
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

School of Engineering
Master Degree in Artificial Intelligence

READABILITY ASSESSMENT FOR TEXT SIMPLIFICATION

Thesis in
Machine Learning

Supervisor
Chiar.mo Prof.Ing. Claudio Sartori

Co-supervisor
Mrs Anna Elisabetta Ziri

Candidate
Reza Shatery

Second Session
Academic Year 2024

Keywords

Text Simplification

Readability Assessment

Text processing

Feature extraction
Simplification evaluation

dedica

1) Introduction

Text simplification involves altering a text to make it easier to read or under-
stand without changing its original meaning. The objective is to create content
that is more accessible for specific users or systems. Initial studies, such as
those by Chandrasekar et al. (1996)[1], focused on enhancing parsing efficiency
by breaking down lengthy sentences into shorter ones. In the field of Natural
Language Processing (NLP) and computational linguistics, the simplification
of sentences is an essential task aimed at converting complex sentences into
simpler, more comprehensible forms without altering their original meaning.
This process is critical for enhancing the accessibility and readability of text for
diverse audiences, including children, language learners, and individuals with
cognitive impairments.

Complex sentences, characterized by their intricate structures, multiple
clauses, and frequent use of subordinate clauses, can often obscure the primary
message, making comprehension challenging. Simplification addresses these
challenges by breaking down complex sentences into simpler, more manageable
components. Simplified sentences are easier to read and understand, which
is crucial for audiences with varying levels of language proficiency. Clearer
and less ambiguous sentences allow NLP systems to extract information more
accurately. Simple sentences provide better input for machine translation
and summarization systems, leading to more effective and accurate outputs.
Additionally, simplified text is more accessible to individuals with cognitive
disabilities or reading difficulties, promoting.

To achieve effective sentence simplification, it is necessary to identify and
extract various linguistic features. These features aid in understanding the
structure and content of sentences, thereby enabling accurate and meaning-
ful simplification. Key linguistic features include syntactic structure, which
involves the analysis of the grammatical structure to identify main and subor-
dinate clauses, conjunctions, and dependencies. Lexical complexity assesses the
difficulty of vocabulary, including the identification of rare or complex words
that can be replaced with simpler alternatives. Sentence length is measured,
as longer sentences often require splitting into shorter ones. Clause analysis
involves the identification and differentiation of independent and dependent

7

8 Introduction

clauses to simplify or separate them appropriately. Understanding the semantic
roles of different words and phrases within a sentence helps maintain meaning
while simplifying the structure. By leveraging these linguistic features, NLP
systems can transform complex sentences into simpler ones while preserving
essential information and meaning. This process not only benefits end-users
by improving text accessibility and comprehensibility but also enhances the
efficiency and accuracy of various NLP applications.

this is the general workflow of this research.

• Introduction

– Review of existing research and methodologies in Natural Language
Processing (NLP) and text simplification.

– Introduction to readability assessment and the need for simplified
text for diverse audiences.

– Key objectives and motivations for the study.

• Data Preparation Techniques

– Word Segmentation & Tokenization: Preparation of datasets
by breaking text into tokens.

– Normalization of Words & Lemmatization: Reduction of words
to their base forms.

– Parsing & Syntactic Dependencies: Extraction of structural
relationships between words in a sentence.

– Libraries Used for Implementation: Tools like SpaCy and
TreeTagger for linguistic feature extraction.

• Feature Exploration

– Types of Features: Lexical, syntactic, morphological, and semantic
features used to distinguish between simple and complex sentences.

– Feature Extraction for Readability: How these features help
assess sentence complexity and readability.

– Feature Selection Methods: Use of techniques like Recursive
Feature Elimination (RFE) for selecting the most relevant features.

• Datasets

– English Dataset: Usage of crowdsourced datasets for sentence
complexity evaluation in English.

Introduction 9

– Italian Dataset: Adaptation of the features and classifiers to test
their effectiveness in another language.

– New Dataset Using GPT-4o: Creation and evaluation of a new
dataset using GPT-4o to classify simple and complex sentences.

• Feature Selection and Implementation

– Recursive Feature Elimination (RFE): Use of RFE for selecting
the best features in combination with classifiers.

– Biserial Correlation Coefficient: Evaluation of feature relevance
using statistical measures like the biserial correlation coefficient.

– Model Training and Cross-Validation: Training models using
cross-validation techniques to optimize accuracy and performance.

• Conclusion and Future Work

– Summarizes the results and effectiveness of models, feature selection
techniques, and performance across different datasets.

– Highlights the key takeaways of the research, emphasizing contribu-
tions to sentence classification tasks.

– Suggests potential expansions of the research, including applying
the models to other languages and datasets, investigating advanced
techniques, and implementing real-time classification systems.

2) Data Preparation techniques

A common practice in NLP is text normalization: a set of steps to transform
a text into its canonical form [Jurafsky and Martin][2].

2.1 Word segmentation: tokenization

A first step is tokenization: the segmentation of the elements that make up
the text into different tokens. For example, the sentence "The sun rises, the
day begins." is divided into the tokens "The," " sun," "rises," "," and so on.
Usually words are divided by spaces or punctuation, but it is not always enough
to consider these delimiters for division: for example, the word "rock’n’roll,"
as well as "New York," should be considered one token, while "the element"
should be divided into two.

2.2 Normalization of words: lemmatization

Another important step is that of lemmatization, or the reduction of words
(or rather, tokens) to their basic form: the lemma. A token can, in fact, appear
in morphologically different forms. For example, the verb "to be" can be
written in a variety of forms, such as "was," "is," "was," "will be," and so
on, while being traced back to a single entry in the dictionary. Interestingly,
the number of distinct lemmas in a text is much smaller than the number of
tokens and is governed by Heaps’ empirical law: |V| = kNB where |V| is the
number of distinct lemmas, N the number of tokens in a text and k and B two
language-dependent parameters [Heaps 1978][3] (for English k € [10, 100], B
€ [0.4, 0.6]). Reducing all tokens to their lemma reduces the total number of
tokens, simplifying subsequent analysis. Lemmatization is a complex process,
as it requires disambiguating the word: for example, distinguishing whether
it is used as an adjective or noun by evaluating its context. Distinguishing
and labeling the lexical category (or tag) of the token is called part-of-speech
(POS) tagging. There are several approaches to perform this operation. The
implementation used in TreeTagger, based on decision trees, will be described.

10

Data Preparation techniques 11

2.3 Parsing: analysis of syntactic dependencies

Elements of linguistics

To discuss how a parser works and how information about syntactic de-
pendencies between words in a sentence can be derived, it is necessary to
intro-durate some elements of linguistics [Berruto and Cerruti 2011][4]. In
linguistic analysis, a sentence is defined as an information unit that contains a
proposition. A sentence is decomposable into immediate constituents, generally
labeled syn- tagms : combinations of two or more words constituting a syntactic
unit. Not all sets of words form a syntagma; to be defined as such, they must
meet certain criteria including mobility, i.e., the set of words must be considered
as a movable block within the sentence, and isolability, the ability of the set to
form an utterance on its own. There are several categories of

Figure 1: Example of the syntactic tree of the sentence

syntagms, named according to their "head": the main element of the word
set. Some examples are the nominal, verbal and adjectival syntagma.The most
frequently used method for representing sentences is syntactic trees, in which
each node consists of two branches and the leaves represent the words that
make up the sentence. For example, Figure 1 shows the syntactic tree of the
sentence "Tree structures are very easy." The sentence, represented by the
letter S, is decomposed into two syntagms: a noun phrase (NP), consisting of a
name. (Tree) and a noun (N) and a verbal phrase (VP) consisting of the verb
(V) "are" and the Adjective phrase consist of degree (very) and adjective (easy).

2.4 Formal grammar and parsing
For dependency analysis (parsing) there are three main approaches: the
transition-based approach, in which the syntactic tree is built incrementally,

12 Data Preparation techniques

first defined in [5], the graph-based approach, which treats the tree as a global
optimization problem[6], and the probabilistic approach. SpaCy, the library
used in this study that will be discussed later, implements parsing with a par-
ticular implementation [?] of the transition-based approach. In order to discuss
how the original approach works, it is necessary to intro-durate the concept
of formal grammar, particularly context-free grammar. A formal grammar is
defined as an abstract structure that describes a language by means of a set of
precise rules. In[7] Noam Chomsky forma- lized a set of 4 formal grammars,
organized in a hierarchical structure, described by a set of rules and productions
that govern how each constituent of a sentence can be transformed. Among
them, the context-free grammar can be used to model the structure of the
constituents of a natural language. Formally, a context-free grammar is defined
by quadruple of parameters (VN,VT,P,F) in which:

VN: set of non-terminal symbols
VT: set of terminal symbols (disjoint from VN)
P: set of production rules:

each in the form A → B
in which A is nonterminal
B is a string of symbols from the set VT ∪ VN

F: the initial and member symbol of VN

The language produced by the formal grammar is generated by following the
productions of the set P, so from one symbol another symbol can be derived by
applying the production rule. Returning to the transition-based parser, this
takes its origin from the Shift-Reduce parsing technique originally developed to
parse programming languages [8]. This type of parser consists of three elements:
a stack in which the tree is built, a buffer containing the tokens to be processed,
and the parser that parses them. Parsing is done by a prediction made by
another component of the parser: the oracle. Scrolling through the buffer, the
parser parses the sentence from left to right token by token, consulting the
oracle to know which operation to perform. Looking at the two elements at the
top of the stack and the token in the buffer, the oracle can decide to reduce the
stack by removing one element (Reduce) or to remove the token from the buffer
to insert it into the stack (Shift). The parser analysis thus operates bottom-up,
starting with the individual tokens in the

Data Preparation techniques 13

Figure 2: Diagram of the parser

sentence to be analyzed and tries to reduce it to the initial symbol F.
Specifically, the set of possible operations is: LeftArc: assigning a relationship
between the token at the top of the stack and the next token on the stack and
removing it from the stack (Reduce) RightArc: assigning a relationship between
the second token from the top of the stack and the first one and removing the
latter from the stack (Reduce) Shift: token removal from buffer and insertion
at top of stack. This set of operations, defined in[5], is called arc-standard.
Variations of it have been proposed over the years to improve its operation, for
example, the arc-eager approach modifies the LeftArc and RightArc operations,
causing them to assign relationships between the top of the stack and the token
in the buffer, rather than between the two elements at the top of the stack.

In addition, the RightArc operation moves the token from the buffer to the
stack instead of removing the top of the stack, and a new action (Reduce) is
added to the assembly that allows the removal of the top of the stack. This
variation provides greater flexibility in the assignment of dependencies, allowing
a reduction in error. To select the right operation, the oracle follows the rules of
the considered grammar, assigning a relation when it encounters a production
rule of the set P. The parser, starting from a stack containing only the start
symbol F and the first token, proceeds to parse the entire buffer, forming
the dependency tree in the stack. Having to produce a syntactic tree, the
assignment of a relation can be parameterized by a label that determines its
syntactic relation.

The creation of the oracle for natural language parsing is generally done by
machine learning methods. There are a variety of implementations of these,
based on manual feature extraction, using, for example, SVM classifiers [9], or
neural classifiers [10] The parser implemented in the spaCy library[11], which
was used for analysis in this study, combines the ideas of two previous works
achieving an improvement in performance. The first work is [9], in which the
Unshift operation is added to the parser, which allows the token to be moved

14 Data Preparation techniques

to the top of the stack in the buffer if the latter is empty and the token does
not have a relationship as a "head" with respect to another token. The second
is [12] in which an approach is proposed that overcomes some limitations of
the arc-eager approach.

2.5 Libraries used for implementation

spaCy

SpaCy is an open-source library equipped with several high-level NLP features,
including Named-Entity Recognition (NER), part-of-speech (POS) labelling,
syntactic dependency analysis, text segmentation (tokenization), and lemma-
tization. These operations are carried out through a pipeline that allows a
series of processing steps to be performed in sequence, each adding a layer
of annotation to the input document. One of the most distinctive aspects
of spaCy is its object-oriented data model: each input text is processed by
the tokenizer creating the Doc object, which is subsequently processed by the
pipeline, which processes its features. The library supports many languages with
ad-hoc pipelines. For the english language, 3 different pipelines are available,
distinguished by their dimention and the processing carried out.

Figure 3: the pipline of spacy

the pipeline consists of 6 different components:

• Tok2Vec: the tokenizer.

• Morphologizer: predicts morphological features of the token, such as
whether it is in the plural or singular form, gender, verbal mode etc.

• Tagger: assigns a tag to each token, based on its category, distinguishing
adjectives, verbs, pronouns, nouns and other lexical categories.

• Parser: parses the syntactic dependencies of the text, making syntactic
tree navigation available.

• Lemmatizer: assigns each token its basic form using rules based on its
tag.

Data Preparation techniques 15

• Named-Entity Recognition (NER): a component capable of identifying
tokens that correspond to predefined categories, such as personal names,
places, organization names, dates and times, allowing detailed classifica-
tion.

2.6 Implementation choices

An additional feature of spaCy is the ability to customize the pipeline, al-
lowing custom components to be inserted and existing ones modified. That this
possibility was used to replace the default Lemmatizer with TreeTagger, shown
below, which demonstrates excellent results in lemmatization. In addition, a
component was added at the beginning of the pipeline to better partition the
input text. Reading text from documents, in fact, it is usual to find bulleted
lists and sentences without a period (e.g., titles) that are difficult to interpret.
correctly as different sentences from spaCy. The added component takes care
of facilitating sentence segmentation by inserting punctuation. In addition, it
was chosen to discard all sentences for which at least one proposition (or clause)
is not identified, attempt to ignore headings and notes within the document.
In this way, sentences that are too simple-nominal-are not considered as actual
parts of the text, thus excluding them from the calculation of other readability
indices, allowing a more concrete analysis of the document.

2.7 TreeTagger

TreeTagger is a tool developed by Helmut Schmid, University of Stuttgart,
for POS and text lemmatization for many languages. Presented in [13] and
[14], it introduces a method of tagging parts of speech using decision trees,
improving on results obtained by previous probabilistic algorithms. Previous
to the study, in fact, n-grams were used to determinate the lexical category of
the word through a probabilistic calculation [15], [16], called n-gram Taggers.
TreeTagger, as well as the n-gram Taggers, models the lexical category (or tag)
of the word using the Markov Model, whereby the tag of the current word is
determined based on the tags of the words that precede it. Using a bigram the
previous tag is observed, with a trigram up to two previous tags, and so on.
For example, using a trigram.

p(ww12 . . . wn, t t12 . . . tn) := p(tn | t tn−2n−1)p(wn | tn)p(ww12 . . . wn−1, t t12 . . . tn−1)

Where w are the words and t corresponding tags. The term p(wi | ti) denotes
the probability of the word wi given the tag ti, while p(ti | ti−2 ti−1). denotes
the probability that the tag ti will occur after the previous two tags ti−2 ti−1.

16 Data Preparation techniques

In n-gram taggers, the probability of the tag is estimated by observations
(Maximum likelihood estimation).

p(t | tnn−2n−1) =
F (tn−2tn−1tn)

F (tn−2tn−1)

Where F (tn−2tn−1tn) and F (tn−2tn−1) are respectively the number of occur-
rences of the trigram tn−2tn−1. tn and the bigram tn−2tn−1. in the corpus. In
words, an attempt is made to determine the probability of a certain tag given
the previous tags by observing how many times the occurrence of those tags is
followed by the tag in question. However, this type of approach is problematic
in analyzing uncommon trigrams, having a low number of observations. It
also requires a very large corpus to determine reliable probability estimates for
each n-gram. Tree Tagger, on the other hand, determines the word tag using
binary decision trees. The probability of a trigram is calculated by following
the path from the root of the tree to a leaf, where at each node of the tree
the path is divided by the value of a previous tag and the final leaf contains
the probability of the last tag. The problem of defining the tag of a word is
seen as a classification problem, in which the previous tags are the features.
The number of tags taken into consideration can be decided when constructing
the decision tree, and an increase in them improves performance, however,
requiring a larger corpus. The advantage of TreeTagger’s approach is to achieve
high accuracy (ca. 97%) without requiring very large corpus.

2.8 Analysis of extracted information

Using the tools discussed, the case study of the project, was analysed in
order to analyse their text features and how they were related to each other.
Characteristics extracted from the text are:

• Sentence length: number of words contained.

• Average word length: number of characters related to the number of
words.

• Percentage of Uncommon Words (Out of Vocabulary (OOV): calculated
as the percentage of words (reduced to lemma) not belonging to the
vocabulary, not calculating words recognized as entity names by the NER
component.

• Percentage of subordinates: number of subordinates per main, per sen-
tence.

Data Preparation techniques 17

• Syntactic tree depth: calculated as the maximum depth of the syntactic
tree. Length of dependency relations: average length of dependencies in
the syntactic tree.

3) Feature exploration

3.1 Types of Features

In previous study for Italian language, they used 7 features for check whether
a sentence is simple or complex.the features are: Characters, Average length of
dependencies, words not in the dictionary, max of depth tree, tokens, subordi-
nate. With this features for English language, the accuracy for SVM classifier
was: 84% and f1-score is 76. The previous study just used 7 Features and to
have better accuracy more features are needed , so in this project more features
are extracted for English Language.

Traditional Features: Traditional Features refer to straightforward computa-
tions of the surface-level properties of a text. The evaluated metrics include
the text’s sentence count, the average and maximum words per sentence, the
average characters per word, and the average syllables per word. Additionally,
two widely-used readability formulas are incorporated: the Flesch-Kincaid score
[17] and the Coleman-Liau readability index [18].

206.835− 1.015

(
total words

total sentences

)
− 84.6

(
total syllables
total words

)
But Flesch-Kincaid score should not be the only metric for the readability
assessment[19], because this score only care about the number of words and
syllables. based on [20] there are categories for features that are more im-
portant. These features collectively cover a broad range of linguistic aspects,
including lexical richness, syntactic structure, morphological complexity, and
readability, which are crucial for determining sentence complexity. Here’s why
these features are useful:

• Lexical Features: are characteristics or properties of words used in
natural language processing (NLP) to analyze and understand text. These
features capture various aspects of words, such as their identity, form,
function, meaning, and usage patterns.

18

Feature exploration 19

• Syntactic Features: are characteristics or properties of the structure
and arrangement of words within sentences used in natural language
processing (NLP) to analyze and understand text. These features capture
various aspects of syntax, such as the grammatical relationships between
words, sentence structure, and the roles that words play within sentences.

• Morphological Features: are characteristics related to the form and
structure of words in natural language processing (NLP). These features
capture aspects of word formation and modification, such as inflection,
derivation, and composition.

• Semantic Features: are characteristics related to the meaning of words
and phrases in natural language processing (NLP). These features capture
various aspects of semantics, including the relationships between words,
their meanings, and their contextual usage.

For the English language, 23 features are selected based on their significance.
Since each feature has an index and there is no established criterion to determine
which feature is superior, the features are initially implemented specifically for
the English language.

3.2 features for assessing simple and complex sentences

• Average syllables: Average number of syllables per word for each
sentence entry in the dataset.

• Incidence of relative clauses: The "incidence of relative clauses" refers
to the frequency or occurrence of relative clauses in a body of text or
language. Relative clauses are subordinate clauses that modify a noun
phrase and provide additional information about it. They typically begin
with relative pronouns such as "who," "which," "that," or "whom." For
example, in the sentence "The book that I bought is on the table," the
relative clause "that I bought" modifies the noun "book" and provides
information about which book is being referred to[21].

• Incidence of apposition: The "incidence of apposition" refers to the
frequency or occurrence of apposition structures in a body of text or
language. Apposition is a grammatical construction in which two elements,
typically noun phrases, are placed next to each other, with one element
providing additional information or clarification about the other. For

20 Feature exploration

example, in the phrase "my friend John," the noun phrase "my friend"
is in apposition to the noun "John," providing additional information
about who John is. The incidence of apposition can vary depending
on factors such as the style of writing, the complexity of the language,
and the specific context in which the language is used. Analysing the
incidence of apposition structures can provide insights into the structure
and complexity of a language or text, as well as the writer’s stylistic
choices.[22].

• The number of arity of verbal predicates: The arity of verbal
predicates refers to the number of arguments or participants that a verb
takes in a sentence. It describes the number of noun phrases or other
syntactic elements that are required or allowed to accompany the verb to
form a grammatically complete sentence[23].

• Number of negative causal connectives: The "Number of negative
causal connectives" refers to the count of negative causal conjunctions
or connectives in each text or context. Negative causal connectives are
words or phrases that are used to express a causal relationship between
two clauses or ideas, but with a negative implication or outcome. They
typically indicate that one event or situation causes or results in another
event or situation, but with a negative consequence or effect. Examples
of negative causal connectives include: Because of + negative outcome,
Due to + negative outcome, As a result of + negative outcome, Owing
to + negative outcome[24].

• Number of positive additive connectives: The "Number of positive
additive connectives" refers to the count of positive additive conjunctions
or connectives in each text or context. Positive additive connectives are
words or phrases that are used to add similar or related information,
typically indicating addition, inclusion, or amplification of a preceding
idea or clause. Examples of positive additive connectives include: "and",
"also", "as well as", "furthermore"[24].

• Embedded complement ‘chains’: Embedded complement "chains"
refer to a syntactic structure in which a verb takes an embedded com-
plement clause, and within that complement clause, there are additional
embedded complement clauses. This creates a hierarchical or nested
structure of complement clauses within one another. For example:
She said [that [he knew [that [they were coming]]]]."[25]

• Length of the verbal root: In readability assessment, the "Verbal
Root" refers to the main verb or the root verb of a sentence. Identifying

Feature exploration 21

the verbal root is important as it often provides key information about the
action or main idea expressed in the sentence. In many cases, readability
formulas or assessments use features related to the verbal root to evaluate
the complexity of a sentence. For example, the length or complexity of
the verbal root, the presence of auxiliary verbs, or the syntactic structure
around the verbal root may all contribute to determining the readability
or complexity of a sentence.[26]

• Main verb – inf. mood: "Main verb – inf. mood" refers to the main
verb in a sentence that is in the infinitive mood. The infinitive mood is a
verb form that expresses an action or state without indicating the subject
or tense. In English, infinitive verbs are typically preceded by the word
"to". For example:
"I want to go to the store." (The main verb "want" is in the indicative
mood, and the infinitive verb "to go" is the main verb in the infinitive
mood.) "She decided to study abroad." (The main verb "decided" is in
the indicative mood, and the infinitive verb "to study" is the main verb
in the infinitive mood.) Identifying main verbs in the infinitive mood can
be important for understanding the structure and meaning of sentences,
as infinitive verbs often serve as the main actions or intentions expressed
by the subject.[27]

• Number of nouns: The number of nouns in each sentence of a dataset.

• Aux.verb – indic.mood: Refers to an auxiliary verb that is in the
indicative mood. Let’s break down the components: Auxiliary Verb (Aux.
verb): An auxiliary verb, also known as a helping verb, is a verb that
accompanies the main verb in a clause to convey grammatical information
such as tense, aspect, mood, and voice. Examples of auxiliary verbs in
English include "be," "have," and "do." Indicative Mood (indic. mood):
The indicative mood is a verb form used to make factual statements or ask
questions about real or apparent states of affairs. It is the most common
mood in English and is used to express certainty or reality. When a
verb is in the indicative mood, it indicates that the speaker is making a
statement or asking a question about something that is believed to be
true or is happening in reality. Putting them together, "Aux. verb – indic.
mood" refers to an auxiliary verb that is functioning in the indicative
mood, indicating that it is being used to convey factual information or
statements about real or apparent states of affairs in a clause[28].

22 Feature exploration

• Modal verb – indic.mood: Refers to a modal verb that is used in
the indicative mood. Modal Verb: Modal verbs are a type of auxiliary
verb that express modality, indicating possibility, necessity, permission,
ability, or obligation. Examples of modal verbs in English include "can,"
"could," "may," "might," "must," "shall," "should," "will," and "would."
Indicative Mood: The indicative mood is a verb form used to make factual
statements or ask questions about real or apparent states of affairs. It
is the most common mood in English and is used to express certainty
or reality. When a verb is in the indicative mood, it indicates that the
speaker is making a statement or asking a question about something
that is believed to be true or is happening in reality. When combined,
"Modal verb – indic. mood" refers to a modal verb that is functioning in
the indicative mood, indicating that it is being used to convey factual
information or statements about real or apparent states of affairs in a
clause. Modal verbs in the indicative mood often express possibilities,
permissions, or likelihoods in a straightforward manner.[28]

• Number of Modifier: A "modifier" is a grammatical term used to
describe a word or phrase that provides additional information about an-
other word in a sentence. Modifiers can be adjectives, adverbs, phrases, or
clauses that add details, descriptions, or qualifications to nouns, pronouns,
verbs, or other modifiers.In the context of natural language processing
(NLP) and linguistic analysis, a "modifier" refers to any word or phrase
that serves to modify or describe another element in the sentence. For
example:
In the phrase "the tall tree," the word "tall" is a modifier that pro-
vides additional information about the noun "tree." In the sentence "She
quickly ran to the store," the adverb "quickly" is a modifier that describes
how the action of running was performed. In the phrase "the book on
the table," the prepositional phrase "on the table" modifies the noun
"book" by indicating its location. Modifiers play a crucial role in convey-
ing meaning, clarifying relationships, and adding depth to language. In
linguistic analysis, identifying and understanding modifiers can help in
parsing sentences, analyzing syntactic structures, and extracting semantic
information from text data.[29]

Feature exploration 23

• Subordinate: In linguistics, particularly in syntax, "subordinate" refers
to a clause or phrase that depends on another clause (typically called
the main clause) to form a complete sentence. Subordinate elements add
additional information to the main clause and are not complete sentences
on their own. They are also known as dependent clauses or phrases[30].

• Principals: "Principals" in the context of grammar and syntax refer
to the main or central elements of a sentence, including main clauses
(independent clauses), subjects, predicates, and key parts of speech.

• Coordinates: Coordinated elements in sentences are often linked to-
gether by coordinating conjunctions, which include words such as "and",
"but", "or", "nor", "for", "yet", and "so". These conjunctions serve to
connect elements of equal grammatical importance, allowing for smoother
flow and clearer expression of ideas[30].

• Length of tree: can be understood as the maximum depth of the parse
tree. It measures the longest path from the root of the tree to any leaf
(a word that does not govern any other word). This measure gives an
indication of the complexity of the sentence’s syntactic structure.

• Max of tree depth

• Number of words

• Number of characters

• Number of tokens

• Number of invocabularies: Using 10000 common words in English.

• Number of out of vocabularies: The words that are not in the 10000
common words in English.

These features collectively cover a broad range of linguistic aspects, in-
cluding lexical richness, syntactic structure, morphological complexity, and
readability, which are crucial for determining sentence complexity.

• Lexical Features: These features are lexical: (words, characters, tokens,
inv-words, oov-words, Average-Syllables) help measure the overall size
and lexical complexity of the sentence[31].

24 Feature exploration

• Syntactic Features: (Tree-length, tree-max-depth, coordinates, relative-
clause-count, subordinate-count, embedded-complement-chains) capture
the complexity of the sentence structure[31].

• Morphological Features: (Principals, aux-indic-count, modal-indic-
count, infinitive-verb-count, noun-count, modifier-count) help in under-
standing the variety and forms of words used in the sentence[31].

• Semantic Features: (Apposition-count, verb-arities-count, num-negative-
causal-connectives, num-positive-additive-connectives) help in understand-
ing the meaning and logical structure of the sentence[31].

Using these features, can build a comprehensive model to classify sentences
as simple or complex. consider using feature selection techniques to determine
which features are the most impactful for the specific classification task.

4) Datasets

4.1 English Dataset

In this project the dataset that is used is from Italian Natural Language
Processing Lab. This corpus contains 1,200 English sentences rated by humans
with a judgment of complexity. Judgments were collected through a crowd
sourcing task in which 20 native speakers of each language were asked to judge
how difficult they perceived a given sentence on a complexity scale from 1
(i.e. “very easy”) to 7 (i.e. “very difficult”). The datasets of sentences used
for the task were taken from two different manually revised treebanks: the
automatically converted Wall Street Journal section of the Penn Treebank for
the English experiment[32].

Figure 4: Vote median distribution.

25

26 Datasets

Figure 5: Vote median chart based on score.

Median Scores: The median Flesch reading scores tend to decrease as the
median votes increase from 1.0 to 6.0. This suggests that passages associated
with higher median votes are generally harder to read.

Distribution Range: The range of Flesch reading scores is quite broad for
most vote categories, indicating variability in readability within each vote
category.

Outliers: There are a few outliers, particularly for lower vote categories,
suggesting some passages are much harder to read compared to the majority.

It was chosen to use the median of the twenty ratings as the reference value
for the sentence to decrease the influence of possible outliers. Figure TOP
shows the distribution of ratings of the contained sentences and a comparison
with Flesch reading scores. It is possible to observe that there is a relationship
between Flesch reading scores and the votes cast; lower votes, in fact, corre-
spond to a higher Flesch reading scores. In order to be able to create the two
distinct corpora for simple and complex sentences, the dataset was divided by
choosing the threshold of 3: sentences with a higher complexity rating were
considered complex, below simple. This division results in an imbalance in
the dataset, with 939 simple and 260 complex sentences, for a total of 1200
sentences. Sentences missing from the initial dataset were discarded because
they were being split into multiple sentences in the spaCy analysis, introducing
erroneous data.

4.2 Feature Observation for English dataset

Datasets 27

Figure 6: Histogram of tokens

Simple Sentences (Blue): The distribution for simple sentences shows a
significant presence of sentences with around 10 tokens, with the count decreas-
ing as the number of tokens increases. This indicates that simple sentences
generally have fewer tokens. Complex Sentences (Red): The distribution for
complex sentences is more spread out and peaks around 25-30 tokens, suggesting
that complex sentences generally have more tokens. The number of tokens
is a significant distinguishing feature between simple and complex sentences.
Simple sentences tend to have fewer tokens, while complex sentences tend to
have more.

28 Datasets

Figure 7: Histogram of length of tree

Simple Trees (Blue): The distribution of simple trees is skewed towards
shorter lengths, with most tree lengths falling between 10 and 50 units. The
peak is around 20-30 units. Complex Trees (Red): The distribution of complex
trees is more spread out with two peaks. One peak is around 20-30 units, similar
to simple trees, and another significant peak around 70-80 units. This indicates
that complex trees tend to be longer. The length of trees is a distinguishing
feature between simple and complex trees. Generally, simple trees tend to be
shorter, while complex trees tend to be longer.

Datasets 29

Figure 8: Histogram of modifiers

Simple Sentences (Blue): The distribution of modifier counts in simple
sentences is left-skewed, with most simple sentences having between 1 and 4
modifiers. The peak is around 2-3 modifiers. Complex Sentences (Red): The
distribution of modifier counts in complex sentences is more spread out and
centered around 5-6 modifiers. This indicates that complex sentences tend
to have more modifiers than simple sentences. The number of modifiers is a
distinguishing feature between simple and complex sentences. Generally, simple
sentences tend to have fewer modifiers, while complex sentences tend to have
more.

30 Datasets

Figure 9: Histogram of additive connective

Simple Sentences (Blue): The distribution of the number of positive additive
connectives in simple sentences is highly skewed towards zero, with most simple
sentences having no positive additive connectives. There is also a smaller peak
at 1. Complex Sentences (Red): The distribution of complex sentences is more
spread out but also shows a concentration at zero. However, complex sentences
have a higher frequency of having one or more positive additive connectives
compared to simple sentences. The number of positive additive connectives
is a distinguishing feature between simple and complex sentences. Generally,
simple sentences tend to have no or very few positive additive connectives,
while complex sentences are more likely to have one or more.

4.3 Italian Dataset
The dataset that is used is from Italian Natural Language Processing Lab.

This corpus contains 1123 Italian sentences rated by humans with a judgment
of complexity. Judgments were collected through a crowd sourcing task in

Datasets 31

which 20 native speakers of each language were asked to judge how difficult
they perceived a given sentence on a complexity scale from 1 (i.e. “very easy”)
to 7 (i.e. “very difficult”). The datasets of sentences used for the task were
taken from a different manually revised treebanks: the newspaper section of the
Italian Universal Dependency Treebank (IUDT) for the Italian experiment[32].

4.4 Feature Observatoion for Italian dataset

Figure 10: Histogram for tokens

Simple (Blue): The distribution of tokens for the Simple category is skewed
towards the left, with most token counts concentrated between 5 and 20. The
peak is around 10-15 tokens. Complex (Red): The distribution for the Complex
category is more spread out, with a broader peak around 20-25 tokens. This
indicates that the token counts for Complex tend to be higher than those for
Simple. the result for SVM classifier with the 11 features that are extracted
from the first dataset, is shown in the below table. The number of tokens is a
distinguishing feature between Simple and Complex categories. Generally, the
Simple category tends to have fewer tokens, while the Complex category tends
to have more tokens.

32 Datasets

Figure 11: Histogram for tree length

Simple (Blue): The distribution of tree lengths for the Simple category is
skewed towards the left, with most tree lengths concentrated between 0 and 50.
The peak is around 10-20. Complex (Red): The distribution for the Complex
category is more spread out, with a broader peak around 50-70. This indicates
that the tree lengths for Complex tend to be longer than those for Simple. The
tree length is a distinguishing feature between Simple and Complex categories.
Generally, the Simple category tends to have shorter tree lengths, while the
Complex category tends to have longer tree lengths.

Datasets 33

Figure 12: Histogram for additives

Simple (Blue): The distribution of the number of positive additive connec-
tives in the Simple category is heavily skewed towards 0, with the majority of
instances having no positive additive connectives. There is a smaller peak at 1
and very few instances with higher counts. Complex (Red): The distribution for
the Complex category is more evenly spread out but still has a significant peak
at 0. The peak at 1 is more pronounced compared to the Simple category, and
there are more instances with higher counts (up to 2 and beyond).The number
of positive additive connectives is a distinguishing feature between Simple and
Complex categories. Simple sentences predominantly have no positive additive
connectives, whereas Complex sentences are more likely to have at least one.

34 Datasets

Figure 13: Histogram for modifiers

Simple (Blue): The distribution of the number of positive additive connec-
tives in the Simple category is heavily skewed towards 0, with the majority of
instances having no positive additive connectives. There is a smaller peak at 1
and very few instances with higher counts. Complex (Red): The distribution for
the Complex category is more evenly spread out but still has a significant peak
at 0. The peak at 1 is more pronounced compared to the Simple category, and
there are more instances with higher counts (up to 2 and beyond).The number
of positive additive connectives is a distinguishing feature between Simple and
Complex categories. Simple sentences predominantly have no positive addi-
tive connectives, whereas Complex sentences are more likely to have at least one.

4.5 English Dataset using GPT4o
Having only one dataset, as mentioned earlier for the English dataset, is

insufficient. Since the results of this research will be used for business purposes,
a new dataset is required because the English dataset should be used only for
scientific research. Initially, random sentences were extracted from multiple
sources, including Wikipedia sentences [33], Wiki sentences [34], Webiss sen-

Datasets 35

tences [35], financial dataset sentences [36], and HuggingFace dataset sentences
[37]. A total of 2,346 sentences were randomly selected from these datasets.
Subsequently, GPT can be utilized to classify this new dataset into simple and
complex sentences using prompt engineering.

4.6 Prompt engineering

The datset that is created with random sentences , GPT-4 will be used to
classify sentences based on their simplicity or complexity. The key to achieving
accurate classifications lies in an effective prompt. The way questions are
framed and the structure of the prompt significantly impact GPT-4’s ability
to differentiate between simple and complex sentences. Therefore, designing
the right prompts is essential to ensure that the model generates correct and
reliable classifications.
This is the 6 ChatGPT prompt engineering principles from OpenAI that are
used for prompting[38]:

• Clear Instructions: Providing clear and precise instructions in prompts
is crucial for obtaining accurate and relevant responses from AI models.
Ambiguity can lead to confusion and less useful outputs. To deal effective
prompts, specify the task or question directly and unambiguously. Avoid
using vague language and make sure to include all necessary details for
the AI to understand the context and requirements.

• Use Reference Texts: Incorporating reference texts or examples into
prompts can greatly enhance the quality of the AI’s response. Reference
texts provide context and set a clear standard for the expected output.
They help the AI model to better understand the format, tone, and
content required, leading to more accurate and relevant responses.

• Simplify Complex Tasks: Breaking down complex tasks into smaller,
manageable parts can improve the AI’s performance. Complex tasks can
overwhelm the AI, leading to incomplete or inaccurate responses. By
simplifying and segmenting these tasks, you make it easier for the AI to
process and generate useful outputs step-by-step.

• Thoughtful Processing: Thoughtful processing involves structuring
prompts in a way that encourages the AI to think through the task
carefully. This can involve asking for step-by-step explanations, detailed
reasoning, or incorporating questions that prompt the AI to consider
various aspects of a topic. This approach can enhance the depth and
quality of the AI’s responses.

36 Datasets

• Use External Tools: Leveraging external tools and resources can aug-
ment the capabilities of the AI. This might involve using APIs, databases,
or other software to provide additional data, perform specific functions,
or validate information. Integrating these tools can extend the AI’s
functionality and improve the accuracy and relevance of its outputs.

• Systematic Testing: Systematic testing involves continuously evaluat-
ing and refining your prompts to optimize their performance. This process
includes experimenting with different phrasings, formats, and structures,
and analyzing the results to identify the most effective approaches. By
systematically testing and iterating on your prompts, you can significantly
enhance the quality and consistency of the AI’s responses.

Figure 14: composition of a typical prompt

4.7 Classify the Dataset with GPT4o

Before using GPT4o to classify simple and complex sentences, it is necessary
to explain to GPT4o why certain sentences are considered simple and others
complex.

4.8 Prompt for Identifying Criteria in Simple and Complex Sen-
tences

At first 30 sentences from simple sentences and 30 sentences from complex
sentences are used to train the GPT4o. these sentences are extracted randomly
form the first dataset that is used for extracting features. For each sentence
created reasons why the sentence is simple and why the sentence is complex.

Datasets 37

4.9 simple sentence samples for GPT4o

Below there are Some sample of simple sentences that are used for train-
ing GPT4o and why these sentences are simple:

• Sentence: “The agency will withdraw from the production of nine food
products, maintaining production of the two most important ones, corn
and milk.”
Reason: This sentence is straightforward for native speakers because it
follows a common structure, uses familiar vocabulary, and isn’t overly
long.

• Sentence: “The company, which is retaining most of its wine and all of
its soft-drink interests, didn’t break out results for the businesses it plans
to sell.”
Reason: It presents information in a clear and direct manner. It describes
what the company is doing, is not overly long, and has a straightforward
structure.

• Sentence: “In 1982, he started a factory in Greece.”
Reason: This sentence is straightforward for native speakers because it
presents a clear and concise piece of information.

• Sentence: “In 1986, Mr. Simmons also served on a committee of busi-
nessmen headed by William Seidman, chairman of the Federal Deposit
Insurance Corp. and the Resolution Trust Corp.”
Reason: It provides clear chronological information and straightforward
details about Mr. Simmons’ involvement. The sentence structure is
uncomplicated and not overly long.

• Sentence: “He cites IBM, which reported a 30% earnings decline in the
third quarter, and which last week announced a $1 billion buy-back of its
shares.”
Reason: It’s clear, not overly long, uses common vocabulary, and has a
straightforward structure without complex syntactic elements.

4.10 complex sentence samples for GPT4o

Below there are Some sample of complex sentences that are used for training
GPT4o and why these sentences are complex:

38 Datasets

• Sentence: “In the nine months, net rose 35% to $120.1 million, or $1.64
a share, from $89.2 million, or $1.22 a share, a year earlier.”
Reason: The sentence includes numerical data, financial terminology, a
comparative structure, and slightly convoluted syntax.

• Sentence: “The housing starts numbers, however, are one of the least
precise of the government’s economic indicators and are often revised
significantly as more information is collected.”
Reason: The sentence discusses a specialized topic (government eco-
nomic indicators), uses comparative language ("one of the least precise"),
employs complex syntax, and introduces technical terminology.

• Sentence: “Yesterday, the spokeswoman said sales of Delmed products
through the exclusive arrangement with National Medical accounted for
87% of Delmed’s 1988 sales of $21.1 million.”
Reason: The sentence contains a combination of temporal reference,
numerical data, complex syntax, and technical language.

• Sentence: “However, Delta Air Lines fell 1 1/2 to 67 1/2 and USAir
Group dropped 3/4 to 42 1/2.”
Reason: The sentence includes abbreviated numerical notation, multiple
company references, technical language, and specific numerical data.

• Sentence: “Although a substantial short position reflects heavy specula-
tion that a stock’s price will decline, some investors consider an increase
in short interest bullish because the borrowed shares eventually must be
bought back.”
Reason: The sentence uses a combination of complex sentence structure,
technical terminology, conceptual complexity, and contrasting ideas.

Below is the Prompt that is used for finiding the criteria:

Prompt: The Fascinating World of Simple & Complex Sentences.
Let’s dive into the intricacy of the English language. Your assignment is

to categorize sentences into two types - ’Simple’ and ’Complex.’ To begin
with, you will be given a training set that encompasses sentences from both
categories, along with explanations detailing why they fall into their respective
classification. Your responsibility is to thoroughly scrutinize these examples to
unearth the differentiating factors between simple and complex sentences.

Datasets 39

Afterward, you will be shared with a variety of sentences that are yet to be
classified. Leveraging the criteria extracted from the training set, you will now
have to assign these sentences into their fitting category - simple or complex.
But remember, your classification decisions must align with the guidelines
you’ve derived from the training data, and for classify new sentences you should
prioritize the criteria of simple sentences rather than complex sentences for
classify new sentences

For every decision you make, provide a rationale explaining how each
sentence meets the criteria of being simple or complex. Your explanations
should be comprehensive, crisp, and must connect directly with the parameters
you extracted initially. Great ready to decode English sentences, and remember
to communicate your findings in English.
After following paragraph, GPT4o was given the sentences as simple and
complex, along with the reasons mentioned above. Based on this input, GPT4o
provided the following criteria for distinguishing between simple and complex
sentences.

4.11 Criteria for Simple Sentences based on GPT4o:

After training GPT4o with simple and complex sentences, it provided the
following criteria for identifying simple sentences. The sentences listed un-
der each criterion serve as examples, illustrating why they are considered simple.

• Clear and Direct Information:
Presents information in a straightforward manner without requiring
additional context.
Examples:

– "In 1982, he started a factory in Greece."

– "Armstrong’s shares, also listed on the Big Board, closed at $39.125,
up 12.5 cents."

– "Of course, that isn’t really the case."

– "He cites IBM, which reported a 30% earnings decline in the third
quarter, and which last week announced a $1 billion buy-back of its
shares."

– "Revco received the offer Oct. 20, but issued a response yesterday
only after a copy of the proposal was made public by bondholders."

• Common Vocabulary:
Uses familiar and easily understood words and phrases.
Examples:

40 Datasets

– "Betty Raptopoulos, senior metals analyst at Prudential-Bache Secu-
rities in New York, agreed that most of the selling was of a technical
nature."

– "Mr. Icahn advocates the sale of the company’s steel operations,
and Mr. Corry doesn’t necessarily disagree."

– "The announcement, made after the close of trading, caught analysts
by surprise."

– "Field offices at New Orleans; Houston; Denver; Midland, Tex.;
Bakersfield, Calif.; Oklahoma City; and Liberal, Kan., will be main-
tained."

– "But investment bankers say that stock market uncertainties in the
U.S. may cause many European companies to mark time before
bidding for American companies, in the hope that share prices will
come down."

• Straightforward Structure:
Follows a basic structure (subject-verb-object) without complex subordi-
nation.
Examples:

– "The announcement, made after the close of trading, caught analysts
by surprise."

– "Betty Raptopoulos, senior metals analyst at Prudential-Bache Secu-
rities in New York, agreed that most of the selling was of a technical
nature."

– "As with many other goods, the American share of Japan’s PC
market is far below that in the rest of the world."

– "Exxon’s profitability, like that of many other oil companies, was
hurt during the third quarter by declining returns from the chemicals
and refining and marketing businesses."

– "At one point in the documentary, Mr. Sohmer, who is Jewish, says
he felt rejected by many of the Protestants and Southerners he met
at Yale."

• Not Overly Long:
Tends to be concise and not overly lengthy.
Examples:

– "Armstrong’s shares, also listed on the Big Board, closed at $39.125,
up 12.5 cents."

Datasets 41

– "Field offices at New Orleans; Houston; Denver; Midland, Tex.;
Bakersfield, Calif.; Oklahoma City; and Liberal, Kan., will be main-
tained."

– "But the Japanese Fisheries Association criticized moves to ban the
practice in international waters."

– "Elsewhere, share prices closed lower in Zurich, Amsterdam, Milan
and Stockholm."

• Logical Flow:
Presents information in a logical and sequential manner.
Examples:

– "Field offices at New Orleans; Houston; Denver; Midland, Tex.;
Bakersfield, Calif.; Oklahoma City; and Liberal, Kan., will be main-
tained."

– "As a result of the refinancing, the company said the interest on
the debt will fall to slightly more than 11% from slightly more than
14%."

– "Now he has moved to Oklahoma where costs are lower, and started
a new company, Adsi Inc., to market his machine."

– "These and other problems squeezed Federal’s profit margins last
year to 8%, down from more than 13% annually in the first half of
the decade."

• No Complex Syntactic Elements:
Does not include multiple clauses or intricate grammatical constructions.
Examples:

– "As a result of the refinancing, the company said the interest on
the debt will fall to slightly more than 11% from slightly more than
14%."

– "Betty Raptopoulos, senior metals analyst at Prudential-Bache Secu-
rities in New York, agreed that most of the selling was of a technical
nature."

– "In London, the Financial Times 100-share index finished 30.1 points
higher at 2112.2."

– "The U.S. ranks fourth of countries that have concluded joint ven-
tures, behind West Germany, Finland and Italy."

42 Datasets

– "Following the release of the company’s fourth-quarter earnings,
Apple Computer dropped 3/4 to 48 on volume of more than 2.3
million shares."

4.12 Criteria for Complex Sentences based on GPT4o:

After training GPT4o with simple and complex sentences, it provided the
following criteria for identifying complex sentences. The sentences listed under
each criterion serve as examples, illustrating why they are considered complex.

• Complex Sentence Structure:
Often includes multiple clauses, subordination, or compound structures.
Examples:

– "Although a substantial short position reflects heavy speculation
that a stock’s price will decline, some investors consider an increase
in short interest bullish because the borrowed shares eventually must
be bought back."

– "If the Legislature doesn’t repeal the law, due for revision in 1990, Mr.
Jones says Humana may move its insurance operations, including
3,000 jobs in Louisville, to another state."

– "Instead, many small and medium-sized banks, and some larger ones,
are likely to take one of the other two options open to them under
the plan, Japanese banking officials said."

– "Hani Zayadi was appointed president and chief executive officer of
this financially troubled department store chain, effective Nov. 15,
succeeding Frank Robertson, who is retiring early."

• Technical Terminology:
Contains specialized or technical language that might require specific
knowledge to understand.
Examples:

– "The housing starts numbers, however, are one of the least pre-
cise of the government’s economic indicators and are often revised
significantly as more information is collected."

– "Here are the seasonally adjusted changes in the components of the
Labor Department’s consumer price index for September."

– "Instead, the GAO and the Congressional Budget Office said, the
RTC should consider using Treasury debt, which is less expensive
and subject to oversight by Congress."

Datasets 43

– "Some House Democrats are trying to head off an appointment by
President Bush to the board that oversees the savings-and-loan
bailout, contending that the prospective nominee is the head of
troubled banks himself."

• Inclusion of Numerical Data:
Frequently incorporates specific figures, statistics, or financial data.
Examples:

– "In the nine months, net rose 35% to $120.1 million, or $1.64 a share,
from $89.2 million, or $1.22 a share, a year earlier."

– "Yesterday, the spokeswoman said sales of Delmed products through
the exclusive arrangement with National Medical accounted for 87%
of Delmed’s 1988 sales of $21.1 million."

– "Dow Jones industrials 2603.48, up 6.76; transportation 1191.86, up
1.43; utilities 216.74, up 0.88."

– "Fidelity’s junk fund has fallen 2.08% this year through Oct. 19,
Lipper says; the Vanguard fund rose 1.84%; and the T. Rowe Price
fund edged up 0.66%."

• Detailed Information:
Provides dense information, often combining several pieces of data or
aspects within a single sentence.
Examples:

– "Hani Zayadi was appointed president and chief executive officer of
this financially troubled department store chain, effective Nov. 15,
succeeding Frank Robertson, who is retiring early."

– "Lynch Corp. said its Lynch Telephone Corp. subsidiary completed
the acquisition of Western New Mexico Telephone Co. for $20 million
plus assumption of $24 million of debt."

– "Digital, based in Maynard, Mass., hopes to stage a repeat perfor-
mance in mainframes, and it has spent almost $1 billion developing
the new technology."

– "The suits relate to a $200 million loss, disclosed in December, that
was suffered by West Virginia’s consolidated investment pool."

• Specialized Context:
Refers to specific contexts, such as legal, financial, or technical fields.
Examples:

44 Datasets

– "Here are the seasonally adjusted changes in the components of the
Labor Department’s consumer price index for September."

– "The housing starts numbers, however, are one of the least pre-
cise of the government’s economic indicators and are often revised
significantly as more information is collected."

– "The GAO and the Congressional Budget Office said, the RTC
should consider using Treasury debt, which is less expensive and
subject to oversight by Congress."

– "Mr. Holmes was the subject of a page one profile in The Wall Street
Journal in 1984, after the SEC questioned him about ties between
him and companies he touted in a newsletter."

• Comparative and Contrasting Ideas:
Presents comparisons, contrasts, or cause-effect relationships within the
same sentence.
Examples:

– "Although a substantial short position reflects heavy speculation
that a stock’s price will decline, some investors consider an increase
in short interest bullish because the borrowed shares eventually must
be bought back."

– "To justify their exempt status and avoid penalties, these businesses
must show once a year that each and every transaction on which
they didn’t pay sales tax was a legitimate business expense."

– "If the Legislature doesn’t repeal the law, due for revision in 1990, Mr.
Jones says Humana may move its insurance operations, including
3,000 jobs in Louisville, to another state."

– "Instead, many small and medium-sized banks, and some larger ones,
are likely to take one of the other two options open to them under
the plan, Japanese banking officials said."

4.13 Prompt for classifying Simple and Complex Sentences

Below is the Prompt that is used for classifying Simple and Complex Sen-
tences:

Prompt: I need your assistance in classifying sentences based on their
structure. Below are the criteria for simple and complex sentences, with multiple
examples for each criterion. Please read the criteria carefully and classify the
given sentences accordingly and slightly prioritize the simple sentence criteria
for classification of the sentences. You must adhere to provided criteria.

Datasets 45

Criteria for Simple Sentences:
Provide the criteria mentioned above for simple and complex sentences, and
instruct GPT to perform the task accordingly.

4.14 Evaluating the Prompt for Accurate Classification of Simple and
Complex Sentences

Using these criteria, the sentences from the initial dataset were provided
to GPT4o to evaluate its performance. Upon applying the criteria to the
existing sentences, GPT4o correctly classified 90% of the complex sentences
and achieved 90% accuracy for the simple sentences.
Even when using the Flesch Reading Score for readability assessment, the
average score for complex sentences is 46, while for simple sentences it is 59.87.
This indicates that GPT4o is functioning correctly in distinguishing between
simple and complex sentences.
90-100: Very easy to read. Easily understood by an average 11-year-old student.
80-89: Easy to read. Conversational English for consumers.
70-79: Fairly easy to read.
60-69: Plain English. Easily understood by 13- to 15-year-old students.
50-59: Fairly difficult to read.
30-49: Difficult to read. Best understood by college graduates.
0-29: Very difficult to read. Best understood by university graduates.
Now for checking other metrics that they are checked whether the GPT4o is
correct or not, so the most important features are calculated for the median
and it is reached to these numbers as below:

The comparison of features between simple and complex sentences shows
that complex sentences generally have higher values across several metrics. For
instance, the number of words and characters in complex sentences is approxi-
mately double that of simple sentences, indicating longer and potentially more
detailed sentences. The tokens count, which includes words and punctuation,
is also higher in complex sentences, reflecting their increased complexity. Addi-
tionally, complex sentences have more modifiers and out-of-vocabulary (OOV)
words, suggesting more detailed and varied language. Interestingly, while both
sentence types have no subordinates or embedded complement chains, complex
sentences feature appositions and positive additive connectives that are absent
in simple sentences. The tree length, which represents the syntactic structure’s
depth, is significantly greater in complex sentences, highlighting their more
intricate grammatical construction. Overall, the data clearly illustrate that
complex sentences are richer and more elaborate than simple sentences.

46 Datasets

Feature Simple Complex
Number of words 11.0 22.0
Number of characters 53.0 104.0
Tokens count 12.0 23.0
Number of subordinates 0.0 0.0
Tree length 21.0 52.0
Number of modifiers 2.0 5.0
Number of OOV words 0.0 1.0
Number of INV words 10.0 17.0
Number of apposition
counts

0.0 1.0

Number of embedded
complement chains count

0.0 0.0

Number of positive additive
connectives

0.0 1.0

Table 1: Comparison of Features between Simple and Complex Sentences

Figure 15: Comparison of Features between Simple and Complex Sentences

4.15 Feature Observatoion for GPT4o dataset

showing some histograms for important features.

Datasets 47

Figure 16: Histogram for tokens

Simple Sentences (Blue): The distribution of simple sentences is skewed
towards the left, with most sentences having fewer tokens. The peak is around
10 words. Complex Sentences (Red): The distribution of complex sentences is
more spread out and has a broader peak around 15-20 tokens. This indicates
that complex sentences tend to be longer. Length as a Feature: The number
of tokens is a distinguishing feature between simple and complex sentences.
Generally, simple sentences tend to be shorter, while complex sentences tend
to be longer.

48 Datasets

Figure 17: Histogram for tree length

Simple Sentences (Blue): The distribution of tree_length for simple sen-
tences is skewed towards the left, with most simple sentences having shorter
tree lengths. The peak is around 20-30 nodes. Complex Sentences (Red): The
distribution for complex sentences is more spread out and skewed towards the
right, indicating longer tree lengths. The peak is around 40-50 nodes, but the
distribution extends further, with some sentences having tree lengths over 200
nodes. Tree Length as a Feature: The length of the syntactic tree is a strong
distinguishing feature between simple and complex sentences. Simple sentences
generally have shorter syntactic trees, while complex sentences tend to have
longer ones.

Datasets 49

Figure 18: Histogram for modifiers

Simple Sentences (Blue): The distribution for simple sentences peaks around
2-3 modifiers and drops off significantly beyond 5 modifiers. This indicates that
simple sentences generally have fewer modifiers. Complex Sentences (Red):
The distribution for complex sentences is broader, with a peak around 4-5
modifiers and a longer tail, indicating that complex sentences often have more
modifiers. The count extends beyond 10 modifiers.

50 Datasets

Figure 19: Histogram for additives

Simple Sentences (Blue): The vast majority of simple sentences have 0
positive additive connectives, as indicated by the significant peak at 0. There
are smaller peaks at 1 and 2 connectives, but very few simple sentences have
more than 2. Complex Sentences (Red): Complex sentences also have 0 positive
additive connectives, but with a smaller peak compared to simple sentences.
There are noticeable counts at 1 and 2 connectives, and a few complex sentences
have up to 3 or more. Combine Features: Use the number of positive additive
connectives in combination with other features (such as sentence length, tree
length, and modifier count) can improve the classification model.

5) Feature selection and
Implementation

5.1 English Dataset
Recursive Feature Elimination (RFE) is a feature selection technique that

helps to select the most relevant features for building a machine learning
model. When combined with a Support Vector Machine (SVM) classifier, RFE
can enhance the model’s performance by eliminating irrelevant or redundant
features[27]
the Steps are:

• Fit the Model: Train the model on the initial set of features.

• Rank Features: Evaluate the importance of each feature using a chosen
metric.

• Eliminate Least Important Features: Remove the least important fea-
ture(s).

• Repeat: Refit the model and repeat the process until the desired number
of features remains.

After the RFE with the SVM classifier, it reached to 13 features that are
most important than others, and accuracy reached to 87.92 percent accuracy
and f1-score of 0.7888.

5.2 Biserial Correlation Coefficient

The biserial correlation coefficient is used to measure the relationship be-
tween a continuous variable and a binary variable. In the context of binary
classification, such as distinguishing between simple and complex sentences,
the biserial correlation can help to understand how a continuous feature (e.g.,
sentence length) correlates with the binary classification outcome (simple vs.
complex)[39].

51

52 Implementation

Features
Words

Characters
Tokens

Inv_words
Oov_words
Tree_length

Average_syllables
Apposition_count

Verb_arities_count
Num_positive_additive_connectives

Embedded_complement_chains
Modifier_count

Subordinate_count

Table 2: selected Features

rpb =
X̄1 − X̄0

s
× p1 · p0

ϕ(z)

• X̄1: Mean of the continuous variable for the binary class labeled as 1.

• X̄0: Mean of the continuous variable for the binary class labeled as 0.

• s: Standard deviation of the continuous variable.

• p1: Proportion of cases in class 1.

• p0: Proportion of cases in class 0.

• ϕ(z): The standard normal probability density function evaluated at z,
which is the point of division for the binary variable.

The biserial correlation is suitable for this case for several reasons:

• Binary Classification: there is a binary classification problem (simple vs.
complex sentences).

• Continuous Features: there are continuous features (e.g., sentence length)
that can be correlated with the binary outcome.

• Interpretability: Biserial correlation can provide insights into how strongly
a continuous feature is associated with the binary classification outcome,
which can help in feature selection and model interpretation.

Implementation 53

below is the table for the Biserial correlation coefficient.

Feature Value
Words 0.396

Characters 0.402
Tokens 0.474

Inv_words 0.351
Oov_words 0.175
Tree_length 0.457

Average_syllables -0.006
Apposition_count 0.169

Verb_arities_count -0.030
Num_positive_additive_connectives 0.178

Embedded_complement_chains 0.0798
Modifier_count 0.349

Subordinate_count 0.146

Table 3: Biserial correlation for the features

Figure 20: Biserial correlation for the features for English dataset

After using the biserial correlation for this 13 features, two features have
low absolute value of correlation: 1) average_syllables 2) verb_arities_count.
After removing these features, the accuracy and F1-score for this dataset remain
unchanged. As discussed below, even in the updated dataset, these two features

54 Implementation

not only fail to improve accuracy but also contribute to a decrease in both
accuracy and the F1-score.

• Redundancy and Noise Reduction: Features with nearly zero correlation
to the target variable typically do not provide useful information for the
classifier. Removing them can reduce noise and redundancy in the dataset,
potentially improving the classifier’s performance on unseen data.

• Model Simplicity: Simplifying the model by reducing the number of
features can make it more interpretable and reduce the risk of overfitting.
This is particularly important when applying the model to new datasets,
as it generalizes better with fewer but more relevant features.

• Performance Validation: The fact that the model with 11 features has
shown better accuracy and F1 score on another dataset suggests that
the two features you removed were not contributing to the model’s
performance. This indicates that the remaining 11 features are sufficient
and potentially more robust for generalization.

• Statistical Evidence: Biserial correlation is a useful method to deter-
mine the relevance of features. Features with near-zero correlation are
statistically unlikely to be informative for the classification task.

Removing features based on biserial correlation coefficient after performing
Recursive Feature Elimination (RFE) is absolutely normal. There are key
points why these removing are reasonable:

• Cross validation : Using GridSearchCV for validation to find best param-
eters and with 5 folds and the parameters are: C =100, kernel = Linear.
When performing cross-validation with a Support Vector Machine (SVM)
using the parameters C = 100, and a linear kernel, the model is configured
to prioritize minimizing classification errors on the training set. The high
value of C (100) indicates a strict penalty for misclassification, which can
lead to a model that may potentially overfit the training data, especially
if the data contains noise or outliers. The linear kernel assumes that
the data is linearly separable, meaning that the relationship between the
features and the target variable can be captured by a straight line (or
hyperplane in higher dimensions).

• Complementary Methods: RFE and biserial correlation are complemen-
tary feature selection methods. RFE evaluates the importance of features
based on their contribution to the classifier’s performance, while biserial
correlation assesses the direct relationship between each feature and the
target variable.

Implementation 55

• Empirical Validation: The observation that the model performs equally
well (or better) on another dataset after removing the two features
with nearly zero correlation provides empirical validation. This suggests
that those features were not contributing meaningfully to the classifier’s
performance and that their removal helps in improving the model’s
generalization capability.

• Improved Generalization: By removing features with negligible correlation
to the target, reduce the risk of overfitting and enhance the model’s ability
to generalize to new data. This is supported by the improved accuracy
and F1 score on another dataset.

• Feature Relevance: Combining RFE with biserial correlation ensures that
retain features that are both important for the classifier’s performance
and have a meaningful relationship with the target variable. This two-step
feature selection process enhances the robustness of the feature set.

After performing Recursive Feature Elimination (RFE) and checking the
results with Biserial correlation, it was found that average_syllables and
verb_arities_count have no correlation with the classifier. Therefore, these fea-
tures were removed. The accuracy and F1-score remained unchanged whether
these features were included or not, indicating that removing them can help
reduce redundancy and minimize the risk of overfitting without affecting the
model’s performance.

precision recall f1-score support
0 0.91 0.95 0.93 939
1 0.76 0.69 0.78 260

accuracy 0.88
macro avg 0.82 0.77 0.79 1119

weighted avg 0.87 0.88 0.87 1119

Table 4: Classification Report

The other models are used for this classification to see which one is better.
other models are Decision Tree, Logistic regression, Random Forest.

5.3 Decision Tree classifier
For the decision tree classifier, RFE was used for feature selection, with

5-fold cross-validation and accuracy as the scoring metric, using entropy as the

56 Implementation

criterion. Interestingly, the features selected by RFE were identical to those
extracted by the SVM model.potential reasons for the same features can be
due to the most important features for classification may be highly correlated
with the target variable, which would make them equally significant for both
models. Another reason could be there are features in the dataset that are
either redundant (highly correlated with other features) or irrelevant (provide
little to no information for classification), RFE will likely remove these features
for both models. This can result in the same subset of key features being
selected for both, so, the similarity in feature selection may indicate that the
features identified by RFE are the most informative for your specific dataset,
regardless of the underlying model.

5.4 Logistic regression classifier

For logistic regression, RFE was applied again for feature selection, resulting
in only one feature change: Embedded_complement_chains was removed, and
number_of_subordinate was added to the features. The hyperparameters used
for the classifier are as follows:

penalty: l2 (Using L2 regularization to prevent overfitting) C: 1.0 (Regular-
ization strength; 1.0 is the default) solver: lbfgs (A robust solver suitable for
this classification task) max_iter: 200 (Increased from the default to ensure
convergence) tol: 1e-4 (Tolerance for stopping criteria)

5.5 Random Forest classifier

For the Random Forest classifier, feature importance was used to identify
the most relevant features. After carefully considering the features with higher
importance scores, the only difference compared to the SVM model is the
inclusion of number_of_subordinate. All other features remain the same. The
hyperparameters used for the Random Forest classifier are as follows:

n_estimators: Number of trees in the forest (set to 1 in the code). max_features:
Number of features to consider when splitting a node (’auto’ uses all, sqrt
uses the square root of the features). max_depth: Maximum depth of the
trees, controlling tree growth (values from 10 to 110, plus None for no limit).
min_samples_split: Minimum number of samples required to split a node
(values 2, 5, 10). min_samples_leaf: Minimum number of samples required at
a leaf node (values 1, 2, 4). bootstrap: Whether bootstrap sampling is used
when building trees (True or False).

Implementation 57

5.6 Result
Based on the performance metrics provided for each classifier, SVM (Sup-

port Vector Machine) performing better compared to Decision Tree, Logistic
Regression, and Random Forest. SVM has the highest accuracy among all
models, indicating that it correctly classifies sentences more often than the other
classifiers. The F1-score, which balances precision and recall, is also highest
for SVM, indicating better overall performance in terms of both false positives
and false negatives. And Also SVM are effective in high-dimensional spaces
and can handle complex relationships between features. This is beneficial for
classifying sentences, which can vary widely in structure and content. SVM
aims to maximize the margin between different classes, which generally leads
to better generalization and lower overfitting, especially when compared to
decision trees or random forests which can easily overfit complex data. SVM
are less sensitive to noise in the data compared to decision trees and random
forests. They achieve this by maximizing the margin, focusing on the support
vectors (instances closest to the decision boundary), which helps in ignoring
outliers or noisy data points. SVM can perform well even with relatively small
datasets,. This characteristic is crucial if dataset is not very large.

Model Accuracy Precision Recall F1-Score
SVM 0.88 0.82 0.77 0.78
Decision Tree 0.80 0.72 0.71 0.51
Logistic Regression 0.87 0.81 0.79 0.66
Random Forest 0.82 0.69 0.71 0.53

Table 5: Comparison of Classification Models

5.7 GPT4o Dataset
Using the previous dataset, 11 key features were identified. As mentioned

earlier, since the results of this analysis will be applied for business purposes,
it is essential to test these features on a different dataset to determine their
generalizability. An SVM classifier was applied to the new dataset, utilizing
GridSearchCV with 5-fold cross-validation to optimize the model.

Additionally, the two features previously removed based on the Biserial
correlation coefficient were also excluded from the new feature set, leaving 11
features for testing on the new dataset.

The table below presents the Biserial correlation coefficient results for the
new dataset, providing insight into the relationship between the features and

58 Implementation

the classification task.

Feature Value
Words 0.61

Characters 0.58
Tokens 0.61

Inv_words 0.58
Oov_words 0.24
Tree_length 0.56

Apposition_count 0.003
Num_positive_additive_connectives 0.28

Embedded_complement_chains 0.11
Modifier_count 0.50

Subordinate_count 0.25

Table 6: Biserial correlation for the features

Figure 21: Biserial correlation for the features for GPT

5.8 SVM classifier
Cross validation : Using GridSearchCV for validation to find best parameters

and with 5 folds and the parameters are: C =0.1, kernel = Linear. the model is
configured to allow for some misclassification in the training data in exchange

Implementation 59

for better generalization to unseen data. The lower value of C (0.1) indicates
that the model is less strict about misclassifications, resulting in a wider margin
between the classes. This approach reduces the risk of overfitting, making the
model more robust to variations in the data. The linear kernel assumes that
the data is linearly separable, meaning the decision boundary is a straight line
(or hyperplane in higher dimensions). The svm classifier for the new dataset
reached to this accuracy:

precision recall f1-score support
0.0 0.83 0.94 0.88 1564
1.0 0.83 0.72 0.76 769

accuracy 0.83
macro avg 0.83 0.78 0.79 2333

weighted avg 0.83 0.83 0.82 2333

Table 7: Classification Report

The f1-score difference between simple and complex sentences are now lower
compare to the previous dataset. Without changing any features the accuracy
reached to this: Model accuracy score with linear kernel : 0.8308 Model f1-score
score with linear kernel : 0.7947 The other classifiers:

The other models are used for this classification to see which one is better.

5.9 Decision Tree classifier

For the decision tree classifier, RFE was used for feature selection, with
5-fold cross-validation and accuracy as the scoring metric, using entropy as the
criterion. The exact same hyperparameters and features were applied to this
dataset to evaluate the accuracy and F1-score of the classifier. This approach
was taken to ensure a consistent comparison of results across different datasets,
allowing for a clearer assessment of how well the model performs under the
same conditions. By using identical settings, any variations in accuracy and
F1-score can be attributed to differences in the datasets rather than changes in
the model configuration.

60 Implementation

5.10 Logistic regression classifier

For logistic regression in previous dataset, RFE was applied for feature
selection, resulting in only one feature change: Embedded_complement_chains
was removed, and number_of_subordinate was added to the features. The
hyperparameters used for the classifier are the same for the GPT4o dataset.
This method was chosen to maintain consistency when comparing results across
different datasets, providing a more accurate evaluation of the model’s per-
formance under uniform conditions. By keeping the settings unchanged, any
differences in accuracy and F1-score can be attributed to the datasets them-
selves, rather than modifications in the model’s configuration.

5.11 Random Forest classifier

For the Random Forest classifier, feature importance was used to identify
the most relevant features in previous dataset, and the only difference compared
to the SVM model was the inclusion of number_of_subordinate. All other
features remain the same. The hyperparameters used for the Random Forest
classifier are the same as before.This strategy was adopted to ensure uniformity
in the comparison of results across different datasets, allowing for a more
accurate assessment of the model’s performance under identical conditions. By
maintaining the same settings, any changes in accuracy and F1-score can be
attributed to differences in the datasets rather than alterations in the model’s
configuration.

5.12 Result

The SVM model with a linear kernel has the highest accuracy and F1-score
among the models listed. SVMs are particularly effective in high-dimensional
spaces and when the number of dimensions exceeds the number of samples.
They are also memory efficient and work well with a clear margin of separation
between classes. Decision Trees are prone to overfitting, especially with com-
plex datasets. Even after tuning with cross-validation, the F1-score is lower,
indicating that the model may not be as good at handling the balance between
precision and recall compared to SVM. Logistic Regression is a good baseline
model for binary classification, but it assumes a linear relationship between
the features and the log-odds of the outcome. While it performs almost as
well as the SVM in terms of accuracy, the F1-score is lower, suggesting that it

Implementation 61

may not handle imbalanced classes or non-linear relationships as effectively as
SVM. Random Forests, being an ensemble of Decision Trees, tend to reduce
the overfitting seen in individual trees. However, in this case, the performance
metrics are the lowest among the listed models. This could be due to various
reasons, such as the need for more hyper parameter tuning, the complexity of
the dataset, or the random nature of the sampling process in Random Forests.

• High-Dimensional Spaces: SVMs are particularly effective in high-dimensional
spaces, which could be beneficial if feature set is large.

• Margin Maximization: SVMs focus on maximizing the margin between
classes, which can lead to better generalization on the test set.

• Robustness to Overfitting: While SVMs can overfit if not properly tuned,
they generally handle overfitting better than Decision Trees.

• Effectiveness with Small Sample Sizes: SVMs can perform well even with
smaller datasets, which might be advantageous depending on your dataset
size.

Model Accuracy Precision Recall F1-Score
SVM 0.83 0.83 0.76 0.79
Decision Tree 0.80 0.65 0.72 0.68
Logistic Regression 0.82 0.81 0.75 0.70
Random Forest 0.78 0.65 0.70 0.63

Table 8: Comparison of Classification Models

5.13 Italian Dataset

Previous Study
In the previous study, seven features were used to classify simple and complex
sentences. These features included characters, average length of dependencies,
words not found in the dictionary, maximum tree depth, tokens, and subordinate
clauses. The analysis was conducted using an Italian corpus, and the SVM
classifier was applied to evaluate the performance of these features. Below are
the results of the SVM classifier based on these selected features for the Italian
corpus.

62 Implementation

Accuracy Recall F1-score Support
Simple 0.89 0.84 0.84 716
Complex 0.70 0.81 0.75 402
Accuracy 0.81
Macro Media 0.79 0.81 0.80 1118
Average Weighing 0.82 0.81 0.81 1118

Table 9: Classification Report

Now, the focus shifts to testing whether the features extracted from English
can be applied effectively to another language, such as Italian. The 11 features
identified from the English language are now being used for the Italian language,
with adjustments made for language-specific differences. For example, the
feature Modal verb – indicative mood is adapted as follows:
English modal verbs: Can, Could, Will, Would, Shall, Should, May, Might,
Must, Ought, Could have, Would have, Should have, Might have.
Italian modal verbs: Dovere, Volere, Potere.
Similarly, other features have been modified based on the characteristics of the
Italian language. The SVM classifier is once again used to classify simple and
complex sentences, employing GridSearchCV with 5-fold cross-validation. The
results for the 11 features, applied to the Italian dataset, are presented below.
This is the Biserial correlation Coefficient for Italian language

Feature Value
Words 0.61

Characters 0.62
Tokens 0.61

Inv_words 0.58
Oov_words 0.22
Tree_length 0.54

Apposition_count 0.022
Num_positive_additive_connectives 0.24

Embedded_complement_chains 0.15
Modifier_count 0.43

Subordinate_count 0.29

Table 10: Biserial correlation for the features

Implementation 63

Figure 22: Biserial correlation for the features for italian dataset

5.14 SVM classifier

precision recall f1-score support
0 0.83 0.91 0.87 716
1 0.82 0.66 0.73 402

accuracy 0.82
macro avg 0.82 0.79 0.80 1118

weighted avg 0.82 0.82 0.82 1118

Table 11: Classification Report

Cross validation : Using GridSearchCV for validation to find best parameters
and with 5 folds and the parameters are: C =10, kernel = Linear. When
performing cross-validation with a Support Vector Machine (SVM) using the
parameters C = 10, and a linear kernel, the model is configured to prioritize
minimizing classification errors on the training set. The high value of C (10)
indicates a strict penalty for misclassification, which can lead to a model that
may potentially overfit the training data, especially if the data contains noise
or outliers. The linear kernel assumes that the data is linearly separable,
meaning that the relationship between the features and the target variable can
be captured by a straight line (or hyperplane in higher dimensions).

Compare to previous result it one percent better in accuracy and one for
f1-score. The second classifier achieves a better balance between precision

64 Implementation

and recall for the simple class. With a precision of 0.83 and recall of 0.91 for
the simple class, it effectively identifies most of the simple sentences while
maintaining a high rate of correct identifications among those classified as
simple. The F1-score for simple sentences in the second classifier is 0.87, which
is higher than the 0.84 F1-score for simple sentences in the first classifier. This
indicates that the second classifier is better at balancing precision and recall
for simple sentences. The overall accuracy of both classifiers is similar (around
82%), but the second classifier maintains this accuracy with fewer data points.
This suggests that the second classifier is robust and performs well even with
a smaller dataset. The second classifier shows consistent performance across
precision, recall, and F1-score metrics. The weighted average F1-score is 0.82,
matching the overall accuracy, which implies that the model’s performance is
balanced across different metrics. If the primary goal is to accurately classify
simple sentences (which might be more frequent or more critical in certain
applications), the second classifier performs better. Its high recall (0.91) for
simple sentences means it misses fewer simple sentences, and the high precision
(0.83) means it has fewer false positives in this class.

the other models are used for this classification to see which one is better.

5.15 Decision Tree classifier

For the decision tree classifier, Recursive Feature Elimination (RFE) was
employed for feature selection, utilizing 5-fold cross-validation with accuracy as
the scoring metric and entropy as the criterion. The same hyperparameters and
features were applied to this dataset to assess the classifier’s accuracy and F1-
score. This method was chosen to maintain consistency when comparing results
across multiple datasets, enabling a more accurate evaluation of the model’s
performance under identical conditions. By keeping the settings unchanged, any
observed differences in accuracy and F1-score can be attributed to variations
in the datasets rather than adjustments to the model configuration.

5.16 Logistic regression classifier

For logistic regression in previous dataset, RFE was applied for feature
selection, resulting in only one feature change: Embedded_complement_chains
was removed, and number_of_subordinate was added to the features. The
hyperparameters used for the classifier are the same for the Italian dataset.
This method was chosen to maintain consistency when comparing results

Implementation 65

across different datasets, providing a more accurate evaluation of the model’s
performance under uniform conditions. By keeping the settings unchanged, any
differences in accuracy and F1-score can be attributed to the datasets them-
selves, rather than modifications in the model’s configuration.

5.17 Random Forest classifier

For the Random Forest classifier, feature importance was used to identify
the most relevant features in previous dataset, and the only difference compared
to the SVM model was the inclusion of number_of_subordinate. All other
features remain the same. The hyperparameters used for the Random Forest
classifier are the same as before.This strategy was adopted to ensure uniformity
in the comparison of results across different datasets, allowing for a more
accurate assessment of the model’s performance under identical conditions. By
maintaining the same settings, any changes in accuracy and F1-score can be
attributed to differences in the datasets rather than alterations in the model’s
configuration.

5.18 Result

The SVM classifier stands out as the best-performing model among the four.
It achieved the highest accuracy (82%) and F1-score (0.80), indicating that it
is more effective in correctly classifying both simple and complex sentences.

The superior performance of the SVM classifier can be attributed to several
factors. SVM works by finding the hyperplane that best separates the classes
with the largest margin, which helps in achieving better generalization on
unseen data. Additionally, SVM can use different kernel functions (linear,
polynomial, RBF) to transform the data into a higher-dimensional space where
it is easier to find a separating hyperplane. This ability makes it more adaptable
to various types of data distributions. SVM is also particularly effective in high-
dimensional spaces, which is often the case with text data after vectorisation.
Furthermore, SVM is less prone to overfitting, especially in high-dimensional
spaces, compared to other classifiers like Decision Trees, which can easily overfit
the training data.

Overall, the Decision Tree and Random Forest classifiers, while intuitive
and easy to interpret, did not perform as well as the SVM. Decision Trees tend
to overfit the data, and while Random Forests mitigate this to some extent
by averaging multiple trees, they still lag behind in performance. Logistic
Regression provided decent performance but lacked the complexity to capture

66 Implementation

the nuances in the data as effectively as SVM. In conclusion, the SVM classi-
fier’s ability to find an optimal hyperplane, its robustness in high-dimensional
spaces, and the use of kernel tricks contribute to its superior performance in
distinguishing between simple and complex sentences.

Model Accuracy Precision Recall F1-Score
SVM 0.82 0.83 0.79 0.80
Decision Tree 0.81 0.70 0.73 0.74
Logistic Regression 0.81 0.81 0.75 0.72
Random Forest 0.76 0.73 0.70 0.65

Table 12: Comparison of Classification Models

5.19 Comparative Analysis of Classification Re-
sults Across Datasets

The overall comparison between the English dataset and the GPT-generated
dataset reveals interesting insights into how the models perform across different
types of data. While the accuracy for most models decreased slightly on the
GPT dataset, the changes in precision, recall, and F1-score suggest that the
models adapt differently to each dataset.

For the GPT dataset, there was a noticeable improvement in the F1-score
for many models. This indicates that while the models may not have achieved
the same level of accuracy as with the English dataset, they performed better at
balancing precision and recall. This balance is particularly important in tasks
like sentence classification, where it is crucial to minimize both false positives
and false negatives.

The higher F1-scores on the GPT dataset suggest that the models were more
consistent in their predictions when classifying complex and simple sentences,
even though overall accuracy was lower. This might indicate that the GPT-
generated dataset presents a slightly different distribution of sentence structures,
requiring the models to better adjust their decision boundaries. In contrast,
the English dataset seemed to allow the models to be more precise but slightly
less balanced in terms of recall.

The findings highlight the importance of testing models across different
datasets, as performance metrics such as accuracy, precision, and recall can
vary based on the data’s underlying structure and the specific features used.
While accuracy alone may not always reflect the model’s true performance, the
F1-score improvements in the GPT dataset suggest that the models became

Implementation 67

better at handling nuanced cases of classification, which could make them
more suitable for generalization to new datasets. Comparing the classification
results between the Italian dataset for simple and complex sentences (shown in
the latest table) and previous datasets (like the English and GPT-generated
datasets), several differences and similarities are evident.

The accuracy for models applied to the Italian dataset is slightly lower
compared to the English dataset but similar to the GPT dataset. This indicates
that the Italian dataset introduces additional complexity that affects the models’
accuracy. The Italian language’s structural differences and unique sentence
formations might have contributed to the slight drop in performance.

Across most models, precision on the Italian dataset is either comparable
to or slightly higher than the GPT dataset but slightly lower than the English
dataset. This means that the models are still relatively good at identifying
relevant sentences but are slightly more prone to false positives in the Italian
dataset compared to English. The linguistic characteristics of Italian, such as
syntax and morphology, could explain these variations.

Recall for the Italian dataset is relatively stable across models and is gener-
ally comparable to the recall in the English and GPT datasets. This suggests
that the models are relatively consistent in identifying complex and simple
sentences in Italian, though there are some challenges in capturing all relevant
instances. This could be due to the complexity of Italian sentence structures,
where sentences often involve more subordination or intricacy compared to
English.

F1-scores for the Italian dataset are slightly lower than for the English
dataset, reflecting the models’ struggles to balance precision and recall on
this dataset. However, compared to the GPT-generated dataset, F1-scores in
the Italian dataset remain competitive, indicating the models’ adaptability
to different languages. This drop in F1-score could be a result of the inher-
ent differences in grammatical structure and complexity between Italian and
English.

The models applied to the Italian dataset show a consistent performance
pattern compared to previous datasets. While accuracy and precision are slightly
lower in the Italian dataset, recall remains relatively stable, and F1-scores
reflect the models’ capacity to adapt to linguistic differences. This comparison
highlights the importance of adjusting and testing models across languages, as
language-specific characteristics can influence classification performance.

6) Conclusions and future work

The analysis and implementation of various machine learning classifiers for
distinguishing between simple and complex sentences have yielded insightful
findings. Among the classifiers evaluated, the Support Vector Machine (SVM)
emerged as the most effective, achieving the highest accuracy and an F1-score.
This superior performance can be attributed to SVM’s ability to find the optimal
hyperplane that best separates classes, its robustness in high-dimensional spaces,
and the utilization of kernel functions that enhance its adaptability to various
data distributions.

In contrast, other classifiers like Decision Trees and Random Forests, despite
their intuitive and easy-to-interpret nature, did not perform as well. Decision
Trees tend to overfit, while Random Forests, although mitigating this issue
to some extent, still lagged behind SVM in performance. Logistic Regression,
while providing decent results, lacked the complexity needed to capture the
nuances in the data as effectively as SVM.

A significant part of the study was the application of these features and
classifiers to an Italian language dataset, which included features such as the
number of modal verbs, average length of dependencies, and various syntactic
structures. The results were promising, with the SVM classifier demonstrating
a slight improvement in accuracy and F1-score compared to the English dataset.

The findings emphasize the importance of selecting appropriate features and
classifiers for specific language datasets. The use of grid search cross-validation
in tuning the SVM parameters played a crucial role in optimizing the model’s
performance. Additionally, the robustness of the SVM classifier, even with
a smaller dataset, highlights its potential for broader applications in natural
language processing tasks.

Future work should focus on further refining these classifiers and exploring
additional features that could enhance the classification accuracy. One promis-
ing direction is the integration of large language models (LLMs) such as BERT
(Bidirectional Encoder Representations from Transformers). Researchers can
train BERT on the given dataset to classify sentences as simple or complex.
This approach strength BERT’s deep contextual understanding of language,
potentially leading to even more accurate classification.

68

Conclusion 69

Moreover, it would be beneficial to apply the extracted features from the
current study to new datasets and analyze their performance using BERT.
This step will determine whether the identified features generalize well across
different datasets and languages, providing insights into their robustness and
applicability. By comparing the performance of BERT-based models with
traditional classifiers, researchers can better understand the strengths and
limitations of various approaches.

Expanding the datasets to include more languages and varied sentence
structures would provide a more comprehensive understanding of the classifiers’
capabilities. Additionally, integrating advanced techniques such as deep learning
models could potentially offer significant improvements in sentence classification
tasks.

This study shows the effectiveness of the SVM classifier in handling the
complexity of natural language and sets a strong foundation for future research
in this domain. The continuous evolution of machine learning algorithms
promises even greater advancements in text processing and classification, paving
the way for more sophisticated and accurate language models. By exploring the
potential of LLMs like BERT, future research can further enhance our ability
to classify and simplify text, contributing to the accessibility of information for
diverse audiences.

Credits

Thanks to Professor Claudio Sartori for supervising me and the PwC
company for giving me this opportunity to do the project. And Special thanks
to Mrs.Anna Elisabetta Ziri my manger in PwC.

70

Bibliography

[1] Chandrasekar et al. Motivations and methods for text simplification. 1996.
URL: https://aclanthology.org/C96-2183.

[2] Daniel Jurafsky and James H.Martin. Speech and Language Processing.
Pearson Prentice Hall„ 2009. URL: https://pages.ucsd.edu/ bakovic/comp-
phon/Jurafsky,

[3] Heaps and H. S. Information Retrieval: Computational and Theoretical
Aspects. McGraw Hill series in computer science. Academic Press, 1978.
URL: https://dl.acm.org/doi/10.5555/539986.

[4] Berwick and Robert. An Idiot’s guide to Support vector machines. URL:
https://web.mit.edu/6.034/wwwbob/svm.pdf.

[5] Nivre and Joakim. An efficient algorithm for projective dependency par-
sing." in: Proceedings of the eighth international conference on parsing
tech-nologies. 2003. URL: https://aclanthology.org/W03-3017/.

[6] Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. Non-
projective dependency parsing using spanning tree algorithms. 2005. URL:
https://aclanthology.org/H05-1066/.

[7] Noam Chomsky. Three models for the description of language. 1956. URL:
https://ieeexplore.ieee.org/document/1056813.

[8] Alfred V. Aho and Jeffrey D. Ullman. The theory of parsing, translation,
and compiling. 1972. URL: https://dl.acm.org/doi/book/10.5555/578789.

[9] Joakim Nivre and Daniel Fernández-González. Squibs: Arc-eager parsing
with the tree constraint. 2014. URL: https://aclanthology.org/J14-2002.

[10] Artur Kulmizev and Elena Fano Joakim Nivre Miryam de Lhoneux,
Johannes Gontrum. Deep contextualized word embeddings in
transition-based and graph-based dependency parsing. 2019. URL:
https://aclanthology.org/D19-1277/.

71

72 BIBLIOGRAPHY

[11] Matthew Honnibal, Yoav Goldberg, and Mark Johnson. A non-
monotonic arc-eager transition system for dependency parsing. 2013.
URL: https://aclanthology.org/W13-3518/.

[12] Matthew Honnibal and Mark Johnson. An improved non-
monotonic transition system for dependency parsing. 2015. URL:
https://aclanthology.org/D15-1162.

[13] Schmid H. Probabilistic part-of-speech tagging using deci-
sion trees. 1994. URL: https://citeseerx.ist.psu.edu/document
repid=rep1type=pdfdoi=bd0bab6fc8cd43c0ce170ad2f4cb34181b31277d.

[14] Schmid H. Improvements in part-of-speech tagging with
an application to german. 1999. URL: https://www.cis.uni-
muenchen.de/ schmid/tools/TreeTagger/data/tree-tagger2.pdf.

[15] Andre Kempe. Probabilistic tagging with feature structures. 1994. URL:
https://aclanthology.org/C94-1025/.

[16] Kenneth Ward Church. A stochastic parts program and noun phrase parser
for unrestricted text. 1988. URL: https://aclanthology.org/A88-1019/.

[17] J. P. Kincaid, Jr. Fishburne, Robert P., Rogers, Richard L., and
Chissom Brad S. Derivation of new readability formulas (automated read-
ability index, fog count and flesch reading ease formula) for navy enlisted
personnel. 1975. URL: https://apps.dtic.mil/sti/citations/ADA006655.

[18] Coleman, Meri Liau, and T. L. A computer readability formula designed
for machine scoring. 1975. URL: https://psycnet.apa.org/record/1975-
22007-001.

[19] David Kauchak and Teerapaun Tanprasert. Flesch-kincaid
is not a text simplification evaluation metric. 2021. URL:
https://aclanthology.org/2021.gem-1.1/.

[20] Dominique Brunato, Lorenzo De Mattei abd Felice Dell’Orletta, Benedetta
Iavarone, and Giulia Venturi. Is this sentence difficult? do you agree?
2018. URL: https://aclanthology.org/D18-1289/.

[21] DOUGLAS BIBER and BETHANY GRAY. Grammatical change
in the noun phrase: the influence of written language use. 2011.
URL: https://www.cambridge.org/core/journals/english-language-and-
linguistics/article/grammatical-change-in-the-noun-phrase-the-influence-
of-written-language-use/AE0D25C8DE604BEB23602923DCC9C7B9.

BIBLIOGRAPHY 73

[22] Hanan Khattab Omar Alsanawi. Apposition in english: A
syntactic study in narrative and scientific texts. 2011. URL:
https://www.researchgate.net/publication/332513870.

[23] Hanan Khattab Omar Alsanawi. Linguistic valency in grammar. 2023.
URL: https://www.thoughtco.com/valency-grammar-1692484.

[24] Haeun Kim, Sungjin Koo, and Jungok Bae. Positive, negative, and nil
effects of connectives in written stories: Analysis by proficiency groups.
2015. URL: isli.khu.ac.kr/journal/content/data/32_S/6.pdf.

[25] M Ryan Bochnak, Vera Hohaus, and Anne Mucha. Variation in tense
and aspect, and the temporal interpretation of complement clauses. 2019.
URL: https://academic.oup.com/jos/article/36/3/407/5532629.

[26] John Beavers and Andrew Koontz-Garboden. The meaning of
verbal roots and the roots of verbal meaning. Oxford University,
2019. URL: https://personalpages.manchester.ac.uk/staff/andrewkg/root-
semantics-book.pdf.

[27] Dominique Brunato, Lorenzo De Mattei, Felice Dell’Orletta, Benedetta
Iavarone, and Giulia Venturi. Is this sentence difficult? do you agree?
2018. URL: https://aclanthology.org/D18-1289/.

[28] F. R. Palmer. Mood and Modality. Cambridge University
Press, 2012 URL: https://www.cambridge.org/core/books/mood-and-
modality/70959BB4A71A4C305A0A0695634A91EC.

[29] louisville.edu. Modifiers. 2012. URL:
https://louisville.edu/writingcenter/for-students-1/handouts-and-
resources/handouts-1/modifiers.

[30] Emmanuel Solorzano. Subordinating conjunctions and subordinate clauses.
2018. URL: https://pressbooks.pub/unmcorewriting/.

[31] Felice Dell’Orletta, Simonetta Montemagni, and Giulia Venturi. Read–it:
Assessing readability of italian texts with a view to text simplification.
2011. URL: https://aclanthology.org/W11-2308/.

[32] Italian natural language processing lab. 2018. URL:
http://www.italianlp.it/.

[33] Wikipedia Dataset. 2019. URL: https://www.kaggle.com/datasets/ankurzing/sentiment-
analysis-for-financial-news?select=all-data.csv.

74 BIBLIOGRAPHY

[34] wikisentences dataset. 2019. URL: https://www.kaggle.com/datasets.

[35] Zenodo. Webiss Dataset. 2019. URL: https://zenodo.org/records/205950.

[36] Kaggle Financial-Dataset. URL: https://www.kaggle.com/datasets.

[37] Huggingface Dataset. 2019. URL: https://huggingface.co/datasets/sentence-
transformers/wikipedia-en-sentences.

[38] Prompt. 2024. URL: https://platform.openai.com/docs/guides/prompt-
engineering.

[39] Khalid Iqbal and Muhammad Shehrayar Khan. Email classifi-
cation analysis using machine learning techniques. 2022. URL:
https://www.researchgate.net/publication/360474855.

	2) Data Preparation techniques
	3) Feature exploration
	4) Datasets
	5) Feature selection and Implementation
	Conclusions and future work
	Credits
	Bibliografia

