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Abstract

Forest biodiversity and landscape classification are key issues for environmental man-
agement, particularly in the context of climate change. This thesis analyses the use
of multispectral and hyperspectral remote sensing data for landscape classification and
forest biodiversity assessment in the South Tyrol region.
This study is divided into two main parts: the classification of land cover using the
Random Forest algorithm with multispectral (Sentinel-2, Landsat-8) and hyperspectral
(EnMAP) satellite imagery, and the assessment of forest biodiversity using the Spectral
Variation Hypothesis (SVH). The first part focuses on evaluating the accuracy of land
cover classification by comparing the performance of different satellite data, while the
second part explores biodiversity estimation by relating field data to the spectral hetero-
geneity of images from Sentinel-2 and EnMAP.
The Random Forest algorithm proved effective in identifying land cover types, including
areas devastated by Storm Vaia, for all three satellites, demonstrating the value of re-
mote sensing for monitoring environmental changes.
However, the application of the SVH for biodiversity assessment has shown mixed results:
while the multispectral data from Sentinel-2 have provided good results in estimating
biodiversity, the hyperspectral data of EnMAP did not produce any significant correla-
tions with field data. Despite the high spectral resolution of EnMAP, its application to
the SVH has not met expectations in terms of biodiversity assessment. Rao’s Q index,
used to quantify functional diversity, demonstrated its usefulness when combined with
spectral data, although there were limitations in EnMAP data.
This study represents the first attempt to test the SVH using EnMAP images, highlight-
ing both the strengths and weaknesses of remote sensing technologies, with a particular
focus on EnMAP’s hyperspectral data, for monitoring forest ecosystems.
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Chapter 1

Introduction

1.1 Objectives

The main objective of this study is to evaluate the effectiveness of both multispectral
and hyperspectral remote sensing data in monitoring biodiversity and in classifying for-
est landscapes. In particular, the study aims to:

• Assess the accuracy of soil classification using multispectral (Sentinel-2 and Landsat-
8) and hyperspectral (EnMAP) data, through the application of the Random Forest
algorithm, to identify areas of vegetation cover in the South Tyrol region.

• Apply the SVH to remote-sensing data to estimate forest biodiversity, comparing
the performance of the multispectral satellite Sentinel-2 with those of the hyper-
spectral satellite EnMAP.

• Identify the limits and advantages of using hyperspectral data compared to multi-
spectral data for the study of biodiversity and ecological complexity, with a par-
ticular focus on the potential of EnMAP to detect fine spectral variations and its
applicability in biodiversity estimation.

1.2 Thesis Structure

This thesis is organized into six main chapters, which describe the theoretical back-
ground, the methods used, the results obtained and the final conclusions. The structure
of the thesis is as follows:

• Chapter 1 - Introduction: It presents the objectives of the study and provides
an overview on the importance of remote sensing for biodiversity monitoring and
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landscape classification, with a focus on multispectral and hyperspectral technolo-
gies.

• Chapter 2 - Literature Overview: It analyses the state of the art on remote
sensing technologies and their use in ecology, focusing on methodologies for land
cover classification and biodiversity assessment. Machine learning algorithms, such
as the Random Forest, and the SVH are described.

• Chapter 3 - Data and Methods: It describes the data used in the study,
including the Sentinel-2, Landsat-8 and EnMAP satellites, and field data collected.
The pre-processing process of satellite images and the application of the Random
Forest algorithm for the classification and the SVH for biodiversity estimation are
detailed.

• Chapter 4 - Results: It presents the results of the landcover classification for each
satellite and the results of the application of the SVH. The classification accuracy
and the capacity of remote sensing data to estimate biodiversity are evaluated

• Chapter 5 - Discussion: It interprets the results, comparing the performance of
different satellites and discussing the limitations and advantages of the techniques
used. It particularly focuses on the results of the classification and the applicability
of the SVH.

• Chapter 6 - Conclusion: It summarises the main findings of the study and
suggests potential future developments, such as improved remote sensing techniques
for biodiversity and the expansion of EnMAP applications in complex ecological
contexts.
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Chapter 2

Literature Overview

Remote sensing has become an indispensable tool in ecology, particularly in assessing
biodiversity and classifying landscapes at large scales. The integration of advanced imag-
ing technologies, such as multispectral and hyperspectral sensors, with machine learning
algorithms has opened up new possibilities for monitoring environmental changes and
improving conservation efforts. This chapter explores the development of remote sens-
ing technologies, their applications in biodiversity assessment, and the key methodolo-
gies—such as Random Forest algorithms and the SVH—used for landscape classification
and biodiversity analysis.

2.1 Remote Sensing

Remote sensing is pivotal for biodiversity assessment and landscape classification, as
it enables the collection of large-scale, repeated data providing insights into ecological
structure, composition, and function. The technology allows for the identification and
monitoring of different land cover types, essential for understanding habitat diversity and
ecosystem dynamics. By leveraging multispectral and hyperspectral data from satellites
like EnMAP, researchers can classify land cover with high precision, detecting subtle vari-
ations in vegetation and other landscape features. This approach enhances our ability to
assess and manage biodiversity, offering a powerful tool for tackling global environmental
challenges.

2.1.1 History and Development

Remote sensing, as a modern field, has evolved significantly over the last few decades due
to technological advances and the growing need to monitor and understand our planet
from a global perspective. Defined as the acquisition of information on an object or
phenomenon without physical contact, remote sensing revolutionized the way we study
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the Earth’s surface and environment. Although aerial photography and other remote
observation techniques date back more than a century, remote sensing as we know it
today took shape mainly from the mid-20th century with the introduction of the first
artificial satellites [Cracknell, 2018].

The earliest forms of remote sensing date back to the 19th century, with the use of hot
air balloons and passenger pigeons equipped with small cameras for taking aerial pho-
tos. These experiments, although rudimentary, represented the first attempts to capture
images of the Earth from above, foreshadowing future remote sensing techniques [Crack-
nell, 2018]. The first aerial photographs are attributed to Gaspard-Félix Tournachon,
who conducted an experiment with a balloon in 1858. These early efforts marked the
beginning of a new era in Earth observation, which would eventually find applications
in cartography, geology, and urban planning [Dovgyi et al., 2019].

The launch of Sputnik in 1957 marked the beginning of the space age and, with it,
the start of the first remote sensing applications from space. This satellite, launched by
the Soviet Union, was the first artificial object to orbit the Earth, paving the way for a
new era of global observation.
In the following years, the USA and the USSR launched a series of meteorological and
Earth observation satellites, such as TIROS (Television Infrared Observation Satellite)
and NIMBUS, which allowed large-scale monitoring of atmospheric phenomena and col-
lected data crucial for meteorology and environmental science [Cracknell, 2018].

In 1972, the launch of Landsat-1 (initially called the Earth Resources Technology
Satellite) marked the beginning of NASA’s first satellite remote sensing program ded-
icated to observing the Earth’s surface. This program was a turning point, providing
multispectral data used for mapping, agriculture, natural resource management, and
many other fields [Cracknell, 2018].

The year 1978 is considered crucial for remote sensing, with the launch of three
key satellites: TIROS-N, SEASAT, and NIMBUS-7. These satellites introduced signif-
icant innovations, such as the AVHRR (Advanced Very High Resolution Radiometer)
on TIROS-N and the SAR (Synthetic Aperture Radar) on SEASAT, which enabled the
first radar images of the Earth’s surface to be captured through clouds and darkness
[Cracknell, 2018].

Since 1978, remote sensing has expanded in unprecedented ways, with the introduc-
tion of increasingly advanced satellites with multispectral and hyperspectral acquisition
capabilities. The Landsat, SPOT, and Sentinel satellites have provided high spatial and
temporal resolution images that are crucial for a variety of applications, ranging from
natural resource management to urban planning. The combination of remote sensing and
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geographic information systems (GIS) has opened up new possibilities for studying our
planet, allowing us to explore inaccessible areas and monitor large-scale environmental
changes. Advances in technology have led to the miniaturization of satellites, with the
introduction of nanosatellites and CubeSats making remote sensing more accessible to
universities, research institutions, and private companies. Additionally, the use of UAVs
(Unmanned Aerial Vehicles) or drones for remote sensing has made it possible to acquire
very high-resolution data at relatively low costs [Cracknell, 2018].

The Environmental Mapping and Analysis Program (EnMAP), launched by Ger-
many in 2022, represents one of the most advanced developments in hyperspectral re-
mote sensing [Earth Observation Portal]. Unlike multispectral sensors, which typically
capture data across a limited number of broad spectral bands, hyperspectral sensors like
those on EnMAP capture data in hundreds of narrow, contiguous bands across the elec-
tromagnetic spectrum. While multispectral sensors are effective for distinguishing broad
land cover types—such as water, vegetation, and soil—they lack the spectral precision
to detect subtle differences between materials with similar characteristics [Dovgyi et al.,
2019]. EnMAP, with its ability to capture data across more than 200 spectral bands,
allows researchers to detect these subtle variations in vegetation, soil, water bodies, and
urban areas that are not visible with multispectral sensors.

Today, remote sensing is a key tool for environmental monitoring, resource manage-
ment, and spatial planning. With the continued evolution of data acquisition technologies
and the expansion of applications, remote sensing will continue to play a vital role in
understanding and managing global environmental challenges.

2.1.2 Remote Sensing for Classification

Remote sensing is invaluable for classifying ecosystems and landscapes due to its ability
to collect large-scale, repetitive data, enabling continuous monitoring of environmental
changes. Multispectral data are ideal for distinguishing broad categories such as veg-
etation, water, and bare soil. On the other hand, hyperspectral data, which gather
information in hundreds of narrow bands, allow for the differentiation of materials with
very similar spectral signatures, such as different plant species or health conditions. In
complex ecological studies, the higher spectral resolution offered by hyperspectral sen-
sors is essential for the accurate classification of habitats. For example, hyperspectral
data can detect plant stress, leaf chemistry, or soil conditions that would be difficult to
identify using traditional multispectral sensors [Mehmood et al., 2022].

Spatial resolution is also a critical feature in land cover classification using remote
sensing images. A particularly effective technique is the fusion of data from optical
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sensors with different spatial resolutions. This method significantly improves the classi-
fication of soil and forests by combining the spectral richness of multispectral bands with
higher spatial resolution. For example, the fusion of ZY-3 multispectral data with 10-
band Sentinel-2 images resulted in a 14.2% increase in classification accuracy [Yu et al.,
2020]. This approach is particularly useful in environments with high ecological hetero-
geneity, where greater resolution is essential for more detailed and accurate classification.

In this context, the integration of spectral, spatial, and topographic features has also
demonstrated to significantly improve land cover classification in a subtropical ecosys-
tem in China [Yu et al., 2020]. The study showed that the fusion of spectral data from
ZiYuan-3 (ZY-3) and Sentinel-2, combined with topographic factors such as elevation
and slope, achieved an overall classification accuracy of 83.5% across 11 different land
cover classes.

The multispectral Sentinel-2 satellite mentioned in the study [Yu et al., 2020] is par-
ticularly powerful for land cover classification, especially in forest areas. Equipped with
a wide range of spectral bands, including visible, near-infrared (NIR), short-wave in-
frared (SWIR), and red-edge bands, Sentinel-2 is highly sensitive to vegetation changes.
These bands enable detailed and large-scale analysis of plant health, species identifi-
cation, and monitoring of land cover changes. In a study conducted in the temperate
forests of northern Iran [Nasiri et al., 2022], Sentinel-2 data were combined with aerial
photogrammetry and machine learning algorithms to model forest canopy cover (FCC).
Vegetation indices derived from Sentinel-2, such as the NDVI (Normalized Difference
Vegetation Index) and the NDRE (Normalized Difference Red Edge Index), proved to
be among the most significant predictors for estimating canopy coverage. Furthermore,
combining Sentinel-2 data with high-resolution aerial imagery allowed FCC modeling to
be extended over a larger spatial scale, demonstrating Sentinel-2’s capability to provide
accurate and up-to-date information on forest structure.

Another example of multispectral imaging is represented by the Landsat program.
Operational for over 40 years, it’s one of the longest-running and most consistent sources
of data for monitoring land cover and landscapes. With a spatial resolution of 30 meters
and a revisiting frequency of 16 days, Landsat data are widely used for forest classi-
fication, agricultural mapping, and coastal dynamics monitoring. The free availability
of these data since 2008 has further expanded remote sensing applications, facilitating
research in areas such as natural resource management and climate change assessment
[Banskota et al., 2014].

On the other hand, the EnMAP satellite is one of the most advanced tools for ac-
quiring high-resolution hyperspectral data. With its ability to collect data in hundreds
of narrow spectral bands, EnMAP enables highly precise classification of materials with
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similar spectral signatures, such as different plant species or health conditions. This
makes EnMAP particularly useful in environments with high spectral diversity, such as
tropical forests, grasslands, and other areas with complex biodiversity. This satellite
has been successfully used to monitor ecological gradients and vegetation transitions,
detecting changes in species composition and plant physiological states across spatial
and temporal scales. For instance, a study in southern Portugal [Leitão et al., 2015]
highlighted EnMAP’s effectiveness in describing the gradual transition of shrub vegeta-
tion along an invasion gradient, confirming the essential role of hyperspectral data in
capturing complex landscape details.

Applications of remote sensing for soil classification range from ecology to water man-
agement, urban planning to natural disaster mitigation. However, accurate classification
may be hindered by factors such as atmospheric variability, landscape heterogeneity, and
difficulties in distinguishing spectrally similar classes. Future challenges include develop-
ing more advanced data fusion techniques, integrating data from multiple sources (e.g.,
UAVs, aircraft, and satellites), and automating analytical processes for managing large
data volumes.

2.1.3 Remote Sensing for Biodiversity Assessment

Remote sensing has become an essential tool for the assessment and monitoring of bio-
diversity on a global scale. Earth observation technologies provide fundamental data
for the study and conservation of biodiversity, by providing the ability to observe large
areas of the Earth’s surface continuously and non-intrusively. This technology allows in-
formation to be gathered on various aspects of ecosystems, such as ecological structure,
composition and functions, making it an ideal tool for tackling global challenges such as
biodiversity loss.

Remote sensing for biodiversity monitoring can be applied at different levels, from
genetic diversity to ecosystem diversity. At each level, remote sensing provides unique
information useful for biodiversity assessment and management. The main parameters
monitored include plant cover, ecosystem structure, vegetation health, ecosystem ser-
vices and biogeochemical heterogeneity, which are crucial to understanding how different
species respond to environmental changes [Reddy, 2021].

The use of multispectral and hyperspectral sensors has opened up new possibilities for
biodiversity monitoring, offering substantial advantages in terms of spectral resolution
and applicability. Hyperspectral sensors, like those on EnMAP allow for more precise
identification of plant species and mapping of complex habitats with high biodiversity.
These sensors provide detailed information on the structure and chemistry of vegetation,
which is particularly useful in diverse environments like grasslands and peat bogs. In
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contrast, multispectral sensors are suitable for large-scale applications or contexts where
detailed species distinction is unnecessary. However, their limited spectral resolution may
reduce accuracy in distinguishing species with similar spectral characteristics [Jarocińska
et al., 2023, Reddy, 2021].

An example of multispectral sensors are the ones used in Sentinel-2. This satellite
offers high spatial resolution and dense time series data due to a revisit time ranging from
2 to 5 days. Sentinel-2 images are particularly useful for monitoring multi-taxonomic
biodiversity in forest environments. For example, in a study conducted in two national
parks of the Apennines, Sentinel-2 images were used to derive metrics that showed a sig-
nificant correlation with biodiversity indices, highlighting the potential of this satellite
in identifying biodiversity hotspots[Parisi et al., 2023].

EnMAP, instead, uses imaging spectroscopy to provide high-resolution hyperspectral
data, which is fundamental for biodiversity assessment. This program enables the char-
acterization of ecosystem properties such as primary productivity, leaf water content,
and vegetation chemistry, parameters fundamental for understanding ecosystem dynam-
ics and ecological transitions[Leitão et al., 2015].

A key concept in the context of remote sensing for biodiversity is the Spectral Vari-
ation Hypothesis (SVH), which suggests that spectral variability observed in remote
sensing images can serve as a proxy for environmental heterogeneity, which in turn cor-
relates with biodiversity levels. The SVH is based on the ecological principle that greater
habitat heterogeneity offers more ecological niches, supporting higher species diversity.
This heterogeneity can be measured through various levels of spatial, spectral, and tem-
poral resolution of remote sensing data[Torresani et al., 2024b, Rocchini et al., 2010].

Remote sensing technologies, including satellite platforms like Landsat and Sentinel,
as well as airborne systems equipped with hyperspectral sensors, are fundamental to the
SVH, providing large-scale data that enhance biodiversity assessments. [Torresani et al.,
2024b, Rocchini and Neteler, 2012].

In particular, UAVs and drones are emerging as valuable tools for biodiversity moni-
toring due to their flexibility, high spatial resolution, and ability to operate in inaccessible
areas. Although UAVs currently account for only 8% of the studies related to the SVH,
their use is increasing rapidly as they become more accessible and equipped with special-
ized sensors for very high spatial resolution image analysis. UAVs are particularly useful
for capturing detailed information in small areas, which can complement satellite data by
providing finer-scale insights into habitat structure and species distribution[Rossi et al.,
2022, Malavasi et al., 2021, Jackson et al., 2022].
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The high spatial resolution provided by UAVs is critical in studies where precise
mapping of species and habitats is required. In addition, UAVs can be deployed quickly
and at relatively low cost, making them ideal for monitoring dynamic or hard-to-reach
environments, such as wetlands, coastal areas, or dense forests. They are especially ef-
fective in regions where cloud cover often limits the utility of satellite imagery. The
increasing use of UAVs equipped with multispectral and hyperspectral sensors provides
new opportunities for monitoring plant diversity, ecological transitions, and habitat het-
erogeneity, where their high temporal, spectral and spatial resolution can be a valuable
tool for biodiversity assessment. [Torresani et al., 2024b, Rossi et al., 2022].

The choice of spatial resolution is, in fact, crucial for biodiversity monitoring, affect-
ing the accuracy and effectiveness of the analysis. The ideal spatial resolution is not an
absolute value, but varies according to several factors, including the specific objectives
of the study and the characteristics of the ecosystem under consideration. For example,
studies focusing on the distinction of individual plant species require much higher reso-
lution than those analysing forest cover on a large scale. Similarly, complex ecosystems
with high spatial heterogeneity require higher resolution than more homogeneous ones.
Pixel size, in particular, must be adapted to the crown size of plants to allow a reliable
estimation of optical diversity, a parameter closely related to biodiversity. [Gamon et al.,
2020]

Spectral resolution, which refers to the number and width of spectral bands acquired
by a sensor, is equally important. Hyperspectral sensors, capable of capturing hundreds
of narrow spectral bands, allow detailed characterisation of the properties of the earth’s
surface. This wealth of spectral information is valuable in distinguishing different plant
species, even with similar morphological characteristics. For example, tree species can
be identified based on their specific reflectance properties in the visible red and near
infrared region [Torresani et al., 2024b]. In contrast, multispectral sensors with fewer
larger bands may not be sufficient to discriminate plant species with similar spectral
signatures, especially in complex ecosystems. It is important to note that the choice
between hyperspectral and multispectral sensors depends not only on spectral resolu-
tion, but also on other factors such as study objectives, scale of analysis and ecosystem
characteristics. For example, for large-scale monitoring of forest cover, multispectral
sensors such as Landsat and Sentinel-2 can provide valuable information at low cost
[Torresani et al., 2024b]. However, for studies of plant diversity at the species level, es-
pecially in heterogeneous ecosystems, hyperspectral sensors offer a significant advantage.

Temporal resolution, or the frequency of data collection, is vital for capturing dynamic
changes in ecosystems and understanding the temporal patterns of species and commu-
nities. For instance, using complete time series, such as those derived from Landsat,
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leverages temporal differences between species and communities, enhancing the ability
to monitor biodiversity changes in highly dynamic environments [Rossi et al., 2021, Ban-
skota et al., 2014].

Despite its many advantages, the use of remote sensing in biodiversity assessment also
has limitations. The spatial and spectral resolution of sensors may not always be suffi-
cient to detect species-level biodiversity, especially in complex environments like tropical
forests. Additionally, satellite data must be complemented by field observations to ob-
tain accurate estimates, particularly when monitoring specific species or rare habitats.
The combined use of ecological models and remote sensing data, such as species distri-
bution models, can help overcome these limitations, but requires a deep understanding
of ecological dynamics and remote sensing technologies[Reddy, 2021].

To conclude, remote sensing is a powerful and versatile technology for monitoring bio-
diversity, offering a unique perspective on how ecosystems and species respond to global
environmental changes. The integration of multispectral and hyperspectral data with
field observations continues to enhance our capacity to monitor and manage biodiver-
sity, contributing to global efforts for the conservation of natural resources and achieving
sustainable development goals. However, challenges related to spatial resolution, ecolog-
ical complexity, and data integration must be addressed to maximize the effectiveness of
these technologies.

2.2 Random Forest Algorithms

Random Forests are a versatile and powerful machine learning technique used for clas-
sification and regression. They operate by constructing a multitude of decision trees
during training and outputting the mode of the classes (for classification) or the mean
prediction (for regression) of the individual trees. This ensemble method is known for
its robustness, ability to handle large datasets with many variables, and resistance to
overfitting. By leveraging randomness in both data selection and feature selection, Ran-
dom Forests improve model generalization and provide valuable insights into variable
importance, making them a popular choice in various fields of research and industry.

2.2.1 History and Development

The concept of ensemble learning, which underlies the Random Forest method, has
deep roots in the machine learning community. One of the first similar techniques was
”bagging” (Bootstrap Aggregating), developed by Breiman in 1996. Bagging involves
generating multiple versions of a predictor by training on different bootstrap samples
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and using the average of these versions to improve robustness and accuracy of the model
[Breiman, 1996] [Biau and Scornet, 2016].

Later, in 1998, Dietterich proposed the ”random split selection”, a method where at
each node of the tree a random split is chosen from the best K-split. So instead of al-
ways choosing the optimal subdivision according to a specific criterion, such as the Gini
index or the entropy impurity, the ”random split selection” introduces an element of
randomness by considering a random subset of the best K subdivisions [Breiman, 2001].
Another significant technique is the ”random subspace method” by Ho, which randomly
selects a subset of features to construct each tree [Ho, 1998].

The central idea of Random Forest is to combine the advantages of these approaches,
adding further randomness in the construction of trees [Biau and Scornet, 2016]. In par-
ticular, each tree in the Random Forest is built using a random sample of the training
dataset (with repetition) and, for each split in the tree nodes, a random subset of the
available characteristics is considered. This not only makes each tree different from the
others, but also less sensitive to the predominant characteristics, thus contributing to a
better overall performance of the model [Breiman, 2001].

Breiman demonstrated that as the number of trees in a Random Forest grows, it
is highly likely to reach a limit in generalization error, effectively reducing the risk of
overfitting, an issue where a model performs very well on the training data but poorly
on unseen data [Breiman, 2001].
One of the most significant contributions of Random Forest is its ability to provide esti-
mates of the importance of variables, offering valuable insights into data and facilitating
model interpretation. Breiman developed methods to assess the importance of variables
based on reduction in purity in tree nodes and decrease in classification accuracy when
the values of the variables are permuted [Breiman, 2001].

Additionally, the Random Forest is robust to noise in data. Breiman observed that
the use of a random selection of features for each split makes the model less sensitive
to disturbances in input data, a significant advantage over other algorithms such as Ad-
aboost, which may be more susceptible to noise [Breiman, 1996] [Breiman, 2001].
Boosting is another ensemble technique that sequentially applies weak classifiers to
reweighted versions of the data, focusing on previously misclassified instances. This
approach, developed by Yoav Freund and Robert Schapire, aims to convert weak learn-
ers into strong ones through iterative refinement [Freund and Schapire, 1997].

Since their creation, Random Forests have been perfected and extended. Variants
such as extremely random trees (ExtraTrees) further randomize the tree building pro-
cess by selecting splits randomly, which can sometimes lead to improved performance
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and efficiency [Geurts et al., 2006].

In recent years, the Random Forest has continued to evolve. The introduction of
advanced data pre-processing techniques, such as missing data management and class
balancing, has further improved the performance of the algorithm. In addition, inte-
gration with other machine learning techniques has further expanded the capabilities of
Random Forest. For example, Random Forest-based kernels can be used in algorithms
such as the Kernel Principal Component Analysis and Support Vector Machines [Biau
and Scornet, 2016].

2.2.2 Theory and Mechanism of Random Forest

The fundamental idea behind Random Forest is straightforward: construct an ensemble
of independent decision trees and employ the average or most common outcome from
these trees to make predictions for new data [Breiman, 2001]. Each decision tree starts
from a root node that poses a question about the data, typically involving one or more
features (such as radiance values in specific spectral bands). The tree branches are based
on the answers to these questions, leading to further decision nodes. These nodes split
the data until reaching terminal leaf nodes, where a final decision or classification is
made. The final output for a given input is determined by aggregating the outputs of
all individual trees, often using a majority voting scheme for classification tasks.

The main mechanisms of Random Forest include:

Bootstrap Sampling
For each tree in the Random Forest, a random sample with replacement (bootstrap sam-
ple) is selected from the training data set. This means that some samples may be selected
multiple times, while others may be excluded. This process creates different variations
of the original dataset, allowing each tree to train on a different subset of available data
[Breiman, 2001]. On average, each bootstrap sample contains about 63% of the original
data, with some data repeated several times and some excluded, the latter called Out-Of-
Bag data (OOB). The Random Forest uses these OOB data to estimate the classification
or regression error, providing an internal estimation of the model’s performance without
the need for a separate validation set [Cutler et al., 2007].
Bootstrap sampling introduces diversity between trees, helping to reduce the variance of
the overall model. Diversity among trees is crucial to the success of the method, as it
ensures that trees are not too closely correlated [Breiman, 2001] [Louppe, 2014].

Random Feature Selection
For each node in each tree, instead of considering all possible variables, the Random
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Forest selects a random subset of features. This subset is generally of size
√
p for classifi-

cation problems and p/3 for regression problems, where p is the total number of variables
[Breiman, 2001]. This mechanism increases diversity among trees, since each tree can
make different decisions even if trained on the same data set. The random selection of
features then prevents some trees from becoming dominant or making the same choices,
thus improving the ability of the Random Forest to generalize on unseen data [Ho, 1995].

Tree Growth
Each tree is built to the maximum possible depth without pruning. This means that each
tree is trained to fit the training data as much as possible, creating a series of complex
decision trees.
Although each individual tree can be highly complex and susceptible to overfitting, the
mean of many unrelated trees tends to balance out individual errors, improving the ro-
bustness and generalizability of the overall model [Breiman, 2001].

Prediction
After all trees have been built, the Random Forest uses an aggregation process to make
its final predictions.
For classification problems, each tree votes for a class. The class with the highest num-
ber of votes among all trees is chosen as the final prediction. This process is known as
majority voting and helps to mitigate the effect of any inaccurate trees, since the wrong
predictions of some trees are offset by the correct predictions of the majority [Breiman,
2001].
For regression problems, each tree provides a numerical prediction. The final prediction
of the Random Forest is the average of all the tree predictions. This approach helps to
smooth predictions and reduce the impact of any outliers in the training data [Breiman,
2001, Liaw et al., 2002].

Variable Importance
One of the significant benefits of Random Forests is their ability to provide insights into
the importance of different features in making predictions. This is achieved by measuring
the decrease in accuracy when a particular feature’s values are permuted. Features that,
when altered, lead to a significant drop in model accuracy are deemed important. This
information is useful not only for interpreting the model, but also for selecting charac-
teristics, allowing to reduce the dimensionality of the dataset without losing predictive
precision [Breiman, 2001].

2.2.3 Applications of Random Forest in Various Fields

Random Forests have gained extensive acceptance across multiple disciplines due to their
adaptable nature and proficiency in managing intricate datasets.
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Ecology, in particular, has seen increasing application of this technique, given the often
complex and non-linear nature of ecological data.

A study by Castaldi et al. [Castaldi et al., 2019] analyses the effectiveness of multi-
spectral (Sentinel-2) and hyperspectral (EnMAP) satellite data for mapping soil organic
carbon (SOC) content using Random Forest models. The authors evaluated different
sampling strategies for mapping soil organic carbon content. Among the various regres-
sion algorithms tested, Random Forest proved to deliver the best results. To further
optimize the Random Forest model, the Puchwein sample selection algorithm was im-
plemented. This method is based on the Mahalanobis distance (a measure that takes
into account the correlation between variables to assess the distance between points in a
multi-dimensional space) between spectra to iteratively select the most dissimilar sam-
ples, thus ensuring a calibration dataset representative of SOC variability in the study
area. The results show that Sentinel-2 data, due to their 10-meter spatial resolution,
were more suitable for SOC mapping compared to EnMAP data (30 meters). Using a
Random Forest model calibrated with Sentinel-2 data, the authors achieved high accu-
racy in SOC prediction, with an nRMSE of 8.7% (normalized Root Mean Square Error,
a measure of model prediction error relative to the range of observed values) and an RPD
of 2.5 (Ratio of Performance to Deviation, an indicator of model reliability in predicting
the target variable).

One of the most prominent uses of Random Forests is in modelling the distribution
of species. This approach has been used to predict the presence of invasive plant species,
rare lichen species and cavity-nesting birds. For example, Random Forest was able to
predict the presence of the invasive plant Verbascum thapsus in the Lava Beds National
Monument with a specificity (percentage of correctly classified absences) of 84.5% us-
ing 10-fold cross-validation, significantly outperforming other methods such as logistic
regression (51.4% specificity) and linear discriminant analysis (48.6% specificity). The
ability of Random Forests to manage complex interactions between predictive variables
and provide accurate classifications makes this technique extremely useful in predicting
species distribution in various ecological studies [Cutler et al., 2007] .

In addition to ecology and remote sensing, Random Forest has found application in
many fields, including genomics. Here, its robustness in handling large-scale datasets
with numerous variables makes them an excellent tool. For instance, the references by
Dı́az-Uriarte and De Andres [Dı́az-Uriarte and Alvarez de Andrés, 2006] provide detailed
insights into the methodological considerations and findings in the application of Ran-
dom Forests for microarray data analysis and gene selection. Their research highlights
the ability of Random Forests to achieve accurate classification even when the number of
variables (e.g., genes) far exceeds the number of samples. Specifically, the study showed
that Random Forests, applied to nine different microarray datasets, achieved error rates
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comparable or lower than other classification methods such as DLDA, KNN and SVM.
For example, for the ”Leukemia” dataset, Random Forests obtained an error rate of
0.087 with variable selection and 0.075 without selection, compared to higher errors for
the other methods. This is possible thanks to the Random Forest strategy of creating
multiple independent decision trees, each based on a random sample of data and a subset
of features. The aggregation of the results from these trees significantly reduces the risk
of overfitting, thus improving the robustness and accuracy of the model. In addition,
Random Forests provides estimates of the importance of variables, allowing researchers
to identify which genes have the most significant impact on classification. This feature is
particularly useful in contexts where it is crucial to understand which genes are involved
in a disease, facilitating the discovery of potential biomarkers for diagnosis or treatment.

2.2.4 Benefits and Limitations

One of the main advantages of Random Forest is its ability to handle data with a large
number of variables, such as those derived from satellite images. The algorithms for
random selection of variables during the tree construction phase allow to deal effectively
with problems of high dimensionality, reducing the risk of overfitting and improving the
generalization capacity of the model [Ho, 1995, Louppe, 2014].

In addition to this, this Random Forests are able to reduce the overall model error
by using substitution sampling (bootstrap) to generate multiple trees and aggregating
results through a majority vote. This approach allows for better management of the
inherent variability in ecological and remote sensing data, reducing the possibility that a
single tree will dominate the final forecast and improving the model’s ability to generalize
to new data [Breiman, 2001].
Random Forests are therefore robust to noisy data and outliers. This is due to the fact
that each tree is built on a different sample of data, and only a subset of the charac-
teristics are considered for each node, reducing the impact of outliers on the final result
[Breiman, 2001]. The algorithm is extremely flexible, allowing it to be used not only for
classification but also for regression and other applications such as missing value impu-
tation and survival analysis [Cutler et al., 2007].

The ability of the algorithm to estimate the importance of variables is another crucial
aspect in the context of satellite image classification. This tool allows to identify which
spectral bands or vegetation indices influence the classification of land cover the most,
improving the interpretability of the model and enabling ecologists and remote sensing
analysts to better understand the environmental dynamics underlying their observations
[Cutler et al., 2007, Louppe, 2014].
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Despite their advantages, Random Forests can be computationally intensive, espe-
cially with very large datasets. Building hundreds or thousands of trees takes time and
significant computational resources. This may limit their applicability in contexts where
the speed of computation is crucial [Breiman, 2001, Cutler et al., 2007].

Also, although the Random Forest provides an estimate of the importance of vari-
ables, model’s interpretability can be more difficult than in other simpler models. Each
decision tree in the Random Forest is relatively easy to interpret, but the combination
of hundreds of trees makes it difficult to get a clear view of relationships in data [Cutler
et al., 2007]. This is a limitation, especially in areas where model interpretability is as
important as accuracy.
Moreover, even though Random Forest is generally resistant to overfitting, using too
many trees may cause over-adapting to extremely noisy data, reducing the model’s abil-
ity to generalize to new data [Cutler et al., 2007].

In conclusion, Random Forest is a powerful and flexible tool for many applications,
but its effectiveness depends on careful consideration of its limits and optimization of
parameters for the specific context of use.

2.3 Spectral Variation Hypothesis

The Spectral Variation Hypothesis (SVH) posits that the spectral heterogeneity observed
in remote sensing imagery is correlated with the biodiversity of a given area. This
relationship is grounded in the concept that different species or functional groups within
an ecosystem exhibit unique spectral signatures due to variations in their biochemical,
structural, and phenological properties. Thus, areas with higher species diversity are
expected to exhibit greater spectral variability. The diversity of these spectral signals,
therefore, can serve as a proxy for biodiversity, offering a non-invasive means to assess
and monitor ecological variation over large spatial scales.
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Figure 2.1: Visual representation of species diversity and spectral heterogeneity in a grassland ecosystem [Torresani et al., 2024a]

2.3.1 History and Development

Biodiversity, as defined by the Convention on Biological Diversity, encompasses the vari-
ety and variability of life forms at ecosystem, species, and genetic levels. This broad con-
cept includes three main components: alpha diversity (species diversity within a specific
area or ecosystem), beta diversity (differences in species composition between ecosys-
tems), and gamma diversity (overall diversity across a larger region). Understanding
and monitoring these components is crucial in the context of climate change, as bio-
diversity underpins ecosystem resilience and functions, providing essential services like
carbon sequestration, climate regulation, and maintaining water cycles [Opoku, 2019,
Torresani et al., 2019].

Historically, biodiversity studies relied heavily on field-based observations by botanists
and ecologists, who cataloged species within specific plots. This method, while detailed,
was constrained by the significant time, cost, and labor required, particularly in large
or remote areas. The advent of remote sensing technologies revolutionized this field,
enabling comprehensive, repeatable, and non-destructive sampling over extensive areas
and varied temporal scales. Satellite imagery and aerial sensors have democratized access
to environmental data, providing new tools for detailed monitoring that were previously
unavailable [Palmer et al., 2002, Torresani et al., 2024b].

The conceptual foundations of the SVH were laid by Palmer in the late 1990s and
early 2000s. Palmer et al. [Palmer et al., 2002] formally articulated the hypothesis that
variability in the spectral signal captured by optical images could serve as an indicator
of biodiversity. They initially tested this hypothesis in the Tallgrass Prairie Preserve
(Oklahoma, USA), demonstrating that spectral heterogeneity metrics correlated with
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various biodiversity indices, including species richness, rarity, and the number of infre-
quent species.

Earlier, Gould [Gould, 2000] had explored similar ideas, showing that the variabil-
ity of the NDVI derived from Landsat images could indicate landscape heterogeneity,
correlating well with plant species richness in the Arctic ecosystem of the Hood River
Region, Canada. Gould’s work highlighted the potential of integrating vegetation type
information with NDVI variability to enhance biodiversity estimation accuracy. .

The SVH has since been explored in a wide range of ecosystems, from forests and
grasslands to wetlands, coastal regions, savannahs, and even urban areas. This growing
body of research underscores the increasing recognition of spectral heterogeneity as a
valuable tool in biodiversity monitoring [Torresani et al., 2024b].

2.3.2 Application of Spectral Variation Hypothesis in Various
Fields

The SVH is mainly used in ecology to estimate biodiversity through remote sensing data.
It has been widely applied to assess vegetation diversity in various ecosystems, including
forests, grasslands, wetlands, and agroforestry systems [Torresani et al., 2024b]. The
hypothesis is often tested using different remote sensing data, such as multispectral and
hyperspectral images, to measure spectral indices and their correlation with species di-
versity metrics such as species richness, the Shannon index, or the Simpson index.

The hypothesis is commonly used in forest ecosystems to monitor plant species diver-
sity, and has been applied in various types of forests, including tropical, Mediterranean,
temperate, and alpine forests. In this context, the SVH helps to assess plant species
diversity by analysing the spectral variability captured in optical images. In addition,
the SVH has been tested in grasslands and wetlands to estimate species diversity, using
spectral data from various sensors to identify and monitor plant communities and their
diversity, taking into account seasonal and spatial variations [Torresani et al., 2024b].
The study by Torresani et al. (2019) [Torresani et al., 2019] tested the SVH in an
alpine coniferous forest to estimate tree species diversity. Using Sentinel-2 and Landsat-
8 satellite images, the study analysed the relationship between spectral heterogeneity,
calculated with Rao’s Q diversity index, and tree diversity measured in the field by
Shannon index. The results showed a strong correlation between Rao’s Q index, applied
to Sentinel-2 data, and tree species diversity, particularly during the peak period of the
NDVI (between June and July). During this period, the coefficient of determination
(R2) reached values of 0,48 for 2016 and 0,70 for 2017. The temporal analysis of the
data showed that the relationship between spectral heterogeneity and species diversity
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is seasonal, with lower R2 values in winter and spring. This result suggests that the
ability of NDVI to capture small variations in leaf reflectance, typical of different tree
species, is greater when the vegetation index reaches its maximum values. The study also
highlighted the importance of spatial resolution of data, with Sentinel-2 (10m) providing
better results than Landsat-8 (30m) in estimating tree species diversity.

The study by Chraibi et al. [Chraibi et al., 2021] applied the SVH to assess tree
diversity during secondary succession phases in abandoned cocoa forests in Trinidad and
Tobago. The aim was to see whether remote sensing, based on SVH, could be used to
monitor forest biodiversity on a large scale. The researchers compared field data on tree
diversity with remote sensing data from Sentinel-2 satellite images. Although they did
not find a direct correlation between the diversity indices based on field data and the pixel
heterogeneity of the images, they observed that the beta-diversity derived from remote
sensing was able to identify a regeneration gradient in forests. In other words, remote
sensing allowed to distinguish active cocoa agroforestry from secondary forests at differ-
ent stages of succession, suggesting that SVH, applied to remote sensing, can provide
information useful for monitoring biodiversity on a large scale, especially in areas that
are difficult to access. However, the results also indicate that remote sensing may not
be sensitive enough to capture tree diversity locally with the same precision as field data.

Although originally developed for plant diversity studies, the SVH has found ap-
plications in other fields, exploiting its ability to use spectral data to infer diversity
in different contexts. Recent studies have extended the use of the SVH to assess an-
imal diversity, such as that of mammals, birds, and benthic invertebrates. The study
by Oindo et al. [Oindo and Skidmore, 2002] explored the correlation between spectral
variability, measured by the NDVI, and the richness of mammalian species in different
regions of Kenya. The analysis revealed that the spatial heterogeneity of NDVI, indica-
tive of environmental variability, is positively correlated with the richness of mammalian
species on a small spatial scale (10 x 10 km). This means that areas with higher spectral
variability tend to host a higher diversity of mammalian species, confirming the effective-
ness of SVH as a tool for assessing mammalian biodiversity in diverse ecological contexts.

In marine ecosystems, the SVH has been tested to study the diversity of benthic
invertebrates. By examining the spectral reflectance data of marine environments, re-
searchers can estimate the diversity and distribution of different species in underwater
habitats. A study by Herkül et al. [Herkül et al., 2013] was the first attempt to apply
the SVH in the marine environment, using hyperspectral images recorded by the ”Com-
pact Airborne Spectrographic Imager” (CASI) to correlate spectral variability with the
biodiversity of benthic macro-organisms, including species richness and Shannon index.
The results show that all diversity measures derived from coverage data had significant
positive correlations with SV at all spatial scales. For the species richness and Shannon

21



index, the strongest correlation was found at the scale of 10 metres, with r=0.24 for the
Shannon index, and r=0.32 for the species richness. This result suggests that, despite
the influence of the water column on signal absorption, there is a positive relationship
between spectral variability and benthic diversity, measured in terms of both Shannon
Index and species richness.

The SVH continues to evolve, finding new applications in various fields thanks to
the increasing availability and sophistication of remote sensing data. As technology
advances, the field of application is expected to expand further, offering new insights
into different disciplines.

2.3.3 Benefits and Limitations

One of the main advantages of the SVH is its ability to use spectral data to efficiently
estimate biodiversity on a large scale. This approach overcomes the logistical and time
constraints associated with traditional field surveys, which often require considerable
resources and time [Torresani et al., 2024b]. This capability makes the SVH a valuable
tool for ecosystem management and biodiversity conservation, enabling a quick and cost-
effective identification of areas of high biodiversity.

In addition, the use of the SVH can contribute to dynamic monitoring of biodiversity,
particularly in complex ecosystems where species can respond rapidly to environmental
changes. Therefore, it is particularly useful in highly variable environments, where spec-
tral heterogeneity can reflect significant variations in species composition, allowing the
spatial and temporal dynamics of biodiversity to be monitored and adapting to different
ecological scales, from alpha diversity to gamma diversity. This flexibility makes the
SVH a versatile tool for environmental monitoring and long-term conservation planning
[Torresani et al., 2024b].

Despite the many advantages, the SVH also has some limitations. One of the main
limitations is its non-universal applicability, which varies greatly depending on the eco-
logical context, the characteristics of the sensor used, and the spatial scale of the analysis.
For example, the SVH has shown mixed results in grasslands where the relationship be-
tween spectral heterogeneity and biodiversity can be influenced by factors such as the
spatial resolution of data and the complexity of the ecosystem [Torresani et al., 2024b].

Another issue concerns the spectral and spatial resolution of remote sensing data.
Although a higher spatial resolution may improve the ability to detect changes in bio-
diversity, it can also introduce noise and complications, due to spectral redundancy and
the difficulties in managing the variability introduced by pixel-level detail. Furthermore,
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the effectiveness of the SVH is strongly dependent on the quality and timing of data
collected. Seasonal changes and phenological variations may affect spectral measure-
ments, making the use of time series data necessary to obtain more accurate estimates
[Torresani et al., 2024b].

In conclusion, the SVH represents an innovative and powerful approach for biodiver-
sity analysis, with significant advantages in terms of efficiency, scale, and applicability.
However, the effectiveness of the SVH is closely linked to the quality of spectral data
and the scale of analysis, requiring a rigorous methodological approach to overcome its
limitations. Despite these challenges, the SVH remains an important tool in ecological
research and ecosystem management, with significant potential for future applications.

2.3.4 Rao’s Q index

Rao’s Q index, also known as Rao’s Quadratic Entropy, is a measure of diversity that
considers not only the relative frequency or abundance of elements within an ensemble,
but also the differences between these elements.
In the SVH, Rao’s Q index allows to move from a purely qualitative analysis of spectral
diversity to a quantitative measure that can be directly correlated with ecological data
from the field. In fact, this index has proven to be effective in assessing and monitoring
biodiversity at landscape level, when used in combination with spectral data [Rocchini
et al., 2017].

Before the introduction of Rao’s Q index in 1982, there was already a large literature
on measures of diversity and on dissimilarity or similarity between populations. These
measurements have been used in a wide range of studies in different fields, including an-
thropology [Rao, 1948, 1971a,b, 1977], genetics [Karlin et al., 1979, Morton and Lalouel,
1973, Nei, 1978], economics [Gini, 1912, Sen, 1997], sociology [Agresti and Agresti, 1978]
and biology [Sokal and Sneath, 1963]. These measurements were often based on heuristic
considerations, some derived from mathematically well-postulated axioms, while others
were constructed using hypothetical models for the genetic and environmental mecha-
nisms that cause differences between individuals and populations.

By introducing Rao’s Q index in 1982 [Rao, 1982], C. R. Rao contributed to a signif-
icant advance in measuring diversity by providing a tool that incorporates dissimilarity
between elements, providing a more complete view of diversity than traditional measures
such as the Shannon index or the Simpson index, which do not take into account distance
between species or, in the context of remote sensing, pixels.
The index is calculated by considering all pairs of elements in the set and summing the
products of their dissimilarity and their relative frequencies. The general formula for
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Rao’s Q is:

Q =
S∑

i=1

S∑
j=1

dijpipj

where dij represents the dissimilarity between species i and j, and pi and pj are the
relative frequencies of species i e j.
This formulation allows to capture the complexity of diversity in an ecological system,
reflecting not only the variety (how many different types of elements are present) but
also how different these elements are [Rao, 1982].
In the context of remote sensing, Rao’s Q index can be applied to quantify the spectral
diversity of an area, using pixel spectral values as system elements. In this scenario, the
dissimilarity dij can be defined as the spectral distance between the reflectance values of
two pixels, while pi and pj can represent the relative frequencies of these spectral values
[Rocchini et al., 2017].

To conclude, Rao’s Q index is a powerful and flexible tool for diversity analysis,
both in traditional ecological contexts and in the field of remote sensing. Its ability
to integrate dissimilarity between elements makes it particularly suitable for Spectral
Variation Analysis, providing a quantitative measure that can be correlated with actual
biodiversity. The growing application of Rao’s Q in ecological and remote sensing models
marks a significant advance in our ability to understand and manage biological diversity
on a global scale.
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Chapter 3

Data and Methods

This chapter describes the data sources and methodological approaches used to classify
landscapes and assess forest biodiversity in the South Tyrol region using remote sensing
data. It details the characteristics and preprocessing of satellite imagery from Sentinel-2,
Landsat-8, and EnMAP, as well as the collection and processing of field data. The chapter
further explains the use of the Random Forest algorithm for land cover classification and
the application of the SVH for biodiversity assessment, integrating both remote sensing
and field data to evaluate the effectiveness of different sensors in ecological monitoring.

3.1 Satellite Imagery

Satellite imagery is a crucial component of remote sensing and plays a vital role in
monitoring and understanding environmental and climatic changes. This section provides
an overview of the main features of the satellites used in this study: Sentinel-2, Landsat-
8, and EnMAP.

3.1.1 Sentinel-2

Sentinel-2 is part of the Copernicus Programme, a joint initiative by the European Space
Agency (ESA) and the European Commission [European Space Agency]. It consisted of
two satellites, Sentinel-2A and Sentinel-2B, launched in June 2015 and March 2017, re-
spectively. In September 2024, Sentinel-2C was successfully launched, further enhancing
the mission’s capacity for Earth observation. The primary features of Sentinel-2 are:

• Spatial Resolution: Sentinel-2 provides imagery at three different spatial reso-
lutions: 10 meters, 20 meters, and 60 meters, depending on the spectral band.

• Spectral Bands: It has 13 spectral bands, ranging from the visible and near-
infrared to the shortwave infrared.
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• Revisit Time: The revisit time is approximately 5 days at the equator with both
satellites (Sentinel-2A and Sentinel-2B) in operation.

• Applications: It is widely used for land monitoring, including agriculture, forestry,
land cover classification, and natural disaster management.

3.1.2 Landsat-8

Landsat-8, launched in February 2013, is part of the Landsat program managed by NASA
and the U.S. Geological Survey (USGS) [United States Geological Survey (USGS)]. It
continues the mission of providing high-quality, long-term data on Earth’s surface. The
main features of Landsat-8 include:

• Spatial Resolution: Landsat-8 offers a spatial resolution of 30 meters for multi-
spectral bands and 15 meters for the panchromatic band.

• Spectral Bands: It includes 11 spectral bands, spanning the visible, near-infrared,
shortwave infrared, and thermal infrared regions.

• Revisit Time: The revisit time is 16 days.

• Applications: It is used for various applications, including agriculture, forestry,
geology, land cover change, and water resources management.

3.1.3 EnMAP

EnMAP (Environmental Mapping and Analysis Program) is a German hyperspectral
satellite mission to provide detailed spectral information for environmental monitoring
and analysis [Earth Observation Portal]. The satellite, launched in 2022, carries the
Hyperspectral Imager (HSI). Key features of EnMAP are:

• Spatial Resolution: EnMAP provides a spatial resolution of 30 meters.

• Spectral Bands: The HSI onboard EnMAP covers 224 spectral bands, ranging
from the visible (420 nm) to the shortwave infrared (2450 nm).

• Revisit Time: EnMAP has a standard revisit time of 27 days at nadir but can
revisit a target much more quickly—within 4 days—by tilting its sensor 30° off-
nadir.

• Applications: It is designed for a wide range of applications, including agriculture,
forestry, soil and geology, coastal and inland waters, and urban areas. EnMAP’s
hyperspectral capability allows for detailed analysis of material composition and
biochemical properties.
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3.1.4 Comparison of Satellite Features

Table 3.1 provides a comparative summary of the main features of Sentinel-2, Landsat-8,
and EnMAP.

Feature Sentinel-2 Landsat-8 EnMAP
Spatial Resolution 10m, 20m, 60m 30m (MS), 15m (PAN) 30m
Spectral Bands 13 11 224
Revisit Time 5 days 16 days 27 days

Table 3.1: Comparison of Satellite Features

This study focuses on the South Tyrol region and utilizes satellite imagery taken
on September 10, 2023 for Sentinel-2 A and Lansat-8, and on September 9, 2023, for
EnMAP. The satellites provided comprehensive data for monitoring vegetation, land use,
and environmental characteristics. These images were crucial for developing machine
learning models to classify land cover and study spectral variation.

Figure 3.1: Satellite images used in the study: EnMAP, Sentinel-2 and Landsat-8

3.2 Field Data

Field data were used to calculate key biodiversity metrics, such as species richness and
the Shannon index, in the South Tyrol region. The field data, which include information
on tree species and their abundance at various locations, were used to compute these
metrics and compare them with Rao’s Q index derived from remote sensing imagery.
This comparison was crucial to assess the effectiveness of different indices in capturing
forest biodiversity using the SVH.
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Location Species
GS001 LD (1), PA (5), PC (27)
GS002 AA (7), LD (11), PA (34), PC (27)
GS003 PA (4), PC (30)
GS004 Alnus Sup (4), LD (1), PA (4), PC (11), SA (15)
GS007 PA (2), PC (30)
GS008 PA (1), PC (45), SA (17)
GS010 AA (14), LD (8), PA (9), PC (4)
GS011 AA (1), PA (19), PS (1)
GS012 Betulus spp. (1), LD (1), PA (27)
GS013 LD (4), PA (23), PC (2)
GS014 PA (13), PC (11), Ulmus spp. (1)
GS015 LD (4), PA (25)
GS019 PA (29)
GS020 PA (75)
GS022 PC (12)
GS024 AA (1), LD (2), PA (15), PC (1)
GS025 AA (19), LD (5), PA. (25)
GS026 AA (11), LD (1), PA (10), PS (1)
GS027 LD (1), PA (28)
GS028 PA (6), PC (23)
GS029 LD (5), PA (24)
Chiusa10GS001 AA (3), PA (26)
Chiusa10GS002 PA (4), PC (17)

Table 3.2: LD: Larix decidua, PA: Picea abies, PC: Pinus cembra, AA: Acer campestre, Alnus sup.: Alnus species, SA: Sorbus aucuparia,
PS: Pinus sylvestris, Betulus spp.: Betula species, Ulmus spp.: Ulmus species

Figure 3.2: Locations where the field data were collected
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3.3 Preprocessing

3.3.1 Satellite Imagery Processing for Classification

Preprocessing of satellite imagery is a critical step in ensuring accurate classification
results. In this study, specific bands were selected and processed for each satellite to op-
timize the classification tasks. The preprocessing steps varied slightly between Sentinel-2,
Landsat-8, and EnMAP due to their different spectral and spatial resolutions.

3.3.2 Sentinel-2 Preprocessing

For the Sentinel-2 satellite, three different classifications were performed, each utilizing
a different combination of spectral bands and spatial resolutions:

10m Resolution Classification

The first classification was carried out using bands available at a 10m spatial resolution:

• B2 (Blue - 492.7 nm)

• B3 (Green - 559.8 nm)

• B4 (Red - 664.6 nm)

• B8 (NIR - 832.8 nm)

These bands were used directly for the classification process without any resampling.

20m Resolution Classification

For the second classification at a 20m resolution, the following bands were used:

• B1 (Coastal - 442.7 nm)

• B5 (Red Edge 1 - 704.1 nm)

• B6 (Red Edge 2 - 740.5 nm)

• B7 (Red Edge 3 - 782.8 nm)

• B8A (NIR - 864.7 nm)

• B11 (SWIR 1 - 1613.7 nm)

• B12 (SWIR 2 - 2202.4 nm)
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Additionally, bands B2, B3, B4 and B8 were used. While bands B2, B3, and B4 were
provided in Sentinel’s data at both 10m and 20m resolutions, band B8 was only available
at 10m resolution. To ensure consistency in spatial resolution across all bands, B8 was
resampled to 20m resolution.

Listing 3.1: Resampling bands to 10m resolution

1 library(raster)

2

3 rst_lst[["B08"]] <- raster :: resample(x = rst_lst[["B08"]],

4 y = rst_lst$B05)

Combined 10m and 20m Resolution Classification

The third classification involved resampling all bands to a 10m resolution. This process
included:

• Using the original 10m resolution bands (B2, B3, B4, B8).

• Resampling the 20m resolution bands (B1, B5, B6, B7, B8A, B11, B12) to 10m
resolution.

In order to make the resampling more computationally efficient, the raster image was
cropped on each area of interest.

Listing 3.2: Resampling bands to 10m

1 library(raster)

2

3 #Initializing the vector

4 rst_for_prediction <- vector(mode = "list", length = length(rst_lst))

5 names(rst_for_prediction) <- names(rst_lst)

6

7 #Cropping the vector

8 rst_for_prediction [[’B08’]] <- crop(rst_lst[[’B08’]],area_A)

9

10 for (x in bands_names) {

11 if (x == ’B08’){

12 print(paste0(x, ’is already at 10m of resolution ’))

13 }

14 else{

15 print(paste0(’resampling ’,x))

16 rst_for_prediction [[x]] <- crop(rst_lst[[x]],area_A)

17 rst_for_prediction [[x]] <- raster :: resample(x = rst_for_

↪→ prediction [[x]], y = rst_for_prediction$B08)
18 } }

These combined bands were then used to perform the classification at a 10m resolution.
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3.3.3 Landsat-8 Preprocessing

For Landsat-8, all available bands were used, each having a spatial resolution of 30m:

• B1 (Coastal - 440 nm)

• B2 (Blue - 480 nm)

• B3 (Green - 560 nm)

• B4 (Red - 650 nm)

• B5 (NIR - 870 nm)

• B6 (SWIR 1 - 1600 nm)

• B7 (SWIR 2 - 2200 nm)

• B10 (Thermal - 10900 nm)

These bands were directly used for the classification process without any resampling.

3.3.4 EnMAP Preprocessing

EnMAP provides hyperspectral imagery with a large number of spectral bands. However,
some bands needed to be excluded from the analysis due to the presence of null values:

• Bands from 131 to 135 were removed from the dataset.

After the removal of these bands, the remaining spectral bands were used for the classi-
fication tasks.

In summary, the preprocessing involved selecting appropriate bands for each satellite,
resampling bands to ensure consistent spatial resolution where necessary, and excluding
problematic bands. These steps were essential to prepare the data for accurate and
effective land cover classification of the South Tyrol area.

3.3.5 Field Data Processing for Spectral Variation Hypothesis

For each location where field data were collected, a circular area with a radius of 15
meters was considered. This radius was chosen to ensure that the biodiversity metrics
would be calculated over a consistent spatial scale, big enough to incorporate more than
one pixel. Satellite images were cropped using the circles defined around each data col-
lection point. This step ensured that the satellite data used in the analysis corresponded
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to the exact locations where field data were collected.
Any circles that extended beyond forested areas into other land covers (such as pastures)
were excluded from further analysis to maintain the integrity of the forest biodiversity
assessment.

Two key biodiversity metrics were calculated for each data collection point: species
richness and the Shannon index.
Species richness is a simple count of the number of different species present in a given
area. It is calculated as:

S =
n∑

i=1

1

where n is the total number of species observed in the area.
The Shannon index (also known as Shannon-Wiener index) is a measure of species di-
versity that takes into account both the number of species and the evenness of their
abundances. It is calculated as:

H ′ = −
n∑

i=1

pi ln(pi)

where n is the total number of species and pi is the proportion of individuals of species
i relative to the total number of individuals of all species.

These biodiversity metrics provided a quantitative basis for assessing the variation
in species composition across the study area (Table 3.3).
The Shannon index and the species richness were then related to Rao’s Q index, allowing
for an analysis of the relationship between biodiversity and spectral variation.

In summary, the field data processing involved selecting appropriate circles around
data collection points, cropping satellite images to match these circles, and calculat-
ing key biodiversity metrics. These steps ensured that the field data were accurately
represented and ready for further analysis.
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Location Shannon Index Species Richness
GS001 0.556 3
GS002 1.22 4
GS003 0.362 2
GS008 0.66 3
GS009 0.358 2
GS010 1.35 4
GS011 0.381 3
GS012 0.238 4
GS013 1.15 5
GS014 0.83 3
GS015 0.377 2
GS024 0.734 4
GS025 0.958 3
GS026 0.988 4
GS027 0.271 3
GS028 0.219 2
Chiusa10GS001 0.181 2
Chiusa10GS001 0.487 2

Table 3.3: Shannon Index and Species Richness calculated at each location

3.4 Methodology for Land Cover Classification

This section outlines the approach used to classify land cover types in the South Tyrol re-
gion using remote sensing data. It details the selection of areas of interest, the generation
of random points for training data, and the methods used to split datasets and validate
the classification model. The Random Forest algorithm was applied to the preprocessed
satellite imagery, enabling accurate classification of different land cover types

3.4.1 Areas of Interest and Classes

Four areas of interest (A, B, C and D) were selected in South Tyrol to be representative
of the local land cover. The land cover classes considered for the classification were five:
forests, urban areas, mountains, pastures, and areas devastated by the Vaia storm.

Storm Adrian (also known as Vaia), which occurred in late October 2018, was an
extreme weather event that caused widespread damage throughout northern Italy, par-
ticularly in the Alpine regions. The storm, which was marked by high winds of over
200 km/h and heavy rain, uprooted millions of trees and devastated vast portions of
forests. In South Tyrol, the effects of the Vaia have been particularly pronounced, with
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significant parts of the forest area permanently altered. These areas have become of
great ecological interest, as they represent altered landscapes in the regeneration phase
and pose challenges for land management and biodiversity conservation.

To accurately capture the range of land cover in the region, ten polygons were drawn
for each class in every area of interest using the geographic information system QGIS.
Each polygon was then used for the creation of training and testing dataset for its specific
class. In the picture (Figure 3.3) the polygons drawn for area A are shown.

Figure 3.3: Area A with its polygons (cyan = forests, purple = mountains, green = urban, pink = pastures, yellow = Vaia).

3.4.2 Generating Random Points for Training Data

To train the Random Forest model, 750 random points were generated for each land
cover class within the polygons. The spsample function from the sp package was used
to generate these points, ensuring a regular distribution. Each point was associated with
its respective class ID using the over function.

Listing 3.3: Generating Random Points for Training Data

1 # Libraries required

2 library(sp) # Spatial data handling

3 library(rgdal) # Reading and writing spatial data

4 library(raster) # Raster data manipulation

5 library(data.table) # Fast data manipulation

6 library(dplyr) # Data manipulation

7
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8

9

10 # Creating 750 random points for each class

11 # Here , id==1 corresponds to forests

12

13 # Selecting the plygons with id=1

14 ptsamp1 <- subset(poly_area_A, id == "1")

15

16 ptsamp1_1 <- spsample(ptsamp1 , 750, type=’regular ’)

17 # spsample: Generates 750 random points within the polygons

18

19 ptsamp1_1$class <- over(ptsamp1_1, ptsamp1)$id
20 # over: Associates each random point with the class ID

21

22 # Saving the results

23 saveRDS(ptsamp1_1, file=paste0 ("path_to_file", file="_ptsamp1_A.rds"))

24

25

26 # Taking the infromation of the pixel where the random point

27 # landed and saving them in a dataframe

28 dt1 <- brick_for_prediction %>%

29 raster :: extract(y = ptsamp1_1) %>%

30 as.data.table %>%

31 .[, id_cls := ptsamp1_1@data] # add the class names to each row

32

33 #After doing the same thing for all 5 classes ,

34 #the dataframes are merged into a single dataframe

35 dt <- rbind(dt1 , dt2 , dt3 , dt4 , dt5)

36

37 names(dt)[names(dt) == ’id_cls’] <- ’class ’

38 dt <- dt %>% drop_na() #deletes the rows with null values

39 dt$class <- factor(dt$class , labels=c(’forest ’,’urban’, ’mountain ’, ’

↪→ vaia’, ’pasture ’))

40 #factor: Converts the class column to a factor with meaningful labels

3.4.3 Splitting the Dataset

The generated points were split into training and test datasets. A stratified random split
ensured that 70% of the data was used for training and 30% for testing, preserving the
class distribution. The caret package’s createDataPartition function was used for
this purpose.

Listing 3.4: Splitting the Dataset

1 # Libraries required

2 library(caret) # For creating data partitions

3

4
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5 set.seed (321)

6 #set.seed: Sets the seed for reproducibility.

7

8 # A stratified random split of the data

9 idx_train <- createDataPartition(dt$class , p = 0.7, list = FALSE)

10

11

12 dt_train <- dt[idx_train] # Training set

13 dt_test <- dt[-idx_train] # Test set

3.4.4 Cross-Validation

The training dataset was used for performing cross-validation and grid search to tune the
model. Cross-validation helps assess how the model will generalize to an independent
dataset by providing a more reliable estimate of model performance. This is achieved by
reducing the bias that can occur with a single train-test split.
In this process, the dataset is divided into a number of subsets, or ”folds” (in this case,
10). During each iteration of cross-validation, one fold is used as the validation set, while
the remaining folds are used for training the model. This procedure is repeated multiple
times so that each fold serves as the validation set once. The performance metrics are
averaged over all iterations to obtain a robust estimate of the model’s performance.

Grid search is used alongside cross-validation to find the optimal hyperparameters
for the model. The tuneGrid function was used to specify a grid of mtry values to be
tested. The best mtry value (which represents the number of features randomly sampled
as candidates at each split) was selected based on the cross-validation results.

Once the optimal parameters were determined, a final model was trained on the entire
training dataset using these optimal hyperparameters. This final model was then used
for making predictions on new data.

Listing 3.5: Cross-Validation for Sentinel 10m image of area A

1 # Libraries required

2 library(caret) # For createFolds , trainControl , and train

3 library(MLmetrics) # For multiClassSummary

4 library(randomForest) # For random forest method

5 library(dplyr) # For data manipulation

6 library(data.table) # For data handling

7

8

9 # The dataset is divided into 10 subsets

10 n_folds <- 10

11 set.seed (321)

12 folds <- createFolds (1: nrow(dt_train), k = n_folds)

36



13

14 # Set the seed at each resampling iteration.

15 seeds <- vector(mode = "list", length = n_folds + 1)

16

17 # For each of the 10 iterations , one fold is used as the validation set

↪→ and the remaining 9 folds are used for training.

18 for(i in 1:n_folds) seeds[[i]] <- sample.int(1000 , n_folds)

19 seeds[n_folds + 1] <- sample.int(1000 , 1)

20

21

22 # Specifying how the training should be controlled and validated

23 ctrl <- trainControl(summaryFunction = multiClassSummary ,

24 method = "cv",

25 number = n_folds ,

26 search = "grid",

27 classProbs = TRUE ,

28 savePredictions = TRUE ,

29 index = folds ,

30 seeds = seeds)

31

32

33 # This function sets up a grid of tuning parameters

34 # for a number of classification routines

35 model_rf <- caret ::train(class ~ . ,

36 method = "rf",

37 data = dt_train ,

38 importance = TRUE ,

39 tuneGrid = data.frame(mtry = c(2, 3, 4, 5, 8))

↪→ ,

40 trControl = ctrl)

3.4.5 Saving and Applying the Random Forest Model

After the model has been tuned, it is saved for future use. This trained model is then
applied to make predictions on the entire area of interest (in this case, area A). The
predicted classifications for each pixel in the raster data are saved as a new raster file.

Listing 3.6: Saving and Applying the Random Forest Model

1 # Libraries required

2 library(caret) # For saving the trained model

3 library(raster) # For applying the model to raster data and writing the

↪→ output

4

5

6 #saving the model

7 saveRDS(model_rf , file = paste0("Path_to_file","model_rf_10m","area_A",

↪→ ".rds"))
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8

9 # Using the trained model to predict classes in the raster data

10 predict_rf <- raster :: predict(object = brick_for_prediction ,

11 model = model_rf, type = ’raw’)

12 writeRaster(predict_rf, paste0("Path_to_file", "sentinel_10m_area_A_

↪→ classification",".tiff"),overwrite=T )

3.5 Methodology for Spectral Variation Hypothesis

This section describes the methods used to evaluate biodiversity in the study area by
integrating remote sensing data with field observations through the Spectral Variation
Hypothesis. It explains the calculation of Rao’s Q index from Sentinel-2 and EnMAP
imagery, which was then compared with biodiversity metrics like species richness and the
Shannon index derived from field data. This comparative analysis aimed to determine
the effectiveness of remote sensing-based indices in assessing forest biodiversity.

3.5.1 Calculating Rao’s Q index for Sentinel images

First, Sentinel-2 10m resolution images were taken and the Normalized Differnce Vege-
tation Index was calculated.

Normalized Difference Vegetation Index (NDVI) is a widely used remote sensing index
that measures the health and density of vegetation in a given area. It is calculated using
the difference between the near-infrared (NIR) light, which vegetation strongly reflects,
and the red light, which vegetation absorbs. The formula for NDVI is:

NDVI =
NIR − Red

NIR + Red

In this case, bands B08 (NIR) and B04 (Red) were used.
NDVI values range from -1 to 1, where values closer to 1 indicate healthy, dense vege-
tation, and values near 0 or negative suggest little to no vegetation, bare soil, or non-
vegetated surfaces like water or urban areas. NDVI is a critical tool in agriculture,
forestry, and environmental monitoring, allowing researchers and land managers to as-
sess plant growth, detect changes in vegetation over time, and make informed decisions
about land use and conservation.

Rao’s Q index was then calculated

Listing 3.7: Rao’s Q Index Calculation on Sentinel NDVI

1 # Libraries required

2 library(terra) # For raster and vector data manipulation
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3 library(exactextractr) # For exact extraction of raster values

4 library(stats)

5

6 # Iterate over each circle

7 for (i in seq_along(circles_filtered)) {

8 # Extract the polygon representing the current circle

9 circle_polygon <- circles_filtered[i, ]

10

11 # Crop and mask the raster with the polygon

12 extracted_values <- exact_extract(ndvi , circle_polygon , fun = NULL)

13

14 #Extracting the value from each list element and converting them into

↪→ a signle vector

15 mat_s <- unlist(lapply(extracted_values , function(x) x$value))
16 #Removing NA values

17 mat_s <- mat_s[!is.na(mat_s)]

18

19 # Rao ’s Q index calculation

20 n_s <- length(mat_s)

21

22 # Squaring the number of values. This will be used to normalize the

↪→ Rao ’s Q index by the number of pairwise comparisons.

23 n2_s <- n_s^2

24

25 #Calculating the pairwise Euclidean distances between all NDVI values

↪→ in mat_s

26 distm_s <- as.matrix(dist(mat_s))

27

28 #Computing the Rao ’s Q index by summing all the pairwise distances

↪→ and dividing by n2_s

29 rao_index <- sum(distm_s) / n2_s

30

31 #Storing the Rao ’s Q index in the vector

32 sentinel_rao_indices[i] <- rao_index

33 }

3.5.2 Calculating Rao’s Q index for EnMAP images

For EnMAP images, the Principal Component was calculated. Principal Component
Analysis (PCA) is a statistical technique used to simplify a dataset by reducing its
dimensionality. It does this by transforming the original variables into a new set of vari-
ables called Principal Components (PCs). These PCs are uncorrelated and are ordered
such that the first few retain most of the variation present in the original dataset. In
this case, the PC1 was considered. The first principal component (PC1) captures the
maximum variance from the dataset, so it’s the direction in the data that has the most
information or variability.
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PCA is particularly useful in remote sensing and image analysis, where it helps to com-
press data from multiple bands or layers into fewer components that still retain most of
the essential information.

Listing 3.8: PC1 Calculation on EnMAP images

1 # Libraries required

2 library(terra) # For raster and vector data manipulation

3 library(exactextractr) # For exact extraction of raster values

4 library(stats)

5

6 # Define a function to standardize a single layer

7 standardize_layer <- function(layer) {

8 values <- getValues(layer)

9 #Subtracting the mean and divideing by the standard deviation ,

↪→ resulting in a distribution with a mean of 0 and a standard

↪→ deviation of 1

10 standardized_values <- scale(values , center = TRUE , scale = TRUE)

11 #Updating the original raster layer with the standardized values.

12 setValues(layer , standardized_values)

13 }

14

15 # Standardize each layer in the raster stack

16 standardized_layers <- stack(lapply (1: nlayers(enmap), function(i)

↪→ standardize_layer(enmap [[i]])))

17

18 #performing the PCA

19 enmap_pca <- rasterPCA(standardized_layers)

Rao’s Q index was then calculated on the first PC, using the same procedure as was
used for the Sentinel images.

Since the results were not satisfactory, an alternative approach was employed by
calculating Rao’s Q index on specific optical traits. These traits were derived using a
look-up table (LUT) within the EnMAP Box plugin in QGIS. A LUT is a data structure
that maps input values to desired output values, facilitating the classification of data
based on predefined criteria. In this context, the LUT was used to relate spectral data
from EnMAP images to specific biophysical and biochemical properties of vegetation,
referred to as optical traits. The use of optical traits provides a more direct link to
the vegetation’s physiological characteristics, potentially leading to better estimation of
biodiversity.

The optical traits considered in this study include:

• Structure Parameter (N): Represents the structural properties of vegetation,
influencing light scattering within the canopy.
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• Chlorophyll A + B (Cab): Indicates the chlorophyll content, which is crucial
for photosynthetic activity.

• Water Content (Cw): Reflects the water content within the vegetation, affecting
the spectral reflectance in specific wavelengths.

• Dry Matter Content (Cm): Relates to the amount of dry biomass in the leaves,
influencing their reflectance properties.

• Carotenoids (Ccx): Pigments in the leaves that protect against photooxidative
damage, affecting the spectral response.

• Brown Pigments (Cbrown): Represent non-photosynthetic pigments, which are
indicative of senescence or stress conditions.

• Anthocyanins (Canth): Pigments that provide protective functions in plants,
contributing to the red coloration in leaves.

• Proteins (Cp): Related to the nitrogen content, which is essential for various
physiological processes.

• Carbon-Based Constituents (CBC): Represents carbon compounds like lignin
and cellulose, influencing the structural integrity of leaves.

Additional canopy model parameters used include:

• Leaf Area Index (LAI): Measures the total leaf area per unit ground area,
affecting the interception of light.

• Leaf Angle (ALIA): Describes the angular distribution of leaves, which influences
light absorption and scattering.

• Hot Spot Size Parameter: Affects the reflectance when the observation and
illumination directions align.

By incorporating these optical traits, the study aims to leverage specific spectral
properties that are directly linked to the physiological and structural characteristics of
vegetation, potentially enhancing the accuracy of biodiversity estimations through Rao’s
Q index.
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Chapter 4

Results

This chapter presents the outcomes of the land cover classification and SVH in the
South Tyrol region. After calculating the accuracy, variable importance and confusion
matrices for each satellite’s classification and area of interest, satellite statistics were
calculated, including overall accuracy, kappa statistics, and variable importance. The
chapter also compares the Rao’s Q index derived from remote sensing imagery with field-
based biodiversity metrics, such as species richness and the Shannon index, to evaluate
the effectiveness of various approaches in capturing forest biodiversity.

4.1 Land Cover Classification

4.1.1 Tuning Results

The plot(model rf) function is used to visualize the performance of the model with
different hyperparameters. The plot displays the accuracy against different values of
the tuning parameters used in the model. In the case of a Random Forest model, the
tuning parameter is mtry, which represents the number of variables randomly sampled
as candidates at each split.

The accuracy of a model is defined as the proportion of correct predictions (the count
of data points for which the predicted class label matches the actual class label) out of
the total number of predictions.
In the graph, an example of the tuning results for the classification of Landsat-8 image
of area A are shown.
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The caret::train function automatically selects the best model based on the highest
performance metric. This model is saved and can be used for making predictions.
The value of mtry balances the trade-off between bias and variance: a smaller mtry
introduces more randomness, leading to more diverse trees and potentially reducing
overfitting. However, too small a value can increase bias. Conversely, a larger mtry
allows more features to be considered, which can reduce bias but increase the risk of
overfitting.
In this case, the cross-validation process determined that mtry = 5 provides the best
performance for the model, indicating that considering 5 bands at a time for splits
results in the highest accuracy.

4.1.2 Variable Importance

The function randomForest::varImpPlot(model rf$finalModel) generates a vari-
able importance plot (Figure 4.1), which is a useful tool for evaluating the significance
of each feature in the Random Forest model. the plot consists of two metrics: Mean
Decreased Accuracy and Mean Decreased Gini.

Mean Decreased Accuracy

• This metric measures how much the model’s accuracy decreases when a particular
feature (in this case the satellite bands) is excluded.

• A higher value indicates that the feature is more important because removing it
causes a significant drop in model accuracy.

Mean Decreased Gini

• This metric measures the total decrease in node impurity (measured by the Gini
index) that a feature achieves across all trees in the forest.

• A higher value indicates that the feature is important in improving the purity of
the nodes and thus the model’s classification performance.
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Figure 4.1: Mean Decreased Accuracy and Mean Decreased Gini of Landsat-8 classification of area A

The features at the top of the plots are the most important for the model. These are
the bands that the model relies on the most for making accurate predictions. If some
features have very low importance scores, one might consider removing them to simplify
the model. This can make the model more interpretable and reduce computational costs
without significantly affecting performance.

By using the caret::varImp(model rf) function one can also generate a heatmap
visualization of feature importance scores (Figure 4.2), where the color intensity repre-
sents the magnitude of importance assigned to each feature.

Figure 4.2: Predictor importance of Landsat-8 classification of area A
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As expected from the mean decreased accuracy plot, bands 10 and 5 seem to be more
influential in determining the class labels in this example. In particular, band 10 plays
a crucial role in distinguishing urban areas.

4.1.3 Confusion Matrix

By using the function confusionMatrix(data , reference) the confusion matrix was
computed, to investigate predictions versus actual class labels, allowing for a thorough
evaluation of the model’s performance (Figure 4.3).

Figure 4.3: Confusion Matrix for the classification of area A using Landsat images

To obtain this, the function predict(model rf, newdata = dt test) was used to
use the model to make predictions on the unseen test dataset.
In the table, each row represents the instances in an actual class, whereas each column
represents the instances in a predicted class. The main diagonal (from top left to bottom
right) indicates the number of correct predictions for each class, while the off-diagonal
elements show the misclassifications.

Parameters

• Accuracy: The ratio of correctly predicted instances to the total instances. In a
confusion matrix, it’s the sum of the diagonal elements divided by the total number
of instances.

• 95% CI (Confidence Interval): This is the range within which the true accuracy
of the model is expected to lie with 95% confidence. It gives an idea of the reliability
of the accuracy measurement. In this case, one can be 95% confident that the
accuracy of this model lies between 0.9882 and 0.9880.

• No Information Rate (NIR): It’s a baseline measure that represents the accu-
racy of a simple classification model that always predicts the most frequent class
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in the dataset.This rate helps to understand how well a more complex model (like
this Random Forest model) is performing compared to this simple baseline.

• P-value (acc > NIR): This p-value tests the null hypothesis that the model’s
accuracy is no better than the NIR. Essentially, it helps determining if the observed
accuracy improvement of the model over the NIR is statistically significant or if it
could have happened by chance. A low p-value (typically < 0.05) indicates that
the model’s accuracy is significantly better than just predicting the most frequent
class.

• Kappa: It is a measure of agreement between predicted and observed classifica-
tions, correcting for the possibility of agreement occurring by chance

4.1.4 Satellites Statistics

To retrieve the accuracy and kappa statistics of each satellite, the test datasets of each
of the four areas of interest were joint and the confusion matrix was calculated. This
was done for every satellite.

Listing 4.1: Confusion Matrix and Statistics of Sentinel-2 10m

1 # Libraries required

2 library(caret)

3

4 #SENTINEL 10m CONFUSION MATRIX

5 test_s10 <- c(test_s10A , test_s10B , test_s10C , test_s10D)

6 class_s10 <- c(class_s10A , class_s10B , class_s10C , class_s10D)

7 cm_s10 <- confusionMatrix(data = test_s10 , class_s10)

8 cm_s10

The statistics obtained from the models for each satellite are shown in Table 4.1.
The classification results from different satellite data highlight the trade-offs between
resolution, the number of spectral bands, and classification accuracy.

Satellite Resolution Bands Accuracy Kappa Most Important Predictors
Sentinel-2 10m 4 0.885 0.856 B08 (832.8 nm) and B02 (492.4 nm )

Sentinel-2 resampled 10m 11 0.972 0.965 B01 (442.7 nm) and B11 (1613.7 nm )
Sentinel-2 20m 7 0.985 0.981 B01 (442.7 nm) and B11 (1613.7 nm )
Landsat-8 30m 11 0.998 0.998 B10 (10600 – 11190 nm) and B05 (850 - 880 nm)
EnMAP 30m 224 0.99 0.987 It varies depending on the area

Table 4.1: Model statistics for each satellite.
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Figure 4.4: Sentinel-2 at 10m Confusion Matrix Figure 4.5: Sentinel-2 at 10m Resampled Confusion Matrix

Figure 4.6: Sentinel-2 at 20m Confusion Matrix Figure 4.7: Landsat Confusion Matrix

Figure 4.8: EnMAP Confusion Matrix

4.2 Spectral Variation Hypothesis

4.2.1 Rao’s Q index for Sentinel-2 images

This section presents the results of the analysis of the calculated Rao’s Q index on the
Sentinel-2 images and their comparison with the field data related to the Shannon in-
dex and species richness. Two graphs were generated showing the relationships between
Rao’s Q index and the Shannon index, and between Rao’s index and species richness.

In the first graph (Figure 4.9), Rao’s Q index was related to the Shannon index,
obtaining a value of R2 equal to 0.547. The R2 value, or coefficient of determination,
indicates the proportion of variance in the Shannon index which is explained by variance
in Rao’s Q index. In this case, a value of 0.547 suggests that about 54.7% of the variation
in the Shannon index can be explained by the variation in Rao’s Q index, indicating a
moderate correlation between the two diversity metrics.

In the second graph (Figure 4.10), the relationship between Rao’s Q index and species
richness is shown, with a value of R2 equal to 0.267. This value indicates that only 26.7%
of the variance in the species species richness is explained by Rao’s Q index, suggesting
a weaker correlation than that observed with the Shannon index.
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Figure 4.9: Relationship between Rao’s Q index and the Shannon index.

Figure 4.10: Relationship between Rao’s Q index and the species richness.
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4.2.2 Rao’s Q index for EnMAP images

For the EnMAP images, Rao’s Q index was initially calculated on the principal compo-
nent (PC1) and subsequently compared with the Shannon index and species richness.
The results of these correlations were unsatisfactory, with very low R² values: 1e-04
for the relationship between Rao’s Q index (calculated on the PCA) and the Shannon
index, and 0.012 for the relationship between Rao’s Q index (PCA) and species richness
(Figures 4.11 and 4.12).

Figure 4.11: Relationship between Rao’s Q index calculated on the PCA and the Shannon index.

Figure 4.12: Relationship between Rao’s Q index calculated on the PCA and species richness.
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Subsequently, Rao’s Q index was calculated on various optical traits to improve the
correlation. The results show the following relationships:

• Anthocyanins (Anth): R² = 0.003 with the Shannon index and R² = 0.006 with
species richness.

• Chlorophyll A + B (Cab): R² = 0.138 with the Shannon index and R² = 0.126
with species richness.

• Brown Pigments (Cbrown): R² = 0.073 with the Shannon index and R² =
0.004 with species richness.

• Dry Matter Content (Cm): R² = 0.003 with the Shannon index and R² =
0.001 with species richness.

• Water Content (Cw): R² = 0.185 with the Shannon index and R² = 0.052 with
species richness.

• Hot-Spot Size Parameter (Hspot): R² = 0.013 with the Shannon index and
R² = 0.081 with species richness.

• Leaf Area Index (LAI): R² = 0.013 with the Shannon index and R² = 0.01 with
species richness.

• Leaf Inclination Distribution Function (LIDF): R² = 1e-04 with the Shannon
index and R² = 0.016 with species richness.

• Structure Parameter (N): R² = 0.01 with the Shannon index and R² = 0.006
with species richness.

The corresponding graphs (Figures 4.13 and 4.14) show how the variability of Rao’s
Q index calculated on optical traits relates to the Shannon index and species richness,
generally highlighting weak correlations.
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Figure 4.13: Relationship between Rao’s Q index calculated on optical traits and the Shannon index.

Figure 4.14: Relationship between Rao’s Q index calculated on optical traits and species richness.
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Chapter 5

Discussion

In this chapter, the main results obtained by the application of the land classification
methods and the SVH using remote sensing data are analysed and discussed. The analy-
sis focuses on the benefits and limitations of each methodology, with particular attention
to the performance of the EnMAP satellite compared to multispectral sensors such as
Sentinel-2. The ecological implications of these results are also explored, providing a
more complete picture of the effectiveness of remote sensing for biodiversity manage-
ment and monitoring environmental changes.

5.1 Land Cover Classification

5.1.1 Summary of Findings

Accuracy and Kappa coefficient

• Landsat-8 shows the highest accuracy (99.8%) and Kappa coefficient (0.998),
indicating it provides the most reliable classification results among the satellites
tested. This high performance can be attributed to the inclusion of the thermal
infrared band (B10), which is crucial for distinguishing between different land cover
types. The confusion matrix for Landsat-8 further supports this high accuracy, with
minimal misclassifications across different land cover types.

• EnMAP also demonstrates high accuracy (99%) and Kappa (0.987). Its extensive
spectral coverage with 224 bands contributes to its robust performance, allowing
for finer distinctions between land cover classes, even at a 30m resolution.

• Sentinel-2 at 20m resolution achieves excellent accuracy (98.5%) and Kappa
(0.981). Despite a coarser spatial resolution than the 10m counterpart, the 20m
bands provide valuable spectral information for classification, especially the coastal
(B01) and shortwave infrared (B11) bands, which are critical for soil and vegetation
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moisture assessment. The confusion matrix for this dataset reveals a high level of
precision, with only a few errors between urban and forest classes.

• Sentinel-2 (10m resampled) showed significantly improved performance than the
original 10m bands with an accuracy of 97.2% and a Kappa coefficient of 0.965.
This resampling to 10m from 20m resolution provided finer spatial details while still
leveraging the richer spectral information from the 11 bands, such as the B01 and
B11 bands, which are critical for distinguishing vegetation and soil characteristics.
The confusion matrix for Sentinel-2 10m resampled data supports this finding, with
reduced misclassification compared to the original 10m data.

• Sentinel-2 (10m original) exhibited the lowest accuracy of 88.5% and a Kappa
coefficient of 0.856. While the high spatial resolution (10m) is beneficial for de-
tailed mapping, the limitation of only four bands restricts the model’s ability to
capture subtle spectral differences. The confusion matrix reflects this, showing
higher misclassification rates, especially between forest and mountain categories.

Predictor Importance

• For Landsat-8, bands B10 (thermal infrared) and B05 (near-infrared) are key.
The thermal infrated band (10900 nm) measures the thermal radiation emitted
from the earth’s surface, which is very effective in differentiating surfaces that emit
heat differently. Urban areas, with concrete and asphalt, retain more heat than
vegetation and water bodies, which cool faster. Therefore, this band is particularly
useful for classifying urban areas from natural ones. In addition, thermal bands
are sensitive to soil moisture content and vegetation transpiration, helping to dis-
tinguish water content in soil and plants.
The near-infrared (NIR) band (870 nm) is crucial for vegetation analysis because of
its interaction with plant cell structure. Healthy vegetation strongly reflects NIR
radiation, making this band useful for distinguishing vegetated from unvegetated
areas. This band is particularly effective for assessing the health of vegetation,
its density and for distinguishing between different types of vegetation cover (e.g.,
forests versus grasslands).

• For EnMAP, the importance of bands varies by area due to its extensive spec-
tral range, allowing for flexible and detailed spectral analysis tailored to specific
applications.

• For Sentinel-2 (20 m) the most important predictors were B01 and B11.
B01 (442.7 nm) is particularly sensitive to atmospheric particles such as aerosols
and fine dust, as well as coastal water conditions. In addition, B01 is useful in
coastal studies to detect water quality, sediment concentrations and to differenti-
ate land-water boundaries, especially in wetlands or coastal environments.
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Band B11 (1613.7 nm) is sensitive to moisture content in vegetation and soils. Wa-
ter strongly absorbs radiation in this region, making B11 essential for detecting soil
and plant water stress, monitoring plant transpiration and distinguishing between
wet and dry surfaces. It is particularly useful in agricultural and forestry areas,
where water content directly affects plant health and soil classification.

• For Sentinel-2 (10m resampled) bands B01 (442.7 nm) and B11 (1613.7 nm) were
similarly crucial. Their importance lies in the ability to capture detailed spectral
information, allowing the model to perform more accurate classifications compared
to Sentinel-2 (10m original).

• For Sentinel-2 (10m original), bands B08 and B02 were the most influential.
B08 (832.8 nm) is essential for assessing vegetation health. Near infrared (NIR)
is reflected by the leaves due to their internal structure, and variations in NIR
reflectance help distinguish between healthy and stressed vegetation. This band is
particularly useful for distinguishing between different types of vegetation and is a
key component of vegetation indices such as the NDVI.
B02 (492.4 nm) is particularly useful for monitoring surface water, as pure wa-
ter reflects blue light significantly, allowing sediment, algae and pollutants to be
detected. It is also sensitive to atmospheric diffusion, so it can be used to study
aerosols and correct for atmospheric effects. B02 is also effective in mapping coastal
zones and glaciers, and helps to distinguish reflective surfaces (such as snow and
ice) from vegetation, which absorbs blue for photosynthesis.

The results of the land cover classification showed that Landsat-8 achieved the high-
est accuracy (99.8%) and Kappa coefficient (0.998), mainly due to the inclusion of the
infrared thermal band (B10). EnMAP showed high accuracy (99%) and a Kappa coef-
ficient of 0.987, with solid performance due to its wide spectral coverage of 224 bands,
although it presented some difficulties in distinguishing between areas affected by the
Storm Vaia and grasslands. Sentinel-2 at 10m resolution showed the lowest accuracy
despite having the highest spatial resolution, which improved drastically with the inclu-
sion of the resampled bands. This highlighted the importance of the SWIR (B11) band,
which was also crucial for the classification of the sentinel 20m resolution images.

5.1.2 Benefits and Limitations of the Methodology

The use of multispectral and hyperspectral data for landscape classification offered sig-
nificant advantages, especially in the context of monitoring and classifying land cover on
a large scale.

One of the main advantages of this methodology was its ability to handle large
amounts of spatial and spectral data, allowing detailed classification of land cover. In-
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tegration of data from satellites such as Sentinel-2 and EnMAP provided a wide and
detailed spatial coverage, making it possible to monitor variations in difficult-to-access
environments, such as dense forests or areas devastated by the Adrian Storm.

One of the main benefits of EnMAP, in particular, was its ability to detect sub-
tle spectral variations, making it particularly effective in monitoring habitats with high
biological diversity. Unlike other satellites with fewer bands, EnMAP’s hyperspectral im-
ages provided a vast range of features to select from when building the Random Forest
model. This flexibility allowed for more nuanced tuning of hyperparameters. Interest-
ingly, the feature importance analysis did not highlight specific bands consistently across
the entire classification area. Instead, different bands emerged as important depending
on the specific habitat or classification region, underscoring the adaptability of EnMAP’s
hyperspectral data to a variety of ecological contexts.

An additional advantage came from the use of the robust and flexible Random Forest
algorithm, which is particularly effective in handling high-dimensional data, like those
of satellite images. The algorithm reduced the risk of overfitting, common in remote
sensing data, thus improving the model’s ability to generalize to new data.

However, even if the results were satisfactory for all the considered satellites, the
methodology had some limitations. The accuracy of classification depended heavily on
the spatial and spectral resolution of the satellite data used. Spectral resolution ap-
peared to be more crucial than spatial resoltuion in the accuracy of the classification,
but while the use of hyperspectral data offered greater detail, it also required more de-
manding computational handling and in-depth data preparation, such as the removal of
problematic bands.

Moreover, EnMAP’s spatial resolution (30 metres), although sufficient for this par-
ticular study, limits the ability to detect fine details in heterogeneous landscapes, which
could represent a limitation in more ecologically complex areas. To overcome these limi-
tations, it would be appropriate to include auxiliary data such as LiDAR images or UAVs
(drones), which would add structural and altitude information, improving the distinction
between different land cover and enhancing the accuracy of classification.

5.1.3 Ecological Implications

The classification of land use using hyperspectral and multispectral satellite images has
fundamental implications for ecosystem management, biodiversity conservation and land-
scape planning. By carefully distinguishing the different types of land cover, especially in
diverse ecosystems such as that of South Tyrol, this study provides valuable information
on forest health, species distribution and ecosystem dynamics.
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Monitoring and Management of Ecosystem Health
One significant ecological implication of the classification results lies in the potential for
improved ecosystem monitoring. Remote sensing techniques, such as those used in this
study, allow for a continuous and large-scale assessment of forest ecosystems. This ca-
pability is particularly relevant for fragmented or difficult to access environments, such
as the mountainous areas of South Tyrol. The high precision achieved by classification
models, in particular with Landsat-8 and EnMAP, supports the use of satellite images
to detect changes in vegetation composition and ecosystem degradation due to natural
or anthropogenic factors.

For example, the ability to differentiate areas affected by events such as Storm Vaia
from other types of land cover provides an early warning system for disturbances to
ecosystems. This facilitates more responsive and adaptive management strategies, al-
lowing conservationists to intervene before irreversible losses of biodiversity occur. In
addition, the hyperspectral resolution of EnMAP, although not always easy to apply,
provides a better understanding of vegetation health indicators, It can be used to guide
efforts to reforest or regenerate forests in degraded areas.

Improving Biodiversity Conservation
The results of the classification also have direct implications for biodiversity conserva-
tion. The ability to accurately classify and monitor different types of land cover allows
for the identification of critical habitats and areas of high biodiversity. For example,
the precise delineation of forest boundaries and the distinction between grasslands and
degraded areas support priority conservation efforts. Therefore, satellite-based classifica-
tion methods provide a non-invasive means of continuously monitoring habitat changes,
facilitating the implementation of conservation strategies aligned with dynamic environ-
mental conditions.

In addition, the ecological richness detected through multispectral and hyperspectral
imaging provides information on the spatial distribution of species, thus supporting con-
servation planning. Protected areas can be adapted based on real-time data to maximise
species conservation and minimise the impact of land use changes, climate change and
human invasion.

Adaptation to Climate Change
In light of the growing impacts of climate change, the classification results offer a valu-
able tool for understanding the responses of ecosystems to climate change. The ability to
map changes in vegetation patterns over time provides crucial data on how ecosystems
like the forests of South Tyrol are adapting to changes in temperature, precipitation and
the frequency of extreme weather events. This information can inform climate resilience
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strategies by identifying areas of greatest ecological vulnerability and suggesting regions
that may require targeted interventions to maintain biodiversity and ecosystem func-
tionality.

Support for a Sustainable Management of the Territory
Finally, classification data support land use planning and sustainable forest manage-
ment by providing a detailed picture of the dynamics of soil cover. The ability to assess
large areas with high precision ensures that decisions regarding land use-whether for
conservation, agriculture or development-are based on solid ecological data. For exam-
ple, distinguishing between agricultural fields, grasslands and natural forests can help in
zonal regulations that promote sustainable development by minimizing habitat destruc-
tion and biodiversity loss.

5.2 Spectral Variation Hypothesis

5.2.1 Summary of Findings

The results obtained by applying the SVH in the study area of South Tyrol have shown
some interesting correlations, but also limitations that deserve reflection.

The analysis of Rao’s Q Index on the images of Sentinel-2 showed a moderate correla-
tion with the Shannon index, with a coefficient of determination (R2) of 0.547, suggesting
that about 54,7% of the variation in Shannon’s index can be explained by the variation
in Rao’s Q index. This correlation, although not perfect, indicates that spectral hetero-
geneity can be a reasonable indicator of species diversity in a forest context. However,
the relationship between Rao’s Q index and species richness was weaker, with an R2

value of 0.267, suggesting that only 26.7% of the variation in species richness can be
explained by spectral variation.

The results for EnMAP images were less satisfactory. Initial analysis of the calcu-
lated Rao’s Q index on the first principal component (PC1) showed very low correlations
with the Shannon index (R2 = 1e-04) and species richness (R2 = 0.012), indicating that
the spectral information captured was not sufficient to accurately represent biodiversity.
Subsequently, the calculation of the Rao’s Q index on individual optical traits slightly
improved the correlation with the Shannon index, in particular for water content (R2 =
0,185) and chlorophyll A + B (R2 = 0,138). However, the overall values of correlations
remained weak, suggesting that the optical traits considered are not fully representative
of the ecological diversity in this area.

An assumption about the unsatisfactory results of EnMAP may be related to its
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spatial resolution of 30 metres, which may not be fine enough to capture the ecological
complexity and variability of species in a fragmented forest area. In addition, the hy-
perspectrality of EnMAP, while offering high spectral resolution, may have introduced
spectral noise due to overlapping information not relevant to the context studied. This
may have compromised the ability to accurately record species diversity.
Another factor that deserves attention is the seasonal growth cycles of plants. In Septem-
ber, vegetation may be transitioning into senescence (beginning to slow down before
winter), which could reduce the distinctiveness of spectral signals. This change could
make it harder to detect differences in species and reduce the effectiveness of the SVH.
Therefore, using imagery from summer might provide stronger signals related to bio-
diversity, especially in forested ecosystems where phenological changes can significantly
affect spectral reflectance.

In summary, the results confirm that spectral heterogeneity can be used as a proxy
for biodiversity, but with some limitations related to the spectral and spatial resolution
of the data, as well as the complexity of the ecosystem. Better results have been obtained
with the Sentinel-2 images, while the use of EnMAP data requires further exploration
to improve the accuracy of biodiversity estimates.

5.2.2 Benefits and Limitations of the Methodology

The Spectral Variation Hypothesis has proven to be a promising tool for non-invasive
large-scale biodiversity estimation using remote sensing data. However, its effectiveness
varied according to different technical and environmental factors, which influenced both
the benefits and limitations of the method.

One of the main advantages of SVH was the ability to provide biodiversity estimates
over large geographical areas without the need for complex and costly field campaigns.
This efficiency is particularly useful in environments that are difficult to reach or where
continuous monitoring is required, such as in forest or mountain environments. The
possibility of using multispectral or hyperspectral images, such as those from Sentinel-2
and EnMAP, allowed detailed information on spectral variations related to the structure
and composition of vegetation.

The use of indices such as Rao’s Q index has proved to be an effective method for
quantifying spectral heterogeneity, providing a proxy indicator of ecological diversity. In
particular, the ability of Rao’s Q index to consider both the composition and the func-
tional dissimilarity of species makes this measure particularly suitable for capturing the
complexity of plant communities.
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Despite its benefits, the application of SVH had several limitations, mainly related
to spatial resolution and spectral data quality. In the case of EnMAP images, for ex-
ample, the spatial resolution of 30 metres may have not be fine enough to accurately
distinguish biodiversity in environments with high fragmentation or small variations in
plant composition.

Another limitation concerned the hyperspectrality itself. Although hyperspectral
data provided a great abundance of information due to the large number of spectral
bands, it can introduce spectral noise and information redundancy. Overlapping bands
that are too similar may have confused the algorithm, reducing its ability to distinguish
accurately between species or functional groups. This problem was evident in the results
obtained with EnMAP images, where the correlation between Rao’s Q index and biodi-
versity metrics was weak.

In addition, SVH can be sensitive to environmental conditions and seasonal varia-
tions. Phenomena such as plant phenology or the influence of climatic factors, such as
drought or soil moisture, can affect spectral reflections, leading to temporary variations
not necessarily related to biodiversity, but rather to contingent environmental conditions.

5.2.3 Ecological Implications

The results obtained by applying the SVH in this study offer several important ecological
implications, especially for the management and conservation of forest ecosystems. The
ability to estimate large-scale biodiversity through remote sensing represents a unique
opportunity to address the challenges of biodiversity loss, climate change and sustainable
management of natural resources.

Monitoring Biodiversity
The correlation between spectral heterogeneity, measured by Rao’s Q index, and species
diversity in forest contexts shows that remote sensing can be a powerful tool for moni-
toring biodiversity. In particular, the results obtained from Sentinel-2 data, which show
a significant correlation between spectral variability and Shannon’s index, highlight the
potential of this approach to identify areas with high species diversity. This is crucial
to identify and protect ”biodiversity hotspots”, which are areas of high biodiversity that
may be threatened by human activities or environmental changes.

However, the use of hyperspectral data such as EnMAP has not yielded equally
promising results, raising questions about the effectiveness of hyperspectrality for mon-
itoring biodiversity in complex environments. This suggests that, in some contexts, a
combination of multispectral and hyperspectral data may be necessary to accurately
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capture ecological diversity.

Forest management and conservation
Remote sensing based on SVH offers new perspectives for forest management, as it allows
the health and composition of forests to be assessed continuously and on a large scale.
This is particularly relevant in mountain areas such as South Tyrol, where the forest
structure is often fragmented and difficult to monitor with traditional methods. The
application of SVH could therefore improve the ability to detect changes in species com-
position by providing early warning of forest degradation, invasion of non-native species,
or reduction of biodiversity due to human activities.

The possibility of monitoring biodiversity continuously over time also allows to assess
the effectiveness of conservation measures already in place and adapt them dynamically.
For example, information from satellite imagery could be used to test the effect of refor-
estation policies, land management or deforestation protection, allowing more targeted
management of natural resources.

Response to climate change
Loss of biodiversity is closely linked to climate change, and the ability to monitor changes
in ecosystems in real time could be a key tool for understanding how plant communities
respond to phenomena such as rising temperatures, the variation in precipitation or the
frequency of extreme events such as storms and droughts. Spectral variability analysis
could be used to study how forests change their functional composition and resilience in
response to these environmental stresses.

In addition, the SVH approach could help to understand how climate change affects
the distribution of species at landscape level. For example, identifying species sensitive
to climate change could help predict future shifts in species distribution areas and de-
velop adaptation strategies that minimise habitat and biodiversity loss.

Implications for ecological research
Finally, the integration of remote sensing methods with classic ecological approaches,
such as the use of biodiversity metrics in the field, opens up new possibilities for eco-
logical research. This study demonstrates the importance of combining different data
sources to obtain a comprehensive view of ecosystems. The results indicate that, al-
though spectral analysis can provide valuable insights into biodiversity, it should always
be accompanied by field observations to ensure a correct interpretation of ecological
dynamics.
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Chapter 6

Conclusion

This study aimed to evaluate the effectiveness of remote sensing technologies, specifically
multispectral data from Sentinel-2 and Landsat-8, and hyperspectral data from EnMAP,
in the classification of forest landscapes and the assessment of biodiversity in the South
Tyrol region. Using a combination of the Random Forest algorithm and the Spectral
Variation Hypothesis, this research represents the first attempt to test the SVH using
EnMAP data, offering insights into both the strengths and limitations of these method-
ologies.

The findings confirm the high potential of multispectral data for land cover classifica-
tion. The Random Forest algorithm demonstrated high classification accuracy across all
datasets, with Sentinel-2 and Landsat-8 performing well in distinguishing different land
cover types. However, it is worth noting that despite its higher spectral resolution, En-
MAP’s performance in land cover classification did not significantly surpass that of the
multispectral sensors. This suggests that while hyperspectral data offers greater spec-
tral detail, the added complexity may not always translate into improved classification
accuracy for certain landscape types.

The application of the SVH for biodiversity estimation yielded mixed results. Sentinel-
2 multispectral data provided relatively robust correlations between spectral variation
and biodiversity indices, particularly Rao’s Q index, highlighting the potential of mul-
tispectral data to serve as proxies for biodiversity in forested ecosystems. By contrast,
EnMAP data, despite its high spectral resolution, did not produce significant correla-
tions with field-measured biodiversity indices. One possible explanation for this outcome
could be the timing of the EnMAP image acquisition in September, when vegetation ac-
tivity may have been lower, reducing the detectable spectral variability associated with
biodiversity.

These results underscore the importance of temporal factors when using remote sens-
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ing data for biodiversity monitoring. The seasonal dynamics of vegetation, which can
strongly influence spectral signatures, suggest that satellite imagery captured during
peak growing seasons may provide more reliable estimates of biodiversity, particularly
when using hyperspectral data. Future research should explore the seasonal variability
of spectral data to better understand the optimal conditions for biodiversity assessment.

Moreover, this research highlights some limitations in the hyperspectrality itself for
biodiversity monitoring. While the fine spectral resolution of EnMAP theoretically allows
for more precise detection of subtle vegetation traits, this advantage may be outweighed
by challenges in data processing, as well as the potential for oversaturation of spectral
information that complicates the analysis. Multispectral data, in contrast, offers a more
accessible and computationally efficient alternative for large-scale biodiversity monitor-
ing, with results that are still highly relevant for ecological applications.

In conclusion, this study contributes to the growing body of knowledge on the use of
remote sensing for biodiversity assessment, providing valuable insights into the perfor-
mance of both multispectral and hyperspectral sensors. The results suggest that while
hyperspectral data holds promise for detecting subtle ecological variations, multispectral
data currently offers a more practical solution for large-scale biodiversity monitoring.
Future advancements in hyperspectral technology, particularly in terms of processing
algorithms and temporal resolution, may further enhance its utility in this field. Addi-
tionally, the application of the SVH in diverse ecological contexts and the integration of
time-series analysis represent promising avenues for future research, with the potential
to improve the precision and applicability of remote sensing for biodiversity conservation
efforts.

6.1 Appendix A: Additional R Code for EnMAP

Classification

Listing 6.1: Complete code for EnMAP classification

1 #importing packages

2 library(raster)

3 library(rgdal)

4 library(sf)

5 library(sp)

6 library(RStoolbox)

7 library(rasterVis)

8 library(mapview)

9 library(data.table)

10 library(RColorBrewer)

11 library(plotly)
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12 library(grDevices)

13 library(caret)

14 library(randomForest)#mis

15 library(ranger)

16 library(MLmetrics)

17 library(nnet)

18 library(NeuralNetTools)

19 library(LiblineaR)

20 library(data.table)

21 library(dplyr)

22 library(stringr)

23 library(doParallel)

24 library(snow)

25 library(parallel)

26 library(tidyr)

27 library(maptools)

28

29 ############### WORKING WITH ENMAP DATASET

↪→ ##########################################

30 #224 bands with 30 m resolution

31 #bands 131, 132, 133, 134, 135 have missing values

32

33 ##### WORKING ON AREA A

34 #Importing only the area of interest (A)

35 rst_lst <- stack(’path_to_file.tif’)

36 rst_lst <- as.list(rst_lst) #transforming rasterstack into list

37 names(rst_lst) <- 1:224

38

39 #dropping the columns with missing values

40 rst_lst <- rst_lst[-c(131:135)]

41

42 #Visualize the image in Natural Color (R = Red , G = Green , B = Blue).

43 suppressWarnings ({ viewRGB(brick(rst_lst [1:44]) , r = 44, g = 21, b = 5)

↪→ })

44

45 brick_for_prediction <- brick(rst_lst)

46

47 #importing the shp file of area A

48 poly_area_A <-shapefile(’path_to_file.shp’)

49 poly_area_A@data$id <- as.integer(factor(poly_area_A@data$id))
50 setDT(poly_area_A@data)

51

52

53 ptsamp1 <-subset(poly_area_A, id == "1") #selecting polygons with id=1

54 ptsamp1_1 <- spsample(ptsamp1 , 750, type=’regular ’) #selecting 750

↪→ random points in the polygons with id=1

55 ptsamp1_1$class <- over(ptsamp1_1, ptsamp1)$id #assigning the id to the

↪→ random points

56 saveRDS(ptsamp1_1, file=paste0 ("path_to_file", file="_ptsamp1_A.rds"))
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57

58 ptsamp2 <-subset(poly_area_A, id == "2") #selecting polygons with id=2

59 ptsamp2_2 <- spsample(ptsamp2 , 750, type=’regular ’) #selecting 750

↪→ random points in the polygons with id=2

60 ptsamp2_2$class <- over(ptsamp2_2, ptsamp2)$id #assigning the id to the

↪→ random points

61 saveRDS(ptsamp2_2, file=paste0 ("path_to_file", file= "_ptsamp2_A.rds")

↪→ )

62

63 ptsamp3 <-subset(poly_area_A, id == "3") #selecting polygons with id=3

64 ptsamp3_3 <- spsample(ptsamp3 , 750, type=’regular ’) #selecting 750

↪→ random points in the polygons with id=3

65 ptsamp3_3$class <- over(ptsamp3_3, ptsamp3)$id #assigning the id to the

↪→ random points

66 saveRDS(ptsamp3_3, file=paste0 ("path_to_file", file= "_ptsamp3_A.rds")

↪→ )

67

68 ptsamp4 <-subset(poly_area_A, id == "4") #selecting polygons with id=4

69 ptsamp4_4 <- spsample(ptsamp4 , 750, type=’regular ’) #selecting 750

↪→ random points in the polygons with id=4

70 ptsamp4_4$class <- over(ptsamp4_4, ptsamp4)$id #assigning the id to the

↪→ random points

71 saveRDS(ptsamp4_4, file=paste0 ("path_to_file", file= "_ptsamp4_A.rds")

↪→ )

72

73 ptsamp5 <-subset(poly_area_A, id == "5") #selecting polygons with id=5

74 ptsamp5_5 <- spsample(ptsamp5 , 750, type=’regular ’) #selecting 750

↪→ random points in the polygons with id=5

75 ptsamp5_5$class <- over(ptsamp5_5, ptsamp5)$id #assigning the id to

↪→ the random points

76 saveRDS(ptsamp5_5, file=paste0 ("path", file="_ptsamp5_A.rds"))

77

78

79 #saving the information of the random points into a data frame

80 dt1 <- brick_for_prediction %>%

81 raster :: extract(y = ptsamp1_1) %>%

82 as.data.table %>%

83 .[, id_cls := ptsamp1_1@data] # add the class names to each row

84

85 dt2 <- brick_for_prediction %>%

86 raster :: extract(y = ptsamp2_2) %>%

87 as.data.table %>%

88 .[, id_cls := ptsamp2_2@data] # add the class names to each row

89

90 dt3 <- brick_for_prediction %>%

91 raster :: extract(y = ptsamp3_3) %>%

92 as.data.table %>%

93 .[, id_cls := ptsamp3_3@data] # add the class names to each row

94
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95 dt4 <- brick_for_prediction %>%

96 raster :: extract(y = ptsamp4_4) %>%

97 as.data.table %>%

98 .[, id_cls := ptsamp4_4@data] # add the class names to each row

99

100 dt5 <- brick_for_prediction %>%

101 raster :: extract(y = ptsamp5_5) %>%

102 as.data.table %>%

103 .[, id_cls := ptsamp5_5@data] # add the class names to each row

104

105

106 #merging the dataframes into a single dataframe

107 dt<-rbind(dt1 , dt2 , dt3 , dt4 , dt5)

108 names(dt)[names(dt) == ’id_cls’] <- ’class ’

109 dt<-dt %>% drop_na()

110 dt$class <- factor(dt$class , labels=c(’forest ’,’urban’, ’mountain ’, ’

↪→ vaia’, ’pasture ’))

111

112

113

114 #Random Forest algorith

115 set.seed (321)

116 # A stratified random split of the data

117 idx_train <- createDataPartition(dt$class ,
118 p = 0.7, # percentage of data as

↪→ training

119 list = FALSE)

120

121

122 dt_train <- dt[idx_train]

123 dt_test <- dt[-idx_train]

124

125

126 # create cross -validation folds (splits the data into n random groups)

127 n_folds <- 10

128 set.seed (321)

129 folds <- createFolds (1: nrow(dt_train), k = n_folds)

130

131 #Explanding mtry interval to consider more bands

132 tuneGrid <- expand.grid(mtry = seq(2, 215, by = 10)) # from 2 to 244,

↪→ step =10

133

134 # Set the seed at each resampling iteration. Useful when running CV in

↪→ parallel.

135 seeds <- vector(mode = "list", length = n_folds + 1)

136 for(i in 1:n_folds) seeds[[i]] <- sample.int(1000 , nrow(tuneGrid))

137 seeds[n_folds + 1] <- sample.int(1000 , 1)

138

139 ctrl <- trainControl(summaryFunction = multiClassSummary ,
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140 method = "cv", number = n_folds , search = "grid", classProbs = TRUE ,

↪→ savePredictions = TRUE , index = folds , seeds = seeds)

141

142 model_rf <- caret ::train(class ~ . , method = "rf", data = dt_train ,

↪→ importance = TRUE , tuneGrid = tuneGrid , trControl = ctrl)

143

144 #saving the model

145 saveRDS(model_rf , file = paste0("path_to_file","model_rf_","area_A",".

↪→ rds"))

146

147 predict_rf <- raster :: predict(object = brick_for_prediction ,

148 model = model_rf, type = ’raw’)

149 writeRaster(predict_rf, paste0("path_to_file","enmap_area_A_

↪→ classification",".tiff"),overwrite=T )

150

151

152 #### EVALUATION OF THE MODEL

153 plot(model_rf) # tuning results

154

155 #confusion matrix and statistics

156 test_e30A <- predict(model_rf , newdata = dt_test)

157 class_e30A <- dt_test$class
158 cm <- confusionMatrix(data = test_e30A , class_e30A)

159 cm

160

161

162 #ordering them by predictor importance across the classes

163 vi <- varImp(model_rf)$importance
164 vi$max <- apply(vi , 1, max)

165 vi <- vi[order(-vi$max),]
166 #selecting only the 20 most important bands

167 vi20 <- head(vi , 20)

168

169 vi20%>%

170 as.matrix %>%

171 plot_ly(x = colnames (.) [1:5], y = rownames (.), z = ., type = "

↪→ heatmap",

172 width = 350, height = 300)

173

174 #mean decrease accuracy and mean decrease gini

175 randomForest :: varImpPlot(model_rf$finalModel)
176

177

178

179

180 #### WORKING ON AREA B

181 #Importing only the area of interest (B)

182 rst_lst <- stack(’path_to_file.tif’)

183 rst_lst <- as.list(rst_lst) #transforming rasterstack into list
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184 names(rst_lst) <- 1:224

185

186 #dropping the columns with missing values

187 rst_lst <- rst_lst[-c(131:135)]

188

189 #Visualize the image in Natural Color (R = Red , G = Green , B = Blue).

190 suppressWarnings ({ viewRGB(brick(rst_lst [1:44]) , r = 44, g = 21, b = 5)

↪→ })

191

192 brick_for_prediction <- brick(rst_lst)

193

194 #importing the shp file of area B

195 poly_area_B <-shapefile(’path_to_file.shp’)

196 poly_area_B@data$id <- as.integer(factor(poly_area_B@data$id))
197 setDT(poly_area_B@data)

198

199 ptsamp1 <-subset(poly_area_B, id == "1") #selecting the polygons with id

↪→ =1

200 ptsamp1_1 <- spsample(ptsamp1 , 750, type=’regular ’) #selecting 750

↪→ random points within the selected polygons

201 ptsamp1_1$class <- over(ptsamp1_1, ptsamp1)$id #assigning the value id

↪→ =1 to the random points

202 saveRDS(ptsamp1_1, file=paste0 ("path_to_file", file="_ptsamp1_B.rds"))

203

204 ptsamp2 <-subset(poly_area_B, id == "2") #selecting the polygons with id

↪→ =2

205 ptsamp2_2 <- spsample(ptsamp2 , 750, type=’regular ’) #selecting 750

↪→ random points within the selected polygons

206 ptsamp2_2$class <- over(ptsamp2_2, ptsamp2)$id #assigning the value id

↪→ =2 to the random points

207 saveRDS(ptsamp2_2, file=paste0 ("path_to_file", file= "_ptsamp2_B.rds")

↪→ )

208

209 ptsamp3 <-subset(poly_area_B, id == "3") #selecting the polygons with id

↪→ =3

210 ptsamp3_3 <- spsample(ptsamp3 , 750, type=’regular ’) #selecting 750

↪→ random points within the selected polygons

211 ptsamp3_3$class <- over(ptsamp3_3, ptsamp3)$id #assigning the value id

↪→ =3 to the random points

212 saveRDS(ptsamp3_3, file=paste0 ("path_to_file", file= "_ptsamp3_B.rds")

↪→ )

213

214 ptsamp4 <-subset(poly_area_B, id == "4") #selecting the polygons with id

↪→ =4

215 ptsamp4_4 <- spsample(ptsamp4 , 750, type=’regular ’) #selecting 750

↪→ random points within the selected polygons

216 ptsamp4_4$class <- over(ptsamp4_4, ptsamp4)$id #assigning the value id

↪→ =4 to the random points
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217 saveRDS(ptsamp4_4, file=paste0 ("path_to_file", file= "_ptsamp4_B.rds")

↪→ )

218

219 ptsamp5 <-subset(poly_area_B, id == "5") #selecting the polygons with id

↪→ =5

220 ptsamp5_5 <- spsample(ptsamp5 , 750, type=’regular ’) #selecting 750

↪→ random points within the selected polygons

221 ptsamp5_5$class <- over(ptsamp5_5, ptsamp5)$id #assigning the value id

↪→ =5 to the random points

222 saveRDS(ptsamp5_5, file=paste0 ("path_to_file", file="_ptsamp5_B.rds"))

223

224

225 #saving the information of the random points into a dataframe

226 dt1 <- brick_for_prediction %>%

227 raster :: extract(y = ptsamp1_1) %>%

228 as.data.table %>%

229 .[, id_cls := ptsamp1_1@data] # add the class names to each row

230

231 dt2 <- brick_for_prediction %>%

232 raster :: extract(y = ptsamp2_2) %>%

233 as.data.table %>%

234 .[, id_cls := ptsamp2_2@data] # add the class names to each row

235

236 dt3 <- brick_for_prediction %>%

237 raster :: extract(y = ptsamp3_3) %>%

238 as.data.table %>%

239 .[, id_cls := ptsamp3_3@data] # add the class names to each row

240

241 dt4 <- brick_for_prediction %>%

242 raster :: extract(y = ptsamp4_4) %>%

243 as.data.table %>%

244 .[, id_cls := ptsamp4_4@data] # add the class names to each row

245

246 dt5 <- brick_for_prediction %>%

247 raster :: extract(y = ptsamp5_5) %>%

248 as.data.table %>%

249 .[, id_cls := ptsamp5_5@data] # add the class names to each row

250

251

252 #merging the dataframes into one

253 dt<-rbind(dt1 , dt2 , dt3 , dt4 , dt5)

254 names(dt)[names(dt) == ’id_cls’] <- ’class ’

255 dt<-dt %>% drop_na()

256 dt$class <- factor(dt$class , labels=c(’forest ’,’urban’, ’mountain ’, ’

↪→ vaia’, ’pasture ’))

257

258

259

260 #Random Forest algorithm
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261 set.seed (321)

262 # A stratified random split of the data

263 idx_train <- createDataPartition(dt$class ,
264 p = 0.7, # percentage of data as

↪→ training

265 list = FALSE)

266

267

268 dt_train <- dt[idx_train]

269 dt_test <- dt[-idx_train]

270

271

272 # create cross -validation folds (splits the data into n random groups)

273 n_folds <- 10

274 set.seed (321)

275 folds <- createFolds (1: nrow(dt_train), k = n_folds)

276

277 #Explanding mtry interval to consider more bands

278 tuneGrid <- expand.grid(mtry = seq(2, 215, by = 10))

279

280 # Set the seed at each resampling iteration. Useful when running CV in

↪→ parallel.

281 seeds <- vector(mode = "list", length = n_folds + 1)

282 for(i in 1:n_folds) seeds[[i]] <- sample.int(1000 , nrow(tuneGrid))

283 seeds[n_folds + 1] <- sample.int(1000 , 1)

284

285 ctrl <- trainControl(summaryFunction = multiClassSummary , method = "cv"

↪→ , number = n_folds , search = "grid", classProbs = TRUE ,

↪→ savePredictions = TRUE , index = folds , seeds = seeds)

286

287 model_rf <- caret ::train(class ~ . , method = "rf", data = dt_train ,

↪→ importance = TRUE ,tuneGrid = tuneGrid , trControl = ctrl)

288

289 #saving the model

290 saveRDS(model_rf , file = paste0("path_to_file","model_rf_","area_B",".

↪→ rds"))

291

292 predict_rf <- raster :: predict(object = brick_for_prediction ,

293 model = model_rf, type = ’raw’)

294 writeRaster(predict_rf, paste0("path_to_file",".tiff"),overwrite=T )

295

296 #### EVALUATION OF THE MODEL

297 plot(model_rf) # tuning results

298

299 #confusion matrix and statistics

300 test_e30B <- predict(model_rf , newdata = dt_test)

301 class_e30B <- dt_test$class
302 cm <- confusionMatrix(data = test_e30B , class_e30B)

303 cm
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304

305

306 #ordering them by predictor importance across the classes

307 vi <- varImp(model_rf)$importance
308 vi$max <- apply(vi , 1, max)

309 vi <- vi[order(-vi$max),]
310 #selecting only the 20 most important bands

311 vi20 <- head(vi , 20)

312

313 vi20%>%

314 as.matrix %>%

315 plot_ly(x = colnames (.) [1:5], y = rownames (.), z = ., type = "

↪→ heatmap",

316 width = 350, height = 300)

317

318 #mean decrease accuracy and mean decrease gini

319 randomForest :: varImpPlot(model_rf$finalModel)
320

321

322

323

324 #### WORKING ON AREA C

325 rst_lst <- stack(’path_to_file.tif’)

326 rst_lst <- as.list(rst_lst) #transforming rasterstack into list

327 names(rst_lst) <- 1:224

328

329 #dropping the columns with missing values

330 rst_lst <- rst_lst[-c(131:135)]

331

332 #Visualize the image in Natural Color (R = Red , G = Green , B = Blue).

333 suppressWarnings ({ viewRGB(brick(rst_lst [1:44]) , r = 44, g = 21, b = 5)

↪→ })

334

335 brick_for_prediction <- brick(rst_lst)

336

337 #importing the shp file of area C

338 poly_area_C <-shapefile(’path_to_file.shp’)

339 poly_area_C@data$id <- as.integer(factor(poly_area_C@data$id))
340 setDT(poly_area_C@data)

341

342 ptsamp1 <-subset(poly_area_C, id == "1") #selecting the polygons with id

↪→ =1

343 ptsamp1_1 <- spsample(ptsamp1 , 750, type=’regular ’) #selecting 750

↪→ random points within the chosen polygons

344 ptsamp1_1$class <- over(ptsamp1_1, ptsamp1)$id #assigning the id to the

↪→ random points

345 saveRDS(ptsamp1_1, file=paste0 ("path_to_file", file="_ptsamp1_C.rds"))

346
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347 ptsamp2 <-subset(poly_area_C, id == "2") #selecting the polygons with id

↪→ =2

348 ptsamp2_2 <- spsample(ptsamp2 , 750, type=’regular ’) #selecting 750

↪→ random points within the chosen polygons

349 ptsamp2_2$class <- over(ptsamp2_2, ptsamp2)$id #assigning the id to the

↪→ random points

350 saveRDS(ptsamp2_2, file=paste0 ("path_to_file", file= "_ptsamp2_C.rds")

↪→ )

351

352 ptsamp3 <-subset(poly_area_C, id == "3") #selecting the polygons with id

↪→ =3

353 ptsamp3_3 <- spsample(ptsamp3 , 750, type=’regular ’) #selecting 750

↪→ random points within the chosen polygons

354 ptsamp3_3$class <- over(ptsamp3_3, ptsamp3)$id #assigning the id to the

↪→ random points

355 saveRDS(ptsamp3_3, file=paste0 ("path_to_file", file= "_ptsamp3_C.rds")

↪→ )

356

357 ptsamp4 <-subset(poly_area_C, id == "4") #selecting the polygons with id

↪→ =4

358 ptsamp4_4 <- spsample(ptsamp4 , 750, type=’regular ’) #selecting 750

↪→ random points within the chosen polygons

359 ptsamp4_4$class <- over(ptsamp4_4, ptsamp4)$id #assigning the id to the

↪→ random points

360 saveRDS(ptsamp4_4, file=paste0 ("path_to_file", file= "_ptsamp4_C.rds")

↪→ )

361

362 ptsamp5 <-subset(poly_area_C, id == "5") #selecting the polygons with id

↪→ =5

363 ptsamp5_5 <- spsample(ptsamp5 , 750, type=’regular ’) #selecting 750

↪→ random points within the chosen polygons

364 ptsamp5_5$class <- over(ptsamp5_5, ptsamp5)$id #assigning the id to

↪→ the random points

365 saveRDS(ptsamp5_5, file=paste0 ("path_to_file", file="_ptsamp5_C.rds"))

366

367

368 #saving the information of the random points into a dataframe

369 dt1 <- brick_for_prediction %>%

370 raster :: extract(y = ptsamp1_1) %>%

371 as.data.table %>%

372 .[, id_cls := ptsamp1_1@data] # add the class names to each row

373

374 dt2 <- brick_for_prediction %>%

375 raster :: extract(y = ptsamp2_2) %>%

376 as.data.table %>%

377 .[, id_cls := ptsamp2_2@data] # add the class names to each row

378

379 dt3 <- brick_for_prediction %>%

380 raster :: extract(y = ptsamp3_3) %>%

71



381 as.data.table %>%

382 .[, id_cls := ptsamp3_3@data] # add the class names to each row

383

384 dt4 <- brick_for_prediction %>%

385 raster :: extract(y = ptsamp4_4) %>%

386 as.data.table %>%

387 .[, id_cls := ptsamp4_4@data] # add the class names to each row

388

389 dt5 <- brick_for_prediction %>%

390 raster :: extract(y = ptsamp5_5) %>%

391 as.data.table %>%

392 .[, id_cls := ptsamp5_5@data] # add the class names to each row

393

394

395 #merging the dataframes into a single dataframe

396 dt<-rbind(dt1 , dt2 , dt3 , dt4 , dt5)

397 names(dt)[names(dt) == ’id_cls’] <- ’class ’

398 dt<-dt %>% drop_na()

399 dt$class <- factor(dt$class , labels=c(’forest ’,’urban’, ’mountain ’, ’

↪→ vaia’, ’pasture ’))

400

401

402

403 #random forest algorithm

404 set.seed (321)

405 # A stratified random split of the data

406 idx_train <- createDataPartition(dt$class ,
407 p = 0.7, # percentage of data as

↪→ training

408 list = FALSE)

409

410

411 dt_train <- dt[idx_train]

412 dt_test <- dt[-idx_train]

413

414

415 # create cross -validation folds (splits the data into n random groups)

416 n_folds <- 10

417 set.seed (321)

418 folds <- createFolds (1: nrow(dt_train), k = n_folds)

419

420 #Explanding mtry interval to consider more bands

421 tuneGrid <- expand.grid(mtry = seq(2, 215, by = 10))

422

423 # Set the seed at each resampling iteration. Useful when running CV in

↪→ parallel.

424 seeds <- vector(mode = "list", length = n_folds + 1)

425 for(i in 1:n_folds) seeds[[i]] <- sample.int(1000 , nrow(tuneGrid))

426 seeds[n_folds + 1] <- sample.int(1000 , 1)
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427

428 ctrl <- trainControl(summaryFunction = multiClassSummary , method = "cv"

↪→ , number = n_folds , search = "grid", classProbs = TRUE ,

↪→ savePredictions = TRUE , index = folds , seeds = seeds)

429

430 model_rf <- caret ::train(class ~ . , method = "rf", data = dt_train ,

↪→ importance = TRUE , tuneGrid = tuneGrid , trControl = ctrl)

431

432 #saving the model

433 saveRDS(model_rf , file = paste0("path_to_file","model_rf_","area_C",".

↪→ rds"))

434

435 predict_rf <- raster :: predict(object = brick_for_prediction ,

436 model = model_rf, type = ’raw’)

437 writeRaster(predict_rf, paste0("path_to_file",".tiff"),overwrite=T )

438

439 #### EVALUATION OF THE MODEL

440 plot(model_rf) # tuning results

441

442 #confusion matrix and statistics

443 test_e30C <- predict(model_rf , newdata = dt_test)

444 class_e30C <- dt_test$class
445 cm <- confusionMatrix(data = test_e30C , class_e30C)

446 cm

447

448

449 #ordering them by predictor importance across the classes

450 vi <- varImp(model_rf)$importance
451 vi$max <- apply(vi , 1, max)

452 vi <- vi[order(-vi$max),]
453 #selecting only the 20 most important bands

454 vi20 <- head(vi , 20)

455

456 vi20%>%

457 as.matrix %>%

458 plot_ly(x = colnames (.) [1:5], y = rownames (.), z = ., type = "

↪→ heatmap",

459 width = 350, height = 300)

460

461 #mean decrease accuracy and mean decrease gini

462 randomForest :: varImpPlot(model_rf$finalModel)
463

464

465

466 #### WORKING ON AREA D

467 rst_lst <- stack(’path_to_file.tif’)

468 rst_lst <- as.list(rst_lst) #transforming rasterstack into list

469 names(rst_lst) <- 1:224

470
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471 #dropping the columns with missing values

472 rst_lst <- rst_lst[-c(131:135)]

473

474 #Visualize the image in Natural Color (R = Red , G = Green , B = Blue).

475 suppressWarnings ({ viewRGB(brick(rst_lst [1:44]) , r = 44, g = 21, b = 5)

↪→ })

476

477 brick_for_prediction <- brick(rst_lst)

478

479 #importing the shp file of area D

480 poly_area_D <-shapefile(’path_to_file.shp’)

481 poly_area_D@data$id <- as.integer(factor(poly_area_D@data$id))
482 setDT(poly_area_D@data)

483

484 ptsamp1 <-subset(poly_area_D, id == "1") #selecting the polygons with id

↪→ =1

485 ptsamp1_1 <- spsample(ptsamp1 , 750, type=’regular ’) # selecting 750

↪→ random points within the polygons with id=1

486 ptsamp1_1$class <- over(ptsamp1_1, ptsamp1)$id #giving the value id=1

↪→ to the random points

487 saveRDS(ptsamp1_1, file=paste0 ("path_to_file", file="_ptsamp1_D.rds"))

488

489 ptsamp2 <-subset(poly_area_D, id == "2") #selecting polygons with id=2

490 ptsamp2_2 <- spsample(ptsamp2 , 750, type=’regular ’) # selecting 750

↪→ random points within the polygons with id=2

491 ptsamp2_2$class <- over(ptsamp2_2, ptsamp2)$id #giving the value id=2

↪→ to the random points

492 saveRDS(ptsamp2_2, file=paste0 ("path_to_file", file= "_ptsamp2_D.rds")

↪→ )

493

494 ptsamp3 <-subset(poly_area_D, id == "3") #selecting polygons with id=3

495 ptsamp3_3 <- spsample(ptsamp3 , 750, type=’regular ’) # selecting 750

↪→ random points within the polygons with id=3

496 ptsamp3_3$class <- over(ptsamp3_3, ptsamp3)$id #giving the value id=3

↪→ to the random points

497 saveRDS(ptsamp3_3, file=paste0 ("path_to_file", file= "_ptsamp3_D.rds")

↪→ )

498

499 ptsamp4 <-subset(poly_area_D, id == "4") #selecting polygons with id=4

500 ptsamp4_4 <- spsample(ptsamp4 , 750, type=’regular ’) # selecting 750

↪→ random points within the polygons with id==4

501 ptsamp4_4$class <- over(ptsamp4_4, ptsamp4)$id #giving the value id=4

↪→ to the random points

502 saveRDS(ptsamp4_4, file=paste0 ("path_to_file", file= "_ptsamp4_D.rds")

↪→ )

503

504 ptsamp5 <-subset(poly_area_D, id == "5") #selecting polygons with id=5

505 ptsamp5_5 <- spsample(ptsamp5 , 750, type=’regular ’) # selecting 750

↪→ random points within the polygons with id==5
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506 ptsamp5_5$class <- over(ptsamp5_5, ptsamp5)$id #giving the value id=5

↪→ to the random points

507 saveRDS(ptsamp5_5, file=paste0 ("path_to_file", file="_ptsamp5_D.rds"))

508

509

510 dt1 <- brick_for_prediction %>%

511 raster :: extract(y = ptsamp1_1) %>%

512 as.data.table %>%

513 .[, id_cls := ptsamp1_1@data] # add the class names to each row

514

515 dt2 <- brick_for_prediction %>%

516 raster :: extract(y = ptsamp2_2) %>%

517 as.data.table %>%

518 .[, id_cls := ptsamp2_2@data] # add the class names to each row

519

520 dt3 <- brick_for_prediction %>%

521 raster :: extract(y = ptsamp3_3) %>%

522 as.data.table %>%

523 .[, id_cls := ptsamp3_3@data] # add the class names to each row

524

525 dt4 <- brick_for_prediction %>%

526 raster :: extract(y = ptsamp4_4) %>%

527 as.data.table %>%

528 .[, id_cls := ptsamp4_4@data] # add the class names to each row

529

530 dt5 <- brick_for_prediction %>%

531 raster :: extract(y = ptsamp5_5) %>%

532 as.data.table %>%

533 .[, id_cls := ptsamp5_5@data] # add the class names to each row

534

535

536 dt<-rbind(dt1 , dt2 , dt3 , dt4 , dt5)

537 names(dt)[names(dt) == ’id_cls’] <- ’class ’

538 dt<-dt %>% drop_na()

539 dt$class <- factor(dt$class , labels=c(’forest ’,’urban’, ’mountain ’, ’

↪→ vaia’, ’pasture ’))

540

541

542

543 #random forest algorithm

544 set.seed (321)

545 # A stratified random split of the data

546 idx_train <- createDataPartition(dt$class ,
547 p = 0.7, # percentage of data as

↪→ training

548 list = FALSE)

549

550

551 dt_train <- dt[idx_train]
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552 dt_test <- dt[-idx_train]

553

554

555 # create cross -validation folds (splits the data into n random groups)

556 n_folds <- 10

557 set.seed (321)

558 folds <- createFolds (1: nrow(dt_train), k = n_folds)

559

560 #Explanding mtry interval to consider more bands

561 tuneGrid <- expand.grid(mtry = seq(2, 215, by = 10))

562

563 # Set the seed at each resampling iteration. Useful when running CV in

↪→ parallel.

564 seeds <- vector(mode = "list", length = n_folds + 1)

565 for(i in 1:n_folds) seeds[[i]] <- sample.int(1000 , nrow(tuneGrid))

566 seeds[n_folds + 1] <- sample.int(1000 , 1)

567

568

569 ctrl <- trainControl(summaryFunction = multiClassSummary , method = "cv"

↪→ , number = n_folds , search = "grid", classProbs = TRUE ,

↪→ savePredictions = TRUE , index = folds , seeds = seeds)

570

571 model_rf <- caret ::train(class ~ . , method = "rf", data = dt_train ,

↪→ importance = TRUE , tuneGrid =tuneGrid , trControl = ctrl)

572

573 #saving the model

574 saveRDS(model_rf , file = paste0("path_to_file","model_rf_","area_D",".

↪→ rds"))

575

576 predict_rf <- raster :: predict(object = brick_for_prediction ,

577 model = model_rf, type = ’raw’)

578 writeRaster(predict_rf, paste0("path_to_file",".tiff"),overwrite=T )

579

580 #### EVALUATION OF THE MODEL

581 plot(model_rf) # tuning results

582

583

584 #confusion matrix and statistics

585 test_e30D <- predict(model_rf , newdata = dt_test)

586 class_e30D <- dt_test$class
587 cm <- confusionMatrix(data = test_e30D , class_e30D)

588 cm

589

590

591 #ordering them by predictor importance across the classes

592 vi <- varImp(model_rf)$importance
593 vi$max <- apply(vi , 1, max)

594 vi <- vi[order(-vi$max),]
595 #selecting only the 20 most important bands
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596 vi20 <- head(vi , 20)

597

598 vi20%>%

599 as.matrix %>%

600 plot_ly(x = colnames (.) [1:5], y = rownames (.), z = ., type = "

↪→ heatmap",

601 width = 350, height = 300)

602

603 #mean decrease accuracy and mean decrease gini

604 randomForest :: varImpPlot(model_rf$finalModel)
605

606 #ENMAP 30m ACCURACY

607 test_e30 <- c(test_e30A , test_e30B , test_e30C , test_e30D)

608 class_e30 <- c(class_e30A , class_e30B , class_e30C , class_e30D)

609 cm_e30 <- confusionMatrix(data = test_e30 , class_e30)

610 cm_e30

6.2 Appendix B: Additional R Code for SVH

Listing 6.2: Complete code for SVH on EnMAP images

1 library(RStoolbox)

2 library(raster)

3 library(rasterdiv)

4 library(sp)

5 library(terra)

6 library(exactextractr)

7

8 #INITIALIZING CIRCLES

9 #Importing the areas where I want to calculate the pc

10 cricles <- shapefile(’path_to_file.shp’)

11

12 # Removing points that are not in forests or for which we don ’t have

↪→ data

13 values_to_remove <- c("GS0004", "GS0005", "GS0006", "GS0007", "GS0008",

↪→ "GS0016", "GS0017", "GS0018", "GS0019", "GS0020", "GS0021", "

↪→ GS0022", "GS0029")

14

15 # Filter the shapefile to exclude these values

16 circles_filtered <- circles[!(circles@data [["PUNTO"]] %in% values_to_

↪→ remove), ]

17

18 # Convert SpatialPolygonsDataFrame to SpatVector

19 circles_vect <- vect(circles_filtered)

20

21 # Initialize a list to store the centroids

22 centroids_list <- list()

77



23

24 species_richness <- c(2,2,3,4,2,3,2,4,3,4,5,3,2, 4,3,4,3,2)

25 shannon_indices <- c

↪→ (0.487 ,0.181 ,0.556 ,1.22 ,0.362 ,0.66 ,0.358 ,1.35 ,0.381 ,

26 0.238 ,1.15 ,0.83 ,0.377 ,0.734 ,0.958 ,0.988 ,0.271 ,0.554)

27

28 #CALCULATING RAO INDEX ON ENMAP ’S PC1

29 #importing Enmap image

30 suppressWarnings ({

31 rst_lst <- stack(’path_to_file’)

32 })

33 cropped_area <-shapefile(’path_to_file.shp’)

34 enmap <-crop(rst_lst , extent(cropped_area))

35

36 names(enmap) <- as.character (1:224)

37

38 #dropping the layers with missing values and anomalous behaviour

39 enmap <- dropLayer(enmap , paste0("X", c(131:135 , 80:102)))

40

41 #Transforming into a brick since we have many layers

42 enmap <- brick(enmap)

43

44 # Define a function to standardize a single layer

45 standardize_layer <- function(layer) {

46 values <- getValues(layer)

47 standardized_values <- scale(values , center = TRUE , scale = TRUE)

48 setValues(layer , standardized_values)

49 }

50

51 # Standardize each layer in the raster stack

52 standardized_layers <- stack(lapply (1: nlayers(enmap), function(i)

↪→ standardize_layer(enmap [[i]])))

53

54 #performing the PCA

55 enmap_pca <- rasterPCA(standardized_layers)

56

57 #Plot the map of the first principal component (PC1)

58 plot(enmap_pca$map[[1]] , main = "PC1")

59

60

61 #Calculating Rao index on the PC1

62 PC1_raster_layer <- enmap_pca$map [[1]]
63

64 # Initialize a vector to store Rao indices for each circle

65 enmap_rao_indices <- numeric(length(circles_vect))

66

67 # Iterate over each circle

68 for (i in seq_along(circles_filtered)) {

69 # Extract the polygon representing the current circle
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70 circle_polygon <- circles_filtered[i,]

71

72 # Calculate centroid of the circle

73 centroid <- centroids(circles_vect[i])

74 centroids_list[[i]] <- centroid

75

76 # Use exact_extract to get the values of PC1_raster_layer within the

↪→ circle polygon

77 extracted_values <- exact_extract(PC1_raster_layer , circle_polygon)

78

79 mat_s <- unlist(lapply(extracted_values , function(x) x$value))
80 mat_s <- mat_s[!is.na(mat_s)]

81

82 # Rao index calculation

83 n_s <- length(mat_s)

84 n2_s <- n_s^2

85 distm_s <- as.matrix(dist(mat_s))

86 rao_index <- sum(distm_s) / n2_s

87

88 # Store the Rao index in the vector

89 enmap_rao_indices[i] <- rao_index

90 }

91

92 # Combine centroids into a data frame

93 centroids_df <- do.call(rbind , lapply(centroids_list , function(x) cbind

↪→ (x[,1], x[,2])))

94 centroids_df <- as.data.frame(centroids_df)

95 colnames(centroids_df) <- c("Longitude", "Latitude")

96

97 # Create a combined data frame with centroids , Rao indices , Shannon

↪→ indices , and number of trees

98 biodiversity_enmap <- data.frame(Longitude = centroids_df$Longitude ,
↪→ Latitude = centroids_df$Latitude , Rao_Index = enmap_rao_indices ,

↪→ Shannon_Index = shannon_indices , Species_Richness = species_

↪→ richness)

99 # Save as CSV file

100 write.csv(biodiversity_enmap , file = "path_to_file.csv", row.names =

↪→ FALSE)

101

102 #Calculating the R^2 value Shannon Index and Rao Index

103 lm_shannon <- lm(biodiversity_enmap$Shannon_Index ~ biodiversity_enmap$
↪→ Rao_Index)

104 r2_shannon <- summary(lm_shannon)$r.squared
105

106 # Calculate R^2 Species Richness and Rao Index

107 lm_species <- lm(biodiversity_enmap$Species_Richness ~ biodiversity_

↪→ enmap$Rao_Index)
108 r2_species <- summary(lm_species)$r.squared
109
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110 #CALCULATING RAO INDEX ON ENMAP OPTICAL TRAITS

111 #importing Enmap image

112 rst_lst <- rast("path_to_file.bsq")

113 cropped_area <-shapefile(’path_to_tile.shp’)

114 opt_traits <-crop(rst_lst , extent(cropped_area))

115

116 #Transforming into a brick since we have many layers

117 opt_traits <- brick(opt_traits)

118

119

120 #Initialize the vector where I will store the Rao indices for each

↪→ layer

121 rao_indices <- numeric(length(circles_vect))

122

123 for (k in opt_traits@data@names){

124 # Initialize a vector to store Rao indices for each optical trait

125 vector_rao_name <- paste0("rao_index_", k)

126

127 # Iterate over each circle

128 for (i in seq_along(circles_filtered)) {

129 # Extract the polygon representing the current circle

130 circle_polygon <- circles_filtered[i,]

131

132 # Calculate centroid of the circle

133 centroid <- centroids(circles_vect[i])

134 centroids_list[[i]] <- centroid

135

136 # Use exact_extract to get the values of the layer within the circle

↪→ polygon

137 extracted_values <- exact_extract(opt_traits [[k]], circle_polygon)

138

139 mat_s <- unlist(lapply(extracted_values , function(x) x$value))
140 mat_s <- mat_s[!is.na(mat_s)]

141

142 # Rao index calculation

143 n_s <- length(mat_s)

144 n2_s <- n_s^2

145 distm_s <- as.matrix(dist(mat_s))

146 rao_index <- sum(distm_s) / n2_s

147

148 # Store the Rao index in the vector

149 enmap_rao_indices[i] <- rao_index

150 }

151 assign(vector_rao_name , enmap_rao_indices)

152

153 cat(vector_rao_name , "vector created\n")

154 }

155

156 # Combine centroids into a data frame
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157 centroids_df <- do.call(rbind , lapply(centroids_list , function(x) cbind

↪→ (x[,1], x[,2])))

158 centroids_df <- as.data.frame(centroids_df)

159 colnames(centroids_df) <- c("Longitude", "Latitude")

160

161 # Create a combined data frame with centroids , Rao indices (only

↪→ keeping the ones that are statistically significant), Shannon

↪→ indices , and number of trees

162 biodiversity_enmap_opt_traits <- data.frame(Longitude = centroids_df$
↪→ Longitude ,

163 Latitude = centroids_df$Latitude , rao_index_car=rao_index_car , rao_

↪→ index_anth = rao_index_anth , rao_index_N = rao_index_N, rao_index

↪→ _cab=rao_index_cab , rao_index_cbrown=rao_index_cbrown , rao_index_

↪→ cm=rao_index_cm , rao_index_LAI=rao_index_LAI , rao_index_cw=rao_

↪→ index_cw, rao_index_LIDF=rao_index_LIDF , rao_index_hspot=rao_

↪→ index_hspot , Shannon_Index = shannon_indices ,

↪→ Species_Richness = species_richness)

164

165 # Save as CSV file

166 write.csv(biodiversity_enmap_opt_traits , file = "path_to_file.csv", row

↪→ .names = FALSE)

167

168 #Calculating the R^2 value

169 for (k in 3:12){

170 # Calculate R^2 between Shannon Index and Rao Index

171 lm_shannon <- lm(biodiversity_enmap_opt_traits [[13]] ~ biodiversity_

↪→ enmap_opt_traits [[k]])

172 r2_shannon <- summary(lm_shannon)$r.squared
173 R2_shannonVSrao_name <- paste0("R2_Shannon_VS_", colnames(biodiversity_

↪→ enmap_opt_traits)[k])

174 assign(R2_shannonVSrao_name , r2_shannon)

175

176 # Calculate R^2 Species Richness and Rao Index

177 lm_species <- lm(biodiversity_enmap_opt_traits [[14]] ~ biodiversity_

↪→ enmap_opt_traits [[k]])

178 r2_species <- summary(lm_species)$r.squared
179 R2_speciesVSrao_name <- paste0("R2_Species_VS_", colnames(biodiversity_

↪→ enmap_opt_traits)[k])

180 assign(R2_speciesVSrao_name , r2_species)

181 }
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