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Introduction

The work for the present thesis started in Califgrdluring my semester as an
exchange student overseas. California is knowndmade for its seismicity and
its effort in the earthquake engineering reseanghd.f For this reason, |
immediately found interesting the Structural DynesrProfessor, Maria Q. Feng's
proposal, to work on a pushover analysis of thestayg Jamboree Road
Overcrossing bridge.

Concrete is a popular building material in Califatnand for the most part, it
serves its functions well. However, concrete isenetly brittle and performs
poorly during earthquakes if not reinforced properlThe San Fernando
Earthquake of 1971 dramatically demonstrated tharacteristic. Shortly
thereafter, code writers revised the design promssifor new concrete buildings
so to provide adequate ductility to resist stromgugd shaking. There remain,
nonetheless, millions of square feet of non-duciiecrete buildings in California.
The purpose of this work is to perform a Pushovealgsis and compare the
results with those of a Nonlinear Time-History Ay of an existing bridge,
located in Southern California. The analyses hasenbexecuted through the
softwareOpenSeeshe Open System for Earthquake Engineering Sinaulati

The bridge Jamboree Road Overcrossing is classdged Standard Ordinary
Bridge. In fact, the JRO is a typical three-spamticmous cast-in-place pre-
stressed post-tension box-girder. The total lerdttihe bridge is366 ft, and the
height of the two bents are respectiveby41 ft.and28,41 ft.

Both the Pushover Analysis and the Nonlinear Tinigtdfly Analysis require the
use of a model that takes into account for theineatities of the system. In fact,
in order to execute nonlinear analyses of highwagges it is essential to
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incorporate an accurate model of the material hehalt has been observed that,
after the occurrence of destructive earthquakes obthe most damaged elements
on highway bridges is a column. To evaluate théopmance of bridge columns
during seismic events an adequate model of theroolmust be incorporated. Part
of the work of the present thesis is, in fact, datid to the modeling of bents.
Different types of nonlinear element have been istidand modeled, with
emphasis on the plasticity zone length determinasiod location. Furthermore,
different models for concrete and steel materi@gehbeen considered, and the
selection of the parameters that define the canistt laws of the different
materials have been accurate.

The work is structured into four chapters, to falla brief overview of the content.

The first chapter introduces the concepts relabecapacity design, as the actual
philosophy of seismic design. Furthermore, nonlineaalyses both static,
pushover, and dynamic, time-history, are presentéde final paragraph
concludes with a short description on how to deteenthe seismic demand at a
specific site, according to the latest design gata California.

The second chapter deals with the formulation ofdeébased finite elements and
the issues regarding the objectivity of the respoms nonlinear field. Both
concentrated and distributed plasticity elemergsdsscussed into detalil.

The third chapter presents the existing structines software used OpenSees, and
the modeling assumptions and issues. The creatfothe nonlinear model
represents a central part in this work. Nonlineatenal constitutive laws, for
concrete and reinforcing steel, are discusseddetail; as well as the different
scenarios employed in the columns modeling.

Finally, the results of the pushover analysis aresgnted in chapter four.

Capacity curves are examined for the different rhedenarios used, and failure
modes of concrete and steel are discussed. Capaaitye is converted into

capacity spectrum and intersected with the degpgietsum. In the last paragraph,
the results of nonlinear time-history analyses @mmpared to those of pushover
analysis.



Chapter 1

NONLINEAR ANALYSIS IN SEISMIC DESIGN OF BRIDGES

The seismic demands on a bridge structure, sutgeiparticular ground motion,
can be estimated through an equivalent analysia ofathematical model that
incorporates the behavior of the superstructurerspifooting, and soil system.
The idealized model should properly represent ttieiah geometry, boundary
conditions, gravity load, mass distribution, enemjgsipation, and nonlinear
properties of all major components of the bridgetHis way, confident results
can be achieved for a variety of earthquake scemari

A simple linear elastic model of a bridge structwauld only accurately capture
the static and dynamic behavior of the system vdtegsses in all elements of the
bridge do not exceed their elastic limit. Beyondttiemand level, a linear model
will fail to represent many sources of inelastispense of the bridge. The forces
and displacements generated by a linear elastiysamavill differ considerably
from the actual force demands on the structure.

Nonlinear modeling and analysis allow more accudsgrmination of stresses,
strains, deformations, forces, and displacementsriital components, results
that can then be utilized for the final designha bridge subsystems or evaluation
of the bridge global capacity and ductility.

Two categories of nonlinear behavior are incorpamtan the bridge model, to
properly represent the expected response under rated® intense levels of
seismic demand. The first category consists ofasted behavior of elements and
cross sections due to nonlinear material stressastelations, as well as the
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presence of gaps, dampers, or nonlinear springgédnial bridge components. The
precise definition of material and geometric noadirties in the model is not an
easy task, as the resulting response values aezaiigrhighly sensitive to small
variations in the input parameters. The secondgoayeconsists of geometric
nonlinearities that represent second order ard®ects on a structure, where the
equilibrium condition is determined under the defed shape of the structure.
The second nonlinearity category is incorporatedatly in the analysis algorithm.
The additional level of sophistication of the naelar model will increase the
computational effort required for the analysis,veasll as the difficulty in the
interpretation of results. Thus, the most imporgodl to achieve, while building
a nonlinear model, is the balance between model ptaties and the
corresponding gain in accuracy of the results. Thedelines for Nonlinear
Analysis of Bridge Structures in Californja] suggest for an Ordinary Standard
Bridge structure to simplify the model in such whgt column plastic hinge zone
shall be considered nonlinear, while cap beam ahadht outside plastic hinge
zone shall be considered linear elastic. The JRObesaconsidered a Standard
Ordinary Bridge, due to the simplicity of its gednye

According to Caltrans, Ordinary bridges are notigie=d to respond elastically
during the Maximum Earthquakebecause of economic constraints and the
uncertainties in predicting seismic demands. Thbg, objective is to take
advantage of ductility and post elastic strength nmeet the established
performance criteria with a minimum capital investith Such philosophy is
based on the relatively low probability that a magarthquake will occur at a
given site, and the willingness to absorb the regast at if ever a major
earthquake occurs.

In general, the modeling assumptions should bep@addent of the computer
program used to perform the nonlinear static andadyc analyses; however,
mathematical models are often limited by the cdjms of the computer
program utilized.
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1.1. Seismic design philosophy for bridges: capacity dem

Capacity design criteria have been adopted in seistesign, to ensure
satisfactory performance during seismic events.aCi&p design is a design
process where the designer decides which elemémrtstouctural system will be
permitted to yield (ductile components) and whitreents are to remain elastic
(brittle components). Capacity design exploits mwdr ability of certain
predetermined components of the structure; thisesgmts an advantage over
designing the whole structure for an elastic responwhich would be
economically unfeasible.

Once ductile and brittle systems are decided ugesign proceeds according to
the following guidelines:

- Ductile components are designed with sufficient defornmati@pacity
such that they may satisfy displacement-based deioapacity ratio;

- Brittle components are designed to achieve sufficienhgtinelevels such
that they may satisfy strength-based demand-capatio.

Thus, one can state that the aims of Capacity Desig;

I.  ensure that ductile modes of failunee( flexure) should precede brittle
modes of failure i(e. shear) with sufficient reliability, by providing
adequate overstrength so that the desired yielsieghanism occurs and
non-ductile failure mechanisms (such as concretshong, shear cracking,
elastic buckling, and fracture) are prevented;

ii.  prevent the formation of a soft-story mechanism;

lii.  ensure that certain parts of the structure will aBmelastic if it is so
desired (e.g. foundation, bridge deck, etc.); ict,féhe structure should
have an adequate capacity to deform beyond itdielamit without
substantial reduction of the overall resistanceirsgahorizontal and
vertical loads.

In the following paragraphs, the main concepts Ive® in capacity design are
introduced i.e, performance level, seismic capacity, ductildfy members,
predetermined locations of damage and redundancy.
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1.1.1. Performanceleve

The definition of the philosophy oPerformance Based Seismic Engineering
(PBSE)[2] is to design a structural system able toansa predefined level of
damage under a predefined level of earthquakesityen

Usually the following steps are set, in order ttakksh performance level for
different limit states:

- define earthquake loadings with various probabsitf occurrence;
- define various acceptable level of damage;
- combine each earthquake loading with an acceplewd of damage.

Figure 1.1 - b)shows different performance level, and the assetialamage
level, in correspondence of the Earthquake desyal| or frequency of ground
shaking events.

In particular, thecollapse limit statds an extreme event and is defined as the
condition where any additional deformation will eotially render a bridge
incapable of resisting the loads generated byeilisvgeight. Structural failure or
instability in one or more components usually cherazes collapse. All forces
(axial, flexure, shear and torsion) and deformai@mtation and displacement)
shall be considered when quantifying the collajeé ktate. All bridges shall be
designed to withstand deformations imposed by ¢kellof ground shaking that
has a 5 percent chance of being exceeded in a &@ yeriod. All structural
components shall be designed to provide suffickédr@ngth and/or ductility, with
a reasonable amount of reserve capacity, to ersall@pse will be prevented
during theMaximum EarthquakeFigure 1.1- b)very rare earthquakesigure
1.2 — a)collapse in the capacity curve.

1.1.2. Seismic capacity

Seismic capacity is defined as the largest defaomat structure or element can
undergo without a significant degradation in itdigbto carry loads. For example,
during the lateral loading test of reinforced caterbridge column, the column
undergoes larger displacements as the lateral iDadcreased. However, at a
certain point, the seismic capacity of the colusireiached and the column can be
pushed farther using less force Higure 1.1 — ajan example of capacity curve.
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1.1.3. Ductility and predetermined locations of damage

Ductility is the ratio of ultimate deformation the deformation at yield.

(11) ﬂ — Aultimate

Ayield

A ductile structural member responds with ineladgformation to cyclic loading
without significant degradation of strength orfsi#fss. The most desirable type of
ductile response in bridge systems, during hystienice-deformation cycles, is
energy dissipation. There are two ways to obtagrggndissipation:

- internally, within the structural members, by th@nfiation of flexural
plastic hinges;

- externally, with isolation bearings or external gears.

The deformations for ductile structural componests limited so the structure
will not exceed its inelastic deformation capacity.

It is not desirable that concrete superstructurea diridge undergo significant
inelastic deformations, because of the potentialjeimpardize public safety.
Furthermore, superstructure damage in continuoidgéds is difficult to repair to
a serviceable condition. Thus, inelastic behavialie limited to predetermined
locations within the bridge locations that can lasily inspected and repaired
following an earthquake. Preferably, inelastic heétraon most bridges shall be
located in columns, pier walls, backwalls, wingwalkeismic isolation and
damping devices, bearings, shear keys and stealiapdragms.

In order to prevent collapse of the structure, nelduncy should also be applied to
bridges whenever possible. An alternative load patbuld be provided. For
example, in bridge systems like single column beredundancy can be improved
by establishing a greater margin between the coemt dependable capacity
and its expected response to seismic action, agtytiat expansion joints with
reliable shear keys and restrainers, and loadfgatesthe abutments.
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1.2. Types of nonlinear analyses

The aim of a nonlinear analysis is to obtain a esentation of the structure's
ability to resist the seismic demand. Nonlinearlgses are divided into two
categories:

I.  Static,i.e. Pushover analysis;

ii.  Dynamic,i.e. Time-History analysis.

To follow the two analyses are briefly introducedth particular reference to
bridge analysis.

1.2.1. Nonlinear Static Analysis. Pushover

A Pushover analysis is a static, nonlinear proaetturhich the magnitude of the
applied load is incrementally increased followingpeedefined reference load
pattern. By increasing the magnitude of the loadihgs possible to investigate
weak links and failure modes of the bridge struetuFhe goal of the static
pushover analysis is to evaluate the overall strertgpically measured through
base sheavy, yield, and maximum displacemeijtands,, and thus, the ductility
capacityy, of the bridge structure.

The pushover analysis of a bridge is conducted assplacement controlled
method to a specified limiting displacement valwe dapture the softening
behavior of the structure by monitoring the displaent at a point of reference,
such as one of the column’s top nodes or the ceftdre superstructure span. A
displacement control strategy requires the spetibo of an incremental
displacement that have to occur at a natlalf. The strategy then iterates to
determine what load factat, is required to impose that incremental displagégme
The base sheav, is proportional to such load facte; and a global force-
displacement capacity curve can be plot,Kgare 1.2

The load patterns used for bridges analyses dreraihiform, or inverse triangles,
applied to the columns, or proportional to thetfsgnificant vibration mode in
the direction considered.

To interpret the results of pushover analyse<hgacity Spectrum Method (CSM)
might be used. Th€SM uses the intersection of the global force-displaz@m
capacity curve and the response spectrum, repegsentof the earthquake
demand, to estimate the maximum displacement densanthe structure, or
performance point. ThESM s a very useful tool in the evaluation and retrof
design of existing concrete buildings, because dghaphical representation
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provides a clear picture of how a building respotmsarthquake ground motion.
Thus, theCSM consists of the following main steps:

i.  evaluation of the global force-displacement cagamiirve. For bridges the
curve is in terms of base-shear and mid-span dispiant, sed-igure
1.1-a)

ii.  conversion of the capacity curve into a capacigcspim;
iii.  determination of the demand spectrum;

iv.  determination of the performance point of the gstreec

- -

LI L

Figure 1.2 — Capacity curve of a frame structure

From the capacity curve to the capacity spectrumGAl0) [3]

In order to use th€SMto determine the performance point, it is necessary
convert the capacity curve, or pushover curve, teapacity spectrum. The
pushover curve is in terms of base shear and risplatement, in the specific
case of bridges mid-span displacement, while thea@ty spectrum is in the
format AccelerationDisplacement Response Spectra (ADR®he spectral

acceleration is indicated later on@sthe spectral displacementSg

The following equations are needed in order todi@mn the pushover curve into
a capacity spectrum

10
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N 1Wi¢i1
_ =l g
(12) PFn - ZN (Wi¢in)2
i=1 g
2
[Zli\ilwid’in]
(13) an = W 4 Wi i.,)2
[ i, ]
|74
(1.4) Sq = W/an
_ _ Aroor
(15) Sd - PFnd)roof,n

V and the correspondingy.,,r,, constitutes the points of the pushover curve,
while S, and the associatefy make up points on the capacity spectr§mand

S, are related through the natural period of thecsime T, thus the natural
circular frequencyo,, beingT,, = 2n/w,.

(1.6) Sy=32 - (1)2 Sa

w? 2T

Some definitions of the symbols used in the previeguation:
PF, modal participation factor for the mode

a, modal mass coefficient for the maate

w;/g mass assigned to level

¢in  amplitude of mode at leveli;

N uppermost level of the structure;

Vv base shear;

w building dead weight and live load if prescribed;
Aro0r,1 ToOf displacement, in the specific case of bradged-span displacement;
Sq spectral acceleration;

S4 spectral displacement.

1.2.2. Nonlinear Dynamic Analysis: Time-History

Nonlinear time history analysis, or THA, accounts the nonlinearities or
strength degradation of different elements of thédge, as well as the load pattern
or ground motion intensity and characteristics. Toading in a time history
analysis is either foundation displacement, or gdomotion acceleration, unlike

11
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for the pushover analysis where loads are extgrreghplied at the joints or
members of the structure. The design displacenanetshot established using a
target displacement, but instead are determinextitijrthrough dynamic analysis
using suites of ground motion records. Inertiatésr are produced in the structure
when the structure suddenly deforms due to grouatiom and internal forces are
produced in the structural members.

The main disadvantage of the time history analysisthod is the high
computational and analytical effort required ané targe amount of output
information produced. During the analysis, the ci#tgaof the main bridge
components is evaluated as a function of time, asethe nonlinear behavior
determined for the elements and materials. Thiduatian is carried out for
several input ground motions, seven accordingBMA 273[4], and the response
of the structure is recorded at every time stepwéi@r, the evaluation of the
capacity using the THA method at each time steplyes superior results, since
it allows for redistribution of internal forces Winh the structure.

In general, solution of the dynamic response afcttral systems is the direct
numerical integration of the dynamic equilibriumuations at a discrete point in
time. This analysis is initiated at the undisturlstatic condition of the structure
and repeated for the duration of the ground moiigout with equal time
increments to obtain the complete structural respdime history under a specific
excitation. The step-by-step solution methods gtterto satisfy dynamic
equilibrium at discrete time steps and may reqiteeation, especially when
nonlinear behavior is developed in the structure the stiffness of the complete
structural system must be recalculated due to deagjom of strength and
redistribution of forces. Different numerical teajunes have been studied by
numerous researchers and are generally classifiegitler explicit or implicit
integration methods.

12
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1.3. The seismic demand

The displacement ductility approach, frequentlydusewadays in seismic design,
requires the designer to ensure that the structeyatem and its individual
components have enough deformation capacity toswatid the displacements
imposed by theMaximum Earthquakeln order to quantify how large the
displacement imposed by thdaximum Earthquakds, the seismic demand
corresponding to the particular site consideredtrbesietermined.

1.3.1. Earthquake ground shaking hazard levels (ATC 40)

Three levels of earthquake hazard are used toagfimund shaking:

- Serviceability Earthquakedefined probabilistically as the level of ground
shaking that has a 50 percent chance of being dgdem a 50 years
period;

- Design Earthquake defined probabilistically as the level of ground
shaking that has a 10 percent chance of being d&dem a 50 years
period;

- Maximum Earthquakedefined deterministically as the maximum level of
earthquake ground motion which may ever be expeattéioe building site
within the known geologic framework. Correspondsattevel of ground
shaking that has a 5 percent chance of being egdaad 50 years period.

1.3.2. Development of the design spectrum (SDC 2010, Annex B) [5]

The demand spectrum, alastic design response spectrum 5% damped
developed according tGaltrans Seismic Design Criteria 2018DC), Version
1.6, Annex B5], that specify the minimum seismic requirements $tandard
Ordinary Bridges. Thelastic design response spectrum 5% dampésb called
thedesign seismic hazardepresents the seismic demand at a specificiten
the design seismic hazarkcurs, Ordinary bridges that meets SDC requirésnen
are expected to remain standing but may sufferifsignt damage requiring
closure.

The design seismic hazand based on the envelope of a deterministic spectr
and a probabilistic spectrum. The envelope of thecsa, used for design, is
defined as the greater of:

13
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- a probabilistic spectrum based on a 5% in 50 ygacbability of
exceedance (or 975-year return period);

- a deterministic spectrum based on the largest medisponse resulting
from the maximum rupture (corresponding Nt of any fault in the
vicinity of the bridge site;

- a statewide minimum spectrum defined as the mespactrum generated
by a magnitude 6.5 earthquake on a strike-slipt fachted 12 kilometers
from the bridge site.

The deterministic spectrum

The deterministic spectrum is calculated as théhraetic average of median
response spectra calculated using @ampbell-Bozorgnia (2008and Chiou-
Youngs (2008yground motion prediction equations (GMPE’s), depeld under
the Next Generation Attenuatigoroject coordinated through tfREER-Lifelines
program The ground motion prediction equations are appiee all faults in or
near California considered to be active in the 731,000 years (late quaternary
age) and capable of producing a moment magnitudbgeeke of 6.0 or greater.
In application of these ground motion predictionuaipns, the earthquake
magnitude should be set to the maximum moment rmadgias recommended by
California Geological Survey (1997, 2005).

The minimum spectrum is defined as the averagéh@fniedian predictions of
Campbell-Bozorgnia (2008and Chiou-Youngs (2008jor a scenarioM=6.5
vertical strike-slip event occurring at a distaméel2 km (7.5 miles). While this
scenario establishes the minimum spectrum, thetrspeds intended to represent
the possibility of a wide range of magnitude-dis@ascenarios.

The probabilistic spectrum

The probabilistic spectrum is obtained from thH&GS Seismic Hazard Map
(Petersen, 2008for the 5% in 50 years probability of exceedance965 year
return period).

Since theJSGS Seismic Hazard Mapectral values are published only Yego=
760 m/s,soil amplification factors must be applied for @tlsite conditions. The
site amplification factors shall be based on arraye of those derived from the
Boore-Atkinson (2008), Campbell-Bozorgnia (200&)d Chiou-Youngs (2008)

14
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ground motion prediction models (the same modetsl dsr the development of
the USGS map).

The demand spectrum

The Demand Spectrum has been obtained fronC#digans ARS Online (v1.0.4)
[6]. Only three input parameters are needed: the gpbigal coordinates, latitude
and longitude, and th¥s3, the average shear wave velocity in the upper 30
meters of the soil profile. Spectrum adjustmentdes are incorporated in the
selection of the demand spectrum. In fact, thegmespectrum may need to be
modified to account for seismological effects rethto being in close proximity
to a rupturing fault and/or placement on top ofeem sedimentary basin, see
Figure 1.3for faults location.

The average shear wave velocitgsg has been obtained frotdSGS map$7],
seeFigure 1.4 and the value considered380 m/s.

Once available the average shear wave velocityftmdeographical coordinates,
the online tool computes the different spectra,dascribed previously in the
paragraph. The calculated spectra are showrrigure 1.5 — a) while the
envelope is shown iRigure 1.5 — b).
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1.3.3. Acceleration time history (FEMA 273) [4]

According to FEMA 273 Time-History Analysis shall be performed with no
fewer than three data sets of appropriate grouatiomtime histories that shall
be selected and scaled from no fewer than threeded events. Appropriate time
histories shall have magnitude, fault distances, smurce mechanisms that are
consistent with those that control the design eardke ground motion.
Furthermore FEMA 273 specify the two following criteria for the selemti of
ground motion:

- a minimum of three pairs of ground motion recondswsed in the analysis,
where each ground motion corresponds to the hdeaed appropriate to
the desired performance objective and consists vad Drthogonal
components of the record. The envelope of the theeerds is used to
compute the maximum response of the bridge;

- seven different ground motions, thus, the medialuevaof response
obtained from the different records is used toneste the peak response of
the bridge.

Firstly a deaggregation, usitdSGS interactive todB], have been carried out, in
order to establish which ground shaking parametarsthe magnitude interval
and distances from the site, have the most infleenc the site considered. The
input parameters are the geographical coordinatdstlae shear wave velocity
V30 Figure 1.6— a) shows the histogram with the results of thaggregation
that have been used as input parameters in the MMSEL[9] code employed to
select the seven accelerograms.

According toFEMA 273 the data sets shall be scaled such that the geveedue

of the SRSS spectra does not fall belb@times the 5% damped spectrum for the
design earthquake for periods betwee @2conds and 1Tsseconds (whereg is
the fundamental period of the buildindjigure 1.6 - b)shows the magnitude
function of the distance of the ground shaking fribv@ site considered. Each dot
is an accelerometer present in thiext Generation Attenuation Relationships for
Western U.Sdatabase; the red dots fall in the input intemabnitude defined by
the user.Figure 1.6 - c)shows the interval, dashed lines, in which the
MATLAB® code looks for the most correspondence kesw the inputs%
damped elastic response spectad the spectra selected, using the selection
parameterskigure 1.6 - c)also shows the average accelerograms, which & clo
to the 5% damped spectrum.

The seven accelerograms selected fromNB& databasg10] are described in
Table 1.1and shown irFigure 1.7 a) to Q).

18



Chapter 1 NONLINEAR ANALYSIS IN SEISMIC DESIGN OF BRIDGES
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Figure 1.6 — a) Deaggregation; b) Magnitude VS Diahce; c) Average
accelerogram.

Table 1.1 - The seven accelerograms selected fronetNGA database

Epic.

File Earth- : : V30 Scaling
Year Station M Distance
Name quake v [m/sec] | Factor
[km]
821 H1 Erzincan
i g g 1,1164
ERZ-NS Turkey 1992 Erzincan 6,69 8,97 274,5
. Sylmar -
1085 H1 | Northridge 0.6044
SCEO18 01 1994 | Converter | 6,69 13,6 370,5
Sta East
Arleta -
949 H1 | Northridge
1994 | Nordhoff | 6,69 11,10 297,7 | 13001
ARLO90 01 ordhott 6, ’ !
Fire Station
6 H1 I- Imperial El Centro
1940 6,95 12,99 2134 | 11694
ELC180 | Valley 02 Array #9
6 H2 I- Imperial El Centro
1940 6,95 12,99 2134 | 18124
ELC270 | Valley 02 Array #9 ’ ' ’
Tarzana -
TAR090 o1 1994 | Cedar Hill | 6,69 54 257,2
A
741 H2
i 0,6151
BRNO90 Loma Prieta| 1989 BRAN 6,98 9,01 376,1
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C) Accelerogram 949 H1 ARL0O90
2 T T T T T T T

Acceleration/g
o o
6] o [¢)]

T T

1 1

]
-
T

1

_2 1 1 1 1 1 | |
0 5 10 15 20 25 30 35 40

Time [sec]

d) Accelerogram 6 H1 I-ELC180
2 T T T T T T T

o
(&)}
T

1

Acceleration/g
o

2 ! I 1 I 1
0 5 10 15 20 25 30 35 40

Time [sec]

22



Chapter 1 NONLINEAR ANALYSIS IN SEISMIC DESIGN OF BRIDGES
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g) Accelerogram 741 H2 BRN0O90
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Figure 1.7 — Accelerograms a) 821 H1 ERZ-NS; b) 18841 SCEO018;
c) 949 H1 ARL090; d) 6 H1 I-ELC180; €) 6 H2 I-ELC270;
f) 1087 H1 TAR090; g) 741 H2 BRN090

24



Chapter 2

FINITE ELEMENT MODELS FOR THE NONLINEAR
MATERIAL RESPONSE OF BEAM-COLUMN ELEMENTS:

FORMULATIONS AND OBJECTIVITY OF THE RESPONSE

Based on the complexity of the model it is possiblalefine a classification of
modeling strategies. One can distinguish the falhgwmodel categories with
increasing level of refinement and complexity:

I.  Global models:the non-linear response of a structure is reptedeat
select degrees of freedom;

ii.  Discrete finite element (member) modeis: this case the structure is
modeled as an assembly of interconnected frame eglismwith either
lumped or distributed nonlinearities;

li.  Microscopic finite element modeldie members and joints of the structure
are discretised into several large or small twahoee-dimensional finite
elements.

While such refined finite element models might béable for the detailed study
of small parts of the structure, such as beam tonwo joints, frame models are
presently the only economical solution for the moedr dynamic response
analysis of structures with several hundred membdember finite element
models are the best compromise between simplicity accuracy in non-linear
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seismic response studies and represent the singdastof model that still allows
significant insight into the seismic response ofmmhers and of the entire structure.
Modeling of material nonlinearities in frame anadysan be classified into two
main categories:

i.  lumped, or concentrated, plasticipproach is characterized by inserting
discrete nonlinear moment-rotation hinges at thisesf otherwise linear
elements. This approach provides an efficient mez#nmodeling and
controlling plastic hinge formation. Clearly one tbe main concerns for
this type of element is the determination of thespt hinge length, which
will be discussed in more detail later.

ii. distributed plasticity models provide a more general framework for
nonlinear frame analysis, where nonlinearities ckavelop anywhere
along the member. This kind of element is basea diber approach, to
represent the cross section behavior, where ebehifi associated with an
uniaxial stress-strain relationship.

After the selection of the element type, anotheinrstep is the selection of one of
the two methods available for the implementatiothefformulation:

i. displacement-based formulatigna which the displacement fields along
the element are expressed as functions of the raidplacements. The
assumed displacement fields are approximations ¢ tactual
displacement fields; thus, several elements perleerare used to obtain
a good approximation of the exact response.

ii. force-based formulationsor flexibility-based formulationsin which the
internal force fields are expressed as functionthefnodal forces. Force-
based elements are particularly suited for nonedinframe analysis
because they are exact within the framework ottassical beam theories
(Spacone et al. 1996 a, .bBecause of the precision of force-based
elements, it is possible to use just one elementsfractural member,
leading to considerable savings in the total nunadfefegrees of freedom
in the structural model.

In adisplacement-baseabproach, the displacement field is imposed, wdsene a
force-basedcelement equilibrium is strictly satisfied and mstraints are placed on
the development of inelastic deformations throughioe member. For this reason,
force-based formulations are extremely appealing €arthquake engineering
applications, where significant material nonlingas are expected to occur.
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For a hardening type of sectional behavior, boticddased and displacement-
based elements produce an objective response gldbal (force-displacement)
and local (moment-curvature) levels, whereas tkalt® are non-objective in the
case of a softening sectional law. This numerisal@, commonly known as
localization, was firstly discussed byeris and Mahin, 1988[11] for
displacement-baseelements, an@€oleman and Spacone, 2001-[42] studied it
for force-baseclements.

To follow the force-basedormulation will be discussed in more detail, bédin
concentrated plasticity models and distributedtjig models.
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2.1. Concentrated plasticity models, force-based formuléon

Historically, concentrated plasticity models weréet first formulations
implemented in structural analysis softwares forrthemiake engineering
simulations purposes, developed to include nonfihea into beam-column
elements. Their first appearance dates back t@966s.

In this models all the elements of the structures a&s linear elastic, while the
concentration of the plasticity is into rotatiosgrings, or plastic hinges. The fact
that all the structure is modeled as linear elastitl only localized nonlinearities
are introduced, represents the largest advantageduces the computational
effort and the complexity of the model.

On the other hand, concentrated plasticity modeals based on several
assumptions, increasing the risk of inaccuracyjnadequacy, of the analysis
output. Thus, the need of great experience to omeecthe following main issues:

- distribution of the concentrated nonlinearitiesoirthe structure, in fact
plastic hinges location cannot be known for supeiari;

- evaluation of the length of such plastic hinges;nymdormulas are
proposed in literature, all of them require theuagstion that plastic
hinges will form at a specific location;

- selection of the appropriate stress-strain relahgn attributed to the
nonlinear zones.

2.1.1. Element Formulation (Scott et al. 1996) [13]

Force-based beam-column elements are formulate@l lbasic system without
rigid-body displacement modes. The veotaontains the element deformations,
assumed to be small compared to the element lefgtha simply supported
beam it is possible to define three element deftong, for two-dimensional
elements, and six for three-dimensional elememsRiyure 2.0); q = q (v) is a
function of the element deformations. It represémesvector of forces in the basic
system. The section behavior is expressed in tefrtige section deformations,
ands = s (e) represents the corresponding section forces. iBguin between
the basic forces and section forces is expresssuaiang form as

(2.1) s = bq

where the matrid contains interpolation functions relating sectiorces to basic
forces from equilibrium of the basic system.
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My

Section

ey
G D

Figure 2.1 - Basic simply supported element and s&mn

The axial force and bending moment at locatxoalong the element for a two-
dimensional simply supported basic system is giweithe following equilibrium
interpolation matrix

1 0 0
(2.2) b = 0 x/L—1 x/L
The compatibility relationship between the sectima element deformations can
be derived from the principle of virtual forces

(2.3) v = [ bTedx

whose linearization with respect to the basic fergeves the section flexibility
matrix

(2.4) f= z—’; = [ B fbdx

The section stiffness matrix ks = ds/de . Flexibility matrix fs = kY is

obtained inverting the section stiffness matrixe ®lement stiffness matrik, in
the basic system is the inverse of the elemenibiléy matrix, k = f1.
The compatibility relationship i&q. 2.3is evaluated by numerical quadrature
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(2.5) v =Y (b el w;

whereé andw are the locations and associated weights, respégtiof the N,
integration points over the element lenfihL]. In a similar manner, the element
flexibility matrix is evaluated numerically

(2.6) f =3B fobl,g)w;

In force-based elements the bending moments agedbat the element ends, in
the absence of member load; therefore it is swtabl use Gauss-Lobatto
quadrature. In fact, this technique places intégmapoints at the elements ends.
In Figure 2.2 a graphical representation of the four-point Galusbatto
quadrature rule, where the integrable, is evaluated at thieth locationé; and
treated as constant over the length The highest order polynomial integrated
exactly by the Gauss—Lobatto quadrature rul2Ms — 3, which is two orders
lower than Gauss—-Legendre quadrature. For a lielaatic, prismatic beam—
column element without member loads, quadratic maiyials appear in the
integrand ofEq. 2.3due to the product of the linear curvature distidnuin the
vector e with the linear interpolation functiong fine bending moment in the
matrix b. Therefore, at least three Gauss—Lobatto integragtoints are required to
represent exactly a linear curvature distributitbng the element. To represent
accurately the nonlinear material response of eeftwased beam—column element,
four to six Gauss—Lobatto integration points angidglly used(Neuenhofer and
Filippou, 1997[38]).

bTe

M.
v Z (bTQL E;) Ly
a1
281 s 072L TR
;"‘\ = | & L “ |

I |
wy — Lf12 an — 5L12 ws — 30712 wy — L7192

Figure 2.2 - Application of four-point Gauss—Lobatb quadrature rule to
evaluate force-based element compatibility relatioship
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2.1.2. Lossof objectivity in force-based beam-column elements

Gauss—Lobatto integration rule permits the sprdgulasticity along the element
length, which is a primary advantage. For hardensegtion behavior, the
computed element response will converge to a unsgligtion as the number of
integration points increases, while for softeningct®n behavior where
deformations localize at a single integration poantinique solution does not exist
and the computed response depends on the chastctégngth implied by the
integration weights of the Gauss—Lobatto quadratuiee The lack of uniqueness
for the solution, in the case of softening sect@havior, leads to a loss of
objectivity, where the element response will chamgea function of\,. To
address the loss of objectivity in force-based beatumn elementsColeman
and Spacone, 200Heveloped a regularization technique that modifiles
material stress—strain behavior to maintain a @mstnergy release after strain-
softening initiatesColeman and Spacorepplied this method to thi€ent—Park
concrete modglKent and Park 197114]) shown inFigure 2.3 where the shaded
area is equal to the energy released after the ohs&ain softening

5 _ aef 08f',
(27) E = O,6f c (820 — & + E—c)

The parameters for the Kent—Park concrete model are

f 'C concrete compressive strength;

€. peak compressive strain;

Ec elastic modulus;

&, Strain corresponding to 20% of the compressivangtre

G¢, concrete fracture energy in compression;

|, plastic hinge length, which acts as the charastteriength for the purpose of
providing objective response.

As discussed in the previous section, the plastigehlength in the model is
directly related to the element integration rulefforce-based elements. For the
implied by the number of Gauss—Lobatto integrapomts,s,, must be modified
in order to maintain a constant energy release

Gf 0,8f’
€20 = —FH——
20 " o6f' L,  Ec

(2.8) £+ &,
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fe

VD o —

Figure 2.3 - Kent—Park concrete stress—strain modevith fracture energy

Although this approach maintains objective respatstie global level, it affects

the local section response through an unnaturgdlomuof the concrete material

properties to the element integration rule. A secoegularization is required to

correct for the loss of objectivity in the sectimsponse, that results from this
approach(Coleman and Spacone, 20012]). For the plastic hinge integration
methods presented to follovy, is specified as part of the element integratida ru
and it becomes a free parameter. Therefore, ibssiple to determine a plastic
hinge length that will maintain a constant energhgase without modification to

the concrete stress-strain relationship, allewiatthe need for a subsequent
regularization of the section response. A logicapagation of the material

properties from the element integration rule isieadd by introducing a plastic

hinge length to the element integration rule

The determination of the plastic hinge length Wwél discussed later in the chapter,
with reference to the particular method used fa& tomputation of the length

needed for the FEM model of the structure, in adaonce with the requirements
imposed byCaltrans Seismic Design Criteria 2010
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2.1.3. Plastic hinge integration methods

Now the aim is to achieve objectivity for softenirggponse. The plastic hinge
integration methods presented herein are basetieoassumption that nonlinear
constitutive behavior is confined to regions ofgdn, andly; at the element ends.
As such, the elements are useful for columns omiethat carry small member
loads. To represent plastic hinges in force-baseaimb-column elements, the
compatibility relationship is separated into thie&egrals, one for each hinge
region, where plasticity develops, and one forittierior region of the element,
which remains linear elastic

(2.9) v=[" bTedx + [ bTedx + [* bTedx
o lpI L—lpl

The section deformations are integrated numericalr the plastic hinge regions,
whereas the contribution of the element intericissumed to be linear elastic, as
mentioned above, and evaluated by the flexibilftthe interior region

(2.10) v = Zlivzpl(bTeszfi)wi + fined

The flexibility matrix of the element interior remi, f7,,, is evaluated by the
closed-form integral

(2.12) e = [, BTfebdx

The matrixf¢ contains the elastic flexibility coefficients ateoss section of the

interior, assuming the coordinate axis is locatetthe centroid of the section, with
the elastic modulug, the cross-sectional aréda and the second moment of the
cross-sectional arda

(2.12) e = B4
El
The linearization oEq. 2.10 with respect to the basic forces gives the element

flexibility as the sum of numerical integration owbe plastic hinge regions and
the flexibility of the element interior

(2.13) f =3 (b fsbleeg) @i + fon
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To represent strain softening in the plastic himggions of the element, it is
desirable to use a plastic hinge integration rae Hgs. 2.10 and2.13 that
satisfies the following criteria:
i.  sample section forces at the element ends whereeihding moments are
largest in the absence of member loads;

ii. integrate quadratic polynomials exactly to provite exact solution for
linear curvature distributions;

iii. integrate deformations over the specified lendthend Ipsusing a single
section in each plastic hinge region.
The Gauss—Lobatto integration rule for distribupdasticity satisfies the first two
criteria, but it does not satisfy the thittecause the plastic hinge lengths are
implied by the number of integration poini,

The midpoint integration rule

The most accurate one-point integration methodhésnhidpoint rule, for which
the integration points are located at the centeeawh plastic hinge regi@n>=
[l/2,L —1ly/2], and the weights are equal to the plastic hingmthes,w =
[Lp1, Iy]. The midpoint rule is illustrated iRigure 2.4- a).The integration points
are not located at the element ends where the niaxibending moments occur
in the absence of member loads, and this repret@ntaajor disadvantage of the
midpoint integration rule. As a result, the elemwiiit exhibit a larger flexural
capacity than expected, which in fact will be adiion of the plastic hinge
lengths. Furthermore, the midpoint rule gives tkace integration of only linear
functions, thus, there is an error in the integratof quadratic polynomials. In
light of the above considerations, the midpointsptahinge integration method
satisfies criterion three but not one or two.

The endpoint integration rule

Another one-point integration rule locates the gnéion points at the element
ends¢ = [0, L], while the integration weights remain equal to ghastic hinge
lengths,w = [ly1, l/], as shown irFigure 2.4 — b)However, an order of accuracy
is lost with this endpoint integration approache¢daese it is only capable of the
exact integration of constant functions, which ek a significant error in the
representation of linear curvature distributiontiefefore, the endpoint plastic
hinge integration method meets criteria one anethbut not two.
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Figure 2.4 - a) Midpoint integration rule; b) Endpoint integration rule.

Two-Point Gauss—Radau Integration

The two previous methods confirm that it is notpbke to satisfy all the three
criteria by performing one-point integration for chaplastic hinge region.
Therefore, it is necessary to investigate two-poitégration methods. Two-point
Gauss—Legendre integration over each plastic hiegen gives the desired level
of element integration accuracy; however, thererarentegration points at the
element ends. Two-point Gauss—Lobatto integratia@r the hinge regions places
integration points at the element ends, but isexaict for the case of a linear
curvature distribution. An alternative two-pointteégration rule is based on
Gauss—Radau quadratyidildebrand, 197439]). It is similar to Gauss—Lobatto,
but it has an integration point at only one endaofinterval rather than at both
ends. This gives Gauss—Radau quadrature an accaofédyp — 2, one order

higher than that for Gauss— Lobatto. As a resulg Gauss—Radau integration
points in each plastic hinge region gives the exgegration for an element with
a linear curvature distribution. On the interval 1, the two-point Gauss—Radau
integration rule has integration points at [0, 2A8lh corresponding integration
weights [1/4, 3/4]. The mapping of this integratiome to the plastic hinge
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regions at the element ends gives four integrapomts,¢ = [0, 21,,/3,L —
21,;/3,L], along with the respective weights,= [l,,;/4, 31,;/4, 3l,;/4, Ly;/
4], Figure 2.5 This integration method satisfies the first ¢rda and the second,
but criterion three, is not satisfied, because irstigoftening will result in
localization within the plastic hinge region. Thieacacteristic length over which
the localized deformations are integrated will lp@a to the integration weight,
Ip /4, assigned to the integration point at the eleneewk rather than the plastic
hinge length/p. This reduction in the characteristic length wadluse the element
to unload at a faster rate than expected to maietguilibrium.

Modification of Two-Point Gauss—Radau Integration

By making the integration weights equaltp andl,,, rather thar,, /4 andl,;/4,

it is possible to ensure that the localized defdiona are integrated over a plastic
hinge length.

To this end, the two-point Gauss—Radau integratibsis applied over lengths of
4lpl and 4lpJ at the element ends, as showhigure 2.5 — b) thus giving the
integration point locations = [0,81,,/3,L. —0,81,,/3,L] and weightsw =

[ L1, 3,1, 3L,,1,;]. Nonlinear constitutive behavior is confined te integration
points at the element ends only, while the sect@sponse at the two interior
integration points is assumed linear elastic, with same properties as those
defined byf<. With this modification of Gauss—Radau, plasticgyconfined to a
single integration point at each end of the elem&he representation of linear
curvature distributions is exact, furthermore, tharacteristic length will be equal
to the specified plastic hinge length when deforomet localize due to strain-
softening behavior in the hinge regions. Hencethalthree criteria introduced in
paragraph 2.1.3 are met by the presented modification of the-pemt Gauss—
Radau plastic hinge integration method for forceeogbeam—column elements.
In conclusion the modified Gauss—Radau quadratuethod overcomes the
difficulties that arise with Gauss—Lobatto integratfor strain-softening behavior
in force-based beam—column finite elements. Thegiattion method confines
material nonlinearity to the element ends over jegelc plastic hinge lengths,
maintains the correct numerical solution for linearvature distributions, and
ensures objective response at the section, elemmahistructural levels.
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{a) Two-Point Gauss-Radau
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Figure 2.5 - a) Two-Point Gauss-Radau; b) Modifiedauss-Radau

2.1.4. Plastic hingelength determination (Priestley, Calvi, Seible, 1996)

The length of the plastic hingk, for concrete elements has been an object of
study and experimental work, since the seconddfdlie fifties. Literature offers
many, in some cases pretty different, formulasvauatel, In the work carried
out for the present thesis, the plastic hinge lemgiot a variable parameter, it is
been decided to assume a plastic hinge lengthwtbald be used throughout all
the analyses. The length used was computed oraslie tf the work oPriestley,
Calvi, Seible, 199615]. According to this formula the length of the plagtinge,

lp, is function of the characteristics of the reinfarent used, ultimate strength,
yield strength and bars diameter, and of the lefrgtim the critical section to the
point of contra-flexure in the member.

The concept of plastic hinge, is based on the agBamthat over the length,
strain and curvature are considered to be equahdéomaximum value at the

37



Chapter 2 INITE ELEMENT MODELS FOR THE NONLINEAR MATERIAL RESPONS OF BEAM
COLUMN ELEMENTS FORMULATIONS AND OBJECTIVITY OF THE RESPONSE

column base. The plastic hinge length incorportitestrain penetration lengiy,
seeFigure 2.6. {pcan be calculated as follow

(2.14) Ly = 0,15f,cdy;

being f,. the yield strength irksi (kilopounds per square incheahdd,, the
diameter of the longitudinal reinforcing bars.

The curvature distribution is assumed to be lifieathe remaining length, along
the height of the column. This assumption refertheobilinear approximation of
the moment-curvature response, which somehow takés account the
displacement resulting from tension shift, andipliytfor shear deformation.
Finally, the plastic hinge length, might be computed as

(2.15) Ly = kLc + Lgy = 2Lg,
(2.16) k=02(f,/f, —1) < 0,08

L. is the length from the critical section to the rgoof contra-flexure in the
member, i.e. the moment equal to zero. The doulmeature case , thus =
H/2, being H the actual length of the member, prevails in timalyses of
buildings under lateral loads. On the other hanthesstructural members such as
cantilevers experience single curvature, and tlastigl hinge forms at one end
only. Such is the case of bridge piers subjectesktsmic loads in the transverse
direction, sed-igure 2.6 — a)

Through the parametér it is emphasized the importance of the ratio lomate
tensile strengtlf, to yield strengtly, of the longitudinal reinforcement. A high
value of k means that the plastic deformations spread away fihe critical
section as the reinforcement at the critical saectitrain-hardens, increasing the
plastic hinge length. If the ratifj,/f, of the flexural reinforcement is low,
plasticity concentrates close to the critical settiThe result is, therefore, a short
plastic hinge length. Ikigure 2.6the length from the critical section to the point
of contra-flexurel., is equal to the height of the member, in this daseplastic
hinge lengthl,, obviously results larger thatl,. I, = 21, applies wherL, is
short. It implies strain penetration down into fbandation and also up into the
column.
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2.2. Distributed plasticity models, force-based formulaion

In distributed plasticity models the entire meml®rmodeled as a nonlinear
element. The source of such inelasticity is definethe sectional level, through
the creation of a fiber model for the section. Aefi section consist in the
subdivision of the area in smaller areas, each of them is attributed a nahteri
stress-strain relationship, i.e. reinforcing stemid concrete, confined and
unconfined (Figure 2.7) The global nonlinearity of the frame is obtainey
integration of the contribution provided by eacimtrolling section.

One of the main advantages of the distributed iglast models is the
nonexistence of a predetermined length where tledasticity can occur, as
opposite of what just seen for concentrated pli&gtinodels. It is due to the fact
that all the sections can have excursions in thdimear field of response. This
approach is a closer approximation to reality, lo@ dther hand it also requires
more computational capacity; that is, more analiimg, as well as memory and
disk space.

Furthermore the positive aspects of this type emgnt are:

- the use of exact interpolation functions in thenwat requires fewer
elements for the representation of the non-line&alior of the structure;

- no numerical difficulties arise in connection witte possible strength loss
and softening of individual sections;

- the element can readily incorporate distributedmelet loads by the
addition of the exact internal force distributiaam€tion under the given
element loads.
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Figure 2.7 - From left to right: Distributed plasticity element; Fiber section.
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2.2.1. Element Formulation (Spacone et al. 1996) [16]

As just seen for the concentrated plasticity moadel,are now considering beam-
column elements formulated in a basic system withimid-body displacement
modes. The element provided of its local referesystemx,y,z is subdivided into
a discrete number of cross sectioffsgure 2.7), located at the control points of
the numerical integration scheme about to be inited. The only source of non-
linearity derives from the material constitutivevia

Some hypotheses need to be introduced in ordeave im mind the framework of
the formulation. In particular, the assumption iok&r geometry, plane sections
normal to the longitudinal axis during the eleméeformation history remain
plane. Follows that all stress and strains arellpata the longitudinal axis, which
is the axis that connects the centroid of all thetisns. The assumption of plane
sections remain plane, is acceptable for small rdedton in the case of
homogeneous material, but it is also extended @¢octse of reinforced concrete
elements, which is not an homogeneous material iand characterized by
phenomena like cracking and bond-slip. Shear effaceé neglected, which is
reasonable considering the ratio length to deph®felement being large. Torsion
is assumed to remain linear elastic and uncouptad the flexural and the axial
response.

Before discussing the formulation itself in moreaileit is necessary to introduce
the following vectors, whose components can betifiled in Figure 2.8

Element force vecta® = {Q; Q, Q5 0,0}

Element deformation vectgr= {q; q» 95 9495}
Section force vectad (x) = {M,(x) M, (x) N (x)}T

Section deformation vectai(x) = {x,(x) x,(x) e‘(x)}T

Being y the curvature and the axial strain.

The two-field mixed method uses the integral forfmequilibrium and section
force-deformation relations to derive the matridatien between element
generalized forces and corresponding deformatiombe section force-
deformation relation is linearized about the présésie and an iterative algorithm
is used to satisfy the non-linear section forcesdeation relation within the
required tolerance. In the following, the stepstloé iterative algorithm are
denoted by superscript
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Figure 2.8 - Element and sectional forces and deforations

In the two-field mixed method independent interpiolafunctions are used in the
approximation of the deformation and force fieldihw the element. Denoting
with A increments of the corresponding quantities, the itveoemental fields are
written

(2.17) Ad(x) =a(x)Aq
(2.18) AD(x) = b(x)AQ

a(x) denotes the deformation interpolation functionsilevb(x) denotes the
force interpolation functions. In the mixed metHodmnulation the integral forms
of equilibrium and section force-deformation redas are expressed first. These
are then combined to obtain the matrix relationwkeenh element force and
deformation increments. The incremental sectiorsttutive relation is linearized
according to
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(2.19) Adi(x) = f~1(x)ADI (x) + T 1(x)

wheref/~1 andr/~! are the section flexibility and residual deforroas from the
previous iteration. The residual deformations ¢hus, be interpreted as the linear
approximation to the deformation error that arigesthe linearization of the
section force-deformation relation. The weighte@gnal form of equation

(2.20) [y DT () [AdV () — 1 (0)ADI(x) — ()] dx = 0

Substitutingd d(x) and4 D(x) into theEq. 2.20 for any§Q, the integral is equal
to

(2.21) TA¢g — FF7IAQ — 71 =0

whereT is a matrix that depends only on the interpolationctions,F is the
element flexibility matrix, angis the element residual deformation vector

(2.22) T = [/ b ()a(x)dx
(2.23) F = [ bT(x)f(x)b(x)dx
(2.24) s = [ bT(0)r(x)dx

In the classical two-field mixed method the intégi@m of the equilibrium
equation is derived from the virtual displacememaple

(2.25) Jy 8dT()[AD(x) + AD(x) | dx = 6q" @

whereAD’~1(x) + AD’ (x) represents the new internal force distributi@n.is
the vector of nodal forces as previously definedcdling the definition of the
two incremental fieldsA d(x) and 4 D(x), and knowing that the previous
equation must hold true for adyg”, it is possible to rewrite the equation in
matrix form

(2.26) TTQ 1+ TTAQ = @
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FromEqg. 2.21 and 2.2ée following equation in matrix form results

(2.27) [_;];‘—1 g] {jg} = {Qi _S;_TIQj—l}

The first equation is then solved @’/ and substituted into the second equation,
obtaining

(2.28) T (TAqg — s/ ) =@ -TTQ!

The interpolation functiona(x) andb(x) selection and the peculiar selection of
deformation and force resultamgsandQ, leads toT = I, the3x3 identity matrix
This simplify the last expression into the lineadzmatrix relation between the
element forced @’ and the corresponding deformation increménig/ — s/~1)

(2.29) [F171Aq — 1) = AQ

[F/~1]7'is the stiffness matrix. This form of writing theiffness matrix
highlights that the starting point of the formudatiis the flexibility matrixF.

2.2.2. Element and Section state determination

In aflexibility-basedelement, the element stiffness matrix is derivednlverting
the flexibility matrix; thus, the element forcesepent the biggest challenge
because they cannot be derived straightforward fiteemsection forcesSpacone
et al. introduce an iteration scheme similar to Newtop$ta. The Newton-
Rapson iteration scheme is used for the solutionthef global equilibrium
equation, at the structural level. Forces incresyemé applied, at the structural
degrees of freedom, and Newton-Rapson is useddteceethe unbalanced forces
to sufficiently small values at each iteration st€pe solution of these equations
leads to displacement increments at the end nofdeach element. The method
about to be introduced is formulated for the eleitevel. In fact, the iterations
during the element state determination phase oéldr@rithm intend to reduce the
deformation residuals to sufficiently small valuEgyure 2.9shows the element
and section state determination in the Newton-Ragsbeme at structural level.
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o)

a"(x) | A7)

Figure 2.9 — Element and Section state determinatioin Newton-Rapson
scheme
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The element resisting forces for the current eldéndsiormations, at théth
Newton-Rapson step, are

(2.30) q'=q" 1 +Aq"

Now an iterative process internal to ik step of Newton-Rapson is introduced,
being the first iteratiofi = 1 andj = 0 is thei-th—1 step. The latter is the point
A in Figure 2.9and it represents the initial state of the elem&hé element force
increments writes

(2.31) AQ=Y = [FI=0]-1pgi=1

being [F/=°]~! the initial element tangent stiffness matridg’/=! the given
element deformation increments.

Thus, it is possible to write the section deformatincrementéad’=!(x), through
the linearization of the section force-deformatiosiation, havingAD/=(x)
section force increments.

(2.32) Ad’=1(x) = f=0(x)AD/=1(x)

In point B the section deformations are updatedd{G'(x) = d'~'(x) +
Ad’=1(x), and the section stiffness and resisting forcegesponding to the new
deformation sate need to be computed. This cornelsp®o the section state
determination, that will be discussed later in plagagraph. From the assumption
of plane sections remain plane and orthogonald@ddhgitudinal axis, follows the
derivation of the strain distribution in the seatie’=(x, v, z), and thanks to the
constitutive law of concrete and steel, the deiovabf the corresponding stresses
/=1 (x,y,z) and tangent modulu¥/=1(x, y, z). The latter are integrates over the
cross section area to obtain the section resitirugsDg’ = (x) and the stiffness
matrix k/=1(x). The flexibility matrix,f/=1(x), is obtained inverting the stiffness
matrix.

The unbalanced forces at the section are the difter between the applied forces
and the resisting forces; multiplying the unbalahderces with the current
section flexibility gives residual deformation5(x). They represents the linear
approximation to the deformation error that arigesthe linearization of the
section force-deformation relation. The use oftdrggent flexibility matrix in the
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model guarantees the fastest convergence, evemhhauny flexibility matrix
could be used.

(2.33) Dy/=1(x) = DF1(x) — D' (%)
(2.34) =1(x) = 1) D™ (x)

The residual element deformations are computedyriatiag the residual section
deformations over the element length

(2.35) =1 = [ BT ()= (x)dx

The point B inFigure 2.9 describes the section and element state reatheth
this point the first iteration loop is complete.

The existence of residual element deformationsatésl the compatibility at
element nodes. Here the deformations should bel ¢ggé. In order to restore

compatibility corrective forces equal tdF/=1]71s/=1 must be applied at the
element ends. Furthermore, a corresponding forceremment equal to

- b(x)[F/=1]71s/~1 is applied at all integration points of the elemimucing a
deformation increment f/=1b(x)[F/=1]"1s/=1. Therefore, at iteratiop= 2 the
state of the element is the following:
element force®/=% = Q=1 + AQ/72,
section forced/=2(x) = D/=1(x) + AD/=%(x) ,
section deformationd’=?(x) = dD’=1(x) + Ad’=?%(x),
beingAQ/=% = - [FF=1]"1sJ=1 AD/2(x) = b(x) AQ'7?,
A2 (x) = r1=1(x) + =1 (x)ADI=2,

At each iteration new residual section deformatiomad residual element
deformations are updated. Convergence is achieveshwhe selected element
convergence criterion is achieved.3pacone et aformulation the convergence
is based on an energy test. The energy mea$kifeis used for the purpose and
the element iterations converge if

s/ Kisi
AqtTKog1

(2.36) < tollerance (forj>1)
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The element equilibrium is always satisfied durthg element determination in
the non-linear analysis, because the section faoeslerived from the element
forces by means of interpolating functions. Wheretise section force-

deformation and the element force-deformation i@iatare only satisfied within

a tolerance, when convergence is reached. Theredoréng the iterations the

element forces approach the value correspondintheéoimposed deformation,

while strictly satisfying element equilibrium at eimes.

As for the element state determination, the sediate determination includes the

computation of resisting forc@'~1(x) and stiffness matrik(x), corresponding
to deformationsd(x). In the cross sectior, along the length of the element,
located at pointy, z)the strains are described s, y,z) = I(y, z)d(x), being
I(y,z) = {—y z 1} a simple geometric vector. Given the constitutaxgs of the
materialsk (x, y, z) ando(x,y, z) can be derived from the strain distribution. The
tangent material modulus and the stress distributianare needed to determine
the section stiffness matrik(x) and the resisting forceBg(x), computed
through the virtual force principal. In particulansing a computer program
requires the selection of a numerical integraticmesne. The one used in this case,
where a section at locatior is subdivided inton(x) fibres, the midpoint
integration rule is used for the following integral

(2.37) k(x) = fA(x) I"(y,2)E(x,y,2)I(y,z)dA

(2.38) D(x) = fA(x) I"(y,z)o(x,y,z)dA

Being the number of fibres a discrete number, e integrals are transformed
into a summation. The accuracy of such computati@pends on the number and
location of fibres, in fact, too little fibres calicause the underestimation of
section capacity. In the other hand, increasing thember of fibres is
computationally expensive. Thus, there must be rilgat balance between
accuracy and computation effort.

2.2.3. Numerical integration

Gauss-Lobatto integration scheme is used to ewalih&t integral€q. 2.22and
Eq. 2.23 This procedure is superior to the classical Gantegration scheme
because it always includes the end sections ofrtiegration domain. When no
distributed load act on the element, the end sestare those subjected to the
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largest forces and undergo the largest inelastarsions. Therefore, monitoring
the end sections results in more accuracy of tinelinear response of the element.
The m-th order Gauss-Lobatto integration scheme permitstexaegration of
polynomials of order up tt2m — 3), and it is based on the following scheme

(239) [1,9(OdE = w19(51 = ~1) + I} 0 g(Ep) + ©pgEm = 1)

2.2.4. Loss of objectivity at section and element levels (Coleman and Spacone,
2001)[12]

In the case of a strain-hardening section behawlgectivity is guaranteed both at
section and element level, as long as more thae timegration points are used.
To prove this, the case of a cantilever single bealmmn element under an
imposed transverse tip displacement has been @esdidby Coleman and
Spacone, 200112]. Figure 2.10— a) shows the response of the force-based
element, on the left base curvature (curvaturdeffirst integration point) versus
base shear, on the right displacement versus Ibase. SThe peak point identifies
the displacement reached before unloading. Hragure 2.10 — a)is possible to
note how the response is objective at both the esdérand section levels for
models with four or more integration points. Thiegegration points do not
accurately integrate the element integrals; thes stiffness over-prediction in the
strain-hardening region.

The same test is carried out in the case of elgsifectly plastic moment-
curvature behavior. Here, prediction of the elenfente-displacement response
remains objective while the peak curvature demaades with the number of
integration pointsFigure 2.10 — b)The loss of objective curvature prediction is
related to the localization of the inelastic cuwatat the base integration point.
When this bottom section reaches the plastic momntéet column reaches its
load-carrying capacity. As the tip displacementréases, the curvature of the
base integration point increases with constants{glamoment, while, along the
length of the column, all the other integrationmsiremain linear elastic and do
not see any change in either curvature or momehe [Ength of the base
integration point, and so the plastic hinge lendiacomes a function of the
number of integration points used. As the numbanigfgration points increases,
the plastic hinge length decreases, and the cue/atiemand in the base
integration point must increase to yield the samesgribed tip displacement.
Anyhow, the loss of objectivity is more evident time case of strain-softening
section behavior. Softening might happen in reicédr concrete columns or in
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bridge piers that support a large dead load andsalpgected to seismic forces.
Therefore, to illustrate the loss of objectivity kigure 2.10 — c),a reinforced
concrete column has been modeled with a singleefbased beam-column
element. Both the local base curvature, and displ@nt versus base shear
response lose objectivity. As the number of integrepoints increases from three
to five, the length of the first integration pottecreases and increasing curvatures
are required to achieve the same prescribed tjaiement. The concrete fiber
compressive strains in the hinge region quicklyrease, resulting in rapidly
degrading material stiffness. For larger numbersnt#gration points, the post-
peak response becomes very brittle.

In summary, after reaching the plastic momMatand the plastic curvatuie in
the first section, corresponding to the first imggpn point, the applied force
cannot increase and the tip displacement increasdsr constant applied load
(and constant base moment). Bending moment camniatrper tharMp. Thus, in
the remaining integration points it remains elagtelding to the localization of
non-linear curvature into the first integration moi The larger the number of
integration points, the shorter the length of ihgt fntegration point and the larger
the curvature at the first integration point to abtthe same tip displacement.
Here comes the definition of numerical localization

In conclusion, it is the ability to capture a jurmpm elastic to inelastic behavior
that makes the force-based formulation both attracand prone to unique
numerical problems. As the distance between tise (fdastic) and second (elastic)
integration point varies, the response also vafibss, the number and placement
of the integration points influence not only the@acy of the integration, but
also the post-peak response. In summary the faligwiehavior can be expected
for a force-based beam-column element, with respedhe section response
considered:

- for hardening cross-section responses, plastigbally spreads beyond a
single integration point, and numerical problems Amited to a non-
smooth response if too few integration points aedy sed-igure 2.10 —
a);

- for perfectly plastic and softening cross-sectiesponses, the curvature
tends to localize at a particular integration poiabhd problems with
objectivity arise, seigure 2.10 — bjandc).
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2.2.5. Regularization techniques

Constant fracture energy criterion

The previous paragraph arose the problem of deftwméocalization, thus, the
need of techniques that regularize the element dtation. The objective is to
obtain a stable method, independent of the sesti@ss-strain behavior.

As introduced irparagraph 2.1.2the concept of constant fracture energy is now
applied to a force-based beam element that soiftec@mpression. Therefore, it is
necessary to define a new parameter, known asabtife energy in compression
ch; o is the concrete stress,is the inelastic displacemeist,the inelastic strain,

Lip is the length of the softening integration poGﬁ.is defined as follows, and

represents the area under the post-peak portioncarhpressive stress-
displacement curve, iRigure 2.3,

(2.40) G;=[odu;=h[ods; = Lp [ 0ds;

Recalling Eq.2.8§ and assuming?f is known from experimental tests, it is
possible to note that theoretically the constiriti@w must be calibrated for each
separate integration point. In practice, plastiges normally form at the element
ends, where the extreme integration points lieallfelements in a model are
integrated with the same scheme and number ofretieg pointsg,, only varies
for elements of different length In this way the constitutive law is linked to the
element length, which is a straightforward process.

As the number of integration points increases,dangelastic strains to satisfy the
constant fracture energy criteria are needed attiieintegration point. This is
equivalent to assuming a constant stress-displatemedation rather than a
constant stress-strain law.

Curvature post-processing

After the regularization of the global force-disg#anent response, in some cases
there is still a need to post-process the resaltsbtain an objective prediction of
the curvature demand in the plastic hinge regidns s due to the fact that This
is due to the fact that the plastic zone lengtthéslength of the first integration
point and does not necessarily correspond to thysigdd length of the plastic
hinge.
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A simple procedure is presented Ggpleman and Spacone, 20(2]. The first
consideration is that the total curvature in thaspt hinge region can be
separated into elastic and inelastic curvature corepts a®) = ¢, + ¢;, and
that the inelastic hinge rotation is given®y= ¢;L;p. The inelastic curvature of
the model, output of the analysis, can be appratachas

L)

The above formula is needed to compute the sceaterfawith which the inelastic
curvature of the model will be weighted, to obttie final actual curvature, after
this regularization process. Scale factor is

WipLZ (1_Wip)
Lp(L—Lp)

(2.42) scale factor =

Finally, the objective prediction of the curvature

(2.43) d = P + ;%" « (scale factor)

In conclusion, for dorce-basedbeam element it appears that if the length of the
first integration point corresponds to the lengthtloe plastic hinge,.e. if

Lip = L,, no post-processing of the curvature is neededusecthe curvature is
objectively predicted by the element. On the othemd, selecting the number of
Gauss-Lobatto integration points in such a way that= L, may cause two
problems:

- the number of integration points may be too smail short elements
(causing undesirable reduced integration) or tegeldor long elements
(increasing the computational cost of the element);

- in most cases, the length of the element would h#se to be adjusted,
thus introducing an additional element in each mami@his greatly
increases the computational cost of the analyses.

Different integration schemes in which the user dafine the length of the
integration points would also solve the issue, voutild significantly compromise
the accuracy of the numerical integration. The laggation approach described
in this paper is general and does not affect eitherelement formulation or the
integration scheme.
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Chapter 3

EXISTING STRUCTURE AND MODELING ISSUES

3.1.The bridge: Jamboree Road Overcrossing

The Jamboree Road Overcrossing (JRO) is locatéldeirOrange County, in the
city of Irvine on Route 261. The route is parttbEé Eastern Transportation
Corridor, one of the design/build/operate toll rm&u Southern CalifornigFigure
3.1 — a) The geographical coordinates of the location+3@° 43' 10.08", -117°
47' 43.26". The bridge is object of a project oaltie monitoring by the research
group of Professor Maria Q. Feng, University ofifoahia Irvine [18].

The JRO can be considered @ndinary Standard Bridgein fact, it meets the
requirements of Caltrans Seismic Design Criter@violed to define such category.
The JRO is a typical three-span continuous capltdane pre-stressed post-tension
box-girder(Figure 3.1 - b)[17]. The total length of the bridge 866 ft (110,9 m)

in which the lengths of the spans afel, 152and100 ft (35,5 m, 46,1 end30,3
m), respectively from span 1 to 3 [2@igure 3.1 - c).

The super-structure consists of a two-cell cagilace pre-stressed and post-
tensioned box girder, which is supported on two atitimc single columns and
sliding bearings on both abutments. The slidingibga allow creep, shrinkage,
and thermal expansion or contraction. On the oedigies of both traffic lanes, a
concrete barrier approximately75 ft (0.8 mhigh is provided. The typical cross
section of the box-girder is shownhigure 3.1 - d).
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The columns are rectangular with circular ends dnterlocking spiral
reinforcement. The columns height26,126 ftand28,41 ft (7,96 nand 8,66 m)
The shortest bent is usually referred to as laft,bghile the taller is the right bent.
The cross-section width 8,25 ft (2,51 mand its depth i%,5 ft (1,67 m)Both
columns are continuous with the box girder dueh rhain bent reinforcement
being anchored in solid concrete diaphragms fillthg girder void at bent
locations. Each bent is founded on a square raatbconcrete (RC) pad footing
supported in turn on Caltrans class 100C piles.il&ily, the abutments are
founded on pad footings supported on class 100¢3.pil

The JRO Bridge was designed by the Transportationriddbr Agencies in
accordance with th&merican Association of State Highway and Trantgimnm
Officials (AASHTO)1983 Standard Specifications for Highway Brid¢#s] with
interims and revisions by Caltrans. The constructocd the JRO bridge was
completed in 2001.
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Figure 3.1 - a) Jamboree Road Overcrossing locatexh Route 261; b) Plan; c)
Elevation; d) Typical Cross Section Box-Girder
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3.2.The OpenSees modeling

3.2.1. The software OpenSees

The softwareOpenSeeqd20], the Open System for Earthquake Engineering
Simulation is an object-oriented, open source software fraonle It has been
developed byPEER (Pacific Earthquake Engineering Research Centeng of
the most important American research institutes&smic engineering.

The software allows users to create both serial padhllel finite element
computer applications for simulating the responsstiuctural and geotechnical
systems subjected to earthquakes and other hazgrdaSeess primarily written

in C++ and uses several Fortran and C numericadrids for linear equation
solving, and material and element routines. Itnsopen source software, that
means it is free and it can be modified and impdolsg anyone OpenSeess
based on th&CL, Tool Command Languagthat supports, other than specific
commands of the software, basic operations and fil@anipulation. The
construction of the finite element model and thibofeing analysis are, therefore,
written as command lines; in fact, the softwaresdoet have a graphical interface.
Because of this, it is barely usable in every dayactice, but a very powerful
tool in the research fieldpenSeegxecutes both static and dynamics analysis,
linear and non-linear.

Four different phases can be identified as thecliasicess for each analysis:

a. ModelBuilder Object:the characteristics of the physical model to be
analyzed are defined, both plane models and threergional,

b. Domain Object:nodes, elements, sections, materials, restramssses
and loads are defined and recorded, availablellfthefollowing analysis;

c. Analysis Objectthe numerical procedure to be used is definedsoheng
algorithm, the integrator, convergence tests, iegration steps. Analysis
objects encapsulate algorithms that direct the Doma@amponents to form
and solve the governing equations of structuralilbgum at each
integration step;

d. Recorder Objectrecords and store into output files the structteaponse
obtained through the analysis.

To follow, in Figure 3.2[21], the modeling hierarchy for nonlinear struetur
analyses on which the softwadpenSees based.
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3.2.2. The Three-Dimensional Modd

Unit and Coordinate Systems

A three-dimensional (3D) model of the structurateyn is required to capture the
response of the entire bridge system and individwahponents under specific
seismic demand characteristics. The interactiorwdst the response in the
orthogonal bridge directions and the variation wfakloads in column bents
throughout the analysis is captured more accuratety 3D model, rather than a
2D model. The 3D linear model will be the basistfue nonlinear one. Having a
3D model enables correct evaluation of the capaaity ductility of the system
under seismic loads or displacements applied akmg given direction, not
necessary aligned with the principal axis of thedp.

The United States Customary Systéas been used for all the units used in the
OpenSeesnodel. Length are reported feet (ft), weights inkilo-pounds(kips),
time insecondgsec.). Other important derived and frequentlyduseits arekilo-
pounds per square fegisf) for the elastic modulfeet squaregft?) for areas, feet
to the power fou(ft*) for inertia moments.

The local and global coordinate system used fomibdeling and analysis of the
bridge is shown ifrigure 3.3 a).The global X-axis is in the direction of the chord
connecting the abutments, denoted as the longaldirection; the global Z-axis
is orthogonal to the chord in the horizontal plarepresenting the transverse
direction; while the global Y-axis defines the veat direction of the bridge. For
the analysis and design of elements of the bridgegutwo-noded elements, a
local coordinate system is used, as showigure 3.3 - ¢c)The orientation of all
frame elements in the structure coincides withpgbsgitive direction of the global
axis; namely, the coordinate of nodef the frame will be smaller than those of
nodej.

Mass distribution

All bridge elements will be approximated with atdsuted mass along their
length and assigns them as lumped mass at each ekl on tributary lengths.
To approximate the distributed mass with lumpedsessa sufficient number of
nodes and segments have to be defined. The wdiglorimal concrete is assumed
asw = 143.96 Ib/ft.2.No rotational mass have been taken into account.
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Cap beam local
coordinates

Superstruciure
local coordinates

Column local
coordinates
> - 1: Axial direction from node | to | (coming out
ST of the plane)
2: Perpendicular to axial direction
3 Defined by the cross product (right-hand
rule) of local axis 1X2

(b) Local coordinate system

(a) Global and local coordinate systems

MNode | U=y

U3=8a
U1=5,; Axial R3=03; R1=6:" Torsion U2=8
N Bending Mode i

U3=84
Transverse or
shear

Paint of Transverse or 3 R2=6, Bending Translation degrees of freedom
inflection shear Point of
inflection R1=8
Mode | R3=0;
Translation degrees of freedom  Rotational degrees of freedom R2=62
MNode i
(c) Degrees of freedom
finite-length element Rotational degrees of freedom
(d) Degrees of freedom

for zero-length element

Figure 3.3 - Global and local coordinate system

Elements and restraints

As suggested byCaltrans guidelines[1], a minimum of three elements per
column and four elements per span shall be usediirear elastic model. In fact,
10 elements have been used for each of the sman,ifito 3.

A rigid link, in correspondence of the connecti@nbdeck, have been used, the
rigid link goes from the top of the bent to the treid of the superstructure. The
different types of elements used for the columriklvei discussed later.

The boundary (support) conditions were definedasdfat the base of each bent,
thus the restraints for the three translational relegy of freedom are zero
displacement imposed, and the restraints for theetlrotational degrees of
freedom are zero rotation imposed.
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Abutments

The modeling of the abutments is one of the mositrowgersial issues when
modeling highway bridges. Nowadays, researcherslififgeent abutment models
according to the purpose of the analysis. Althosghkeral studies have been
conducted to study the abutment behavior, a lack ohique idealization still
persists.

Abutments are earth-retaining systems designedrdeige unimpeded traffic
access to and from the bridge. Abutments also geogn economical means of
resisting bridge inertial loads developed duringugid excitations. Abutment
walls are traditionally designed following prinaégsl for free-standing retaining
walls based on active and passive earth presseiogi¢s. However, such pressure
theories are invalid for abutment walls during s®cs events when inertial
loading from the massive bridge structure indudghdr than anticipated passive
earth pressure conditioisam and Martin, 198¢23]).

A realistic abutment model should represent allonggsistance mechanisms and
components, including an accurate estimation oir tineass, stiffness, and
nonlinear hysteretic behavior. Values of embankmeritical length and
participating mass were suggested by many resestnclies in order to quantify
the embankment mobilization. The consideration bé tabutment system
participating mass has a critical effect on the ensdapes and consequently the
dynamic response of the bridge, captured primanifgugh time history analysis.
The load pattern specified for a pushover analggithe bridge is also adjusted
due to this additional mass, modifying the forcéadmation results of the system
considerably. Due to the high sensitivity of thedge response to the magnitude
of the abutment mass, additional research is netxlsthndardize the modeling
recommendations for Caltrans bridges. In additieail-structure interaction
behind the abutment walls and due to the abutmeunhdations is also an
important aspect affecting the abutment system \behdhat requires further
investigation.

The main motivation to apply increasingly sophmtézl abutment models is
related to the accessibility to more powerful cobepsi rather than an apparent
inaccuracy of simpler models, but additional reskeas needed to standardize the
modeling recommendations for bridges.

Although different abutment models are availabhethis thesis it is sufficient to
model the abutment as a single spring was assigneakch degree of freedom, i.e.
transverse, longitudinal, vertical, and their respe rotations, resulting in a total
of 12 elastic springs in the bridge FE models [d4le reason to use this model is
to simplify the analysis and because the nonlibgaof the bridge under
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earthquake forces arises from different sources) a8 the column plastic hinges,
as explained later.

The abutments ends are fixed, butzeroLength elemenhas been built in
correspondence of the end nodes. To each of theéna_ength element it has
been associated the properties of the six elgstings, to simulate the interaction
between the bridge and the soil. The following ealwere assumed for both
abutments:

Spring stifiness of Trans X directionsDx = 4748,82 kips/ft.

Spring stifthess of Trans Y direction sDy = 437913 kips/ft.

Spring stiftness of Trans Z direction sDz = 3974,95 kips/ft.
Spring stiftness of Rot X direction sRx = 56453168 kips * ft./rad
Spring stiftness of Rot Z direction sRy = 647961,9 kips * ft./rad

Spring stiftness of Rot Z direction sRz = 3941217 kips * ft./rad

3.2.3. Modal Analysis and the definition of the load path for Pushover Analysis

Modal Analysis is the study of the dynamic propestiof structures under
vibrational excitation. It is executed on the linetastic model, therefore elastic
elements have been defined also for the bents.

In structural engineering, modal analysis involtles use of both, a system mass
matrix and a system stiffness matrix. The purpasdoi estimate the natural
frequencies (periods) and corresponding mode shegsexciated to the dynamics
of the system. These periods of vibration are waortant to note in earthquake
engineering, as it is desirable that a structuratsiral frequency does not match
the frequency of expected earthquakes in the ragievhich the building is to be
constructed. If a structure's natural frequencycheg an earthquake's frequency,
the structure could continue to resonate and esipeei structural damage.

The goal of modal analysis in structural mechaiscso determine the natural
mode shapes and frequencies of an object or steudiwring free vibration. It is
common to use the finite element method (FEM) tdgoen this analysis because,
like other calculations using the FEM, the objeeing analyzed can have

63



Chapter 3 HE EXISTING STRUCTURE AND THE MODELING ISSUES

arbitrary shape and the results of the calculatiames acceptable. The types of
equations which arise from modal analysis are tlegsa in eigensystems. The
physical interpretation of the eigenvalues and reigetors which come from
solving the system are that they represent theu&ecjes and corresponding mode
shapes. Sometimes, the only desired modes areowest frequencies because
they can be the most prominent modes at which thgcb will vibrate,
dominating all the higher frequency modes.

For the most basic problem involving a linear étashaterial which obeys
Hooke's Law, the matrix equations take the forna afynamic three dimensional
spring mass system. The generalized equation abmt given as:

3.1 [M][U] + [CI[U] + [K][U] = [F]

where [M] is the mass matri{d)] is the 2nd time derivative of the displacement
[U] (i.e., the acceleration){J] is the velocity, [C] is a damping matrix, [K] iseth
stiffness matrix, and [F] is the force vector. Tgeneral problem, with nonzero
damping, is a quadratic eigenvalue problem. Howefar vibrational modal
analysis, the damping is generally ignored, leawnty the 1st and 3rd terms on
the left hand side:

(3.2) [M][U] + [K][U] = [0]

This is the general form of the eigensystem en@yedtin structural engineering
using the FEM. To represent the free-vibration sohs of the structure harmonic
motion is assumed, so th{alii] is taken to equab® [U], wherew? is an eigenvalue
(with units of reciprocal time squared, §), and the equation reduces to:

(3.3) [M][U] w* + [K][U] = [0]

This eigenvalues problem will provide the natureggiiency of the system,
through which it will be possible to compute thegerivectors, physically
represented by the mode shapes of the system,raenezl before.

The computed natural frequencies that will be regabto follow, derive from the
analytical model with the boundary spring elemémtsated in the abutments ends,
and fixed ends for the columns, as mentioned befdige mode shapes
corresponding to the computed natural frequendiésecbridge are plotted for the
vertical direction and for the transverse directimm the mode shapes 2.
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Natural frequencies:
mode 1,f1 = 262Hz, T1 = 0,38 sec
mode 2, f2 = 2,64 Hz, T2 = 0,38 sec
mode 3, f3 = 2,91Hz, T3 = 0,34 sec
mode 4, f4 = 3,02Hz, T4 = 0,33 sec
mode 5, f5 = 3,84Hz, T5 = 0,26 sec
mode 6,f6 = 437 Hz, T6 = 0,23 sec
mode 7,f7 = 533Hz, T7 = 0,19 sec

First mode shape does not have a transversal canpomhile the others do. To

follow plots of mode shape (Eigure 3.4).

Since the first mode shape does not have any tessvcomponent, the second
mode shape has been considered when assigningdapéth to the Pushover
analysis. In fact the normalized eigenvectors hHasen computed, and the load
path created has the transversal component of thalses as load multipliers.

This implies that the load path selected for theshewuer analysis follows the

shape of the second vibration mode.

...............................
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Figure 3.4 - Mode Shape 2, from top to bottom: plapelevation and lateral
view
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3.3.The prototype materials

3.3.1. Linear eastic material for the deck

A linear elastic material prototype has been crkdtm the deck, with the
following properties

Deck: Young's modulus  E = 649584 ksf
Shear modulus G = Edeck/2,4 ksf

Some part of the model, require the elastic progeralso for the bents. The
elastic modulus and the shear modulus have beemassto be equal to those
used for the deck

Columns: Young's modulus E = 649584 ksf

Shear modulus G = Edeck /2,4 ksf

3.3.2. Elasto-plastic materials for the bents

When modeling concrete elements with nonlinear rad$g one has to distinguish

between unconfined and confined concrete. The iBrsissociated to the cover
concrete, confined by spiral hoops, while the sdderassociated with the core of
the element. It is essential to incorporate an m@teumodel of the material

behavior, because after the occurrence of destaudarthquakes, it has been
observed one of the most damaged elements on hygbridges is a column.

Concrete01

One of the two concrete considered for modeling ¢cbkimns is a material
available in OpenSees nam€dncrete01 This command is used to construct a
uniaxial Kent-Scott-Park concrete material object with degraded linear
unloading/reloading stiffness according to the wofk. D. Karsan and J. O.
Jirsa (1969) [25] and no tensile strengtfConcreteO1model is widely used
because of its simplicity and the control that bas over the input parameters.
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The expected compressive strength for unconfinedcrete is set equal to
720 ksf, and equal td,5 * 720 ksf for confined concrete, according to Caltrans
recommendations. The confined strength has beeadd01198 ksf, to let the
material be the most similar ©oncrete07 which will be introduced later. The
strains associated with these two peak stresses I@en set equal to those of
concrete07 while the Young Modulus in this model is obtainapplying the
following expression

(3.4) E, = 2+Lc

Ec

whereeg. is the strain associated ftg, f'c is the expected compressive strength for
concrete, ané. is the tangent modulus of elasticity at the origiircoordinates.
Once the compressive strength is reached, the inedrstress falls rapidly to
zero at the spalling strength, while the confinedss degrades not as rapidly as
the unconfined stress. The confined concretedel should continue to ascend
until the confined compressive strendth, is reached. The segment should be
followed by a descending curve dependent on thanpeters of the confining
steel, then a plateau for the confined concrete Ultimate compressive strain
should be the point where strain energy equilibrilsmreached between the
concrete and the confinement steel.

Concrete07

Many researchers have devoted a great effort imidgfthe stress-strain relation
of concrete. Among the publications regarding tisisue there are few that
presented successful expressions for a stress-tedationship for concrete
(Mander, et al. 198&6]; Chang and Mander 19927]).

The authors ofConcreteO7model give the following reasons for having created
such material model:

the model considers wedging action in the cracKsichv makes compression
stress develop prior to crack closure;

the model behaves differently depending on the nmbmbaen the strain reversal
occurs, providing a more robust hysteretic behavior

the model proposed hly B. Mander et al. (198826] is widely used to determine
the confined concrete properties and the modelqs®g byG. A. Chang and J. B.
Mander (1994)27] extends this last B. Mander'snodel to include the behavior
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of unconfined and high strength concreG. A. Chang and J. B. Manc (1994)
[27] used a large number of cyclic concrete tests tidlat the model behavir

In Mander’s model he initial ascending awe has the same initial slc, and
might be represented by the same equ: for both confined and unconfine
concrete since the confining steel has no effect in thisgeaof strain (Figure
3.5). Mander'smodel have been used to compute the yielcompressive strai
and the ultimate compressive strain for the cowffio@encret as follows

_ Flec _
(3.5) Ece = & [1 + 5% (f’c 1)]
(3.6) £y =14 (0,004 + %)

Wherefy, is the yielding strength of the longitudinal reirdmg barsey, is the
ultimate strain of the longitudinal reinforcing baConsidering that in the crc
section of the bents it is possible to inscribe tivoles formulas for circular cro:
sections, transversally reinforced with spiral h&dpave been us¢

4xAgp

(3.7) Ps

dgs

Agp is the cross section area of the spird is the diameter of the core as is
the spiral pitch, distance from center to centehefspirals

A

f'ec
|

f'o | Confined
| Concrete
|

f'ecu

|
I -
Ecc Esp SCCU

Figure 35 - Mander's model for concrete
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The main difference fronConcreteOlis thatConcreteO7is able to describe the
tensile behavior of the materidigure 3.6 tensile behavior, upper right part, and
compressive behavior lower left part, are notetoatcale). The eight parameter
needed to the describe the material are introduc&igure 3.6and explained in
more detail, to follow.

) Stress
Ecm
KE,
[ g
1 ~Straight
l' Line
Straight \ Strain
Line E
f Not to Scale
L /;
| £
xe
Eq
Y

Figure 3.6 — Chang and Mander, Envelope and variabkl definition
Concrete07

Unconfined Concrete For unconfined concrete, the peak compressieagthfc

in the above figure i$'; and corresponding straig is e.. Assuming that the
compressive strength for unconfined concrete idilgaavailable, the key
parameters required for the model can be found gusine following

recommendations which inclug€hang and Mander, 199{27] units ispsi):

f'c = unconfined peak compressive strength

(3.8) e, =Le
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(3.9) E, = 185000 * ' */®
(3.10) fi=75%F.
(3.11) g =f *Ei

Xp =2

X, = 2.3
(3.12) r={c_19

Confined concrete Confinement increases the strength and ductfityoncrete.
These effects are accounted in the above figurelgcing the peak compressive
strength and the corresponding strain Wighande'.., respectively. The value of r
is also decreased. The monotonic envelope forehsidn side of the confined
concrete follows the same curve that is used facoofined concrete. The
recommended approach to define all critical parameheeded to model the
confined concrete under compression are as foll@sang and Mander|[27]
1994):

f'c = unconfined peak compressive strength;

(313) f’cc :f’c*(]_-}—kl*x’)
_ 0,9
(3.14) ey =Ax [0'1 + 1+B*x’]
(3.15) x'=fi; + zf}z'c
1
! — f,504
(3.16) € c0 = Z000
(3.17) A = 6,886 — (0,6069 + 17,275q) * e~+98%
(3.18) B = 45 _x

%[0,9849—0,6306@_3'8939‘1]—0,1
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(3.19) q =2 being fip = fu
(3.20) Ece =% (L + ky*xx")
k, =5 * k; (normal strength transverse reinforcement)
x, = 30 (to follow the descending branch to large strains)
(3.21) n=E.xec/f',,
(3.22) r=—

The actual stress-strain relationship useddoncreteO7n the model, is shown in
Figure 3.7 —a) and h)where compressive stresses and strains are asdarbe
negative. Stresses are plottedksh, while strains are plotted #b.

In particular,Figure 3.7 a)shows the compressive behaviocohcrete07

- The _dashed blukne is the stress-strain curve for the unconfinedcrete
after reachingf’,, the peek compressive strength 920 ksf the
descending branch starts and reacfigs, the ultimate compressive
strength, o ksf corresponding to the ultimate compressive stgjn of
0,0635

- In solid bluethe stress-strain curve for the confined concretkose
yielding strengthf’.., is equal t01198 ksf Here the descending branch
starts and reachds..,,, the ultimate compressive strength, 1df68 ksf
corresponding to the ultimate compressive stegip = 0,0142

Figure 3.7 b)shows the tensile behavior obncrete07 the tensile stress-strain
relationship is assumed to be equal for both ungedfand confined concrete.
Figure 3.7 c)shows the superposition obncreteO1(in red) andconcrete07(in
blue) curves. It should be remarked thatdoncreteO1the Young Modulus is not
assigned from the user, therefore there is no cbotrer this parameter. Here
comes from the discrepancy between the two cureeshke confined concrete.
Results of pushover analysis have been comparedatthr concretes, but in the
following considerations onlgoncreteOave been taken into account.
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a)
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C) Strain-Stress ralationship
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Figure 3.7 — a) Compressive behavior of Concrete0B) Tensile behavior; c)
Superposition ofconcret01 and concrete07 models. Not to scale.

Steel02

The Steel02Zcommand is used to construct a uniagalffre-Menegotto-Pint¢28]
steel material object, with isotropic strain hardgnoption. Six parameters are
needed to define the model of the selected stéel.fifst two parameters needed
are the Young's Modulus and the yield strengtH, (reported also the
corresponding yield straire, ). The following values, corresponding to
Reinforcing Steel A706/A706M (Grade 60/Grade 40@)ye been assumed

Young's modulus E = 4320000,0 ksf
Yield strength fy = 8640,0 ksf
Yield strain g = 0,0025
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The third parameter ib (Figure 3.8) the strain-hardening ratio (ratio between
post-yield tangent and initial elastic tangenfjhe parameter controls the
inclination of the second linear branch, after fielding strengtHy is reached, by
reducing the initial elastic tangent. For modelmgposes, the parameterhas
been take = 0,01.

Even thought the ultimate strength does not needbdospecified in the
construction of the uniaxiateel0O2material, the following value is used later on
in the computation of the plastic hinge length

Ultimate strength fu = 11520,0 ksf

whose corresponding Ultimate strain &, = 0,0687

The last three parameter needed control the transftom elastic to plastic
branches, default values have been used.stded02material shows advantages,

with respect to a simpler model such sieel01 when considering hysteretic
behavior, important especially in dynamic analysis.

Strain-Stress ralationship
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Figure 3.8 — Stress-Strain relationshipSteel €02
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3.3.3. Fiber section definition

A fiber section was created and the area, coorel#nand material type for each
fiber of the column cross section, correspondingthte cover, the core, and
reinforcing steel, have been defined.

Figure 3.9- a) shows the fiber definition for the bent cross wectunique for
both the left and the right bent. It is possiblentde how the cover corresponds to
0,22 ft (6,7 cmyirca, while the core constitutes all the remaingurface of the
cross section, longitudinal reinforcing steel exield.

As mentioned before for a bridge reinforced corerevlumn, two different
models have been adopted for the concrete for whistress-strain relation was
defined previously, ifParagraph 3.3.2

The stress-straimelation with degrading material strength is defireeparately
for confined concrete, unconfined concrete, anedlste

- for the “cover” concrete a elasto-plastic degradingstitutive law without
confinement have been used,

- for the “core” concrete a elasto-plastic constigitlaw that accounts for
confinement, given by transversal hoops, have bsed.

The fiber section itself only handles axial andxd@leal force-deformations
relationship, therefore aBection Aggregator objedtas been used to include
shear force-deformatiorFigure 3.9 — b). Torsion is assumed to remain linear
elastic and uncoupled from the flexural and thelas@sponse, therefore does not
need to be included in the fiber section definition

8.25
a)
T—‘—1.375
o \Ch/\\/d:/o
B
4 \\ 2 5045 2.7500
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P. Mz

Figure 3.9 — a)Fibre definition for the bent crossection; b) Aggregator

3.3.4. The Moment-Curvature analysis of the section

The plastic moment capacity of a ductile concretanimer shall be calculated by
Moment-Curvature analysis based on the actual mhtproperties. Moment-
Curvature analysis derives the curvatures assaciitih a range of moments for
a cross section based on the principles of strampatibility and equilibrium
forces. Once defined the parameters for the thratenmals, and associated the
material desired to the core and cover concrete tAedreinforcing steel, a
Moment-Curvature Analysis is executeddpenSeesn the fiber section.

The assumptions for a flexural analysis of a camcteoss-section are:

the Navier-Bernoulli hypothesis, which states filahe sections normal to
the axial axis remain plane and normal to the aaxéd, holds;

there is a perfect bond between concrete and steel;
stress-strain relations for concrete and steek@ogn;
concrete tension strength is neglected;

an axial load is applied at the centroid of theisac

When a fiber section is used to perform a momentature analysis the
following steps are usually required:

76



Chapter 3 HE EXISTING STRUCTURE AND THE MODELING ISSUES

1. The section is divided into discrete elements €&rperpendicular to the
loading axis;

Define stress-strain relations for steel, core oetecand cover concrete;
Assume a low extreme fibre compression strain;

Assume a location of the neutral axis;

Calculate concrete and steel stress at the ceinéarch fiber;

Check axial force equilibrium;

Repeat steps 4 to 6 until equilibrium is reached;

Calculate the moment and curvature;

© ©®© N o 00 & W N

Move to the next strain value and repeat steps83 to

The procedure ends when the ultimate compressiaim $tas been reached.

In Figure 3.10 a}he plot of the Moment-Curvature diagrams fortile different
concrete usedConcrete01-SteelOih red andConcrete07-SteelOth blue. The
estimated yield curvature is equalgic= 0.0127[1/ft].

The curve can then be idealized [29] with an elp$astic response to estimate
the plastic moment capacity of a member’s crosiaecThe elastic portion for
the idealized curve should pass through the poarkimg the first reinforcing bar
yield, (¢'y, M,,), in Figure 3.10 - b}he blue datThe elastic branch continues up
to the nominal moment capacity, green ddt, is defined as the moment
corresponding to an extreme fibre compressionrstb?.004 in the concrete, or
an extreme tension reinforcing bar strair0df15 the latter have been considered.
The curvature corresponding K, is the nominal yield curvatukg,, computed
according to a linear law

My

(3.23) by = M_y¢’y

The plastic branch is simply defined by connectthg nominal yield point,
(¢y, My), in Figure 3.10- b) the green dot, to the ultimate conditigg,,, M,,),
the red dot.
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Figure 3.10 — a) Moment-Curvature procedure; b) Idalized bilinear curve
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3.4.Localization of the material nonlinearities in thebents

As mentioned in the first chapter the nonlineamadets used for the model are
force-based elementsin particular, both diffuse plasticity elementsida
concentrated plasticity elements have been coresidguring the construction of
the model.

Three different elements have been selected froenSges library:

beamWithHinges elemenfFigure 3.11 — &) for the element with

concentrated plasticity, that uses integration sehemodified Gauss-
Radau (seen i€@hapter 2,in Paragraph 2.1.3.)This element requires the
computation of the plastic hinge length, accordimghe method seen in
Chapter 2 in Paragraph 2.1.9

nonlinearBeamColumn eleme(figure 3.11 — bfor the element with
diffuse plasticity, that uses the integration sche@®auss-Lobatto (see
Chapter 2 in Paragraph 2.2.3

zeroLengthSection elemenis a zero length element object, which is
defined by two nodes at the same location. The s\ade connected by a
single section object to represent the force-deddion relationship for the
element.

user-defined sections

a)
node i node j
® Linear Elastic | *
i:— Lp, —» <« Lp; —:I
L
b) ‘ Integration Sections

Figure 3.11 - a)beamWithHinges element; b)nonlinearBeamColumn element
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3.4.1. Thedifferent scenarios employed in the bents modeling

Several scenarios have been taken into account wieateling the reinforced
concrete bridge columns:

one beamWithHinges elememtith a plastic hinge length, equal at both
ends. The plastic hinge length have been computddcaee equal t@,560 ft
for the 26,410 fttall bent, and2,690 ftfor the 28,410 fttall bent. The strain
penetratiorLspis 1,057 ft

two nonlinearBeamColumn elementt the top and the bottom of the bent,
and arelasticBeamColumn eleméuot the central part of the bent. In order to
better compare the results of the different angjysin with the different
elements modeling the nonlinearity of the bents, lédngth of the nonlinear
elements have been assumed to be approximately gttee length of the
plastic hinges used for the concentrated plastalgynents. Three integration
points have been selected, therefore even wittmdasi plastic zone length
the results are expected to be quite different, tuehe localization of
plasticity at the first integration point. On thiner hand, as seen @hapter 2
the use of just two integration points is discoedgdue to inaccuracy;

one nonlinearBeamColumn elemewith ten integration points, so that the
first integration section would be approximatelgdted in correspondence of
L, in thebeamWithHinges elementen integration points have been used in
order to have the best correspondence betweenirteirftegration point
location and., of thebeamWithHinges elements

two zeroLengthSectioelementslocated in correspondence of the bent top
and bottom ends, plus threiasticBeamColumelementdor the central part
of the bent. The orientation of ttaeroLengthSectioelementsneeds to be
specified, in order to achieve reasonable resutiact the default orientation
locates the section parallel to the longitudinaspinstead of orthogonally.

In Chapter 4the results of the pushover analysis executedeifferent models
are presented. However, in the second part of the&k,wwhen converting a
pushover curve into a capacity spectrum, onlyldb@mWithHinges elemehave
been taken into account.
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3.5.The Geometrical nonlinearities

In OpenSeesgeomTransf’command is used to construct a linear coordinate
transformation object, which performs a geometrigngformation of beam
stiffness and resisting force from the basic sydtethe global-coordinate system.
Furthermore, through the object the\Reffects, or second order effects are taken
into account, where R- effect refers to the abrupt changes in ground rshea
overturning moment, and/or the axial force distiilnu at the base of a
sufficiently tall structure or structural componemen it is subject to a critical
lateral displacement.

The dynamic effects of column axial loads actingotiygh large lateral
displacements, otherwise known aa Rer second-order effects, is included in all
analysis cases of the bridge model. The consideratf PA effects helps
identify the structural instability hazard of thedge by capturing the degradation
of strength and amplification of the seismic demandhe column bents, caused
by the relative displacement between the column dog bottom. During a
pushover analysis, the degradation of strengtlotechwith the increase of lateral
displacements of the column top, thus providingecurate estimate of the actual
capacity and base shear of the bridge. A softebét@vior with a constant slope
iIs observed in the force-displacement curve. Dutinge history analysis, P-
A effects play an important role in capturing thekpdsplacements of a yielding
system, where a significant amplification of thepense is generally expected for
an adequate set of ground motions.
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3.6. The Pushover Analysis procedure

3.6.1. The solving algorithms

The main incremental iterative procedures are abhil in OpenSeesfor the
nonlinear analysis. The available algorithms Bi®wvton-Rapsgnthe Newton-
Rapson with line sear¢chand Broydenand the derivatives. The algorithms are
used in the presented order, subsequently in casenvergence failure of the
previous one.

- Newton-Rapson algorithnis the most widely used and most robust iteeativ
method for solving systems of nonlinear algebrajoations. It is also the
most demanding in terms of computational effortause the stiffness matrix
need to be updated at each iteration step.

- TheNewton-Rapson with line search algorithimtroduces the line search to
solve the nonlinear residual equation. Line seancheases the effectiveness
of the Newton method when convergence is slow duetighness of the
residual. The stiffness matrix is not updated athestep. This implies a
reduced computational effort, the advantage ofrteé¢hod. The drawback of
this method is that it requires more iterationsithewton's method, thus the
convergence is slower.

- Broyden algorithmis for general un-symmetric systems. It performs
successive rank-one updates of the tangent airtftétération of the current
time step. This algorithm is used in critical casaly, because the algorithm
densifies the iterations in correspondence of thietp where the solution has
difficulty to converge. As a result the convergeirsslower.

3.6.2. Theintegrator

The Integrator object determines the meaning of trens in the system of
equation objecix = B. It is used to: determine the predictive steptiime t+dt;
specify the tangent matrix and residual vector rat #eration; determine the
corrective step based on the displacement incrediénthe type of integrator
chosen among the available D8splacement Controlln an analysis step with
Displacement Contraihe objective is to determine the time step thitresult in

a displacement increment for a particular degrefrefdom at a node to be a
prescribed value.
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3.6.3. The convergence test

As of the convergence tests it is possible to chlmtereen various typesdlorm
Unbalance Test, Norm Displacement Increment teserdy Increment Testn
particular, it has been used tBaergy Increment Testhis convergence test uses
the dot product of the solution vector and nornthefright hand side of the matrix
equation to determine if convergence has been egadrhe physical meaning of
this quantity depends on the integrator and coim$ttandler chosen. Usually,
though not always, it is equal to the energy unizdain the system. The
convergence tests positive if one half of the ifpreduct of thex andb vectors
(displacement increment and unbalance) is lessttiespecified tolerance.

3.7.The Nonlinear Time-History Analysis procedure

3.7.1. Thesolving algorithm, the integrator and the convergence test

The algorithm used for the Time History AnalyseshieNewton-Rapson with line
search algorithm,introduced in the previous paragraph.

The Hilber-Hughes-TaylorMMethod HHT)integration schemeH(lber, Hughes,
and Taylor, 197730]) have been used for the analydidT is an implicit,
unconditionally stable method with numerical dangpiproperties to reduce
higher mode oscillation, while achieving secondeordaccuracy (error
proportional toAt?) when used to solve the ordinary differential eoues of
motion. The method makes use of @mparameter ranging froril/3 to Q The
smaller the value af, the more damping is induced in the numericaltgmiu The
choice ofa = 0.7 have been adopted for the OpenSees analysis.

The convergence test used is Relative Energy Increment, is similar to the
Energy Incremenintroduced in the previous paragraph, but theitestlative to
the first dor product computed for each step.

3.7.2. Damping

The damping is an effect that reduces the amplitafieoscillations in an
oscillatory system. The damping in direct-integratitime-history analysis is
modeled using a full damping matrix. Damping matagplied to the entire
structure is calculated as a linear combinatiothefstiffness and mass matrices
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(Rayleigh dampingseeFigure 3.13. Stiffness and mass proportional damping
coefficients are specified directly or by equivdldractions of critical modal
damping at two modal periods. 5 % damping coefficfeave been used.

(3.24) [C] = a[M] + B[K]

Being[C] the damping matri{,M] the mass matriXK| the stiffness matrix, 8
two scalars.

.
-

______ Stiffness proportional damping

————— Mass proportional damping
— Rayleigh damping

C- Damping ratio

w- Frequency

Figure 3.12 — Rayleigh damping
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Chapter 4

NONLINEAR ANALYSIS RESULTS

At the completion of the analysis phase, the pushourve is obtained where the
total base shear and displacement capacity ofridgebare determined. The total
base shear is obtained adding the shear reactiotise dbase nodes together,
recorded in the transverse direction, the directmowhich the pushover analyses
have been executed. The displacement recorde@ isnk at mid-span, node 16,
of the superstructure.

First, a simple analysis have been executed, aopasion the single bents. The
load has been applied at the top of the left beode 11, and at the top of the right
bent, node 21, in the course of different analysefFigure 4.1 — a).

Afterwards, a pushover analysis loading the whoigcture have been performed.
In this case, the structure was loaded both on déek and on the piers,
proportionally to the first transverse vibrationabde, se&igure 4.1 — b)

After running several analyses, it has been decidatithe most accurate results
are obtained byoncreteO7modeling the material nonlinearities. Therefores t
second part of the chapter only shows results édawvith theconcrete07-steel02
materials. Due to the huge amount of output datarther selection had to be
done. ThebeamWithHingeselementhas been preferred over thwnlinear
elementand the other settings for modeling the bents. haamWithHinges
elementwas selected for further investigation becauss gupposedly the most
accurate and widely used DpenSeessers.



Chapter 4 NONLINEARNALYSIS RESULTS

b)

Figure 4.1 — Loading scheme options a) Single columpushover; b) Pushover
analysis loading the whole structure
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4.1. Pushover curves using different finite elements fothe bents

The pushover analyses run loading only one of drgsoat a time, tell us that the
most stressed pile, in terms of base shear, ikthbent, which is the shorter one.
In Figure 4.2 — a)the left bent, irFigure 4.2 — b}he right bent. In this case, the
displacement plot is the displacement of the tothefbent loaded, left and right
respectively. All the curves show a plastic hardgnbehavior, this makes it
difficult to identify graphically the possible cafpse of the bent. Thus, the range
of drift observed has been determined after seveads$, to include the failure of
both steel and concrete. How this drift range i®aeined, will be discussed in
the next chapter. One foot drift is approximat@ly %of the bent height.

All the modeling scenarios considered are plotted lhoth concrete0land
concreteO7materials, showing a certain similitude in the debr of the two
concretes, for all curves but thenonlinearBeamColumn elemesylid black in
Figure 4.2 — a).
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b) Pushover Right Bent
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Figure 4.2 — a) Left bent pushover; b) Right bent pshover.

From now on, the results are referred to the pushawmalysis executed loading
the whole structure, proportionally to the transeemode of vibration. IRigure
4.3, the mid-span displacement versus the total basardk plot. It is evident
how all the different elements considered, compaedhe beamWithHinges
element tend to overestimate the necessary force to aehaecertain mid-span
displacement, especially, approaching the end & thsplacement range
considered.

As mentioned before the slope of the elastic brafahthe element with
distributed plasticity appears to be different frdire slope of concentrated
plasticity elements. The slope for thenlinearBeamColumn elemesblid black
curve inFigure 4.3 is, indeed, lower. For the distributed plasyi@tement, the
flexural rigidity is obtained from the geometricatertia which might be
overestimated when cracking of concrete occurs.hamy the influence of this
issue is limited to the elastic response, in féctjoes not interfere with the
ultimate displacement, which mostly depends uperpthstic response.
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Figure 4.3 — Mid-Span displacement vs Total Base 8ar
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4.2. Dirift-Strain curves of different bents finite elements

In order to estimate which are the drifts that esudifferent failure modes, drift
versus strain plots have been created for the comerete and for the steel. As
one can notice ifrigure 4.4a) and b) two horizontal line establish for the core
concrete the peek, dashed blue, and the ultimashed red, strains. For the steel,
the dashed blue line corresponds to yield, whike dashed red corresponds to
ultimate strainFigure 4.4c) and d). Then, having a look at the recorders, the
intersection with all the curves drift-strain edisio in correspondence of which
drift the column reaches the different conditions, peek of concrete strength,
failure of concrete, yield of steel bars, failurté steel bars. The compressive
strains are assumed to be negative, while thel¢estsains are positive.
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Strain

Strain

-0.002

-0.004

-0.0086

-0.008

-0.01

-0.012

-0.014

-0.0186

-0.018

-0.02
o]

Drift - Strain relation Right bent

= nonlinearBeamColumn 3elements 4702
+nonlinearBeamColumn 3elements ¢102

- Yielding
Failure

beamWithHinges 0102
=== heamWithHinges 0702
nonlinearBeamColumn 1element 3402
=== fghlinearBeamColumn 1element [0702
= zerolengthSection 0102
=== zerglengthSection 0702

My

NN

0.08

0.07

0.06

0.05

0.04

0.03

* nonlinearBeamColumn 3elements 0102 |+
beamWithHinges 0102
==== heamWithHinges 0702
nonlinearBeamColumn 1element 0102 [+

0.02

0.01

= zerolLengthSection 0102
==m== zerolengthSection 0702

= nonlinearBeamColumn 3elements 0702

=== nonlinearBeamColumn 1element 0702

0.4 0.5

91



Chapter 4 NONLINEARNALYSIS RESULTS
) Drift - Strain relation Steel Right bent
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Figure 4.4 — a) Drift-Strain relation core concreteleft bent; b) Drift-Strain
relation core concrete right bent; c) Drift-Strain relation steel left bent; d)
Drift-Strain relation steel right bent.
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4.3. Failure modes for bents modeled with beamWithHinges

elements

To follow only beamWithHinges elementssults are reported. Figure 4.5, the
pushover curves obtained with the two different aretes and marks for the
different failures expected. On the left part of thiagram, the blue and the light
blue markers indicate, respectively, the yieldifdghe first reinforcing bar for the
left and right bent. On the central part of thetplbe peak of concrete strength is
reached for both left column, blue dots, and righiumn, light blue dots. On the
top right of the curve, the different symbols ($egendof Figure 4.9 indicates
when the failure of steel and concrete happenss,Tthe collapse of the structural
element. Knowing when the collapse of the structutehappen is fundamental.
In fact, it is then possible to establish whethes tapacity is greater than the
demand.
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Figure 4.5 — Pushover curves and failure moddsamWithHinges

93



Chapter 4 NONLINEARNALYSIS RESULTS

4.3.1. Yield and Ultimate drift (Prietley, Calvi, Kowalsky) [29]

It is of interest to compute the drift at yield aatultimate condition, with the
formulas proposed byriestley, Calvi, Kowalskyand compare the results with the
experimental onesPriestley, Calvi, Kowalskyplastic hinge length refers to a
condition in which the load applied to the toptble column causes the pier to act
like a cantilever, seEigure 4.6 It is well known that the moment is expected to
be linear, and null in correspondence of the agdgbad at the top of the bent. The
curvature is expected to be null at the top as,\welll have the maximum value at
the base. The displacement, on the contrary, isa&gd to be zero at the fixed end
and maximum at the top, where the force is applied.

From the element recorders, all those conditionsehbeen checked. The
displacement trend along the element, as expestatakimum at the top of the
bent.Figure 4.7 - a)shows the curvature distribution at the first gigme instant
and in correspondence of the ultimate conditiorthmplot it is reported also the
idealized curvature distribution, solid black limed the strain penetration, dashed
black line.Figure 4.7 - b)shows the moment distribution along the heightath
left and right bent. The moment on top of the bemtot zero. Thus, the height of
the columnH should be considered from the center of the mldstige length to
the point of contra-flexure.

P L
By
H
M) oo
— R .
(a) Structure (b) Moments  (c¢) Curvature (d) Displacement

Figure 4.6 — Cantilever behavior of a bridge pier
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Curvature - beamWithHinges 0702 - Right

0 T T T T T
® Yield
a) .
@ Ultimate
-5 -
-10 .
£
E 5F 1
[}
XL
20 .
®
-25 o 1 .
-30 I | 1 ! {
0 0.002 0.004 0.006 0.008 0.01 0.012
Curvature [1/ft.]
Moment - beamWithHinges 0702
0 I T T I T
b) ——— Moment distribution Right bent
—————— Moment distribution Left Bent
PipCad
¢’
{3] .,‘ [#
7%
Cld
rd
P
R
10 .’:5‘
&
‘-
=
‘T -15
T
&
g
-20 4
d
At
Ral
Clal
P
et d
2
..ﬁ;o [
25 5
Pt s
o2l
s
K4
-16000 -14000 -12000 -10000 -8000 -6000 -4000 -2000 Q0 2000

Moment [Kips-it.]
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The curvature at first yield, and the nominal yieldvature, were introduced in
Chapter 3.They are now used to compute the drift at yieldamgl at ultimate
condition, in order to check whether they corregspaith the experimental results.
The drift corresponding to first yielding is fouratcording toEqg. 4.1and the
corresponding force,fby Eq. 4.2

_ @', (H+Lsp)?

(4.1) A, .

(4.2) F,=M,/H
The drift and force at ultimate condition is definay

) My

(4.3) 4, = A’yﬁ—z <¢ -9, My) LpH
(4.4) F, = M,/H

FromFigure 4.8it is possible to notice that the yield drift cont@d with theEq.

4.1 and the one recorded from pushover analysis ite ggimilar. The slight
difference might be attributed to the uncertaintgrothe actuaH and the fact that
abeamWithHinges elemedbes not account for strain penetration lengghThe
same is not true for the ultimate displacement,re/libe difference between the
one computed witheg. 4.1and the one obtained from the pushover analysis is
quite different.
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Figure 4.8 — Comparison between theoretical and ahgsis yield and ultimate
drifts
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4.4. Performance point

Once obtained the pushover curve, it is possiblepialy theCapacity Spectrum
Method introduced inChapter 1 The pushover curve is transformed into a
capacity spectrum (solid black curveRigure 4.9, as pelATC 4Q then it is plot

in the same graph as the 5% damped demand spegtdrourve inFigure 4.9),
and the reduced damping spectrum. The e dampingtied has been carried out
according toATC 40. The various failure modes, previously described a
reported on the curve, as well as the bilineanetad the capacity spectrum
(dashed black curve ifigure 4.9) The thin black line indicates the tangent
stiffness. As one can note from the plot, the push@nalysis suggest that the
structure is expected to remain standing when thsigd earthquake occurs.
Failure is, in fact, well beyond the performancenpoyellow marker inFigure
4.9. Nonetheless, the bridge may suffer during thegdesarthquake significant
damage requiring closure. In fact, yielding of fenging bars happens well before
the performance point, and so the cracking of tedn tension.

J
AN
AN

5% damped Elastic Demand Spectrum| |
Capacity Curve beamWithHinges 0702
Tangent Sliffness

==== Reduced Damping Spectrum

Peek Concrete 07 Left
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Figure 4.9 — Intersection of capacity spectrum andemand spectrum
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4.5. Nonlinear Time-History Analysis results

A dynamic analysis have been executed for eachh@fseven accelerograms
selected, and presented @hapter 1 For each analysis, the time history of
displacements and reaction forces have been exdnsaequired bfFEMA 273
and SDC 2010 the mean value of the maximum displacement hasenb
computed, and the corresponding value of baseiogact

45.1. Hysteresis curves after dynamic loading

It is interesting to have a look at the hysteresisves of the materials used,
concrete07and steel02 They appear to have a complicated path, due ¢o th
casualty of the input signal. In fact, dynamic load causes loading and
unloading cycles in the fiber in which the stressaia relation is being recorded.
From Figure 4.10 — a)it is possible to note how the peek for the cavacrete
have not been reached yet. On the other hand etble and the ultimate condition
for the tensile concrete have been reached alremdwell as the yielding of the
bars in tensiorkigure 4.10 — b)
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Figure 4.10 —a) Stress-Strain Cor€oncrete07; b) Stress-StrainSteel 02.

4.5.2. Displacement Time-History

Figure 4.11 — a) to gshow the displacement Time-Histories respons&rded
for the seven different accelerograms applied ¢osthucture. The displacement is
recorded at the mid-span of the superstructure,e ndd. The maximum
displacement is marked, with a blue star, on edahand is reported iffable 4.1
together with the corresponding total base sheaenThe average of the sum of
the absolute value of each maximum displacementoimputed. The mean
displacement obtained 146 ft. The displacement time history plots confirm
what the stress-strain curves showed above: pladeformations form
approaching the end of the dynamic loading timerirdl. In fact, displacement
does not go back to zero once the external actelerapplied is over, but there is
a residual displacement.
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Displacement Time History
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Displacement Time History
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Figure 4.11 — a) to g) Displacement time-histories

4.5.3. Base Shear Time-History

Figure 4.12 — a) to gdhow the total base shear Time-Histories respaaserded
for each of the seven accelerograms used. The véline base shear is computed
as the maximum base shear found in an interv8l 25 secondaround the time
where the displacement is maximum. The intervalvimich the base shear is
evaluated is limited by red dashed lines-igure 4.12 — a) to g).
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Base Shear Time History
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Base Shear Time History
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Base Shear Time History
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Figure 4.12 — a) to g) Total base shear time-histi&s

Table 4.1 — Maximum displacement and correspondingase shear, for each

time history
. Absolu.te value Absolute Value Total
File Name _ Maximum Base Shear [kips]
Displacement [ft]

821 H1 ERZ-NS 0,166 1728,82
1085 H1 SCE018 0,139 1498,19
949 H1 ARL090 0,098 1447,82
6 H1 I-ELC180 0,119 1562,53
6 H2 I-ELC270 0,160 1663,10
1087 H1 TAR090 0,114 1441,09
741 H2 BRNO90 0,115 1489,99
Mean value 0,130 1547,75
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4.6. Comparison between pushover and time-history resust

The average maximum displacement and the corresppthatal base shear have
been computed, respectively,,= 0,146 ft. andV,,, , = 1576,26 kip. It is
interesting to plot this point together with thespaver curve and the reduce
demand earthquake curve, to see where it locates.dEmand curve has been
converted into a drift-base shear curve from spéctlisplacement-spectral
acceleration curve, through an inverse procedutie spect to the one presented
in Chapter 1, Paragraph 1.2.1.

From the stress-strain hysteresis curve it wasdir&known that the bents reach
plasticity, but it was not clear how close to tlefprmance point the time history
point (Arya, Vppy,) Would be. FromFigure 4.13 it is also evident that the
dynamic solicitations will not cause failure inttetbridge piers because the point
(Arya Vppy,) is located far away from the expected collapsitpoed square
marker.

The point that is obtained from the time-historyalgsis is fairly close to the
performance point. Thus, it is possible to say that results obtained from the
time history analysis validate those obtained ftbmpushover analysis.
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Figure 4.13 - Comparison between pushover and timiistory results
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Conclusion

The present thesis work consist of the pushovelysisaof an existing highway
bridge. The structure]amboree Road Overcrossing located on route 261 in
Irivne, Orange County, California. JRO is a Staddardinary Bridge, according
to Caltrans Seismic Design Criteria. The bridge tgpical three-span continuous
cast-in-place pre-stressed post-tension box-girsigpported on two monolithic
piers. The total length of the bridge366 ft.,while the piers ar@6,41and28,41
ft. tall.

It was first necessary to determine the seismicatehof the aforementioned site,
corresponding to th&aximum Earthquakeor the level of ground shaking that
has a 5 percent chance of being exceeded in ad&®8 period. The 5% damped
elastic design spectrum, deaggregation parametersteear wave velocity, have
been determined thanks taltrans and U.S. Geology Surveysnline tools
Moreover, seven accelerograms, compatible wittb#fedamped elastic spectrum,
have been selected from thHéext Generation Attenuation databaskput
parameters for the selection were the distancéefsite from the nearest fault,
the magnitude indicated from the deaggregatiorhasntost hazardous and the
period interval based on the natural period ofstinecture.

Part of the work has been dedicated to the studiprok-basedbeam-column
elements their formulations and issues regardiegottjectivity of their response.
Both concentrated plasticity elements and distebuplasticity elements have
been considered. For the two categories, the issegarding the integration
schemes and the problems related to the materialinearities have been
deepened.



COCNLUSION

The central part of the work is the creation of theee-dimensional nonlinear
finite element model, by the open source softw@penSeesGreat emphasis is
put in the selection of the parameters for modetimg material nonlinearities.
Stress-strain curves of different materials havenbexamined and compared.
Furthermore, different elements present in the Qpes library have been
employed for modeling the bridge bents. In paracdeamWithHinges elements
andzeroLength elementsave been selected for the concentrated plasbeitys
modeling, andonilinearBeamColumn elemerits the distributed plasticity bents
modeling.

Nonlinear static analyses, also known as Pushawayses, are then run for each
of the different model settings. Two different logaglschemes have been applied
to the finite element modeled structure:. The fld scheme, had the loads
applied only at the top of the bent, left first atieen right. The second load
scheme, had the structure loaded both on theastlon the piers, proportionally
to the first transverse vibrational mode. Pushateves, base shear function of
mid-span displacement curves, of each of the @iffemodel scenarios have been
compared. Drift-Strain curves were created to detee the drift which
corresponds to the different states, yielding eékbars, peek of concrete strength,
failure of concrete and steel reinforcement. TheamWithHinges elemeni®re
selected for the second part of the work. The pushourve was transformed into
a capacity spectrum, according AC 40, and intersected with the reduced
damped spectrum, in order to determine the perfocmaoint of the structure.
This last plot demonstrates that the structure Woaubt collapse in case of
Maximum Earthquakéhappening at the site; thought the bridge migttesu
significant damage requiring closure. In fact, giey) of reinforcing bars happens
before the performance point, and so the crackirngcrete in tension.

The last part of the work consisted in the executd dynamic analyses.e.
nonlinear time-history analyses. The seven acogtams have been applied to
the structure withbeamWithHinges elementsodeling the bents, and the average
of the maximum displacements and the corresponbtiege shear have been
computed. Afterwards, the point was plotted togetiéh the pushover curve and
the design earthquake demand curve, convertedpladement versus base-shear
from the spectrum. The point that the time-histanalyses individuate is pretty
close to the performance point. Thus, it is posstbl say that the results of the
dynamic analyses validate those obtained from tl#h@ver analysis. In fact, the
displacement demand predicted by the reduced dantuirve, that corresponds
to the performance point, is confirmed by the dednafithe time history analyses.
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