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Abstract

The precise estimation of three-dimensional oceanic parameters, such as temperature
and salinity, presents significant challenges. The coarse sampling of in situ obser-
vations restricts our ability to directly analyze the three dimensional thermohaline
structure of the oceans. Satellite remote sensing offers extensive spatial coverage,
but it is limited to surface-level data. To mitigate this limitation, reanalyses merge
model outputs with both in situ and satellite observations. This research intends
to study how to improve reanalyses by identifying optimal techniques for extracting
subsurface structural information from satellite data in a simpler setting than the
full data assimilation and numerical model system.
The primary emphasis of this research is on the assimilation of sea level anomaly
data. The methodology adopted is based on the framework established by Ezer
and Mellor (1991) and Adani et al. (2011). In the first approach, the problem
is addressed by employing correlation factors that establish a connection between
anomalies in sea surface elevation and anomalies in subsurface temperature and
salinity profiles. These correlation factors are derived from time averages, making
the selection of an appropriate time averaging interval crucial. This study explores
various time intervals to determine which one yields the most favorable outcomes.
The second approach by Adani et al. (2011) utilizes Empirical Orthogonal Functions
(EOFs) to derive the correlation factors. Specifically, bi- or tri-variate EOFs are
applied to surface elevation data and vertical profiles of temperature and/or salinity.
This strategy enables the identification of a vertical pattern that accounts for a
significant portion of the variability in the temperature and salinity profiles.
The various methodologies have been applied to investigate the reconstructions of
salinity and temperature profiles for the years 2019-2020 across four distinct lo-
cations in the Mediterranean Sea, namely the Alboran, Tyrrhenian, Adriatic, and
Levantine Seas, as well as to examine the structures of two different mesoscale ed-
dies, specifically anticyclonic and cyclonic. Initially, sea level anomalies derived
from reanalysis data are utilized to mitigate multiple sources of error arising from
data inconsistencies. Subsequently, sea level anomalies from L4 satellite data are
employed, yielding results that are comparable to those obtained from model data
reconstructions.
The reconstruction of tri-variate EOFs, utilizing monthly correlation coefficients de-
rived solely from data spanning 2019 to 2020, demonstrates optimal results. This
finding implies that the multi-variate statistics and a small temporal range con-
nected to our target reconstructions is the optimal choice. For the future, extending
this approach to the use of Neural Networks could help to uncover the non-linear
couplings between sea level and thermohaline subsurface structures using the longer
time series of data available.



Contents

1 Introduction 1
1.1 Reanalyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Ocean models and cascade of uncertainty . . . . . . . . . . . . 2
1.1.2 Ocean observations and satellite oceanography . . . . . . . . . 3
1.1.3 Data assimilation . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 Importance of accurate reanalyses . . . . . . . . . . . . . . . . 6

1.2 Area of interest: Mediterranean Sea . . . . . . . . . . . . . . . . . . . 7
1.2.1 Circulation and thermohaline structure . . . . . . . . . . . . . 8
1.2.2 Temporal and spatial scales . . . . . . . . . . . . . . . . . . . 10

1.3 Mesoscale and eddies . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Eddy dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 Eddy properties and vertical structure . . . . . . . . . . . . . 14

1.4 Thesis objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Satellite and reanalyses data 18
2.1 Sea level and satellite Altimetry . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Sea level and subsurface properties . . . . . . . . . . . . . . . 18
2.1.2 Satellite altimetry . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.3 Sea level anomaly from satellite . . . . . . . . . . . . . . . . . 22

2.2 Reanalyses data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Ocean General Circulation Model . . . . . . . . . . . . . . . . 23
2.2.2 Variational methods and 3D-VAR . . . . . . . . . . . . . . . . 23
2.2.3 OceanVar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.4 Temperature, salinity and sea surface height data . . . . . . . 25

3 Methods and preprocessing 26
3.1 Mellor and Ezer’s Method . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Empirical Orthogonal Functions . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Overview of EOFs . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Application of EOFs . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Preprocessing of data . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Different time averages . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Assessement of methods 35
4.1 Profiles reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Locations under analysis . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 Reconstruction error statistics . . . . . . . . . . . . . . . . . . 37
4.1.3 Different time periods . . . . . . . . . . . . . . . . . . . . . . 37

2



4.1.4 Different methods . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Eddies reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Anticyclonic eddy . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2 Cyclonic eddy . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Reconstructions 57
5.1 Profile reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Eddy reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Anticyclonic eddy . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.2 Cyclonic eddy . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Conclusions 68



Chapter 1

Introduction

The role of oceans in shaping human life is remarkably significant. A considerable
number of individuals inhabit coastal regions, with fishing being a primary livelihood
for many. Additionally, oceans function as critical heat and carbon reservoirs for the
Earth, thus contributing significantly to climate regulation and stability. As such,
it is crucial to obtain accurate estimates of oceanic parameters, particularly tem-
perature and salinity. However, the vast expanse of the ocean and the constraints
associated with in situ observations hinder our ability to directly assess the ther-
mohaline structure of marine environments. While remote sensing observations can
offer extensive coverage, the transmission of electromagnetic waves through seawater
is limited, restricting our data acquisition to the ocean’s surface. To overcome this
limitation, reanalyses, which combine model outputs with both in situ and satellite
observations, can be utilized. This study seeks to improve the efficacy of reanalyses
by identifying optimal methodologies for extracting subsurface structural informa-
tion from satellite data. This chapter serves as a concise introduction, emphasizing
the concept of reanalyses, the specific area of investigation, and the equations that
dictate the dynamics and vertical structure of eddies. In section 1.1, a detailed ex-
amination of the three components of reanalyses is presented, with a specific focus
on the uncertainties inherent in both models and observations. Section 1.2 delves
into the Mediterranean Sea, the primary area of interest, concentrating on its ther-
mohaline characteristics and the diverse scales of oceanic phenomena observable in
this region. Section 1.3 presents an overview of mesoscale dynamics and eddies, as
the estimation of their structure is an aspect of this research. Lastly, section 1.4
delineates the aims of the thesis, providing a comprehensive overview of the content
to be explored in subsequent chapters.

1.1 Reanalyses

Ocean reanalyses represent comprehensive reconstructions of the oceanic state, achieved
through the integration of ocean models constrained by atmospheric surface forces
and informed by ocean observations via data assimilation methods [1]. This ap-
proach generates four-dimensional fields that provide the most reliable estimates of
the ocean’s condition, serving as a vital resource for understanding past and eluci-
dating the underlying processes that should be captured by numerical models.
These computations were originally designed to track and analyze climate change,
yet they also enable the investigation of critical signals and processes that remain
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Chapter 1. Introduction 1.1. Reanalyses

partially unobservable, such as subsurface and bottom circulation. Furthermore,
they can be utilized as initial and boundary conditions in modeling efforts [2].
The generation of reanalyses is achieved through the combination of a model, empir-
ical observations, and data assimilation approaches. The next sections will deliver
a brief introduction to all three elements.

1.1.1 Ocean models and cascade of uncertainty

As previously indicated, a model constitutes the primary component of a reanalysis.
Ocean models are numerical frameworks that depict the properties of the ocean and
its circulation dynamics [3]. These models have significant applications, such as ana-
lyzing ocean currents, understanding the dynamic interactions with the atmosphere,
studying sea ice behavior, and assessing land runoff. They are also instrumental in
the study of transport of biogeochemical materials, predicting climate variations
due to both natural and anthropogenic factors, examining pollution dispersal, and
managing fisheries and other aspects of the biosphere [4].
The global ocean’s physical and dynamical characteristics are mathematically de-
scribed through equations that represent the conservation of momentum, energy,
and mass for a viscous, gravity-forced fluid that flows in a rotating reference system.
They are typically represented by the Navier-Stokes equations or their approxima-
tions, so by a set of non-linear partial differential equation. These equations, often
referred to as the equations of motion, provide a framework for understanding the
temporal changes in temperature, salinity, and ocean currents. Additionally, ocean
models require suitable boundary and initial conditions that delineate the interac-
tions between the ocean, atmosphere, land, and sea ice, as well as the ocean’s state
when the model is initiate [5]. The solution of these equations cannot be analytical,
so a discretization is needed to permit computers to solve them and it is performed
using numerical methods aimed at solving partial differential equations. This dis-
cretization, along with the selection of boundary and initial conditions, constitutes
a significant source of uncertainty in ocean modeling.
Actually the uncertainties present in ocean modeling can be attributed to several
factors. Firstly, numerical discretizations can lead to miscalculations, which are con-
tingent upon the specific numerical scheme employed and are ultimately unavoid-
able. Second, the initialization of models and the assignment of parameter values
rely on ocean data; however, the availability of raw measurements is often limited
in terms of both coverage and accuracy, and these measurements are frequently pro-
cessed to focus on information within a specific scale window, leading to inaccuracies
in initial conditions and parameters. The third source of uncertainty is related to
the approximate nature of models that describe the interactions between the ocean
and the Earth system, which results in imprecise ocean boundary conditions. The
fourth source is linked to the physical approximations done to reduce computa-
tional costs, where explicit calculations are restricted to a narrow range of spatial
and temporal scales. Consequently, influences from scales outside this window are
either disregarded, parameterized, or incorporated at the boundaries, introducing
further errors. Finally, uncertainties also stem from the incomplete understanding
of processes within the scale window, which results in approximate representations
or additional parameterizations. [6].
It is also essential to understand that these sources of uncertainty are interconnected
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1.1. Reanalyses Chapter 1. Introduction

Figure 1.1: Schematics of the cascade of uncertainty. Figure redrawn from [7]

rather than independent. Changes in one source can significantly impact others,
leading to what is termed a cascade of uncertainty [7]. In this context, a change in the
considered scenario results in alterations in the oceanic forcing, which subsequently
impacts the boundary and initial conditions, ultimately leading to modifications
in the circulation model itself. As the process unfolds, the range (or envelope) of
uncertainty broadens at each stage, thereby amplifying the errors produced by the
model as can be seen in figure 1.1.

1.1.2 Ocean observations and satellite oceanography

Ocean observations represent the second critical element in the process of reanaly-
sis. A robust ocean observational system typically includes a combination of in-situ
measurements and remote sensing methodologies. The former refers to data col-
lected through sensors installed on vessels, buoys, moorings, autonomous system
and coastal monitoring stations. These measurements track variations in oceanic
properties over time and depth at designated locations, providing direct assess-
ments of these properties [8]. The efficacy of in-situ data however is constrained by
inadequate spatial and temporal coverage, as well as challenges in accessing remote
areas.
In contrast, satellite data offers the advantage of providing consistent, repeated, and
global measurements of critical oceanic parameters over extended periods [9]. Satel-
lite oceanography is the process of gathering information from a distance, through
the utilization of remote sensors mounted on satellites and aircraft, which capture
and record energy that is either reflected or emitted [10]. Notably, all sensors utilized
in ocean-observing satellites rely on electromagnetic radiation to monitor the ocean’s
surface. Specifically, when an electromagnetic signal of a certain type emanates from
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Figure 1.2: Schematic of a passive sensor and of information flow in satellite oceanog-
raphy. Figure reproduced from [11]

a surface, it traverses the atmosphere, where it may undergo alterations and may
also accumulate noise. Consequently, the ability of a sensor to accurately measure
particular oceanic properties and its effectiveness in penetrating the atmosphere is
heavily influenced by the segment of the electromagnetic spectrum it employs. As
a matter of facts atmospheric transmittance varies with wavelength; for a substan-
tial portion of the spectrum, the atmosphere is opaque, rendering it unsuitable for
remote sensing. However, there are several windows in the spectrum where most
radiation can penetrate, particularly in the visible, infrared, and microwave regions
[11].
After traversing the atmosphere, the signal is detected by the sensor, which rec-
ognizes specific features of the radiation and translates each measurement into a
digital signal for encoding and sending to the ground as illustrated in figure 1.2.
Once the digital data have been received at the ground station the task remains
to recover useful oceanographic information from a long string of numbers. Once
the ground station receives the digital data, the objective is to extract meaningful
oceanographic information from a lengthy series of numbers. This task requires
reversing the information flow, where each phase must be inverted.
Remote sensors are also subject to classification. While various classification meth-
ods are available, the most widely adopted is based on the illumination source they
utilize. Sensors that rely on natural solar energy are classified as passive sensors,
while those that produce their own energy are termed active sensors. Predomi-
nantly, passive systems function within the visible, infrared, thermal infrared, and
microwave segments of the electromagnetic spectrum, while most active sensors op-
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erate within the microwave range, enabling them to penetrate the atmosphere under
a variety of conditions [10]. Altimeters, whose data are the center of this work and
which will be addressed in section 2.1.2, are among the most significant types of
active sensors.
Observations, much like models, are inherently subject to uncertainty. One primary
source of error is associated with sampling variability, which stems from the finite
duration of measurements taken from an environmental process that is essentially
continuous. This is both spatial and temporal, as the data collected may not fully
capture the range of environmental conditions due to the specific time and space
intervals chosen for observation [12].
For satellite observations a further source of error arises from the instruments used.
Modern ocean sensors typically generate an electrical signal that corresponds to a
specific ocean parameter. This signal is subsequently transformed into a numeri-
cal representation of that parameter. However, the values obtained from the signal
are not solely determined by the ocean parameter itself; they are also influenced
by various external factors. These influences include unavoidable instabilities and
inhomogeneities present in the water surrounding the sensor during in-situ measure-
ments, as well as atmospheric conditions affecting remote sensors. Additionally, the
technical characteristics of the sensor, such as instrument noise and bias, further
complicate the accuracy of the readings. As a result, even under optimal measure-
ment conditions and in the absence of instrument malfunctions, it remains impossible
to ascertain the extent to which the signal value diverges from the true value of the
ocean parameter being measured. Therefore, the actual value of the sensor signal is
characterized by uncertainty [13].
Furthermore, the uncertainty associated with these measurements is not constant,
unlike that found in laboratory data. Indeed, field measurements differ fundamen-
tally from laboratory assessments; in-situ and remote measurements are character-
ized by their unique spatial and temporal contexts and their transient nature. In the
field of ocean sciences, where access to environmental data is frequently constrained
by the availability of ships or adverse weather conditions, researchers often rely on
single sensor data. This reliance, coupled with the absence of replication and limited
insights into data quality, exacerbates the uncertainty surrounding the findings [13].

1.1.3 Data assimilation

The last essential element for the development of reanalyses is a data assimilation
framework. Data assimilation is the process of integrating prior information from
numerical model simulations and observed data in order to achieve the most accurate
description of a dynamic system [14]. Since both the model and observations are
incomplete and inaccurate, relying solely on one of them is not feasible. Thus we
need to fit the model state to the observations in an optimal way [15].
Considering the errors in both the model and observations to be random, it is
reasonable to conclude that they can be accurately described by probability density
functions. This leads to the conclusion that the optimal framework for addressing
the data assimilation challenge is founded on the Bayesian approach and Bayes
theorem. According to this theorem the probability distribution, which serves as
the most accurate depiction of the system’s state, called the posterior, is a point
wise multiplication of the probability distribution of our prior knowledge, derived
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from the numerical model, with the probability distribution of the observations
given each possible state of the model [16]. Consider the sequences of system states
and observations within the interval [t0, tK ] as x0:K = {x0,x1, ...,xK} and y1:K =
{y1,y2, ...,yK} respectively. Then Bayes’s theorem reads as

p(x0:K |y1:K) =
p(y1:K |x0:K)p(x0:K)

p(y1:K)
(1.1)

where:

• p(x0:K |y1:K) is the conditional probability (also known as posterior distribu-
tion) that the model states x0:K are true given that the observations y1:K are
true;

• p(x0:K) denotes the probability that the model is true, independent of any
observations. It is also known as prior knowledge, since it is the information
provided by the model before incorporating new observations;

• p(y1:K |x0:K) is the conditional probability (also known as the likelihood) of
the observations being true under the assumption that x0:K corresponds to
the true state;

• p(y1:K) signifies the probability of a series of observations being true, indepen-
dent of the state of the model. It is also called marginal distribution and, since
it does not depend on the model, can be considered a normalization factor.

Upon deriving a probability distribution function from this process, the next step
is to determine the optimal estimator for the system’s state. In accordance with
[17], two primary options, namely the mean and mode of the distribution, represent
two conventional approaches to state estimation. Estimators focused on the mean
are referred to as minimum squared error estimators, as the mean always serves as
the minimum squared error estimate. Conversely, estimators targeting the mode,
which signifies the peak of the distribution and the most probable state, are known
as maximum a posteriori estimators. In the former case, data assimilation involves
minimization of the variability or uncertainty of the model error, while in the lat-
ter case, it entails minimizing a suitable cost function. A classic example of the
minimum variance method is the Kalman filter, whereas variational methods are a
common example of maximum a posteriori methods.

1.1.4 Importance of accurate reanalyses

Reanalyses plays a crucial role in the investigation of climate and oceanic systems.
A fundamental aspect of reanalyses is its ability to bridge the gaps in observational
data across both space and time, resulting in the creation of "maps without gaps."
The reliability of these estimates is influenced by the robustness of the model em-
ployed, the presence of observations for additional variables and the quality of the
data assimilation scheme used. Consequently, reanalyses can effectively fill in his-
torical climate maps by evaluating the most likely conditions, even in areas where
observational data for the variable of interest is limited [18].
Reanalyses serves as a vital tool in the development and evaluation of policies at
various levels, including global, European, and national, particularly in the context
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1.2. Area of interest: Mediterranean Sea Chapter 1. Introduction

of climate change adaptation and the assessment of climate risks and resilience. As
a matter of facts contemporary reanalyses serve as a valuable source of evidence
for elucidating recent temperature trends, investigating fine-scale extremes across
both spatial and temporal dimensions, and analyzing climatic changes over the past
century to millennium. Furthermore, reanalyses can enhance the post-processing of
climate model outputs and inform impact models [19].

An additional domain for the application of reanalyses is in the formulation of fore-
casting models that utilize machine learning techniques. These data-driven models
possess the capability to autonomously discern spatial-temporal relationships from
extensive oceanographic datasets, thereby effectively identifying the dynamics of
oceanic changes without the necessity of prior physical knowledge. The develop-
ment of efficient data-driven ocean forecasting models continues to pose a signif-
icant research challenge. Unlike the atmospheric domain, where various elements
are interconnected, the ocean is segmented into several relatively autonomous re-
gions characterized by distinct water mass properties, largely due to the presence
of continents and islands. This segmentation complicates the automatic learning
of internal change patterns and the interrelations among different oceanic regions
[20]. Consequently, the availability of a high-quality training dataset is imperative.
In this context, reanalyses data serve as a valuable resource for training machine
learning algorithms, as they provide the most accurate representation of the ocean’s
state.

The success of these applications relies heavily on the quality of reanalyses. There-
fore, it is essential to engage in ongoing development and enhancement of these
reanalyses, a goal that this study tries to achieve.

1.2 Area of interest: Mediterranean Sea

Situated in the midlatitudes, the Mediterranean Sea is a semi-enclosed sea that
stretches from 5°E to 36°W and from 32°N to 46°N, featuring an average depth of
around 1500 meters. This sea is interconnected with the Atlantic Ocean through the
Strait of Gibraltar, which allows for the interchange of waters, and it also connects
to the Black Sea via the Dardanelles and the Bosphorus Strait.

The Mediterranean Sea serves as an invaluable laboratory basin for the study of
general circulation patterns. It is noteworthy that numerous processes integral to
the global ocean’s circulation are replicated within the Mediterranean, either in the
same manner or through analogous mechanisms. However the smaller dimensions of
the Mediterranean facilitate logistical aspects of research, resulting in a reduced need
for resources [21]. What renders the Mediterranean Sea particularly advantageous
is its function as a miniature ocean, characterized by significantly shorter temporal
and spatial scales compared to the global ocean. Furthermore, the relatively high
salinity of the Mediterranean outflow at the Gibraltar Strait is known to influence
global circulation patterns. Thus, even with its semi-enclosed characteristics, shifts
in the Mediterranean Sea’s circulation can have a direct impact on the global ocean
[22].
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1.2.1 Circulation and thermohaline structure

The dynamics of Mediterranean circulation and its thermohaline structure are gov-
erned by a range of forcings. Among these, the exchanges occurring at the Strait of
Gibraltar and the interactions between the atmosphere and the sea, which involve
momentum, heat, and freshwater, are paramount. Additionally, contributions from
river inflows and exchanges with the Black Sea also play a significant role in shaping
these dynamics [21, 23].
The circulation of the Mediterranean Sea, influenced by these various forcings, ex-
hibits an antiestuarine characteristic, indicating a net deficit of freshwater due to
evaporation surpassing the combined effects of precipitation and river runoff. To
counterbalance this deficit and sustain the overall water volume, a compensatory
flow is necessary, which occurs via the Strait of Gibraltar. This compensatory flow
consists of a surface inflow that is part of a bidirectional flow system. The second
component involves the outflow of denser Mediterranean water, which moves toward
the Atlantic Ocean as a deep undercurrent. The dynamics of these two flows are di-
rectly related to the density differences between Mediterranean and Atlantic waters
[23].
The thermohaline properties commonly found in the Mediterranean Sea’s water
column are significantly influenced by driving forces, too. As a matter of facts the
ocean’s vertical structure, or stratification, emerges from the mixing of various water
masses that have been advected to a specific location as a result of these forces. A
water mass is defined as "a body of water with common formation history, having its
origin in a particular region of the ocean" [24]. During its formation, a water mass
develops distinct characteristics of temperature and salinity. Notably, temperature
and salinity are considered conservative properties, subject to change only at the sea
surface through air-sea interactions. Consequently, as long as a water mass remains
isolated from the surface, these properties will undergo slow gradual changes due
to mixing with neighboring water masses, yet they will largely retain their original
characteristics, allowing for the identification of the water mass.
To accurately describe the thermohaline structure of the Mediterranean Sea, it is
essential to investigate the various water masses present. This analysis will follow
the framework provided in Oceanography of the Mediterranean Sea [23]. At mid-
latitudes, the vertical structure of the water column can be segmented into three
main layers: the mixed layer, which is located near the surface (100-150 meters)
and is characterized by homogeneously mixed water properties; the thermocline,
where there is a significant and rapid decline in temperature with increasing depth;
and the abyssal layer. The Mediterranean’s three principal water masses are dis-
tributed across these layers, with Atlantic Water occupying both the mixed layer and
the thermocline, while Intermediate Water and Deep Water are found at different
depths within the abyssal layer, as shown in figure 1.3.
Atlantic Water (AW) refers to the water mass entering from the Strait of Gibraltar.
As it flows, AW disperses throughout the basin, contributing to the formation of
gyres, mesoscale eddies, and various currents. Throughout its transit across the
basin, AW undergoes continuous alterations due to interactions with the atmosphere
and its mixing with other water masses. This process results in a gradual increase
in temperature and salinity along a west-east gradient; however, the core of AW
can still be identified throughout the Mediterranean Sea as a near-surface salinity
minimum. Generally, the temperature and salinity ranges of AW are between 13
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Figure 1.3: Vertical distribution of water masses in Mediterranean Sea. Redrawn
from [25]

to 17°C and 36.4 to 38.2 psu in the western Mediterranean, while in the eastern
Mediterranean, these ranges are from 15 to 18°C and 38.5 to 39.1 psu.
The defining feature of Intermediate Water (IW) is the presence of a subsurface
salinity maximum typically found at depths ranging from 250 to 600 meters, which
is often accompanied by a relative maximum in temperature. This water mass
is primarily generated in the Levantine and Cretan seas, regions characterized by
elevated salinity and temperature levels. As IW migrates westward, it gradually loses
its extremes, resulting in a decrease in both temperature and salinity. Consequently,
a gradient is observed along the east-west axis, with temperature and salinity values
in the Eastern Mediterranean ranging from 13.8 to 16.8°C and 38.8 to 39.3 psu,
respectively, while the Western Mediterranean exhibits values between 13 to 14°C
and 38.2 to 38.7 psu. IW constitutes the majority of the Mediterranean outflow
through the Strait of Gibraltar, which, due to its limited depth, restricts the passage
of deeper water masses.
Deep Water (DW) represents the most dense water mass, which exhibits a slight
decline in temperature and salinity as depth increases. This water mass is formed at
various sites along the northern coastlines, primarily due to the influence of cold and
dry winter winds. The specific properties of Deep Water can exhibit slight variations
depending on the formation site. For instance, the Western Mediterranean Deep
Water is produced in the Gulf of Lion, with an average temperature of 12.8°C and
an average salinity of 38.45 psu [26]. In contrast, the Eastern Mediterranean Deep
Water is categorized into two distinct types: Adriatic Deep Water, which has a
temperature of 13°C and a salinity of 38.6 psu [27], and Aegean Deep Water, with
a temperature of 14.25°C and a salinity of 39.1 psu [28]. It is important to note
that these values are general estimates and may fluctuate over time. Furthermore,
the bathymetric constraints of the Sicily Channel, which separates the Western
and Eastern Mediterranean Seas, ensure that these two deep water masses remain
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distinct from one another.

1.2.2 Temporal and spatial scales

The overall circulation in the Mediterranean Sea is characterized by a complex
structure, characterized by three primary and interrelated spatial scales: the basin
scale, the sub-basin scale, and the mesoscale. This complexity, along with the various
scales, is a result of numerous driving forces, significant topographic and coastal
effects, and intrinsic dynamical processes [29].
The circulation at the basin scale encompasses the dynamics of the various water
masses and the associated overturning circulation. This extensive circulation system
spans the entire basin and is characterized by both zonal and meridional compo-
nents. The zonal circulation consists of three distinct structures. The first structure
is a shallow clockwise cell, which corresponds to the eastward flow of AW at the
surface, while IW, particularly that formed in the Levantine basin, flows westward
at greater depths. Beneath this layer, two additional cells are identified: one located
in the western Mediterranean and the other in the eastern region. The western cell
is a straightforward counterclockwise circulation, whereas the eastern cell exhibits
a more complex, multi-centered clockwise circulation. The meridional circulation
varies depending on the specific area of the Mediterranean under consideration. In
the western Mediterranean, a clockwise cell with several maxima exists from ap-
proximately 100 meters to 2000 meters depth, alongside a counterclockwise cell in
the deeper regions of the Algerian basin. In contrast, the eastern Mediterranean fea-
tures a counterclockwise surface cell within the upper 250 meters, while a clockwise
multi-centered overturning cell extends from 250 meters to 1000 meters. Below 1000
meters, a deep counterclockwise Eulerian cell is present in the meridional region of
the Ionian Sea [30].
At the sub-basin scale, one can identify various structures, such as free and bound-
ary currents, as well as jets that undergo bifurcation, in addition to both permanent
and transient cyclonic and anticyclonic gyres. A notable example is found in the
Alboran Sea, where the AW flows in an anti-cyclonic manner in the western part
of the basin and cyclonically in the eastern part. The Algerian Current serves as
a significant current in this area, generating meanders, commonly termed ’coastal
eddies,’ due to its unstable nature. The eastern basin is characterized by energetic
sub-basin scale features, including jets and gyres, which exhibit substantial variabil-
ity in their shape, location, and strength. This variability is particularly pronounced
in the permanent sub-basin gyres, as well as in the occurrence of transient and ape-
riodic eddies, jets, and filaments [29]. The classification of eddies in both basins as
mesoscale phenomena is dependent on their dimensions and the temporal scale of
their existence.
Small yet energetic mesoscale eddies are particularly prevalent in the Mediterranean
Sea. In the western basin, significant mesoscale activities manifest as instabilities
along coastal currents, resulting in the generation of mesoscale eddies that may
either traverse the basin or interact with the prevailing currents. For instance,
along the Algerian Current, both cyclonic and anticyclonic eddies form and develop
over several months, gradually drifting eastward. Typically, the anticyclonic eddies
increase in size and detach from the coastline. In the Levantine basin, one can also
observe energetic mesoscale eddies in the open ocean [29].
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Figure 1.4: Time and space scales of physical oceanographic phenomena. Figure
redrawn from [31]

It is a well-established principle that usually phenomena characterized by short
spatial scales are generally associated with short timescales, whereas phenomena
with long spatial scales are linked to longer timescales [32]. This principle suggests
that the extensive range of spatial scales corresponds to a similarly extensive range
of timescales, as depicted in figure 1.4. A clear illustration of this can be found in
the sea surface temperature of the Mediterranean Sea, which is governed by heat
fluxes that can exhibit considerable daily variability, especially in the presence of
strong winds and cold, dry air masses [23].The primary scales of variability for
sea surface temperature include seasonal variability, high-frequency variability, and
interannual variability, with seasonal variability being the most dominant, although
high-frequency variability also plays a significant role [33]. Consequently, it is crucial
to account for various temporal scales when analyzing the thermohaline properties
of the Mediterranean.

1.3 Mesoscale and eddies

1.3.1 Equations of motion

In accordance with the discussion in section 1.1.1, the mathematical representation
of oceanic physical and dynamical features is achieved through the Navier-Stokes
equations or some approximation of them. By implementing a series of approxi-
mations to the Navier-Stokes equations, one can derive the primitive equations [34,
35]. The necessary approximations include the hydrostatic approximation which
asserts that the pressure at any point in the ocean is determined by the weight of
the fluid above; the Boussinesq approximation, which indicates that density vari-
ations are relatively small compared to the mean density and are relevant only in
the buoyancy term; the incompressible approximation, which states that the den-
sity of incompressible fluids remains constant along the flow over time; and the
Reynolds averages approximation, which allows for the separation of each variable
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into a mean and a fluctuating component. The primitive equations derived from
these approximations are

∂u

∂t
+−→u · ∇u− 2Ω sin θv = −1

ρ0

∂p

∂x
+ ν∇2u+∇H · (AH∇Hu) +

∂

∂z

(
Av

∂u

∂z

)
(1.2)

∂v

∂t
+−→u · ∇v + 2Ω sin θu = −1

ρ0

∂p

∂y
+ ν∇2v +∇H · (AH∇Hv) +

∂

∂z

(
Av

∂v

∂z

)
(1.3)

1

ρ

∂p

∂z
= −g (1.4)

∇ · −→u = 0 (1.5)

where ∇2 is the three-dimensional Laplacian operator, Ω is the angular velocity of
the Earth, θ represents latitude, −→u = (u, v, w) is the three-dimensional velocity
vector, p signifies pressure, g denotes gravitational acceleration, ρ indicates density,
ν refers to kinematic viscosity and AH and Av are called the horizontal and vertical
turbulent viscosity coefficients respectively.
The execution of a spatial and temporal scale analysis enables the distinction of
motion within various dynamical regimes. This is accomplished through the estab-
lishment of the Rossby number, expressed as:

ϵ =
U

Lf
(1.6)

In this equation, U denotes the magnitude of the horizontal velocity field, L signifies
the horizontal scale of the phenomenon, and f = 2Ω sin θ represents the Coriolis
parameter, which approximates to ∼ 10−4 at mid-latitudes. The mesoscale regime
is characterized by a Rossby number value of less than one (< 1), permitting the
application of a perturbative approach to expand the variables u, v, and p into a
series of components, each multiplied by ascending powers of ϵ. This process yields
a new set of equations, each corresponding to a distinct dynamical mode linked to
a specific power of ϵ. The zero-order equations reduce to the geostrophic balance,
while the first-order equations correspond to the quasi-geostrophic balance.

1.3.2 Eddy dynamics

The phenomenon of ocean mesoscale eddies can be described as the ocean’s equiv-
alent of weather systems, with horizontal dimensions of under 100 kilometers and
timescales that approximate one month [36]. These eddies typically possess distinct
physical and chemical properties, such as variations in temperature, salinity, and
carbon concentration, compared to their adjacent waters, enabling the transport of
these characteristics as they navigate through the ocean [37].
The circulation characteristics of eddies can be derived from the principles of geostrophic
balance. The geostrophic equations are

fvg =
1

ρ0

∂p

∂x
(1.7)

fug = − 1

ρ0

∂p

∂y
(1.8)

12



1.3. Mesoscale and eddies Chapter 1. Introduction

Figure 1.5: Diagram of eddy sense of rotation depending on the hemisphere. L
stands for low sea level center, while H stands for high sea level center. Figure
redrawn from [34]

They illustrate a balance between the Coriolis force on the left and the horizontal
pressure gradient force on the right. The velocity field associated with geostrophic
flow is influenced by the pressure gradient, with its orientation being perpendicular
to the isolines of pressure. Specifically, currents tend to circulate in a nearly circular
pattern around areas of elevated or reduced pressure (or sea level), thereby forming
an eddy. The direction of rotation is determined by the sign of f , which varies
according to the selected hemisphere of the Earth, as illustrated in figure 1.5.
Conducting a scale analysis of the equations 1.8 and 1.7 yields the following rela-
tionships

fU =
1

ρ0

∆p

L
(1.9)

Through the examination of scale analysis for equation 1.4, we can also establish
the following equation:

1

ρ0

∆p

H
= g

From this, we can derive that ∆p
ρ0

= gH. Substituting this finding into 1.9 yields:

fU =
gH

L
(1.10)

which can be rearranged to yield U = gH
fL

. By substituting this expression into 1.6,
we derive:

ϵ =
gH

f 2L2
=

(λ
L

)
< 1 (1.11)
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Figure 1.6: Balances between pressure gradient force, Coriolis force and centrifugal
force in Northern Hemisphere eddies. Figure redrawn from [38]

where λ =
√
gH
f

represents the internal deformation radius. Consequently, a small
Rossby number, which is essential for the formation of such eddies, arises from the
condition that the horizontal scale is significantly larger than the deformation radius
[38].
When the horizontal scales approximate the deformation radius, resulting in a
Rossby number near unity, the centrifugal force becomes a significant factor in the
force balance. In the vicinity of a low sea level center, this force acts outward,
partially countering the inward pressure gradient force. Consequently, the Coriolis
force must decrease, and since the Coriolis parameter f a constant, the rotational
velocity must also diminish, as illustrated in figure 1.6. In contrast, around a high
sea level center, the pressure gradient force acts outward, similar to the centrifugal
force, necessitating that the Coriolis force counterbalance both forces. This results
in an increase in magnitude and, consequently, an increase in rotational velocity
[38]. Such dynamics are characteristic of smaller eddies.
The deformation radius, which is characteristic of mid-latitude regions in the global
ocean, typically ranges from 30 to 50 kilometers. Conversely, the Mediterranean
Sea presents a considerably smaller deformation radius, which varies from 5 to 12
kilometers depending on the season and specific locations within the sea [31].

1.3.3 Eddy properties and vertical structure

Eddy formations are observed around centers of both low and high sea levels. Specifi-
cally, centers of low sea level are associated with low sea surface pressure and cyclonic
circulation, whereas high sea level centers correspond to anticyclonic circulation. In
this context, cyclonic circulation refers to a rotation that aligns with the Earth’s
spin — clockwise in the Southern Hemisphere and counterclockwise in the Northern
Hemisphere — while anticyclonic circulation exhibits the opposite rotation. Conse-
quently he identification of local extremes in sea level anomalies enables the detection
and monitoring of both cyclonic and anticyclonic eddies [39].
The vertical characteristics of these eddies are intrinsically related to the effects
produced by these extremes within the water column. To analyze these properties,
we consider the hydrostatic equation 1.4. As stated before this equation asserts
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that the pressure at any depth in the ocean is determined by the force per unit area
resulting from the weight of the fluid above that depth, and integrating it from the
ocean’s bottom to its surface η we get

ηρ0g +

∫ 0

−H

ρ(z)gdz = p(−H) (1.12)

In this context, η represents the sea level relative to a designated reference point
at 0, while H denotes the ocean’s depth. The term ρ(z) signifies the density of the
water column at a given depth, p(−H) indicates the pressure exerted at the ocean’s
bottom [40]. In this context we are not considering atmospheric pressure, which is
usually assumed as a constant. When satellite observations indicate a variation in
sea level, denoted as ∆η, and considering the stipulation that the pressure at the
ocean floor remains unchanged, i.e., ∆p(−H) = 0, we derive the following equation:

∆ηρ0g +

∫ 0

−H

∆ρ(z)gdz = 0 (1.13)

This implies that any alteration in the weight of the water column must balance the
observed change in surface level as recorded by the altimeter.
This balance requires an adiabatic and frictionless adjustment of water parcels in
space [41], ensuring that their temperature and salinity characteristics remain un-
changed. The most straightforward form of this reconfiguration involves a vertical
displacement of the water. Each water parcel within a specific water column is
displaced vertically by an identical amount, denoted as ∆h. This uniform displace-
ment applies to all isopycnals, thereby conserving the quantity of water with specific
properties within the column. However, vertical displacement alone cannot main-
tain the conservation of water properties across all isopycnals. IIn cases of low sea
surface pressure, the water column is elevated by a distance ∆h, , which involves
the introduction of denser water from the bottom and the removal of lighter surface
water. This process raises colder, saltier water to the surface, resulting in the uplift
of both the thermocline and the halocline. Conversely, when a center of high sea
surface pressure is present, the opposite effect occurs [42]. This means that cyclonic
eddies generate negative temperature anomalies and/or positive salinity anomalies,
leading to positive density anomalies, while anticyclonic eddies produce the reverse
effects. Consequently, the thermocline exhibits a slope that is opposite to that of the
sea surface [43], and anticyclonic eddies manifest as depressions in surfaces of con-
stant temperature, whereas cyclonic eddies appear as "domes" of deep water that
rise toward the surface. The sea surface above experiences an upward deflection
that contrasts with the downward deflection of the underlying density layers [44], as
shown in figure 1.7.
Anomalies associated with eddies are not restricted to their immediate area; they
can extend horizontally beyond 1.5 times the radius of the eddy. Furthermore, it
has been observed that anticyclones typically reach greater depths than cyclones on
average. The vertical structure of these eddies also varies; anticyclones are charac-
terized by a smaller radius at depth compared to their surface radius, while cyclones
tend to exhibit a more cylindrical vertical profile [42].
Throughout the lifespan of an eddy, its properties may undergo significant changes:
at the onset, both the surface radii and amplitudes are minimal, followed by a phase
where they stabilize at their peak size, and finally, a rapid decrease in radius occurs
just before the eddy collapses [31, 42].
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Figure 1.7: Schematic of the vertical displacements that correlates the surface ele-
vation with the thermocline displacements. Figure redrawn from [40]

1.4 Thesis objectives

This study aims to explore the interrelationship between sea level anomaly, temper-
ature, and salinity, with the goal of identifying the functions that most effectively
correlate these three variables. This analysis is intended as a preliminary step to
enhance reanalysis data, as the assimilation framework for one variable (sea level)
requires the extraction of relevant information regarding the other two variables.
To achieve this correlation, a method originally introduced by Mellor and Ezer
([45], [46]) is employed. This approach utilizes correlation factors to connect the
three variables. These correlation factors are time-independent but are derived from
time-averaged data, and they may vary on a monthly or daily basis. Consequently,
selecting an optimal time averaging interval and an appropriate number of correla-
tion factors is crucial. The determination of this optimal time interval constitutes
the first aim of this study.
A new method for the evaluation of correlation factors is subsequently introduced,
drawing inspiration from the work of Ezer and Mellor. This method incorporates
the application of Empirical Orthogonal Functions, utilized in both bivariate and
trivariate forms as introduced by Adani et al. [47]. A comparative analysis of
these methodologies is essential to determine the efficacy of the various correlation
factors and to ascertain which correlation factors yield superior performance. To
achieve this, we initially utilize the different methods to extrapolate temperature and
salinity profiles based on sea surface anomalies derived from reanalysis data, thereby
evaluating the quality of the proposed method. Additionally, to gain insights into
the practical application of correlation factors, we extend our analysis to include
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sea level anomalies obtained from satellite observations, similarly to what done by
Guinehut et al. [48] .
Both applications — utilizing sea level anomalies from reanalysis and satellite data
— are employed to reconstruct vertical profiles at four specific locations within
the Mediterranean, as well as to analyze the vertical structure of mesoscale eddies.
This latter analysis is particularly significant, given that mesoscale eddies exhibit
unique vertical characteristics and play a critical role in oceanic circulation. Thus,
evaluating the effectiveness of the various methods in reconstructing these vertical
features is of critical importance.
The datasets utilized in this study are detailed in chapter 2, which provides an
overview of satellite altimetry and Mediterranean reanalyses data. Chapter 3 out-
lines the methodology proposed by Mellor and Ezer, along with its enhancement
through the application of bivariate and trivariate empirical orthogonal functions
(EOFs). Additionally, this chapter outlines the preprocessing procedures applied
to the data. In chapter 4, the efficacy of various time intervals and methodologies
is evaluated using sea surface anomalies derived from reanalysis. Lastly, chapter 5
explores the implementation of the diverse techniques utilizing satellite data, while
the conclusions drawn from the research are summarized in chapter 6.
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Chapter 2

Satellite and reanalyses data

The primary aim of this research is to examine different techniques for reconstructing
temperature and salinity profiles using satellite altimetry data. As such, a thorough
representation of this data is necessary, which is addressed in this chapter. In section
2.1, an overview of satellite altimetry and sea level is presented, with particular
attention given to the data used. Subsequently, section 2.2 describes the reanalyses
data that is utilized for evaluating correlation factors and serves as a validation
set. This section also describes the model and the assimilation scheme that are
employed in constructing this specific type of reanalyses, along with a description
of the dataset used.

2.1 Sea level and satellite Altimetry

Sea surface height refers to the elevation of the ocean’s surface relative to a refer-
ence ellipsoid. Fluctuations in this height arise from changes in the mass of the
underlying land, such as differences in rock density or mantle thickness, as well as
variations in the mass of the water itself. The former changes occur at a slow pace
and can be regarded as static, while the latter changes are more rapid and constitute
the dynamic aspect of sea surface height. Consequently, measurements of sea level
capture this dynamic aspect. They hold significant importance owing to a distinc-
tive characteristic they possess. While the majority of ocean variables captured by
satellite are limited to the surface and do not directly correlate with subsurface con-
ditions, altimetric measurements of sea surface height represent a notable exception.
Specifically, the variations in sea surface height above the ocean floor are directly
influenced by changes in the mass or density of the water column [49].

2.1.1 Sea level and subsurface properties

To investigate tendencies in sea level, we can begin with the hydrostatic balance as
done in [50] described by the equation

dp = −gρdz (2.1)

where p represents pressure, g is gravitational acceleration and ρ is the density of
the water. By integrating this equation from the ocean floor at z = −H(x, y) to the
water surface at z = −η(x, y, t), similarly to what we have done in section 1.3.3, the
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bottom pressure equation can be derived:

pb = pa + g

∫ η

−H

ρdz (2.2)

Here, pb refers to the pressure at the ocean bottom, while pa indicates the at-
mospheric pressure exerted at the sea surface, which is this time included. This
relationship illustrates that the bottom pressure is the cumulative effect of the sur-
face pressure and the weight of the seawater column above the ocean floor. By
differentiating equation 2.2 with respect to time, we derive the following expression:

∂(pb − pa)

∂t
= gρ(η)

∂η

∂t
+ g

∫ η

−H

∂ρ

∂t
dz (2.3)

In this equation, ρ(η) = ρ(z = η) signifies the density at the free surface of the
ocean [51].Rearranging this equation as done in [52] yields a diagnostic expression
that characterizes the tendency of sea level:

∂η

∂t
=

1

gρ(η)

∂(pb − pa)

∂t
− 1

ρ(η)

∫ η

−H

∂ρ

∂t
dz (2.4)

The first component, 1
gρ(η)

∂(pb−pa)
∂t

reflects the variations in ocean mass. Specifically,
by integrating 2.2, we derive the expression

∂(pb − pa)

∂t
= g

∂

∂t

(∫ η

−H

ρdz
)

This equation delineates the mass budget per horizontal area within a column of
seawater. It illustrates that the mass of the column per unit horizontal area is
influenced by the convergence of mass transported laterally by ocean currents, as
well as by mass exchanges occurring at the ocean’s surface, including evaporation,
precipitation, sea ice dynamics, and river discharge. As a matter of facts

∂

∂t

(∫ η

−H

ρdz
)
= −∇U +Qw (2.5)

where U =
∫ η

−H
ρudz is the horizontally transported mass and Qw is the mass cross-

ing the free surface. The second element of 2.4, 1
ρ(η)

∫ η

−H
∂ρ
∂t
dz, represents changes in

ocean density.
An alternative method to convey the behavior of sea level is through the continuity
equation, as done in [53]. By assuming that the density can be expressed as ρ =
ρ0 + ρ′ the principle of mass conservation is formulated as follows

∇ · u = − 1

ρ(η)

Dρ′

Dt
(2.6)

where D
Dt

= ∂
∂t

+ u · ∇ and u = (u, v, w) is the three dimensional velocity. To
derive the sea level equation, it is necessary to perform a vertical integration of this
equation between the sea level h(x, y, t) and the bathymetric depth −H(x, y) while
applying the kinematic and dynamic boundary conditions at the two vertical limits
of the fluid

wz=η =
Dη

Dt

∣∣∣
z=η

+Qw
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wz=−H = −u|z=−H · ∇H

The integration leads us to the following expression

∂η

∂t
= −∇[(H + η)u]−Qw − 1

ρ(η)

∫ η

−H

Dρ′

Dt
dz (2.7)

where u = 1
H+η

∫ η

−H
udz represents the barotropic velocity field. This formulation

clearly delineates the two components associated with mass tendency: the first
term, which arises from the horizontal transport of mass through convergence or
divergence (∇[(H + η)u) , and the second term, which accounts for the mass that
crosses the ocean’s free surface (Qw). Together, these terms constitute the sea level
tendency in incompressible models. The final term, which is influenced by density
variations 1

ρ(η)

∫ η

−H
Dρ′

Dt
dz Together, these terms constitute the sea level tendency in

incompressible models. The final term, which is influenced by density variations.
Given that the sea level trend can be partitioned into two primary components, it
follows that the overall sea level can be effectively reconstructed by aggregating the
incompressible contributions with those from steric effects. This can be articulated
in the following equation:

η = ηi + ηs (2.8)

where ηi signifies the incompressible portion and ηs indicates the steric portion. As
said variations in steric sea level are primarily driven by changes in the density of
water, which is influenced by temperature and salinity. Consequently, also the over-
all steric effect can be decomposed into two distinct components: the thermosteric
component and the halosteric component. This allows for the representation of the
steric sea surface height anomaly as follows:

ηs = ηsT + ηsS = − 1

ρ(η)

(∫
ρ(T, S∗)dz +

∫
ρ(T ∗, S)dz

)
(2.9)

where T ∗ and S∗ represent the reference values of temperature and salinity [54].
Given the significant influence of temperature and salinity on the steric sea level,
this relationship can be effectively utilized to extrapolate temperature and salinity
profiles, as demonstrated in this study. Specifically, sea level anomalies serve as a
basis for deriving temperature and salinity anomalies through the application of cor-
relation factors. Subsequently, a climatological dataset is incorporated to accurately
reconstruct the profiles. The correlation factors are derived by integrating sea level
anomalies obtained from satellite observations or reanalyses with temperature and
salinity anomalies sourced from reanalyses data. Detailed information regarding sea
level altimetry data can be found in section 2.1.2, while the salinity and temperature
data are discussed in section 2.2.

2.1.2 Satellite altimetry

A satellite altimeter is a type of microwave radar that generates an echo. This echo
moves through the atmosphere and is reflected back to the radar by the surface be-
low. The radar then calculates the time interval between the emission and reception
of the echo, along with its return strength and shape, to determine the distance
from the satellite to the sub-satellite point illuminated by the radar. The distance
measurement is crucial for deriving the topography of the sea surface. This process
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Figure 2.1: Components of the sea surface height as observed by satellite altimeter.
Figure reproduced from [56]

also allows for the assessment of significant wave height and the modulus of sea
surface wind speed [55].
The technique employed in radar altimetry encompasses two distinct geometric mea-
surements: firstly, the distance from the satellite to the sea surface (range R), as
previously mentioned, and secondly, the precise determination of the satellite’s po-
sition (satellite altitude Hsat) relative to a fixed Earth coordinate system (ellipsoid)
2.1. The resultant difference between these two measurements yields a precise as-
sessment of sea surface topography [57]:

η = Hsat −R (2.10)

Similar to other remote sensing techniques, altimetry requires the inversion of the
information flow to accurately interpret the data collected. A classification system
is available for satellite altimetry products, based on the degree of processing they
have undergone [11, 58]:

• Level 0 : raw data received from satellite, in standard binary form;
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• Level 1 : data with sensor calibration, which converts it into an estimate of
the electromagnetic properties that the sensor is designed to measure;

• Level 2 : geolocated and geophysical calibrated data with atmospheric correc-
tion applied. Geolocation refers to the inclusion of geographical coordinates
corresponding to the measurement location, although these may not be de-
picted on a map. The geophysical calibration process adjusts the data to
estimate specific ocean variables, while atmospheric correction addresses the
impacts of atmospheric absorption or attenuation;

• Level 3 : mapped data derived from a single sensor. This data is presented
in a geographically meaningful format, complete with latitude and longitude
coordinates. In some instances, these images are composites, merging multiple
datasets from the same sensor taken at various times and locations. The use
of a single sensor can result in gaps due to the use of a single sensor;

• Level 4 : mapped data on a comprehensive grid, free of gaps, achieved through
the integration of other satellite sources or by filling gaps via interpolation.

2.1.3 Sea level anomaly from satellite

Sea level anomaly (SLA) refers to the deviation of the altimeter signal from a tempo-
ral average. Analyzing these anomalies enables researchers to enhance their compre-
hension of ocean circulation dynamics and refine predictions of climatic phenomena
[59].
The dataset utilized in this study is the daily SLA Level 4 data product provided by
the CLS (Collecte Localisation Satellite) group. This data is generated through op-
timal interpolation, which integrates Level 3 along-track measurements from various
altimeter missions and is presented on a uniform grid with a resolution of 0.125°.
The data is accessible via the Copernicus Marine Service (CMEMS) platform [60].
To derive the measurement of SLA, the initial step involves acquiring the value of η
from satellite observations 2.1. This measurement can be understood as comprising
several components:

η = ηg + η̄ + δη (2.11)

In this equation, ηg represents the geoid height, η̄ denotes the Mean Dynamic To-
pography, and δη signifies the SLA. The geoid height refers to the elevation of the
geoid relative to the reference ellipsoid. The geoid itself is a gravity equipotential
surface that would coincide with the ocean surface if it were at rest, unaffected by
currents and solely influenced by the gravitational field. The Mean Dynamic Topog-
raphy represents the average sea surface height (SSH) above the geoid over a defined
time period. Both the geoid height and Mean Dynamic Topography are treated as
time-invariant. Therefore, to calculate the SLA, one simply needs to subtract a
climatological mean, which is an average derived from a long-term dataset, from the
measured value of η

δη = η − ηclm (2.12)

where ηclm is a mean over the period 2012-1993 [60].
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2.2 Reanalyses data
The reanalyses utilized in this study to obtain correlation function and as a valida-
tion set are derived from an Ocean General Circulation Model, which is founded on
the NEMO framework (Nucleus for European Modelling of the Ocean) and from a
data assimilation scheme, known as OceanVar.

2.2.1 Ocean General Circulation Model

NEMO framework encompasses various ocean-related engines that address ocean
dynamics and thermodynamics, sea-ice dynamics and thermodynamics, as well as
biogeochemistry. It serves as a versatile instrument for investigating the ocean and
its interactions with other elements of the Earth’s climate system across a broad
spectrum of spatial and temporal scales [61].
This model resolves the primitive equations utilizing a non-linear free surface for-
mulation and employs time-varying vertical z-star coordinates. It operates with
a uniform horizontal resolution of 0.042° and incorporates 141 vertically uneven
levels. The model is forced by momentum, water and heat fluxes interactively
which are computed interactively via bulk formulae, drawing on operational analysis
and forecast data from the European Centre for Medium-Range Weather Forecasts
(ECMWF) at a 6-hour frequency and a horizontal resolution of 0.125° and on the
model predicted surface temperatures. The calculation of surface water flux is based
on the net effect of evaporation, precipitation, and runoff. Evaporation is derived
from latent heat flux, while precipitation data is provided by ECMWF, aligning
with the temporal resolution of other atmospheric forcing fields. Furthermore, the
model incorporates 39 rivers as volume inputs from monthly mean datasets, and the
Dardanelles Strait is closed but modeled as a net volume input through a river-like
parameterization. A quadratic bottom drag coefficient is utilized at the seabed,
with topographical data sourced from the General Bathymetric Chart of the Oceans
(GEBCO) [62].

2.2.2 Variational methods and 3D-VAR

OceanVar represents a variational approach, specifically a 3D-VAR method. This
section aims to clarify the derivation of a variational equation for the optimal analysis
from the broadly applicable Bayesian equation 1.1, as discussed in [63]. According
to equation 1.1, the posterior probability can be expressed as being proportional to
the product of the prior probability and the likelihood. To simplify our analysis,
we will disregard the time indices and represent the complete series with x and y,
resulting in the following formulation:

p(x|y) ∝ p(y|x)p(x) (2.13)

When considering a "perfect" model, it is possible to conclude that the prior proba-
bility is determined exclusively by the model’s initial state, which can be articulated
in terms of deviations from a known background xb

p(x) = pb(x − xb) (2.14)

Regarding the likelihood component, it is understood to encapsulate the observa-
tional error, which can be decomposed into two distinct parts: the first part pertains
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to the measurement error, while the second part arises from the transition from the
model to the observation via a non-linear observational operator H. This oper-
ator links the model state vector to the observations and can be represented as
pf (yk − H(xk)), where the index k and the absence of bold notation indicate a spe-
cific element within the time series. By considering all possible states along with
the measurement error, we can express the relationship as follows:

p(y|x) =
∫

po(yl − yk)pf (yl − H(xk))dyl (2.15)

where the integration encompasses all elements within the time series. Consequently,
we arrive at:

p(x|y) ∝
[ ∫

po(yl − yk)pf (yl − H(xk))dyl

]
pb(x − xb) (2.16)

To further our investigation, it is important to clarify that in the framework of 3D-
VAR, we specify the probability distributions po, pf and pb, which are conventionally
assumed to be multi-dimensional Gaussian functions

pb(x − xb) ∝ exp
[
− 1

2
(x − xb)

TB−1(x − xb)
]

(2.17)

pb(y − yt) ∝ exp
[
− 1

2
(y − yt)

TO−1(y − yt)
]

(2.18)

pb(y − H(x)) ∝ exp
[
− 1

2
(y − H(x))TF−1(y − H(x))

]
(2.19)

where B, O and F are covariance matrices representing the error of the three com-
ponents and the subscript t indicates the true state. Bayes probability function
becomes

p(x|y) ∝ exp
[
− 1

2
(y − H(x))T (O+F)−1(y − H(x))− 1

2
(x − xb)

TB−1(x − xb)
]

Moreover calling O + F = R it can be rewritten as

p(x|y) ∝ exp
[
− 1

2
(y − H(x))TR−1(y − H(x))− 1

2
(x − xb)

TB−1(x − xb)
]

(2.20)

Variational methods targets the mode of the system so they mean to maximize this
probability. Maximizing it is equivalent to minimize − ln(p(x|y)) which becomes
known as cost function

J =
1

2
(x − xb)

TB−1(x − xb) +
1

2
(y − H(x))TR−1(y − H(x)) (2.21)

Within this equation, the symbol x is utilized to represent the analysis state vector,
whereas xb is indicative of the background state vector. The term B refers to the
background error covariance matrix, and R signifies the observational error covari-
ance matrix. Furthermore, H functions as the non-linear observational operator
that establishes a connection between the model state vector and the observations.
The OceanVar methodology is based on this equation, and further details can be
found in 2.2.3.
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2.2.3 OceanVar

OceanVar scheme is detailed in [64] and [65]. It operates through an iterative process
aimed at minimizing the cost function described before in equation 2.21.
The equation however undergoes linearization about the background state, and the
variable is substituted with a control variable labeled v to eliminate the necessity
of inverting B. As a result, the cost function is reformulated as:

J =
1

2
vTv +

1

2
(d − HVv)TR−1(d − HVv) (2.22)

In this context the vector v is defined in such a manner that the relationship x−xb =
Vv is satisfied. To do so it is assumed that the matrix B can be represented as
B = VVT , thus employing the transformation matrix V. The quantity d, known as
the misfit, is defined by the equation d = y− H(xb), which captures the deviations
of the observations. Finally, the operator H is the linearized observational operator
assessed at x = xb [64].
Owing to its considerable size, the transformation matrix V is represented at each
iteration of minimization as a series of linear operators. It is decomposed into
multiple components that include balance operators (Vη), horizontal correlations
(Vh), and vertical covariances (Vv), articulated as V = VηVhVv. The operator Vη

serves as the sea level operator, converting increments in temperature and salinity
into corresponding sea level increments, which are essential for the assimilation of
altimetric data. Horizontal correlations are modeled using a four-iteration first-order
recursive filter, applied sequentially in both zonal and meridional directions. Vertical
covariances are characterized by a set of tri-variate Empirical Orthogonal Functions
(EOFs) that represent salinity and temperature at the full vertical resolution of the
model, derived from anomalies relative to the long-term mean [65].
The assimilated information includes satellite-derived Sea Level Anomaly (SLA),
which considers the atmospheric pressure effects, in addition to vertical profiles of
temperature and salinity collected from Argo, XBT, and glider systems. Moreover,
objectively analyzed Sea Surface Temperature (SST) fields are applied for the cor-
rection of surface heat fluxes [62].

2.2.4 Temperature, salinity and sea surface height data

For the purpose of evaluating correlation factors and for validation of results, tem-
perature, salinity and sea surface height data have been sourced from the Mediter-
ranean reanalyses products previously outlined, which are generated by the Centro
euro-Mediterraneo sui Cambiamenti Climatici (CMCC) and provided through the
Copernicus Marine Service (CMEMS) platform [66]. The dataset consists of three-
dimensional daily measurements from 1993 to 2020, characterized by a resolution
of 0.042° and 141 unevenly spaced levels. Since this resolution exceeds that of the
satellite altimetry data, discussed in 2.1.3, a linear interpolation was conducted to
achieve consistency in resolution.
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Chapter 3

Methods and preprocessing

In Chapter 2, the attributes of the satellite and reanalysis data were examined.
This chapter focuses on the process of combining these datasets to extract pro-
files of temperature and salinity, as well as the necessary data preprocessing steps
involved in this process. Understanding the statistical relationships among temper-
ature, salinity, and sea level allows the estimation of two of these variables when
third is measured. This study employs two distinct methodologies to achieve this:
the approach developed by Ezer and Mellor [45] and the application of Adani et
al. [47] EOFs. Section 3.1 provides an overview of the method proposed by Mellor
and Ezer, which enables the inference of these profiles. The concept of Empirical
Orthogonal Functions is introduced in section 3.2, offering an alternative approach
for reconstructing temperature and salinity profiles. Section 3.4 addresses the dif-
ferent types of time averages employed and the necessity of their application. Lastly
section 3.3 underscores the diverse preprocessing strategies that are essential for the
effective implementation of the methods outlined.

3.1 Mellor and Ezer’s Method

As highlighted in section 2.1.1, a direct relationship exists between sea level mea-
surements and subsurface conditions. In their research from 1991 [45] and 1994
[46], Mellor and Ezer employed this link to derive temperature and salinity profiles
from altimetry data. The core of their methodology for extending surface data into
subsurface fields is based on these linear regression

δT (x, y, z, t) = F T (x, y, z)δη(x, y, t) (3.1)

δS(x, y, z, t) = F S(x, y, z)δη(x, y, t) (3.2)

Within this framework, F T and F S are established functions known as correlation
factors, which are invariant over time. The anomalies δη(x, y, t) are characterized
as the instantaneous deviations from their respective time-averaged values. Addi-
tionally, δT (x, y, z, t) and δS(x, y, z, t) denote the instantaneous anomalies of recon-
structed temperatures and salinities, respectively, to which a time-average must be
incorporated in order to accurately reconstruct the true profiles of temperature and
salinity. The coordinates (x, y) correspond to latitude and longitude, while z indi-
cates depth. Referring to each grid point in the model as i, the correlation factors
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Figure 3.1: Surface elevation (left) and temperature at 200m (right) of the control
ocean (top) and of the nowcast (bottom). Figure from [45]

at these points can be defined mathematically as:

F T
i =

δTiδηi

δη2i
(3.3)

F S
i =

δSiδηi

δη2i
(3.4)

The overbar notation in equations 3.3 and 3.4 signifies a temporal average. This
research calculates correlation factors and its sensitivity to the temporal averages.
Section 3.4 offers a detailed explanation of the time averages utilized and the specific
periods for which the correlation factors are derived.
Mellor and Ezer assess the accuracy of their equations by conducting a 10-day di-
agnostic run of their model (nowcast), which yields dynamically adjusted velocity
fields and a revised elevation field. Upon comparing the elevation fields and 200m
temperature fields with the corresponding control fields as shown in figure 3.1, they
discovered that the global (area-averaged) root mean squared error between the con-
trol elevation and the nowcast elevation is approximately 0.04 m, representing a 15%
error relative to the unassimilated ocean data for the same day. Subsequently, they
incorporated this approach into their assimilation scheme, which is founded on an
optimal interpolation method [45].
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3.2 Empirical Orthogonal Functions

As outlined in section 2.2.3, the assimilation methodology employed in the reanal-
yses of the Mediterranean Sea derives vertical covariances from trivariate Empirical
Orthogonal Functions as described in Adani et al (2011) [47]. A primary objective
of this thesis is to utilize this method for the direct inference of temperature and
salinity profiles and compare it to the Mellor and Ezer (1991) [45] method. To
facilitate a comprehensive understanding of the process, an overview of Empirical
Orthogonal Functions and their evaluation is provided in 3.2.1, followed by their
application within this thesis in 3.2.2.

3.2.1 Overview of EOFs

Introduced by Lorenz in 1956 [67], Empirical Orthogonal Function (EOF) analysis is
a technique utilized to identify a series of natural or empirical orthogonal functions
that can be linearly combined to represent a given dataset [68]. This analytical ap-
proach specifically decomposes the temporal variance of the dataset into orthogonal
spatial patterns, referred to as empirical eigenvectors. When these eigenvectors are
arranged in order, each one accounts for the maximum possible remaining variance
in the dataset [69]. Each eigenvector is associated with a time series that illustrates
the temporal variation in the amplitude of the pattern, known as the principal com-
ponent (PC). Collectively, each eigenvector and its corresponding time series are
termed a mode, which can be analyzed for potential physical significance [68]. By
combining together all modes, one can reconstruct the original dataset.
From a mathematical perspective, Empirical Orthogonal Functions (EOFs) can be
interpreted as the eigenvectors of the covariance matrix of the data, where the matrix
elements represent anomalies. These anomalies are defined as the deviations of the
observed or modeled variables from their long-term mean [69].
To derive EOFs, we construct a state vector that incorporates all anomalies of the
L variables, measured at M locations and across N sequential time intervals. The
matrix that represents the anomaly of a single variable, denoted as v, is expressed
as follows:

v =


v11 v12 . . . v1N
v21 v22 . . . v2N
...

... . . . ...
vM1 vM2 . . . vMM


The matrix that represents the entire state vector is determined by the number of
variables considered. For example, if we examine two variables, v and w, the matrix
will be of size 2M ×N . It can be represented mathematically as:

X =

[
v
w

]
(3.5)

where v and w are defined as previously indicated. The covariance matrix for which
eigenvectors are to be determined is formulated as:

C =
1

N
XXT (3.6)
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The process of finding eigenvalues and eigenvectors involves solving the eigenvalue
problem, which can be articulated as:

C−→em = λm
−→em (3.7)

In this context, −→e denotes the eigenvector (also referred to as the EOF), while λ
signifies the associated eigenvalue.
The process of solving the eigenvalue problem is generally complex. An alternative
approach to computing empirical orthogonal functions (EOFs) involves the applica-
tion of singular value decomposition (SVD). This mathematical technique in linear
algebra asserts that any matrix A of dimensions M×N and rank r can be expressed
as a product of matrices in the following form:

UΣVT

In this representation, U is an orthogonal matrix of dimension M × r that contains
the left singular vectors, Σ is a diagonal matrix of dimension r× filled with singular
values and V is an orthogonal matrix of dimension r × N that includes the right
singular vectors. It can be asserted that the left singular vectors correspond to
the patterns of Empirical Orthogonal Functions (EOFs), while the right singular
vectors relate to principal components, and the singular values represent the square
root of the associated eigenvalues. . This methodology allows for the extraction
of all components required for EOF analysis, offering enhanced numerical stability
and, in many instances, significantly improved computational speed [70].

3.2.2 Application of EOFs

In this research, as done in Adani et al. (2011) [47], vertical EOFs are utilized to
derive the covariance matrix, which plays a crucial role in the formulation of new
weights to infer temperature and salinity profiles.
As outlined in section 3.2.1, EOFs are derived from a state vector that encapsulates
the anomalies of specific variables in relation to a defined mean. These anomalies
require normalization to ensure that all quantities within the state vector are di-
mensionless and appropriately weighted by their standard deviations, facilitating
comparability. The variables examined in this investigation include temperature,
salinity, and sea level. Both temperature and salinity are structured as vectors with
dimensions D×N , where D corresponds to the number of levels associated with the
maximum depth at the specific location under consideration, and N indicates the
number of measurements taken, which depends on the temporal window considered.
Normalization of these variables is performed using a standard deviation, denoted
as σT and σS, which is independent of depth and calculated as the average of the
standard deviations across all levels

δTnorm =


δT1

σT
δT2

σT...
δTD

σT

 δSnorm =


δS1

σS
δS2

σS...
δSD

σS


In this context, the vectors δTi and δSi are characterized by a dimension of N ,
which corresponds to the time series data of temperature and salinity anomalies at
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the level indexed by i. Likewise, the vector δη undergoes normalization with respect
to its standard deviation, ση, leading to the formulation:

δηnorm =
δη

ση

A secondary normalization process has been applied to temperature and salinity
data. To ensure that the EOFs are independent of spatial geometry—specifically
the number of levels and their respective thicknesses—we have introduced a factor
denoted as g [71]. The elements of this factor reflect the relative contribution of each
layer compared to the total water column, represented by the following equation:

g =
[∆z1
H

,
∆z2
H

, . . . ,
∆zD
H

]
Thickness Independent vector anomalies are derived by multiplying the previously
normalized anomalies by the factor g. We will refer to these as δTTI

norm and δSTI
norm.

The introduction of this normalization is justified by the expectation that thicker
layers will have a relatively greater influence on surface elevation errors compared to
thinner layers. Therefore, the multiplication of temperature and salinity anomalies
by the layer thickness yields a representation that more accurately reflects the un-
derlying physical relationships between the temperature and salinity fields and the
changes observed in sea surface elevation [71].
The normalized anomaly vectors are initially employed to calculate bi-variate Em-
pirical Orthogonal Functions. These EOFs are derived from the Singular Value
Decomposition of a state vector that consists solely of temperature and sea level
anomalies or salinity and sea level anomalies. The state vectors can be represented
as follows:

XT =

[
δTTI

norm

δηnorm

]
XS =

[
δSTI

norm

δηnorm

]
(3.8)

Specifically, the anomalies associated with temperature and salinity are represented
as vectors of dimension D×N , while the sea level anomalies are characterized by a
single value at each time point, resulting in vectors of dimension N . Consequently,
each state vector is structured as a matrix of dimension (D + 1)×N .
Subsequently, similar to the approach utilized in OceanVar, tri-variate EOFs have
been employed [72]. The state vector has been consolidated into a singular repre-
sentation for both variables, expressed as

X =

δTTI
norm

δSTI
norm

δηnorm

 (3.9)

In this context, the state vector is characterized by a matrix of dimensions (2D +
1) × N . To enhance clarity, the expressions δTTI

norm, δSTI
norm, and δηnorm will be

simplified to δT, δS, and δη.
The determination of the necessary number of Empirical Orthogonal Functions we
have opted to evaluate the extent to which they explain for the variance within
the dataset. The contribution of each EOF to the overall variance is quantified by
its corresponding eigenvalue. The proportion of variance explained is expressed as
follows:

PV E =
λm∑M
i=1 λi

∗ 100 (3.10)
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Figure 3.2: Time series of temperature reanalysis data at a depth of 105 meters
in a specific location in the Alboran Sea, identified by the coordinates (-2.9375 E,
36.3125 N) over the time period spanning from 2019 to 2020.

where M denotes the total count of EOFs. Typically, a significant fraction of the
total variance can be captured by a limited number of modes, while the remaining
variance is attributed to minor features, smaller-scale variations, and noise [69].
This investigation adopts a threshold of at least 99.7% of the variance consistently
explained, which necessitates the application of 15 EOFs in the bivariate scenario
and 25 EOFs in the trivariate scenario.
Upon completing the computation and selection of EOFs, the covariance matrix is
derived as follows:

C = UΣ2UT (3.11)

Here, U signifies the matrix that contains the EOFs, and Σ is the diagonal matrix
comprising the eigenvalues. In the context of bi-variate EOFs, the covariance matrix
is constructed as follows:

CT =

[
δTδT δηδT
δTδη δηδη

]
CS =

[
δSδS δηδS
δSδη δηδη

]
(3.12)

In this context, δTδT is used to express the covariance of temperature with itself,
whereas δSδS pertains to the covariance of salinity with itself. Furthermore, the
covariances involving temperature and salinity with sea level are represented by
δηδT, δTδη, δηδS, and δSδη. Lastly, δηδη reflects the covariance of sea level with
itself. For trivariate EOFs the covariance matrix is

C =

δTδT δSδT δηδT
δTδS δSδS δηδS
δTδη δSδη δηδη

 (3.13)

with the same meaning as before.
The specific elements we aim to extract are the covariances between temperature and
sea level, as well as between salinity and sea level. These covariances are extracted
from the full covariance matrix. They are subsequently applied in equations 3.3 and
3.4 as the numerator, rather than being derived solely from the product of anomalies.

3.3 Preprocessing of data
As emphasized in chapter 2.2.4, the primary data utilized in this study consist
of satellite altimetry data along with interpolated temperature, salinity, and sea
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Figure 3.3: Time series of detrended temperature anomalies (obtained with the
subtraction of a monthly climatology) at a depth of 105 meters in a specific location
in the Alboran Sea, identified by the coordinates (-2.9375 E, 36.3125 N) over the
time period spanning from 2019 to 2020.

surface height data derived from reanalysis. While satellite altimetry provides sea
level anomalies directly, the other three variables require computation to extract
their respective anomalies. As a matter of facts these variables are presented as
basic time series, as shown in figure 3.2. To extract the necessary anomalies, a
climatological average is calculated and then deducted from the complete dataset,
as illustrated in the following equations:

δT = T − Tclm

δS = S − Sclm

δη = η − ηclm

The climatological average can be established on either a daily or monthly basis,
which is crucial for analyzing the sensitivity of correlation factors to temporal aver-
ages. Consequently, both daily and monthly correlation factors are examined, which
means that to ensure consistency, it is essential to consider the anomalies that arise
from the subtraction of both climatological averages.
This dual approach to climatology allows for the identification of two distinct trends
in the anomalies, which are depicted in figure 3.4. The first is a long-term linear
trend characterized by rising temperatures, salinity, and sea levels, which are indica-
tive of long term variability, and is evident when either daily or monthly climatology
is subtracted. The second type of trend can manifest within a single month, where
temperatures may fluctuate either upward or downward based on the specific month,
and is only observable when the monthly climatology is subtracted. To ensure the
efficacy of our methods, it is essential to eliminate both trends. This can be achieved
by fitting a linear polynomial to the anomalies to compute the linear trend, which
is subsequently subtracted from the anomalies. The long-term trend fitting encom-
passes the entire timeseries, denoted as δTT , δST , and δηT . Conversely, the monthly
trend is calculated on a month-by-month basis, resulting in trends labeled δTTm,
δSTm, and δηTm. Following this, the first contribution is consistently eliminated,
whereas the second contribution is discarded solely when a monthly climatology has
been subtracted. For instance, in the case of anomalies derived from the subtraction
of a monthly average, the process is as follows

δTdet = δT − δTT − δTTm
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Figure 3.4: Time series of temperature anomalies (obtained with the subtraction
of a monthly climatology) at a depth of 105 meters in a specific location in the
Alboran Sea, identified by the coordinates (-2.9375 E, 36.3125 N) over the time
period spanning from 2019 to 2020.

δSdet = δS − δST − δSTm

δηdet = δη − δηT − δηTm

Upon the elimination of the appropriate contributions, the resulting detrended
anomalies display oscillatory behavior centered around a mean of zero. This is
depicted in figure 3.3, which illustrates the anomalies derived from the subtraction
of a monthly average.

3.4 Different time averages

This study seeks to identify the optimal time averages for obtaining the most accu-
rate reconstructions of salinity and temperature profiles for the two years 2019-2020.
This objective can be approached by considering both the duration of the periods
utilized in calculating the averages and the number of correlation factors employed,
which are associated with the time intervals selected for their computation (whether
in months or days).
In both scenarios, it is essential to emphasize the importance of consistency. Specif-
ically, once a particular average is selected for climatological assessment, it is im-
perative that the same average is applied when evaluating the correlation factors.
As indicated in section 3.1, correlation factors are computed on both monthly and
daily intervals. Comparing these factors is crucial due to the significant variability in
the timescales of oceanic processes, as illustrated in figure 1.4. While daily weights
are intended to reflect rapid fluctuations, they may occasionally interfere with slower
phenomena, such as mesoscale eddies, which operate on timescales ranging from
weeks to years [32].
Monthly correlation factors are established such that each month of the year is
associated with a distinct factor. This implies that climatological data also exhibit
distinct values for each month. To assess these factors, we first develop a function
that allows us to filter through all dates in our dataset, selecting only those that
correspond to a specific month, which are in number N . The data corresponding
to the identified month is then compiled into a new dataset, which serves as the
basis for applying equations 3.1 and 3.2. This process is analogous to executing the
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following procedure at each grid point i:

F T
i =

∑N
j=1 δTijδηij

N∑N
j=1 δη

2
ij

N

(3.14)

In this analysis, we have aggregated the covariance for all days corresponding to
a specific month and subsequently divided this sum by the total number of days
within that month. The methodology for calculating weights derived from Empirical
Orthogonal Functions follows a similar approach, involving the construction of a
new dataset that exclusively includes days from the designated month. This newly
formed dataset will serve as the basis for generating the state vector for bi- or tri-
variate EOFs, upon which singular value decomposition will be performed.

XT =

[
δTmonth

δηmonth

]
XS =

[
δSmonth

δηmonth

]
X =

δTmonth

δSmonth

δηmonth

 (3.15)

The covariance matrices obtained through equation 3.11 are specifically associated
with individual months. Consequently, it is crucial to choose the appropriate matrix
when reconstructing temperature and salinity for a particular day, ensuring that the
month corresponding to the desired date is taken into account.
The daily correlation factors indicate that the analysis is conducted not on a monthly
basis, but rather on a daily one. This results in the generation of 366 distinct weights
instead of the usual 12. In this context, daily climatology, which varies for each day,
is subtracted in equations section 3.3 and section 3.3. The function responsible for
selecting the appropriate dataset now examines all available dates and isolates those
that correspond to the specific day of the year (e.g., January 1st, January 2nd, etc.).
Although the number of selected days is smaller than that of the days in a month,
denoted as n, the methodology remains consistent for both the Mellor and Ezer
approaches as well as the EOFs techniques

F T
i =

∑n
j=1 δTijδηij

n∑n
j=1 δη

2
ij

n

XT =

[
δTday

δηday

]
XS =

[
δSday

δηday

]
X =

δTday

δSday

δηday


The construction of monthly and daily datasets relies on two distinct timeframes.
The first timeframe encompasses a comprehensive dataset spanning 28 years, from
1993 to 2020. This extensive duration allows for the assessment of both monthly
and daily correlation factors, as it provides a sufficient number of data points for
daily averages. The climatological analysis conducted during this evaluation is based
on the entirety of the 28-year period. The second timeframe is limited to the two
years of interest, specifically 2019 and 2020. Due to the brevity of this period, daily
weights cannot be calculated, as only two data points are available. Consequently,
only monthly correlation factors have been analyzed, with the climatology for this
assessment also derived from the two-year span to maintain consistency. The utiliza-
tion of both timeframes is crucial; the shorter period allows for the identification of
anomalies or changes specific to those years, while the longer period is more effective
in revealing trends and broader climatic shifts.
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Chapter 4

Assessement of methods

The algorithms detailed in chapter 3 are utilized in this one to extract temperature
and salinity profiles for the years 2019-2020. We will illustrate their functionality in
a synthetic environment, where sea level anomaly is also calculated from reanalysis
data. This setup facilitates a comprehensive analysis of the performance of the
various time averages and methods.
The process of retrieving temperature profiles from four distinct locations in the
Mediterranean Sea is outlined in section 4.1, emphasizing the time periods selected
for correlation factors and the effectiveness of the different techniques employed.
Additionally, section 4.2 will address the reconstruction of mesoscale eddies.

4.1 Profiles reconstruction

4.1.1 Locations under analysis

The algorithms designed for the retrieval of temperature and salinity profiles, as
outlined in chapter 3, are initially applied to four distinct locations within the
Mediterranean Sea, as depticted in figure, 4.1 to evaluate their efficacy in repro-
ducing individual profiles:

Figure 4.1: The four points used in this analysis
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• Alb is situated near the Strait of Gibraltar in the Alboran Sea, an area char-
acterized by significant water exchange with the Atlantic Ocean;

• Tyrr is located in the Tyrrhenian Sea, recognized as the deepest and most
isolated basin in the western Mediterranean;

• Adr is found in the South Adriatic Sea, a region where Adriatic Deep Water
is generated;

• EMed is positioned near the eastern Mediterranean coast, specifically in the
Levantine Sea.

These four locations exhibit distinct thermohaline structures, primarily influenced
by the circulation patterns of water masses. Thus, examining their reconstruction
is valuable for providing insights into the effectiveness of our algorithms. The key
characteristics of the water masses present in each area are subsequently outlined.
The Alboran Sea exhibits a notable minimum salinity near its surface, a phenomenon
attributed to the influx of Atlantic Water originating from the Strait of Gibraltar.
Beneath this surface layer, there exists a zone where the water characteristics sug-
gest a blend of both Atlantic and Mediterranean waters. At depths ranging from
approximately 300 to 400 meters, one can observe the presence of Levantine Inter-
mediate Water (LIW), which is distinguished by a peak in salinity. Below the LIW
layer, the deep Mediterranean waters extend from depths of about 500-600 meters
down to the seabed [73].
The Tyrrhenian Sea is characterized by the presence of various water masses that
extend from the surface to the deeper layers of the basin. Notably, a significant
influx of surface waters of Atlantic origin (AW) is typically found within the upper
100-200 meters of the water column. These waters are distinguished by a subsurface
salinity minimum. At deeper levels, one can observe the presence of salty Levantine
Intermediate Water (LIW) that enters from the Eastern Mediterranean via the Sicily
Strait. This is indicated by an absolute maximum in salinity, which coincides with a
relative maximum in temperature at depths of approximately 400-500 meters. The
deepest strata are predominantly occupied by Western Mediterranean Deep Water
(WMDW), which is characterized by lower temperature and salinity. The relatively
weak dynamics in these deep layers, combined with the presence of gyre structures,
promote mixing between LIW and WMDW, resulting in the creation of a unique
water mass referred to as Tyrrhenian Deep Water, situated below 1000 meters [74,
75].
The Adriatic Sea is among the limited regions where deep water formation occurs.
From depths of 150 meters to the ocean floor, the water exhibits conditions typical
of the open Mediterranean Sea, resulting in a nearly uniform water column. The
Levantine Intermediate Water (LIW) is present in a layer that extends from 150 to
400 meters. The southern Adriatic deep water (SAdDW) possesses unique average
characteristics, with a temperature of about 13.1°C and a salinity of approximately
38.6 psu. This water is significantly warmer and saltier than the deep water found
in other areas of the basin, indicating that it likely represents a mixture of LIW and
local surface waters [76].
Within the Levantine Sea, Atlantic Water (AW) is detectable in the 50–100 meter
layer, exhibiting the characteristic subsurface salinity minimum. The upper 50 me-
ters are dominated by Levantine Surface Water, a saline water mass that originates
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in the Levantine Basin and contributes to the formation of Levantine Intermedi-
ate Water (LIW). The LIW, marked by a subsurface salinity maximum, is clearly
discernible between 100 and 400 meters in the Levantine Basin, with the Eastern
Mediterranean Deep Water situated below this layer [77].

4.1.2 Reconstruction error statistics

For each location across the four basins, mean profiles and standard deviations have
been calculated. In order to identify the optimal method, we will utilize various
statistical error indicators, such as mean bias, standard deviation error, and unbiased
root mean square error [78]. The presentation will be limited to the results from
January, given that the outcomes for the remaining months are largely analogous.
Mean bias is a statistical measure that reflects the consistent differences between
reconstructed datasets and reanalysis over a particular period. It can be represented
mathematically as:

MB = r −R (4.1)
In this formulation, r refers to the January mean of the reconstructed temperature
profiles, whereas R refers to the January mean of the reanalysis profiles.
Standard deviation error assesses the extent to which the reconstruction effectively
represents the amplitude of variability in temperature and salinity. This concept is
articulated through the equation

SDE = σr − σR (4.2)

in which σr indicates the standard deviation of the January reconstructions, and σR

signifies the standard deviation obtained from January reanalysis.
Lastly the unbiased root mean square error (uRMSE) is mathematically expressed
as follows:

uRMSE =

√√√√ 1

N

N∑
i=1

[(ri − r)− (Ri −R)]2 (4.3)

In this equation, N represents the total number of observations in the January time
series, while ri and Ri denote the i − th values of the reconstructed and reanalysis
variables, respectively. The uRMSE serves as the unbiased counterpart to the root
mean square error (RMSE), which quantifies the average of the squared differences
between the reconstructed and reanalysis values. However, the RMSE can be influ-
enced by biases present in either the mean or the amplitude of the fluctuations in
the reconstructed data. The uRMSE addresses this issue by eliminating the mean
bias from the calculations. Consequently, equation 4.3 can be reformulated as:

uRMSE =

√√√√ 1

N

N∑
i=1

[ri −Ri − (r −R)]2

This reformulation highlights the adjustment made for the mean bias.

4.1.3 Comparison of reconstruction methods with different
periods of time statistics

This section will focus on comparing the outcomes derived from three distinct time
periods utilized for reconstructing salinity and temperature profiles for the years
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2019-2020. For clarity, the reconstruction employing monthly correlation factors
averaged over the 2019-2020 period will be referred to as MS (monthly short). The
reconstruction based on monthly correlation factors from 1993 to 2020 will be des-
ignated as ML (monthly long), while the reconstruction utilizing daily correlation
factors will be labeled as D. Given that the results across the three methodologies
— Ezer and Mellor, bi-variate EOFs, and tri-variate EOFs — exhibit similarities,
we will exclusively present the findings derived from the tri-variate EOFs.

(a) Mean

(b) Standard Deviation

Figure 4.2: January mean and standard deviation of temperature using
tri-variate Empirical Orthogonal Functions. Red profiles results from monthly
correlation factors on period 2019- 2020, blue monthly correlation factors on period
1993 to 2020, green daily correlation factors.

The analysis of figures 4.2a and 4.3a reveals that the reconstructed means of tem-
perature and salinity exhibit the characteristics outlined in section 4.1.1. In the case
of Alb, a subsurface minimum in salinity is observed, followed by a layer exhibiting
mixed properties up to a depth of 200 meters. At 400 meters, the salinity maximum
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characteristic of LIW is also evident. The presence of AW is also clearly observ-
able in the Tyrr profile, characterized by a subsurface salinity minimum, while the
LIW is identified by a salinity maximum at a depth of 500 meters, accompanied
by slightly elevated temperatures just above this depth. The characteristics of the
Adr profile are akin to those previously described, though it exhibits slightly higher
values for both temperature and salinity (13.3° instead of 13.1° and 38.76 instead of
38.6 psu). In this profile, LIW is observed at depths of approximately 100 to 150

(a) Mean

(b) Standard Deviation

Figure 4.3: January mean and standard deviation of salinity using tri-
variate Empirical Orthogonal Functions. Red profiles results from monthly
correlation factors on period 2019- 2020, blue monthly correlation factors on period
1993 to 2020, green daily correlation factors.

meters, where the salinity maximum occurs. For the EMed profile, a minimum in
salinity is succeeded by a maximum, representing AW and LIW, respectively. The
primary insight derived from this study is that the reconstruction produced by the
MS (illustrated by the red line) closely mirrors the reanalysis profile (shown as the
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black line). Notably, at each of the four points analyzed, the two reconstructions
appear virtually identical.
The same conclusion can be drawn concerning standard deviation. Specifically, fig-
ure 4.2b allows for a comparison of the January standard deviation across the four
selected points. In all instances, the MS reconstruction of temperature standard
deviation demonstrates a closer alignment with the reanalysis standard deviation,
except at the surface level, where it tends to underestimate variability. At the
surface, the D reconstruction for Alb, Tyrr, and EMed consistently outperforms,
remaining very close to the reanalysis values. However, as one descends through
the layers, this reconstruction increasingly underestimates variability, while the MS
reconstruction of standard deviation continues to closely follow the reanalysis vari-
ability. Additionally, for temperature standard deviation in Adr, it is evident that
the D reconstruction approaches the reanalysis more closely at the surface compared
to the ML reconstruction, indicating that the application of daily correlation factors
enhances performance, despite both being evaluated over the same time period.
The standard deviation of salinity, illustrated in figure 4.3b, does not exhibit the
previously mentioned pattern. It is evident that the standard deviation is consis-
tently more accurately represented by the MS method, even at the surface level.
The other two time intervals fail to capture the peaks of variability observed in
regions such as Tyrr and EMed. This suggests that a reconstruction strategy that
prioritizes data from the specific period of interest is superior in representing the
variability characteristic of that time.
The exploration of these attributes is most effectively achieved through the study
of statistical errror metrics. Figures 4.4a and 4.5a illustrate that the mean bias
for the MS reconstruction consistently remains significantly lower than that of the
other reconstructions, approaching zero. This observation indicates that, on aver-
age, the MS reconstruction aligns more closely with the reanalysis, as previously
noted. Furthermore, the other two reconstructions exhibit a high degree of similar-
ity to one another. This suggests that the average reconstruction’s accuracy may
be more influenced by the time period utilized for reconstruction rather than the
quantity of correlation factors employed. Notably, the two reconstructions over the
extended periods D and ML display their most pronounced differences at the sur-
face level, indicating that the application of daily factors can significantly impact
the reconstruction of those layers.
This phenomenon becomes significantly more evident when examining the SDE
related to temperature, as illustrated in figure 4.4b. As previously mentioned, the
variability reconstructed using daily factors appears to outperform all other methods
at the surface level. This observation likely stems from the fact that surface tem-
perature variability operates on shorter temporal scales compared to deeper layers.
Specifically, surface temperature fluctuations are highly influenced by atmospheric
conditions such as solar radiation and wind patterns, which can change rapidly. Con-
sequently, employing a set of correlation factors that represent each day individually
allows for a more accurate capture of this rapid variability. Additionally, the graph
reveals that the STD tends to diverge more significantly from the reanalysis data
at the surface and within the first 500 meters of depth. This indicates that, despite
the most effective reconstruction methods, a portion of the variability in this layer
remains unaccounted for.
This phenomenon is clearly illustrated by the uRMSE for temperature, as depicted
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(a) Mean Bias

(b) Standard Deviation Error

(c) Unbiased Root Mean Square Error

Figure 4.4: January error statistics of temperature reconstructions using
tri-variate Empirical Orthogonal functions. Red profiles results from monthly
correlation factors on period 2019- 2020, blue monthly correlation factors on period
1993 to 2020, green daily correlation factors.
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(a) Mean Bias

(b) Standard Deviation Error

(c) Unbiased Root Mean Square Error

Figure 4.5: January error statistics of salinity reconstructions using tri-
variate Empirical Orthogonal Functions. Red profiles results from monthly
correlation factors on period 2019- 2020, blue monthly correlation factors on period
1993 to 2020, green daily correlation factors.
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in figure 4.4c. Notably, the values remain consistently low; however, the highest
values are observed at the surface, even in the context of the most accurate recon-
structions. Similarly to mean bias and standard deviation error, the unbiased root
mean square error is minimized in the MS reconstruction. For instance, this recon-
struction significantly decreases the error in the subsurface layers of Alb and EMed.
The sole exception occurs, as stated before, within the upper 50 meters or less for
Alb, Tyrr, and EMed.
The metrics SDE and uRMSE for salinity are both lower than those for temper-
ature, as depicted in figures 4.5b and 4.5c. However, these error metrics do not
demonstrate the beneficial characteristics of D reconstruction at the surface. No-
tably, both the SDE and uRMSE values are superior for the MS reconstruction
compared to other methods. This discrepancy may be attributed to the influence of
processes affecting sea surface salinity, such as river runoff, which typically operate
over extended timescales, with seasonal variability being a predominant factor [79].
From the statistical analysis, it is evident that the reconstruction utilizing monthly
correlation factors, assessed over a timeframe closely aligned with the target re-
construction period, yields the most favorable results across all metrics. The sole
exception pertains to the surface layer of the reconstructed temperature, where daily
variability prevails, indicating that the application of daily correlation factors is more
effective in capturing this specific variability.

4.1.4 Comparison between methods

This section will provide a comparative analysis of the three distinct methods. For
this purpose, we have selected the profiles reconstructed using the monthly correla-
tion factors from the period 2019-2020, which represents the most accurate recon-
struction, as indicated in 4.1.3. Henceforth, the reconstructions derived from the
Ezer and Mellor method will be referred to as EM, those obtained through bi-variate
EOFs will be labeled BE, and the reconstructions achieved via tri-variate EOFs will
be designated as TE.
The analysis presented in figures 4.6a and 4.7a indicates that the January mean
reconstruction closely aligns with the reanalysis across all three methodologies. The
sole exception is observed at the Tyrr sites, where the mean reconstruction from BE
exhibits a slight divergence from the reanalysis. This phenomenon can be explained
by the foundational principles of our methodology, which seeks to infer temperature
and salinity profiles from sea level data. The relationship is predicated on the notion
that sea level serves as an integral of density, which is a function of both temperature
and salinity 2.1.1. Generally, one of these variables tends to dominate; however, in
cases of pronounced stratification, both variables can significantly influence density.
Therefore, relying solely on one variable for the calculation of Empirical Orthog-
onal Functions (EOFs) may result in incomplete representation of sea level. The
incorporation of both variables in a tri-variate framework resolves this issue.
The results of the standard deviation reconstructions are illustrated in figures 4.6b
and 4.7b. Generally, the TE reconstruction demonstrates superior performance, of-
ten aligning so closely with the reanalysis data that it becomes indistinguishable,
particularly in the case of EMed. Conversely, the Ezer and Mellor methods consis-
tently exhibit a tendency to underestimate the standard deviation, a trend that is
particularly evident in figures 4.8b and 4.9b. It is evident that all methods generally
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underestimate the standard deviation, especially at the surface level. Among them,
the TE reconstruction stands out as the most effective, achieving nearly perfect
reconstruction of the standard deviation in depth while exhibiting a slight underes-
timation at the surface.

(a) Mean

(b) Standard Deviation

Figure 4.6: January mean and standard deviation of temperature using
monthly correlation factors with mean on period 2019-2020. Red profiles
have been obtained using Mellor and Ezer plain method. Blue profiles have been
obtained using bi-variate EOFs method. Green profiles have been obtained using
tri-variate EOFs method.

A deeper analysis of the mean can be observed studying mean bias in figures 4.8a
and 4.9a. Initially, the reconstructions appear nearly identical; however, a deeper
investigation uncovers notable differences. The TE reconstruction shows a mean
bias that is nearly zero, a characteristic not shared by the other two methods. In
particular, the Ezer and Mellor techniques tend to yield the least favorable results.
This is evident across all four points, especially in the surface and subsurface layers,

44



4.1. Profiles reconstruction Chapter 4. Assessement of methods

and is also apparent at the bottom for Alb and Adr. While the differences are not
particularly large, they are distinctly observable. Conversely, Tyrr stands out as an
exception, with the BE method exhibiting the worst mean reconstruction.

(a) Mean

(b) Standard Deviation

Figure 4.7: January mean and standard deviation of salinity using monthly
correlation factors with mean on period 2019-2020. Red profiles have been
obtained using Mellor and Ezer plain method. Blue profiles have been obtained
using bi-variate EOFs method. Green profiles have been obtained using tri-variate
EOFs method.

The outstanding efficacy of TE reconstruction is clearly demonstrated when exam-
ining the uRMSE. Figures 4.8c and 4.9c reveal that the error associated with all
methods is predominantly low. In fact, it is nearly zero, with maximum values of 0.1
°C and 0.015 psu observed in the subsurface layers. At deeper levels, the error ap-
proaches insignificance. Nonetheless, TE consistently exhibits the lowest uRMSE,
highlighting its exceptional performance relative to the other methods.
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(a) Mean Bias

(b) Standard Deviation Error

(c) Unbiased Root Mean Square Error

Figure 4.8: January error statistics of temperature using monthly correla-
tion factors with mean on period 2019-2020. Red profiles have been obtained
using Mellor and Ezer plain method. Blue profiles have been obtained using bi-
variate EOFs method. Green profiles have been obtained using tri-variate EOFs
method.
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(a) Mean Bias

(b) Standard Deviation Error

(c) Unbiased Root Mean Square Error

Figure 4.9: January error statistics of salinity using monthly correlation
factors with mean on period 2019-2020. Red profiles have been obtained using
Mellor and Ezer plain method. Blue profiles have been obtained using bi-variate
EOFs method. Green profiles have been obtained using tri-variate EOFs method.
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4.2 Eddies reconstruction
As emphasized in section 1.3, oceanic mesoscale characteristics can be equated to the
"weather" of the marine environment. This analogy suggests that salinity and tem-
perature characteristics fluctuate daily due to these features. Consequently, investi-
gating their reconstruction is crucial for evaluating the efficacy of our methodologies.
A significant aspect of this analysis will be the focus on comparing the performance
of various reconstruction methods when applied to the reconstruction of a single
day, as opposed to averaging over multiple profiles as done before. Furthermore, as
elaborated in section 1.3.3, the vertical configuration of eddies is distinctly charac-
terized, allowing us to assess the accuracy of our algorithms in reconstructing this
peculiar structure. All of these components will facilitate our ability to determine
the optimal reconstruction approach from the three presented.
To locate eddies for investigation, altimetry data serves as a valuable resource, given
that the sea surface experiences upward or downward deflections corresponding to
anticyclonic and cyclonic eddies, respectively as underlined in section 1.3.3. Conse-
quently a basic technique for their detection is the examination of sea level anomaly
images. However, this method presents some challenges. Specifically, the resolution
constraints of satellite altimetry products can pose significant limitations. When
the deformation radius is small, the resolution may be insufficient to capture the
complete spectrum of mesoscale dynamics. This issue is particularly pronounced
in the Mediterranean Sea, where the deformation radius is notably low, potentially
complicating the study of these eddies [39, 31].
Despite the existing challenges, two transient eddies have been identified and ana-
lyzed, as illustrated in 4.10. These cases of study include:

• An anticyclonic eddy, approximately 100 km in radius, located off the coast of
Spain on 24 March 2019;

• A cyclonic eddy, with a radius of around 75 km, situated near Cyprus on 30
May 2020.

(a) Anticyclonic eddy (b) Cyclonic eddy

Figure 4.10: Eddies under study. The anticyclonic eddy is found near Spain Coast
on 24 March 2019, while the cyclonic one near Cyprus on 30 May 2020. Black dots
represents points taken into consideration.
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Both of these eddies have radii that surpass the deformation radius characteristic
of the Mediterranean Sea. While smaller eddies are present, their identification is
limited due to the low resolution of altimetry data. The contrasting characteristics
of these eddies are particularly valuable, as they allow for a thorough investigation
into the various properties of eddy dynamics.
In this investigation into the reconstruction of eddies, we will illustrate the pre-
cise reconstruction of the eddy for the selected day of analysis. Furthermore, we
will evaluate the percentage discrepancies between the reconstructed field and the
reanalysis field, which can be expressed mathematically as

∆ =
r −R

R
∗ 100 (4.4)

with r indicating the reconstructed field and R signifying the reanalysis field.

4.2.1 Anticyclonic eddy near Spain

The first eddy exhibits an anticyclonic nature, which is prominently indicated by
a positive sea level anomaly that is surrounded by negative anomalies. This char-
acteristic is clearly illustrated in the reanalysis plots of temperature and salinity,
as shown in 4.11a and 4.12a. A notable feature is the depression observed in the
isolines of temperature and salinity, suggesting that warmer and fresher surface wa-
ters are being displaced to deeper layers. The influence of the eddy extends slightly
beyond its radius, though the extent is minimal. Additionally, it displays a typical
structure where the radius at depth is smaller than that at the surface. The salinity
field further indicates two regions of fresher water at the surface, which are distinctly
marked by two minima.
The three temperature reconstructions are illustrated in figure 4.11, with their corre-
sponding percentage differences from the reanalysis depicted in figures 4.13a, 4.13b,
and 4.13c. Both the Mellor and Ezer reconstruction and the bivariate EOFs exhibit
a similar pattern of curved isolines in the same regions identified in the reanalysis.
However, the Mellor and Ezer reconstruction appears to underestimate temperature
values. Additionally, the depth of displacement in these reconstructions is less pro-
nounced compared to the reanalysis. In contrast, the trivariate EOFs reconstruction
displays a markedly different profile. It reveals a less distinct deepening of isolines,
which, while present, lacks smoothness. Nevertheless, this method achieves a greater
depth of displacement and reconstructed temperature values that are more aligned
with the original data. Notably, an evident warm pool is identified in the same region
as the reanalysis, specifically between 41 and 40.6°N, a feature absent in the other
two reconstructions. As evidenced by the difference figures, these characteristics
contribute to a more accurate temperature estimate for the trivariate EOF method
in the central domain, indicating that while it may not effectively reconstruct the
isoline shapes, it excels in capturing the temperature field values.
The reconstructions of salinity are illustrated in figure 4.12, while the percentage dif-
ferences from reanalysis are depicted in figures 4.13d, 4.13e, and 4.13f. Notably, all
reconstructions indicate a tendency to overestimate surface water salinity compared
to actual values. Additionally, none of the reconstructions adequately represent the
left pole at the surface. In the TE reconstruction, the right pole appears to be
accurately positioned at the surface, however the fresh water bulb penetrates to
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(a) Reanalysis temperature (b) Mellor reconstruction

(c) Bi-variate EOFs reconstruction (d) Tri-variate EOFs recontruction

Figure 4.11: Temperature of the transect crossing the eddy near Spain coast on 24
March 2019
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(a) Reanalysis salinity (b) Mellor reconstruction

(c) Bi-variate EOFs reconstruction (d) Tri-variate EOFs recontruction

Figure 4.12: Salinity of the transect crossing the eddy near Spain coast on 24 March
2019
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(a) Mellor (b) Bi-variate EOF (c) Tri-variate EOFs

(d) Mellor (e) Bi-variate EOF (f) Tri-variate EOFs

Figure 4.13: Percentage differences between reanalysis and reconstruc-
tions. 4.13a, 4.13b and 4.13c are relative to temperature reconstructions, while
4.13d, 4.13e and 4.13f are relative to salinity reconstructions
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a significantly lesser depth than the other two reconstructions, and its lateral ex-
tension on the right is limited. For the BE reconstruction, there is a pronounced
overestimation of salinity on the right side of the eddies, resulting in much saltier
water than what is indicated by reanalysis. This observation aligns with the under-
standing that salinity exhibits a weaker correlation with sea level than temperature
[80], suggesting that the correlation factors alone are insufficient to capture all the
desired characteristics.

4.2.2 Cyclonic eddy near Cyprus

The second eddy is characterized as a cyclonic type, which is evident from the neg-
ative sea level anomaly that is encircled by positive anomalies. This cyclonic nature
is clearly illustrated in the reanalysis plots of temperature and salinity, as shown in
figures 4.14a and 4.15a. A prominent dome is observable in the isolines of temper-
ature and salinity, indicating the elevation of colder water from the bottom. The
properties of this eddy extend well beyond its radius, presenting a more cylindrical
profile when compared to its anticyclonic counterpart.
The temperature reconstructions are illustrated in figure 4.14, while the percent-
age differences from reanalysis are depicted in figures 4.16a, 4.16b, and 4.16c. All
reconstructions effectively elevate the temperature isolines. Notably, the two EOF
reconstructions also enhance the depth isolines, whereas the Mellor and Ezer recon-
structions exhibit flatter depth isolines. Additionally, the subsurface isolines are not
elevated to the same extent as observed in the other two reconstructions. This
observation holds true for the bi-variate EOF reconstruction as well, with the TE
reconstruction being the only one that appears to replicate a peak in the isolines
towards the right side of the domain. This is particularly evident when examining
the differences. Specifically, the EM reconstruction tends to overestimate the tem-
perature in the central region of the domain, indicating insufficient cold water is
being brought up from the depths. The other two reconstructions display similar
behavior, with the TE reconstruction performing slightly better on the right side
of the domain. Furthermore, a previously unrecognized characteristic is now ap-
parent: the surface temperature is consistently underestimated, with the tri-variate
reconstruction exhibiting the least degree of underestimation.
Figure 4.15 presents the salinity reconstructions, while figures 4.16d, 4.16e, and
4.16f illustrate the percentage differences from reanalysis. A clear dome of isolines
is evident across all reconstructions. Additionally, a saltier region is observed at the
surface above the core of the dome, slightly shifted to the right of the center. This
displacement is uniquely observed in the TE reconstruction. Moreover, both EM
and BE reconstructions tend to broaden the cylinder of saltier water in the domain’s
center, whereas the TE reconstruction appears to narrow it. This trend is also
reflected in the percentage differences, with the TE reconstruction underestimating
salinity at the domain’s periphery, while the EM and BE reconstructions show an
overestimation.
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(a) Reanalysis temperature (b) Mellor reconstruction

(c) Bi-variate EOFs reconstruction (d) Tri-variate EOFs recontruction

Figure 4.14: Temperature of the transect crossing the eddy near Cyprus on 30 May
2020 54
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(a) Reanalysis salinity (b) Mellor reconstruction

(c) Bi-variate EOFs reconstruction (d) Tri-variate EOFs recontruction

Figure 4.15: Salinity of the transect crossing the eddy near Cyprus on 30 May 2020
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(a) Mellor (b) Bi-variate EOF (c) Tri-variate EOFs

(d) Mellor (e) Bi-variate EOF (f) Tri-variate EOFs

Figure 4.16: Percentage differences between reanalysis and reconstruc-
tions. 4.16a, 4.16b and 4.16c are relative to temperature reconstructions, while
4.16d, 4.16e and 4.16f are relative to salinity reconstructions
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Chapter 5

Reconstructions using satellite data

In Chapter 4, we examined the quality of the subsurface reconstruction of tempera-
ture and salinity profiles with the methods developed in the previous sections. We
will now use sea level anomaly data obtained from satellite altimetry, L4 product.
Consistent with the previous chapter, Section 5.1 will detail the reconstruction of
temperature and salinity profiles, offering a comparative analysis between recon-
structions based on reanalysis and those derived from L4 satellite data. Section 5.2
will focus on the reconstruction of the vertical structures of eddies.

5.1 Profile reconstructions

In section 4.1, we emphasized that the optimal reconstruction is achieved through
the application of monthly correlation factors derived from tri-variate EOFs, utilizing
data from the period spanning 2019 to 2020 for the averages. It is important to note
throughout this discussion that the salinity reconstructions yield results identical to
those of temperature reconstructions and, therefore, are not presented separately.
The choice to employ satellite-derived sea level anomaly (SLA) data in place of re-
analysis data can introduce a level of inconsistency into our reconstructions. In fact,
reanalysis assimilates along track altimetry data and offers its own reconstruction
of sea level anomaly, which differs from the process used to obtain L4 satellite data.
The latter is generated through an objective analysis of various satellite altimeters,
as discussed in section 2.1.2. Therefore, the correlation factors obtained using the
same algorithms as those in the previous chapter, when applied to L4 satellite data,
could lead to a different subsurface thermal and haline structure, due to these dif-
ferent sea level estimates. The extrapolation of this structure from an altimetric
product and the reanalysis is analysed in this chapter.
Figure 5.1a presents a comparison of the two reconstructions for mean temperature,
while figure 5.2a illustrates the mean bias. It is evident that the reconstruction
from L4 data is different from the reanalysis one, but it is consistent with it. The
discrepancy between the reanalysis and the satellite reconstruction is particularly
noticeable at the surface, where the bias may reach as high as 0.2°C in the Alboran
Sea. This is probably due to the fact that the upper layer temperature and salinity
is the least correlated part of the subsurface thermohaline structure to the sea level.
Thus the satellite altimetry signal can be very different from the reanalysis one where
the upper layer structures are corrected also by the numerical model dynamics.
Another reason for the difference is probably connected to the number of vertical
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modes used in the reconstruction that is relative low (25 for the trivariate EOFs).
The reconstruction of the standard deviation presents a more complex scenario,
as illustrated in figures 5.1b and 5.2b. There is considerable variability across the
different study sites, with the most significant differences typically occurring in the
surface and upper ocean layers. An exception to this trend is the region identified

(a) Mean

(b) Standard Deviation

Figure 5.1: January mean and standard deviation of temperature using
SLA from reanalysis and from satellite. Red profiles results from monthly
correlation factors on period 2019- 2020 obtained with SLA from reanalysis, blue
profiles from monthly correlation factors on period 2019 to 2020 obtained with SLA
from satellite.

as Alb. Given its strong interactions with the Atlantic Ocean, the dynamics in
this area pose considerable modeling challenges, suggesting that satellite data may
provide a more accurate representation of actual conditions.
A comparable challenge in interpretation arises when examining the uRMSE, as
illustrated in figures 5.2c. Notably, this metric exhibits significant variability from
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(a) Mean Bias

(b) Standard Deviation Error

(c) Unbiased Root Mean Square Error

Figure 5.2: January error statistics of temperature using SLA from reanal-
ysis and from satellite. Red profiles results from monthly correlation factors on
period 2019- 2020 obtained with SLA from reanalysis, blue profiles from monthly
correlation factors on period 2019 to 2020 obtained with SLA from satellite.
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one point to another. However overall, the reconstructions form satellite and reanal-
ysis estimates are consistent using the same extrapolation method and the uRMSE
is in both cases very small.

5.2 Eddy reconstruction
The instantaneous reconstruction of eddies from altimetric L4 products is a chal-
lenging task. Notably, both temperature and salinity reanalysis reconstructions
reveal a range of advantages and disadvantages associated with different extrapola-
tion techniques. We will now extend the investigation by utilizing satellite L4 sea
level anomalies.
This analysis will illustrate the reconstruction of the eddy on the designated day and
the percentage discrepancies between the reconstructed field based on satellite SLA
and the field reconstructed using reanalysis SLA. The calculation for this difference
is expressed as follows:

∆ =
rs − rm

rm
∗ 100 (5.1)

where rm is the reanalysis reconstructed field and rs the satellite reconstructed field.

5.2.1 Anticyclonic eddy near Spain

The three temperature reconstructions for the anticyclonic eddies reveal differences
between the three methods that were not evident before. Each reconstruction dis-
tinctly illustrates the deepening of isotherms. Nevertheless, the reconstructed tem-
peratures are notably lower, particularly at the center of the eddy. Ezer and Mellor’s
reconstruction, illustrated in figure 5.3b, appears to have a more limited horizontal
and vertical extent. Specifically, the right side of the eddy demonstrates a shallower
profile. This observation is further supported by the differences, as depicted in fig-
ure 5.5a. The findings indicate that satellite altimetry possibly consists of a weaker
eddy, reduced in horizontal extent.
In the context of bi-variate EOF (BE) reconstruction, as illustrated in figure 5.3c, a
similar behaviour is observed, characterized by a lower amplitude temperature field.
However, the eddy appears to have deepened in this reconstruction. This finding is
further validated by the differences illustrated in 5.5b. It is also apparent that the
reconstructed temperature is declining on the right side of the eddy, suggesting that,
similar to the Mellor and Ezer’s reconstruction method, the eddy size is smaller. The
reduction in the eddy’s dimensions is particularly clear in the tri-variate temperature
reconstruction (ME) shown in figure 5.3d, where a general temperature decrease is
also observed. This decline is especially marked by the vanishing of the warm
pool located on the left side of the eddy. Nevertheless, this reconstruction offers a
significant advantage, as the isolines distinctly curve downward.
The salinity reconstructions appear to be significantly different than in the reanalysis
reconstructions, as illustrated in figure 5.4. Notably, all satellite L4 reconstructions
exhibit a consistent lower minimum of salinity in the subsurface. Additionally, the
low salinity structure is predominantly confined to the surface layer, with minimal
presence at greater depths. The most pronounced discrepancies between L4 recon-
structions and reanalysis ones are observed in the tri-variate reconstruction, where
the salinity minimum in the eddy is barely detectable. This is particularly evident

60



5.2. Eddy reconstruction Chapter 5. Reconstructions

(a) Reanalysis temperature (b) Mellor reconstruction

(c) Bi-variate EOFs reconstruction (d) Tri-variate EOFs recontruction

Figure 5.3: Temperature of the transect crossing the eddy near Spain coast on 24
March 2019
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Chapter 5. Reconstructions 5.2. Eddy reconstruction

(a) Reanalysis salinity (b) Mellor reconstruction

(c) Bi-variate EOFs reconstruction (d) Tri-variate EOFs recontruction

Figure 5.4: Salinity of the transect crossing the eddy near Spain coast on 24 March
2019
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5.2. Eddy reconstruction Chapter 5. Reconstructions

(a) Mellor (b) Bi-variate EOF (c) Tri-variate EOFs

(d) Mellor (e) Bi-variate EOF (f) Tri-variate EOFs

Figure 5.5: Percentage differences between reconstructions with SLA from
reanalysis and reconstructions with SLA from satellite. 5.5a, 5.5b and 5.5c
are relative to temperature reconstructions, while 5.5d, 5.5e and 5.5f are relative to
salinity reconstructions
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in figure 5.5f, which reveals a larger salinity throughout the whole eddy. Conversely,
the other two reconstructions appear somewhat more aligned with the reanalysis
ones, although they still exhibit a notable overestimation of salinity. The only in-
stance of salinity underestimation relative to the model data reconstruction occurs
on the right side of the BE reconstruction. It is worth noting that this area was
previously marked by considerable overestimation, thus representing a step forward
in accuracy.

5.2.2 Cyclonic eddy near Cyprus

An examination of the basic temperature reconstructions presented in figure 5.6
reveals several different characteristics of the reconstruction by the three methods.
One notable observation with respect to the anticylconic case is that the EM re-
construction appear to have higher skill in reproducing the uplift of the isotherms.
The analysis of 5.8a, 5.8b, and 5.8c, confirms that the EM reconstruction is quite
similar to the BE amd TE reconstructions. In the case of the BE reconstruction,
it is evident that the eastern section of the eddy overestimate temperature when
compared to the reanalysis reconstruction. However, it is important to note that
the reanalysis reconstruction itself has larger uplift of the isotherms, suggesting that
the reconstruction from the satellite provides a different representation. A similar
conclusion can be drawn for the TE reconstruction, which closely resembles the
reanalysis one.
In examining the salinity reconstructions presented in figure 5.7, several key ele-
ments emerge. The EM and BE reconstructions demonstrate superior performance
compared to the model reconstruction. Notably, the cylindrical area of saltier water
at the center of the domain has contracted, and the existence of a pole of saltier
water at the surface, positioned to the right of the center, is distinctly apparent in
both reconstructions. Conversely, the TE reconstruction shows minimal variation
compared to previous assessments, maintaining its status as the most effective in
capturing the configuration of the deeper isolines, which are elevated and exhibit a
peak to the right of the center, consistent with reanalysis data.
Overall, it can be concluded that satellite reconstructions are somewhat more ef-
fective for this cyclonic eddy. This may be attributed to the inherent complexity
of modeling such eddies, suggesting that the incorporation of additional satellite
data enhances the reconstruction process. The tri-variate reconstruction, however,
appears to be less influenced by this enhancement.
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(a) Reanalysis temperature (b) Mellor reconstruction

(c) Bi-variate EOFs reconstruction (d) Tri-variate EOFs recontruction

Figure 5.6: Temperature of the transect crossing the eddy near Cyprus on 30 May
2020 65



Chapter 5. Reconstructions 5.2. Eddy reconstruction

(a) Reanalysis salinity (b) Mellor reconstruction

(c) Bi-variate EOFs reconstruction (d) Tri-variate EOFs recontruction

Figure 5.7: Salinity of the transect crossing the eddy near Cyprus on 30 May 2020
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5.2. Eddy reconstruction Chapter 5. Reconstructions

(a) Mellor (b) Bi-variate EOF (c) Tri-variate EOFs

(d) Mellor (e) Bi-variate EOF (f) Tri-variate EOFs

Figure 5.8: Percentage differences between reconstructions with SLA from
reanalysis and reconstructions with SLA from satellite. 5.8a, 5.8b and 5.8c
are relative to temperature reconstructions, while 5.8d, 5.8e and 5.8f are relative to
salinity reconstructions
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Chapter 6

Conclusions and future investigation

This study has proposed several approaches for assessing the subsurface structure
of the ocean using sea level anomalies. The algorithms developed aim to evaluate
the quality of subsurface reconstructions using Ezer and Mellor’s algorithm ([45],
[46]) and Adani et al. [47] bi-variate or tri-variate EOFs. Furthermore, different
averaging periods have been tested to determine the optimal methodology. To main-
tain consistency, we have utilized reanalysis data for temperature, salinity, and sea
level, thereby estimating the absolute error in the reconstruction of reanalysis sea
level. Subsequently, we utilized satellite altimeter data for sea level measurements
and applied identical subsurface extrapolation techniques to derive the thermohaline
structures, thereby inferring a relative error through comparison with the subsurface
data from the reanalysis reconstructions.
The various methods were initially implemented at four distinct locations within the
Mediterranean Sea, specifically in the Alboran, Tyrrhenian, Adriatic, and Levantine
basins. Profiles from the years 2019 and 2020 were reconstructed, and several statis-
tical error indicators — including mean bias, standard deviation error and unbiased
root mean square error — were utilized to evaluate the quality of the reconstruc-
tions. The algorithms yielded consistent results across these four locations, revealing
that reconstructions utilizing monthly correlation factors, evaluated against averages
from the corresponding period, yielded the most accurate representations of temper-
ature and salinity structures. However, the reconstruction of surface temperature
presented a unique challenge; due to the increased variability of this layer, employing
a daily variable extrapolation method enhanced the reconstruction quality. More-
over the tri-variate EOFs reconstruction, which integrates the effects of temperature
and salinity on sea level, exhibited the best performance. This is consistent with the
principle that sea level is influenced by both variables, as it is fundamentally linked
to the integral of density and the combined temperature and salinity effects in the
equation of state for density.
The algorithms utilizing correlation factors from the months of 2019-2020 have been
employed to analyze two specific case studies of eddies: an anticyclonic eddy located
in the Balearic Sea and a cyclonic eddy situated near Cyprus. This analysis aims to
evaluate the effectiveness of the different algorithms in reconstructing the vertical
structure of these eddies on a selected date. For the anticyclonic eddy, the algorithms
are expected to demonstrate a downward deflection of temperature and salinity
isolines, whereas for the cyclonic eddy, an upward deflection is anticipated. All
reconstructions effectively represent this structural characteristics, although there
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is a tendency to underestimate the slope of the isohalines and isotherms. The tri-
variate EOFs reconstruction for temperature stands out as the best method, the one
that effectively represents the upsloping and downsloping of isotherms. Conversely,
the salinity reconstruction presents a notable exception, as the performances of
Ezer and Mellor’s and bi-variate EOFs reconstructions tend to outperform that
of the tri-variate EOFs. This may be due to the relatively weaker correlation of
salinity with sea level compared to temperature; thus, the addition of temperature
may overshadow some of the variance, leading to reduced correlation factors between
salinity and sea level, which adversely affects the reconstruction. Another limitation
could be deriving from the limited number of trivariate EOFs used (only 25) which
do not allow to reconstruct the high frequency structure of the salinity, especially
in the Levantine basin.
Finally, the profiles of temperature and salinity have been reconstructed using sea
level anomaly L4 satellite data. This approach was used in the past to extrapolate
the temperature and salinity structure of the world ocean using only information
from data [48] and here we did it using the extrapolation methods from reanalysis.
In general, L4 satellite data changes the reconstruction with respect to the reanalysis
but it is consistent.
The results of this investigation underscore the importance of employing a tri-variate
EOFs reconstruction techniques that simultaneously considers both variables and
their covariance with the sea level for effectively reconstructing the ocean’s thermo-
haline structure from sea level. Furthermore, capturing the variability and changes
within a specific period of interest yields superior results compared to employing an
extended time series. This advantage arises because the algorithms used are based
on straightforward statistical analyses that do not discern patterns from the time
series data. Consequently, a more temporally focused dataset allows for a more ac-
curate representation of temperature and salinity characteristics. In the future, the
use of Artificial Neural Networks (ANNs), which are capable of fully harnessing the
pattern information embedded in time series and can also accommodate nonlinear
variability [81] should be tried. The incorporation of ANNs could lead to significant
advancements in the inference of subsurface structures from satellite observations,
helping to refine the error covariance matrix for the data assimilation algorithm used
in reanalyses.
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