X ′ + (Ẋ2 +X ′2) ⇒ (Ẋ +X ′)2 = 0 (1.28)

from here we can even see that Tr(Tαβ) = ηαβTαβ = T11 − T00 = 0 automatically,

so the traceless property of Energy Momentum Tensor is automatically guaranteed

in this gauge.

In order to simplify more the equation and so the solution it’s really convenient to

introduce light-cone coordinates on the world-sheet defined as:

σ± = τ ± σ (1.29)

In these coordinates clearly we get:

∂± =
1

2
(∂τ ± ∂σ) and ηαβ =

(
η++ η+−

η−+ η−−

)
= −1

2

(
0 1

1 0

)
(1.30)

and clearly the equation of motion can be rewritten as:

∂α∂
αXµ = ∂+∂−X

µ = 0 (1.31)

The constraint which is the vanising of energy momentum tensor is now:

T++ = ∂+X · ∂+X − 1
2
η++η

γδ∂γX · ∂δX = ∂+Xµ∂+X
µ = 0

T+− = ∂+X · ∂−X − 1
2
η+−η

γδ∂γX · ∂δX = ∂+Xµ∂−X
µ − ∂+Xµ∂−X

µ ≡ 0

T−+ = ∂−X · ∂+X − 1

�2
η−+η

γδ∂γX · ∂δX = ∂−Xµ∂+X
µ − ∂−Xµ∂+X

µ ≡ 0

T−− = ∂−X · ∂−X − 1
2
η−−η

γδ∂γX · ∂δX = ∂−Xµ∂−X
µ = 0

(1.32)

While T+− = T−+ = 0 represent the vanishing of the trace automatically satisfied
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1.1. THE STRING ACTION

due to the Weyl Invariance, the other two represent the constraints:

T++ = ∂+Xµ∂+X
µ = 0 (1.33)

T−− = ∂−Xµ∂−X
µ = 0 (1.34)

Now that we found the contraints (1.33), (1.34) and the equation of motion

(1.31) the problem is setted almost entirely and so we can derive the general

solution:

Xµ(σ, τ) = Xµ
L(τ + σ) +Xµ

R(τ − σ) = Xµ
L(σ

+) +Xµ
R(σ

−) (1.35)

which is sum of right moving part and left moving part. In order to find explicitly

both right and left moving parts we need to require the embedding function to

be real, impose suitable boundary conditions and the constraints on the energy

momentum tensor which now have become:

(∂−XR)
2 = (∂+XL)

2 = 0 (1.36)
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CHAPTER 1. BOSONIC STRING THEORY AND RNS SUPERSTRINGS

1.2 Boundary conditions and mode expansions

In order to define properly a full variational problem, boundary conditions of

course are needed so in this section we explore different possibilities for boundary

conditions and the mode expansion they lead to.

1.2.1 Boundary conditions

As we previously stated string can be both close or open. For convenience we

choose σ ∈ [0, π] in order to follow [6].

Stationary points of the action as always are determined by demanding invariance

of SP under embedding map shift:

Xµ → Xµ + δXµ (1.37)

obtaining, as seen before:

δXµSP =
T

2

∫
d2σ(2Ẋµ∂τδXµ − 2X ′µ∂σδXµ) = (1.38)

= T

∫
d2σ

[
(∂2τX

µ − ∂2σX
µ)δXµ + ∂τ (Ẋ

µδXµ)
]
−T

∫
dτ(X ′

µδX
µ|σ=π−X ′

µδX
µ|σ=0)

(1.39)

the total derivative in τ vanishes automatically at ±∞ but we need even to achieve

the non trivial vanishing of

−T
∫
dτ(X ′

µδX
µ|σ=π −X ′

µδX
µ|σ=0) (1.40)

This vanishing can be achieved in 3 ways:

• Closed string boundary condition:

In this case embedding functions are periodic in σ:

Xµ(σ, τ) = Xµ(σ + π, τ) (1.41)
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1.2. BOUNDARY CONDITIONS AND MODE EXPANSIONS

• Open string with Neumann boundary conditions : In this case, component of

momentum normal to the world-sheet evaluated at boundary vanishes:

X ′
µ|σ=0,π = 0 (1.42)

Making this choice physically means that no momentum exits the ending

of the string and ∀µ boundary conditions respect Poincarè invariance in D

dimensions.

• Open string with Dirichlet boundary conditions : In this case, extrema of

strings are fixed so δXµ = 0 and:

Xµ|σ=0 = Xµ
0 and Xµ|σ=π = Xµ

π (1.43)

both constant and µ = 1, ..., D−p−1 for the other p+1 coordinates Neumann

boundary conditions are imposed. Clearly, since some coordinates are treated

differently from others, Poincarè invariance is broken, so in the past these

boundary conditions have been abandoned but now, in modern times, Xµ
0

and Xµ
π represent position of Dp-branes which is a special kind of p-brane

where string endcaps are attached, this Dp-brane presence can be proved

to break Poincarè invariance as previously stated except for p=D-1 so the

Dp-brane is spacetime filling (which is exactly our case).

1.2.2 Mode expansions

We start from the closed string mode expansion and then we derive by physical

motivations the mode expansion for open string with Neumann boundary condi-

tions. We recall that the Polyakov action can be rewritten, recalling just to add

the jacobian multiplication for a curved world-sheet metric (
√
−h), as:

SP = −1

2
T

∫
d2σ∂αX

µ∂αXµ (1.44)
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defining T in terms of α′ Regge slope parameter and in terms of string length scale

ls as:

T =
1

2πα′ and
1

2
l2s = α′ (1.45)

we can rewrite the action as:

SP = − 1

4πα′

∫
d2σ∂αX

µ∂αXµ (1.46)

Using the closed string boundary conditions (1.41) we recall that any function

satisfying such a boundary condition can be Fourier expanded in modes:

Xµ(σ, τ) =
+∞∑

n=−∞

einσfµn (τ) (1.47)

Plugging inside the equation of motion ( ∂
2

∂σ2 − ∂2

∂τ2
)Xµ(σ, τ) = 0 this Fourier mode

expansion we get the equation of motion for the Fourier modes which is nothing

more than the equation for a 1D harmonic oscillator:

∂2τf
µ
n (τ) + n2fµn (τ) = 0, (1.48)

∂2τf0 = 0 (1.49)

The solution for n ̸= 0 is, as always, a linear combination of imaginary exponen-

tial:

fµn (τ) = αµne
inτ + α̃µne

−inτ (1.50)

While for n = 0 is clearly a linear term with the respect to τ :

fµ0 (τ) = xµ + pµτ (1.51)

where xµ will be the center of mass position and pµ which can be proven to

be the total string momentum via computing the conserved charges with the

respect to Poincarè symmetry:

pµ = T

∫ π

0

dσẊµ(σ) (1.52)
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1.2. BOUNDARY CONDITIONS AND MODE EXPANSIONS

Mµν = xµpν − xνpµ +
∑
n ̸=0

= − i

n
(αµ−nαnν − αν−nαnµ) + tilded for closed strings

(1.53)

where Mµν angular momentum. The exponential parts of (1.47) are the string

excitation modes fµn . Putting all this together and introducing convenient fac-

tors:

Xµ(σ, τ) = xµ + l2sp
µτ + ils

∑
n̸=0

1

n
(αµne

−in(τ−σ) + α̃µne
−in(τ+σ)) (1.54)

so that we get:

Xµ
R(σ, τ) =

1

2
xµ +

1

2
l2sp

µ(τ − σ) +
i

2
ls
∑
n̸=0

1

n
(αµne

−in(τ−σ)) (1.55)

Xµ
L(σ, τ) =

1

2
xµ +

1

2
l2sp

µ(τ + σ) +
i

2
ls
∑
n̸=0

1

n
(α̃µne

−in(τ+σ)) (1.56)

Requiring Xµ to be real, we derive in the end that xµ, pµ are real too and positive

and negative modes are complex conjugate of each other because of the change of

sign of exponential’s argument.

αµ−n = (αµn)
∗ and α̃µ−n = (α̃µn)

∗ and αµ0 = α̃µ0 =
1

2
lsp

µ (1.57)

In order to obrain the open string mode expansion we note that the two modes

αµn, α̃
µ
n represent in closed modes kind of right and left moving waves propagat-

ing.For the open string left and right-moving modes must combine into standing

waves since the endcaps of the strings are not connected.

This is analogue to say that αµn = α̃µn = αµm for open string and so we obtain,

imposing this condition in the closed string expansion:

Xµ(σ, τ) = xµ + l2sp
µτ +

i

2
ls
∑
m ̸=0

1

m
(αµme

−imτ )(eimσ + e(−imσ)) (1.58)
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Using trigonometric identity on cos:

Xµ(σ, τ) = xµ + l2sp
µτ + ils

∑
m̸=0

1

m
(αµme

−imτ )cos(mσ) (1.59)
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1.3 Canonical quantization

In this section we try to canonically quantize the theory starting from Poisson

Brackets and jumping to commutators, finding out a big problem about negative

norm states and solving it by imposing the such called Virasoro Constraints.

1.3.1 Classical Poisson brackets and commutation relations

In order to quantize the theory and so using the Poisson Brackets before, we need

to define the canonical conjugate momentum:

P µ =
δS

δẊµ
= TẊµ (1.60)

so we get the classical Poisson brackets equal to:

[P µ(σ, τ), P ν(σ′, τ)]P.B. = [Xµ(σ, τ), Xν(σ′, τ)]P.B. = 0 (1.61)

[P µ(σ, τ), Xν(σ′, τ)]P.B. = ηµνδ(σ − σ′) (1.62)

or, analogously, writing the momentum in terms of Ẋµ:

{Ẋµ(σ, τ), Xν(σ′, τ)}P.B. =
1

T
ηµνδ(σ − σ′) (1.63)

Plugging now inside the poisson brackets, using δ(σ−σ′) = 1
π

∑∞
n=−∞ e2in(σ−σ

′) we

get the ones for the modes:

{αµm, ανn}P.B. = {α̃µm, α̃νn}P.B. = imηµνδm+n,0 (1.64)

{αµm, α̃νn}P.B. = 0 (1.65)

Now, when we replace Poisson brackets with commutators with the canonical

prescription:

{...}P.B. → i [...] (1.66)

That gives :

[αµm, α
ν
n] = [α̃µm, α̃

ν
n] = mηµνδm+n,0 (1.67)
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CHAPTER 1. BOSONIC STRING THEORY AND RNS SUPERSTRINGS

[αµm, α̃
ν
n] = 0 (1.68)

We can define analogue of raising and lowering operators by just calling:

aµm =
1√
m
αµm and aµ†m =

1√
m
αµ−m for n,m > 0 (1.69)

from the commutation relationships for the modes we can derive the one for the

aµn and for the ãµn which respect the raising and lowering operator algebra:

[
aµm, a

ν†
n

]
=
[
ãµm, ã

ν†
n

]
= ηµνδm,n for m, n > 0 (1.70)

which lead to a big problem due to Minkowski -1 component:

[
a0m, a

0†
m

]
= −1 (1.71)

In fact, by defining the number operators N =
∑

k>0 α−k ·αk and Ñ =
∑

k>0 α̃−k ·
α̃k, by a construction à la Fock of the closed string states space

HFock
Closed = spanC

{D−1∏
µ=0

∞∏
n=1

∞∏
m=1

(αµ−n)
Nµ

n (α̃µ−n)
Ñµ

m |0⟩ |Nµ
n , Ñ

µ
m ≥ 0 but finite

}
(1.72)

(analogously for open string one), we get that a state a0†m |0⟩ has:

⟨0| a0ma0†m |0⟩ = −1 (1.73)

negative norm. Negative-norm states, if not decoupled from the dynamics, can

interact in processes with other physical ones generating violation of causality and

unitarity. We can remove them in 2 different ways:

- Imposing energy momentum constraints 1.3.2;

- Automatically removing them via light-cone gauge quantization 1.4.
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1.3.2 Virasoro constraints

In order to impose the Energy Momentum constraints it is useful to plug the

closed (analogously open) string mode expansion (1.54) separated in (1.56) and

(1.55) inside (1.33) and (1.34) giving us the Laurent Expansion of the Energy

Momentum Tensor:

T−− = 2l2s

+∞∑
m=−∞

Lme
−2im(τ−σ) and T++ = 2l2s

+∞∑
m=−∞

L̃me
−2im(τ+σ) (1.74)

with the coefficients given by:

Lm =
T

2

∫ π

0

e−2imσT−−dσ =
1

2

+∞∑
n=−∞

αm−n · αn (1.75)

L̃m =
T

2

∫ π

0

e−2imσT++dσ =
1

2

+∞∑
n=−∞

α̃m−n · α̃n (1.76)

while, for the open strings, we have just Lm. These Lm and L̃m are called Virasoro

Generators since they satisfy the Classical Virasoro (or De Witt) Algebra:

{Lm, Ln}P.B. = i(m− n)Lm+n (1.77)

which can be computed by using the Poisson brackets (1.64) and (1.65) and which

is the algebra of the transformations corresponding to the residual gauge freedom

(1.19). The constraints (1.33) and (1.34) become:

Lm = 0 (1.78)

L̃m = 0 (1.79)

Up to now everything is classical, however, via passing from the Poisson Brackets

to the Commutation Relations (1.66) we get slight complications:

1) The commutation relations for the modes (1.67) and (1.68) imply that we

need to define the ill posed Virasoro generator L0 as normal ordered to solve
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the eventual ambiguities:

Lm =
1

2

∑
n∈Z

: αm−n · αn :=
1

2

∑
n∈Z

αm−n · αn, m ̸= 0 (1.80)

L̃m =
1

2

∑
n∈Z

: α̃m−n · α̃n :=
1

2

∑
n∈Z

α̃m−n · α̃n, m ̸= 0 (1.81)

L0 =
1

2
α2
0 +

+∞∑
n=1

α−n · αn =
1

2
α2
0 +N (1.82)

L̃0 =
1

2
α̃2
0 +

+∞∑
n=1

α̃−n · α̃n =
1

2
α̃2
0 + Ñ (1.83)

2) These expression for the Virasoro generators satisfy the Virasoro Algebra

commutation relations:

[Lm, Ln] = (m− n)Lm+n +
D

12
m(m2 − 1)δm+n,0 (1.84)

which is a central extension of the classical Virasoro Algebra with central

charge D spacetime dimension.

3) The classical constraints must have been replaced with Gupta-Bleuler like

conditions since the vanishing of all the Virasoro generators does not satisfy

the Virasoro Algebra:

⟨ϕ|Lm |ϕ⟩ = 0 ∀ |ϕ⟩ ∈ HPhys ⟨ϕ| L̃m |ϕ⟩ = 0 ∀ |ϕ⟩ ∈ HPhys (1.85)

where HPhys Fock space of Physical states. This condition by simple manip-

ulation and taking into account the normal ordering problem on L0 can be

rewritten as:

Lm |ϕ⟩ = 0 ∀m > 0 and ∀ |ϕ⟩ ∈ HPhys (1.86)

(L0 − a) |ϕ⟩ = 0 ∀ |ϕ⟩ ∈ HPhys (1.87)
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with the additional conditions for closed strings:

L̃m |ϕ⟩ = 0 ∀m > 0 and ∀ |ϕ⟩ ∈ HPhys (1.88)

(L̃0 − a) |ϕ⟩ = 0 ∀ |ϕ⟩ ∈ HPhys (1.89)

where a is called normal ordering constant and remains the same both in

tilded and non-tilded case in order to avoid gravitational anomalies.

In addition to complications, the introduction of Virasoro generators leads to in-

teresting features:

• Since the 4-momentum pµ can be rewritten by using (1.52) so as pµ =
αµ
0√
2α′

then, using (1.83) the Mass Shell condition can be rewritten as:

M2 = −pµpµ =
1

α′

+∞∑
n=1

α−n · αn − a =
1

α′ (N − a) (1.90)

for open strings and

M2 =
4

α′

+∞∑
n=1

α−n · αn − a =
4

α′

+∞∑
n=1

α̃−n · α̃n − a =
4

α′ (N − a) =
4

α′ (Ñ − a)

(1.91)

for closed strings, where N =
∑+∞

n=1 α−n ·αn and Ñ =
∑+∞

n=1 α̃−n · α̃n are the

number operators.

This implies that in both open and closed string case, the ground state is

tachyonic if a > 0:

M2 = − 4

α′a (1.92)

• Quantising the expression (1.53) we get that:

[Lm,M
µν ] = 0 (1.93)

meaning that this quantisation method is manifestly covariant and that a

physical state, a state satisfying Virasoro constraints, remains physical after
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Lorentz transformations.

• Taking the constraints (1.87) and (1.89) and subtracting them we get:

(L0 − L̃0) |ϕ⟩ = 0 ∀ |ϕ⟩ ∈ HPhys (1.94)

which, from the definition (1.83) implies:

N = Ñ (1.95)

this is the such called Level Matching condition and it has the strong

Physical meaning of having the same number of left and right moving modes.

• The normal ordering constant a and the spacetime dimension D can be fixed

by demanding the absence of negative norm state. This can be achieved via

imposing Virasoro constraints and obtaining the absence of such a unitarity

violation states for a ≤ 1 1 ≤ D ≤ 26, however only the such called critical

string theory gives no problems on string interactions so we are going to

study this case, which is the one where a = 1 and D = 26 and which then

contains a tachyonic ground state:

M2 = − 4

α′ (1.96)
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1.4 Light cone gauge quantization

As stated in chapter 1.1.3, bosonic string has residual diffeomorphism symmetries,

so residual gauge freedom, after choosing hαβ = ηαβ conformal gauge, this residual

symmetry is made, as we said, a reparametrization of the world-sheet parameter

σ compensated by a Weyl rescaling. In this chapter we are going to exploit this

additional gauge freedom to quantise the theory in an alternative way manifestly

free of negative norm states but not manifestly covariant.

1.4.1 Removal of negative norm states

In order to remove this additional gauge freedom we introduce now light-cone

coordinates for space time:

X± =
1√
2
(X0 ±XD−1) (1.97)

Where Xµ has now µ = +,−, 1, ..., D−2 and the overall 1√
2
is due to the fact that

we removed the 1
2
from the definition of σ±.

Now the spacetime metric becomes in these new coordinates:

ds2 = −2dX+dX− + dX idXi (1.98)

where i = 1, ...D−2. This choice of light-cone coordinates is clearly non manifestly

covariant since some coordinates are treated differently (higher + index becomes

a lower − under use of metric). In order to proceed to gauge fixing we need before

to study better this residual gauge freedom.

The reparametrization infinitesimally can be written as:

σα → ξα = σα + γα ⇒ hαβ(ξ) =
∂(σµ + γµ)

∂(σα)

∂(σν + γν)

∂σβ
hµν(σ) = (1.99)

= (δαµ + ∂αγ
µ)(δβν + ∂βγ

ν)hµν(σ) = hαβ(σ) + ∂αγβ + ∂βγα ⇒ (1.100)

⇒ δhαβ = ∂αγβ + ∂βγα (1.101)
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But in addition to this, considering the infinitesimal Weyl rescaling (with Λ pa-

rameter of this transformation) we have:

hαβ(ξ) = (1 + Λ)hαβ = hαβ(σ) + Λhαβ(σ) ⇒ δhαβ = Λhαβ(σ) = Ληαβ (1.102)

after gauge fixing. So in the end, after comparing the two variation of world-sheet

metric, the parameters must satisfy:

∂αγβ + ∂βγα = Ληαβ (1.103)

Defining then the world-sheet light cone coordinates again as σ± = σ0 ± σ1 the

metric becomes ds2 = −dσ+dσ− (so the equation works even with high indices

∂αγβ + ∂βγα = Ληαβ) and, analogally, the infinitesimal parameter γ± = γ0 ± γ1

we get that the equation for the parameter becomes:

∂+γ− + ∂−γ+ = 0 (1.104)

∂+γ+ = ∂−γ− = 0 (1.105)

Specially focusing on:

∂+γ− = ∂−γ+ = 0 (1.106)

we get that, in the end ξ+ = σ++γ+ = ξ+(σ+) and ξ− = σ−+γ− = ξ−(σ−). This

could have be seen even from the fact that as stated in 1.1.3 the reparametrizations

connected to residual gauge symmetries are the one that modify the metric in such

a way:

ηαβ → Ω(σ)ηαβ (1.107)

so the ones of the form σ+ → ξ+(σ+) and σ− → ξ−(σ−). So the correct parametriza-

tion is, in the end:

σ+ → ξ+(σ+) and σ− → ξ−(σ−) (1.108)

In order to come back to a time/space coordinate couple instead of double null

ones we can define:

τ̃ =
1

2
(ξ+(σ+) + ξ−(σ−)); (1.109)
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σ̃ =
1

2
(ξ+(σ+)− ξ−(σ−)) (1.110)

which means that τ̃ is a solution of free massless wave equation:

∂+∂−τ̃ = (
∂2

∂σ2
− ∂2

∂τ 2
)τ̃ = 0 (1.111)

However, in the conformal gauge even Xµ(σ, τ) satisfy 2D wave equation so we

can write X+(σ̃, τ̃) as linearly dependent on τ̃ :

X+(σ̃, τ̃) = x+ + l2sp
+τ̃ (1.112)

So all the excited modes are now set to 0 which means:

α+
n = 0 for n ̸= 0 (1.113)

Since now on we will recall τ = τ̃ , σ = σ̃ for the sake of simplicity. We made now

a non covariant gauge choice since the coordinates make us rewrite the metric in a

non manifestly Lorentz invariant way. This non covariancy can lead to anomalies

breaking the Lorentz invariance, since a Lorentz anomaly in non covariant gauge

(light-cone in this case) is analogue to a conformal anomaly (we used conformal

gauge for world-sheet metric) in a covariant gauge preserving Lorentz invariance.

With this gauge fixing we removed the oscillator modes for X+ so, if we manage to

remove even the one for X− we can write all the states acting with just transverse

creation operators on vacuum and so naturally removing the negative norm states.

We can do this by simply recalling that the components of Xµ must satisfy wave

equations+ energy momentum tensor constraints, so even X− must:

∂+∂−X
− = 0 (1.114)

Leading to the usual solution X−(σ) = X−
L (σ

+) +X−
R (σ

−) constrained by:

∂+X
µ∂+Xµ = −2∂+X

+∂+X
− + ∂+X

i∂+Xi = 0 ⇒ (1.115)

⇒ 2∂+X
+∂+X

− = ∂+X
i∂+Xi (1.116)
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Plugging inside X+(σ, τ) = x+ + l2sp
+τ , in particular the shape of left and right

moving parts X+
L (σ

+)) = 1
2
x+ + 1

2
l2sp

+σ+, X+
R (σ

−) = 1
2
x+ + 1

2
l2sp

+σ− this leads

to:

∂+X
−
L =

1

l2sp
+
∂+X

i∂+Xi (1.117)

Analogously, for the other constraint in double partial derivative in σ− we get:

∂−X
−
R =

1

l2sp
+
∂−X

i∂−Xi (1.118)

Considering now for simplicity an open string and applying now these constraints

to the open string expansion for X− (note that the arbitrary index of the mode is

now called n, but before m) which can be written as

X− = x− + l2sp
−τ + ils

∑
n=0

1

n
α−
n e

−inτcos(nσ) (1.119)

we can get the expression for the excited modes coefficient related to the cre-

ation/annihilation operator (classically):

α−
n =

1

p+ls

(
1

2

D−2∑
i=1

+∞∑
m=−∞

αin−mα
i
m

)
(1.120)

In the quantum theory however we have normal ordering problems and so inserting

a constant appearing due to commutation and normal ordering (and =1 in critical

string theory as stated before):

α−
n =

1

p+ls

(
1

2

D−2∑
i=1

+∞∑
m=−∞

: αin−mα
i
m : −aδn,0

)
(1.121)

So, in the light-cone gauge it’s possible even to remove X+ and X− in the sense

that their modes vanish or can be expressed in terms of transverse modes, so in the

end, the time component of the embedding map and so of the creation/annihilation

operator a0n is never present implying that unphysical negative norm states are

naturally removed in this light-cone gauge even if we lost Lorentz invariance.
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1.4.2 Computation of a and D

In order to check the consistency of this approach we are now going to briefly

compute the normal ordering constant and the spacetime dimension in this pic-

ture.

The starting point is, as always, the Mass shell condition which, in the light cone

gauge can be written for the open string as:

M2 = −pµpµ = 2p+p− −
D−2∑
i=1

pip
i =

1

α′ (N − a) (1.122)

where

N =
D−2∑
i=1

+∞∑
n=1

αi−nα
i
n (1.123)

Since the only independent modes are the transverse one, the first excited state is

given by:

αi−1 |0; p⟩ (1.124)

which belongs to a D-2 component vector representation of SO(D-2) so it is mass-

less for Lorentz covariance, giving us the value of normal ordering constant:

M2 = α′(1− a) = 0 ⇔ a = 1 (1.125)

Given this the computation of the spacetime dimension comes from heuristic

argument from the manual normal ordering of L0 as showed in [6] and, using

Riemann Zeta function we can see how consistently with the previous approach

D = 26.

1.4.3 Open and closed string spectra

One of the advantages of Light Cone Gauge is that it is pretty straightforward to

compute and check for Open and Closed String Spectra.
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Open string spectrum

The first 3 mass levels for the open strings are given by:

• N = 0:

Tachyon |0; p⟩ with mass M2 = − 1
α′

• N = 1:

Massless Vector Boson αi−1 |0; p⟩.

• N = 2:

Two different possibilities⇒ αi−2 and α
i
−1α

j
−1 |0; p⟩ withM2 = 1

α′ . These two

possibilities represent respectively 24 and 300 states so in total 324 states

which is the dimension of the symmetric traceless rank-2 representation of

SO(25) ⇒ massive spin 2 state.

Closed string spectrum

The Closed String Spectrum construction is totally analogue to the Open String

one but with a big difference: the Level Matching condition (1.95) must hold.

Taking again the mass shell condition then in critical case:

M2 =
4

α′ (N − 1) =
4

α′ (Ñ − 1) (1.126)

the physical states are:

• N = 0:

Tachyon |0; p⟩ with mass M2 = − 4
α′

• N = 1:

A tensor |Ωij⟩ = αi−1α̃
i
−1 which represents 576 states. This |Ωij⟩ can be

decomposed as follows:

|Ωij⟩ = |Ω(ij)⟩+ |Ω[ij]⟩+ δij |Ωij⟩ (1.127)

where |Ω(ij)⟩ is the symmetric traceless part transforming as a massless spin

2 particle under SO(24) ⇒ the Graviton (which gives an hint on how String
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Theory naturally contains General Relativity), |Ω[ij]⟩ transforms as antisym-

metric rank-2 tensor under SO(24) and it is called the Kalb-Ramond field

Bµν = B2 and δij |Ωij⟩ is the trace of |Ωij⟩ and transforms as a scalar under

SO(24); it is called the Dilaton.

1.5 D = 26 target space action

We now want to write an action not from the worldsheet prospective as we did

before, but from the 26 dimensional target space. In order to do so, we start

focusing on the closed string part. We straightforwardly write a quadratic action

starting from the closed bosonic spectrum we have seen before in 1.4.3. Inserting

vertices and using Path Integral formalism or checking heuristically that this action

gives the correct equation of motions for the closed string spectrum fields as in

[28], we can see how the non-linear 2-derivative action, excluding the tachyon, can

be rewritten as:

S26D =
1

k2

∫
d26x

√
−Ge−2ϕ

(
R [G]− 1

12
HµνρH

µνρ + 4(∂ϕ)2
)

(1.128)

where k gravitational coupling, R [G] Ricci scalar, Hµνρ = H3 = dB2 a 3-form

which is kind of the Field Strength tensor for Kalb-Ramond field, in total analogy

with Fµν = F2 = dA = dAµ where d external derivative. The expression (1.128)

contains several interesting features:

1) The Kinetic term for the dilaton ϕ is apparently sign mistaken, however this

is not a problem since it is due to the fact that this action is written in the

such called ”String Frame” which is the analogue of the Brans-Dicke frame

and just by reparametrizing the action via:

Gµν = G̃µνe
−ϕ
6 (1.129)

we can rewrite (1.128) as:

S26D =
1

k2

∫
d26x

√
−G̃

(
R
[
G̃
]
− e

−ϕ
3

12
HµνρH

µνρ − 1

6
(∂ϕ)2

)
(1.130)
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which has the correct, well known sign and where the Planck Mass is man-

ifestly fixed since the absence of the overall e−2ϕ while the mass of excited

states changes with the variation of background value of the dilaton.

2) Taking the action (1.128) and setting Gµν = ηµν , Bµν = 0 and ϕ = 0 we get:

S26D =
1

k2

∫
d26xR [ηµν ] = 0 (1.131)

which gives us the background of our original 2D theory (1.10). However,

we can generalize (1.10) in 3 ways:

- Changing ηµν → Gµν in the Polyakov action leading to:

SP = −1

2
T

∫
d2σ

√
−hhαβGµν∂αX

µ∂βX
ν (1.132)

expanding the metric close to X = 0 we get:

Gµν = ηµν + const ·(X1)2ηµν + . . . (1.133)

giving an additional quartic interaction term in the worldsheet action.

- By Setting Bµν = Bµν ̸= 0 as before we can expand it and obtain terms

that are no longer quadratic.

- By Setting ϕ ̸= 0 something very interesting happens from the world-

sheet perspective and we will discuss it in the next point since it’s

strongly related with the importance of the dilaton.

3) Since the overall exponential e−2ϕ The value of k2 can be changed by the

value of the dilaton itself, which regulates then the value of the 26D Planck

Mass with the respect to the mass of first excited modes 2√
α′ via defining

k2 = cα′12. Instead, from a worldsheet perspective, the dilaton enters the

game in a very peculiar way. In principle, in the worldsheet action the

Einstein Hilbert term

SE.H. =
1

4π

∫
d2σ

√
hR2D (1.134)
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appears naturally, however this, since the 2D nature of the worldsheet, it can

be rewritten as a total derivative by the use of Einstein equations. In general

its value then is a constant different from zero called Euler Characteristic χ

which is depending on the genus g of a Riemann surface (number of Handles

of it) χ = SE.H. = 2(1−g). This term then due to the fact that is a topological

invariant does not contribute to the dynamics of the Sigma model, so it is

possible to generalize this term straightforwardly by adding a mass dimension

0 element to the action, i.e. a scalar, the dilaton as done in [28]:

STOT ⊃ 1

4π

∫
d2σ

√
hϕ(Xµ)R2D (1.135)

In order to understand the final motivation behind the importance of the

dilaton we now follow [35] and we start by taking the Euclidean Polyakov

Path Integral:

Z =

∫
dXdge−S (1.136)

where now gab is the Euclidean correspondent of hab. Upon switching on only

ϕ ̸= 0 the euclidean action can be rewritten as:

S = SP + λχ (1.137)

where λ, using (1.135) is λ = ϕ. The importance of passing into Euclidean

description stays in the fact that a nontrivial worldsheet can have a nonsin-

gular euclidean metric but has a singular Minkowskian one so this description

is better given. Now adding an handle from a topological point of view corre-

sponds to increasing the genus g → g+1 ⇒ χ→ χ−2 and so, using (1.136),

a factor e2ϕ appears in Z, however, due to the fact that physically adding it

corresponds to emission and absorption of a closed string, the amplitude for

closed string emission gets a correction of eϕ coming from the coupling, so

this term and in particular the dilaton value controls the string coupling:

gs = eϕ (1.138)
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1.6 RNS superstring action

In the previous sections we have discussed bosonic string theory which is the most

immediate way to discuss a generalization of the classical particle but still has two

big problems:

1) Bosonic string spectrum both for closed and for open string contains tachyon

and tachyons are symbol of vacuum instability which leads our theory to live

in a Universe of false vacuum decaying into real one. Open string tachyon

elimination can be traced back to the decay of D-branes into closed-string

radiation, but for closed string tachyon the problem remains.

2) Bosonic string theory doesn’t take into account fermions which are funda-

mental constituents of matter in nature.

One can imagine that we can insert fermions by hand but this can be achieved

in a more elegant way requiring Supersymmetry in the action, a symmetry

that relates bosons and fermions. String theories with supersymmetry are called

superstring theories. In order to implement Supersymmetry inside string theory

we have 2 approaches:

-) Ramond-Neveu-Schwarz (RNS) formalism where we add supersymmetry on

the string world-sheet in sense that we include additional fermionic coordi-

nates of the world-sheet related to the generators of supersymmetry.

-) Green-Schwarz (GS) formalism is manifestly supersymmetric instead in 10D

Minkowski spacetime and here the ”fermionic coordinates” are just fermionic

additional embedding maps.

We will focus on RNS formalism.

1.6.1 Ramond-Neveu-Schwarz action

In RNS formalism embedding maps become bosonic fields Xµ(σ, τ) of the two-

dimensional world-sheet theory and they are paired with fermionic partner fields

ψµ(σ, τ) which are 2 component spinors on world-sheet (since we are in 2D). As
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we see from index structure, they are vectors under Lorentz Transformations of

D-dimensional spacetime. These fields anticommute -being fermionic- and this is

consistent with spin statistics in D=10. Setting now l2s = 1 ⇒ α′ = 1
2
⇒ T = 1

π
we

can rewrite the bosonic string action in the conformal gauge hαβ = ηαβ as:

SP = − 1

2π

∫
d2σ∂αXµ∂

αXµ (1.139)

recalling that, after fixing the gauge, we need to impose the vanishing of energy

momentum tensor as constraint in addition to the equation of motion. This is

clearly a free field theory in 2D but it’s still bosonic. In order to generalize it then

we add other degrees of freedom adding fermions on the world-sheet which are D

Majorana fermions ψµ(σ, τ) belonging to the SO(1, D − 1) vector representation.

For the sake of clarity we explicit that in the representation of 2D Dirac algebra a

Majorana spinor is equivalent to a real spinor in the sense that depends just on 2

real parameters.

The total action now is obtained by adding the standard Dirac action for D Ma-

jorana massless Spinors to the free theory of D massless bosons:

STOT = − 1

2π

∫
d2σ(∂αXµ∂

αXµ + ψ̄µρα∂αψµ) = SB + SF (1.140)

where α is a world-sheet component index, µ is the spacetime component index.

Here we have that ρα with α = 0, 1 represents the two-dimensional version of γµ

Dirac matrices, which obey the Clifford algebra:

{ρα, ρβ} = 2ηαβ (1.141)

In order to be totally explicit, choosing a convenient basis, we can write the ma-

trices as:

ρ0 =

(
0 −1

1 0

)
and ρ1 =

(
0 1

1 0

)
(1.142)

Which clearly satisfy the algebra.

Let us now talk about the fermionic field in order to rewrite the action in a more
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convenient way. Classically the world-sheet fermionic field ψµ is composed by

Grassmann variables which must anticommute:

{ψµ, ψν} = 0 (1.143)

Of course after quantizing, this must change. This spinor ψµ has two components

ψµA where A = ± spinorial index, which now takes just 2 values since we are in 2D

world-sheet:

ψµ =

(
ψµ−

ψµ+

)
(1.144)

by following the procedure explicitly done in A we can rewrite the fermionic part

of the action as: and Suppressing Lorentz indices that are just labels from the

point of view of world-sheet:

SF =
i

π

∫
d2σ(ψ−∂+ψ− + ψ+∂−ψ+) (1.145)

From this action we can easily derive the equations of motion for ψ+ and ψ− as

done in A:
δSF
δψ−

= 0 ⇒ ∂+ψ− = 0 (1.146)

δSF
δψ+

= 0 ⇒ ∂−ψ+ = 0 (1.147)

These equations clearly represent left and right moving waves, for spinors in 2D

these are Weyl conditions, so such fields ψµ± are called Majorana-Weyl spinors

which at a Group theoretical level, are inequivalent real 1D representations of 2D

Lorentz group SPIN(1, 1) = GL(1,R) ⇒ SPIN(1, 1)/Z2 ≃ SO(1, 1) as stated in

[6].

1.6.2 Global world-sheet supersymmetry

The action

STOT = − 1

2π

∫
d2σ(∂αXµ∂

αXµ + ψ̄µρα∂αψµ) (1.148)

enjoys another symmetry in addition to the ones discussed previously on bosonic

string section and preserved here, in fact action remains invariant under transfor-
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mation:

δXµ = ϵ̄ψµ (1.149)

δψµ = ρα∂αX
µϵ (1.150)

Where ϵ is a constant infinitesimal 2D Majorana spinor which is made by anticom-

muting Grassmann numbers. This spinor in components can be written as:

ϵ =

(
ϵ−

ϵ+

)
(1.151)

So now, rewriting the action in terms of light-cone coordinates on the world-sheet

and in component ψµ+, ψ
µ
−, ϵ+, ϵ−, using the fact that, after gauge fixing, from the

definition of ∂± = 1
2
(∂0 ± ∂1),:

∂αXµ∂
αXµ = ∂αXµ∂βX

µηαβ = −∂0Xµ∂0X
µ + ∂1Xµ∂1X

µ = −4∂+Xµ∂−X
µ

(1.152)

we get:

STOT =
1

π

∫
d2σ(2∂+Xµ∂−X

µ + iψ−∂+ψ− + iψ+∂−ψ+) (1.153)

And we can easily verify, as done in A, that this action is clearly invariant under

the transformation written before.

This symmetry is very peculiar since mixes bosonic Xµ and fermionic ψµ degrees

of freedom, in fact a variation of the bosonic field depends on fermionic field and

viceversa, this is a symmetry that relates particles with different spin and it’s called

Supersymmetry. It has been discovered in 1971 by Gervais and Sakita and by

Golfand and Likhtman in Soviet Union from the point of view of Super-Poincarè

algebra in the same year. A very important thing about this symmetry that can be

noted now is that the algebra of this transformation only closes on-shell as showed

explictly in A, in the sense that commutation between two supersymmetry trans-

formations, which are world-sheet translation+anticommuting coordinate transla-

tion as we will see later on, gives another world-sheet translation. We conclude

the section with a note: ϵ in this case does not depend on σ nor τ so the super-
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symmetry here is called global, in principle we can make it dependent from them

and we could have originated local supersymmetry called Supergravity.

34
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1.7 Superfield formalism for RNS action

What we have said until now can be expressed in a more compact and manifestly

supersymmetric way by using the such called superfield formulation and integration

over Grassmann fermionic coordinates.

1.7.1 Superspace formalism

Starting from standard Poincarè group with generators Mαβ, Pα where α = 0, 1

we can add other generators to enlarge the group of symmetry to the such called

N=(1,1) SuperPoincarè algebra. This generators we add are fermionic, so are

spinors, in particular, in 2D, Majorana-Weyl spinors Q−, Q+. Adding these 2 gen-

erators leads to enlarge the spacetime itself by including anti-commuting Grass-

mann coordinates

θA =

(
θ−

θ+

)
(1.154)

{θA, θB} = 0 forming a Majorana spinor where upper or lower index doesn’t give

any difference. These new coordinates, in addition to σ0 = τ, σ1 = σ map the such

called superspace.

The superspace is defined as a coset which is, given two sets G and H, the set of

elements in G but not in H, G/H.

For us the superspace is the coset given by

SuperPoinc./Lorentz = {ωαβ, aα, Q+, Q−}/{ωαβ} = {aα = σα, θ+, θ−} (1.155)

In this superspace we define superfields which are fields acting on it. The great

advantages of superspace are 3:

1) The algebra of supersymmetry transformations closes off-shell, in the sense

that the commutator between two supersymmetric transformations acting

on a superfield gives another supersymmetry transformation without using

equations of motion for the fields.

2) Since we will see that supersymmetry transformations correspond to transla-

35



CHAPTER 1. BOSONIC STRING THEORY AND RNS SUPERSTRINGS

tions on the world-sheet+translation on Grassmann coordinates this means

that the commutator between two translation on world-sheet gives a trasla-

tion on world-sheet and all this happens off-shell so without the use of equa-

tions of motion, just by inserting another auxiliary field necessary for the

consistence of the superfield itself.

3) In addition to this, using this superspace formulation the supersymmetry

will be manifest.

1.7.2 Superfields, supercharges and supersymmetry trans-

formations

We want now to start by building models and, as always, the most important brick

is the Lagrangian. The first ingredient to build up Lagrangians for our models is

the superfield whose most general form is:

Φµ(σα, θ) = Xµ(σα) + θ̄ψµ(σα) +
1

2
θ̄θF µ(σα) (1.156)

(since now on we will suppress Lorentz index µ on superfield since it’s just a label

for the world-sheet) where we need θ̄ in order to have a coloumn vector multiplying

a row one like ψµ and where we didn’t add θ since, for Majorana spinors product,

θ̄ψµ = ψ̄µθ. No other terms are allowed since, for the anticommuting nature of

θ we have that θθ = θ̄θ̄ = 0. Here we see that we have added an auxiliary field

F µ(σα) that is very important for off-shell closure of the algebra.

We can derive then the expression of the supercharges following A getting in the

end:

QA = ∂θ̄ − (ραθ)A∂α (1.157)

which is:

QA =
∂

∂θ̄
− (ραθ)A∂α (1.158)

We would like now to study how the transformation acts on the superfield. In

order to do that we repeat similar intuition of the one used for a general field

φ as seen in A. We let the supersymmetry transformation act on superfield as
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operator:

e−ϵ̄QΦ(σ, θ)eϵ̄Q ≃ (1− ϵ̄Q+ o(ϵ̄2))Φ(σ, θ)(1 + ϵ̄Q+ o(ϵ̄2) = Φ(σ, θ)− ϵ̄QΦ(σ, θ)+

(1.159)

+Φ(σ, θ)ϵ̄Q+ o(ϵ̄2) = Φ(σ, θ) + [Φ, ϵ̄Q] + o(ϵ̄2) (1.160)

Instead considering supersymmetry transformation acting on superfield as a field:

eϵ̄QΦ(σ, θ) = Φ′(σ, θ) = Φ(σ, θ) + ϵ̄QΦ(σ, θ) ⇒ δΦ = ϵ̄Q (1.161)

comparing the two parts:

δΦ = [Φ, ϵ̄Q] = ϵ̄QΦ (1.162)

From this transformation:

δΦ = ϵ̄QΦ (1.163)

we can derive, by the computations in A, the expression for the transformation of

the fields contained in the superfield Xµ, ψµ, F µ:

δXµ(σ) = ϵ̄ψµ(σ) (1.164)

δψµ(σ) = ρα∂αX
µ(σ)ϵ+ F µ(σ)ϵ (1.165)

δF µ = ϵ̄ρα∂αψ
µ(σ) (1.166)

First two formulas for the variation reduce to the one seen in non-superfield for-

malism if we use the equation of motion of F µ that, since it is an auxiliary non

physical field, is F µ = 0. From here we can immediately derive the first powerful

consequence of adding F µ field: the algebra of supersymmetry transformations now

closes off-shell, since equations of motion are F µ = 0 and ρα∂αψ
µ = 0 so defining

F µ = ρα∂αψ
µ we get the closure even not using the equations of motion.

1.7.3 RNS action in superfield formalism

We have now almost all the ingredients to write the action we have seen before in

superfield formalism, the only problem now is that derivative of a superfield is not
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a superfield since:

δ(∂αS) = [δαS, ϵ̄Q] ̸= (ϵ̄Q)∂αS (1.167)

We need then to define a covariant derivative which compensate the extra terms on

commutator so which acting on a superfield gives raise to another superfield:

DA =
∂

∂θ̄A
+ (ραθ)A∂α (1.168)

Since the parts in the sum of DA are the same of QA generators except for the

plus sign in the middle and since they are made by anticommuting variables, of

course:

{DA,QB} = 0 (1.169)

which tells us, since {DA, ϵ̄} = 0 that [DA, ϵ̄Q] = ϵ̄B {DA,QB} = 0 and so covariant

derivative of a field transforms as the superfield itself:

δDAΦ = [DAΦ, ϵ̄Q] = DA [Φ, ϵ̄Q] = DAϵ̄QΦ = ϵ̄QDAΦ (1.170)

In addition to this, covariant derivative has this anticommutators:

{DA,DB} = 2i(ραρ0)AB∂α (1.171)

{
DA, D̄B

}
= 2i(ρα)AB∂α (1.172)

Finally, the product of 2 superfields is again a superfield as always, thanks to the

Leibnitz rule of the ϵ̄Q. So the action now, written in terms of superfields is given

by:

S =
i

4π

∫
d2σd2θD̄AΦ

µDAΦµ (1.173)

In this formulation action is manifestly supersymmetric since:

δS =
i

4π

∫
d2σd2θ(D̄AδΦ

µDAΦµ + D̄AΦ
µDAδΦµ) =

i

2π

∫
d2σd2θϵ̄QD̄AΦ

µDAΦµ

(1.174)

if suitable boundary conditions are chosen in σ world-sheet coordinate then:

δS = 0 (1.175)
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since the integrand is a total derivative owing to the fact that Q is made by 2 terms

which are derivatives, one in θ and one in σ. If not, supersymmetry is broken.

The integration in θ follows Grassmann rules:∫
dθ(a+ θb) = b (1.176)

and in our case, the only non zero integral is the one containing one θ̄ and one

θ: ∫
d2θθ̄θ = −2i (1.177)

since all the other give raise to vanishing term due to excessive number of θ, θ̄ or

to non sufficient number of them under this integral which works like derivation.

Applying the covariant derivative to superfield we can write the action 1.173 in

terms of the component fields following A, leading us to the action:

STOT = − 1

2π

∫
d2σ(∂αXµ∂

αXµ + ψ̄µρ
α∂αψ

µ − FµF
µ) (1.178)

Varying this action with the respect to Fµ we get that the equation of motion for

F µ is F µ = 0. We can eliminate then the auxiliary field by this and obtain again

the action we found at the chapter of non-superfield formalism for RNS action.

However, in doing so, we understand the second motivation behind the importance

of this auxiliary field, in fact without it we lose the superfield formulation of the

action and the manifest supersymmetry of it.

1.7.4 Worldsheet supergravity

The Supersymmetry transformation that leads the action invariant, up to now

is parametrized by the spinor (1.151) which is constant. However, if this spinor

depends on local coordinates of the worldsheet things change substantially. The

aim that pushes us to do so is to include Gravity on the theory precisely promoting

the metric to a field. Even if this seems very straightforward, since we are now

working with spinors in addition to bosons, we need to include a vielbein. The

need of a vielbein is due to the fact that spinors transform in a non-immediate

way under general coordinate transformations since there is no finite-dimensional
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spinor representation of diffeomorphism group GL(D,R). This vielbein is defined

as:

hαβ = (eµ)α(e
ν)βηµν (1.179)

where α, β are curved indices and µ, ν Lorentz frame indices. Since locally, even

if in curved background, due to equivalence principle we have Lorentz symmetry,

we need a spin connection ωα ∈ Lie(SO(1, 1)) so we can define covariant deriva-

tives:

∇αv
µ = (∂α + ωα)v

µ (1.180)

in such a way that the vielbain is covariantly constant:

0
!
= ∇αe

µ
β = ∂αe

µ
β + (ωα)

µ
νe
ν
β − Γδαβe

µ
δ (1.181)

and from this last equation we can define the spin connection who lives in the

same SO(1,1) representation of the object which ∇α is acting on. Taking our

previously seen action (1.140) and adding vielbein and gravity through minimal

coupling ∂α → ∇α we get a quadratic action:

S2 = − 1

2π

∫
d2σe(hαβ(∂αXµ)

(
∂βX

µ) + ψ̄µρα∇αψµ
)

(1.182)

Demanding the invariance under local Supersymmetry (Supergravity) is demand-

ing the invariance under ξ(σ) → ξ′(σ). In order to do so we need transformations

rule of our gravitational field or analogously the vielbein at least at leading order

on perturbation theory around flat space, so we can postulate:

δξe
µ
α = 2ξ̄ρµχα (1.183)

which is justified by the fact that χα is the gravitino and so the supersymmet-

ric partner of the metric. This action is clearly not invariant under Supergravity

transformation but, since before minimal coupling and vielbein inclusion was in-

variant under global supersymmetry, the variation of it must be controlled by the

derivative of ξ, so using the well known Noether trick we can compute the variation
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and the associated Noether current:

δξS2 =
2

π

∫
d2σ

√
−h(∇αξ̄)J

α (1.184)

with:

Jα = −1

2
ρβραψµ∂βXµ (1.185)

So now we can make the action invariant by adding a piece of third order (in the

embedding fields) to the action itself:

S3 = − 2

π

∫
d2σ

√
−hχ̄αJα =

1

π

∫
d2σ

√
−hχ̄αρβραψµ∂βXµ (1.186)

introducing the transformation law δξχα = ∇αξ, slightly modifying the variation

of ψµ including in it the gravitino and adding a quartic term of the action:

S4 =
1

4π

∫
d2σ

√
−h(ψ̄ψ)(χ̄αρβραχβ) (1.187)

the theory becomes a Supergravity one so invariant under local Supersymmetry.

This method to build Supergravity action is called Noether method.

1.7.5 Superstring boundary conditions and mode expan-

sions

In this section we are going to exactly repeat the same ideas of the previous bosonic

string chapter but now considering the superstring worldsheet action. Since the

total action (1.140) can be split into bosonic and fermionic part, the boundary

conditions and the mode expansions for Xµ are exactly the same seen in section

1.2. Taking now:

SF ≃
∫
d2σ(ψ−∂+ψ− + ψ+∂−ψ+) (1.188)

and taking the variation with the respect to the fields ψ−, ψ+ we get their equations

of motion (1.146) and (1.147) in addition to a boundary term:

δSF ≃
∫
dτ(ψ+δψ+ − ψ−δψ−)|σ=π − (ψ+δψ+ − ψ−δψ−)|σ=0

!
= 0 (1.189)
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The ways on which we can achieve this equality depends on the nature of the

string.

Open string case

If the string is open, the two terms of (1.189) can’t cancel each other so they must

vanish separately leading us to the necessity of having ψµ− = ±ψµ+. The overall

sign is conventional, so we can fix the sign in one endcap ψµ−|σ=0 = ψµ+|σ=0 and the

other relative sign becomes meaningful, giving us 2 possibilities:

• Ramond (R) boundary conditions: ψµ−|σ=π = ψµ+|σ=π
This boundary condition give raise to spacetime fermions and leads to mode

expansion for the fermionic field in R sector:

ψµ−(τ, σ) =
1√
2

∑
n∈Z

dµne
−in(τ−σ) (1.190)

ψµ+(τ, σ) =
1√
2

∑
n∈Z

dµne
−in(τ+σ) (1.191)

and since the fermions are Majorana, these expansions must be ∈ R so we

need to have dµn = dµ−n
†.

• Neveu-Schwarz (NS) boundary conditions: ψµ−|σ=π = −ψµ+|σ=π
This boundary condition give raise to spacetime bosons and leads to mode

expansion for the fermionic field in NS sector:

ψµ−(τ, σ) =
1√
2

∑
r∈Z+ 1

2

bµr e
−ir(τ−σ) (1.192)

ψµ+(τ, σ) =
1√
2

∑
r∈Z+ 1

2

bµr e
−ir(τ+σ) (1.193)

and, again, since the fermions are Majorana, these expansions must be ∈ R
so we need to have bµr = bµ−r

†.
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Closed string case

Closed string boundary conditions, as we saw before, give raise to two independent

set of modes, left and right moving and allow 2 possible boundary conditions

ψ±(σ) = ±ψ±(σ+π) making the term (1.189) vanish. The plus/minus sign define

periodic/anti-periodic boundary conditions and we can impose periodicity (R) or

anti-periodicity (NS) independently to right and left moving parts. In the end we

can take as right movers:

ψµ−(τ, σ) =
1√
2

∑
n∈Z

dµne
−2in(τ−σ) or ψµ−(τ, σ) =

1√
2

∑
r∈Z+ 1

2

bµr e
−2ir(τ−σ) (1.194)

and as left

ψµ+(τ, σ) =
1√
2

∑
n∈Z

d̃µne
−2in(τ+σ) or ψµ+(τ, σ) =

1√
2

∑
r∈Z+ 1

2

b̃µr e
−2ir(τ+σ) (1.195)

and all the four different combinations of fermions sign due to boundary conditions

are allowed:

R-R ψ+(σ + π) = +ψ+(σ) ; ψ−(σ + π) = +ψ−(σ) (1.196)

R-NS ψ+(σ + π) = +ψ+(σ) ; ψ−(σ + π) = −ψ−(σ) (1.197)

NS-R ψ+(σ + π) = −ψ+(σ) ; ψ−(σ + π) = +ψ−(σ) (1.198)

NS-NS ψ+(σ + π) = −ψ+(σ) ; ψ−(σ + π) = −ψ−(σ) (1.199)

In the end, we want to point out that it can be easily seen how the open string case

is just a restriction to R-R and NS-NS closed string one as stated in [30].
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1.8 Canonical quantisation of superstrings

We already studied the canonical quantisation in the bosonic string case, what we

are going to do now is to repeat the same idea for the Superstrings.

1.8.1 Commutation and anti-commutation relations

Repeating now exactly the same steps as in Chapter 1.3.1 we can obtain commu-

tation and anti-commutation rules for the modes promoted to operators for the

open strings:

[αµm, α
ν
n] = mδm+nη

µν (1.200)

{ψµm, ψνn} = δr+sη
µν ⇒ {bµr , bνs} = ηµνδr+s,0 and {dµm, dνn} = ηµνδm+n,0 (1.201)

with

{
r,s ∈ Z R

r,s ∈ Z+ 1
2
NS

(1.202)

where for the closed ones the tilded modes relations are exactly the same.

1.8.2 Super-Virasoro constraints

Due to the presence of Minkowski metric in (1.201), we have again the problem of

negative norm states arising in time components of fermionic modes. The solution

is again by applying the constraints derived from the non gauge fixed action.

Starting now from (1.178) and removing Fµ using its equation of motion, we can

gauge fix the metric to flat one and set the Gravitino χα to 0. Now, since this gauge

fixing procedure, the equation of motion for the metric and the Gravitino itself

become constraints on Energy Momentum Tensor and on the Supercurrent:

Tαβ = (∂αXµ)(∂βX
µ) +

1

4
ψ̄µρα∂βψ

µ +
1

4
ψ̄µρβ∂αψ

µ − (trace)
!
= 0 (1.203)

(Jα)A = −1

2
(ρβραψµ)A∂βX

µ !
= 0 (1.204)

As in the Bosonic string case, the constraints can be rewritten in terms of opera-
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tors:

Lm =
1

π

∫ π

−π
dσeimσT++ , Gr =

√
2

π

∫ π

−π
dσeirσJ+ (1.205)

plugging inside the expression of energy-momentum tensor and supercurrent in

terms of modes:

Lm =
1

2

(∑
n∈Z

: α−n · αm+n : +
∑
r∈Z+ℵ

:
(
r +

m

2

)
b−r · bm+r :

)
(1.206)

Gr =
∑
n∈Z

α−n · br+n where ℵ ≡

{
0 R

1
2

NS
(1.207)

We can immediately note that first of all there is no normal ordering ambiguity

in the definition of G. Furthermore, these are exactly the generators of two copies

(one for r,s even in Ramond case and one for r,s odd in Neveu-Schwarz case) of

the such called Super-Virasoro Algebra defined by the following commutation

relations:

[Lm, Ln] = (m− n)Lm+n + A(m) (1.208)

{Gr, Gs} = 2Lr+s +B(r)δr+s (1.209)

[Lm, Gr] = (m
2
− r)Gm+r (1.210)

where A and B are the such called anomaly terms that give the Quantum Mechan-

ical extension of the classical algebra

A(m) =
D

8
(m3 −m) and B(r) =

D

8
(4r2 − 1) (1.211)

Now that we have the commutation relations we can write the constraints à la

Gupta-Bleuler:

(Lm − aδm) |ϕ⟩ = 0 m ≥ 0, Gr |ϕ⟩ = 0 r ≥ 0 ∀ϕ ∈ HPhys (1.212)

We are not going to repeat all steps, however from these constraints is easy to
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derive the anomaly factor needed for removing negative norm states:

aR = 0 (1.213)

aNS = D−2
16

(1.214)

In order to derive its proper value we need the critical spacetime dimension that

can be obtained again by the string spectrum.

NS sector of the open string spectrum

In the Neveu-Schwarz sector the ground state is defined by:

|0, k⟩ such that αµm |0, k⟩ = bµr |0, k⟩ = 0 for m, r > 0 (1.215)

By defining the number operator as:

NNS =
∑

m=1,2,...

α−m · αm +
∑

r= 1
2
, 3
2
...

rb−r · br (1.216)

we can rewrite the mass shell condition coming from the 0-th constraint as:

0 = (L0 − a) |0, k⟩ = (α′p2 +NNS − aNS) |0, k⟩ (1.217)

which shows us that the ground state is a scalar with mass squared:

M2 = −aNS

α′ (1.218)

while the first excited level is a target space vector ϵµb
µ

− 1
2

(where ϵµ polarization

vector) with mass squared:

M2 =
1

α′

(
1

2
− aNS

)
(1.219)

and, since we want this vector to being massless like in bosonic case we expect,

from (1.213) a = 1
2
⇒ D = 10 so a much lower spacetime dimension than in the

previous bosonic case. In addition to this we get that the scalar ground state is
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again a tachyon. In the end, let us note that since all the creation operators αµ−m

and bν−r with n,m > 0 transform as spacetime vectors and act on the scalar ground

state, the Ramond Sector is made by spacetime bosons.

R sector of the open string spectrum

The R sector case looks similar but hides a non-trivial subtlety. In this case the

fermionic modes have integer indices dµn so the number operator must be rewritten

as:

NR =
∑

m=1,2,...

α−m·αm+
∑

n=0,1...

nd−n·dn =
∑

m=1,2,...

α−m·αm+
∑

n=1,2...

nd−n·dn (1.220)

since so, acting with dµ0 does not modify the mass of the state since it will commute

with the number operator, giving us the intuitive idea of a degenerate ground state.

In fact since the modes satisfy the D-dimensional Clifford algebra (apart a factor

of 2) {dµ, dν0} = ηµν then the ground state must be a representation of this algebra

so a target space spinor:

|a, k⟩R with a = 1, 2, 3, 4, . . . 2
D
2 = 32 (1.221)

which in realty is less degenerate due to the Majorana-Weyl condition and due

to the such called Dirac-Ramond equation coming from the constraints. This

spinorial ground state is massless since aR = 0 ⇒ M2 = − 1
α′aR = 0, by deriving

higher order constraints and excited states we can derive again that the critical

dimension is D = 10. Finally, since again the excited states are obtained by acting

with creation operators αµ−m, d
ν
−n with n,m > 0 which transform as Spacetime

vectors and the ground state is a spinor, than the excited states will be target

space spinors too.
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1.9 The GSO projection

In the previous section we expressed ideas on the spectrum of RNS open string

states which survive the Super-Virasoro constraints. Even if it we got rid of the

negative norm states, this spectrum has 2 problems:

• NS sector ground state has a tachyon, a scalar with imaginary mass.

• Spectrum is not manifestly spacetime Supersymmetric but the closed ones

contains a massless gravitino which is the Supersymmetric partner of the

graviton and so the quantum of gauge field for Supergravity.

1.9.1 Tachyon removal and manifest supersymmetry

In order to solve these issues the main way is to apply the such called GSO Pro-

jection introduced by Gliozzi, Scherk and Olive which projects the spectrum in a

very specific way based on criteria on the such called G-Parity. The definition of

this operator and its effect depends on the sector of the states it acts on and now

we will inspect its action on open string spectrum in order to generalise it to the

closed one later on.

NS sector

In the NS sector the definition of G-parity is:

G = (−1)F+1 = (−1)
∑+∞

r=1
2

bi−rb
i
r
+ 1 (1.222)

where F is the worldsheet fermion number since it’s the number operator restricted

to b-excitations and so it counts whether a state has odd or even worldsheet

fermionic quanta. The criterium in the NS sector is to keep only states which have

a positive G-parity:

G |ϕ⟩NS = |ϕ⟩NS ⇒ (−1)FNS = −1 (1.223)

so only the states with odd number of b-oscillator excitations are projected. This

implies immediately that the open-string tachyon is canceled out from the spec-
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trum since:

G |0, k⟩NS = (−1)0+1 |0, k⟩ = − |0, k⟩ (1.224)

while the first excited state which was the massless vector bi− 1
2

|0, k⟩NS survives the

projection and becomes the ground state of the NS sector. This thing is an hint

that we can have a Supersymmetric spectrum since the ground states of NS and

R sector are both massless.

R sector

The definition of G-parity in the R sector instead is a little bit more compli-

cated:

G = γ11(−1)
∑+∞

n=1 d
i
−nd

i
n (1.225)

where γ11 = γ0γ1 . . . γ9 is the 10D analogue of the Dirac matrix which in 4D defines

the chirality projector. In fact γ11:

- Satisfies idempotency: γ211 = I

- Has anticommutation relations: {γ11, γµ} = 0

- Can define the chirality of a spinor (positive or negative respectively): γ11ψ =

±ψ

- Can define a chirality projection operator: P± = 1
2
(1± γ11)

Let us recall that a spinor with a definite chirality is called a Weyl spinor. The

criteria for the R sector, since the different definition of G-parity, are different too,

in fact we can project on states with positive or negative G-parity depending on

the chirality of the ground state (which is a spinor in R sector as we saw before),

so the choice is a pure convention.

As we said before closed string spectrum contains one or two massless gravitinos

and so the interacting theory will be inconsistent if we have no supersymmetry and

so not the same number of bosonic and fermionic degrees of freedom. However, as

we saw before, in the NS sector ground state bi1
2

|0, k⟩NS, since i = 2, . . . 9 as we can

see in light cone gauge quantisation, we have just 8 propagating degrees of freedom.
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The R sector ground state |α, k⟩R instead seems to have 25 = 32 complex compo-

nents, however the spinor must be Majorana, so it could have 32 real components.

In dimensions which are D = 2 mod 8 as D = 10 a Majorana spinor can be even

Weyl, so a chiral ground state has 16 real components and, finally, by imposing

the Dirac equation we get an additional halving, leaving us with 8 real degrees of

freedom, and so a perfect matching with NS ground state. So the ground state

which is massless has the same number of bosonic and fermionic components which

are two inequivalent real representations in 8D of the group Spin(8). Despite this

is more an heuristic argument that a real proof of supersymmetry, which instead

is manifest only in a different formalism called Green-Schwarz (GS) formalism, it

can be proven, to be more certain of the result, that this correspondence still holds

excited level by excited level and not only at the ground state.

1.9.2 Closed string spectrum and allowed superstring the-

ories

In the previous subsection we analyzed the GSO projection acting on open string

spectrum giving us a 10D supersymmetric gauge theory. However this construction

must be coupled to a closed string sector and we are now going to study this Hilbert

space with the allowed theories on it focusing specially on the such called Type

II string theories, the theories where we have 2 supersymmetries so 2 massless

gravitinos in 10D as we will see later on. Splitting the NS and R sector in sets with

different G-parity, we now have NS−,NS+,R− and R+. In closed string case we

have left and right moving parts so one can think that we can have all the possible

combinations between this sectors (NS−, NS−), (NS−, NS+), . . . however, since

the level matching condition (L0 + L̃0) |ϕ⟩ = 0, ∀ |ϕ⟩ ∈ HPhys and since NS− is

the only one containing a tachyon, NS− can only be coupled to itself and the

possibilities for the pairing between left and right moving sectors are just 10. In

order to build a theory we can take in principle any subset from these 10 leading

every time to a different outcome. However we don’t want the tachyons in our

theory, in addition to this we want that the interacting theory is consistent too

leaving us with only 2 possibilities. Via GSO projection then we can exclude the

presence of NS− in our choices, while for the R sector we can project into states
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with positive or negative G-parity depending on the chirality of the ground state of

the theory itself. We can then build up 2 different theories depending on if the G-

parity of left and right moving sector is the same or the opposite; these two theories

are called Type IIB String Theory and Type IIA String Theory.

Type IIA string theory

Type IIA String Theory has left and right moving ground states for R sector which

are chosen to have opposite chirality. The massless states in each sector are:

• NS-NS sector: b̃j− 1
2

|0, k⟩NS

⊗
bj− 1

2

|0, k⟩NS these states can be rearranged into

a scalar called dilaton ϕ, an antisymmetric 2-form gauge field (28 states)

called Kalb-Ramond field Bµν and a symmetric traceless rank-2 tensor

field (35 states) called graviton gµν .

• NS-R and R-NS sectors: b̃i− 1
2

|0, k⟩NS

⊗
|+⟩R and |−⟩R

⊗
bj− 1

2

|0, k⟩NS where

|−⟩R and |+⟩R represent the opposite chirality ground states for left and

right moving parts. Each of these 2 set of states can be rearranged into a

spin 3
2
field (56 states) called the gravitino χα and a spin 1

2
fermion field

(8 states) called the dilatino Φα. The gravitinos in the NS-R sector has

opposite chirality with the respect to the one in R-NS sector.

• R-R sector: |−⟩R
⊗

|+⟩R these states are obtained tensoring a pair of Majorana-

Weyl spinors with opposite chirality (the left and right moving ground states)

and from this tensor product we can obtain a 1-form (vector) gauge field C1

(8 states) and a 3-form gauge field C3 (56 states). So Type IIA String Theory

contains odd p-form gauge potentials.

Type IIB string theory

Even if Type IIA String Theory is very interesting we are going to work within the

setting of Type IIB String Theory which has left and right moving ground states

for R sector with the same chirality, choose positive for convention. In this case

massless states in each sector are:

• NS-NS sector: b̃j− 1
2

|0, k⟩NS

⊗
bj− 1

2

|0, k⟩NS these states are the same of Type
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IIA string case and can be rearranged into a scalar called dilaton ϕ, an

antisymmetric 2-form gauge field (28 states) called Kalb-Ramond field

Bµν and a symmetric traceless rank-2 tensor field (35 states) called graviton

gµν .

• NS-R and R-NS sectors: b̃i− 1
2

|0, k⟩NS

⊗
|+⟩R and |+⟩R

⊗
bj− 1

2

|0, k⟩NS where

|+⟩R is the 8-component spinorial ground state for Ramond sector. Each of

these 2 set of states can be rearranged into a spin 3
2
field (56 states) called

the gravitino χα and a spin 1
2
fermion field (8 states) called the dilatino

Σα. The gravitinos in the NS-R sector has, differently from Type IIA String

theory, the same chirality with the respect to the one in R-NS sector.

• R-R sector: |+⟩R
⊗

|+⟩R these states are obtained tensoring a pair of Majorana-

Weyl spinors with the same chirality (the left and right moving ground states)

and from this tensor product we can obtain a 0-form (1 state), a scalar, C0

2-form gauge field C2 (28 states) and a 4-form gauge field C4 (35 states) with

self-dual field strength F5 := dC4 = F ⋆
5 . So, differently from the previous

case, Type IIB String Theory contains even p-form gauge potentials.

In order to conclude this section, let us point out that in all the 2 cases and in all

the sectors the total number of physical states is always 8× 8 = 64.
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Chapter 2

Type IIB String

Compactifications

All the Superstring Theories we have seen up to know need 10 dimensions in

order to get rid of negative norm states. One can ask then why are these theories

physical and phenomenologically viable given that the observational results we

have are obtained from our 4D point of view of the spacetime. The solution is

through the use of a technique called compactification. We now focus to apply

this technique in Type IIB String Theory in order to reduce a 10D non compact

manifold M10 into our familiar 4D non-compact spacetime M4, Cartesian product

a tiny 6D compact complex manifold Y6 called Calabi-Yau M10 = M4 × Y6. We

will follow mainly [30], [5], [34] and specific articles cited section by section.

2.1 10D action and Kaluza-Klein compactifica-

tion

2.1.1 10D action for Type IIB string theory

We already saw in section 1.5 what is the shape and the principles to write a

target space action in the bosonic string theory context. In the Supersymmetric

case there are few variations but still some things are unchanged:
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• There is again the 10D graviton gµν

• There is again the Kalb-Ramond field Bµν = B2 coupling to the worldsheet

• There is again the dilaton which governs the perturbation theory convergence

through its vacuum expectation value.

These three elements together form the NS-NS sector as we saw before, however,

in addition to these, we have to include inside the action even the Cp+1 form fields

(with p = 0, 2, 4 for Type IIB string theory) and the corresponding Dp-branes with

their action (called Dirac-Born-Infeld, or DBI, action) which are dynamical

objects like strings but with different dimensions and a larger tension at weak

coupling value.

However the real big difference between bosonic and superstring case is that in

superstring case, the 10D theories are unique at second order in derivative due

to Supergravity. This happens because realize Supergravity is very hard at high

dimension since, for example, the number of spinor components grow exponentially

as 2
D
2 and so finding a bosonic structure with the same degrees of freedom is very

hard. By going into details it turns out that there exist only 4 Supergravity theories

in 10D and all of them come from Type IIA, Type IIB, Type I and Heterotic

SO(32), Heterotic E8 (the last 3 are 3 String Theories with only 1 Supersymmetry

so we didn’t go in detail of their construction). As we said before in 10D a 16 real

component spinor exist, which is a spinor with 4 times the number of components

of a 4D one, so an N = 2 Supergravity theory in 10D can be seen from a 4D

point of view as an N = 8 one and this is the Supersymmetry case of Type II

String theories. The starting point for such theories is a stringy description of real

world through one of the models in the landscape which is the large set, maybe

infinite, of phenomenologically viable models. The most promising landscape has

been established in Type IIB String Theory so, as we said before, we are going to

focus on it.
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We write now the bosonic part of the string-frame Type IIB Action as:

S =
1

2k210

∫
d10x

√
−g
(
e−2ϕ

(
R + 4(∂ϕ)2 − 1

2 · 3!
H2

3

)
− 1

2
F 2
1 − 1

2 · 3!
F̃3

2 − 1

4 · 5!
F̃ 2
5

)
+ SCS + Sloc

(2.1)

where we have 2k210 = (2π)7α′4 and, recallingH3 = dB2, F3 = dC2, F5 = dC4:

F̃3 = F3 − C0 ∧H3 , F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 (2.2)

Where Fi, i = 3, 5 RR-forms field strength, and H3 are gauge invariant which

implies that we have a gauge symmetry of the action upon transformation of the

potential of the shape:

C2 → C ′
2 = C2 + dλ1 with C4 → C ′

4 = C4 +
1

2
λ1 ∧H3 (2.3)

The SCS term we have in our action is a term not involving the metric called

Chern-Simons term which is needed in order to have the right amount of propa-

gating fermionic degrees of freedom as stated in [6] and can be written in this case

as:

SCS =
1

4k210

∫
eϕC4 ∧H3 ∧ F3 (2.4)

The last part Sloc is called the localised part and contains actions of the various

branes, for a D3-brane for example the contribution will be:

Sloc ⊃ DD3 =
1

2π3α′2

∫
D3

C4 −
∫
D3

d4σ
√
−gT3 (2.5)

where the D3-brane tension is T3 =
1

(2π)3α′2 , g is the determinant of the 10D metric

pullback and the integral is interpreted on the D3-brane worldsheet parametrised

by σi with i = 0, 1, 2, 3. Inside Sloc obviously other odd-dimensional Dp-brane

action have to be added which are analogous to the one seen before but with

different string tension Tp =
e(p−3)

ϕ
4

(2π)pα′ (p+1)
2

. After adding all these parts, the pullback

of B2 to the brane and the brane-localised gauge fields+their fermionic partner we

get the localised action Sloc called Dirac-Born-Infeld action or DBI action which
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has the form:

SDBI = −Tp
∫
dp+1σ

√
−det(Gαβ + 2πα′Fαβ) (2.6)

where Gαβ pullback of the 10D metric and Fαβ = Fαβ + bαβ where Fαβ usual

Field-Strength tensor and bαβ 2-form needed to make F Supersymmetric.

2.1.2 Kaluza-Klein compactification

Up to now we have described then the fundamental Type IIB String Theory living

in 10D. In order to describe the 4D spacetime we live in, the main idea is to

use the compactification method, in particular the Kaluza-Klein Compatification

method where we can obtain lower-dimensional Effective Field theories (EFT) from

higher-dimensional theories by making compact the extra dimensions featured in

the latter.

In order to understand how the mechanism works we start from three simple toy

models, a 5D scalar field on a 5D manifold where one dimension is compactified

on a circumference and the historical Kaluza-Klein Theory from 2 different points

of view:

Scalar field in 5D

We take the scalar field ϕ in M = R × S1, where S1 has radius R with x5 ∈
(0, 2πR):

S =

∫
M
d5x

1

2
(∂Mϕ)(∂

Mϕ) (2.7)

with M ∈ {0, 1, 2, 3, 5} The equation of motion is clearly the 5D Klein Gor-

don equation and, Assuming the vacuum expectation value ⟨ϕ⟩ = 0 the fluc-

tuations around the vacuum can be parametrized, via renaming x5 → y and

x = {x0, x1, x2, x3} as Fourier expanded:

ϕ(x, y) =
+∞∑
n=0

ϕcos
n cos

(ny
R

)
+

+∞∑
n=1

ϕsin
n sin

(ny
R

)
(2.8)
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Plugging inside the action this expansion we get:

S = 2πR

∫
M
d4x

[
1

2
(∂ϕcos

0 )2 +
1

4

+∞∑
n=1

((∂ϕcos
n )2 +m2

n(∂ϕ
cos
n )2 + (∂ϕsin

n )2 +m2
n(∂ϕ

sin
n )2)

]
(2.9)

so our 5D model is equivalent to a 4D model with one massless field ϕcos
0 and a tower

of Kaluza-Klein modes which is degenerate and whose modes have mass mn = n
R
.

The massless mode ϕcos
0 is a flat direction in field space since has no potential and

it’s called modulus. Such moduli usually govern mass and couplings of the rest

of 4D theory through their vacuum expectation value which can be an arbitrary

constant not having a potential for them.

Kaluza-Klein theory

We now consider a different example starting from 5D Einstein-Hilbert action:

S =
M3

P,5

2

∫
M
d4xdy

√
−g5R5 (2.10)

where the subscript 5 means the correspondent 5D quantity to the well known 4D

ones. Given this we can now parametrise the 5D metric as:

(g5)MN =

gµν + ( 2
M2

P

)
ϕ2AµAν

( √
2

MP

)
ϕ2Aµ( √

2
MP

)
ϕ2Aν ϕ2

 (2.11)

with M,N ∈ 0, 1, 2, 3, 5 and µ, ν ∈ 0, 1, 2, 3 and where Mp, Aµ and ϕ are actually

just parameters in the 5D metric components. In order to simplify things again we

take y ∈ (0, 2πR) parametrising S1 and we use gµν = ηµν , Aµ = 0 and ϕ2 = g55 = 1.

As in the scalar field example we can Fourier expand our field ϕ as function of y

and we get a tower of massive mode, plugging inside (2.11) and (2.8) we get that

the action (2.10) can be rewritten as:

S =

∫
M
d4x

√
−gϕ

(
M2

P

2
R− 1

4
ϕ2FµνF

µν +
M2

P

3

(∂ϕ)2

ϕ2

)
(2.12)
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in string frame (for going into Einstein frame just a substitution of gµν → gµν

ϕ

is needed). The 5D metric degrees of freedom then can be seen turning into 4D

metric gµν+abelian gauge field Aµ and a scalar ϕ, leading us to the appearance of a

U(1) gauge theory. This presence is quite natural since M = R×S1 enjoys clearly

a global U(1) symmetry and a diffeomorphism one (we are working in General

Relativity picture) so we can rotate S1 ⇔ shift y at every point x of our 4D

submanifold so our theory must be a local U(1). In addition to this, ∀R fixed

radius we have a solution of 5D Einstein equation so we expect that ϕ ↔ R is a

scalar degree of freedom with flat potential⇒ a modulus. In fact, parametrising

S1 with dimensionless parameter y ∈ (0, 1) we can set ⟨ϕ⟩ =
√
g55 = 2πR and

so the scalar ϕ governs the size of extra dimension, which is a general feature of

the moduli. Finally we can see how, in the previous action (2.12) we identified

M2
P = 2πRM3

P,5 ⇒M3
P,5 =

M
2
3
P

V
1
3

leading us to the fact that if the extra dimensions

are compactified in large volume than the 5D Planck Mass is much lower than the

4D one and so the effects of gravity will be larger.

10D Kaluza-Klein theory

In the previous example we have seen how moduli arise intuitively from a 5D

geometry, however now we would like to make contact with what we are going

to see soon after in the complex compactifications. We are going to repeat the

previous example with a slightly different point of view.

We consider now the ten-dimensional geometry (instead of 5D):

GMNdX
MdXN = e−6u(x)gµνdx

µdxν + e2u(x)ĝmndy
mdyn (2.13)

where ĝmn is the metric of the 6 extra dimensions compactified at fixed vol-

ume: ∫
Y6

d6y
√
ĝ ≡ V (2.14)

and eu(x) is a breathing mode which parametrises variation of the compact space as

depending on the 4D non-compact spacetime coordinate. We immediately point

out instead that the e−6u(x) in the first term is just for having the Einstein-Hilbert
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action in Einstein frame automatically.

Starting from the 10D Einstein-Hilbert action in the manifoldM = M4×Y6:

S10D
EH =

1

2k210

∫
M
d10X

√
−Ge−2ϕR10 (2.15)

we would like to express the 10D Ricci scalar R10 in terms of the 4D and compact

6D ones R4, R̃6. By using some Differential Geometry, following [5], we can derive

the expression of the 10D action as:

S10D
EH =

1

2k210

∫
M4

d4x
√
−g
∫
Y6

d6y
√
ĝe−2ϕ(R4 + e−8uR̂6 + 12∂µu∂

µu) (2.16)

Considering now the string coupling gs = eϕ constant over Y6 then we can rewrite

the 4D Einstein Hilbert action:

S4D
EH =

M2
P

2

∫
M4

d4x
√
−gR4 (2.17)

with M2
P := V

g2sk
2
10
. Recognizing the kinetic term for the scalar field u(x) we can see

how, if R̂ = 0, for example when the compact 6D manifold is Ricci Flat, u(x) is

a modulus field and how it corresponds to a deformation in 10D metric as it will

be in the moduli we are going to use in the next chapters. In addition to this the

kinetic term for u can be originated via Kähler potential K = −3 ln(T + T̄ ) calling

Re(T ) = e4u and setting MP = 1. Again this will be very close to what we will do

in few sections.
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2.2 Complex geometry

Up to now we have analyzed the compactifications of an extra dimension into S1,

however, what is usually done in String Theoretical models which are Phenomeno-

logically viable is to compactify the 6 extra dimension in a complex manifold with

peculiar properties. In order to understand better then these kind of compact-

ifications we need before to give some highlights of Complex Geometry and of

Homology and Cohomology connected to it.

2.2.1 Complex manifolds

The starting point of our journey is to find a solution of 10D equations of motion

which physically correspond to 4D spacetime. If we set all the fields to 0, so we

consider just the Einstein-Hilbert action, we must have a metric satisfying RMN =

0 to have Einstein’s equation solved. This condition is called Ricci flatness and

its satisfied not only by real trivial geometries but even by a large class of compact

6D complex manifolds called Calabi Yau Manifolds Y6.

In order to understand them completely it is necessary to start from the very

basic idea of complex manifold, which is simply the generalization of a real

differentiable manifold where the charts that give the local Euclidianity are now

defined as:

(Ui, ϕi), ϕi : Ui → ϕi(Ui) ⊂ Cn (2.18)

with Ui in the topology of Y6 and with holomorphic transition functions ϕj ◦ ϕ−1
i ,

so the manifold locally is Cn with the possibility of having such a holomorphic

change of coordinates:

z
′i = z

′i
(
z1, . . . , zn

)
(2.19)

As we do in real manifolds, we can define complexified tangent (Tp(Y6)
C = {X +

iY |X, Y ∈ TpY6}) and cotangent spaces and their tensor product with bases:

∂

∂zi
,
∂

∂z̄ ı̄
and dzi, dz̄ ı̄ (2.20)

60



2.2. COMPLEX GEOMETRY

and, using this bases, we can define the almost complex structure J as:

J : T ∗
p → T ∗

p ∀p ∈ Y6 (2.21)

J = idzi ⊗ ∂

∂zi
− idz̄ ı̄ ⊗ ∂

∂z̄ ı̄
(2.22)

which can be written in an imaginary and in a real basis respectively as:

J =

(
0 iI

−iI 0

)
and J =

(
0 I
−I 0

)
(2.23)

and it satisfies J 2 = −I. By defining the action of the almost complex structure

on the elements of the basis of complexified tangent space we can divide TpY
C
6

into the positive eigenspace J ∂
∂zi

= i ∂
∂zi

spanned by { ∂
∂zi

} and the negative one

J ∂
∂z̄i

= −i ∂
∂z̄i

spanned by { ∂
∂z̄i

}, the elements of these two eigenspaces are called

vectors, in particular holomorphic and antiholomorphic vectors. If we have a

real manifold and it features the existence of this almost complex structure J then

the manifold is called almost complex. If J satisfies the vanishing of Nijenhuis

tensor (⇔ d = ∂ + ∂̄) then the manifold is called complex and J the complex

structure of such a manifold.

2.2.2 Complex differential forms

In analogy on what is well known in real manifolds, it is very useful to extend the

concept of differential forms to complex cases. We can in fact define, given two

real n-forms αn, βn a complex n-form δn ≡ αn + iβn with a complex conjugate

δ̄n ≡ αn − iβn. We call the vector space of the complexified n-forms as ΛnC(Y6).

We can even generalise more this concept by defining an (r,s)-form which is a

complex valued differential form with r holomorphic indices and s antiholomorphic

indices whose basis in local coordinates is:

dzi1 ∧ · · · ∧ dzir ∧ dz̄ȷ̄1 ∧ · · · ∧ dz̄ȷ̄s ≡ dzM ∧ dz̄N̄ (2.24)

using the multi-indicesM = (i1, . . . , ir) andN = (j1, . . . , js). We denote the vector

space of this special forms on Y6 as Λ
r,s(Y6). Whatever element of this vector space
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ξr,s ∈ Λr,s(Y6) can be rewritten as linear combination in the basis (2.24):

ξr,s =
1

r!s!
ξi1,...,ir,j1,...,jsdz

i1∧· · ·∧dzir∧dz̄ ȷ̄1∧· · ·∧dz̄ ȷ̄s = 1

r!s!
ξMN̄dz

M∧dz̄N̄ (2.25)

Taking a complex k-form ξk, since Λk =
⊕

r+s=k

Λr,s we can rewrite it as sum of

(r,s)-forms as:

ξk =
∑
r+s=k

ξr,s (2.26)

It is well known, in the case of real forms that a fundamental operation of them

is the exterior derivative d : Λr,sR → Λr+1,s
R . We can define an analogous operation

with the respect to the complex structure via using the Dolbeault operators

which are maps ∂ : Λr,s → Λr+1,s and ∂̄ : Λr,s → Λr,s+1 such that:

∂ξr,s =

(
∂

∂zi
ξMN̄

)
dzi ∧ dzM ∧ dz̄N̄ (2.27)

∂̄ξr,s =

(
∂

∂z̄ ı̄
ξMN̄

)
dz̄ ı̄ ∧ dzM ∧ dz̄N̄ (2.28)

In a complex Manifold we can define then the exterior derivative as d : Λr,s →
Λr+1,s such that d = ∂ + ∂̄ with ∂2 = ∂̄2 = ∂∂̄ + ∂̄∂ = 0. Via these definitions we

can call a form holomorphic (antiholomorphic) ⇔ it is an (r,0)-form ((0,s)-

form) and if and only if ∂̄ξr,0 = 0 (∂ξ0,s = 0) with ξ0,0 holomorphic 0-form which

is a function.

Now that we introduced Dolbeault operators it appears natural to define Dol-

beault cohomology classes as the de Rham cohomology ones with the respect to

the exterior derivative d. Defining the set of ∂̄-closed (r,s)-forms as Zr,s

∂̄
(Y6) and

as Er,s

∂̄
(Y6) the set of (r,s)-forms which are exact under ∂̄. The Dolbeault coho-

mology group is then the quotient:

Hr,s

∂̄
(Y6,C) ≡ Zr,s

∂̄
(Y6)/E

r,s

∂̄
(Y6) (2.29)

Where the elements are equivalence classes such that:

[ω] = {ρ ∈ Λr,s(Y6)|∂̄ρ = 0, ω − ρ = ∂̄χ, χ ∈ Λr,s−1(Y6)} (2.30)
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A crucial point is now to extend Hodge Theory to Complex forms by defining an

extension of Hodge star operator to them, we can define it as an isomorphism

⋆ : Λr,s(Y6) → Λt−r,t−s(Y6) (where t = dim(Y6) = 6 such that it acts on basis

element following the rule:

⋆(dzi1 ∧ · · · ∧ dzir ∧ dz̄ ȷ̄r+1 ∧ · · · ∧ dz̄ ȷ̄s) ∼ (2.31)

ϵi1...ir,ȷ̄1...ȷ̄skr+1...kt,m̄s+1...m̄t
dzkr+1 ∧ · · · ∧ dzkt ∧ dz̄m̄s+1 ∧ · · · ∧ dz̄m̄t (2.32)

up to a factor proportional to

√
|g|

(t−r)!(t−s)! where g is the determinant of the metric on

the manifold and ϵ is the antisymmetric Levi-Civita symbol. This operator gives

a generalisation of the well known isomorphism present in the real cohomology

classes giving:

Hr,s(Y6,C) ≃ H t−r,t−s(Y6,C) (2.33)

At this point we can define through these 2 star operators 2 very important

things:

• An inner product of 2 (r,s) forms ω and ξ via ⟨ω, ξ⟩ :=
∫
ω ∧ ⋆ξ

• Two adjoint operators starting from the operators ∂ and ∂̄:

∂† : Λr,s → Λr−1,s (2.34)

∂̄† : Λr,s → Λr,s−1 (2.35)

whose definitions are in an even dimensional manifold (as in our case where

t=6) [34]:

∂† = − ⋆ ∂̄⋆ (2.36)

∂̄† = − ⋆ ∂⋆ (2.37)

From these last 2 definition it is possible to define then 2 different kind of Lapla-

cians:

∆∂ = ∂∂† + ∂†∂ , ∆∂̄ = ∂̄∂̄† + ∂̄†∂̄ (2.38)

and through them we can define a ∂-harmonic form as an (r,s)-form ω such that
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∆∂ω = 0 (analogously a ∂̄-harmonic form), it can be written that ω ∈ Hr,s
∂ (Y6)

(ω ∈ Hr,s

∂̄
(Y6)). In addition to this we can state a complexified version of the

Hodge Theorem stating that

Hr,s

∂̄
(Y6,C) ≃ Hr,s

∂̄
(Y6,C) (2.39)

so closed but not exact forms are in 1:1 correspondance with harmonic ones. In

particular Hodge Theorem states that a general (r,s)-form ω can be epressed in an

unique decomposition as:

ω = ∂̄α + ∂̄†β + γ (2.40)

where α ∈ Λr,s−1(Y6), β ∈ Λr,s+1(Y6) and γ ∈ Hr,s

∂̄
(Y6), so an arbitrary form can

be written as sum of exact (∂̄α), coexact (∂̄†β) and harmonic (γ) forms.

Finally it is very important to highlight that the dimensions of Dolbeault coho-

mology groups are known as Hodge numbers:

hp,q(Y6) = dim(Hp,q(Y6)) (2.41)

and they give very important information about the topological characteristics of

a manifold. These that can be rearranged in a efficient way in the such called

Hodge Diamond:

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

(2.42)

and due to the Hodge duality (2.33) we can see how hr,s = ht−r,t−s on a manifold

of dimension t (for us again t=6).
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2.2.3 Holonomy

The last step towards defining Kähler and Calabi-Yau manifolds is the holonomy.

The concept of holonomy comes from the evolution of tangent vectors under par-

allel transport, in fact if we want to parallel transport a vector around a triangle

on a sphere we will see how its direction changes by a rotation of a certain angle.

The same idea happens on a manifold M of dimension t > 2 where the tangent

vectors can rotate in more than one plane and can both remain in a subspace of

tangent space TY6 or not. This gives us an intuitive idea of the symmetry of the

manifold.

We can define the Holonomy Group Holp(∇) at a point p ∈ Y6 of a certain

connection ∇ the set of transformations induced by parallel transport of tangent

vectors around closed loops c ⊂ Y6 such that at the ends c(0) = c(1) = p:

Holp(∇) = {Gc : TpY6 → TpY6} ⊂ GL(t,R) (2.43)

Roughly speaking, the holonomy group is the group of transformation that sends a

parallel transported tangent vector to its pre-parallel transport configuration.
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Figure 2.1: Intuitive idea of Holonomy Group on S2.

It can be shown that holonomy groups at different points of a connected manifold

are equal up to a general linear conjugation Holp(∇) = gHolq(∇)g−1 , with g ∈
GL(t,R) so, the holonomy of a connected manifold does not depend on the base

point.

In the cases we are going to study the connection is the Levi-Civita one compatible

with a Riemmaninan metric so the parallel transport leaves the lengths invariant

and, given Y6 an orientable manifold of dimension t = 6, then the Holonomy group,

called Riemannian Holonomy Group Hol(Y6) will be SO(n) or a subgroup of it. If

Y6 is a simply connected Riemmanian manifold of dimension t then or Y6 is a coset

space G/H of Lie group G on Lie subgroup H ⊂ G, or the Berger Classification

of Holonomy groups holds [10]. We are not interested in the whole classification, in

fact what we care about are the manifolds with Hol(Y6) = SU(3) ⊂ SO(6).
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2.2.4 Kähler manifolds

In the previous subsections we have given some general features of complex man-

ifolds and forms on them, however their properties are too general and poor to

match the one necessary for a model in the String Landscape so we need to restric

the set of Complex manifolds to Kähler one before and Calabi-Yau next.

First of all it is necessary to embed a metric in our construction, in particular we

want the metric to be Hermitian so a Rimannian metric g : TY6 → TY6 which

satisfies g(JX,J Y ) = g(X, Y ) and so that can be written in local coordinates

as

gµν̄dz
µ ⊗ dz̄ν̄ + gµ̄νdz̄

µ̄ ⊗ dzν (2.44)

which is real and Hermitian, then, in local coordinates, gµν̄ = gν̄µ and gµν =

gµ̄ν̄ = 0. Every complex manifold admits an Hermitian metric g which can be

constructed from a Riemannian Metric g0 as g(X, Y ) = g0(X, Y ) + g0(JX,J Y ),

so via equipping the manifold with such an Hermitian metric we can call it an

Hermitian Manifold. The metric is a fundamental characteristic in this case

because, owing to it, we can define the such called Kähler form of an Hermitian

manifold as a 2-form:

J = igµν̄dz
µ ∧ dz̄ν̄ (2.45)

and if this Kähler form is closed ⇔ dJ = 0 the manifold is called a Kähler

manifold. We can even say, in holonomy language, that a Kähler manifold is a

manifold Y6 with Hol(Y6) = U(tC) with tC now complex dimension of the manifold

itself. The metric of such a manifold, called Kähler metric, can be written locally

in terms of the such called Kähler Potential K:

giȷ̄ = ∂i∂ȷ̄K and J = i∂∂̄K (2.46)

since these last 2 definitions are invariant under the such called Kähler trans-

formations K → K ′ = K + f(zi) + f̄(z̄ ı̄), in two intersecting open sets on which

we can attach local coordinates the metric is then the same and even and on

their intersection, while the Kähler potential, in general defined only locally, is the

same up to a Kähler transformation. From the metric the first idea is to define
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Christoffel symbols on it, which, on a Kähler manifold, due to Hermiticity, are

non-vanishing if and only if:

Γρµν = gρσ̄∂µgνσ̄ (2.47)

or

Γρ̄µ̄ν̄ = gρ̄σ∂µ̄gν̄σ (2.48)

Leading to the only non vanishing, independent, components of Riemann ten-

sor:

Rσ
µνρ̄ = −∂ρ̄Γρµν (2.49)

From which we can define the Ricci tensor via contraction of first and second index

and then the Ricci Form:

R = iRµν̄dz
µ ∧ dz̄ν̄ (2.50)

which can be rewritten, by using Γνµν = ∂µ ln(g) ⇒ Rµν̄ = −∂ν̄Γσµσ = −∂ν̄∂µln(g)
with g = det(gρσ̄) as:

R = i∂∂̄ ln(g) (2.51)

which leads us to show that dR = d2(∂̄ − ∂) i
2
ln(g) = 0 and so the Ricci form is

closed but not exact since the determinant of the metric g is not a scalar.

The importance of Ricci form R comes from the fact that we can use it to define

the first Chern Class:

c1 =
1

2π
[R] ∈ H2(Y6,R) (2.52)

which is a topological invariant and will give a necessary condition for defining a

Calabi-Yau manifold in the next chapter.

We end up this chapter with a very important insight on Hodge theory in Kähler

manifolds: since we can check that the exterior derivative Laplacian satisfies

∆ = 2∆∂ = 2∆∂̄, we can see how given an (r,s)-form ω which is Harmonic,

its complex conjugate is Harmonic too, so via isomorphism of Cohomology classes

and Harmonic forms we can see how:

hr,s = hs,r (2.53)
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leading to an Hodge diamond which is vertically symmetric (this is for the case of

a 6 dimensional manifold):

h0,0

h1,0 h1,0

h2,0 h1,1 h2,0

h3,0 h2,1 h2,1 h3,0

h3,1 h2,2 h3,1

h3,2 h3,2

h3,3

(2.54)

and, in the end, just through these Hodge numbers we can define the Euler Char-

acteristic as:

χ(Y6) =
∑
r,s

(−1)r+shr,s (2.55)

2.2.5 Calabi-Yau manifolds

The last Mathematical Step to understand the compactified manifolds in our mod-

els is now to define a special class of Kähler manifolds: the Calabi-Yau k-folds.

We define a Calabi-Yau k-fold as a compact Kähler manifold Y of complex dimen-

sion k which satisfies the conditions:

• Admits a Kähler metric with SU(k) holonomy;

• It’s Ricci flat, so Admits a Kähler metric with vanishing Ricci curvature;

• Has vanishing first Chern class c1(Y );

• Admits on it the existence a nowhere vanishing (k,0)-form Ω3 holomorphic

and harmonic.

In particular, we are interested in the case of Calabi-Yau 3-folds, so complex

Kähler manifolds with SU(3) holonomy. The first two conditions are very in-

teresting since both of them give strong consequences when the model we build

features such a Calabi-Yau 3-folds, so it is worth to briefly review the consequences

of such 2 points.
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SU(3) holonomy

Following the idea of section 1.7.4 where the gravitino’s transformation under

SUGRA is proportional to the covariant derivative of SUSY spinorial parameter

δξχα = ∇αξ then, to identify such a transformation which preserves the vacuum

invariance we need a covariantly constant 4D SUSY spinorial parameter which is a

non trivial requirement on a curved manifold but can be show to hold if and only

if SU(3) holonomy is present. As a consequence We expect that starting from a

4D N=1 Supersymmetric theory, generalising it to 10D and compactifying to a

4D Supersymmetric Effective Field Theory (E.F.T.) which has a compactification

manifold with SU(3) holonomy, we still have N=1 SUSY

N=1 SUSY IN 4D
10D→ N=4 SUSY IN 4D

C.Y.Comp.→ N=1 SUSY in 4D (2.56)

Ricci flatness

Ricci Flatness appear to be fundamental since first of all is equivalent to SU(k)

holonomy, but, most importantly implies that einstein equations are solved without

sources RMN = 0 ∀M,N = 0, . . . , 9. It has been shown by Yau’s Theorem [38]

that if the first Chern class of a Kähler manifold with J Kähler form vanishes (in

the sense that is a trivial class, c1 = [0]) than exist a Ricci flat metric on the

manifold with different Kähler form J’ but still in the same cohomology class of

J: J − J ′ = dα with α arbitrary form. This is called Calabi-Yau metric and its

unique but hard to find explicitly.

Given all these conditions it’s now useful to check how they simplify the Hodge

diamond shape. In fact, taking as an example a C.Y. 3-fold, from the last condition

we have a unique (3,0) form Ω3 so h3,0 = h0,3 = 1. It can be shown that for n < 3

h0,m = hm,0 = 0, that for a C.Y. 3-fold horizontal symmetry h1,1 = h2,2 and

vertical symmetry (Kähler manifold condition) hr,s = hs,r hold. Finally, recalling

the Hodge duality condition hr,s = ht−r,t−swe get h0,0 = h3,3 = 1 and h1,2 = h2,1
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giving us such a diamond depending only on h1,1 and on h1,2:

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

(2.57)

and giving us the expression for the Euler characteristics using (2.55):

χ(CY3) = 2(h1,1 − h2,1) (2.58)

2.2.6 Moduli space of Calabi-Yau manifolds

Given a Calabi-Yau 3-fold, which is the manifold we will compactify the 6 extra

dimensions of our 10D Superstring theory, Yau’s theorem states that exist a unique

Ricci flat metric giȷ̄ such that Rks̄(giȷ̄) = 0 given a certain Kähler form J and

Complex Structure J . One can ask now if the metric can be deformed mantaining

its Ricci-Flatness (since this will lead to the presence of moduli) in the following

way:

giȷ̄dz
idz̄ ȷ̄ → giȷ̄dz

idz̄ ȷ̄ + δgiȷ̄dz
idz̄ ȷ̄ + δgijdz

idzj (2.59)

we can show, through the Lichnerowicz equation, which is the Ricci Flatness equa-

tion Riȷ̄ = 0 in a particular gauge, and using the Calabi-Yau conditions, that

the equations for the deformations δgiȷ̄ and δgij are decoupled and so indepen-

dent.

One can think that, due to the possibility of this deformation we have a contradic-

tion to the uniqueness of the metric proved in Yau’s theorem on our Calabi-Yau,

however this means in realty that this kind of deformation (2.59) must be accom-

panied by a modification of the harmonic representative of the Kähler form J and

of complex structure J . They lead to two different kind of deformations and of

moduli:
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• A deformation of the metric of the kind δgiȷ̄ can be seen as a change of the

Kähler form representative:

δgiȷ̄ = −iδJiȷ̄ (2.60)

where δJ = iδgiȷ̄dz
i ∧ dz̄ ȷ̄ is an harmonic (1,1)-form and so a representative

of cohomology class δJ ∈ H1,1

∂̄
(Y6,C).

Since the possibilities to choose this representative are one for each coho-

mology class then we have h1,1 independent deformations called Kähler

deformations which at least are h1,1 > 1 since we can always rescale the

metric making the Calabi-Yau smaller or larger without changing the shape

of it.

• A deformation of the metric of the kind δgij ̸= 0 seems violate the Hermiticity

assumption but the concept of Hermitian metric depends strongly on the

initial complex structure J and so, pairing the deformation of the metric

with a change of the complex structure J → J + δJ we get the Hermiticity

again satisfied.

Using the (3,0)-form Ω3 we can define a (2,1)-form:

δχ = ΩijoδJ o
m̄dz

i ∧ dzj ∧ dz̄m̄ = Ωijoδgk̄m̄g
ok̄dzi ∧ dzj ∧ dz̄m̄ = (2.61)

= Ωk̄
ijδgk̄m̄dz

i ∧ dzj ∧ dz̄m̄ ∈ H2,1(Y6,C) (2.62)

which is associated with a deformation of the metric of kind δgl̄m̄ and by

inverting we can write the deformation of the metric in terms of the (2,1)-

form’s one: δgı̄ȷ̄ = − 1
||Ω3||2 Ω̄

kl
ı̄ δχklȷ̄ with δΩ3 = δχ and with ||Ω3||2 =

1
3!
ΩijkΩ̄

ijk. We can show that this kind of deformation is a bijection be-

tween linearly independent Dolbeault (2,1)-form cohomology classes and

independent (not related by reparametrizations) complex structure de-

formations. The number of these complex structure deformations can be

counted by the complexified vector space of 3-cycles dimension which is

dimH3 = h3,0 + h1,2 + h2,1 + h0,3 = 2h1,2 + 2. Two directions are the one of

Ω3 and Ω̄3 and since the change of one of these 2 is coupled with a change of

complex structure, we have h1,2 + 1 − 1 = h1,2 possible changes (rotations)
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of Ω3.

Figure 2.2: A 3D Picture (in general much more dimension are present) from [30] of how
the moduli deformation is connected with a motion of J and Ω3 in the spaces H2(Y,C)
and H3(Y,C) determining the metric on a Calabi-Yau.

In total then the geometric transformations of a Calabi-Yau 3-fold that preserve

the Calabi-Yau condition of Ricci flatness can be parametrised by h1,1 + 2h1,2

degrees of freedom which are our moduli. In addition to these geometric moduli

we can add moduli parametrised by p-forms which are, exactly as the geometric

ones, scalar fields in 4D. We will see that at tree level and at classical level, without

sources, background fields or fluxes all these fields are massless and this can bring

to some problems we can solve through their stabilisation.
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2.3 Orientifold projection

Before studying the properties of the moduli in full detail and how they enter our

String Landscape models, we need a brief study of how to include gauge group

and so Standard Model in String Compactifications and the strongly connected

concepts of Orientifold Projections and of Orientifold Planes.

We recall that Type IIB 10D Supergravity contains naturally k-forms with k even

and Dp-branes with p odd. Their presence gives a new way of constructing Stan-

dard Model as an Effective Field Theory and so even Spontaneous Symmetry

Breaking, since a Dp-brane stack represents a dynamical object with a certain

tension on which a Super Yang Mills (SYM) theory of dimension p+1 can live.

Since the total number of dimension is 10, we can have at maximum D9-branes

with 10D gauge fields and gauginos and we have the same number of supercharges

for all p. If instead p < 9 we will have one (p+1)D gauge field and 9-p scalars com-

pensating the missing bosonic degrees of freedom while the fermionic ones are filled

by lower dimensional spinors. One in principle can think that we can compactify

a Type IIB theory on a Calabi-Yau to obtain a 4D EFT and, after that, wrap any

desired number of D-brane stacks necessary to build the correct Standard Model

content. This is too easy to be true and in fact by implementing simply branes

wrapping cycles of our manifold, since the RR-charge and the tension the branes

carry, we get a non zero charge in compact space which is inconsistant and leads

to charge tadpoles (while the non-zero tension to gravitational ones).

The first idea to solve this problem is clearly through including an object with op-

posite charge like an antibrane however this will attract the D-brane and annhi-

late it, bringing an unstable and temporarily existance of the matter content.

The solution comes by implementing the such called orientifold planes or O-

planes which are objects with opposite RR-charge and tension with the respect to

D-branes but they don’t annihilate them and in addition to this they don’t break

additional Supersymmetry with the respect to the half broke by D-branes

N=2 SUSY in 10D ≡ N=8 SUSY in 4D
C.Y.Comp→ N=2 SUSY in 4D

D-branes and O-Planes→ N=1 SUSY in 4D

(2.63)
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In order to understand better how these O-planes appear it is necessary to study

the orientifold projection O which includes the worldsheet orientation reversal

Ωws. The orientifold projections we are interested in are of the shape:

O = (−1)FLΩwsσ (2.64)

where FL left moving sector fermion number and σ involution changing the sign

of the Ω3 harmonic, holomorphic (3,0)-form as σΩ3 = ±Ω3 since this will let us

preserve the correct amount of Supersymmetry and the involution in this case is

called holomorphic involution.

Then the o-planes sit at the singularities on fixed points, or loci, of the orientifold

projections which are points of 4-cycles in our 6D Calabi-Yau Y6. These configu-

rations of our Calabi-Yau, called orbifolds, in principle can have all the O-planes

with odd space dimension l > 4 since on the other 4 dimensions O acts trivially;

however, depending on the eigenvalue of holomorphic involution we have different

o-planes:

• If σΩ3 = +Ω3 we have O5-planes and O9-planes;

• If σΩ3 = −Ω3 we have O3-planes and O7-planes.

If we wish to preserve N=1 SUSY only one of the two must be chosen and we are

going to use O3/O7-planes since more interesting Phenomenologically as stated in

[30]. Finally, let us cite, without giving further details, that in principle orientifold

projection decomposes cohomology groups H1,1 = H1,1
+ ⊕H1,1

− with the signs ”+”

and ”-” determining the ”parity” of the two-forms under orientifold projection.

Since the Hodge duality, we can identify a basis for the cohomology groups as a

basis of harmonic form which under orientifold projection separates into even and

odd eigenspace with dimension h1,1+ and h1,1− respectively. However we will take,

without loss of generality h1,1− = 0 ⇒ h1,1+ = h1,1 and I will refer h1,2− as h1,2 since

now on.
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2.4 Calabi-Yau moduli

In the following section we start to study the moduli of a Calabi-Yau Manifold

introducing their different kinds, which problem can lead their tree level massless

nature and, finally, discussing mechanisms to stabilise them.

2.4.1 Kähler and complex structure moduli

In order to start defining the fields arising now from the compactification we would

like to start a treatment of the moduli. We are going to rewrite everything in term

of the basis for the cohomology groups (harmonic forms).

For the sake of clarity we can divide the moduli in 2 classes:

• Rewriting (2.60) in terms of the harmonic basis of the cohomology group

we obtain δgiȷ̄ = −itiωi, by rewriting the Kähler form in terms of the basis

J = tiωi, ωi such that i = 1, . . . , h1,1. The coefficients ti(x) are scalar fields

called the Kähler moduli which are orientifold invariant and measure the

volume of the C.Y. 2-cycles;

• Rewriting instead (2.61) in terms of H1,2(Y6,C) basis element we get δgaı̄ȷ̄ =

− 1
||Ω3||2 z

a(x)(χa)klȷ̄Ω̄
kl
ı̄ . In this case the h1,2 scalar fields are called the Com-

plex Structure Moduli.

So the total geometric moduli space, as stated in previous subsection, can be

separated into the two independent parts correspondant to Kähler moduli (Kähler

deformations) and Complex Structure Moduli (Complex Structure Deformations)

MModuli = MK ×MC.S.. In addition to this geometric moduli we have to include

another modulus built up by the dilaton and the 0-form C0: the Axio-dilaton

S = C0 + ie−φ = C0 +
i
gs

Moduli however are not the end of the story in String Compactifications, in fact,

the integration of p-forms which come from the closed string spectra over i =

dim(H2(Y6)) p-cycles Σ
i
p of the compact space naturally gives axions, pseudoscalar

fields enjoying shift symmetry. In our Type IIB case there are 3 forms suitable to

build such a shift symmetric fields:
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• NS-NS Sector Kalb-Ramond Field B2: it will give raise to the axion

bi =
1

α′

∫
Σi

2

B2; (2.65)

• R-R Sector 2-form field C2: it will give raise to the axion

ci =
1

α′

∫
Σi

2

C2; (2.66)

• R-R Sector 4-form Field C4: it will give raise to the axion

θi =
1

(α′)2

∫
Σi

4

C4 (2.67)

which will be fundamental later on.

2.4.2 General 4D supergravity Kähler potential

We have now all the bricks to start building up models. In order to describe

a general model in 4D Supergravity language we need of course to write a La-

grangian:

L = Kiȷ̄(∂µX
i)(∂µX̄ ȷ̄) + other fields (2.68)

where Kiȷ̄ = ∂i∂ȷ̄K is the Kähler metric coming from the Kähler potential and X i

are the moduli, both Kähler, complex structure and axiodilaton ones. In order

to have the explicit Lagrangian then it is necessary to write the Kähler potential

and so we need to build it up from scratch with a term for each kind of modulus,

working as always in Planck units Mp = 1.
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Kähler potential for Kähler moduli

Recalling the J = tiωi with i = 1, . . . , h1,1 we can rewrite the volume of the

Calabi-Yau manifold as:

V =
1

6

∫
Y6

J ∧ J ∧ J =
1

6
kijst

itjts (2.69)

where kijs =
∫
Y6
ωi ∧ ωj ∧ ωs is called triple intersection number since naively

counts the points of intersection of the 4-Cycles which are Poincarè dual to the

harmonic forms ωi in the 6D manifold. Instead of using ti it is more useful to

change the Kähler moduli basis and use

τi =
1

2

∫
Σi

4

J ∧ J =
1

2
kijst

jts (2.70)

From a mathematical point of view choosing ti or τi has the deep meaning of choos-

ing an N=1 sub-algebra of the N=2 SUSY on the C.Y. Type IIB compactification

and we can in principle find a relation between the two: ti = ti(τ1, . . . , τh1,1). We

are going to use the τi moduli and we complexify them by adding (2.67):

Tj = τj + icj ⇒ τj =
1

2
(Tj + T̄ȷ̄) (2.71)

so that the volume can be expressed in terms of a real function depending on this

new complexified moduli Tj and T̄ȷ̄ as V = V(Tj, T̄ȷ̄) so that we can finally write

the Type IIB Kähler potential for the Kähler moduli as:

KK = −2 ln(V) (2.72)

Kähler potential for complex structure moduli

In order to describe the complex structure moduli space MC.S. we start from an

easier example, the basis of H1(R2) the homology group of Riemann Surface with

cycles A1, B1, A
2, B2.
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Figure 2.3: Picture of the representative of the 4 linearly independent homology classes
in H1(R2) with a ≃ a′ = A1, b = B1, c = A2, d = B2.

with intersection structure:

Aa · Ab = 0 (2.73)

Ba ·Bb = 0 (2.74)

Aa ·Bb = δab (2.75)

An analogous basis, called symplectic basis can be chosen for H1 with such

intersection structure in the form wedge product formalism:∫
ωaaA ∧ ωbB = δba = −

∫
ωbB ∧ ωAa (2.76)

In particular, in our case of complex Calabi-Yau 3-folds we choose a symplectic

basis and we define the periods, integrals of the 3-form Ω over 1-cycles, as:

za =

∫
Aa

Ω (2.77)

Gb =
∫
Bb

Ω (2.78)

The complex periods za, a = 0, . . . , h1,2 parametrize the position of the 3-form

Ω in the space H3(Y6) since one parameter can be set to z0 = 1 by rescaling via

complex coefficients Ω, which is then not a geometrical, and so physical, change.

Then h1,2 parameters only are left over.
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The remaining periods Gb are za dependent:

Gb = Gb(z0, . . . , zh
1,2

) (2.79)

and their explicit form can be obtained by solving the Pichard-Fuchs equations

formulated from topological features of the Calabi-Yau.

We can combine these periods on a total period vector:

Π = (z0, . . . , zh
1,2

,G0(z), . . . ,Gh1,2(z)) (2.80)

and, by recalling the symplectic metric form:

Σ =

(
0 I
−I 0

)
(2.81)

we get the Kähler potential for the complex structure moduli [30]:

KC.S. = − ln(i

∫
Y6

Ω ∧ Ω̄) = − ln(−iΠ†ΣΠ) = − ln(−iz̄aGa(z) + izaGa(z)) (2.82)

Kähler potential for the axio-dilaton

The non-geometric axio-dilaton modulus S = C0+ ie
−φ = C0+

i
gs

have a straight-

forward Kähler potential instead given by:

KS = − ln(−i(S − S̄)) (2.83)

WIth all these 3 parts we have finally a full Type IIB Kähler Potential which is

quite general and so, for such a 4D Supergravity model:

K = KK(T
i, T̄ ȷ̄) +KC.S.(z

a, z̄ā)− ln(−i(S − S̄)) (2.84)

K = −2 ln(V)− ln(i

∫
Y6

Ω3 ∧ Ω̄3)− ln(−i(S − S̄)) (2.85)
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2.5 Moduli stabilisation

Moduli are crucial elements of Calabi-Yaus both because they appear naturally

as we saw before and because the dynamics of the moduli is crucial from a Cos-

mological point of view, in fact we can use them as inflaton to drive inflation.

Before doing so however, it is clear that a problem arises immediately: up to now,

just with a Kähler potential, moduli are flat direction of field space, they have

no potential at all. This can lead us to fifth forces which we do not experience

today, so to phenomenological inconsistencies. In order to have a proper model

which is consistent and viable for phenomenology we then need to find a ”source”

for the potential of them. The challenge of finding a potential for them such that

we can find vacua with all moduli having positive mass squared is called moduli

stabilisation.

2.5.1 Complex structure and axio-dilaton stabilisation

The idea is to consider now compactifications with non zero components of RR

and NS gauge field strength F3 = dC2 and H3 = dB2, with metric which is

a warped solution. These kind of compactifications feature a 3-form defined as

G3 = F3 − SH3 which is imaginary self-dual (ISD) ⋆6G3 = iG3 and, since this,

they are called ISD Compactifications. The presence of such field strengths

different from zero induces us to turn on fluxes which means to choose 2 integers

n ∈ Z and m ∈ Z such that a flux quantisation like the one in Electromagnetism

takes place:
1

2πα′

∫
F3 = 2πn ,

1

2πα′

∫
H3 = 2πm (2.86)

The importance of these fluxes is fundamental, in fact we can easily see even from

a basic example as in [30] how the fluxes prevent cycles from shrinking and in

particular, with various fluxes on various cycles, their presence tends to stabilise

the shape of the manifold. It can be now intuitively appear in our mind that,

since the complex structure moduli govern the ratios of 3-cycle volumes and the

3-form fluxes stabilise these volumes, the fluxes will stabilise our complex structure

moduli giving them mass. Since there is no possibility to generate a scalar potential

through Kähler one, this means that fluxes induce a non-zero superpotential W0
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depending on SUGRA models moduli which lead the number of possible models

suitable for the landscape to grow exponentially.

This Superpotential is called Gukov-Vafa-Witten Superpotential [29] and it

has been postulated and Mathematically justified for M-Theory on CY 4-folds,

but in our Type IIB case it has been derived from 4D N=1 SUGRA and from 10D

theory too, with the shape [27]:

WGVW = W0 =

∫
Y6

G3 ∧ Ω3 (2.87)

Through the usual formula for the scalar potential:

V = eK(Kiȷ̄(DiW )(Dȷ̄W̄ ) +Kab̄(DaW )(Db̄W̄ )− 3|W |2) (2.88)

where Di = ∂i+Ki covariant derivative and the index i goes through all the Kähler

moduli i = 1, . . . , h1,1 while the index a = 0, . . . , h1,2 goes through complex struc-

ture moduli and axio-dilaton, in fact we call since now on za = {S, z1, . . . , zh2,1}.
In addition to this we reabsorb the axio-dilaton term of Kähler potential into the

complex structure part of it KC.S. = KC.S. + KS. Since W0 is dependent on za

(with S included) W0 = W0(S, z
b), by using the F-term conditions for SUSY

DaW = 0 for a = 1, . . . ,
b3
2

(2.89)

with b3 = dim(H3(Y6)) = dim(H3(Y6)) =
∑

r+s=3 h
r,s = 2 + 2h1,2 Betti Number,

we get that both the h1,2 complex structure moduli and the Axio-dilaton are

stabilised and so we can integrate them out the Potential at the price of an

overall factor S =
eKC.S.gs

8π
which for now we are going to set S = 1.

2.5.2 Kähler moduli stabilisation

One now can ask if Gukov-Vafa-Witten Potential is enough to stabilise even Kähler

moduli, the answer unluckily appears to be no. One in principle can think that,

once integrating out za, the remaining potential, depending only on T, T̄ can be
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different from 0 since

V = eK(Kiȷ̄DiWD̄ȷ̄W̄ − |W |2) (2.90)

however a strange but fundamental phenomenon appears due to the shape of the

Kähler potential for the Kähler moduli KK = − ln(V2). In fact, since V2 is usually

an homogeneous function of degree 3 of Ti, it appears the such called no-scale

structure. As shown by computation in B the no-scale structure means that

the Kähler Moduli have no potential at all V = V (T, T̄ ) ≡ 0 if the V2 is an

homogeneous function of degree 3. This name comes from the fact that SUSY is

broken at an unknown scale, in fact:

DT̄W = K T̄ TKTW =

(
(T + T̄ )2

3

)(
−3

(T + T̄ )

)
W0 = −(T + T̄ )W ̸= 0 (2.91)

but Λ���SUSY = m 3
2
= eKW0 is not fixed since Kähler potential is depending on T

which is not stabilised. In order to resume, giving the 10D geometry of a C.Y.

we can see how Complex Structure Moduli and Axio-Dilaton are stabilised, while

Kähler Moduli, axions (and brane position moduli we have not discussed here) are

flat directions in field space.

Given these unstabilised Kähler moduli, a legit doubt is how to avoid the problem

of having unobserved fifth forces due to them. Luckily, the presence of quantum

corrections is well known and breaks the no-scale structure. These effects are

of 2 kinds: perturbative and non-perturbative, the perturbative ones can’t affect

Superpotential for the Renormalisation theorem so, calling the previously written

Kähler potential as K → K0:{
K = K0 +Kp +Knp

W = W0 +Wnp

(2.92)

Perturbative corrections

Perturbative corrections arise in 2 different way both from α′3 expansion of the

action and from the gs expansion, called string loop expansion: Kp = δK(α′)3 +
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δKgs. We are going to analyze both of them since these are included in our model

in the next chapter.

• (α′)3 correction: These corrections descend from the 10D action as the

quartic invariant part, which is part of the classical 10D SUGRA theory and

appear as four-loop correction to the worldsheet σ-model β-function, not as

loop correction in the 10D spacetime:

SGrav =

∫
d10X

√
−G

[
M2

10

2
R +

ζ(3)

3 · 32
1

M6
R4 + . . .

]
(2.93)

with R4 quartic invariant computed from the Riemann tensor, ζ(3) = 1.202

Apéry’s constant and M is the mass of Type IIB String First Excited Level.

In the 4D theory this correction appears in the Kähler potential as:

K = −2 ln

[
V +

ξ

2g
3/2
s

]
, ξ ≡ −χ(Y6)ζ(3)

2(2π)3
(2.94)

with χ(Y6) Euler Characteristic of the C.Y. 3-fold Y6. By the computations

present in B we can easily see how this kind of perturbative correction spoils

the no scale structure of the potential giving a contribute (by recalling ξ̂ =
ξ

g
3/2
s

) of:

δV(α′)3 ≃
3ξ̂

4

W 2
0

V3
̸= 0 ⇔ ξ̂ ̸= 0 (2.95)

A very important features of such corrections is that they break Supersym-

metry of vacuum when implemented.

• gs correction: these are perturbative corrections from loop effects in space-

time so from higher genus worldsheets and again, as the previous ones, they

will spoil the no-scale structure. These corrections have been explicitly com-

puted in toroidal orientifolds only [7]/[8], like T 6(Z2 ×Z2) while conjectured

in Calabi-Yau ones [9]. In both the cases the Kähler potential correction

takes the composite form:

δKgs = δKKK
gs + δKW

gs (2.96)
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where the two kinds of correction come from different sources, in fact δKKK
gs

comes from the exchange of Kaluza-Klein modes (closed strings with K.K.

momentum) between D7-branes and D3-branes or their correspondent O3/O7-

planes needed for tadpole cancellation. On the other hand δKW
gs originates

by the exchange of winding strings (closed strings with winding number)

between intersecting stacks of D7-branes (and even O7-planes). These two

terms assume the form:

δKKK
gs = − 1

128π2

3∑
i=1

EKK
i (z, z̄)

Re(S)τi
(2.97)

δKW
gs = − 1

128π2

3∑
i=1

EW
i (z, z̄)

τjτk

∣∣∣∣
j ̸=k ̸=i

(2.98)

where τi are the Kähler moduli wrapped by i-th D7-brane and EKK
i (z, z̄)

and EW
i (z, z̄) are general functions of the complex structure moduli with

complicated form. However, as we can easily notice, the dependence on

Kähler moduli is almost trivial.

If we would like to generalise the results to a general Calabi-Yau we need to

take the conjectured results:

δKKK
gs ≃

∑
i

CKK
i gs

P i(tj)

V
(2.99)

δKW
gs ≃

∑
i

CW
i

1

Gi(tj)V
(2.100)

where CKK
i , CW

i functions of complex structure moduli and axio-dilaton while

functions P i(tj) and Gi(tj) are linear in 2-cycle volume moduli tj (in general

that could be even homogeneous function of degree 1 in tj).

It can be proven that, since δKKK
gs homogeneous function of degree -2 in tj

then we can see an extended no-scale structure on the correction of the

scalar potential δV KK
gs . This means that, even if in SUGRA approximation

ti >> 1 where δKKK
gs ∼

∑
i
ti
V > δK(α′)3 ∼ 1

V so it seems that string loop

correction can change strongly the vacuum structure, these terms remain
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subdominant in comparison with the (α′)3 corrections due to the cancellation

of some terms as showed in B. By using the linearity of the two functions

P i(tj) and Gi(tj) we can find that these kind of corrections to scalar potential

δVgs can be written as:

δVgs =
|W0|2cloop

V3

1

V1/3

(
V1/3

√
τi

+O
(√

τi
V1/s

)
+O(1)

)
≃ |W0|2cloop

V3

1
√
τi

(2.101)

where cloop = CW
i or (gsC

KK
i )2 depending on where does these loop correction

come from. This conjecture seems a little bit like a random guess, instead

[17] showed how this result for the potential can match the field theoretical

one-loop Coleman-Weinberg potential

V CW
1−loop ≃ 1

16π2
Λ2 STr(M2) (2.102)

with STr(M2) ≡
∑

i(−1)2ji(2ji + 1)mn
i supertrace in terms of particle with

spin ji and mass eigenvalues mi and Λ EFT Cutoff which can be seen as the

mass of K.K. replicas of open string modes on D7-branes wrapped around

different 4-cycles so it depends on the C.Y. structure. For the Calabi Yau

we are going to use into Loop Blow-Up Inflation STr(M2) ≃ m2
3/2 ≃

W 2
0

V2 and

Λi ≃ 1

τ
1/4
i

√
V
giving us cloop ≃ 1

16π2 .

Non-perturbative corrections

As previously stated, due to the non renormalisation theorem, the superpoten-

tial receives no (α′)3 (due to axionic shift symmetry on imaginary part of Kähler

moduli) nor gs corrections [13] but it can receive Non-perturbative ones and we

are going to consider only the one on Superpotential: W = W0 + Wnp. These

non-perturbative contributions usually arise because of 2 phenomena: Gaugino

Condensation and E3-Brane Instantons and we are going to give a phenomenolog-

ical description and the explicit expression for both of the corrections.

• Gaugino condensation: We now consider a compactification with a stack

of N spacetime filling D7-Branes wrapping a 4-cycle Σ4. Writing down the

action of the D7-branes we get a theory including a Yang-Mills piece with a
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4D gauge field Aµ. Given some topological conditions on the 4-cycles, in par-

ticular Σ4 has to be rigid such that no deformations can exists so no charged

matter fields, we get that the 4D EFT obtained upon dimensional reduction

is a pure N = 1 Super Yang-Mills with a non-perturbative potential at low

energy of:

Wnp = Ae−aT (2.103)

where a = 2π
N
, A = A(za, ρα) ∼ M3

P with ρα = brane position and T Kähler

modulus whose real part measures the volume of Σ4. In general, if more than

one brane stack is present or some of these wraps more than one cycle then:

Wnp = Winst =
∑
i

Aie
−aiTi (2.104)

with i labelling the wrapped cycles ⇒ i ≤ h1,1.

• ED3-brane instantons: If Σ4 instead is wrapped by Euclidean D3-

branes, called ED3-brane instantons, which are instantonic contributions

to the path integral with an action which is Euclidean and with Re(Sinst) ∝
VΣp+1 where Σp+1 (p+1)-cycle wrapped by the E3-brane and Im(Sinst) ∝ SC.S.

Chern-Simons action. In this case the Superpotential can be written as (in

the general case with more than one cycle wrapped):

Wnp = WE3 =
∑
i

Aie
−aiTi (2.105)

Where ai = 2π and, again, A = A(za, ρα) ∼ M3
P with ρα = brane position.

Again in this case, a rigid cycle guarantees a non-vanishing superpotential

contribution and, when fluxes are added, such a sufficient condition can be

even relaxed a little bit.

In Principle there can exist even non-perturbative corrections to the Kähler po-

tential but these corrections are negligible with the respect to perturbative ones,

so we will not study them.
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2.5.3 The KKLT proposal

The KKLT proposal (from Shamit Kachru, Renata Kallosh, Andrei Linde, Sandip

P. Trivedi) is a method we can use to stabilise Kähler moduli through non pertur-

bative corrections.

We start focusing on the simplest case of h1,1 = 1 so of a single Kähler modulus.

Considering the complex structure moduli and the Axio-dilaton as integrated out

using Gukov-Vafa-Witten Superpotential if the model features

K = −3 ln(T + T̄ ) and W = W0 = const (2.106)

then we have the no-scale cancellation V ≡ 0 and ����SUSY at energy scale m3/2 =

e
K
2 W0.

As previously stated, there are different Quantum corrections that can lift the flat

direction of the potential V and so breaking the no-scale structure, in our case we

will use the non-perturbative corrections to the Superpotential, leaving us with

the following quantities:

K = −3 ln(T + T̄ ) and W = W0 + Ae−aT (2.107)

where we will not specify a since we want to mantain a general case instead of

chosing just or gaugino condensation or instanton corrections. The scalar potential,

after stabilising and so integrating out θi as done in C, reads as:

V = V (τ) =
gse

KC.S.

8π
|W0|2

(
8a2|A|2τ 2e−2aτ

3|W0|2V
− 4a|A|

|W0|
τe−aτ

V2

)
(2.108)
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Figure 2.4: Qualitative Picture of The Scalar Potential with an Anti-de Sitter Minimum.

As shown in 2.4 the minimum is at negative values of the potential and it can

be proven that this minimum is at a SUSY point where F-term vanishes and so

DW = 0:

DW = ∂T (Ae
−aT ) +KT (W0 + Ae−aT ) = −aAe−aT − 3

2τ
(W0 + Ae−aT ) = 0 ⇔

(2.109)

⇔ W0 = −(1 +
2

3
aτ)Ae−aT (2.110)

leading us to the fact that W0 ∈ R<0 which is a simple consequence that, deriving

th potential we assumed the axion θi to be stabilised at θi = 0. If instead we

considered during the stabilisation process of the axion W0 = |W0|eiφ ∈ C as well

as A = |A|eiσ ∈ C with φ = arg(W0), σ = arg(A) phases, than the minimum of

c would have been in θ|min = σ − φ + (2k + 1)π, k ∈ Z. However this is not

crucial for us, instead, what is really crucial is the fact that W0 is exponentially

small such that τ ∼ R4
Y6
>> 1 and this can be done easily just by fine tuning the

fluxes in the landscape.

2.5.4 The Large Volume Scenario

An alternative mechanism to the previously studied KKLT proposal is the Large

Volume Scenario or LVS, in which we stabilise the Kähler Moduli not only via

Superpotential non-perturbative corrections but also balancing them through the
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(α′)3 Kähler Potential ones (leading then to a non-supersymmetric vacuum). Through

them we can stabilise the overall volume V at large values such that all the per-

turbative corrections are subleading in V to the non-perturbative ones.

The combination of perturbative and non-perturbative effects give a contribution

for the scalar potential of:

V = Vnp + V(α′)3 = eK(Kjı̄(ajAjaı̄Āı̄e
−ajTj+aiT̄i − ajAje

−ajTjW̄∂ı̄J+ (2.111)

+ aı̄Āı̄e
−aiT̄iW∂jK) +

3

4
ξ
W 2

0

V
) (2.112)

where i ̸= 1, since we changed the moduli basis substituting one modulus with

the volume {τ1, . . . , τh1,1} → {V , . . . , τh1,1}. When volume is large, perturbative

(α′)3 term (2.95) dominates over all the other terms and this can happen if one

or more cycles are smaller than the largest one. The main idea is to use one

small cycle, stabilised by non-perturbative corrections and with that stabilise the

volume. In order to do so we take the limit, denoting the small 4-cycle volume as

τs =
1
2
(Ts + T̄s):

V → ∞, with asτs = ln(V) (2.113)

and along this ray then e−asTs ∼ 1
V so we have all the terms of the scalar potential

at the same order. To be complete, in order to do so and contemporarily drive

inflation, it is clearly necessary, for an inflationary model, to take a class of Calabi-

Yaus with h1,1 ≥ 3, one which parametrises the volume, one small cycle needed to

stabilise the first modulus and one inflationary cycle volume as we will see soon.

The effect of the (α′)3 correction on the scalar potential, as seen from (2.94) is

then strongly dependent on the sign of ξ̂ and so on the Euler Characteristic of the

Calabi-Yau. In our tractation we are going to take χ(Y6) < 0 ⇒ ξ̂ > 0 giving

us a potential which approaches zero from below in large volume limit and along

the direction (2.113). Clearly before assuming that this configuration is suitable

for inflationary scenarios, we need to argue the existance of a minimum. We need

then 2 things:

• The potential at small V is positive such that V on the ray of field space

(2.113) is minimised to a certain point Vmin;
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• The potential at Vmin must not decrease on the h1,1+ − 1 directions normal to

(2.113).

Intuitively we can give a non-rigorous set of conditions for having a AdS ����SUSY

minimum at exponentially large values for V :

• At small volume the (α′)3 perturbative term (B.16) in V is dominant at small

volume so makes the potential positive for small V ;

• If the non-perturbative V-leading terms in V are positive and W = W (Tα),

α ∈ H1,1(Y6)/V then, in all the other h1,1−1 directions orthogonal to (2.113),

potential increases.

These conditions can be made more rigorous by the use of Topology arguments.

We can state then that a general Calabi-Yau Y6 manifold respecting such necessary

and sufficient conditions:

1) χ(Y6) < 0 ⇒ ξ̂ > 0 or h1,2 > h1,1 > 1 (for driving inflation > 2) so potential

goes to zero from below at infinity;

2) It has h1,1 = Nb + Ns 4-Cycles where Nb, Ns represent the number of ”big”

(τ bj
V→∞→ ∞) and ”small” cycles, at least one of the Ns cycles Σi must be

a rigid exceptional divisor1 which arises from the Blow-Up of a Point-Like

Singularity in the sense that it arises by replacing (and so smoothing) such a

singularity in the Calabi-Yau with the previously cited divisor. Such a cycle

must be necessarily wrapped by a sector undergoing gaugino condensation

or wrapped by instanton in 0-flux case;

3) The 4-cycle volume corresponding to such a del Pezzo divisor and the other

Ns − 1 blow-up modes are stabilised small (Ms < τ sj < V with j = 1, . . . , Ns

both by non-perturbative and (α′)3 corrections stabilising even V ∼ e−aτ
s
k ,

∀k ∈ 1, . . . , Ns;

1Rigid means h0,1(Σi) = h0,2(Σi) = h0,3(Σi) = 0, Exceptional Divisor means Σi = P2 = dP0

or in general Σi = dPn del Pezzo Divisor with degree d = 9 − n and h1,1(dPn) = 1 + n which
is a divisor defined from blowing up (making smooth) 0 ≤ n ≤ 8 singularities in dP0 = P2 and
satisfying

∫
Y6

Σ3
i = Kiii > 0,

∫
Y6

D2
iDk0 ∀k ̸= i.
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4) All the other 4-cycles Nb − 1 which are fibrations can’t be stabilised small

even if they have non-perturbative corrections since they are large. They can

be stabilised neglecting these kind of non-perturbative effects and by taking

into account string loop corrections.

can feature a scalar potential V admitting a set L of AdS Non-Supersymmetric

minima at exponentially large volume, in particular:

• If h1,1 = h1,1 = Ns + 1 then L = {p ∈ F | p unique point in field space F}

• If h1,1 = h1,1 > Ns + 1 then

L = {σi i = 1, . . . , h1,1(Y6)−Ns − 1 | σi flat directions of field space F}

The proof of this statement can be found at [16]. We conclude this subsection

by explicitly express another difference with KKLT approach (in addition to the

non-supersymmetric vacuum owing to the (α′)3 corrections): we have no need to

set W0 exponentially small for the model consistency.

2.5.5 Anti-D3 brane uplift

In the previous subsections we have discovered a landscape of SUSY and Non-

SUSY vacua which have negative vacuum energy, so negative cosmological con-

stant, this landscape is called SUSY/����SUSYAdS vacua landscape. However,

in order to obtain phenomenological matching with the known universe we need

models that have a Minkowski or slightly De Sitter vacuum and this can be obtain

via various uplifting techniques. In this subsection we are going to inspect one of

the possible approaches which is the Anti-D3 brane uplift.

Let us now inspect the case of SUSY vacua (KKLT like) for simplicity. In the

previous subchapter 2.3 we saw how the need of a Orientifold projection like the

O3-plane one is fundamental in order to cancel charge and gravitational tadpoles

and breaks SUSY to N = 1 one. Given now this configuration on a Calabi-Yau

we can substitute some of the D3-branes with 3-form fluxes since the latter has

a Chern-Simons term which reproduce the same tadpole of D3-brane. In doing

so we jumped to the world of flux compactifications in N = 1 SUSY setting

with O3-Planes, D3-branes and fluxes which coherently break the previous N = 2
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SUSY of the Compactified Type IIB String Theory. However, our actual Standard

Model features no SUSY so we need to break the remnant SUSY in order to get

a phenomenologically viable model. One can think that a solution is by adding

an anti-D3-brane to the previous configuration, however this element will attract

a D3-brane and annihilate it releasing energy.

An alternative could be to completely replace D3-branes by fluxes and after this

add anti-D3-branes in order to have an uplifting of the potential which lasts long

enough; this seems a nice solution but the uplift will be too strong and it will

destroy completely the shape of the potential, in such a way that even if the

minimum is dS, it will be unstable.

The solution in the end has been given by [27] and it consist of using a CY

orientifold which is equipped with 3-form fluxes modeling it with a throat, making

the metric warped:

ds2 = Ω2(y)ηµνdx
µdxν + gmn(y)dy

mdyn (2.114)

where xµ, µ = 0, . . . , 3 4D spacetime coordinates, ηµν , flat metric for the 4D

spacetime, yn, m = 1, . . . , 6 coordinates of the 6D Calabi-Yau manifold and,

finally gmn(y) metric for the 6D Calabi-Yau manifold. Even if the topological

characteristics of this space are product type R4 × Y6 we have that the metric

has not, as we saw, a product structure, even if this holds however, the prefactor

of 6D compact part of the manifold we have contains no dependence on the 4D

coordinates, so we can easily understand how Poincarè invariance is not broken.

We call the prefactor Ω(y) as the warp factor.

As we previously anticipated the 6D compact manifold features a strongly warped

region, very usual in the Calabi-Yaus, which is calledKlebanov-Strassler throat

and we can find that these compact throated 6D manifolds are not properly a

Calabi-Yau, instead are conformally Calabi-Yaus, in the sense that a change by

the conformal factor (which is the warp factor) of the metric does not change the

Physical outcome of the theory:

gmn(y) = Ω−2ĝmn(y) (2.115)
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The warping, which seems just a Geometrial feature, in realty hides crucial physical

consequencies like the energy effect of the anti-D3-brane (D3−brane) in the C.Y.

In fact, since this geometrical shape, the brane is pulled to the throat where Ω << 1

and so the warping is strong and from the point of view of the unwarped part of

the C.Y. its energy content is strongly ”redshifted”, leading to an uplift (in string

units) of:

Ω4
M ×O(1) (2.116)

where, from [27]:

ΩM ∼ e−
2πn
3mgs (2.117)

with n,m ∈ Z coming from (2.86) for the 3-fluxes in the throat.

Figure 2.5: Klebanov-Strassler Throat with anti-D3-brane sitting on its tip.

We can prove that the metastability of the uplifted configuration is plausible in the

case of no flux backreaction, so we will assume it as a starting point for the SUSY

breaking and we want to estimate the magnitude of this latter. Using arguments

of dimensional analysis and of physical quantities ratios in different frames [30] it
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can be proven that naively, the warping suppression is of the order of ΩMτ which

leads to a potential term (where we need to multiply by eK) of:

Vup(τ) = cup
Ω4

M

τ 2
≃ cup

Ω4
M

V4/3
(2.118)

with cup = const ∼ O(1) and τ ≃ V2/3 in the case of single modulus, with such

a scaling the local AdS minimum present in a configuration like KKLT (or LVS)

one can become Minkowski or de Sitter (dS) remaining metastable.

In order to conclude in a complete way, every general uplift mechanism, as stated

in [23] gives a scalar potential term scaling as:

Vup ∼ 1

Vα
(2.119)

but in general 4
3
≤ α ≤ 2.
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Chapter 3

Loop Blow-Up Inflation

In this chapter we are going to use all the background we studied in the previous

pages in order to finally build some explicit models of inflation working with a

peculiar classes of Calabi-Yaus called Swiss-Cheese Calabi-Yau Manifolds.

Such manifolds are manifolds where the overall volume can be written in the

form:

V = ατ
3/2
b − p(3/2)(τ

r
s ) (3.1)

where α > 0 and p(3/2)(τ
s
r ) is an homogeneous polynomial of degree 3

2
in

τ sr , r = 1, . . . , Ns. In particular we are going to work with subset of such mani-

folds in which divisors Σi
s are not only del Pezzo but diagonal del Pezzo1. These

subclass of models feature a volume Mathematically written then as:

V = α

(
τ
3/2
b −

Ns∑
r=1

λr(τ
s
r )

3/2

)
(3.2)

with α and λr topological parameters (in particular they represents ratios of in-

tersection numbers [2]).

1Their intersection numbers satisfy klllklij = kllikllj so that it is possible to find a basis of
coordinate divisors such that the volume of each 4-cycle is a complete square: τi =

1
2kijlτ

jτ l =
1

2kiii
kiijkiilt

jtl = 1
kiii

(kiijt
j)2 and so the 4-cycle which is a diagonal del Pezzo ddPn has a volume

τddP entering the overall one V just as a pure power, without any mixing with other 4-cycle
volumes.
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Now we can easily understand why these manifolds have such a name, in fact their

volume shape is made in such a way that τb is like the overall ”full” cheese volume

and τ sr like small holes on this Swiss-cheese.

Figure 3.1: Pictorial Representation of a Swiss-Cheese Model Calabi-Yau with 1 big
cycle τb and 3 small cycles.

First, we give some insights of the baseline model developed by J. Conlon and F.

Quevedo which we shall call Non-perturbative Blow-Up Inflation [23]. Then

we enrich it with string loop (gs) corrections to develop the model in which we are

going to work during the last chapter: Loop Blow-Up inflation [2].

3.1 Non-perturbative blow-up inflation

The first Kahler moduli inflationary model is called Blow-Up Inflation and it needs

a Calabi-Yau with h2,1 > h1,1 > 2 and features a structure of the scalar potential

with exponentially large volume compactifications. At least one Kähler Modulus

will be stabilised non-perturbatively and it is a diagonal del Pezzo. Such a model

evades even the η problem and matches, upon right fine tuning of the volume,

PLANCK measurements on density perturbations. We are going to analize it

before in a simple case with the minimum of h1,1 = 3, then in the general case of
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n > 3 Kähler moduli.

3.1.1 h1,1 = 3 case

We start by considering 3 Kähler moduli case, with one big cycle whose volume is

fixed by the vacuum expectation value of τb and 2 small ones whose volume will

work as inflationary τϕ and small overall volume-fixing cycle τs.

inflationary 
blow-up cycle

stabilized 
blow-up cycle

stabilized 
volume cycle

Figure 3.2: Pictorial Representation of a Swiss-Cheese Model Calabi-Yau with 1 big
cycle τb and 2 small blow ups, with one inflationary cycle τϕ.

We will wrap the two small cycles with brane stacks going under gaugino conden-

sation or by instantons so the model features, after fixing the complex structure

moduli and the axio-dilaton at their vacuum expectation value, a Kähler potential

and a Superpotential of the shape:

K = −2 ln

(
V +

ξ̂

2

)
(3.3)

W = W0 + Aϕe
−aϕTϕ + Ase

−asTs (3.4)

The overall volume is of the Swiss-Cheese form as:

V = τ
3/2
b − λϕτ

3/2
ϕ − λsτ

3/2
s (3.5)

where λϕ, λs topological constants depending on intersection numbers of the cor-
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respondent cycles. Starting from This, the inverse Kähler Metric looks like:

(K−1)iȷ̄ ≈


4τ2b
3

4τbτϕ 4τbλs

4τbτϕ
8
√
τϕτ

3/2
b

3λϕ
4τϕλs

4τbλs 4τϕλs
8
√
λsτ

3/2
b

3λs

 , (3.6)

and then we can compute the scalar potential (after neglecting subleading term

and after substituting in the moduli base the big cycle volume with the overall

volume {τb, τϕ, τs} → {V , τϕ, τs}):

V (V , τϕ, τs, θϕ, θs) =
gse

KCS

8π
W 2

0

(
8a2sA

2
s

W 2
0 λs

√
τse

−2asτs

V
+

4asAs
W0

τse
−asτs

V2
cos(asθs)

+
8a2ϕA

2
ϕ

W 2
0 λϕ

√
τϕe

−2aϕτϕ

V
+

4aϕAϕ
W0

τϕe
−aϕτϕ

V2
cos(aϕθϕ) +

3ξ̂

4V3

)
(3.7)

and, after stabilising the axions θϕ and θs:

V (V , τϕ, τs) =
gse

KCS

8π
W 2

0

(
8a2sA

2
s

W 2
0 λs

√
τse

−2asτs

V
− 4asAs

W0

τse
−asτs

V2

+
8a2ϕA

2
ϕ

W 2
0 λϕ

√
τϕe

−2aϕτϕ

V
− 4aϕAϕ

W0

τϕe
−aϕτϕ

V2
+

3ξ̂

4V3

) (3.8)

Now, if we would like to stabilise the volume we need to find the minimum of

the potential via partial derivatives. This minimum is clearly non-Supersymmetric

since we are working in LVS scenario and in particular with (α′)3 corrections:

∂V

∂V
= 0 (3.9)

∂V

∂τs
= 0 (3.10)

Leading us to the stabilisation of V :

V =
3αλsW0

asAs

(1− asτs)

(1− 4asτs)

√
τse

asτs (3.11)
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which, by plugging it in (3.9), gives us:

⟨τs⟩ ≃

(
ξ̂

2λs

)2/3

≃

(
ξ

g
3/2
s

)2/3

(3.12)

and so:

⟨V⟩ ∼ e

(
ξ2/3

gs

)
(3.13)

which means that in the perturbative regime of the theory the overall Calabi-Yau

volume is fixed at exponentially large value gs ≪ 1 ⇒ V ≫ 1. By plugging the

vacuum expectation values of the volume and of τs in the potential, by minimising

it with the respect to τϕ and plugging again this other value, it is possible to show

that [23]:

⟨V ⟩ = −3W 2
0

2 ⟨V⟩3

((
λs

a
3/2
s

+
λϕ

a
3/2
ϕ

)
(ln(V))3/2 − ξ̂

2

)
< 0 (3.14)

so the minumum is AdS for exponentially large values of the volume.

In order to go to the inflationary regime we need to set the value of τϕ ≫ 1 so

that we are in the plateu of the potential. In such a regime, after stabilising all

the other moduli, the double exponential is suppressed and so the only remaining

part is:

Vinf = V0

(
1− 16aϕAϕ

W0ξ̂
τϕVe−aϕτϕ

)
(3.15)

with V0 =
3W 2

0 ξ̂

V3 = const.

Next step is clearly to write the potential in the canonically normalised version

and, in order to do this we first need to compute the canonical normalisation. We

can do so in 2 different ways, by solving the differential equation:

∂µϕ∂
µϕ = Kϕϕ̄∂µτϕ∂

µτϕ (3.16)

or finding the mass matrix eigenvectors (which is completely equivalent) as done in

D, with the difference that what has been computed in D is a pure linear-algebraic

result, so in the case of the inflaton its power scale is different due to the need

of integration owing to the τϕ dependence of Kϕϕ. The canonical normalisation
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CHAPTER 3. LOOP BLOW-UP INFLATION

which comes out from this equation (3.16) is:

ϕ =

√
4λϕ
3V

τ
3/4
ϕ (3.17)

with mass

mϕ ≃
W0 ln(V)

V
(3.18)

and which leads to a canonically normalised potential of the shape:

Vcan.inf. = V0

(
1− 16aϕAϕ

W0ξ̂

(
3V
4λϕ

)2/3

ϕ4/3Ve
−aϕ

(
3V
4λϕ

)2/3

ϕ4/3
)

(3.19)

close to textbook potential V = V0(1− e−τ ).

Figure 3.3: Picture of canonically normalised inflaton potential setting aϕ = Aϕ = λϕ =

W0 = ξ̂ = 1 and V = 105 with AdS minimum.

3.1.2 General case

We now give some details on the general case of Blow-Up inflation where h1,1 =

n ≥ 3 following the original paper [23]. We will notice how physics doesn’t change

so much from the h1,1 = 3 case. The Calabi-Yau Swiss-Cheese model volume reads

as:

V = τ
3/2
b −

n∑
i=2

λiτ
3/2
i =

1

2
√
2

[
(Tb + T̄b)

3/2 −
n∑
i=2

λi(Ti + T̄i)
3/2

]
(3.20)
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3.1. NON-PERTURBATIVE BLOW-UP INFLATION

with τb big cycle volume controlling the overall volume, τ2, . . . , τn n-1 small blow-

up cycles (diagonal del Pezzo divisors) volumes and λi = const > 0 topological

constant. Again the dilaton and the complex structure moduli are stabilised via

Gukov-Vafa-Witten Potential due to fluxes and the blow-up cycles through non-

perturbative corrections so the superpotential and the Kähler potential (featuring

(α′)3 corrections) are written as a generalisation of (3.3), (3.4) as:

K = KC.S. − 2 ln

(
τ
3/2
b −

n∑
i=2

λiτ
3/2
i +

ξ̂

2

)
(3.21)

Working in LVS scenario 2.5.4 we need ξ̂ > 0 ⇒ χ(Y6) < 0 ⇒ h2,1 > h1,1. The

scalar potential will read then as:

V = eK(Kiȷ̄∂iW∂ȷ̄W̄ +Kiȷ̄((Ki)W )∂ȷ̄W̄ + h.c.) +
3ξ̂W 2

0

4V3
(3.22)

where:

Kiȷ̄ ≃
8V√τi
3λi

δij +O(τiτj) ∈ R(h1,1−1×h1,1−1) (3.23)

The inverse Kähler metric satisfies, up to subleading terms in V Kiȷ̄Kȷ̄ = 2τi, by

plugging so in (3.22) we get at leading order:

V =
h1,1∑
i=2

8(aiAi)
2√τi

3Vλi
e−2aiτi −

h1,1∑
i=2

4aiAiW0τi
V2

e−aiτi +
3ξ̂W 2

0

4V3
(3.24)

Such that at large τi the exponentials get suppressed and so potential for such a

modulus features a plateau. By extremising in a generalisation of what done in D

we can get, at fixed V :

(aiAi)e
−aiτi =

3λiW0

V
(1− aiτi)

1− 4aiτi

√
τi (3.25)

Taking large volume limit then aiτi ∼ ln(V) ≫ 1 then

(aiAi)e
−aiτi =

3λiW0

4V
√
τi (3.26)
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which, plugged inside (3.24), after stabilised all the Fields, it gives:

V = −3W 2
0

2V3

(
n∑
i=2

(
λi

a
3/2
i

)
− ξ̂

2

)
(3.27)

whose vacuum expectation value can be in general, after stabilising even the overall

volume, negative, so an uplift term like the anti-D3-brane one is needed again like

shown in h1,1 = 3 case.

Now, to obtain inflation we pick one of the blow-up cycle volumes τn and displace

far from its minimum. Doing so, considering the potential for the overall volume

(3.27) it becomes:

V = −3W 2
0

2V3

(
n−1∑
i=2

(
λi

a
3/2
i

)
− ξ̂

2

)
+ Vup (3.28)

Doing so we neglected the inflaton contribute in order to have the volume modulus

stable during inflation, in the sense that the evolution of the volume modulus must

not depend on the inflaton roll-down, so we clearly need:

ρ :=

λn

a
3/2
n∑n

i=2
λi

a
3/2
i

< 1 (3.29)

So, at least there are needed 3 moduli ⇒ h1,1 ≥ 3 so the conditions for a stable

volume at exponentially large values and for having a minimum can be resumed

in the previously seen h1,2 > h1,1 > 2.

When we drag the inflaton far from its minimum we get that, considering only

the terms of the potential depending on it, the second order exponential term is

negligible leading to a Scalar Potential which is exactly (3.15) (and (3.19) if inflaton

canonically normalised) just with τn = τϕ. From such a potential, reinstating

Mp ̸= 1, calling δ = 3ξ̂
4

we can derive the slow-roll parameters as in [23] (where
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Vϕ =
dV (ϕ)
dϕ

):

ϵ =
M2

p

2

(
Vϕ
V

)2

=
32V3

3δ2W 2
0

a2nA
2
n

√
τn(1− anτn)

2e−2anτn (3.30)

η =M2
p

Vϕϕ
V

= − 4anAnV2

2λn
√
τnδW0

[
(1− 9anτn + 4(anτn)

2)e−anτn
]

(3.31)

which for τn ≫ 1 ⇒ ϵ, η ≪ 1 as it correctly should be. Reinstating Mp = 1, in the

slow-roll approximation the spectral index ns is given by:

ns − 1 ≃ 2η − 6ϵ (3.32)

the tensor-to-scalar ratio is r ≃ 12.4ϵ and the Numer of E-foldings is given by:

Ne =

∫ ϕ

ϕend

V

Vϕ
dϕ =

−3βW0λn
16V2anAn

∫ τn

τϵ∼1
n

eanτn
√
τn(1− anτn)

dτn (3.33)

Requiring the amplitude of power spectrum for scalar perturbations to match

COBE, reinstating again Mp ̸= 1 we require:

V 3/2

M3
pVϕ

∣∣∣∣
Ne=50/60

= 5.2 · 10−4 ⇒
(
V

ϵ

)
= 6.6 · 1016GeV (3.34)

We can solve this last COBE normalisation condition numerically, fixing proper

parametrical values, in order to get a range of values for the volume:

105l6s ≤ V ≤ 107l6s (3.35)

with ls = (2π)
√
α′, which can be easily obtained in LVS since exponentially big

values of the volume. By using instead all the previous equations, with a range of
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e-foldings 50-60 we get:

0.960 < n < 0.967 (3.36)

0 < |r| < 10−10 (3.37)

10−15 ≤ ϵ ≤ 10−13 (3.38)

Vinf ∼ 1013GeV (3.39)

Giving us unobservable gravitational waves in this model. Another important

feature of this model is that, since the exponential flatness of the inflaton po-

tential we can get a very large number of e-foldings since ∆ϕ small ⇔ ∆Ne big

so Ne,total ≫ 60 without a practical upper limit. Moreover, as stated in [25] the

lightest (excluding axions) modulus has a mass going as:

M ∼ Mp

V3/2
≃ 1011GeV (3.40)

which leads us to understand that the cosmological moduli problem2 is avoided

in this case. In addition to this, since we assume that the inflaton is a Kähler

modulus rolling down to minimum while the other moduli sit at their vacuum

expectation value we have no interference of the latter during inflation, leading

to a single field model in this case. In the end the model gives no hints on the

cosmological overshoot problem3.

2The Cosmological Moduli problem holds when very light moduli with masses of order O(10)
TeV are present since they will not decay before Big Bang Nucleosynthesis and during it they
can decay or in photons which, through photo-dissociation, destroy light nuclei giving the wrong
abundance we observe today, or in gravitini which decay in particles destroying light elements.
In addition to this, these decays lead to an entropy increase that can destroy baryon-antibaryon
asymmetry.

3The Cosmological Overshoot Problem is a problem, strongly dependent on initial conditions
given by the Universe, which appears if, after the inflaton falls in the well of its potential, it
has enough energy to escape it instead of starting oscillating, giving rise to a runaway to the
decompactification limit.
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3.2 Loop blow-up inflation

Now we study the proper model in which we are going to work in the last chapter.

This model starts from the base of previously inspected Blow-Up Inflation, adding

however String Loop Correction of the shape (2.101). These corrections in [23]

where thought to be negligible, however it appears that they will offer us another

inflationary regime even if they are subleading in volume. Discarding the small

4-cycle volumes and treating the overall volume as fixed at exponentially large

values a general potential including loop corrections can be written as:

V ∼ |W0|2

V3

(
O(1)− cloop

V1/3
f

(
V2/3

τϕ

))
(3.41)

with f generic function of V2/3

τϕ
and cloop as in (2.101). The constant term |W0|2

V3 O(1)

is the value of the potential of the inflationary plateau. In addition to this, it is

possible to show that:

ϵ ≡ 1

2

(
V ′(ϕ)

V (ϕ)

)
≃
(
cloop
V1/3

df

dϕ

)2

(3.42)

η ≡ V ′′(ϕ)

V (ϕ)
≃ cloop

V1/3

d2f

dϕ2
(3.43)

where again V ′(ϕ), V ′′(ϕ) are derivatives with the respect to ϕ. When LVS infla-

tion condition τϕ ≲ V2/3 is satisfied then f ′′ ∼ f ′ ∼ O(1) and so we have slow-roll

condition satisfied for V ≫ 1. Even adding perturbative corrections depending on

the other small moduli we get the inflationary plateau no spoiled by this contri-

butions even if, in order to study the single field dynamics as we will do in this

chapter, once again we need to stabilise all the moduli at their minimum except

the inflaton.

In order to check that our model is truly single field and so that the volume

remains fixed during inflation we need that the corrections that stabilise τϕ stay

subdominant with the respect to the leading order potential even if τϕ ≃ ⟨τϕ⟩ and
in the 2 cases of non-perturbative and string loop stabilisation can happen for 4

reasons:
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• In the case of non-perturbative stabilisation of τϕ:

-) Leading order instanton contribution vanish due to chiral intersection;

-) Gaugino condensation contribution are suppressed because of Nϕ rank

of gauge group on branes wrapping inflaton cycle is much smaller than

the ranks of the other sectors that wrap other blow-up cycles Nϕ ≪ Ns

so that the exponential suppression in the τϕ term is much bigger.

-) The Calabi Yau in which we are working on features lots of small cycles

τs ̸= τϕ.

• In the case of string loop stabilisation of τϕ the negligibility of the τϕ terms

in the potential is due to the extended no-scale cancellation shown in B.

3.2.1 Inflationary potential

We are now going to introduce a practical easy example of what we have stated

in the introduction of this section. This will lead us to the first explicit model of

Loop induced Inflation. The general idea is to add loop corrections to [23] and

move to large values of τϕ such that the inflationary regime still holds even if the

loop corrections could have broken it.

We are going to take a very simple class of Calabi-Yau manifolds where the overall

volume can be written as Swiss-Cheese shape with 3 moduli:

V = τ
3/2
b − λϕτ

3/2
ϕ − λsτ

3/2
s (3.44)

with λi, i = s, ϕ topological constants representing, as always, ratios of triple

intersection numbers. We assume to include in the Kähler potential of the model

both (α′)3 corrections and string loop corrections in addition to the non-perturbative

corrections to the superpotential, leading us to the quantities:

K = KC.S. − 2 ln

(
V +

ξ̂

2

)
+ δKloop (3.45)

W = W0 + Ase
−asTs + Aϕe

−aϕTϕ (3.46)
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with ai = 2π or ai =
2π
Ni
, i = ϕ, s depending on if wee have E3-branes or hidden

sector undergoing gaugino condensation wrapping the respective cycle.

The scalar potential for this model will be then:

V (V , τϕ, τs, θϕ, θs) =
gse

KCS

8π
W 2

0

(
8a2sA

2
s

W 2
0 λs

√
τse

−2asτs

V
+

4asAs
W0

τse
−asτs

V2
cos(asθs)

+
8a2ϕA

2
ϕ

W 2
0 λϕ

√
τϕe

−2aϕτϕ

V
+

4aϕAϕ
W0

τϕe
−aϕτϕ

V2
cos(aϕθϕ) +

3ξ̂

4V3
− cloop√

τϕ

)
+ Vup

(3.47)

where we have assumed that τϕ is smaller than other nearby cycles in order to have

a loop correction depending only on the overall volume and on it. In addition to

this, Vup = gseKC.S.

8π

cupW 2
0

V2 is such that at minimum the vacuum is Minkowski and

can come from whatever uplift mechanism. In order to be complete, the correct

general form of the loop correction should be δVloop ≃ −gseKC.S.

8π

W 2
0

V3

cloop
V1/3 f

(
V2/3

τϕ

)
with f unknown function which we can took as well approximated, in the limit of

not too big τϕ, as f ≃ V1/3
√
τϕ
.

The factor cloop includes then every O(1) factor in this function f and it is as seen

in the previous chapter of string loop corrections 2.5.2 of the order of cloop ≃ 1
(2π)4

as computed in [7] for toroidal orbifolds or cloop ≃ 1
16π2 identifying the cutoff as

Kaluza-Klein scale ΛUV ≃ Mp

τ
1/4
ϕ

√
V
.

Another very important thing is that, in [23] it was thought that loop corrections

were avoidable however, upon a deeper study, these appear to be necessary. In fact,

in order to have a minimum in the potential for stabilising τϕ after the inflation

superpotential non-perturbative corrections are needed. These non-perturbative

loop corrections come from E3-branes or brane stacks under gaugino condensation

as we know well, so, in order to cancel tadpoles, we need an O-plane close to the

inflationary cycle which breaks SUSY to N = 1. Such a configuration, as stated

in [26] necessarily features loop corrections, howerver, if the inflaton cycle is not

wrapped by any D7-brane we have no open string correction but closed ones are

unavoidable. Choosing as in Blow-Up case, the C.Y. data such that the inflaton

potential is so negligible to make the dynamics of the overall volume and of the

small cycle decouple (λϕa
−3/2
ϕ ≪ λsas−3/2) we can make τϕ roll while V , τs are
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stabilised at minimum. After stabilising even the axions then we can write the

potential, depending only on the inflaton value as:

V (τϕ) = V0

(
1 +

8a2ϕA
2
ϕ

3W 2
0 λϕ

V2

β

√
τϕe

−2aϕτϕ − 4aϕAϕ
W0

V
β
τϕe

−aϕτϕ − cloop
β
√
τϕ

)
(3.48)

V0 :=

(
gse

KCS

8π
W 2

0

(
8a2sA

2
s

W 2
0 λs

√
τse

−2asτs

V
+

4asAs
W0

τse
−asτs

V2
cos(asθs) +

3ξ̂

4V3

)
+ Vup

)∣∣∣∣
V=⟨V⟩,τs=⟨τs⟩

=

=
gse

KCS

8π

W 2
0

V3
β =

gse
KCS

8π

W 2
0

V3

3

2
a
−3/2
ϕ λϕ(ln(V))3/2

(3.49)

β ≃ 3

2
a
−3/2
ϕ λϕ(ln(V))3/2 (3.50)

Since the Kähler potential is the same, it can be proven that the canonical normal-

isation is the same, at leading order at least, that the one in Blow-Up inflationary

regime as shown in [2]. Using then the canonical normalisation (3.17) we can

rewrite the potential in terms of the canonically normalised inflaton and we can

easily see that it has 3 inflationary regimes where slow-roll conditions are satisfied.

We will see later on that for cloop ≳ 10−6 the inflationary regime is at much larger

ϕ, in particular in a regime where τs ≪ τϕ < τn such that we can neglect the

exponentials in the inflaton potential (3.48) and obtain:

V (ϕ) = V0

(
1− 1

β

(
4λϕ
3V

)1/3
cloop
ϕ2/3

)
= V0

(
1− bcloop

ϕ2/3

)
(3.51)

with:

b ≡ 1

β

(
4λϕ
3V

)1/3

(3.52)

since now on, we assume that this potential can be used for inflation.

3.2.2 Parameters and observational constraints

Inflationary parameters

Given the potential (3.51), we can assume the regime we got if and only if:
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• cloop not too small;

• τϕ ≲ V2/3 ⇔ ϕ ≲ 1

such that the exponentials are negligible and inflation happens inside the Kähler

cone. In addition to this the fact that τϕ is far from the walls of Kähler cone during

the Ne ≃ 52 e-folding of inflation implies even that cloop is constrained from above.

We can compute from (3.51) the slow-roll parameters and the spectral index ns,

the tensor-to-scalar ratio r and the number of e-foldings Ne:

ϵ =
1

2

(
Vϕ
V

)2

≃ 2

9

(bcloop)
2

ϕ10/3

bcloop≪1

≪ 1 (3.53)

η =
Vϕϕ
V

≃ −10

9

bcloop
ϕ8/3

bcloop≪1

≪ (3.54)

ns − 1 = 2η − 6ϵ ≃ 1− 20

9

bcloop

ϕ
8/3
∗

(3.55)

r = 16ϵ ≃ 32

9

(bcloop)
2

ϕ
10/3
∗

(3.56)

Ne =

∫ ϕ∗

ϕend

V

Vϕ
dϕ ≃ 9

16

ϕ
8/3
∗

bcloop
(3.57)

with ϕ∗ is the value of inflaton field at horizon exit and ϕend ≪ ϕ∗ at the end of

inflation when slow-roll regime is broken ϵ ∼ O(1).

Observational constraints

What we would like to do now is to try to match all the cosmological bounds we

have ensuring to get the right amount of e-foldings and the scalar perturbations

amplitude while keeping ϕ∗ ≲ 1 and while getting a volume big enough to get

the LVS regime. We recall that the spectrum of the scalar density perturbation is

given by [4]:

∆2
s = Ps

(
k

k∗

)ns−1

(3.58)

and where the amplitude bound given by Planck is [1]:

Ps = 2.105± 0.030 · 10−9 (3.59)
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Recalling ϵ expression in slow roll regime we can rewrite the scalar perturbations

power spectrum as:

∆2
s =

1

24π2

V

ϵ

∣∣∣∣
ϕ=ϕ(k)

ϕ=ϕ∗
=

1

24π2

V 3

V 2
ϕ

∣∣∣∣
ϕ=ϕ∗

= Ps (3.60)

where the last equality holds since the power spectrum at k = k∗ is exactly the

amplitude. Now using our canonically normalised potential (3.51) and using the

approximation 1− cloopb

ϕ
2/3
∗

≃ 1 we get:

9V0
48π2

ϕ
10/3
∗

(bcloop)2
= Ps = 2.105± 0.030 · 10−9 ≃ 2.1 · 10−9 (3.61)

Which is a relation between the overall volume value V and the canonically nor-

malised inflaton value at horizon exit ϕ∗. Another equation to find numerical values

for these 2 unknowns is the one for e-foldings, in fact, from post-inflationary his-

tory specifically depending on the brane setup of the model we get Ne = 51.5/53

and so we get the constraint:

Ne =

∫ ϕ∗

ϕend

V

Vϕ
dϕ ≃ 9

16

ϕ
8/3
∗

bcloop

!
= 51.5/53 (3.62)

By solving this latter constraint in terms of V we get:

V =
(16Ne)

3

93
4λϕcloop
3β3ϕ8

∗
(3.63)

Plugging this value inside (3.61) and calling δϕ =
(

4λϕ
3

)1/3
we get:

ϕ∗ =

(
217π

38

)1/11(
12π2PsN

7
e (δϕcloop)

9

NQβ10

)1/22

(3.64)

where NQ := 2πgse
KC.S.W 2

0 arises from V0 and contains all the gs,W0 and complex

structure moduli dependence of the inflaton at horizon exit. Now, by plugging it
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inside (3.63) we finally obtain:

V =

(
1

144π8

N5
eN

4
Qβ

8

(12π2Ps)4(δϕcloop)3

)1/11

(3.65)

One in principle can think we can choose NQ arbitrarily allowing us to increase

the overall volume and decrease the inflaton at horizon exit arbitrarily however

this is not true since the bound we have from the orientifold tadpole:

NQ < −Q3 ∼ O(100) (3.66)

since at maximum, in the Kreuzer-Skarke database Q3 = −252.

In our case, since we require perturbative control and so gs ≲ 0.2 we choose the

parameters:

λϕ = 1 (3.67)

cloop =
1

16π2
(3.68)

β = W0 = gse
KC.S. = 2 ⇒ NQ = 16π (3.69)

Ne ≃ 51.5− 53 (3.70)

giving us:

ϕ∗ = 0.06N7/22
e ∼ O(0.2) (3.71)

V = 1743N5/11
e ∼ O(104) (3.72)

Leading us to a smaller V with the respect to Blow-Up inflationary case (3.35).

Kähler cone constraint

We now want to check if we can drive inflation remaining inside the Kähler cone

and satisfying the observational constraints. In order to do so it is necessary to

take an explicit Calabi-Yau and we are going to take the second one in the table

of [21] where the overall volume can be written, after shrinking an exceptional
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divisor to 0 size, as:

V =
1

9

√
2

3
(τ

3/2
b −

√
3τ 3/2s −

√
3τ

3/2
ϕ ) (3.73)

where the divisors are such that we can write the 4-cycles as:

τb =
27

2
t2b (3.74)

τs =
9

2
t2s (3.75)

τϕ =
9

2
t2ϕ (3.76)

The canonical normalisation than reads as:

τϕ =

(√
3

4

)2/3

V2/3ϕ4/3 ≃
(

1

18
√
2

)2/3

τbϕ
4/3 (3.77)

since V ≃ 1
9

√
2
3
τ
3/2
b . From [21] we can read the Kähler cone conditions as:

tb + ts > 0 (3.78)

tb + tϕ > 0 (3.79)

ts < 0 (3.80)

tϕ < 0 (3.81)

using the 2 cycle definition (3.74) in (3.77) we get:

|tϕ|
tb

=

(
1

18
√
2

)1/3

31/2ϕ2/3 =

(
1

2
√
6

)1/3

ϕ2/3 ≃ 0.6ϕ2/3 (3.82)

which, evaluated at horizon exit gives:

|tϕ∗|
tb

≃ 0.6ϕ2/3
∗ ≃ 0.2 for ϕ∗ ≃ 0.2 (3.83)

so, using the previous observational constraints, the whole inflation let the moduli

remain well inside the Kähler cone with |tϕ| ≪ tb ⇒ tb + tϕ > 0. For V ∼
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O(104) ⇒ tb ∼ O(19) > |tϕ∗| ∼ O(3.8). In order to be complete, even if will not

go into details, it is necessary to cite that, as stated in [2], if we use the anti-D3-

brane uplift mechanism another constraint for the volume appears depending on

the fluxes contribution in the warped throat.

3.2.3 Standard Model realisation and decay rates

In this section we are going to study the Location of the Standard Model in the

extra-dimensions by computing all the moduli couplings and decay rates into S.M.

itself and hidden sector particles. This will help us in the future study of the axion

decay in the last chapter of this thesis.

As it is showed in [22], the cycle that supports Standard Model is very hard

to stabilise through non-perturbative effect since instanton-matter fields chiral

intersection will give raise to a null contribution to the superpotential. Since that

and since we need non-perturbative effects to generate a minimum when reheating

happens at the end of the inflation, it is impossible to realise Standard Model on

D7-Branes wrapped around τϕ. We need then another cycle with volume called

τM which like τϕ is stabilised perturbatively. 2 constructions are possible:

• Geometric regime ⇒ S.M. lives on D7-branes wrapping the divisor ΣM ;

Figure 3.4: Image of our Calabi-
Yau with τ1 = τb, τ2 = τϕ non-
wrapped, τ3 = τs neglected now
and, finally, τ4 = τM .

Figure 3.5: Image of our Calabi-
Yau with τ1 = τb, τ2 = τϕ wrapped
by an hidden sector, τ3 = τs ne-
glected now and, finally, τ4 = τM .
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• Quiver Locus regime ⇒ the S.M. wrapped cycle shrinks and so τM → 0.

Figure 3.6: Image of our Calabi-
Yau with τ1 = τb, τ2 = τϕ non-
wrapped, τ3 = τs neglected now
and, finally, τ4 = τM shrunk.

Figure 3.7: Image of our Calabi-
Yau with τ1 = τb, τ2 = τϕ wrapped
by an hidden sector, τ3 = τs ne-
glected now and, finally, τ4 = τM
shrunk.

The overall Calabi-Yau volume can be written then as:

V = τ
3/2
b − λsτ

3/2
s − λϕτ

3/2
ϕ − λMτ

3/2
M − λint(τint − λMτM)3/2 (3.84)

where we included an additional cycle τint intersecting with the standard model

one. The Standard Model cycle volume is then stabilised by loop contributions of

the shape:

δV M
loop(τM) =

(
µ1√
τM

− µ2√
τM − µ3

)
|W0|2

V3
. (3.85)

where µ3 =
√

⟨τs⟩ and where µ1 and µ2 loop corrections coefficients. It can be

shown that this additional part of the potential admits a minimum at:

⟨τs⟩ =
(
1 +

√
µ2

µ1

)2

⟨τM⟩ ∼ ⟨τM⟩ (3.86)

which means that τM is fixed by loops at the non-perturbatively stabilised value

⟨τs⟩ which mean that the SM gauge coupling is g−2
SM ∼ τM ∼ τs ∼ O(10) as it
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should be.

3.2.4 Kähler moduli decay rates

The only relevant moduli from an energy density point of view are the inflaton

and the volume moduli since all the other never dominate the energy density. The

mass of canonically normalised inflaton ϕ doesn’t change from the one of Blow-Up

case and so it is (reinstating MP ≃ 2.4 · 1018GeV ):

mϕ ≃
W0 lnV

V
Mp (3.87)

while for the volume the mass is:

mχ ≃ W0

V3/2
√
ln(V)

Mp (3.88)

The main Decay rates then are given by:

• Volume modulus χ.

The leading channels are 3:

1) Volume into its string axions ab (as in [18], where τs, τint are neglected

since small):

Γχ→abab =
1

48π

m3
χ

M2
p

≃
(

W 3
0

48π(ln(V))3/2

)
Mp

V9/2
(3.89)

2) Volume into Standard Model Higgs Bosons [20]:

Γχ→hh =
c2loop
32π

(
m4

0

mχ

)
1

M2
p

≃

(
ĉ2loopW

3
0

√
ln(V)

32π

)
Mp

V5/2
(3.90)

with ĉloop ≃ 1
16π2 a 1-loop factor and m0 soft ����SUSY mass.
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3) Volume two Higgs bosons Hu and Hd [18]:

Γχ→HdHd
=

Z2

24π

m3
χ

M2
p

≃
(

Z2W 3
0

24π(lnV)3/2

)
Mp

V9/2
(3.91)

with Z coefficient.

Which one is the relevant decay rates depend strongly on where the standard

model is located:

-) Geometric Regime⇒ Standard Model on D7-branes wrapping cycle

of volume τM :

We can see how m0 ≃ m3/2 ≃ W0Mp

V ≫ mχ so:

Γχ→hh

Γχ→abab

≃ (ĉloopV)2 ≫ 1 (3.92)

so the dominant decay rate is (3.90).

-) Quiver Locus⇒ Standard Model on D3-branes at the tip of shrinked

divisor with volume τM → 0:

We can see how m0 ≲ mχ so:

Γχ→hh

Γχ→abab

≲ ĉloop ≪ 1 (3.93)

so the dominant decay rate is (3.91) because of the Z coefficient which

enhances it with the respect to (3.89).

• Inflaton ϕ:

In this case the dominance of one decay rate with the respect to the other is

strongly dependent on how the inflaton 4-cycle is wrapped:

-) When the Inflaton 4-cycle wrapped by an hidden D7-brane stack then

the main decay rate of the inflaton is on hidden sector gauge bosons

[24]:

Γϕ→γhidγhid ≃ V
64π

m3
ϕ

M2
p

≃
(
(W0 ln(V))3

64π

)
Mp

V2
(3.94)
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-) When the inflaton is not wrapped by any D7-brane we have that the

main decay channels are 2, the one into volume modulus and the one

into volume axions [20]:

Γϕ→χχ ≃ Γϕ→abab ≃
(ln(V))3/2

64πV
m3
ϕ

M2
p

≃
(
W 3

0 (ln(V))9/2

64π

)
Mp

V4
(3.95)

where, after its production, volume modulus χ will decay as stated in

the previous case.

In addition to them, when the Standard Model is realised in D7-branes

there are even 3 more decay channels scaling as (3.95) which are [20]:

Γϕ→χχ ≃ Γϕ→abab ≃ Γϕ→aMaM ≃ Γϕ→τM τM ≃ 1

8Ng

Γϕ→γvisγvis (3.96)

where aM will be the QCD axion and Ng ≥ the number of gauge bosons

species which is at least 12, the Standard Model one.

3.2.5 Post-inflationary dynamics

The post-inflationary situation then strongly depends on how the Standard Model

is built and we have 4 cases:

1) If the Standard Model lives on D7-branes and Inflaton is not wrapped by

any D7-branes stack then one can ask which dominates at the end of the

inflation. Recalling that the inflaton produces even volume moduli χ with

rate Γϕ→γγ ≃ 8NgΓϕ→χχ and that, from (3.90), the volume modulus decays

into Standard Model Higgses h, we can see how:

Γϕ→γγ

Γχ→hh

≃ 4Ng(lnV)4

ĉ2loopV3/2
≃ 103 (3.97)

by using the values V ≃ 104, ĉloop ≃ 1
16π2 , Ng = 12. This results show us that

the volume modulus decays after the inflaton even if, as showed by [2] it will

never dominate energy density. What happens then is that, since Γχ→hh ∼
ĉloopMp

V5/2

V≫1
≫ Γϕ→χχ after ϕ decays into volume moduli they immediately decay

119



CHAPTER 3. LOOP BLOW-UP INFLATION

in Higgses never leading to an epoch where volume equates radiation.

In addition to this, studying the Inflaton decay the leading contributes are

(3.96) and, since ΓτM→γγ ≃ ΓτM→aMaM ∼ Mp

V2

V≫1
≫ Γϕ→χχ and all the other

decay rates (3.96), then after the decay of the inflaton into the Standard

Model modulus τM this latter decays almost instantaneously in photons and

QCD axions with the rate computed in [20]:

ΓτM→γγ

ΓτM→aMaM

= 8Ng ≥ 96 ≫ 1 (3.98)

The reheating is then set up by the inflaton. This setup leads to a number

of e-foldings Ne ≃ 52, an overall volume of V ≃ 10525, a spectral index of

ns ≃ 0.9761 and a tensor to scalar ratio r ≃ 1.7 · 10−5 which leads again to

Gravitational waves that are non observable by short-term measurements.

2) If the Standard Model lives on D7-branes and Inflaton is wrapped by a D7-

branes stack4 then the inflaton as we saw decays into hidden sector gauge

photons (3.94) and these hidden gauge bosons will be diluited by the decay

of the volume into Higgs bosons which leads the reheating. What happens is

that, after the inflation, both inflaton and volume modulus start oscillating

and since, as stated in [2], energy density of the inflaton is larger then the

volume one, the inflaton oscillations drive an era of matter domination until

its decay. Then the hidden photon radiation dominates the energy density

until the volume oscillations, redshifting as matter and so slower then hidden

radiation one, equates it. Then the volume starts dominating the energy

density of the universe until its decay which leads to a second, and last,

radiation domination epoch and to the reheating. This setup leads to a

number of e-foldings Ne ≃ 53, an overall volume of V ≃ 10616, a spectral

index of ns ≃ 0.9765 and a tensor to scalar ratio r ≃ 1.7 ·10−5 which leads to

Gravitational waves that are non observable by short-term measurements.

3) If the Standard Model Lives on D3-branes and Inflaton is wrapped by a D7-

4We assume now as stated in [2] not to be a pure Super-Yang-Mills theory with mass gap
∆ΛSYM > mϕ because if so, from [22] the decay would have been kinematically forbidden and
this case would have been the same as if the inflaton was not wrapped by D7-branes stack.
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brane stack then the case is the same of 2) but with the fact that, since the

dominant decay rate of the volume is (3.91) and that Γχ→HuHd

V≫1
≪ Γϕ→χχ

the volume axion decays much later and diluites the inflaton decay product.

This setup leads to a number of e-foldings Ne ≃ 51.5, an overall volume

of V ≃ 10447, a spectral index of ns ≃ 0.9757 and a tensor to scalar ratio

r ≃ 1.7 · 10−5 which leads to Gravitational waves that are non observable by

short-term measurements.

4) If the Standard Model Lives on D3-branes and Inflaton is not wrapped by

any D7-brane stack then the inflaton dominant decay channels are into a

pair of volume moduli and into a pair of volume axions (3.95) while for the

volume again the dominant decay rate is (3.91). Their ratio is given by:

Γϕ→abab

Γχ→HuHd

≃ 3

8Z2
(lnV)6

√
V ≃ 107 (3.99)

for

Z ≃ 2,V ≃ 104 (3.100)

so that the inflaton decays before the volume. Since the inflaton decay

products are relativistic they can be considered as radiation and so they

redshift quickly and, at a certain equality point they become non-relativistic

while, in the meantime, their energy density becomes comparable to the χ

particles produced by volume mode. It can be proven than the χ particles

produced by the inflaton decay are relativistic, redshifting then as radiation,

while the χ particles produced by the volume modulus oscillation are not [2]

and this means that after the inflaton domination period we get a radiation

domination one, a volume dominated one and, finally, after volume decays,

to another radiation dominated period. Again, since Γχ→HuHd

V≫1
≪ Γϕ→χχ

as in 3), the volume decays much later the inflaton leading to a dilution of

inflaton decay products. This setup leads to the same inflationary parameter

as 3), so to a number of e-foldings Ne ≃ 51.5, an overall volume of V ≃ 10447,

a spectral index of ns ≃ 0.9757 and a tensor to scalar ratio r ≃ 1.7 · 10−5

which leads to Gravitational waves that are non observable by short-term

measurements.
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As stated in [2] it is possible to note how both the tensor to scalar ratio r and the

scalar spectral index ns are in good agreement with the Planck observations in all

cases even if ns is just slightly more blue than expected.

3.2.6 Dark radiation

We have just studied the decays of the inflaton and the volume modulus and we

have seen that, in addition to Standard Model particles, even light axions like

ab and aM are produced. Such particles are relativistic and they can contribute

to Dark Radiation which can push the effective number of neutrino-like species

∆Neff out of Standard Model observational bound. It can happen that the axions

arising from the heavies modulus do not contribute to the Dark radiation since

they are dilute by lightest modulus decay and in this case ∆Neff is determined

by the lightest modulus decay. We will call the lightest modulus Ω and we will

call ΓΩ→SM its decay width into Standard Model particles and, finally, ΓΩ→Hid into

hidden sector particles like closed string axions. The axionic contribution to extra

dark radiation is then:

∆Neff =
43

7

ΓΩ→Hid

ΓΩ→SM

(
10.75

g∗(Trh)

)1/3

(3.101)

where g∗(Trh) is the number of relativistic degrees of freedom at reheating temper-

ature Trh. This has to match observational bounds ∆Neff ≲ 0.1 − 0.5 at 95% of

confidence level. The computation of ∆Neff depends again on the Standard model

Realisation and so we have 4 cases:

1) Standard Model on D7-branes and inflaton wrapped by D7 branes:

In this case Ω := χ and ΓΩ→Hid = Γχ→abab (3.89) and ΓΩ→SM = Γχ→hh (3.90)

since their ratio appearing in (3.101) is much small than one:

∆Neff ≃ 0 (3.102)

Perfectly matching the bound.

2) Standard Model on D7-branes and inflaton not wrapped by D7 branes:
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In this case instead Ω := ϕ and the relevant decay rates are:

ΓΩ→SM = Γϕ→χχ→hhhh + Γϕ→γvisγvis + Γϕ→τM τM→γvisγvisγvisγvis (3.103)

ΓΩ→Hid = Γϕ→abab + Γϕ→aMaM + Γϕ→τM τM→aMaMaMaM (3.104)

in [20] we can find a deep analysis of this case with ∆Neff ≃ 0.14 with

Ng = 12 and g∗(Trh) = 106.75 which again matches the observational bound.

3) Standard Model on D3-branes:

When the Standard Model is located at the point where the cycle ΣM is

shrunk, χ is the last modulus to decay so ΓΩ→Hid = Γχ→abab (3.89) while

ΓΩ→SM = Γχ→HuHd
(3.91), doing again the ratios between these two decay

rates we get:

∆Neff ≃ 1.43

Z2
(3.105)

for g∗(Trh) = 106.75 since Trh ≫ ΛEW and so here all Standard Model degrees

of freedom are relativistic. Imposing the less strict observational constraint

∆Neff ≲ 0.5 we get the constraint on Z: Z ≳ 1.7 which is respected by our

previous choice Z ≃ 2 (3.100).
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Chapter 4

The Curvaton in Loop Blow-Up

Inflation

The curvaton mechanism [33] is an alternative mechanism for producing scalar

perturbations. In fact, instead of using the inflaton for generating the correct

Planck measured scalar power spectrum, we can use a field which is orthogonal

to it called curvaton. This curvaton is usually a light field, compared to inflation

scale, who is a spectator during inflation since its mass does not exceed Hinf and

whose quantum fluctuations produce isocurvature perturbations which, upon its

decay, are converted into curvature ones. This curvaton field can be used, as

stated in [31], both to save models who do not respect Planck bounds on scalar

perturbations amplitude (savior curvaton) and to check consistency of models

which already satisfy this bound thanks to the fluctuations of the inflaton since

here the curvaton must generate a subleading amount of scalar perturbations not

to exit the bounds (stealth curvaton).

In this chapter we are going to implement the curvaton mechanism in the previ-

ously reviewed Loop Blow-Up inflationary scenario using as curvaton candidate the

inflaton saxion θϕ in its canonically normalised version σϕ. Imposing that for the

choice of model parameter made in [2] we get the entire CMB power spectrum from

inflaton perturbations, we constraint the remaining free parameters by imposing
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that the curvaton contribute to the CMB observed amplitude is negligible.

4.1 Axion dynamics

Before Starting with the concrete implementation of the curvaton mechanism, it

is necessary to study axion dynamics in Loop Blow-Up inflation which comes out

to be the similar of the axion dynamics in Blow-Up inflation case since in the

potential the curvaton dependence is on the non-perturbative terms. This study

is necessary since we always implicitly stabilised the axion in the previous sections

obtaining Potential and all the quantities depending only on the Kähler moduli.

We are going now to start by computing the canonical normalisation of the axion

both from the classical differential equation and then, in the appendix, via linear-

algebraic method to check consistency of the obtained result, then we compute

the curvaton potential and its value at minimum, its mass and, finally, the decay

details on different scenarios.

4.1.1 Axion canonical normalisation

In order to rewrite the potential and all the other quantities in terms of canonically

normalised fields we need to compute this canonical normalisation and we can do

it analogously of what we have done for obtaining (D.32). The kinetic Lagrangian

is analogous to the inflaton case:

Lkin =
1

2
(∂µσϕ)

2 + · · · = Kϕϕ((∂µθϕ)(∂µθϕ)) + . . . (4.1)

by using the Kähler metric, which for Loop Blow-Up inflation is at leading order

the same of Blow-Up inflation case (D.12), we can derive (just using the term

which is dominant in the overall volume):

Lkin =
1

2
(∂µσϕ)

2 + · · · = 3λϕ
8V√τϕ

((∂µθϕ)(∂µθϕ)) + . . . (4.2)
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however now τϕ and θϕ are independent so the integration on differential equation

gives:

∂µσϕ =

√
3λϕ
4V

∂µθϕ

τ
1
4
ϕ

(4.3)

which is much simpler and we can consider all the factors in front of θϕ as inde-

pendent from the axion itself, giving us the result:

σϕ =

√
3λϕ
4V

θϕ

τ
1
4
ϕ

= f(τϕ)θϕ (4.4)

The canonically normalised fields are then:

ϕ =

√
4λϕ
3V

τ
3/4
ϕ ⇒ τϕ =

(
3V
4λϕ

) 2
3

ϕ
4
3 (4.5)

σϕ =

√
3λϕ
4V

θϕ

τ
1
4
ϕ

⇒ θϕ =

√
4V
3λϕ

τ
1
4
ϕ σϕ =

1

f(τϕ)
σϕ (4.6)

which are coherent with the Appendix B of reference [11] and with the results we

found through linear algebra in E.

4.1.2 Axion potential

We would like now to compute the potential for the Axion which will be our

Curvaton candidate keeping only the leading terms of its potential.

In the Large Volume Scenario stabilisation scheme, as we saw, we usually include

the (α′)3 corrections in Kähler potential which can be rewritten as:

K = KTREE+Kα′3 = −2 ln

(
V +

ξ

2

)
= −2 ln(V)− 2 ln

(
1 +

ξ

2V

)
+ δKloop (4.7)

where ξ = χ(Y6)ζ(3)

2(2π)3gs
3
2
. Recalling that we are in Large Volume Scenario V ≫ 1 this

leads us to:

K ≃ KTREE +Kα′3 + δKloop = −2 lnV − ξ

V
+ δKloop (4.8)
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The superpotential in our case of Loop Blow-Up inflation receives non-perturbative

corrections due to gaugino condensation on D7 branes or instantonic Euclidean D3

branes:

W = W0 +Wnp = W0 +
∑
i∈{ϕ,s}

e−aiTi = W0 +
∑
i∈{ϕ,s}

e−aiτie−iaiθi (4.9)

where W0 is the Gukov-Vafa-Witten superpotential upon fixing all complex struc-

ture moduli to their minima, and ai =
2π
Ni

if we are in the case of gaugino conden-

sation or ai = 2π in the case of ED3 instantons.

The F-term scalar potential is written as always as:

VF = eK(Kiȷ̄DiWDȷ̄W − 3|W |2) (4.10)

where as always DiW = ∂iW + KiW and the same for its Hermitian conjugate

Dı̄W = ∂ı̄W +Kı̄W .

Because of this split structure of Kähler potential, we can rewrite, following [30],

all the terms with derivatives of K as:

Kiȷ̄KiWKȷ̄W = Kiȷ̄
TREEK

TREE
i WKTREE

ȷ̄ W +Kiȷ̄
α′3 K

α′3

i WKα′3

ȷ̄ W (4.11)

which gives the result:

Kiȷ̄KiWKȷ̄W = 3|W |2 + 3ξW 2
0

4V
(4.12)

leading us to:

VF = eK
(
Kiȷ̄∂iW∂ȷ̄W +

(
Kiȷ̄∂iWKȷ̄W̄ + h.c.

)
+

3

4

W 2
0 ξ

V

)
(4.13)

We can imagine then to have this potential, without including loop corrections

yet, after changing moduli basis from {τb, τϕ, τs} to {V , τϕ, τs} and after stabiliz-

ing complex structure moduli, axio-dilaton and the axion θs (assuming W0, Ai ∈
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R, i = {s, ϕ}:

VTOT(V , τϕ, τs) =
gse

KCS

8π
W 2

0

(
8a2sA

2
s

W 2
0 λs

√
τse

−2asτs

V
− 4asAs

W0

τse
−asτs

V2

+
8a2ϕA

2
ϕ

W 2
0 λϕ

√
τϕe

−2aϕτϕ

V
− 4aϕAϕ

W0

τϕe
−aϕτϕ

V2
h(θϕ) +

3ξ

4V3

)
+ δVloop

(4.14)

where h(θϕ) is a function only of the axion. Notice we have no function of θϕ in the

doubly exponentially suppressed term, because in ∂iW(np)∂ȷ̄W (np) the imaginary

exponentials cancel each other.

In principle, one now can should care about 2 things:

1) Mixed terms of θϕ and other axions, arising in (4.10) from terms of the form

Kϕs̄∂ϕW∂s̄W . These terms do appear in the scalar potential in the form:

VTOT ⊃ asAsaϕAϕe
−(asτs+aϕτϕ)

V2
(Kϕs̄ei(aϕθϕ−asθs) + h.c.)

= 2
asAsaϕAϕe

−(asτs+aϕτϕ)

V2
(Kϕs̄ cos(aϕθϕ − asθs))

∼ 1

V2
e−(asτs+aϕτϕ) cos(aϕθϕ − asθs)

(4.15)

where we used Kϕs̄ as stated in [22]. This term is doubly exponentially

suppressed in the two τ ’s, so it is subleading.

2) String Loop Corrections to the Kähler potential. However, as stated in

[2] and as saw in the previous chapter about loop corrections, the Kähler

potential features a scaling in term of the volume of:

δKloop ≃ 1

V
(4.16)

so in the potential the terms containing at least one derivative of loop correc-

tions are (terms in the potential containing (δKloop)
ϕs̄ (δKloop)s̄ are doubly
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suppressed):

VTOT ⊃ terms ∼ 1

V
1

V2
e−(asτs+aϕθϕ)cos(aϕθϕ − asθs) (4.17)

giving us an highly suppressed term:

VTOT ⊃ terms ∼ 1

V3
e−(asτs+aϕθϕ)cos(aϕθϕ − asθs) (4.18)

where 1
V2 comes from eK . Giving us again an highly subleading negligible

term in the overall volume.

We can now finally derive the explicit shape of the potential for the axion θϕ at

order O
(

1
V2

)
:

Vax =
gse

KCS

8π
eK(Kϕs̄∂ϕWnpKs̄W0+

+Kϕϕ∂ϕWnpKϕ̄W0 +Kϕϕ̄∂ϕ̄WnpKϕW0 +Ksϕ̄∂ϕ̄WnpKsW0) + VOT(τϕ)

(4.19)

where all the other terms cancel out for no-scale or are included in VOT(τϕ) con-

taining all the potential parts not depending on θϕ. From now on, we will set

S = gseKCS

8π
. We can then rewrite Vθϕ as:

Vax =
S
V2

(
2aϕAϕτϕW0e

−aϕ(τϕ−iθϕ) + 2aϕAϕτϕW0e
−aϕ(τϕ+iθϕ)

)
+ VOT

=
S
V2

(
2aϕAϕτϕW0e

−aϕτϕ
(
eaϕθϕ + e−aϕiθϕ

))
+ VOT

(4.20)

leading us to the final result:

Vax =
gse

KCS

8π

4W0aϕAϕτϕ
V2

e−aϕτϕ cos(aϕθϕ) + VOT(τϕ) (4.21)

we will rewrite it, for the sake of shortening, as:

Vax = Λ(τϕ) cos(aϕθϕ) + VOT(τϕ) (4.22)
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where the function Λ(τϕ) depends only on τϕ and on volume V :

Λ(τϕ) := S 4W0aϕAϕτϕ
V2

e−aϕτϕ (4.23)

Figure 4.1: Curvaton Potential including
VOT for aϕ = Aϕ = 1,V = 104

Figure 4.2: Top view of Curvaton
Potential.

4.1.3 Axion mass

It is of crucial importance to compute the mass of our fields in order to understand

which of them are active during inflation. In fact if a certain field φ has a mass

greater than the Hubble scale during inflation mφ > Hinf , it will be classically

moving during inflation.

In Loop Blow-Up inflation the inflationary potential is:

V (τϕ) = V0

[
1 +Aϕ

V2

β

√
τϕe

−2aϕτϕ − Bϕ
V
β
τϕe

−aϕτϕ − cloop
β
√
τϕ

]
. (4.24)

From here, [2] derived the mass, as stated in (3.87), of the inflaton at the end of

inflation, when it sits at its non-perturbative minimum.

Now we want to the same for the axion of the inflaton θϕ. We recall that the mass

term of the axion in the Lagrangian is:

L ⊃
m2
θϕ

2
θ2ϕ (4.25)
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If we expand the potential for curvaton around the minimum we get:

Vax = V0 + ∂θϕVax

∣∣∣∣
min

θϕ +
∂2θϕVax

2

∣∣∣∣
min

θ2ϕ +O(θ3ϕ) ≃ V0 +
∂2θϕVax

2

∣∣∣∣
min

θ2ϕ (4.26)

hence, we deduce that m2
θϕ

= ∂2θϕVax
∣∣
min

.

We start then by computing the minimum of the potential:

Vax(θϕ) = Λ(τϕ) cos(aϕθϕ) + VOT (4.27)

just by deriving it twice:

∂θϕVax = −Λ(τϕ)aϕ sin(aϕθϕ) (4.28)

∂2θϕVax = −Λ(τϕ)a
2
ϕ cos(aϕθϕ) (4.29)

the conditions to have a minimum are:∂θϕVax|θϕ=⟨θϕ⟩ = 0

∂2θϕVax|θϕ=⟨θϕ⟩ > 0
(4.30)

These are realized when:

aϕ ⟨θϕ⟩ = (2k + 1)π with k ∈ Z (4.31)

obtaining the vacuum expectation value of θϕ:

⟨θϕ⟩ =
2k + 1

aϕ
π where k ∈ Z (4.32)

Now we have to compute the derivatives of the potential with respect to the

canonically normalised axion field σϕ in order to retrieve its mass.

In order to do so, let us express the potential in terms of the canonically normalised
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inflaton and curvaton fields. Renaming now Vax(σϕ) ≡ Vax(σϕ)− VOT:

Vax(σϕ) = Λ(ϕ) cos

(
aϕ
f(ϕ)

σϕ

)
(4.33)

where now Λ(ϕ), f(ϕ) are written in function of canonical inflaton:

Λ(ϕ) =
4aϕAϕSW0

V 4
3

(
3

4λϕ

) 2
3

ϕ
4
3 e

−aϕ
(

3V
4λϕ

) 2
3
ϕ

4
3

(4.34)

f(ϕ) =

(
3

4

) 1
3
(
λϕ
V

) 2
3 1

ϕ
1
3

(4.35)

In an explicit form then:

Vax(σϕ) =
4aϕAϕSW0

V 4
3

(
3

4λϕ

) 2
3

ϕ
4
3 e

−aϕ
(

3V
4λϕ

) 2
3
ϕ

4
3

cos

(
aϕ

(
4

3

) 1
3
(

V
λϕ

) 2
3

ϕ
1
3σϕ

)
(4.36)

Its derivatives are then, denoting (Vax)σϕ ≡ ∂σϕ(Vax):

(Vax)σϕ = −Λ(ϕ)
aϕ
f(ϕ)

sin

(
aϕ
f(ϕ)

σϕ

)
(4.37)

(Vax)σϕσϕ = −Λ(ϕ)

(
aϕ
f(ϕ)

)2

cos

(
aϕ
f(ϕ)

σϕ

)
(4.38)

The minimum again is located where:

(Vax)σϕ
∣∣
min

= 0 and cos

(
aϕ
f(ϕ)

σϕ

)
= −1 (4.39)

so where:

⟨σϕ⟩ =
(2k + 1)π

aϕ
f(ϕ) with k ∈ Z (4.40)

Notice that, unsurprisingly, the two minima (4.32) and (4.40) coincide, since f(ϕ)

is precisely the function appearing in the canonical normalisation of the axion.
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In order to compute the mass1 it is necessary to evaluate the second derivative

of the potential at ⟨σϕ⟩:

m2
σϕ

= (Vax)σϕσϕ

∣∣∣∣
σϕ=⟨σϕ⟩

= −Λ(ϕ)

(
aϕ
f(ϕ)

)2

cos((2k + 1)π) = Λ(ϕ)

(
aϕ
f(ϕ)

)2

(4.41)

Using (4.34),(4.35) we get the final value:

m2
σϕ

=
4Sa3ϕAϕW0

λ2ϕ
ϕ2e

−aϕ
(

3V
4λϕ

) 2
3
ϕ

4
3

(4.42)

We now plug back τϕ inverting (4.6) and get:

m2
σϕ

=
16SW0Aϕa

3
ϕ

3λϕV
τ
3/2
ϕ e−aϕτϕ (4.43)

Clearly, since the leading potential for both the inflaton and the curvaton is gen-

erated by the same non-perturbative effect, we expect the masses to be exactly

equal when all the fields are set to their minima such that:

mσϕ ≃ W0 ln(V)
V

≃ mϕ (4.44)

This appears to be true as we can easily show by using (D.27) and (D.25) inside

(4.43).

4.1.4 Axion decay rates

In computing the decay rates, through the couplings in F, we are going to follow

[20] where the decay rates are splitted in two families:

1) Products of decay are identical and so the Lagrangian reads, in Planck units,

as:

LA ⊃ gAϕAψ
2
A (4.45)

1This is an effective mass during inflation, the physical mass of particles coming out from the
axion field is the one at the global minimum of the potential.
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and the decay rate as:

ΓϕA→ψAψA
=

g2A
8πmϕA

(4.46)

2) Products of decay are different and so the Lagrangian reads, in Planck units,

as:

LB ⊃ gBϕAψBχB (4.47)

and the decay rate as:

Γχ→ψBχB
=

g2B
16πmχ

(4.48)

Case 1: no D7s wrapped on the inflaton cycle

We have three non negligible decay channels for the axions:

1) The dominant one for σϕ in this scenario is the one towards SM gauge fields,

which is the same as its saxion’s and can be computed following the formula

in [20]

Γσϕ→γvisγvis =
g2vis

16πmσϕ

(4.49)

where gvis = −
√

6λϕτ
3/4
ϕ τM

V1/2 m2
σϕ

as in (F.24) and mσϕ =
2W0aϕτϕ

τb
, giving us the

decay rate:

Γσϕ→γvisγvis ≃
3λϕW

3
0 a

3
ϕNg

8π

τ
9/2
ϕ

V4
Mp (4.50)

This decay rate is clearly the dominant one since an higher order of mag-

nitude given by Ng = 12 since we have to consider all species of Gauge

Bosons.

2) A subdominant by one order of magnitude decay channel is the one of cur-

vaton candidate into volume modulus and volume axion with decay rate:

Γσϕ→χσb =
g1

16πmσϕ

(4.51)
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where g1 ≃ −
√

3λϕ|W0|2a2ϕτ
11/4
ϕ

τ
15/4
b

as in (F.8), giving us the final result

Γσϕ→χσb ≃
3λϕ|W0|3a3ϕ

32π

τ
9/2
ϕ

V4
=

1

4Ng

Γσϕ→γvisγvis (4.52)

coherently with [20].

3) Another subdominant by one order of magnitude decay channel is the one of

curvaton candidate into standard model modulus and standard model axion

with decay rate:

Γσϕ→ϕMσM =
g2

16πmσϕ

(4.53)

where g2 ≃
2
√

3λϕ|W0|2a2ϕτ
11/4
ϕ

τ
15/4
b

as in (F.19), giving us the final result, reinstating

MP :

Γσϕ→ϕMσM ≃
3λϕ|W0|3a3ϕ

8π

τ
9/2
ϕ

V4
MP = 4Γσϕ→χσb =

1

Ng

Γσϕ→γvisγvis (4.54)

coherently again with [20].

Which finally let us compute the total decay width of the axion summing (4.50),

(4.52), (4.54):

Γσϕ = Γσϕ→γvisγvis + Γσϕ→χσb + Γσϕ→ϕMσM = (4Ng + 5)Γσϕ→χσb (4.55)

and for Ng = 12 number of Gauge Bosons species we get:

Γσϕ = 53Γσϕ→χσb = Γϕ (4.56)

coherently with table 2 page 30 of [20]. We can then notice how the axion and the

inflaton decay exactly at the same moment.

Case 2: D7s wrapped on the inflaton cycle

While the decay rates (4.52) and (4.54), (4.50) of course still hold, another domi-

nant decay rate appear in this case and it will be the one for σϕ → γhidγhid which
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is:

Γσϕ→γhidγhid =
ghid

16πmσϕ

(4.57)

where ghid =
4|W0|2a2ϕ√

3λϕ

τ
5/4
ϕ

τ
9/4
b

as in (F.27), giving us the decay rate:

Γσϕ→γhidγhid ≃
W 3

0 a
3
ϕN

hid
g

6πλϕ

τ
5/2
ϕ

V2
Mp =

4

9

Nhid
g

λ2ϕ

V2

τ 2ϕ
Γσϕ→ϕMσM (4.58)

coherently, again, with the one of the inflaton in [22] (so even now inflaton and ax-

ion decay together) and where Nhid
g is the number of hidden gauge bosons species.

We now compute the total decay width as the one in scenario 1) (4.55) plus this

last decay:

Γσϕ =

(
4Ng + 5 +

4

9

Nhid
g

λ2ϕ

V2

τ 2ϕ

)
Γσϕ→χσb (4.59)
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4.2 The axion σϕ as a curvaton candidate

In our model, given the choice of parameters:

β = W0 = gse
KC.S. = 2 (4.60)

λϕ = 1 (4.61)

ϕ∗ ∼ O(0.2) ⇒ τϕ = 44.81 (4.62)

V ∼ 104 (4.63)

we get, as seen in the previous chapter, both the Kähler cone constraints satisfied

and the correct amplitude of curvature perturbations given by Planck. It is strictly

fundamental then to check that the slice of parameter space we choose for our

model is geometrically and phenomenologically consistent, in the sense that we

don’t exit the Kähler cone and that the curvature perturbations generated by our

candidate curvaton σϕ are negligible and so our axion will be a stealth curvaton. If

not, the parameter subspace we took or the model itself has to be corrected.

4.2.1 Axion isocurvature perturbations

As we said in the introduction of this chapter the curvaton mechanism is divided

into 2 parts:

• Generation of isocurvature perturbations;

• Conversion to curvature perturbations because of curvaton decay.

We are going now to study the first point by deriving the isocurvature power

spectrum amplitude.

The candidate curvaton field σϕ (non-canonically normalised θϕ) during inflation

has practically 0 effective mass since the exponential suppression on it in (4.43).

The Hubble scale during inflation is:

Hinf =
1√
3

√
Vinf ≃

W0

√
βS

√
3V 3

2

(4.64)
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since:

Vinf = V0

(
1− cloop

β
√
τϕ

)
τϕ≫1
≃ V0 =

SW 2
0 β

V3
(4.65)

This show us clearly how:

m2
σϕ

∼ |(Vax)σϕσϕ | ≪ H2
inf (4.66)

and so, as stated in [32] and as computed in [14], at super-horizon scales the

fluctuations of the axion induce a Gaussian Perturbation with scale independent

power spectrum amplitude:

P
1/2
δσϕ

(k) ≃ H∗
inf

2π
(4.67)

where H∗
inf = Hinf is the Hubble scale at horizon exit but for us, during whole

inflation the Hubble parameter will be Hinf . This spectrum can be shown to be

practically scale dependent by computing its spectral index:

nδσϕ − 1 ≡
d ln(Pδσϕ)

d ln k
= 2

(Vax)σϕσϕ
3H2

inf

− 2ϵ (4.68)

but ϵ ≪ 1 and even |(Vax)σϕσϕ | ≪ 1 so nδσϕ ≃ 1. When all the cosmological

scales have left the horizon, and so they are stretched out, the curvaton candidate

starts oscillating leading to an evolution for our axion which is on an unperturbed

regime. This means that our inflaton-orthogonal axion evolves under the Klein-

Gordon equation on an expanding FLRW metric:

σ̈ϕ + 3Hσ̇ϕ + Vσϕ = 0 (4.69)

and using the first order approximation (δVax)σϕ ≃ (Vax)σϕσϕδσϕ we can find that

the perturbations of our axion follow the equation:

δ̈σϕ + 3H ˙δσϕ + (Vax)σϕσϕδσϕ = 0 (4.70)

which is the same as (4.69) if the potential is quadratic or is sufficiently flat. As

we saw, the exponential suppression during inflation makes the potential almost

exactly flat so, in our case the field and the inhomogeneous perturbation satisfy
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the same equation:

ℵ̈+ 3Hℵ̇ ≃ 0 (4.71)

where ℵ = σϕ or ℵ = δσϕ. Since they both satisfy the same equation, then their

ratio will be constant: (
δσϕ
σϕ

)
=

(
δσϕ
σϕ

)
in

(4.72)

Then, as stated in [32] the isocurvature power spectrum is given by:

Pδσϕ/σϕ := Piso =
H2

inf

(2πσin
ϕ )

2
=

W 2
0 βS

12π2V3σin
ϕ

2 =
W 2

0 β
√
τ ∗ϕ

9π2λϕV2θinϕ
2 ≃ 6.03 · 10−9

θinϕ
2 (4.73)

4.2.2 Initial conditions and stochastic behaviour

In the classical curvaton mechanism applications like [12] the value σin
ϕ is computed

by solving the classical motion value neglecting only the second derivative term of

the inhomogeneous perturbations Klein-Gordon equation (4.69):

σ̇ϕ =
∆σϕ
∆t

≃ −
(Vax)σϕ
3Hinf

(4.74)

which for one Hubble time ∆t = 1 gives:

σ̇ϕ = ∆σϕ ≃ −
(Vax)σϕ
3Hinf

(4.75)

In the same time, quantum fluctuations make the field move of an amount:

δσϕ ≃
Hinf

2π
(4.76)

so, equating these two movements, ∆σϕ ≃ δσϕ we can find kind of a point of

equilibrium between classical and quantum motion. However, in our case, this

can’t be done at CMB scale since the fact that at this point the potential is too

flat for the axion to make the classical value equate the quantum one, in fact:

σ̇ϕ = ∆σϕ ≃ −
(Vax)σϕ
3Hinf

τϕ≫1
≃ 0 (4.77)
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due to the usual exponential suppression in the potential. This means that ∆σϕ ≪
δσϕ and so we can’t solve this inequality as an equation finding σin

ϕ , which instead

should be fixed a priori by hand since “chosen by Nature”, owing to the fact that

the motion is totally dominated by the quantum fluctuations. This happens until

the curvaton starts to move classically, so when:

mσϕ = H (4.78)

which it is possible to check it happens close to the end of inflation. It is now

interesting to study how these quantum fluctuations make the axion move and in

order to do so we need to study the stochastic behaviour of the candidate curvaton

Brownian motion in field space.

As just said since Hinf = const and since, reinstating Mp momentarily, Vax ≪
H2

infM
2
p at large τϕ then the axion is frozen during inflation and its behaviour can

be described, like in [19], by the Langevin equation:

∂σϕ
∂Ne

= −
(Vax)σϕ
3H2

inf

+
Hinf

2π
ξ (4.79)

with ξ is a stochastic variable with variance ⟨ξ(Ne)1ξ(Ne)2⟩ = δ((Ne)1 − (Ne)2)

and zero mean ⟨ξ(Ne)⟩ = 0. The last term of the Langevin equation describes the

stochastic quantum ”kick” the field is sbuject to during its dynamics. Since this

stochastic nature of the process the system can be described by the Fokker-Planck

equation for the probability density function P (σϕ, σ
in
ϕ , Ne):

∂P

∂Ne

= −
∂((Vax)σϕP )

∂σϕ

1

3H2
inf

+
H2

inf

8π2
Pσϕσϕ (4.80)

where σinϕ is fixed during the inflation. Once we know the solution of the Fokker-

Planck equation we can compute all the statistical quantities of the distribution

like the mean and the variance via the general formula:

⟨σnϕ⟩ (Ne) =

∫
dσϕσ

n
ϕP (σϕ, σ

in
ϕ , Ne) (4.81)
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In particular for n = 1 we will obtain the mean E(σϕ) = ⟨σϕ⟩ and by the value

Var(σϕ) = ⟨σϕ⟩2−⟨σ2
ϕ⟩ the variance. Since the axion is a spectator during inflation

it undergoes Brownian motion described by the Langevin equation and so the

equation (4.79) is now reduced to:

∂σϕ
∂Ne

=
Hinf

2π
ξ (4.82)

or, from a distribution point of view, the Fokker-Planck equation has no second

term becoming the 1D heat equation:

∂P

∂Ne

=
H2

inf

8π2
Pσϕσϕ (4.83)

whose solution is a gaussian:

P (σϕ, σ
in
ϕ , Ne) =

√
2π

NeH2
inf

e
− 2π2

Ne

(σϕ−σin
ϕ )2

H2
inf (4.84)

so we can easily see that E(σϕ) = ⟨σϕ⟩ = σin
ϕ initial condition since the field is

classically frozen in the initial value given by Nature. It is possible to show even

that since the distribution is a Gaussian:

⟨σ2
ϕ⟩ =

(
Hinf

2π

)2

Ne + σin
ϕ

2
(4.85)

implying that:

Std(σϕ) =
√

Var(σϕ) =
√
⟨σ2

ϕ⟩ − ⟨σϕ⟩2 =
Hinf

2π

√
Ne (4.86)

so that in Ne e-foldings the axion is kicked by quantum perturbations in average

of Hinf

2π

√
Ne from its initial value.

At this point it’s fundamental to check the order of this standard deviation in

order to see if the quantum kick makes the axion go far away from its initial value
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or if it stays in a neighborhood of the field space point σin
ϕ . Recalling:

Hinf =

√
V0√
3

=
W0

√
βS√

3V3/2
(4.87)

we got that for the parameter choice (4.60):

Hinf ≃ 1.63 · 10−6 (4.88)

So now we just need to compute the maximum number of possible e-foldings for

the inflationary regime and see how much is the quantum kick. This can be done

by computing the possible values of ϕ where at least one of these two conditions

hold:

1) The slow roll approximation breaks (ϵ = 1 for large ϕ);

2) We exit the Kähler cone.

The maximum value of ϕ from where one of these two conditions are not satisfied

anymore is the last value where the physics of our model still holds and so the

value where the axion stochastic motion starts. Beyond this value the physics is

not understandable from our model.

Let us analyze in detail the two conditions:

1) Slow roll breaking:

Since the potential features an infinite plateau going at bigger and bigger

values in ϕ, then the slow-roll condition breaks only for (after setting cloop =
1

16π2 as in the field theoretic interpretation):

ϵ =
1

2

Vϕ
V

≃ 2

9

(bcloop)
2

ϕ10/3

!
= 1 ⇔ ϕend = 3.4 · 10−3 (4.89)

differently from Fibre Inflation where the inflationary plateau is followed by

a steep growth for large ϕ. Note how the value of ϕend does not depend

on the case of wrapped or non-wrapped inflaton cycle and that we are not

anymore in slow-roll inflationary regime ∀ϕ < 3.4 · 10−3.
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2) Kähler cone exit:

The second condition instead is not general, in fact, it is needed to take an

explicit particular Calabi-Yau to check it is satisfied. Again, we are going to

take, the second one in the table in [21], where the Kähler cone constraint

tb + tϕ > 0 is given by:
|tϕ∗|
tb

= 0.6ϕ2/3
∗ < 1 (4.90)

So we are at the boundary of the Kähler cone if 0.6ϕ
2/3
∗ = 1 ⇔ ϕ∗ = ϕmax =

2.15. It is possible then to compute the maximum number of e-foldings

available for inflation and this can be done starting from the standard e-

folding formula and solving it numerically2:

Ne

∣∣
max

=

∫ ϕmax

ϕend

Vϕ
V
dϕ ≃ 26798.6 (4.91)

Plugging this latter result inside (4.86) we get:

Std(σϕ)
∣∣
max

=
√

Var(σϕ)
∣∣
max

=
√

⟨σ2
ϕ⟩ − ⟨σϕ⟩2 =

Hinf

2π

√
Ne

∣∣
max

≃ 4.25 · 10−4

(4.92)

which tells us that during the 26798.6 possible e-foldings we have very small dis-

placement from the initial condition via quantum kick, so we will consider the

curvaton as still in the mean value σin
ϕ of the distribution even at the end of the

inflation since the point where (4.78) holds, and so the axion starts moving, is very

close to the slow-roll breaking point as stated before.

4.2.3 From axion isocurvature to curvature perturbations

In this subsection we will explore the last part of curvaton mechanism, the con-

version of isocurvature entropy perturbations generated by field σϕ into curvature

ones at the time of its decay. While the curvaton is still frozen by Hubble fric-

tion mσϕ = Hinf , since the inflaton dominates the energy density of the universe

2This is in realty an overkill, in fact the Number of e-foldings should be computed until the
curvaton starts moving which is a little bit before the end of inflation, however we exceeded in
order to have a larger estimate.
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4.2. THE AXION σϕ AS A CURVATON CANDIDATE

then:

ζ = ζϕ = −H∗
δϕ

ϕ̇∗
(4.93)

where ζ is the overall curvature perturbation and ζi for i ∈ {ϕ, σϕ} the curvature

perturbation generated from inflaton or curvaton. When the curvaton mass falls

under the Hubble scale mσϕ ≪ Hinf then the curvaton starts to oscillate until

it decays. At this point Hinf = Γσϕ , then the isocurvature perturbation of the

candidate curvaton fluid is converted into curvature perturbation. The global

curvature perturbation is then sourced both by the inflaton and by the curvaton

and reads as [32]:

ζ = ζϕ +
2Ωcv

3
Siso +O(S2

iso) (4.94)

where Siso isocurvature perturbations of the curvaton and where Ωcv is the linear

convertion factor between isocurvature and curvature perturbations of the curvaton

field and reads as [32]:

Ωcv =
3rdeced

4− rdeced

(4.95)

where rdeced =
ρσϕ
ρtot

∣∣∣∣
Hinf=Γσϕ

. By plugging inside (4.95) the definition of rdeced we get,

considering only first order [32]:

Ωcv ≃
(
ρσϕ
ρtot

) ∣∣∣∣
Hinf=Γσϕ

≃
(
ρσϕ
ρϕ

) ∣∣∣∣
Hinf=Γσϕ

(4.96)

where the last equality holds if we have the inflaton dominating while the curvaton

decays.

Computing the correlation function ⟨ζkζk′⟩ we get the power spectrum:

Pζ = Pζϕ + Pζσ = Pζϕ +
4

9
Ω2

cvPiso = Pζϕ +
4

9

(
ρσϕ
ρtot

)2 ∣∣∣∣
Hinf=Γσϕ

Piso (4.97)

Since the field content, at the end of inflation, is given by just the inflaton and the

axion: (
ρσϕ
ρtot

)2 ∣∣∣∣
Hinf=Γσϕ

< 1 (4.98)
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Leading us to a power spectrum:

Pζσ <
4

9
Piso (4.99)

The final step to perform is now to compute the conversion ratio and plugging

inside our numerical values to check if the curvaton contribute to scalar perturba-

tions (4.97) is negligible with the respect to the one of inflaton for our choice of

parameters (4.60) or if we need additional fine tuning on the free ones.

We start recalling that, in general, since both the curvaton and the inflaton behave

as matter they redshift as:

ρi|dec = ρi|ende−3Nϕ (4.100)

where i ∈ {ϕ, σϕ}, ρi|dec = ρi|Hinf=Γσϕ
, ρi|end is the value of the energy density

at the end of the inflation and Nϕ is the number of e-foldings of the inflaton

domination which coincides in all scenarios with the number of e-foldings between

the end of inflation and the decay time since inflaton and axion always decay

together in geometric regime. Given this, it is evident that the ratio between the

two energy densities is not dependent on the number of e-foldings, instead the one

at decay time is exactly equal to the ratio of the energy densities at the end of

inflation:
ρσϕ|dec
ρϕ|dec

=
ρσϕ|end
ρϕ|end

����
e−3Nϕ

����
e−3Nϕ

=
ρσϕ |end
ρϕ|end

(4.101)

Now, at the end of inflation, two cases appear depending on the initial conditions

of the axion:

1) The axion is set initially in a value π
2
+ 2kπ < aϕθϕ <

3
2
π + 2kπ, k ∈ Z

where the boundary terms of this interval π
2
, 3
2
π are terms where the second

derivative of the axion potential changes sign. Then the curvaton is close to

its minimum in the potential and, since we are at the end of the inflaton,

the curvaton and the inflaton potentials are strongly dominated by non-

perturbative corrections, so we expect the case to be very similar to [3]

where the axion energy density is much less than the one for the inflaton due

to preheating effects, justifying a posteriori (4.96) and so giving us:

Ωcv ≃ 0 (4.102)
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and so:

Pζ = Pζϕ (4.103)

saving the consistency of the model in our slice of parameter space.

2) If instead the axion is such that: 2kπ ≤ aϕθ
in
ϕ ≤ π

2
+2 or 3

2
π+2kπ ≤ aϕθ

in
ϕ ≤

2kπ, k ∈ Z we need a full estimation of preheating effects which is beyond

the scope of this thesis. However we can estimate the conversion factor by

considering then (4.95) with:

Ωcv =
3ρσϕ

4ρϕ + 3ρσϕ

∣∣∣∣
end

(4.104)

However, at the end of inflation we have:

ρϕ|end = V (ϕend) ≃ V0 (4.105)

and, for the curvaton:

ρσϕ|end = Vax|end = Vax(σ
end
ϕ ) (4.106)

The problem then reduces to find σend
ϕ . Again, since the axion is frozen

almost until the end of the inflation, without loss of generality, we can set

this value to:

σend
ϕ = σin

ϕ (4.107)

An interesting choice of σin
ϕ could be exactly the one which is given at the

boundary between the two cases [3] like aϕθ
in
ϕ = π

2
but in this case Vax(σ

in
ϕ ) =

0 so again:

Ωcv = 0 (4.108)

We will take instead:

σin
ϕ : aϕθ

in
ϕ =

π

4
⇒ θinϕ =

π

4aϕ
=

{
1
8
if inflaton cycle not-wrapped

N
8
if inflaton cycle wrapped

(4.109)

We get then 2 subcases:

147



CHAPTER 4. THE CURVATON IN LOOP BLOW-UP INFLATION

– If inflaton cycle is not wrapped by a D7-brane stack then we have in-

stanton non-perturbative corrections and so aϕ = 2π leading us to an

isocurvature perturbation (4.73) of:

Piso =
6.03 · 10−9

θinϕ
2 = 6.03 · 10−9 · 8 = 3.6 · 10−7 (4.110)

instead obtaining3:

Vax

(π
4

)
|end =

√
2

2
Λ(τ endϕ ) =

√
2

2
S
8W0πAϕτ

end
ϕ

V2
e−2πτendϕ (4.111)

Ωcv =

(
1 +

4βW0

3
√
2
2
8πAϕVτ endϕ e−2πτendϕ

)−1

(4.112)

With τ endϕ = 0.19 such that ϕ = 0.0034. At this point, in order to keep

consistency with Planck measurement, so to have the curvaton with

subleading contribution of the CMB spectrum, we need the condition:

Pζσ =
4

9
Ω2

cvPiso ≤ 10−10 (4.113)

Figure 4.3: Plot of the curvature perturba-
tion power spectrum amplitude Pζσ gener-
ated by the curvaton-axion σϕ with the re-
spect to Aϕ.

Figure 4.4: Plot of the region where
curvature perturbation power spec-
trum amplitude Pζσ generated by
the axion becomes of an order lower
than O(10−10).

3We write everything depending on τ endϕ in order to have a more compact notation, if ϕend ≃
0.0034 ⇒ τ endϕ = 0.19.
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4.2. THE AXION σϕ AS A CURVATON CANDIDATE

which, plugging inside all the values (4.60) translates into a constraint

for the free parameter Aϕ:

0 < Aϕ ≤ 1.31 · 10−5 (4.114)

– The inflaton cycle is wrapped instead by a D7-brane stack: aϕ = 2π
Nϕ

where Nϕ is the number of D7-branes wrapped around the cycle. We

want now to have a theoretical bound for the value of Nϕ and so for the

number of D7-branes wrapped around the inflaton cycle. The isocurva-

ture perturbations are given in this case by:

Piso =
3.86 · 10−7

N2
ϕ

(4.115)

While the conversion factor, with the choice Aϕ = 14, since the axion

potential is the same as before reads as:

Ωcv =
6784.6

e
1.27932

Nϕ Nϕ + 6784.6
(4.116)

Figure 4.5: Plot of the curvature perturba-
tion power spectrum amplitude Pζσ gener-
ated by the curvaton-axion σϕ with the re-
spect to Nϕ.

Figure 4.6: Plot of the region where
curvature perturbation power spec-
trum amplitude Pζσ generated by
the axion becomes of an order lower
than O(10−10).

4The previous constraint on it does not apply, the brane setting is different.
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which leads to a constraint:

Pζσ =
7.89407

N2
(
e

1.27932
Nϕ Nϕ + 6784.6

)2 ≤ 10−10 (4.117)

holding for:

Nϕ ≥ 41 ⇔ aϕ ≤ 0.15 (4.118)
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Chapter 5

Conclusions

In this Master Degree Thesis we studied the dynamics of the axion associated to

the inflaton modulus in Loop Blow-Up inflation and how it can be seen a curvaton

in such an inflationary scenario. We showed how the entire behaviour of the axion,

which is totally non-trivial, can be splitted into two parts:

• At the starting point of the inflation the axion is ultralight, mσϕ ≪ Hinf and

so it’s classically frozen, however, since its potential depends on the value of

the inflaton with a negative exponential, it’s an almost flat direction. The

inflaton then moves due to the stochastic quantum fluctuations even though

the deviation in field space is of the order of O(10−4) from the initial value.

During this period then the isocurvature perturbations are produced.

• Slightly before the end of the inflation, the axion unfreezes, mσϕ ≫ Hinf , and

it starts oscillating in its potential which now is not flat anymore. After some

e-folds it decays with the same couplings and so exactly at the same time of

the inflaton. This decay converts the whole isocurvature perturbation into

curvature one with a conversion factor Ωcv.

We then computed the amount of curvature perturbations in the 2 possible cases

depending on the initial conditions and the results can be resumed as:

• If the axion initial condition is close enough to the minimum of its potential
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(π
2
< aϕθ

in
ϕ < 3

2
π) the case is the same of [3] where the curvaton energy

density is so small because of preheating effects that the conversion ratio is

Ωcv = 0 and so the axion does not contribute to the curvature perturbations

leading to a safe model for each choice of the remaining free parameters Aϕ

and aϕ.

• If the axion initial condition is far from the minimum (0 < aϕθ
in
ϕ < π

2
or 3

2
π <

aϕθ
in
ϕ < 2π), a detailed, more general analysis of preheating effects is needed

and goes beyond the scope of this thesis, however, we made a rough estimate

of the results for aϕθ
in
ϕ = π

4
. These can be divided in 2 subcases depending

on the brane:

– If the inflaton cycle is wrapped by an E3-Brane then we know that

aϕ = 2π and, imposing that the curvature perturbations generated by

the axion are subleading, we obtained the constraint for the only free

parameter 0 < Aϕ ≤ 1.31 · 10−5. However we must take it even not

too small in order to have non-perturbative corrections big enough to

mantain the existence of the minimum.

– If the inflaton cycle is wrapped by a D7-Brane stack then we don’t know

aϕ, which depends on the number of branes on the stack Nϕ, however,

picking Aϕ ∼ O(1) as done in some numerical evaluation and plots in

[2], imposing that the curvature perturbations generated by the axion

are subleading, we obtained the constraint: Nϕ ≥ 41 ⇔ 0 < aϕ ≤ 0.15,

again, always recalling not to pick even aϕ too small to have suppressed

non-perturbative corrections to V and so the spoil of its minimum. As

a matter of completeness, if we would like to pick Aϕ ≤ O(10−5) even

in this case, it is possible to find that there is no constraint on Nϕ and

so on aϕ: the curvature perturbation of the axion is always subleading.

There are very interesting further developments of this work which can be analyzed.

First of all a detailed study of the preheating case similarly to [3] will be very

intriguing in order to reckon precisely the computation of the conversion factor in

the second case. In addition to this, a possible and interesting further development

can be to implement this mechanism in other Kähler moduli String Inflationary
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scenarios like Fibre Inflation [15], since they feature naturally the presence of axions

with similar characteristics to the one we used here as curvaton candidate.
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Appendix A

RNS formalism computations

Fermionic part of the RNS action

We can start by defining the Dirac conjugate of a spinor as:

ψ̄µ = ψµ†β = ψµ†iρ0 = ψµTβ (A.1)

where the last equality is true since ψµ Majorana spinor so ψµ∗+ = ψµ+ and ψµ∗− =

ψµ− so:

ψ̄µ = i
(
ψµ− ψµ+

)(0 −1

1 0

)
=
(
ψµ+ −iψµ−

)
(A.2)

in this notation, pointing out that that:

ρα∂α = ∂0

(
0 −1

1 0

)
+ ∂1

(
0 1

1 0

)
=

(
0 ∂1 − ∂0

∂1 + ∂0 0

)
=

(
0 −∂−
∂+ 0

)
(A.3)

we can rewrite the fermionic action as:

SF =

∫
d2(σψ̄µρα∂αψµ) =

i

π

∫
d2σ(ψµ−∂+ψ−µ + ψµ+∂−ψ+µ) (A.4)
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Equations of motion for fermionic field

The computation of equations of motion is as always obtained by variation of the

action:

δSF =
i

π

∫
d2σ(δψ−∂+ψ− + ψ−∂+δψ− + δψ+∂−ψ+ + ψ+∂−δψ+) = (A.5)

integrating by parts and removing boundary terms that vanish:

=
i

π

∫
d2σ(δψ−∂+ψ− − ∂+ψ−δψ− + δψ+∂−ψ+ − ∂−ψ+δψ+) = (A.6)

due to the fact that ψµA A = 1, 2 are fermionic variables, they anticommute with

their variation:

=
−2i

π

∫
d2σ(∂+ψ−)δψ− + (∂−ψ+)δψ+

!
= 0 (A.7)

giving us the result we saw in 1.

Global Supersymmetry of action

The transformation on which the action is invariant can be rewritten in component

as:

δXµ = i(ϵ+ψ
µ
− − ϵ−ψ

µ
+) (A.8)

δψµ− = −2∂−X
µϵ+ (A.9)

δψµ+ = 2∂+X
µϵ− (A.10)

We can see that this is a symmetry, in fact, suppressing again Lorentz indices:

δS =
1

π

∫
d2σ(2∂+δX∂−X + 2∂+X∂−δX + iδψ−∂+ψ− + iψ−∂+δψ− + iδψ+∂−ψ++

(A.11)

+iψ+∂−δψ+) =
2i

π

∫
d2σ(ϵ+∂+ψ−∂−X − ϵ−∂+ψ+∂−X + ϵ+∂+X∂−ψ+ (A.12)

−ϵ−∂+X∂−ψ+ − ∂−Xϵ+∂+ψ− − ψ−∂+∂−Xϵ+ + ∂+Xϵ−∂−ψ+ + ψ+∂−∂+Xϵ−) =

(A.13)

paying attention to the sixth and last term, moving ϵ± at first place of the term
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getting there 2 minuses:

=
2i

π

∫
d2σϵ+(������

∂+ψ−∂−X + ∂+X∂−ψ− −������
∂−X∂+ψ− + ψ−∂+∂−X)+ (A.14)

+ϵ−(−∂+ψ+∂−X −������
∂+X∂−ψ+ +������

∂+X∂−ψ+ − ψ+∂−∂+X) = (A.15)

=
2i

π

∫
d2σϵ+(∂−(ψ−∂+X))− ϵ−(∂+(ψ+∂−X)) = 0 (A.16)

since it’s a sum of 2 total derivatives, so it’s boundary term that vanishes.

On-Shell Closure of Global Supersymmetry

We start by recalling the transformation:

δXµ = ϵ̄ψµ (A.17)

δψµ = ρα∂αX
µϵ (A.18)

and by computing the commutator of two supersymmetry transformations acting

on Xµ and ψµ:

[δϵ1 , δϵ2 ]ψ
µ = δϵ1(δϵ2ψ

µ)− δϵ2(δϵ1ψ
µ) = (A.19)

δϵ1(ρ
α∂αX

µϵ2)−δϵ2(ρα∂αXµϵ1) = ραϵ2∂αδϵ1X
µ−ραϵ1∂αδϵ2Xµ = ρα(ϵ2ϵ̄1−ϵ1ϵ̄2)∂αψµ =

(A.20)

Now using the spinor identity ϵ2ϵ̄1 − ϵ1ϵ̄2 = −ϵ̄1ρβϵ2ρβand
{
ρα, ρβ

}
= 2ηαβ:

= −ϵ̄1ρβϵ2ραρβ∂αψµ = −ϵ̄1ρβϵ2
{
ραρβ

}
∂αψ

µ + ϵ̄1ρβϵ2ρ
βρα∂αψ

µ = (A.21)

= −ϵ̄1ρβϵ22ηαβ∂αψµ + ϵ̄1ρβϵ2ρ
βρα∂αψ

µ = −2ϵ̄1ρ
αϵ2∂αψ

µ + ϵ̄1ρβϵ2ρ
βρα∂αψ

µ =

(A.22)

= aα∂αψ
µ + ϵ̄1ρβϵ2ρ

βρα∂αψ
µ (A.23)

Where aα = −2ϵ̄1ρ
αϵ2 can be interpreted as a parameter of the translation−2ϵ̄1ρ

αϵ2∂α =

aα∂α and the second term vanishes on-shell which means using the equation of mo-

tion of ψµ which is ρα∂αψ
µ = 0.

So on-shell the commutator of 2 supersymmetry transformations lead to a trans-

lation on the world-sheet which is another supersymmetry transformation.
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For the other field Xµ:

[δϵ1 , δϵ2 ]X
µ = δϵ1(δϵ2X

µ)−δϵ2(δϵ1Xµ) = ϵ̄2δϵ1ψ
µ− ϵ̄1δϵ2ψµ = ϵ̄2ρ

α∂αX
µϵ1−1 ↔ 2 =

(A.24)

using the spinor identity ϵ̄2ρ
αϵ1 = −ϵ̄1ραϵ2:

= −2ϵ̄1ρ
αϵ2∂αX

µ = aα∂αX
µ (A.25)

which is again a translation of the amount aα = −2ϵ̄1ρ
αϵ2.

So, in the end, the algebra of this transformation is closed on-shell.

Supercharges Explicit Expression

In order to have an explicit expression for the representation of the supercharges we

start from the trivial case of transformation of a field under translations. We have

that a field, scalar in order to simplify notation, ϕ transforms under a spacetime

translation σα → σ′α = σα + aα as an operator as:

φ→ φ′ = e−iaαP
α

φeiaαP
α ∼ 1− iaαP

αφ1 + iaαP
α = φ+ i [φ, aαP

α] (A.26)

As a field of Hilbert space instead as:

φ(σα) → φ′ = eiaµP
µ

φ = φ(σα + aα) (A.27)

where P is the infinite dimensional representation of momentum operator P =

−i∂α. Equating the two expressions we get:

i [φ, aαP
α] = iaαPαφ = aα∂αφ = δϕ (A.28)

In a similar manner we can derive the expression of supersymmetry transformation

for field, of supercharges and even the meaning of supersymmetry as world-sheet

transformation.

Let us start with computing the effect of a supersymmetry transformation gener-

ated by ϵ̄Q (which is a sum of a transformation generated by −ϵ+Q− and one by
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−ϵ−Q+ so written in the form eiϵAρ
0QA = eϵ̄Q):

Φ(σ+δσ, θ++δθ+, θ−+δθ−) = e−i(ϵ+Q−−ϵ−Q+)Φ(σ, θ+, θ−)e
i(ϵ+Q−−ϵ−Q+) = (A.29)

= e−i(ϵ+Q−−ϵ−Q+)e−i(σ
αPα+θ+Q−+θ−Q+)Φ(0, 0, 0)ei(σ

αPα+θ+Q−+θ−Q+)ei(ϵ+Q−−ϵ−Q+) =

(A.30)

where we get that transformations on fermionic coordinate are made by a barred

parameter ϵ̄, θ̄ and a generator because of the multiplication that needs a row

and a coloumn vector. We now consider just the last two exponentials and use

Becker-Campbell-Hausdorff formula which is:

eAeB = eA+B+ 1
2
[A,B]+ 1

3!
( 1
2
[A,[A,B]])− 1

3!
( 1
2
[B,[B,A]]) (A.31)

at just first order in commutator:

ei(σ
αPα+θ+Q−+θ−Q+)ei(ϵ+Q−−ϵ−Q+) = ei(σ

αPα+(ϵ++θ+)Q−−(ϵ−+θ−)Q+)+ 1
2
[ϵ+Q−,θ−Q+]+ 1

2
[ϵ−Q+,θ+Q−] =

(A.32)

remembering that since ϵ−, ϵ+, θ−, θ+ are anticommuting variables: [ϵAQB, ϵBQA] =

{ϵAQB, θBQA} = 2ϵAθBρ
αPα(1−δA,B) where the expression of the anticommutator

is obtained just because is the only one coherent with the index structure and that

makes {QA, QA} = 0 as in 4D case we get:

e
i

[
σαPα+(ϵ++θ+)Q−−(ϵ−+θ−)Q+− i

�2
ϵ+θ−�2ρ

αPα+
i

�2
ϵ−θ+�2ρ

αPα

]
= (A.33)

ei[σ
αPα+(ϵ++θ+)Q−−(ϵ−+θ−)Q++i(−ϵ+θ−+ϵ−θ+)ραPα] = e(ϵ̄+θ̄)Q+(σα+θ̄ϵρα)Pα (A.34)

Which leads us to the fact that a supersymmetry transformation is nothing more

than a world-sheet translation, so a geometrical superspace transformation,

of the amount:{
σα → σ′α = σα + θ̄ραϵ = σα + i (−ϵ+ραθ− + ϵ−ρ

αθ+) ⇒ δσα = θ̄ραϵ = −ϵ̄ραθ

θA → θ′A = θA + ϵA ⇒ δθA = ϵA

(A.35)

Now we want to derive the expression for the supercharges. In doing so we will

compare the expression given by both transformations and the infinitesimal effect
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they have starting with Q− (which is the representation of the generator Q−):

eiϵ+Q−Φ(σ, θ) = (1 + iϵ+Q−)Φ(σ, θ) = Φ(σ, θ) + iϵ+Q−Φ(σ, θ) = Φ(σ − iϵ+ρ
αθ−, θ+ + ϵ+)

(A.36)

by expanding infinitesimally according to the law ϕ(t + δt, x + δx) = ϕ(t, x) +

δt∂tϕ(t, x) + δx∂xϕ(t, x):

Φ(σ − iϵ+ρ
αθ−, θ+ + ϵ+) = Φ(σ, θ)− iϵ+ρ

αθ−∂αΦ(σ, θ) + ϵ+∂θ+Φ(σ, θ) (A.37)

Comparing this result with the previous one at all orders in ϵ+:

Q− = −ραθ−∂α + i∂θ+ = ∂θ̄− − ραθ−∂α (A.38)

Repeating the same idea for Q+ (which is the representation of the generator

Q+):

e−iϵ+Q+Φ(σ, θ) = (1− iϵ+Q+)Φ(σ, θ) = Φ(σ, θ)− iϵ+Q+Φ(σ, θ) = Φ(σ + iϵ−ρ
αθ+, θ− + ϵ−)

(A.39)

by expanding infinitesimally according to the law ϕ(t + δt, x + δx) = ϕ(t, x) +

δt∂tϕ(t, x) + δx∂xϕ(t, x):

Φ(σ + iϵ−ρ
αθ+, θ− + ϵ−) = Φ(σ, θ) + iϵ−ρ

αθ+∂αΦ(σ, θ) + ϵ−∂θ−Φ(σ, θ) (A.40)

Comparing this result with the previous one at all orders in ϵ+:

Q+ = −ραθ+∂α + i∂θ− = ∂θ̄+ − ραθ+∂α (A.41)

Supersymmetric transformations on Superfield components

We start from the transformation on superfield:

δΦ(σ, θ) = δXµ(σ) + θ̄δψµ(σ) +
1

2
θ̄θδF µ(σ) = ϵ̄QΦ(σ, θ) = ϵ̄Q(Xµ(σ)) + ϵ̄Q(θ̄ψµ(σ))+

(A.42)
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+ϵ̄Q(
1

2
θ̄θF µ(σ)) =

∂Xµ

∂θ̄
− (ραθ)A∂αX

µ +
∂(θ̄ψµ(σ))

∂θ̄
− (ραθ)A∂α(θ̄ψ

µ(σ)) +
∂(1

2
θ̄θF µ(σ))

∂θ̄
+

(A.43)

−(ραθ)A∂α(
1

2
θ̄θF µ(σ)) = ϵ̄AψµA(σ)− ϵ̄A(ραθ)A∂αX

µ(σ) + ϵ̄AθAF
µ(σ)− ϵ̄A(ραθ)Aθ̄

B∂αψ
µ
B(σ)

(A.44)

since ∂θ̄θ = −i(ρα)−1 and all the other terms get higher power of θ or θ̄ and so

vanish.

We can continue the computation rewriting in component the term (or simply

using the Fierz relation in 2D θAθ̄B = −1
2
δAB θ̄CθC):

ϵ̄A(ραθ)Aθ̄
B∂αψ

µ
F (σ) = −(ϵ+θ− − ϵ−θ+)ρ

α(θ+∂αψ
µ
− − θ−∂αψ

µ
+) = (A.45)

owing to the anticommutating nature of the ϵ−, θ−, ϵ+, θ+ and so no more than 1

copy can be in each term:

= −(ϵ+θ−θ+ρ
α∂αψ− + ϵ−θ+θ−ρ

α∂αψ
µ
+) =

1

2
θ̄θϵ̄ρα∂αψ

µ(σ) (A.46)

Using this and the identity ϵ̄ραθ = −θ̄ραϵ we can rewrite finally the variation of

the superfield as:

δΦ(σ, θ) = ϵ̄ψµ(σ) + θ̄ραϵ∂αX
µ(σ) + θ̄ϵF µ(σ) +

1

2
θ̄θϵ̄ρα∂αψ

µ(σ) (A.47)

comparing with the previously obtained:

δΦ(σ, θ) = δXµ(σ) + θ̄δψµ(σ) +
1

2
θ̄θδF µ(σ) (A.48)

at each order of θ̄ we get the searched result.

Action in component fields

so we need to compute the effect of covariant derivatives DA = ∂
∂θ̄A

+ (ραθ)A∂α on

superfield Φµ(σα, θ) = Xµ(σα) + θ̄ψµ(σα) + 1
2
θ̄θF µ(σα):

DΦµ =

(
∂

∂θ̄
+ (ραθ)∂α

)
(Xµ(σα) + θ̄ψµ(σα) +

1

2
θ̄θF µ(σα)) = (A.49)
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=
�
�
�∂Xµ

∂θ̄
+ψµ+

1

2
θF µ+

1

2

θ̄

iρα
F µ+ (ραθ)∂αX

µ+ (ραθ)Aθ̄
B∂αψ

µ
B +

��������
(ραθ)

1

2
∂αθ̄θF

µ =

(A.50)

where we cancelled first term because Xµ does not depend on θ, θ̄ and last term

since contains 2 θ̄. Using 2D Fierz transformation θAθ̄B = −1
2
δAB θ̄CθC :

DΦµ = ψµ + θF µ + ραθ∂αX
µ − 1

2
θ̄θρα∂αψ

µ (A.51)

and analogally, just by multiplying by iρ0 correctly and switching according to

anticommutation rules:

D̄Φµ = ψ̄µ +Bµθ̄ − θ̄∂αX
µρα +

1

2
θ̄θ∂αψ̄

µρα (A.52)

Plugging this inside the action and keeping just terms containing θ̄θ since the other

ones vanish upon integration on d2θ:

S =
i

4π

∫
d2σd2θD̄AΦ

µDAΦµ =
i

4π

∫
d2σd2(ψµ+θF µ+ραθ∂αX

µ−1

2
θ̄θρα∂αψ

µ)(ψ̄µ+

(A.53)

+Bµθ̄ − θ̄∂αX
µρα +

1

2
θ̄θ∂αψ̄

µρα) = (A.54)

integrating by parts i
4π

∫
d2σd2θ 1

2
θ̄θ∂αψ̄

µραψµ = − i
4π

∫
d2σd2θ 1

2
θ̄θψ̄µρα∂αψµ we

get:

=
i

4π

∫
d2σd2θ(−θ̄θψ̄µρα∂αψµ− θ̄θFµF µ+

�������
F µραθ̄θ∂αXµ−�������

θ̄θFµρ
α∂αX

µ+ (A.55)

−θ̄θραρβ∂αXµ∂βX
µ) (A.56)

recalling that for α ̸= β ⇒ ραρβ∂αXµ∂βX
µ = 0 since derivatives commute while,

for α ̸= β Dirac matrices not we get that ραρβ∂αXµ∂βX
µ = (ρ0)2∂0Xµ∂0X

µ +

(ρ1)2∂1Xµ∂1X
µ = −∂0Xµ∂0X

µ+ ∂1Xµ∂
1Xµ = ∂αXµ∂

αXµ so, applying this to the

calculations and using
∫
d2θθ̄θ = −2i we get:

S =
i

4π

∫
d2σ(2iψ̄µρ

α∂αψ
µ − 2iFµF

µ + 2i∂αXµ∂
αXµ) (A.57)
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Appendix B

No-scale structure

Single Kähler modulus

We start from the simplest case of a single Kähler modulus in a model with Kähler

potential K = − ln(T + T̄ )n and W = W0 Gukov-Vafa-Witten Superpotential

(2.87). Having K = −n ln(T + T̄ ) ⇒ KT = KT̄ = −n
T+T̄

⇒ KT T̄ = n
(T+T̄ )2

⇒
KT T̄ = (T+T̄ )2

n
we can compute the potential, after stabilising complex structure

moduli and axio-dilaton and after noticing that since W0 = W0(z
a) ⇒ ∂TW0 =

∂T̄W0 = 0:

V (T, T̄ ) = eK(KT T̄ |KTW0|2 − 3|W0|2) = eK
(
(T + T̄ )2

n
| −n
T + T̄

|2|W0|2 − 3|W0|2
)

(B.1)

V (T, T̄ ) = eK |W0|2(n− 3) (B.2)

In our case, the volume squared V2 = (T + T̄ )3 so n = 3 which leads to V (T, T̄ ) =

0.

Multiple Kähler moduli

Even if the case of multiple Kähler Moduli seems so much difficult, Mathematics

comes in our help. In fact given:

K = − ln(f(T 1 + T̄ 1, . . . , T j + T̄ j) (B.3)
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we can use the Homogeinity of the function f to get:

f(α(T 1 + T̄ 1), . . . , α(T j + T̄ j)) = αnf(T 1 + T̄ 1, . . . , T j + T̄ j) (B.4)

and by using Euler’s theorem for the homogeneous functions:

(T i + T̄ ī)∂i(e
−K) = (T i + T̄ ī))Kie

−K = ne−K ⇒ (T i + T̄ ī)Ki = −n (B.5)

which gives, upon differentiating in T̄ ȷ̄ and recalling Ki = Kī: Kȷ̄ + (T + T̄ )iKiȷ̄.

Finally, multiplying by the inverse Kähler metric we get the fundamental rela-

tion:

Kiȷ̄Kȷ̄ + (T + T̄ )i = 0 (B.6)

and, using (B.5) after multiplying (B.6):

KiK
iȷ̄Kȷ̄ = n (B.7)

From this last equation we can finally obtain the generalisation of the single Kähler

modulus result:

V = eK(Kiȷ̄(KiW0)(Kȷ̄W̄0)− 3|W0|2) = eK |W0|2(n− 3)
n=3
= 0 (B.8)

(α′)3 No-Scale Breakdown

Starting from the (α′)3 corrected Kähler potential K = −2 ln(V + y) where y = ξ̂
2

we can repeat the idea of the previous section:

Ki = (K0)i
V

V + y
= (K0)i

1

1 + y
V
≃ (K0)i

(
1− y

V

)
(B.9)

by taking (B.5) (note that since now on what we find in (B.5) named Ki is now

(K0)i) and by substituting (K0)i =
Ki

(1− y
V )

in it we get:

(T i + T̄ ī)Kii = −3
(
1− y

V

)
(B.10)
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by repeating exactly the same steps as before, differentiating with the respect to

T̄ȷ̄, multiplying by the inverse metric and neglecting the subleading terms in V we

get:

KiK
iȷ̄Kȷ̄ − 3

(
1− y

V

)
= KiK

iȷ̄

(
3y

V

)
ȷ̄

= KiK
iȷ̄Kȷ̄

3y

2V
(B.11)

reshuffling:

KiK
iȷ̄Kȷ̄ = 3

(
1 +

ξ̂

4V

)
(B.12)

Giving us the final expression for δV(α′)3 :

δV(α′)3 ≃ eK(KiK
iȷ̄Kȷ̄ − 3)|W0|2 =

3ξ̂

4

|W0|2

V3
̸= 0 ⇔ ξ̂ ̸= 0 (B.13)

Extended no-scale structure

In the following part we are going to study the extended no-scale structure follow-

ing the line of [17]. First of all it is preferable to give a rigorous definition of the

extended no-scale structure following a Mathematical pattern.

Let Y6 to be a Calabi-Yau 3-fold and considering our usual Type IIB String com-

paactification leading to an N=1 4D SUGRA where we have such a model:

K = K0 + δK (B.14)

W = W0 (B.15)

then we have that δVgs = 0 if and only if the general correction δK is an homoge-

neous function of degree -2 in ti 2-cycle volumes.

It’s not easy to prove this statement, but we caqn do this rigorously using pertur-

bative tools. Since we would like to focus only on the corrections of scalar potential

we have to keep the focus on the part:

δVgs =
|W0|2

V2
(Kij∂iK∂jK − 3) (B.16)

We clearly consider K = −2 ln(V) + δKgs and, in order to get the Kähler metric

with quantum corrections we introducing an expansion parameter ϵ. We have
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than:

Kij =

(
∂2K0

∂τi∂τj
+ ϵ

∂2δKgs

∂τi∂τj

)ij
=

(
∂2K0

∂τi∂τj

(
1 + ϵ

((
∂2K0

∂τi∂τj

)−1
∂2δKgs

∂τi∂τj

)))ij

(B.17)

=

(
1 + ϵ

((
∂2K0

∂τi∂τj

)−1
∂2δKgs

∂τi∂τj

))il(
∂2K0

∂τi∂τj

)lj
(B.18)

And by using the Neumann series to compute the inverse matrix we get:(
1 + ϵ

((
∂2K0

∂τi∂τj

)−1
∂2δKgs

∂τi∂τj

))il

= δil − ϵKin
0 δKnl + ϵ2Kin

0 δKnpK
pq
0 δKql +O(ϵ3)

(B.19)

plugging this expansion, recalling δKgs = δK in (B.17) we are going to find:

Kij = Kij
0 − ϵKin

0 δKnlK
lj
0 + ϵ2Kin

0 δKnpK
pq
0 δKqlK

lj
0 +O(ϵ3) (B.20)

and by using this last expression in (B.16) we finally get:

δVgs = V0 + ϵδV1 + ϵ2δV2 +O(ϵ3) = ϵδV1 + ϵ2δV2 +O(ϵ3) (B.21)

since V0 = |W0|2
V2 (Kij

0 (K0)i(K0)j) = 0 due to no-scale structure we prove in the

previous part (B.8) and where we have:

δV1 = (2Kij
0 (K0)iδKj −Kin

0 δKnlK
lj
0 (K0)i(K0)j) (B.22)

δV2 = (K lj
0 δKiδKj − 2Kin

0 δKnlK
lj
0 (K0)iδ(K0)j +Kin

0 δKnpK
pq
0 δKqlK

lj
0 (K0)i(K0)j)

(B.23)

By using (B.6) we get that δV1 can be rewritten in simpler way as:

δV1 = −|W0|2

V2

(
−2τj

∂(δK)

∂τj
+ τnτl

∂2(δK)

∂τnτl

)
(B.24)

and by changing basis of the field space, defining Aij =
∂τi
∂tj

=
∫
Y6
Di∧Dj∧J = kijlt

l

homogeneous function of degree 1 ∀i, j (so the elements of the inverse Aij of degree
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-1), using the relations tiτi = 3V , Aijtj = 2τi and Aijt
itj = 6V we can go into 2-

cycle volumes’ one:

2τj
∂

∂τj
= tl

∂

∂tl
(B.25)

τnτl
∂2

∂τn∂τl
=

1

4
titk

∂2

∂ti∂tk
+

1

4
Aijtitk

∂(Alp)

∂tk

∂

∂tp
(B.26)

Using Euler’s theorem for homogeneous functions tk
∂(Alp)
∂tk

= (−1)Alp we get τnτl
∂2

∂τnτl
=

1
4
titk

∂2

∂ti∂tk
− 1

4
tp

∂
∂tp

and so:

δV1 = −1

4

|W0|2

V2

(
3tl
∂(δK)

∂tl
+ titk

∂2(δK)

∂ti∂tk

)
(B.27)

and by reusing Euler’s theorem, with m degree of homogeneity in 2-cycle vol-

umes:

δV1 = −|W0|2

V2

1

4
(3m+m(m− 1))δK = −1

4

|W0|2

V2
(m(m+ 2))δK (B.28)

Since we know that conjectured String Loop corrections to Kähler form are homo-

geneous of degree {
m = −2 for δKKK

gs

m = −4 for δKW
gs

(B.29)

then: {
δ(V KK

gs )1 = 0

δ(V KK
gs )1 = −2 |W0|2

V2 δKW
gs

(B.30)

by computing the second order term in ϵ in (B.16) we can get the first non-vanishing

contribute given by the exchange of strings with Kaluza Klein momentum giving

the final potential of:

δV 1Loop
gs =

|W0|2

V2

∑
i

(
(gsCi)

KK(K0)ii − 2δKW
gs

)
(B.31)
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Appendix C

KKLT computations

We start from our Kähler potential and Superpotential with a single Kähler mod-

ulus T :

K = −2 ln(V) = −3 ln(T + T̄ ) = −3 ln(τ) and W = W0 + Ae−aT (C.1)

The consequent Scalar Potential reads as:

V = eK(Kiȷ̄∂iW∂ȷ̄W̄ +Kij̄(∂iWKȷ̄W̄ + ∂iW̄Kȷ̄W )) = (C.2)

= eK
(
KT T̄∂TW∂T̄ W̄ +KT T̄KT̄ ((∂TW )W̄ + (∂T W̄ )W )

)
(C.3)

by neglecting the suppressed terms in the second part of the sum containing 2 non-

perturbative corrections since subleading, recalling KT T̄KT̄ = −2τ , KT T̄ = 4τ2

3

and using (C.1) we get:

V = eK
(
4τ 2

3
a2|A|2e−2aT − 2τ |W0|(−aAe−aT W̄0 − aĀe−aT̄W0)

)
(C.4)
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by rewriting W0 = |W0|ei arg(W0), A = |A|ei arg(A)

V = eK
(
4τ 2

3
a2|A|2e−2aT + 2τa|A||W0|e−aτ (e−i(θ−arg(A)+arg(W0)) + e+i(θ−arg(A)+arg(W0))

)
=

(C.5)

=
gse

KC.S.

8π
eKK |W0|2

(
4τ 2

3|W0|2
a2|A|2e−2aT + 2τ

a|A|
|W0|

e−aτcos(θ − arg(A) + arg(W0))

)
(C.6)

Recalling eKK = 1
V2 :

V =
gse

KC.S.

8π
|W0|2

(
4τ 2

3V2|W0|2
a2|A|2e−2aT + 2τ

a|A|
V2|W0|

e−aτcos(θ − arg(A) + arg(W0))

)
(C.7)

minimising it in θ ⇒ ∂V
∂θ

= 0 & cos(θ − arg(A) + arg(W0)) = −1

θ = arg(A)− arg(W0) + (2k + 1)π, k ∈ Z we get:

V =
gse

KC.S.

8π
|W0|2

(
4τ 2

3V2|W0|2
a2|A|2e−2aT − 2τ

a|A|
V2|W0|

e−aτ
)

(C.8)
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Appendix D

Non-perturbative blow-up

inflation: computations for

h1,1 = 3 case

Kähler metric

We start by assuming the Kähler potential of the form:

K = −2 lnV (D.1)

In order to compute the Kähler metric need the second derivatives of K with

respect to the Ti. We start from first derivatives:

Kb = −2 ∂b lnV = −
3
√
τb

2V
(D.2)

Kϕ = −2 ∂ϕ lnV =
3λϕ

√
τϕ

2V
(D.3)

Ks = −2 ∂s lnV =
3λs

√
τs

2V
(D.4)
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h1,1 = 3 CASE

where ∂i ≡ ∂Ti =
1
2
∂τi . The second order derivatives instead, read:

Kbb̄ = − 3

8V√τb
+

9τb
8V2

≃ − 3

8V√τb
(D.5)

Kϕϕ̄ = +
3λϕ

8V√τϕ
−

9λ2ϕτϕ

8V2
≃ 3λϕ

8V√τϕ
(D.6)

Kss̄ = +
3λs

8V√τs
− 9λ2sτs

8V2
≃ 3λs

8V√τs
(D.7)

Kbϕ̄ = Kϕb = −
9λϕ

√
τbτϕ

8V2
(D.8)

Kbs̄ = Ks̄b = −
9λs

√
τbτs

8V2
(D.9)

Kϕs̄ = Ksϕ̄ =
9λϕλs

√
τϕτs

8V2
(D.10)

where we neglected terms suppressed by higher powers of V . These computations

lead then, with the crossing terms, to the Kähler metric:

Kiȷ̄ =

Kbb̄ Kbϕ̄ Kbs̄

Kϕb̄ Kϕϕ̄ Kϕs̄

Ksb̄ Ksϕ̄ Kss̄

 (D.11)

Kiȷ̄ =


− 3

8V√τb
+ 9τb

2V2 −9λϕ
√
τbτϕ

8V2 −9λs
√
τbτs

8V2

−9λϕ
√
τϕτb

8V2 +
3λϕ

8V√τϕ
− 9λ2ϕτϕ

2V2

9λϕλs
√
τϕτs

8V2

−9λs
√
τsτb

8V2

9λϕλs
√
τϕτs

8V2
3λs

8V√τs −
9λ2sτs
2V2

 (D.12)

Whose leading inverse terms are:

(K−1)ij ≈


4τ2b
3

4τbτϕ 4τbλs

4τbτϕ
8
√
τϕτ

3/2
b

3λϕ
4τϕλs

4τbλs 4τϕλs
8
√
λsτ

3/2
b

3λs

 , (D.13)
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Minimum of the Scalar Potential

Now what we can easily do, before computing the canonical normalisation, is to

find the minimum conditions via setting all the partial derivatives to zero:

∂V

∂V
= 0 (D.14)

∂V

∂τϕ
= 0 (D.15)

∂V

∂τs
= 0 (D.16)

First of all it’s important to rewrite the scalar potential after fixing the ax-

ions:

V (V , τϕ, τs) =
gse

KCS

8π
W 2

0

(
8a2sA

2
s

W 2
0 λs

√
τse

−2asτs

V
− 4asAs

W0

τse
−asτs

V2

+
8a2ϕA

2
ϕ

W 2
0 λϕ

√
τϕe

−2aϕτϕ

V
− 4aϕAϕ

W0

τϕe
−aϕτϕ

V2
+

3ξ̂

4V3

) (D.17)

At this point, setting S = 1 the second and third equations (D.15),(D.16) give

us:

−16a3sA
2
s

W 2
0 λs

√
τse

−2asτs

V
+

4a2sA
2
s

W 2
0 λs

e−2asτs

√
τsV

= −4a2sAs
W0

τse
−asτs

V2
+

4asAs
W0

e−asτs

V2
(D.18)

and (here we show the right simplification for proceeding):

−
��164a�3

2

ϕ A�2
ϕ

W�2
0 λϕ

√
τϕe

−�2aϕτϕ

��V
+

�4a�2ϕA�2
ϕ

W�2
0 λϕ

e−�2aϕτϕ
√
τϕ��V

= −
�4a�2ϕ�

�Aϕ

�
�W0

τϕ����e−aϕτϕ

V�2
+

�4��aϕ�
�Aϕ

�
�W0

����e−aϕτϕ

V�2

(D.19)

Leading us to:

asAse
−asτs

W0λs
√
τs

(1− 4asτs) =
1

V
(1− asτs) (D.20)

aϕAϕe
−aϕτϕ

W0λϕ
√
τϕ

(1− 4aϕτϕ) =
1

V
(1− aϕτϕ) (D.21)
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h1,1 = 3 CASE

Which can be rewritten as:

asAse
−asτs =

W0λs
√
τs

V
(1− asτs)

(1− 4asτs)
(D.22)

aϕAϕe
−aϕτϕ =

W0λϕ
√
τϕ

V
(1− aϕτϕ)

(1− 4aϕτϕ)
(D.23)

And, finally, recalling to evaluate them in the minimum, to:

⟨V⟩ =
W0λs

√
⟨τi⟩

aiAi

(1− ai ⟨τi⟩)
(1− 4ai ⟨τi⟩)

eai⟨τi⟩ ∀i = ϕ, s (D.24)

Since during inflation the inflaton value τϕ is big this can be even approximated

by [30]:

⟨V⟩ =
W0λs

√
⟨τi⟩

4aiAi
eai⟨τi⟩ (D.25)

Instead, the first equation (D.14), leads us to:

−8a2sA
2
s

W 2
0 λs

√
τse

−2asτs

V2
+
8asAs
W0

τse
−asτs

V3
= +

8a2ϕA
2
ϕ

W 2
0 λϕ

√
τϕe

−2aϕτϕ

V2
− 8aϕAϕ

W0

τϕe
−aϕτϕ

V3
+

9ξ̂

4V4

(D.26)

Solving in V and plugging its vacuum expectation value depending on ⟨τs⟩ , ⟨τϕ⟩
into (D.24) we finally get:

⟨τs⟩ ≃ ⟨τϕ⟩ ≃

(
ξ̂

2λs

)2/3

≃

(
ξ

g
3/2
s

)2/3

(D.27)

By substituting all these values inside the potential (D.17) we get, following [23]

in h1,1 = 3 case:

⟨V ⟩ = −3W 2
0

2V3

((
λϕ

a
3/2
ϕ

+
λs

a
3/2
s

)
ln(⟨V⟩)3/2 − ξ

2

)
V≫1
< 0 (D.28)

However, adding the uplift term Vup ≃ cW0

V2 and fine tuning the coefficient cup we

can get a Minkowski or slightly De Sitter vacuum.
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Canonical Normalisation: Differential Equation Approach

As we previously stated, the inflaton for us will be the modulus τϕ and we want

now to derive their canonical normalisation. In order to rewrite the potential and

all the other quantities we are going to compute in terms of canonically normalised

fields.

The Kinetic Lagrangian for the canonically normalised inflaton ϕ can be written

as:

Lkin =
1

2
(∂µϕ)

2 + · · · = Kϕϕ((∂µτϕ)(∂
µτϕ)) + . . . (D.29)

where dots indicate kinetic terms of other moduli. Substituting (D.6) in:

Lkin =
1

2
(∂µϕ)

2 + · · · = 3λϕ
8V√τϕ

((∂µτϕ)(∂
µτϕ)) + . . . (D.30)

so, in order to find the expression for ϕ in terms of τϕ we need to solve this

differential equation:

∂µϕ =

√
3λϕ
4V

∂µτϕ

τ
1
4
ϕ

(D.31)

which gives:

ϕ =

√
4λϕ
3V

τ
3/4
ϕ (D.32)

With such a canonical normalisation the inflaton scalar Potential

Vinf = V0

(
1− 16aϕAϕ

W0ξ̂
τϕVe−aϕτϕ

)
(D.33)

can be written, just by easily substituting τϕ using (D.32) as:

Vcan.inf. = V0

(
1− 16aϕAϕ

W0ξ̂

(
3V
4λϕ

)2/3

ϕ4/3Ve
−aϕ

(
3V
4λϕ

)2/3

ϕ4/3
)

(D.34)
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APPENDIX D. NON-PERTURBATIVE BLOW-UP INFLATION: COMPUTATIONS FOR

h1,1 = 3 CASE

Canonical Normalisation: Linear-Algebraic Approach close to Mini-

mum

As we said before, the canonical normalisation can be computed, around the min-

imum, even through the mass matrix eigenvalues, let us do so, following [22],

starting expanding each modulus around its vacuum expectation value:

τi = ⟨τi⟩+ δτi, ∀i = b, ϕ, s. (D.35)

Plugging it inside the Lagrangian we get1:

L = Kij∂µ (δτi) ∂
µ (δτj)− ⟨V ⟩ − 1

2
Vijδτiδτj +O(δτ 3), (D.36)

using the Kähler metric (D.12) we can rewrite the original moduli δτi in terms of

the canonically normalised fields around the minimum δϕi as:

δτi =
1√
2
Pijδϕj (D.37)

or, explicitly, as: δτb

δτϕ

δτs

 =

 v⃗b

 δχ√
2
+

 v⃗ϕ

 δϕ√
2
+

 v⃗s

 δϕs√
2
, (D.38)

the Lagrangian (D.36) takes the canonical form:

L =
1

2
(∂µ (δχ) ∂

µ (δχ) + ∂µ (δϕ) ∂
µ (δϕ) + ∂µ (δϕs) ∂

µ (δϕs))− ⟨V ⟩ −
(
m2
χ

2
δχ2+

+
m2
ϕ

2
δϕ2 +

m2
s

2
δϕ2

s

)
,

(D.39)

with v⃗i eigenvectors and m2
i eigenvalues of the mass-squared matrix (M2)ij ≡

1Since now on, in this appendix, in order to make the notation easier, we are recalling Kiȷ̄ =
Kij and the same for Vij ,Mij since, even if derivatives are on Ti, T̄j we are working with quantities
dependent on τi which is a real field.
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1
2
(K−1)ik Vkj. These eigenvectors v⃗i have to be normalised as (v⃗Ti )

m ∂K
∂Tm∂T̄l

(v⃗j)
l =

δij.

Using instead the inverse Kähler metric at leading order (D.13) we can compute

the Hessian of the scalar potential evaluated at the global minimum (D.24), (D.27),

which, at leading order, looks like:

Vij =
1

⟨τb⟩13/2


cb − cϕ ⟨τϕ⟩3/2 − cs ⟨τs⟩3/2 −4aϕcϕ⟨τb⟩⟨τϕ⟩3/2

27
−4ascs⟨τb⟩⟨τs⟩3/2

27

−4aϕcϕ⟨τb⟩⟨τϕ⟩3/2

27

8a2ϕcϕ⟨τb⟩
2⟨τϕ⟩3/2

81
0

−4ascs⟨τb⟩⟨τs⟩3/2
27

0 8a2scs⟨τb⟩
2⟨τs⟩3/2

81

,
(D.40)

where:

cb ≡
99ν

4
, cϕ ≡

81(4aϕAϕW0)
2

16λϕ
, cs ≡

81(4asAsW0)
2

16λs
. (D.41)

As we said before multiplying (D.13) by (D.40) we can get the leading order mass

(setting without loss of generality γϕ = γs = Aϕ = As = W0 = 1):

M2 =
1

⟨τb⟩9/2


−9
(
aϕ ⟨τϕ⟩5/2 + as ⟨τs⟩5/2

)
(1− 7δ) 6a2ϕ ⟨τb⟩ ⟨τϕ⟩

5/2 (1− 5δ) 6a2s ⟨τb⟩ ⟨τs⟩
5/2 (1− 5δ)

−6aϕ
√

⟨τb⟩ ⟨τϕ⟩2 (1− 5δ) 4a2ϕ ⟨τb⟩
3/2 ⟨τϕ⟩2 (1− 3δ) 6a2s ⟨τϕ⟩ ⟨τs⟩

5/2

−6as
√

⟨τb⟩ ⟨τs⟩2 (1− 5δ) 6a2ϕ ⟨τs⟩ ⟨τϕ⟩
5/2 4a2s ⟨τb⟩

3/2 ⟨τs⟩2 (1− 3δ)


(D.42)

where δ ≡ 1
4aϕ⟨τϕ⟩

= 1
4as⟨τs⟩ ≃ 1

4 ln(V) ≪ 1. The two small blow-up modes τϕ and

τs are both stabilised non perturbatively so their dynamic behaviour is the same,

then they will have the same mass which will be heavier that the large overall

volume mode τb: mϕ ∼ ms ≫ mχ. Therefore we can work out the leading order

volume scaling of the moduli mass spectrum, reinstatingMp ̸= 1 for a better point

of view:

m2
ϕ ∼ m2

s ∼ Tr[M2] = m2
χ +m2

ϕ +m2
s ∼

a2ϕ⟨τϕ⟩
2

⟨τb⟩3
∼ a2s⟨τs⟩

2

⟨τb⟩3
∼
(
lnV
V

)2
M2

P ,(D.43)

m2
χ ∼ Det[M2]

Tr[M2]2
∼ m2

χm
2
ϕm

2
s

m2
ϕm

2
s

∼ (⟨τϕ⟩3/2+⟨τs⟩3/2)
aϕ⟨τϕ⟩⟨τb⟩9/2

∼ (⟨τϕ⟩3/2+⟨τs⟩3/2)
as⟨τs⟩⟨τb⟩9/2

∼ M2
P

V3 lnV . (D.44)

Let us now derive the corresponding eigenvectors from the classical eigenvector

equation M2v⃗i = m2
i v⃗i ∀i = b, ϕ, s. For the eigenvalue m2

χ we have (for v⃗b =
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h1,1 = 3 CASE

(xb, yb, zb)):

M2v⃗b = m2
χv⃗b ⇔


xb ≃ as ⟨τb⟩ (yb + zb)

yb = zb

zb

, (D.45)

where without loss of generality we have set aϕ = as and ⟨τϕ⟩ = ⟨τs⟩.
Next, for the eigenvalue m2

ϕ we get the eigenvector (for v⃗ϕ = (xϕ, yϕ, zϕ)):

M2v⃗ϕ = m2
ϕv⃗ϕ ⇔


xϕ ≃ ⟨τs⟩√

⟨τb⟩
yϕ

yϕ

z2 ≃ ⟨τs⟩
⟨τb⟩

3/2
yϕ ≪ yϕ

. (D.46)

In the end the eigenvector correspondent to the eigenvaluem2
s is (for v⃗3 = (xs, ys, zs)):

M2v⃗s = m2
sv⃗s ⇔


xs ≃ ⟨τs⟩√

⟨τb⟩
zs

ys ≃ ⟨τs⟩
⟨τb⟩

3/2
zs ≪ zs

zs

. (D.47)

The non fixed remaning components zb, yϕ, zs can be worked out via eigenvectors

normalisation as (recalling K = ∂K
∂Tm∂Tl

):


v⃗b · K · v⃗b = 1 ⇔ zb ≃ 1

as
,

v⃗ϕ · K · v⃗ϕ = 1 ⇔ y2 ≃ ⟨τs⟩ ⟨τb⟩3/4 ,
v⃗s · K · v⃗s = 1 ⇔ zs ≃ ⟨τs⟩1/4 ⟨τb⟩3/4 .

(D.48)

Therefore the general form (D.38) for the canonical normalisation takes the form:

 δτb

δτϕ

δτs

 =

 ⟨τb⟩
1
as
1
as

 δϕ1√
2
+


⟨τb⟩1/4 ⟨τs⟩3/4

⟨τb⟩3/4 ⟨τs⟩1/4
⟨τs⟩7/4

⟨τb⟩3/4

 δϕ2√
2
+


⟨τb⟩1/4 ⟨τs⟩3/4

⟨τs⟩7/4

⟨τb⟩3/4

⟨τb⟩3/4 ⟨τs⟩1/4

 δϕ3√
2
,

(D.49)

which, since we have
(

⟨τs⟩
⟨τb⟩

)3/4
=
(

1

g
3/4
s

√
V

)
≪ 1 in terms of factors of the overall
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volume2 scales as:

δτb
⟨τb⟩

≃ O(1) δχ+O

(
1

g
3/4
s

√
V

)
δϕ+O

(
1

g
3/4
s

√
V

)
δϕs ≃ O(1) δχ, (D.50)

δτϕ
⟨τϕ⟩

≃ O
(

1

ln(V)

)
δχ+O

(
g−1/4
s

√
V
)
δϕ+O

(
1

g
7/4
s

√
V

)
δϕs ≃ O

(√
V

g
1/4
s

)
δϕ,

(D.51)

δτs
⟨τs⟩

≃ O
(

1

ln(V)

)
δχ+O

(
1

g
7/4
s

√
V

)
δϕ+O

(
g−1/4
s

√
V
)
δϕs ≃ O

(
1

g
7/4
s

√
V

)
δϕs,

(D.52)

Giving the right volume scaling found in (D.32).

These expressions are not only useful in the context of canonical normalisation

per se, in fact they have a very interesting geometric and physical meaning. From

(D.50), we see that the overall volume mode is mostly given by δχ and then

it mixes at subleading order with δϕ and δϕs in the same way; this have the

meaning that the volume is bigger than both the blow-up modes in the same

way (excluding the evolution during the inflation). From the other point of view,

from (D.51) and (D.52), we realise that each blow-up mode is mostly given by

δϕ, or δϕs respectively, then it mixes with the overall volume, with an even more

suppressed mixing with the other blow-up mode, which let us understand better the

geometric separation between the two blow-up modes smoothing two singularities

in different points of the Calabi-Yau three-fold. In addition to this, as stated in [22],

since δτϕ is our non-canonically normalised inflaton, when inflation ends, reached

its minimum, after some oscillations, the field τϕ stops oscillating producing δτϕ

particles. However the canonical normalisation (D.51) let us show how, at this

point, since the enhanced coupling, the universe is filled by δϕ particles and much

fewer δχ and δϕs such that the field δϕ (and not the volume or small modulus)

starts dominating the energy density to the universe.

2For τs ∼ g−1
s ∼ O(10) and τb ∼ (V)2/3.
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Appendix E

Axion canonical normalisation

We would like now to check the consistency of the result (4.6) with the linear

algebra method. Differently from the inflaton case, in this case the two methods

will perfectly give the same result since Kϕϕ does not depend on inflaton axion

and so the differential equation solution is trivial as we saw before and matches

the eigenvector solution.

We start from the potential which is the curvaton potential (4.21) and we compute

his Hessian matrix with the respect to the axions at leading order given by1:

⟨V c
ij⟩ ≡

〈
∂2V

∂θi∂θj

〉
=


0 0 0

0
3λϕ|W0|2a2ϕτ

3/2
ϕ

τ
9/2
b

0

0 0 0

 , (E.1)

where we have, again, used the relations (D.25) and (D.27) after applying the

second derivatives. The transformation to canonical fields is given by δθb

δθϕ

δθM

 =

w⃗b
 δσb√

2
+

w⃗ϕ
 δσϕ√

2
+

w⃗M
 δσM√

2
(E.2)

1We are going to neglect the small cycle axion θs, since we are interested, in the end, in the
canonical normalisation of θϕ.
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This can be rewritten shortly as

δθi =
1√
2
Qijδσj (E.3)

where Q is the matrix that contains the vectors w⃗j as columns. They are the

eigenvectors of the mass matrix (M2
c )ij ≡ 1

2
⟨(K−1)ikV

ax
kj ⟩ whose eigenvalues are

the axion masses. The eigenvectors fulfill the normalization condition

w⃗T
i · ⟨K⟩ · w⃗j ≡ Qki ⟨Kkl⟩Qlj = δij. (E.4)

The mass matrix at leading order is given by

(M2
c )ij ≈


0

6λϕ|W0|2a2ϕτ
5/2
ϕ

τ
7/2
b

0

0
4|W0|2a2ϕτ

2
ϕ

τ3b
0

0
6λϕ|W0|2a2ϕτ

5/2
ϕ τM

τ
9/2
b

0

 . (E.5)

The corresponding eigenvalues and eigenvectors are

m2
θb
= 0, w⃗b =

1

0

0

 , (E.6)

m2
θϕ

=
4|W0|2a2ϕτ 2ϕ

τ 3b
, w⃗ϕ =


τb/τM
2τ

3/2
b

3λϕ
√
τϕτM

1

 , (E.7)

m2
θM

= 0, w⃗M =

0

0

1

 . (E.8)
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After imposing the normalisation condition (E.4), the normalized eigenvectors read

as:

w⃗b ≡
w⃗b√

w⃗T
b · ⟨K⟩ · w⃗b

≈ 2τb√
3
w⃗b =


2τb√
3

0

0

 , (E.9)

w⃗ϕ ≡
w⃗ϕ√

w⃗T
ϕ · ⟨K⟩ · w⃗ϕ

≈
√

6λϕτ
3/4
ϕ τM

τ
3/4
b

w⃗ϕ =


√

6λϕτ
3/4
ϕ τ

1/4
b

2
√
2τ

1/4
ϕ τ

3/4
b√

3λϕ√
6λϕτ

3/4
ϕ τM

τ
3/4
b

 , (E.10)

w⃗M ≡ w⃗M√
w⃗T
M · ⟨K⟩ · w⃗M

≈ 2
√
2τ

1/4
M τ

3/4
b√

3λM
w⃗M =


0

0
2
√
2τ

1/4
M τ

3/4
b√

3λM

 . (E.11)

Giving us in particular:

δθb ∼ O(V2/3)δσb +O(V1/6)δσϕ ∼ O(V2/3)δσb, (E.12)

δθϕ =
(

4V
3λϕ

)1/2
τ
1/4
ϕ δσϕ, (E.13)

δθM ∼ O(V1/2)δσM +O(V−1/2)δσϕ ∼ O(V1/2)δσM (E.14)

which is coherent with the normalisation we computed (4.6).
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Appendix F

Axion couplings

The decay possibilities for the axion and so the couplings, depend on the brane set-

ting so, again, since we consider only the geometric regime, we have 2 possibilities

which we have to inspect1.

No D7-Branes Wrapped Around The Inflaton

Using the previosuly defined Kähler metric (D.12), the matrices Pij in appendix

D.2 of [20], Qkl(E.3) and following the notation in [20] where indices on these

3 elements have the meaning of derivatives, the kinetic and potential trilinear

coupling terms we need to explicitly compute are given by:

Lint,kin = ⟨∂τmKnp⟩δτm∂µδθn∂µδθp

=
1

23/2
KmnpPmiQnjQpkδϕi∂µδσj∂

µδσk, (F.1)

Lint,pot = −1

2

〈
∂3V

∂τm∂θn∂θp

〉
δτmδθnδθp

= − 1

25/2

〈
∂3V

∂τm∂θn∂θp

〉
PmiQnjQpkδϕiδσjδσk . (F.2)

1Note that we are going to neglect the small cycle axion since, as stated in [20], this choice
will not impact the couplings values.
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Let us first argue that the potential couplings to the volume and SM axions vanish:

since V does not depend on θb or θM but only on θϕ, the indices n and p in (F.2)

must both take on the value “ϕ”. However, the components Qϕb and QϕM vanish,

so that there are no potential couplings ∼ δϕδσbδσb or ∼ δϕδσMδσM . However

we don’t care too much about it since we want terms with δσϕ inside so the only

important note is that the curvaton δσϕ can’t decay, since it has equal mass, in

the inflaton ϕ+something or in itself+something, so no terms can contain σϕ or ϕ.

We now compute the third derivatives of the Kähler potential now:

Kbbb = − 3

2τ 3b
, Kbbϕ =

45λϕ
√
τϕ

16τ
7/2
b

, KbbM =
45λM

√
τM

16τ
7/2
b

, Kbϕϕ = − 9λϕ

16
√
τϕτ

5/2
b

,

KbϕM = −
27λϕλM

√
τϕτM

8τ 4b
, KbMM = − 9λM

16
√
τMτ

5/2
b

, Kϕϕϕ = − 3λϕ

16τ
3/2
ϕ τ

3/2
b

,

(F.3)

KϕϕM =
9λϕλM

√
τM

16
√
τϕτ 3b

, KϕMM =
9λϕλM

√
τϕ

16
√
τMτ 3b

, KMMM = − 3λM

16τ
3/2
M τ

3/2
b

The trilinear couplings of the inflaton axion always involve exactly one other axion

and one modulus field. The relevant coupling terms are given in (F.1) and (F.2). In

analogy to the argument above, the potential coupling terms (F.2) vanish because

the indices n and p must be “ϕ” for having a non vanishing potential derivative,

while on of the indices j and k must either take on the value “b” or “M” for not

having a decay of the inflaton axion in itself. This gives rise to either a factor

“Qϕb” or “QϕM”, both of which are zero.

From the kinetic coupling terms of the inflaton axion are induced from (F.1).

There are always two possibilities how δϕi∂µδσj∂
µδσk can contribute to a decay

of σϕ corresponding to j = ϕ or k = ϕ. Before doing so we must eliminate

the derivatives through a very easy procedure, using Klein Gordon equation and

integration by parts in fact we can rewrite:

δϕi(∂µδσj)(∂
µδσk) =

1

2

(
m2
i −m2

j −m2
k

)
δϕiδσjδσk, (F.4)

The individual coupling terms are given as follows:
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• Decay δσϕ → δχδσb:

Here we have, since the masses mχ,mσb ≪ mσϕ :

L(σϕ→χσb)

int,kin,(c) = − 1

23/2
KmnpPmbQnϕQpbm

2
θϕ
δχδσϕδσb. (F.5)

Since QMb = Qϕb = 0, the index p is forced to take on the value “b” so that

we obtain

L(σϕ→χσb)

int,kin,(c) = − 1

23/2
KmnbPmbQnϕQbbm

2
θϕ
δχδσϕδσb (F.6)

≈ − 1

23/2
(KbbbPbbQbϕ +KbIbPbbQϕϕ)Qbbm

2
θϕ
δχδσϕδσb (F.7)

≈ −
√

3λϕ|W0|2a2ϕτ
11/4
ϕ

τ
15/4
b

δχδσϕδσb . (F.8)

• Decay δσϕ → δχδσM :

This decay is given by (neglecting all the subleading masses):

L(σϕ→χσM )

int,kin,(c) = − 1

23/2
KmnpPmbQnϕQpMm

2
θϕ
δχδσϕδσM . (F.9)

Since QϕM = QbM = 0, the index p is forced to take on the value “M” so

that we have

L(σϕ→χσM )

int,kin,(c) = − 1

23/2
KmnpPmbQnϕQMMm

2
θϕ
δχδσϕδσM (F.10)

∼ τ
−9/2
b δχδσϕδσM . (F.11)

• Decay δσϕ → δϕMδσb:

The coupling terms, neglecting all the subleading masses again, read as:

L(σϕ→ϕMσb)

int,kin,(c) = − 1

23/2
KmnpPmMQnϕQpbm

2
θϕ
δϕMδσϕδσb. (F.12)
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Here the index p is again forced to take on the value “b” and we obtain

L(σϕ→ϕMσb)

int,kin,(c) = − 1

23/2
KmnpPmMQnϕQpbm

2
θϕ
δϕMδσϕδσb (F.13)

∼ τ
−9/2
b δϕMδσϕδσb . (F.14)

• Decay δσϕ → δϕMδσM :

For this decay we have (neglecting all the subleading masses):

L(σϕ→ϕMσM )

int,kin,(c) = − 1

23/2
KmnpPmMQnϕQpMm

2
θϕ
δϕMδσϕδσM . (F.15)

The index p must take on the value “M” and the coupling terms are given

by:

L(σϕ→ϕMσM )

int,kin,(c) = − 1

23/2
KmnpPmMQnϕQMMm

2
θϕ
δϕMδσϕδσM (F.16)

≈ − 1

23/2

(
KMbMPMMQbϕ +KMϕMPMMQϕϕ+ (F.17)

+KMMMPMMQMϕ

)
QMMm

2
θϕ
δϕMδσϕδσM ≈ (F.18)

≈
2
√
3λϕ|W0|2a2ϕτ

11/4
ϕ

τ
15/4
b

δϕMδσϕδσM . (F.19)

So the dominant decays are the first and the last ones.

However an allowed decay is still missing from the list, which will be the one seen in

(4.50). This decay is the one arising from the Gauge Kinetic function term:

(fWαW
α
∣∣
F
) + h.c. (F.20)

Where Wα Supersymmetric generalisation of Field Strength tensor (now in the

abelian case for simplicity, in the non-abelian is needed just to add a trace on the

contraction of the tensors) and f = TM gauge kinetic function.
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Expanding the expression we get:

(fWαW
α
∣∣
F
) + h.c. = −τMFµνF µν +

i

2
(f − f ∗)FµνF̃

µν = −τMFµνF µν + θMFµνF̃
µν

(F.21)

From here we can rewrite the Canonically Normalised Field Strength Tensor as

Gµν =
√
2 ⟨τM⟩Fµν giving us:

(fWαW
α
∣∣
F
) + h.c. = − τM

2 ⟨τM⟩
FµνF

µν +
θM

2 ⟨τM⟩
FµνF̃

µν (F.22)

Where we kept the name Fµν even for the canonically normalised field strength

tensor Gµν → Fµν . Expanding now around the minimum τM = ⟨τM⟩ + δτM and

θM = ⟨θM⟩+δθM and using the non-dominant canonical normalisation component

of τM in terms of σϕ in (E.10) we get:

L ⊃ −
√
6λϕτ

3/4
ϕ τM

τ
3/4
b

δσϕFµνF̃
µν (F.23)

Eliminating derivatives of the gauge field Aµ in Fµν = ∂µAν − ∂νAµ and in F̃ µν =

ϵµνρσFρσ using (F.4) and so adding the only mass different from zero mσϕ we get

the coupling:

gvis = −
√
6λϕτ

3/4
ϕ τM

V1/2
m2
σϕ

(F.24)

D7-Branes Wrapped Around Inflaton Cycle

In the following scenario we instead have the inflaton wrapped by an hidden sector.

Even though this change, we will obtain the same results for every coupling but we

have even an additional one coming from the gauge kinetic function term where

the inflaton τϕ couples with hidden sector gauge bosons γvis. In this case then we

get a term:

L ⊃ −τϕFµνF µν − θϕFµνF̃
µν (F.25)

Proceeding in analogy with the steps done to obtain (F.24) and using the canonical

normalisation of the curvaton in (E.10) we get (again after removing the derivatives

189



APPENDIX F. AXION COUPLINGS

and inserting the mass):

L ⊃
τ
−3/4
ϕ τ

3/4
b√

3λϕ
m2
σϕ
δσϕδAµδA

µ (F.26)

where the coupling is then:

ghid =
τ
−3/4
ϕ τ

3/4
b√

3λϕ
m2
σϕ

=
4|W0|2a2ϕ√

3λϕ

τ
5/4
ϕ

τ
9/4
b

=
4|W0|2a2ϕ√

3λϕ

τ
5/4
ϕ

V3/2
(F.27)
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