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Introduction 

The work for the present thesis started in California, during my semester as an 
exchange student overseas. California is known worldwide for its seismicity and 
its effort in the earthquake engineering research field. For this reason, I 
immediately found interesting the Structural Dynamics Professor, Maria Q. Feng's 
proposal, to work on a pushover analysis of the existing Jamboree Road 
Overcrossing bridge. 
Concrete is a popular building material in California, and for the most part, it 
serves its functions well. However, concrete is inherently brittle and performs 
poorly during earthquakes if not reinforced properly. The San Fernando 
Earthquake of 1971 dramatically demonstrated this characteristic. Shortly 
thereafter, code writers revised the design provisions for new concrete buildings 
so to provide adequate ductility to resist strong ground shaking. There remain, 
nonetheless, millions of square feet of non-ductile concrete buildings in California. 
The purpose of this work is to perform a Pushover Analysis and compare the 
results with those of a Nonlinear Time-History Analysis of an existing bridge, 
located in Southern California. The analyses have been executed through the 
software OpenSees, the Open System for Earthquake Engineering Simulation.  
The bridge Jamboree Road Overcrossing is classified as a Standard Ordinary 
Bridge. In fact, the JRO is a typical three-span continuous cast-in-place pre-
stressed post-tension box-girder. The total length of the bridge is 366 ft., and the 
height of the two bents are respectively 26,41 ft. and 28,41 ft.. 
Both the Pushover Analysis and the Nonlinear Time-History Analysis require the 
use of a model that takes into account for the nonlinearities of the system. In fact, 
in order to execute nonlinear analyses of highway bridges it is essential to 
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incorporate an accurate model of the material behavior. It has been observed that, 
after the occurrence of destructive earthquakes, one of the most damaged elements 
on highway bridges is a column. To evaluate the performance of bridge columns 
during seismic events an adequate model of the column must be incorporated. Part 
of the work of the present thesis is, in fact, dedicated to the modeling of bents. 
Different types of nonlinear element have been studied and modeled, with 
emphasis on the plasticity zone length determination and location. Furthermore, 
different models for concrete and steel materials have been considered, and the 
selection of the parameters that define the constitutive laws of the different 
materials have been accurate.  
The work is structured into four chapters, to follow a brief overview of the content. 

The first chapter introduces the concepts related to capacity design, as the actual 
philosophy of seismic design. Furthermore, nonlinear analyses both static, 
pushover, and dynamic, time-history, are presented. The final paragraph 
concludes with a short description on how to determine the seismic demand at a 
specific site, according to the latest design criteria in California. 

The second chapter deals with the formulation of force-based finite elements and 
the issues regarding the objectivity of the response in nonlinear field. Both 
concentrated and distributed plasticity elements are discussed into detail. 

The third chapter presents the existing structure, the software used OpenSees, and 
the modeling assumptions and issues. The creation of the nonlinear model 
represents a central part in this work. Nonlinear material constitutive laws, for 
concrete and reinforcing steel, are discussed into detail; as well as the different 
scenarios employed in the columns modeling.  

Finally, the results of the pushover analysis are presented in chapter four. 
Capacity curves are examined for the different model scenarios used, and failure 
modes of concrete and steel are discussed. Capacity curve is converted into 
capacity spectrum and intersected with the design spectrum. In the last paragraph, 
the results of nonlinear time-history analyses are compared to those of pushover 
analysis. 



 

 

 

 

 

 

Chapter 1 

NONLINEAR ANALYSIS IN SEISMIC DESIGN OF BRIDGES 

The seismic demands on a bridge structure, subject to a particular ground motion, 
can be estimated through an equivalent analysis of a mathematical model that 
incorporates the behavior of the superstructure, piers, footing, and soil system. 
The idealized model should properly represent the actual geometry, boundary 
conditions, gravity load, mass distribution, energy dissipation, and nonlinear 
properties of all major components of the bridge. In this way, confident results 
can be achieved for a variety of earthquake scenarios. 
A simple linear elastic model of a bridge structure would only accurately capture 
the static and dynamic behavior of the system when stresses in all elements of the 
bridge do not exceed their elastic limit. Beyond that demand level, a linear model 
will fail to represent many sources of inelastic response of the bridge. The forces 
and displacements generated by a linear elastic analysis will differ considerably 
from the actual force demands on the structure.  
Nonlinear modeling and analysis allow more accurate determination of stresses, 
strains, deformations, forces, and displacements of critical components, results 
that can then be utilized for the final design of the bridge subsystems or evaluation 
of the bridge global capacity and ductility. 
Two categories of nonlinear behavior are incorporated in the bridge model, to 
properly represent the expected response under moderate to intense levels of 
seismic demand. The first category consists of inelastic behavior of elements and 
cross sections due to nonlinear material stress-strain relations, as well as the 
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presence of gaps, dampers, or nonlinear springs in special bridge components. The 
precise definition of material and geometric nonlinearities in the model is not an 
easy task, as the resulting response values are generally highly sensitive to small 
variations in the input parameters. The second category consists of geometric 

nonlinearities that represent second order or P-∆ effects on a structure, where the 
equilibrium condition is determined under the deformed shape of the structure. 
The second nonlinearity category is incorporated directly in the analysis algorithm. 
The additional level of sophistication of the nonlinear model will increase the 
computational effort required for the analysis, as well as the difficulty in the 
interpretation of results. Thus, the most important goal to achieve, while building 
a nonlinear model, is the balance between model complexities and the 
corresponding gain in accuracy of the results. The Guidelines for Nonlinear 

Analysis of Bridge Structures in California [1] suggest for an Ordinary Standard 
Bridge structure to simplify the model in such way that column plastic hinge zone 
shall be considered nonlinear, while cap beam and column outside plastic hinge 
zone shall be considered linear elastic. The JRO can be considered a Standard 
Ordinary Bridge, due to the simplicity of its geometry. 
According to Caltrans, Ordinary bridges are not designed to respond elastically 
during the Maximum Earthquake because of economic constraints and the 
uncertainties in predicting seismic demands. Thus, the objective is to take 
advantage of ductility and post elastic strength to meet the established 
performance criteria with a minimum capital investment. Such philosophy is 
based on the relatively low probability that a major earthquake will occur at a 
given site, and the willingness to absorb the repair cost at if ever a major 
earthquake occurs. 
In general, the modeling assumptions should be independent of the computer 
program used to perform the nonlinear static and dynamic analyses; however, 
mathematical models are often limited by the capabilities of the computer 
program utilized.  
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1.1. Seismic design philosophy for bridges: capacity design 

Capacity design criteria have been adopted in seismic design, to ensure 
satisfactory performance during seismic events. Capacity design is a design 
process where the designer decides which elements of a structural system will be 
permitted to yield (ductile components) and which elements are to remain elastic 
(brittle components). Capacity design exploits nonlinear ability of certain 
predetermined components of the structure; this represents an advantage over 
designing the whole structure for an elastic response, which would be 
economically unfeasible.  
Once ductile and brittle systems are decided upon, design proceeds according to 
the following guidelines: 

- Ductile components are designed with sufficient deformation capacity 
such that they may satisfy displacement-based demand-capacity ratio; 

- Brittle components are designed to achieve sufficient strength levels such 
that they may satisfy strength-based demand-capacity ratio. 

Thus, one can state that the aims of Capacity Design are: 

i. ensure that ductile modes of failure (i.e. flexure) should precede brittle 
modes of failure (i.e. shear) with sufficient reliability, by providing 
adequate overstrength so that the desired yielding mechanism occurs and 
non-ductile failure mechanisms (such as concrete crushing, shear cracking, 
elastic buckling, and fracture) are prevented; 

ii.  prevent the formation of a soft-story mechanism; 

iii.  ensure that certain parts of the structure will remain elastic if it is so 
desired (e.g. foundation, bridge deck, etc.); in fact, the structure should 
have an adequate capacity to deform beyond its elastic limit without 
substantial reduction of the overall resistance against horizontal and 
vertical loads. 

In the following paragraphs, the main concepts involved in capacity design are 
introduced, i.e.,  performance level, seismic capacity, ductility of members, 
predetermined locations of damage and redundancy. 
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1.1.1. Performance level 

The definition of the philosophy of Performance Based Seismic Engineering 

(PBSE) [2]  is to design a structural system able to sustain a predefined level of 
damage under a predefined level of earthquake intensity. 
Usually the following steps are set, in order to establish performance level for 
different limit states: 

- define earthquake loadings with various probabilities of occurrence; 

- define various acceptable level of damage; 

- combine each earthquake loading with an acceptable level of damage. 

Figure 1.1 - b) shows different performance level, and the associated damage 
level, in correspondence of the Earthquake design level, or frequency of ground 
shaking events. 
In particular, the collapse limit state is an extreme event and is defined as the 
condition where any additional deformation will potentially render a bridge 
incapable of resisting the loads generated by its self-weight. Structural failure or 
instability in one or more components usually characterizes collapse. All forces 
(axial, flexure, shear and torsion) and deformations (rotation and displacement) 
shall be considered when quantifying the collapse limit state. All bridges shall be 
designed to withstand deformations imposed by the level of ground shaking that 
has a 5 percent chance of being exceeded in a 50 years period. All structural 
components shall be designed to provide sufficient strength and/or ductility, with 
a reasonable amount of reserve capacity, to ensure collapse will be prevented 
during the Maximum Earthquake, Figure 1.1- b) very rare earthquake, Figure 

1.2 – a) collapse in the capacity curve. 

1.1.2. Seismic capacity  

Seismic capacity is defined as the largest deformation a structure or element can 
undergo without a significant degradation in its ability to carry loads. For example, 
during the lateral loading test of reinforced concrete bridge column, the column 
undergoes larger displacements as the lateral load is increased. However, at a 
certain point, the seismic capacity of the column is reached and the column can be 
pushed farther using less force. In Figure 1.1 – a) an example of capacity curve. 
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Figure 1.1 – a) Capacity curve; b) Performance Objective and Hazard Level 
Matrix 
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1.1.3. Ductility and predetermined locations of damage 

Ductility is the ratio of ultimate deformation to the deformation at yield.  

(1.1) � = ������	�

���
��

 

A ductile structural member responds with inelastic deformation to cyclic loading  
without significant degradation of strength or stiffness. The most desirable type of 
ductile response in bridge systems, during hysteric force-deformation cycles, is 
energy dissipation. There are two ways to obtain energy dissipation: 

- internally, within the structural members, by the formation of flexural 
plastic hinges;  

- externally, with isolation bearings or external dampers.  

The deformations for ductile structural components are limited so the structure 
will not exceed its inelastic deformation capacity. 
It is not desirable that concrete superstructure of a bridge undergo significant 
inelastic deformations, because of the potential to jeopardize public safety. 
Furthermore, superstructure damage in continuous bridges is difficult to repair to 
a serviceable condition. Thus, inelastic behavior shall be limited to predetermined 
locations within the bridge locations that can be easily inspected and repaired 
following an earthquake. Preferably, inelastic behavior on most bridges shall be 
located in columns, pier walls, backwalls, wingwalls, seismic isolation and 
damping devices, bearings, shear keys and steel end diaphragms. 
In order to prevent collapse of the structure, redundancy should also be applied to 
bridges whenever possible. An alternative load path should be provided. For 
example, in bridge systems like single column bents, redundancy can be improved 
by establishing a greater margin between the component’s dependable capacity 
and its expected response to seismic action, continuity at expansion joints with 
reliable shear keys and restrainers, and load transfer to the abutments.  

  



 
 

Chapter 1        NONLINEAR ANALYSIS IN SEISMIC DESIGN OF BRIDGES 

9 

 

1.2. Types of nonlinear analyses 

The aim of a nonlinear analysis is to obtain a representation of the structure's 
ability to resist the seismic demand. Nonlinear analyses are divided into two 
categories: 

i. Static, i.e. Pushover analysis; 

ii.  Dynamic, i.e. Time-History analysis. 

To follow the two analyses are briefly introduced, with particular reference to 
bridge analysis. 

1.2.1. Nonlinear Static Analysis: Pushover 

A Pushover analysis is a static, nonlinear procedure in which the magnitude of the 
applied load is incrementally increased following a predefined reference load 
pattern. By increasing the magnitude of the loading, it is possible to investigate 
weak links and failure modes of the bridge structure. The goal of the static 
pushover analysis is to evaluate the overall strength, typically measured through 
base shear Vb, yield, and maximum displacement δy and δu, and thus, the ductility 
capacity µc of the bridge structure. 
The pushover analysis of a bridge is conducted as a displacement controlled 

method to a specified limiting displacement value to capture the softening 
behavior of the structure by monitoring the displacement at a point of reference, 
such as one of the column’s top nodes or the center of the superstructure span. A 
displacement control strategy requires the specification of an incremental 
displacement that have to occur at a nodal d.o.f.. The strategy then iterates to 
determine what load factor, α, is required to impose that incremental displacement. 
The base shear Vb is proportional to such load factor α, and a global force-
displacement capacity curve can be plot, see Figure 1.2. 
The load patterns used for bridges analyses are either uniform, or inverse triangles, 
applied to the columns, or proportional to the first significant vibration mode in 
the direction considered. 
To interpret the results of pushover analyses the Capacity Spectrum Method (CSM) 

might be used. The CSM uses the intersection of the global force-displacement 
capacity curve and the response spectrum, representation of the earthquake 
demand, to estimate the maximum displacement demand on the structure, or 
performance point. The CSM is a very useful tool in the evaluation and retrofit 
design of existing concrete buildings, because the graphical representation 
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provides a clear picture of how a building responds to earthquake ground motion. 
Thus, the CSM  consists of the following main steps: 

i. evaluation of the global force-displacement capacity curve. For bridges the 
curve is in terms of base-shear and mid-span displacement, see Figure 

1.1 – a); 

ii.  conversion of the capacity curve into a capacity spectrum; 

iii.  determination of the demand spectrum; 

iv. determination of the performance point of the structure. 

 

 

Figure 1.2 – Capacity curve of a frame structure 

From the capacity curve to the capacity spectrum (ATC 40) [3] 

In order to use the CSM to determine the performance point, it is necessary to 
convert the capacity curve, or pushover curve, to a capacity spectrum. The 
pushover curve is in terms of base shear and roof displacement, in the specific 
case of bridges mid-span displacement, while the capacity spectrum is in the 
format Acceleration-Displacement Response Spectra (ADRS). The spectral 
acceleration is indicated later on as Sa, the spectral displacement is Sd.  
The following equations are needed in order to transform the pushover curve into 
a capacity spectrum 
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(1.2) ��� = ∑ �����
�

����  
∑ (�����)�

�
����

  

(1.3) �� = �∑ �����
�

����  �
�

�∑ ��
�

���� ��∑ (�����)�
�

����  
 

(1.4) !" = #
$ /�� 

(1.5) !& = �'(()
*+�,'((),�

 

V and the corresponding Δ/001,2, constitutes the points of the pushover curve, 

while !" and the associated !& make up points on the capacity spectrum. !" and 

!&  are related through the natural period of the structure Tn, thus the natural 

circular frequency ωn, being 3� = 25/6�. 

(1.6) !& = 7	
8� = 9 :

;<=; !" 

Some definitions of the symbols used in the previous equation: 

PF@  modal participation factor for the mode n; 

α@   modal mass coefficient for the mode n; 

BC/D  mass assigned to level i; 

EC� amplitude of mode n at level i; 
N  uppermost level of the structure; 
V  base shear; 
W building dead weight and live load if prescribed; 

Δ/001,2  roof displacement, in the specific case of bridges mid-span displacement; 

!" spectral acceleration; 

!& spectral displacement. 

1.2.2. Nonlinear Dynamic Analysis: Time-History 

Nonlinear time history analysis, or THA, accounts for the nonlinearities or 
strength degradation of different elements of the bridge, as well as the load pattern 
or ground motion intensity and characteristics. The loading in a time history 
analysis is either foundation displacement, or ground motion acceleration, unlike 
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for the pushover analysis where loads are externally applied at the joints or 
members of the structure. The design displacements are not established using a 
target displacement, but instead are determined directly through dynamic analysis 
using suites of ground motion records. Inertial forces are produced in the structure 
when the structure suddenly deforms due to ground motion and internal forces are 
produced in the structural members.  
The main disadvantage of the time history analysis method is the high 
computational and analytical effort required and the large amount of output 
information produced. During the analysis, the capacity of the main bridge 
components is evaluated as a function of time, based on the nonlinear behavior 
determined for the elements and materials. This evaluation is carried out for 
several input ground motions, seven according to FEMA 273 [4], and the response 
of the structure is recorded at every time step. However, the evaluation of the 
capacity using the THA method at each time step produces superior results, since 
it allows for redistribution of internal forces within the structure. 
In general, solution of the dynamic response of structural systems is the direct 
numerical integration of the dynamic equilibrium equations at a discrete point in 
time. This analysis is initiated at the undisturbed static condition of the structure 
and repeated for the duration of the ground motion input with equal time 
increments to obtain the complete structural response time history under a specific 
excitation. The step-by-step solution methods attempt to satisfy dynamic 
equilibrium at discrete time steps and may require iteration, especially when 
nonlinear behavior is developed in the structure and the stiffness of the complete 
structural system must be recalculated due to degradation of strength and 
redistribution of forces. Different numerical techniques have been studied by 
numerous researchers and are generally classified as either explicit or implicit 
integration methods.   
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1.3. The seismic demand  

The displacement ductility approach, frequently used nowadays in seismic design, 
requires the designer to ensure that the structural system and its individual 
components have enough deformation capacity to withstand the displacements 
imposed by the Maximum Earthquake. In order to quantify how large the 
displacement imposed by the Maximum Earthquake is, the seismic demand 
corresponding to the particular site considered must be determined.  

1.3.1. Earthquake ground shaking hazard levels (ATC 40) 

Three levels of earthquake hazard are used to define ground shaking: 

- Serviceability Earthquake, defined probabilistically as the level of ground 
shaking that has a 50 percent chance of being exceeded in a 50 years 
period; 

- Design Earthquake, defined probabilistically as the level of ground 
shaking that has a 10 percent chance of being exceeded in a 50 years 
period; 

- Maximum Earthquake, defined deterministically as the maximum level of 
earthquake ground motion which may ever be expected at the building site 
within the known geologic framework. Corresponds to a level of ground 
shaking that has a 5 percent chance of being exceeded in a 50 years period. 

1.3.2. Development of the design spectrum (SDC 2010, Annex B) [5] 

The demand spectrum, or elastic design response spectrum 5% damped, is 
developed according to Caltrans Seismic Design Criteria 2010 (SDC), Version 

1.6, Annex B [5], that specify the minimum seismic requirements for Standard 
Ordinary Bridges. The elastic design response spectrum 5% damped, also called 
the design seismic hazard, represents the seismic demand at a specific site. When 
the design seismic hazard occurs, Ordinary bridges that meets SDC requirements 
are expected to remain standing but may suffer significant damage requiring 
closure. 
The design seismic hazard is based on the envelope of a deterministic spectrum 
and a probabilistic spectrum. The envelope of the spectra, used for design, is 
defined as the greater of: 
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- a probabilistic spectrum based on a 5% in 50 years probability of 
exceedance (or 975-year return period); 

- a deterministic spectrum based on the largest median response resulting 
from the maximum rupture (corresponding to Mmax) of any fault in the 
vicinity of the bridge site; 

- a statewide minimum spectrum defined as the median spectrum generated 
by a magnitude 6.5 earthquake on a strike-slip fault located 12 kilometers 
from the bridge site. 

The deterministic spectrum 

The deterministic spectrum is calculated as the arithmetic average of median 
response spectra calculated using the Campbell-Bozorgnia (2008) and Chiou-

Youngs (2008) ground motion prediction equations (GMPE’s), developed under 
the Next Generation Attenuation project coordinated through the PEER-Lifelines 

program. The ground motion prediction equations are applied to all faults in or 
near California considered to be active in the last 700,000 years (late quaternary 
age) and capable of producing a moment magnitude earthquake of 6.0 or greater. 
In application of these ground motion prediction equations, the earthquake 
magnitude should be set to the maximum moment magnitude, as recommended by 
California Geological Survey (1997, 2005).  
The minimum spectrum is defined as the average of the median predictions of 
Campbell-Bozorgnia (2008) and Chiou-Youngs (2008) for a scenario M=6.5 
vertical strike-slip event occurring at a distance of 12 km (7.5 miles). While this 
scenario establishes the minimum spectrum, the spectrum is intended to represent 
the possibility of a wide range of magnitude-distance scenarios. 

The probabilistic spectrum 

The probabilistic spectrum is obtained from the USGS Seismic Hazard Map 

(Petersen, 2008) for the 5% in 50 years probability of exceedance (or 975 year 
return period).  
Since the USGS Seismic Hazard Map spectral values are published only for VS30 = 

760 m/s, soil amplification factors must be applied for other site conditions. The 
site amplification factors shall be based on an average of those derived from the 
Boore-Atkinson (2008), Campbell-Bozorgnia (2008), and Chiou-Youngs (2008) 
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ground motion prediction models (the same models used for the development of 
the USGS map). 

The demand spectrum 

The Demand Spectrum has been obtained from the Caltrans ARS Online (v1.0.4) 
[6]. Only three input parameters are needed: the geographical coordinates, latitude 
and longitude, and the VS30, the average shear wave velocity in the upper 30 
meters of the soil profile. Spectrum adjustment factors are incorporated in the 
selection of the demand spectrum. In fact, the design spectrum may need to be 
modified to account for seismological effects related to being in close proximity 
to a rupturing fault and/or placement on top of a deep sedimentary basin, see 
Figure 1.3 for faults location.  
The average shear wave velocity, VS30, has been obtained from USGS maps [7], 
see Figure 1.4, and the value considered is 300 m/s. 
Once available the average shear wave velocity, and the geographical coordinates, 
the online tool computes the different spectra, as described previously in the 
paragraph. The calculated spectra are shown in Figure 1.5 – a), while the 
envelope is shown in Figure 1.5 – b). 

 

Figure 1.3 – Faults location near site. 
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Figure 1.4 – USGS VS30 maps, Western U.S. 
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Figure 1.5 – a) Calculated spectra; b) Design Envelope. 

a) 

b) 
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1.3.3. Acceleration time history (FEMA 273) [4] 

According to FEMA 273, Time-History Analysis shall be performed with no 
fewer than three data sets  of appropriate ground motion time histories that shall 
be selected and scaled from no fewer than three recorded events. Appropriate time 
histories shall have magnitude, fault distances, and source mechanisms that are 
consistent with those that control the design earthquake ground motion.  
Furthermore, FEMA 273 specify the two following criteria for the selection of 
ground motion:  

- a minimum of three pairs of ground motion records are used in the analysis, 
where each ground motion corresponds to the hazard level appropriate to 
the desired performance objective and consists of two orthogonal 
components of the record. The envelope of the three records is used to 
compute the maximum response of the bridge; 

- seven different ground motions, thus, the median value of response 
obtained from the different records is used to estimate the peak response of 
the bridge. 

Firstly a deaggregation, using USGS interactive tool [8], have been carried out, in 
order to establish which ground shaking parameters, i.e. the magnitude interval 
and distances from the site, have the most influence on the site considered. The 
input parameters are the geographical coordinates and the shear wave velocity 
Vs30. Figure 1.6 – a) shows the histogram with the results of the deaggregation 
that have been used as input parameters in the MATLAB® [9] code employed to 
select the seven accelerograms. 
According to FEMA 273, the data sets shall be scaled such that the average value 
of the SRSS spectra does not fall below 1,4 times the 5% damped spectrum for the 
design earthquake for periods between 0.2T seconds and 1.5T seconds (where T is 
the fundamental period of the building). Figure 1.6 - b) shows the magnitude 
function of the distance of the ground shaking from the site considered. Each dot 
is an accelerometer present in the Next Generation Attenuation Relationships for 

Western U.S. database; the red dots fall in the input interval magnitude defined by 
the user. Figure 1.6 - c) shows the interval, dashed lines, in which the 
MATLAB® code looks for the most correspondence between the input 5% 

damped elastic response spectra and the spectra selected, using the selection 
parameters. Figure 1.6 - c) also shows the average accelerograms, which is close 
to the 5% damped spectrum.  
The seven accelerograms selected from the NGA database [10] are described in 
Table 1.1 and shown in Figure 1.7 a) to g). 
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a) 
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Figure 1.6 – a) Deaggregation; b) Magnitude VS Distance;  c) Average 

accelerogram. 

Table 1.1 - The seven accelerograms selected from the NGA database 

File 
Name 

Earth-
quake 

Year Station Mw 
Epic. 

Distance 
[km]  

Vs30 

[m/sec] 

Scaling 
Factor 

821 H1 
ERZ-NS 

Erzincan  
Turkey 

1992 Erzincan 6,69 8,97 274,5 1,1164 

1085 H1 
SCE018 

Northridge 
01 

1994 
Sylmar - 
Converter 
Sta East 

6,69 13,6 370,5 0,6044 

949 H1 
ARL090 

Northridge 
01 

1994 
Arleta - 

Nordhoff 
Fire Station 

6,69 11,10 297,7 1,3001 

6 H1 I-
ELC180 

Imperial 
Valley 02 

1940 
El Centro 
Array #9 

6,95 12,99 213,4 1,1694 

6 H2 I-
ELC270 

Imperial 
Valley 02 

1940 
El Centro 
Array #9 

6,95 12,99 213,4 1,8124 

1087 H1 
TAR090 

Northridge 
01 

1994 
Tarzana - 
Cedar Hill 

A 
6,69 5,4 257,2 0,2542 

741 H2 
BRN090 

Loma Prieta 1989 BRAN 6,93 9,01 376,1 0,6151 

c) 
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c) 

d) 
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e) 
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Figure 1.7 – Accelerograms a) 821 H1 ERZ-NS; b) 1085 H1 SCE018;  

c) 949 H1 ARL090; d) 6 H1 I-ELC180; e) 6 H2 I-ELC270;  
f) 1087 H1 TAR090; g) 741 H2 BRN090 

g) 



 

 

 

 

 

 

Chapter 2  

FINITE ELEMENT MODELS FOR THE NONLINEAR 

MATERIAL RESPONSE OF BEAM-COLUMN ELEMENTS: 

FORMULATIONS AND OBJECTIVITY OF THE RESPONSE 

Based on the complexity of the model it is possible to define a classification of 
modeling strategies. One can distinguish the following model categories with 
increasing level of refinement and complexity:  

i. Global models: the non-linear response of a structure is represented at 
select degrees of freedom;  

ii.  Discrete finite element (member) models: in this case the structure is 
modeled as an assembly of interconnected frame elements with either 
lumped or distributed nonlinearities; 

iii.  Microscopic finite element models: the members and joints of the structure 
are discretised into several large or small two or three-dimensional finite 
elements.  

While such refined finite element models might be suitable for the detailed study 
of small parts of the structure, such as beam to column joints, frame models are 
presently the only economical solution for the nonlinear dynamic response 
analysis of structures with several hundred members. Member finite element 
models are the best compromise between simplicity and accuracy in non-linear 
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seismic response studies and represent the simplest class of model that still allows 
significant insight into the seismic response of members and of the entire structure. 
Modeling of material nonlinearities in frame analysis can be classified into two 
main categories:  

i. lumped, or concentrated, plasticity approach is characterized by inserting 
discrete nonlinear moment-rotation hinges at the ends of otherwise linear 
elements. This approach provides an efficient means of modeling and 
controlling plastic hinge formation. Clearly one of the main concerns for 
this type of element is the determination of the plastic hinge length, which 
will be discussed in more detail later. 

ii.  distributed plasticity models provide a more general framework for 
nonlinear frame analysis, where nonlinearities can develop anywhere 
along the member. This kind of element is based on a fiber approach, to 
represent the cross section behavior, where each fiber is associated with an 
uniaxial stress-strain relationship. 

After the selection of the element type, another main step is the selection of one of 
the two methods available for the implementation of the formulation: 

i. displacement-based formulations, in which the displacement fields along 
the element are expressed as functions of the nodal displacements. The 
assumed displacement fields are approximations of the actual 
displacement fields; thus, several elements per member are used to obtain 
a good approximation of the exact response. 

ii.  force-based formulations, or flexibility-based formulations, in which the 
internal force fields are expressed as functions of the nodal forces. Force-
based elements are particularly suited for non- linear frame analysis 
because they are exact within the framework of the classical beam theories 
(Spacone et al. 1996 a, b). Because of the precision of force-based 
elements, it is possible to use just one element per structural member, 
leading to considerable savings in the total number of degrees of freedom 
in the structural model. 

In a displacement-based approach, the displacement field is imposed, whereas in a 
force-based element equilibrium is strictly satisfied and no restraints are placed on 
the development of inelastic deformations throughout the member. For this reason, 
force-based formulations are extremely appealing for earthquake engineering 
applications, where significant material nonlinearities are expected to occur.  
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For a hardening type of sectional behavior, both force-based and displacement-
based elements produce an objective response at the global (force-displacement) 
and local (moment-curvature) levels, whereas the results are non-objective in the 
case of a softening sectional law. This numerical issue, commonly known as 
localization, was firstly discussed by Zeris and Mahin, 1988 [11] for 
displacement-based elements, and Coleman and Spacone, 2001- a) [12] studied it 
for force-based elements.  
To follow the force-based formulation will be discussed in more detail, both for 
concentrated plasticity models and distributed plasticity models.  
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2.1. Concentrated plasticity models, force-based formulation 

Historically, concentrated plasticity models were the first formulations 
implemented in structural analysis softwares for earthquake engineering 
simulations purposes, developed to include nonlinearities into beam-column 
elements. Their first appearance dates back to the 1960s. 
In this models all the elements of the structure acts as linear elastic, while the 
concentration of the plasticity is into rotational springs, or plastic hinges. The fact 
that all the structure is modeled as linear elastic, and only localized nonlinearities 
are introduced, represents the largest advantage. It reduces the computational 
effort and the complexity of the model.  
On the other hand, concentrated plasticity models are based on several 
assumptions, increasing the risk of inaccuracy, or inadequacy, of the analysis 
output. Thus, the need of great experience to overcome the following main issues: 

- distribution of the concentrated nonlinearities into the structure, in fact 
plastic hinges location cannot be known for sure a priori; 

- evaluation of the length of such plastic hinges; many formulas are 
proposed in literature, all of them require the assumption that plastic 
hinges will form at a specific location; 

- selection of the appropriate stress-strain relationship attributed to the 
nonlinear zones.  

2.1.1. Element Formulation (Scott et al. 1996) [13] 

Force-based beam-column elements are formulated in a basic system without 
rigid-body displacement modes. The vector v contains the element deformations, 
assumed to be small compared to the element length. For a simply supported 
beam it is possible to define three element deformations, for two-dimensional 

elements, and six for three-dimensional elements (see Figure 2.1); � = � (�) is a 
function of the element deformations. It represents the vector of forces in the basic 
system. The section behavior is expressed in terms of the section deformations, e, 

and � = � (�) represents the corresponding section forces. Equilibrium between 
the basic forces and section forces is expressed in strong form as  

(2.1) � =  	� 

where the matrix b contains interpolation functions relating section forces to basic 
forces from equilibrium of the basic system. 
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Figure 2.1 - Basic simply supported element and section 

The axial force and bending moment at location x along the element for a two-
dimensional simply supported basic system is given by the following equilibrium 
interpolation matrix 

(2.2) 	 = 
1 0 00 /� − 1 /� � 
The compatibility relationship between the section and element deformations can 
be derived from the principle of virtual forces 

(2.3) � = � 	�����  

whose linearization with respect to the basic forces gives the section flexibility 
matrix 

(2.4) � = ���� = � 	���	���  

The section stiffness matrix is�� = ��/�� . Flexibility matrix �� = ����,  is 
obtained inverting the section stiffness matrix. The element stiffness matrix, k, in 

the basic system is the inverse of the element flexibility matrix, � = ���.  
The compatibility relationship in Eq. 2.3 is evaluated by numerical quadrature 
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(2.5) � = ∑ ( 	��!"#$%)&%'(%#�  

where ) and * are the locations and associated weights, respectively, of the Np 

integration points over the element length [0, L]. In a similar manner, the element 
flexibility matrix is evaluated numerically 

(2.6) � = ∑ ( 	���	!"#$%)&%'(%#�  

In force-based elements the bending moments are largest at the element ends, in 
the absence of member load; therefore it is suitable to use Gauss-Lobatto 
quadrature. In fact, this technique places integration points at the elements ends. 
In Figure 2.2 a graphical representation of the four-point Gauss–Lobatto 

quadrature rule, where the integrand, bTe, is evaluated at the i-th location )+  and 

treated as constant over the length *+. The highest order polynomial integrated 

exactly by the Gauss–Lobatto quadrature rule is 2-. − 3, which is two orders 
lower than Gauss–Legendre quadrature. For a linear-elastic, prismatic beam–
column element without member loads, quadratic polynomials appear in the 
integrand of Eq. 2.3 due to the product of the linear curvature distribution in the 
vector e with the linear interpolation functions for the bending moment in the 
matrix b. Therefore, at least three Gauss–Lobatto integration points are required to 
represent exactly a linear curvature distribution along the element. To represent 
accurately the nonlinear material response of a force-based beam–column element, 
four to six Gauss–Lobatto integration points are typically used (Neuenhofer and 

Filippou, 1997 [38]). 

 

Figure 2.2 - Application of four-point Gauss–Lobatto quadrature rule to 
evaluate force-based element compatibility relationship 
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2.1.2. Loss of objectivity in force-based beam-column elements 

Gauss–Lobatto integration rule permits the spread of plasticity along the element 
length, which is a primary advantage. For hardening section behavior, the 
computed element response will converge to a unique solution as the number of 
integration points increases, while for softening section behavior where 
deformations localize at a single integration point, a unique solution does not exist 
and the computed response depends on the characteristic length implied by the 
integration weights of the Gauss–Lobatto quadrature rule. The lack of uniqueness 
for the solution, in the case of softening section behavior, leads to a loss of 
objectivity, where the element response will change as a function of Np. To 
address the loss of objectivity in force-based beam–column elements, Coleman 

and Spacone, 2001 developed a regularization technique that modifies the 
material stress–strain behavior to maintain a constant energy release after strain-
softening initiates. Coleman and Spacone applied this method to the Kent–Park 
concrete model (Kent and Park 1971 [14]) shown in Figure 2.3, where the shaded 
area is equal to the energy released after the onset of strain softening 

(2.7) 
01234 = 0,6678 9:;< − :8 + <,>?@2A2 B 

The parameters for the Kent–Park concrete model are: 6 ′8 concrete compressive strength;  :8 peak compressive strain;  
Ec elastic modulus;  :;< strain corresponding to 20% of the compressive strength; C?8, concrete fracture energy in compression; 

lp plastic hinge length, which acts as the characteristic length for the purpose of 
providing objective response.  
As discussed in the previous section, the plastic hinge length in the model is 
directly related to the element integration rule for force-based elements. For the lp 

implied by the number of Gauss–Lobatto integration points, :;< must be modified 
in order to maintain a constant energy release 

(2.8) :;< = 012<,D?@234 − <,>?@2A2 + :8 
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Figure 2.3 - Kent–Park concrete stress–strain model with fracture energy 

Although this approach maintains objective response at the global level, it affects 
the local section response through an unnatural coupling of the concrete material 
properties to the element integration rule. A second regularization is required to 
correct for the loss of objectivity in the section response, that results from this 
approach (Coleman and Spacone, 2001 [12]). For the plastic hinge integration 

methods presented to follow, EF is specified as part of the element integration rule 

and it becomes a free parameter. Therefore, it is possible to determine a plastic 
hinge length that will maintain a constant energy release without modification to 
the concrete stress-strain relationship, alleviating the need for a subsequent 
regularization of the section response. A logical separation of the material 
properties from the element integration rule is achieved by introducing a plastic 
hinge length to the element integration rule 
The determination of the plastic hinge length will be discussed later in the chapter, 
with reference to the particular method used for the computation of the length 
needed for the FEM model of the structure, in accordance with the requirements 
imposed by Caltrans Seismic Design Criteria 2010.  



 
Chapter 2   FINITE ELEMENT MODELS FOR THE NONLINEAR MATERIAL RESPONSE OF BEAM  

COLUMN ELEMENTS: FORMULATIONS AND OBJECTIVITY OF THE RESPONSE 

33 

 

2.1.3. Plastic hinge integration methods 

Now the aim is to achieve objectivity for softening response. The plastic hinge 
integration methods presented herein are based on the assumption that nonlinear 
constitutive behavior is confined to regions of length lpI and lpJ at the element ends. 
As such, the elements are useful for columns or beams that carry small member 
loads. To represent plastic hinges in force-based beam–column elements, the 
compatibility relationship is separated into three integrals, one for each hinge 
region, where plasticity develops, and one for the interior region of the element, 
which remains linear elastic 

(2.9) � = � 	���GHI � + � 	��� + � 	���GHJ ��GHI
��GHI GHI  

The section deformations are integrated numerically over the plastic hinge regions, 
whereas the contribution of the element interior is assumed to be linear elastic, as 
mentioned above, and evaluated by the flexibility of the interior region 

(2.10) � = ∑ K 	��!"#$%L&% + �%MN� �'(%#�  

The flexibility matrix of the element interior region, �+OPQ
 , is evaluated by the 

closed-form integral 

(2.11) �%MN� = � 	����	�GHI �  

The matrix �RQ contains the elastic flexibility coefficients at a cross section of the 
interior, assuming the coordinate axis is located at the centroid of the section, with 
the elastic modulus E, the cross-sectional area A, and the second moment of the 
cross-sectional area I. 

(2.12) ��� = S TAU 0
0 TAV

W 

The linearization of Eq. 2.10 with respect to the basic forces gives the element 
flexibility as the sum of numerical integration over the plastic hinge regions and 
the flexibility of the element interior 

(2.13) � = ∑ ( 	���	!"#$%)&%'(%#� + �%MN�  
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To represent strain softening in the plastic hinge regions of the element, it is 
desirable to use a plastic hinge integration rule for Eqs. 2.10 and 2.13  that 
satisfies the following criteria: 

i. sample section forces at the element ends where the bending moments are 
largest in the absence of member loads; 

ii.  integrate quadratic polynomials exactly to provide the exact solution for 
linear curvature distributions;  

iii.  integrate deformations over the specified lengths lpI and lpJ using a single 
section in each plastic hinge region. 

The Gauss–Lobatto integration rule for distributed plasticity satisfies the first two 
criteria, but it does not satisfy the third because the plastic hinge lengths are 
implied by the number of integration points, Np. 

The midpoint integration rule 

The most accurate one-point integration method is the midpoint rule, for which 

the integration points are located at the center of each plastic hinge region,) =[EYZ/2, � − EY[/2] , and the weights are equal to the plastic hinge lengths, * =[EYZ , EY[]. The midpoint rule is illustrated in Figure 2.4- a). The integration points 
are not located at the element ends where the maximum bending moments occur 
in the absence of member loads, and this represents the major disadvantage of the 
midpoint integration rule. As a result, the element will exhibit a larger flexural 
capacity than expected, which in fact will be a function of the plastic hinge 
lengths. Furthermore, the midpoint rule gives the exact integration of only linear 
functions, thus, there is an error in the integration of quadratic polynomials. In 
light of the above considerations, the midpoint plastic hinge integration method 
satisfies criterion three but not one or two.  

The endpoint integration rule 

Another one-point integration rule locates the integration points at the element 

ends, ) = [0, �], while the integration weights remain equal to the plastic hinge 

lengths, * = [EYZ , EY[], as shown in Figure 2.4 – b). However, an order of accuracy 
is lost with this endpoint integration approach, because it is only capable of the 
exact integration of constant functions, which produces a significant error in the 
representation of linear curvature distributions. Therefore, the endpoint plastic 
hinge integration method meets criteria one and three, but not two. 
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Figure 2.4 - a) Midpoint integration rule; b) Endpoint integration rule. 

Two-Point Gauss–Radau Integration 

The two previous methods confirm that it is not possible to satisfy all the three 
criteria by performing one-point integration for each plastic hinge region. 
Therefore, it is necessary to investigate two-point integration methods. Two-point 
Gauss–Legendre integration over each plastic hinge region gives the desired level 
of element integration accuracy; however, there are no integration points at the 
element ends. Two-point Gauss–Lobatto integration over the hinge regions places 
integration points at the element ends, but is not exact for the case of a linear 
curvature distribution. An alternative two-point integration rule is based on 
Gauss–Radau quadrature (Hildebrand, 1974 [39]). It is similar to Gauss–Lobatto, 
but it has an integration point at only one end of an interval rather than at both 

ends. This gives Gauss–Radau quadrature an accuracy of 2-Y − 2, one order 
higher than that for Gauss– Lobatto. As a result, two Gauss–Radau integration 
points in each plastic hinge region gives the exact integration for an element with 
a linear curvature distribution. On the interval [0, 1], the two-point Gauss–Radau 
integration rule has integration points at [0, 2/3] with corresponding integration 
weights [1/4, 3/4]. The mapping of this integration rule to the plastic hinge 
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regions at the element ends gives four integration points, ) = [0, 2EFV/3, � −2EF]/3, �], along with the respective weights, * = [EFV/4, 3EFV/4, 3EF]/4,  EF]/4], Figure 2.5. This integration method satisfies the first criterion and the second, 
but criterion three, is not satisfied, because strain softening will result in 
localization within the plastic hinge region. The characteristic length over which 
the localized deformations are integrated will be equal to the integration weight, EY /4, assigned to the integration point at the element end rather than the plastic 

hinge length, EY. This reduction in the characteristic length will cause the element 
to unload at a faster rate than expected to maintain equilibrium. 

Modification of Two-Point Gauss–Radau Integration 

By making the integration weights equal to EFV and EF], rather than EFV/4 and EF]/4, 

it is possible to ensure that the localized deformations are integrated over a plastic 
hinge length. 
To this end, the two-point Gauss–Radau integration rule is applied over lengths of 
4lpI and 4lpJ at the element ends, as shown in Figure 2.5 – b), thus giving the 

integration point locations ) = [0,8EFV/3, L − 0,8EF]/3, L] and weights * =[ EFV , 3EFV , 3EF], EF]]. Nonlinear constitutive behavior is confined to the integration 

points at the element ends only, while the section response at the two interior 
integration points is assumed linear elastic, with the same properties as those 

defined by �RQ. With this modification of Gauss–Radau, plasticity is confined to a 
single integration point at each end of the element. The representation of linear 
curvature distributions is exact, furthermore, the characteristic length will be equal 
to the specified plastic hinge length when deformations localize due to strain-
softening behavior in the hinge regions. Hence, all the three criteria introduced in 
paragraph 2.1.3., are met by the presented modification of the two-point Gauss–
Radau plastic hinge integration method for force-based beam–column elements.  
In conclusion the modified Gauss–Radau quadrature method overcomes the 
difficulties that arise with Gauss–Lobatto integration for strain-softening behavior 
in force-based beam–column finite elements. The integration method confines 
material nonlinearity to the element ends over specified plastic hinge lengths, 
maintains the correct numerical solution for linear curvature distributions, and 
ensures objective response at the section, element, and structural levels. 
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Figure 2.5 - a) Two-Point Gauss-Radau; b) Modified Gauss-Radau 

2.1.4. Plastic hinge length determination (Priestley, Calvi, Seible, 1996) 

The length of the plastic hinge, lp, for concrete elements has been an object of 
study and experimental work, since the second half of the fifties. Literature offers 
many, in some cases pretty different, formulas to evaluate lp. In the work carried 
out for the present thesis, the plastic hinge length is not a variable parameter, it is 
been decided to assume a plastic hinge length that would be used throughout all 
the analyses. The length used was computed on the basis of the work of Priestley, 

Calvi, Seible, 1996 [15]. According to this formula the length of the plastic hinge, 
lp, is function of the characteristics of the reinforcement used, ultimate strength, 
yield strength and bars diameter, and of the length from the critical section to the 
point of contra-flexure in the member. 
The concept of plastic hinge, is based on the assumption that over the length lp, 
strain and curvature are considered to be equal to the maximum value at the 
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column base. The plastic hinge length incorporates the strain penetration length lsp, 
see Figure 2.6. lsp can be calculated as follow 

(2.14) ERF = 0,156bQ�c3 
being 6bQ  the yield strength in ksi (kilopounds per square inches) and �c3  the 

diameter of the longitudinal reinforcing bars. 
The curvature distribution is assumed to be linear for the remaining length, along 
the height of the column. This assumption refers to the bilinear approximation of 
the moment-curvature response, which somehow takes into account the 
displacement resulting from tension shift, and partially for shear deformation.  
Finally, the plastic hinge length, lp, might be computed as 

(2.15) �F = d�8 + �RF ≥ 2�RF 

(2.16)  d = 0,2(6f/6b − 1) ≤ 0,08 

�8  is the length from the critical section to the point of contra-flexure in the 

member, i.e. the moment equal to zero. The double-curvature case , thus �8 =H/2 , being H the actual length of the member, prevails in the analyses of 
buildings under lateral loads. On the other hand, some structural members such as 
cantilevers experience single curvature, and the plastic hinge forms at one end 
only. Such is the case of bridge piers subjected to seismic loads in the transverse 
direction, see Figure 2.6 – a). 
Through the parameter k, it is emphasized the importance of the ratio of ultimate 

tensile strength 6f to yield strength 6b of the longitudinal reinforcement. A high 

value of k means that the plastic deformations spread away from the critical 
section as the reinforcement at the critical section strain-hardens, increasing the 

plastic hinge length. If the ratio 6f/6b  of the flexural reinforcement is low, 

plasticity concentrates close to the critical section. The result is, therefore, a short 
plastic hinge length. In Figure 2.6 the length from the critical section to the point 

of contra-flexure �8 is equal to the height of the member, in this case the plastic 

hinge length EF  obviously results larger than 2ERF . EF = 2ERF  applies when �8  is 

short. It implies strain penetration down into the foundation and also up into the 
column. 
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Figure 2.6 – a) Idealization of curvature Distribution; b) Curvature 
distribution along a beamWithHinges element, from pushover analysis 
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2.2. Distributed plasticity models, force-based formulation 

In distributed plasticity models the entire member is modeled as a nonlinear 
element. The source of such inelasticity is defined at the sectional level, through 
the creation of a fiber model for the section. A fiber section consist in the 
subdivision of the area in n smaller areas, each of them is attributed a material 
stress-strain relationship, i.e. reinforcing steel and concrete, confined and 
unconfined (Figure 2.7). The global nonlinearity of the frame is obtained by 
integration of the contribution provided by each controlling section.  
One of the main advantages of the distributed plasticity models is the 
nonexistence of a predetermined length where the inelasticity can occur, as 
opposite of what just seen for concentrated plasticity models. It is due to the fact 
that all the sections can have excursions in the nonlinear field of response. This 
approach is a closer approximation to reality, on the other hand it also requires 
more computational capacity; that is, more analysis time, as well as memory and 
disk space.  
Furthermore the positive aspects of this type of element are: 

- the use of exact interpolation functions in the element requires fewer 
elements for the representation of the non-linear behavior of the structure; 

- no numerical difficulties arise in connection with the possible strength loss 
and softening of individual sections; 

- the element can readily incorporate distributed element loads by the 
addition of the exact internal force distribution function under the given 
element loads. 

 

Figure 2.7 - From left to right: Distributed plasticity element; Fiber section. 
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2.2.1. Element Formulation (Spacone et al. 1996) [16] 

As just seen for the concentrated plasticity model, we are now considering beam-
column elements formulated in a basic system without rigid-body displacement 
modes. The element provided of its local reference system x,y,z, is subdivided into 
a discrete number of cross sections, (Figure 2.7),  located at the control points of 
the numerical integration scheme about to be introduced. The only source of non-
linearity derives from the material constitutive laws. 
Some hypotheses need to be introduced in order to have in mind the framework of 
the formulation. In particular, the assumption of linear geometry, plane sections 
normal to the longitudinal axis during the element deformation history remain 
plane. Follows that all stress and strains are parallel to the longitudinal axis, which 
is the axis that connects the centroid of all the sections. The assumption of plane 
sections remain plane, is acceptable for small deformation in the case of 
homogeneous material, but it is also extended to the case of reinforced concrete 
elements, which is not an homogeneous material and it is characterized by 
phenomena like cracking and bond-slip. Shear effects are neglected, which is 
reasonable considering the ratio length to dept of the element being large. Torsion 
is assumed to remain linear elastic and uncoupled from the flexural and the axial 
response. 
Before discussing the formulation itself in more detail, it is necessary to introduce 
the following vectors, whose components can be identified in Figure 2.8: 

Element force vector i = jiT i; ik ilimn 
Element deformation vector o = joT o; ok olomn 

Section force vector p() = qrs() rb() -()tu
 

Section deformation vector �() = qvs() vb() :(̅)tu
 

Being v the curvature and : the axial strain.  
The two-field mixed method uses the integral form of equilibrium and section 
force-deformation relations to derive the matrix relation between element 
generalized forces and corresponding deformations. The section force-
deformation relation is linearized about the present state and an iterative algorithm 
is used to satisfy the non-linear section force-deformation relation within the 
required tolerance. In the following, the steps of the iterative algorithm are 
denoted by superscript j . 
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Figure 2.8 - Element and sectional forces and deformations 

In the two-field mixed method independent interpolation functions are used in the 
approximation of the deformation and force fields within the element. Denoting 
with ∆ increments of the corresponding quantities, the two incremental fields are 
written 

(2.17) x y()  =  z() x � 

(2.18) x {()  =  	() x | 

z()  denotes the deformation interpolation functions, while  	()  denotes the 
force interpolation functions. In the mixed method formulation the integral forms 
of equilibrium and section force-deformation relations are expressed first. These 
are then combined to obtain the matrix relation between element force and 
deformation increments. The incremental section constitutive relation is linearized 
according to 
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(2.19) xy}()  =  �}��()x{}()  +  ~}��() 
where �}�� and ~}�� are the section flexibility and residual deformations from the 
previous iteration. The residual deformations can, thus, be interpreted as the linear 
approximation to the deformation error that arises in the linearization of the 
section force-deformation relation. The weighted integral form of equation 

(2.20) � �{�()[xy}()  −  �}��()x{}()  −  �}��()] � =  ���  

Substituting � �() and � p() into the Eq. 2.20, for any �i, the integral is equal 
to  

(2.21) �x�}  −  �}��x |}  −  �}��  =  � 

where T is a matrix that depends only on the interpolation functions, F is the 
element flexibility matrix, and s is the element residual deformation vector 

(2.22) � =  � 	�()z()���  

(2.23) � = � 	�()�()	()���  

(2.24) � = � 	�()~()���  

In the classical two-field mixed method the integral form of the equilibrium 
equation is derived from the virtual displacement principle 

(2.25) � �y�()[x{}��() + x{}() ] � =  ��� |}��  

where �{��T() + �{�() represents the new internal force distribution. |�  is 
the vector of nodal forces as previously defined. Recalling the definition of the 

two incremental fields � y()  and � {() , and knowing that the previous 

equation must hold true for any ��u , it is possible to rewrite the equation in 
matrix form 

(2.26) ��|}�� + ��x|} = |} 
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From Eq. 2.21 and 2.26 the following equation in matrix form results 

(2.27) 
−�}�� ��� �� �x|}x�} � = � �}��|} − ��|}��� 
The first equation is then solved for �|� and substituted into the second equation, 
obtaining 

(2.28) ��[�}��]��(�x�} − �}��) = |} − ��|}�� 

The interpolation functions z() and 	() selection and the peculiar selection of 

deformation and force resultants q and Q, leads to  � = �, the 3x3 identity matrix. 
This simplify the last expression into the linearized matrix relation between the 

element forces �|� and the corresponding deformation increments K��� − ���TL 

(2.29) [�}��]��(x�} − �}��) = x|} 
[���T]�T is the stiffness matrix. This form of writing the stiffness matrix 

highlights that the starting point of the formulation is the flexibility matrix �. 

2.2.2. Element and Section state determination 

In a flexibility-based element, the element stiffness matrix is derived by inverting 
the flexibility matrix; thus, the element forces present the biggest challenge 
because they cannot be derived straightforward from the section forces. Spacone 

et al. introduce an iteration scheme similar to Newton-Rapson. The Newton-
Rapson iteration scheme is used for the solution of the global equilibrium 
equation, at the structural level. Forces increments are applied, at the structural 
degrees of freedom, and Newton-Rapson is used to reduce the unbalanced forces 
to sufficiently small values at each iteration step. The solution of these equations 
leads to displacement increments  at the end  nodes of each element. The method 
about to be introduced is formulated for the element level. In fact, the iterations 
during the element state determination phase of the algorithm intend to reduce the 
deformation residuals to sufficiently small values. Figure 2.9 shows the element 
and section state determination in the Newton-Rapson scheme at structural level. 
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Figure 2.9 – Element and Section state determination in Newton-Rapson 
scheme 
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The element resisting forces for the current element deformations, at the i-th 
Newton-Rapson step, are 

(2.30) �% = �%�� + ∆�% 
Now an iterative process internal to the i-th step of Newton-Rapson is introduced, 

being the first iteration � = 1 and � = 0  is the i-th−1 step. The latter is the point 
A in Figure 2.9 and it represents the initial state of the element. The element force 
increments writes 

(2.31) ∆|}#� = [�}#�]��∆�}#� 

being [��#<]�T  the initial element tangent stiffness matrix, ∆��#T  the given 
element deformation increments. 

Thus, it is possible to write the section deformation increments ∆y�#T(), through  

the linearization of the section force-deformation relation, having ∆{�#T() 
section force increments. 

(2.32) ∆y}#�() = �}#�()∆{}#�() 

In point B the section deformations are updated to y�#T() = y+�T() +∆y�#T(), and the section stiffness and resisting forces corresponding to the new 
deformation sate need to be computed. This corresponds to the section state 
determination, that will be discussed later in the paragraph. From the assumption 
of plane sections remain plane and orthogonal to the longitudinal axis, follows the 

derivation of the strain distribution in the section, :�#T(, �, �), and thanks to the 
constitutive law of concrete and steel, the derivation of the corresponding stresses ��#T(, �, �) and tangent modulus ��#T(, �, �). The latter are integrates over the 

cross section area to obtain the section resisting forces ���#T() and the stiffness 

matrix ��#T(). The flexibility matrix, ��#T(), is obtained inverting the stiffness 
matrix.  
The unbalanced forces at the section are the difference between the applied forces 
and the resisting forces; multiplying the unbalanced forces with the current 

section flexibility gives residual deformations ��#T(). They represents the linear 
approximation to the deformation error that arises in the linearization of the 
section force-deformation relation. The use of the tangent flexibility matrix in the 
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model guarantees the fastest convergence, even thought any flexibility matrix 
could be used. 

(2.33) {�}#�() = {}#�() − {�}#�() 

(2.34) ~}#�() = �}#�(){�}#�() 

The residual element deformations are computed integrating the residual section 
deformations over the element length 

(2.35) �}#� = � 	�()~}#�(�� )� 

The point B in Figure 2.9, describes the section and element state reached. Up to 
this point the first iteration loop is complete. 
The existence of residual element deformations violates the compatibility at 

element nodes. Here the deformations should be equal to �+. In order to restore 

compatibility corrective forces equal to – [�}#�]�T�}#�  must be applied at the 
element ends. Furthermore, a corresponding force increment equal to – 	()[�}#�]�T�}#� is applied at all integration points of the element inducing a 

deformation increment – �}#�	()[�}#�]�T�}#�. Therefore, at iteration � = 2 the 
state of the element is the following:  

element forces |}#� = |}#� + ∆|}#�, 

section forces {}#�() = {}#�() + ∆{}#�() , 

section deformations y}#�() = y{}#�() + ∆y}#�(), 
being ∆|}#� = – [�}#�]�T�}#� , ∆{}#�() = 	() ∆|}#�, 

∆y}#�() = ~}#�() +�}#�()∆{}#�. 

At each iteration new residual section deformations, and residual element 
deformations are updated. Convergence is achieved when the selected element 
convergence criterion is achieved. In Spacone et al. formulation the convergence 

is based on an energy test. The energy measure ���� is used for the purpose and 
the element iterations converge if 

(2.36) 
R����R�

∆���� �� ≤ ¡¢EE£¤¥¦§£  (6¢¤ � > 1) 
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The element equilibrium is always satisfied during the element determination in 
the non-linear analysis, because the section forces are derived from the element 
forces by means of interpolating functions. Whereas, the section force-
deformation and the element force-deformation relations are only satisfied within 
a tolerance, when convergence is reached. Therefore, during the iterations the 
element forces approach the value corresponding to the imposed deformation, 
while strictly satisfying element equilibrium at all times.  
As for the element state determination, the section state determination includes the 

computation of resisting forces ��©#T() and stiffness matrix k(x), corresponding 
to deformations d(x). In the cross section x, along the length of the element, 

located at point (y, z) the strains are described as :(, �, �) = I(�, �)y(), being I(�, �) =  j−� � 1n a simple geometric vector. Given the constitutive laws of the 

materials,�(, �, �) and �(, �, �) can be derived from the strain distribution. The 

tangent material modulus � and the stress distribution � are needed to determine 

the section stiffness matrix �()  and the resisting forces {�() , computed 
through the virtual force principal. In particular, using a computer program 
requires the selection of a numerical integration scheme. The one used in this case, 
where a section at location x is subdivided into n(x) fibres, the midpoint 
integration rule is used for the following integrals 

(2.37) �(") = � I�(�, �)ª(, �, �)I(�, �)y««(")  

(2.38) {(") = � I�(�, �)¬(, �, �)y««(")  

Being the number of fibres a discrete number, the two integrals are transformed 
into a summation. The accuracy of such computations depends on the number and 
location of fibres, in fact, too little fibres could cause the underestimation of 
section capacity. In the other hand, increasing the number of fibres is 
computationally expensive. Thus, there must be the right balance between 
accuracy and computation effort. 

2.2.3. Numerical integration 

Gauss-Lobatto integration scheme is used to evaluate the integrals Eq. 2.22 and 
Eq. 2.23. This procedure is superior to the classical Gauss integration scheme 
because it always includes the end sections of the integration domain. When no 
distributed load act on the element, the end sections are those subjected to the 



 
Chapter 2   FINITE ELEMENT MODELS FOR THE NONLINEAR MATERIAL RESPONSE OF BEAM  

COLUMN ELEMENTS: FORMULATIONS AND OBJECTIVITY OF THE RESPONSE 

49 

 

largest forces and undergo the largest inelastic excursions. Therefore, monitoring 
the end sections results in more accuracy of the non-linear response of the element. 
The m-th order Gauss-Lobatto integration scheme permits exact integration of 

polynomials of order up to (2 − 3), and it is based on the following scheme 

(2.39) � ®($)y$ = &�®($� = −�)��� + ∑ &¯®($¯) + &°®($° = �)°��¯#�  

2.2.4. Loss of objectivity at section and element levels (Coleman and Spacone, 
2001)[12] 

In the case of a strain-hardening section behavior, objectivity is guaranteed both at 
section and element level, as long as more than three integration points are used. 
To prove this, the case of a cantilever single beam-column element under an 
imposed transverse tip displacement has been considered by Coleman and 

Spacone, 2001 [12]. Figure 2.10 – a) shows the response of the force-based 
element, on the left base curvature (curvature of the first integration point) versus 
base shear, on the right displacement versus base shear. The peak point identifies 
the displacement reached before unloading. From Figure 2.10 – a) is possible to 
note how the response is objective at both the element and section levels for 
models with four or more integration points. Three integration points do not 
accurately integrate the element integrals; thus, the stiffness over-prediction in the 
strain-hardening region. 
The same test is carried out in the case of elastic perfectly plastic moment-
curvature behavior. Here, prediction of the element force-displacement response 
remains objective while the peak curvature demand varies with the number of 
integration points, Figure 2.10 – b). The loss of objective curvature prediction is 
related to the localization of the inelastic curvature at the base integration point. 
When this bottom section reaches the plastic moment, the column reaches its 
load-carrying capacity. As the tip displacement increases, the curvature of the 
base integration point increases with constant (plastic) moment, while, along the 
length of the column, all the other integration points remain linear elastic and do 
not see any change in either curvature or moment. The length of the base 
integration point, and so the plastic hinge length, becomes a function of the 
number of integration points used. As the number of integration points increases, 
the plastic hinge length decreases, and the curvature demand in the base 
integration point must increase to yield the same prescribed tip displacement.  
Anyhow, the loss of objectivity is more evident in the case of strain-softening 
section behavior. Softening might happen in reinforced concrete columns or in 
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bridge piers that support a large dead load and are subjected to seismic forces. 
Therefore, to illustrate the loss of objectivity in Figure 2.10 – c), a reinforced 
concrete column has been modeled with a single force-based beam-column 
element. Both the local base curvature, and displacement versus base shear 
response lose objectivity. As the number of integration points increases from three 
to five, the length of the first integration point decreases and increasing curvatures 
are required to achieve the same prescribed tip displacement. The concrete fiber 
compressive strains in the hinge region quickly increase, resulting in rapidly 
degrading material stiffness. For larger numbers of integration points, the post-
peak response becomes very brittle. 
In summary, after reaching the plastic moment MP and the plastic curvature ϕP in 
the first section, corresponding to the first integration point, the applied force 
cannot increase and the tip displacement increases under constant applied load 
(and constant base moment). Bending moment cannot be larger than MP. Thus, in 
the remaining integration points it remains elastic yielding to the localization of 
non-linear curvature into the first integration point. The larger the number of 
integration points, the shorter the length of the first integration point and the larger 
the curvature at the first integration point to obtain the same tip displacement. 
Here comes the definition of numerical localization. 
In conclusion, it is the ability to capture a jump from elastic to inelastic behavior 
that makes the force-based formulation both attractive and prone to unique 
numerical problems. As the distance between the first (plastic) and second (elastic) 
integration point varies, the response also varies. Thus, the number and placement 
of the integration points influence not only the accuracy of the integration, but 
also the post-peak response. In summary the following behavior can be expected 
for a force-based beam-column element, with respect to the section response 
considered: 

- for hardening cross-section responses, plasticity usually spreads beyond a 
single integration point, and numerical problems are limited to a non-
smooth response if too few integration points are used, see Figure 2.10 – 

a); 

- for perfectly plastic and softening cross-section responses, the curvature 
tends to localize at a particular integration point, and problems with 
objectivity arise, see Figure 2.10 – b) and c). 
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Figure 2.10 – a) Cantilever beam-column element with Elastic-Strain-
Hardening section response; b) Elastic-perfectly-Plastic section response; c) 

Strain-Softening section response 

a) 

b) 

c) 
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2.2.5. Regularization techniques 

Constant fracture energy criterion 

The previous paragraph arose the problem of deformation localization, thus, the 
need of techniques that regularize the element formulation. The objective is to 
obtain a stable method, independent of the section stress-strain behavior. 
As introduced in paragraph 2.1.2. the concept of constant fracture energy is now 
applied to a force-based beam element that softens in compression. Therefore, it is 
necessary to define a new parameter, known as the fracture energy in compression C?±; σ is the concrete stress,³+ is the inelastic displacement, εµ the inelastic strain, Lµ¶ is the length of the softening integration point. C?± is defined as follows, and 

represents the area under the post-peak portion of compressive stress-
displacement curve, in Figure 2.3, 

(2.40) ·�̧ = � ¬ y¹% = ¯ � ¬ yº% = �%( � ¬ yº% 
Recalling Eq.2.8, and assuming C?±  is known from experimental tests, it is 

possible to note that theoretically the constitutive law must be calibrated for each 
separate integration point. In practice, plastic hinges normally form at the element 
ends, where the extreme integration points lie. If all elements in a model are 

integrated with the same scheme and number of integration points, :;< only varies 
for elements of different length L. In this way the constitutive law is linked to the 
element length, which is a straightforward process. 
As the number of integration points increases, larger inelastic strains to satisfy the 
constant fracture energy criteria are needed at the end integration point. This is 
equivalent to assuming a constant stress-displacement relation rather than a 
constant stress-strain law. 

Curvature post-processing 

After the regularization of the global force-displacement response, in some cases 
there is still a need to post-process the results to obtain an objective prediction of 
the curvature demand in the plastic hinge region. This is due to the fact that This 
is due to the fact that the plastic zone length is the length of the first integration 
point and does not necessarily correspond to the physical length of the plastic 
hinge.  
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A simple procedure is presented by Coleman and Spacone, 2001 [12]. The first 
consideration is that the total curvature in the plastic hinge region can be 

separated into elastic and inelastic curvature components as » = »Q + »+ , and 

that the inelastic hinge rotation is given by ¼+ = »+�+.. The inelastic curvature of 
the model, output of the analysis, can be approximated as  

(2.41) »+½¾¿Q3 ≅ ÁÂÃÂÄ9ÅÆ�ÅÂÄÆ B 

The above formula is needed to compute the scale factor, with which the inelastic 
curvature of the model will be weighted, to obtain the final actual curvature, after 
this regularization process. Scale factor is 

(2.42) �§¥E£ 6¥§¡¢¤ = ÇÂ4ÃÆ(T�ÇÂ4)Ã4(Ã�Ã4)  

 Finally, the objective prediction of the curvature 

(2.43) » = »Q + »+½¾¿Q3 ∗ (�§¥E£ 6¥§¡¢¤) 

In conclusion, for a force-based beam element it appears that if the length of the 
first integration point corresponds to the length of the plastic hinge, i.e., if �+.  =  �F, no post-processing of the curvature is needed because the curvature is 

objectively predicted by the element. On the other hand, selecting the number of 

Gauss-Lobatto integration points in such a way that �+.  ≅  �F  may cause two 

problems:  

- the number of integration points may be too small for short elements 
(causing undesirable reduced integration) or too large for long elements 
(increasing the computational cost of the element);  

- in most cases, the length of the element would also have to be adjusted, 
thus introducing an additional element in each member. This greatly 
increases the computational cost of the analyses. 

Different integration schemes in which the user can define the length of the 
integration points would also solve the issue, but would significantly compromise 
the accuracy of the numerical integration. The regularization approach described 
in this paper is general and does not affect either the element formulation or the 
integration scheme. 
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Chapter 3  

EXISTING STRUCTURE AND MODELING  ISSUES 

3.1. The bridge: Jamboree Road Overcrossing 

The Jamboree Road Overcrossing (JRO) is located in the Orange County, in the 
city of  Irvine on Route 261. The route is part of the Eastern Transportation 
Corridor, one of the design/build/operate toll roads in Southern California (Figure 

3.1 – a). The geographical coordinates of the location are +33° 43' 10.08", -117° 
47' 43.26". The bridge is object of a project of health monitoring by the research 
group of Professor Maria Q. Feng, University of California Irvine  [18]. 
The JRO can be considered an Ordinary Standard Bridge, in fact, it meets the 
requirements of Caltrans Seismic Design Criteria provided to define such category. 
The JRO is a typical three-span continuous cast-in-place pre-stressed post-tension 
box-girder (Figure 3.1 - b) [17]. The total length of the bridge is 366 ft (110,9 m), 
in which the lengths of the spans are 114, 152 and 100 ft (35,5 m, 46,1 m and 30,3 

m), respectively from span 1 to 3 [22] (Figure 3.1 - c).  
The super-structure consists of a two-cell cast-in-place pre-stressed and post-
tensioned box girder, which is supported on two monolithic single columns and 
sliding bearings on both abutments. The sliding bearings allow creep, shrinkage, 
and thermal expansion or contraction. On the outer edges of both traffic lanes, a 
concrete barrier approximately 1.75 ft (0.8 m) high is provided. The typical cross 
section of the box-girder is shown in Figure 3.1 - d). 
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The columns are rectangular with circular ends and interlocking spiral 
reinforcement. The columns height is 26,126 ft and 28,41 ft (7,96 m and 8,66 m). 
The shortest bent is usually referred to as left bent, while the taller is the right bent. 
The cross-section width is 8,25 ft (2,51 m) and its depth is 5,5 ft (1,67 m). Both 
columns are continuous with the box girder due to the main bent reinforcement 
being anchored in solid concrete diaphragms filling the girder void at bent 
locations. Each bent is founded on a square reinforced concrete (RC) pad footing 
supported in turn on Caltrans class 100C piles. Similarly, the abutments are 
founded on pad footings supported on class 100C piles.  
The JRO Bridge was designed by the Transportation Corridor Agencies in 
accordance with the American Association of State Highway and Transportation 

Officials (AASHTO) 1983 Standard Specifications for Highway Bridges [19] with 
interims and revisions by Caltrans. The construction of the JRO bridge was 
completed in 2001.  
 

 

a) 
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Figure 3.1 - a) Jamboree Road Overcrossing located on Route 261; b) Plan; c) 
Elevation; d) Typical Cross Section Box-Girder 
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3.2. The OpenSees modeling 

3.2.1. The software OpenSees  

The software OpenSees [20], the Open System for Earthquake Engineering 

Simulation, is an object-oriented, open source software framework. It has been 
developed by PEER (Pacific Earthquake Engineering Research Center), one of 
the most important American research institutes for seismic engineering.  
The software allows users to create both serial and parallel finite element 
computer applications for simulating the response of structural and geotechnical 
systems subjected to earthquakes and other hazards. OpenSees is primarily written 
in C++ and uses several Fortran and C numerical libraries for linear equation 
solving, and material and element routines. It is an open source software, that 
means it is free and it can be modified and improved by anyone. OpenSees is 
based on the TCL, Tool Command Language, that supports, other than specific 
commands of the software, basic operations and file manipulation. The 
construction of the finite element model and the following analysis are, therefore, 
written as command lines; in fact, the software does not have a graphical interface. 
Because of this, it is barely usable in every day’s practice, but a very powerful 
tool in the research field. OpenSees executes both static and dynamics analysis, 
linear and non-linear.  
Four different phases can be identified as the basic process for each analysis: 

a. ModelBuilder Object: the characteristics of the physical model to be 
analyzed are defined, both plane models and three-dimensional; 

b. Domain Object: nodes, elements, sections, materials, restraints, masses 
and loads are defined and recorded, available for all the following analysis;  

c. Analysis Object: the numerical procedure to be used is defined, the solving 
algorithm, the integrator, convergence tests, the integration steps. Analysis 
objects encapsulate algorithms that direct the Domain components to form 
and solve the governing equations of structural equilibrium at each 
integration step; 

d. Recorder Object: records and store into output files the structural response 
obtained through the analysis. 

To follow, in Figure 3.2 [21], the modeling hierarchy for nonlinear structural 
analyses on which the software OpenSees is based. 
 



 
 

Chapter 3        THE EXISTING STRUCTURE AND THE MODELING ISSUES 

59 

 

 

Figure 3.2 - Modeling hierarchy for nonlinear analyses [21] 
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3.2.2.  The Three-Dimensional Model 

Unit and Coordinate Systems  

A three-dimensional (3D) model of the structural system is required to capture the 
response of the entire bridge system and individual components under specific 
seismic demand characteristics. The interaction between the response in the 
orthogonal bridge directions and the variation of axial loads in column bents 
throughout the analysis is captured more accurately in a 3D model, rather than a 
2D model. The 3D linear model will be the basis for the nonlinear one. Having a 
3D model enables correct evaluation of the capacity and ductility of the system 
under seismic loads or displacements applied along any given direction, not 
necessary aligned with the principal axis of the bridge. 
The United States Customary System has been used for all the units used in the 
OpenSees model. Length are reported in feet (ft), weights in kilo-pounds (kips), 

time in seconds (sec.). Other important derived and frequently used units are kilo-

pounds per square feet (ksf) for the elastic moduli, feet squares (ft2) for areas, feet 
to the power four (ft4) for inertia moments. 
The local and global coordinate system used for the modeling and analysis of the 
bridge is shown in Figure 3.3 a). The global X-axis is in the direction of the chord 
connecting the abutments, denoted as the longitudinal direction; the global Z-axis 
is orthogonal to the chord in the horizontal plane, representing the transverse 
direction; while the global Y-axis defines the vertical direction of the bridge. For 
the analysis and design of elements of the bridge using two-noded elements, a 
local coordinate system is used, as shown in Figure 3.3 - c).The orientation of all 
frame elements in the structure coincides with the positive direction of the global 
axis; namely, the coordinate of node i of the frame will be smaller than those of 
node j.  

Mass distribution 

All bridge elements will be approximated with a distributed mass along their 
length and assigns them as lumped mass at each node, based on tributary lengths. 
To approximate the distributed mass with lumped masses, a sufficient number of 
nodes and segments have to be defined. The weight of normal concrete is assumed 

as � = 143.96 
�/�.�. No rotational mass have been taken into account. 
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Figure 3.3 - Global and local coordinate system 

Elements and restraints 

As suggested by Caltrans guidelines [1], a minimum of three elements per 
column and four elements per span shall be used in a linear elastic model. In fact, 
10 elements have been used for each of the span, from 1 to 3.  
A rigid link, in correspondence of the connection bent-deck, have been used, the 
rigid link goes from the top of the bent to the centroid of the superstructure. The 
different types of elements used for the columns will be discussed later. 
The boundary (support) conditions were defined as fixed at the base of each bent, 
thus the restraints for the three translational degrees of freedom are zero 
displacement imposed, and the restraints for the three rotational degrees of 
freedom are zero rotation imposed.  
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Abutments 

The modeling of the abutments is one of the most controversial issues when 
modeling highway bridges. Nowadays, researchers use different abutment models 
according to the purpose of the analysis. Although several studies have been 
conducted to study the abutment behavior, a lack of a unique idealization still 
persists.  
Abutments are earth-retaining systems designed to provide unimpeded traffic 
access to and from the bridge. Abutments also provide an economical means of 
resisting bridge inertial loads developed during ground excitations. Abutment 
walls are traditionally designed following principles for free-standing retaining 
walls based on active and passive earth pressure theories. However, such pressure 
theories are invalid for abutment walls during seismic events when inertial 
loading from the massive bridge structure induces higher than anticipated passive 
earth pressure conditions (Lam and Martin, 1986 [23]). 
A realistic abutment model should represent all major resistance mechanisms and 
components, including an accurate estimation of their mass, stiffness, and 
nonlinear hysteretic behavior. Values of embankment critical length and 
participating mass were suggested by many research studies in order to quantify 
the embankment mobilization. The consideration of the abutment system 
participating mass has a critical effect on the mode shapes and consequently the 
dynamic response of the bridge, captured primarily through time history analysis. 
The load pattern specified for a pushover analysis of the bridge is also adjusted 
due to this additional mass, modifying the force-deformation results of the system 
considerably. Due to the high sensitivity of the bridge response to the magnitude 
of the abutment mass, additional research is needed to standardize the modeling 
recommendations for Caltrans bridges. In addition, soil-structure interaction 
behind the abutment walls and due to the abutment foundations is also an 
important aspect affecting the abutment system behavior that requires further 
investigation. 
The main motivation to apply increasingly sophisticated abutment models is 
related to the accessibility to more powerful computers rather than an apparent 
inaccuracy of simpler models, but additional research is needed to standardize the 
modeling recommendations for bridges. 
Although different abutment models are available, in this thesis it is sufficient to 
model the abutment as a single spring was assigned to each degree of freedom, i.e. 
transverse, longitudinal, vertical, and their respective rotations, resulting in a total 
of 12 elastic springs in the bridge FE models [24]. The reason to use this model is 
to simplify the analysis and because the nonlinearity of the bridge under 
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earthquake forces arises from different sources, such as the column plastic hinges, 
as explained later.  
The abutments ends are fixed, but a zeroLength element has been built in 
correspondence of the end nodes. To each of the two zeroLength element it has 
been associated the properties of the six elastic springs, to simulate the interaction 
between the bridge and the soil. The following values were assumed for both 
abutments: 

Spring stiffness of Trans X direction  !" =  4748,82 '() /�. 

Spring stiffness of Trans Y direction  !+ =  437913  '() /�. 

Spring stiffness of Trans Z direction  !- =  3974,95  '() /�. 

Spring stiffness of Rot X direction   0" =  56453168  '() ∗ �./234 

Spring stiffness of Rot Z direction    0+ =  647961,9  '() ∗ �./234 

Spring stiffness of Rot Z direction    0- =  3941217   '() ∗ �./234 

3.2.3. Modal Analysis and the definition of the load path for Pushover Analysis 

Modal Analysis is the study of the dynamic properties of structures under 
vibrational excitation. It is executed on the linear elastic model, therefore elastic 
elements have been defined also for the bents. 
In structural engineering, modal analysis involves the use of both, a system mass 
matrix and a system stiffness matrix. The purpose is to estimate the natural 
frequencies (periods) and corresponding mode shapes associated to the dynamics 
of the system. These periods of vibration are very important to note in earthquake 
engineering, as it is desirable that a structure's natural frequency does not match 
the frequency of expected earthquakes in the region in which the building is to be 
constructed. If a structure's natural frequency matches an earthquake's frequency, 
the structure could continue to resonate and experience structural damage. 
The goal of modal analysis in structural mechanics is to determine the natural 
mode shapes and frequencies of an object or structure during free vibration. It is 
common to use the finite element method (FEM) to perform this analysis because, 
like other calculations using the FEM, the object being analyzed can have 
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arbitrary shape and the results of the calculations are acceptable. The types of 
equations which arise from modal analysis are those seen in eigensystems. The 
physical interpretation of the eigenvalues and eigenvectors which come from 
solving the system are that they represent the frequencies and corresponding mode 
shapes. Sometimes, the only desired modes are the lowest frequencies because 
they can be the most prominent modes at which the object will vibrate, 
dominating all the higher frequency modes. 
For the most basic problem involving a linear elastic material which obeys 
Hooke's Law, the matrix equations take the form of a dynamic three dimensional 
spring mass system. The generalized equation of motion is given as: 

(3.1) [6][89 ]  +  [;][8< ]  +  [=][8]  =  [>] 

where [M] is the mass matrix, ?89 @ is the 2nd time derivative of the displacement 

[U] (i.e., the acceleration), [8< ] is the velocity, [C] is a damping matrix, [K] is the 
stiffness matrix, and [F] is the force vector. The general problem, with nonzero 
damping, is a quadratic eigenvalue problem. However, for vibrational modal 
analysis, the damping is generally ignored, leaving only the 1st and 3rd terms on 
the left hand side: 

(3.2) [6][89 ]  +  [=][8]  =  [0] 

This is the general form of the eigensystem encountered in structural engineering 
using the FEM. To represent the free-vibration solutions of the structure harmonic 

motion is assumed, so that  ?89 @ is taken to equal ω2 [U], where ω2 is an eigenvalue 

(with units of reciprocal time squared, [s – 2]), and the equation reduces to:  

(3.3) [6][8] BC  + [=][8]  =  [0] 

This eigenvalues problem will provide the natural frequency of the system, 
through which it will be possible to compute the eigenvectors, physically 
represented by the mode shapes of the system, as mentioned before. 
The computed natural frequencies that will be reported to follow, derive from the 
analytical model with the boundary spring elements located in the abutments ends, 
and fixed ends for the columns, as mentioned before. The mode shapes 
corresponding to the computed natural frequencies of the bridge are plotted for the 
vertical direction and for the transverse direction, for the mode shapes 2. 
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Natural frequencies: 

mode 1, 1 =  2,62 E-,    F1 =  0,38  GH 
mode 2, 2 =  2,64 E-,   F2 =  0,38  GH 
mode 3, 3 =  2,91E-,    F3 =  0,34  GH 
mode 4, 4 =  3,02 E-,    F4 =  0,33  GH 
mode 5, 5 =  3,84E-,    F5 = 0,26  GH 

mode 6, 6 =  4,37 E-,    F6 =  0,23  GH 
mode 7, 7 =  5,33 E-,    F7 =  0,19  GH 

First mode shape does not have a transversal component, while the others do. To 
follow plots of mode shape 2 (Figure 3.4). 

Since the first mode shape does not have any transversal component, the second 
mode shape has been considered when assigning a load path to the Pushover 
analysis. In fact the normalized eigenvectors have been computed, and the load 
path created has the transversal component of those values as load multipliers. 
This implies that the load path selected for the Pushover analysis follows the 
shape of the second vibration mode. 

 

Figure 3.4 - Mode Shape 2, from top to bottom: plan, elevation and lateral 
view 
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3.3. The prototype materials 

3.3.1. Linear elastic material for the deck 

A linear elastic material prototype has been created for the deck, with the 
following properties 

Deck:   Young's modulus  O = 649584 '   

  Shear modulus Q = O4GH'/2,4 '  

Some part of the model, require the elastic properties also for the bents. The 
elastic modulus and the shear modulus have been assumed to be equal to those 
used for  the deck 

Columns:   Young's modulus O = 649584 '   

  Shear modulus Q = O4GH'/2,4 '  

3.3.2. Elasto-plastic materials for the bents  

When modeling concrete elements with nonlinear materials, one has to distinguish 
between unconfined and confined concrete. The first is associated to the cover 
concrete, confined by spiral hoops, while the second is associated with the core of 
the element. It is essential to incorporate an accurate model of the material 
behavior, because after the occurrence of destructive earthquakes, it has been 
observed one of the most damaged elements on highway bridges is a column. 

Concrete01 

One of the two concrete considered for modeling the columns is a material 
available in OpenSees named Concrete01. This command is used to construct a 
uniaxial Kent-Scott-Park concrete material object with degraded linear 
unloading/reloading stiffness according to the work of I. D. Karsan and J. O. 

Jirsa (1969) [25] and no tensile strength. Concrete01 model is widely used 
because of its simplicity and the control that one has over the input parameters. 



 
 

Chapter 3        THE EXISTING STRUCTURE AND THE MODELING ISSUES 

67 

 

 The expected compressive strength for unconfined concrete is set equal to 

720 ' , and equal to 1,5 ∗ 720 '  for confined concrete, according to Caltrans 

recommendations. The confined strength has been raised to 1198 ' , to let the 
material be the most similar to Concrete07, which will be introduced later. The 
strains associated with these two peak stresses have been set equal to those of 
concrete07, while the Young Modulus in this model is obtained applying the 
following expression 

(3.4)    OS =  2 ∗ TU
V

WV
 

where εc is the strain associated to f’ c, f’c is the expected compressive strength for 
concrete, and Ec is the tangent modulus of elasticity at the origin of coordinates.  
Once the compressive strength is reached, the unconfined stress falls rapidly to 
zero at the spalling strength, while the confined stress degrades not as rapidly as 
the unconfined stress. The confined concrete model should continue to ascend 
until the confined compressive strength f’ cu is reached. The segment should be 
followed by a descending curve dependent on the parameters of the confining 
steel, then a plateau for the confined concrete. The ultimate compressive strain 
should be the point where strain energy equilibrium is reached between the 
concrete and the confinement steel. 

Concrete07 

Many researchers have devoted a great effort in defining the stress-strain relation 
of concrete. Among the publications regarding this issue there are few that 
presented successful expressions for a stress-train relationship for concrete 
(Mander, et al. 1988 [26]; Chang and Mander 1994 [27]).  
The authors of Concrete07 model give the following reasons for having created 
such material model:  
the model considers wedging action in the cracks, which makes compression 
stress develop prior to crack closure;  
the model behaves differently depending on the moment when the strain reversal 
occurs, providing a more robust hysteretic behavior;  
the model proposed by J. B. Mander et al. (1988) [26] is widely used to determine 
the confined concrete properties and the model proposed by G. A. Chang and J. B. 

Mander (1994) [27] extends this last J. B. Mander’s model to include the behavior 
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of unconfined and high strength concrete; 
[27] used a large number of cyclic concrete tests to validate the model behavior.
In Mander’s model the initial 
might be represented by the same equation,
concrete, since the confining steel has no effect in this range of strains
3.5).  Mander’s model have been used to compute the yielding 
and the ultimate compressive strain for the confined concrete

(3.5)  XSS =

(3.6)  XSY =

Where fy is the yielding strength of the longitudinal reinforcing bars, 
ultimate strain of the longitudinal reinforcing bars. Considering that in the cross 
section of the bents it is possible to inscribe two circles formulas for circular cross 
sections, transversally reinforced with spiral hoops, have been used.

(3.7)   

Z[\ is the cross section area of the spirals, 

the spiral pitch, distance from center to center of the spirals.

Figure 3.
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of unconfined and high strength concrete; G. A. Chang and J. B. Mander

used a large number of cyclic concrete tests to validate the model behavior.
he initial ascending curve has the same initial slope

might be represented by the same equation, for both confined and unconfined 
since the confining steel has no effect in this range of strains

model have been used to compute the yielding compressive strain 
and the ultimate compressive strain for the confined concrete as follows

= XS ]1 : 5 ∗ ^TUVV
T_V

` 1ab 

� 1,4 c0,004 : d,e∗Tf∗gh∗Whi
TUVV

j 

is the yielding strength of the longitudinal reinforcing bars, 
ultimate strain of the longitudinal reinforcing bars. Considering that in the cross 
section of the bents it is possible to inscribe two circles formulas for circular cross 
sections, transversally reinforced with spiral hoops, have been used. 

k[ � e∗lhm
nh[  

is the cross section area of the spirals, 4[ is the diameter of the core and 

the spiral pitch, distance from center to center of the spirals. 

 

Figure 3.5 - Mander's model for concrete 
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G. A. Chang and J. B. Mander (1994) 
used a large number of cyclic concrete tests to validate the model behavior. 

rve has the same initial slope, and 
for both confined and unconfined 

since the confining steel has no effect in this range of strains (Figure 

compressive strain 
 

is the yielding strength of the longitudinal reinforcing bars, X[Y is the 
ultimate strain of the longitudinal reinforcing bars. Considering that in the cross 
section of the bents it is possible to inscribe two circles formulas for circular cross 

is the diameter of the core and s is 
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The main difference from Concrete01, is that Concrete07 is able to describe the 
tensile behavior of the material (Figure 3.6, tensile behavior, upper right part, and 
compressive behavior lower left part, are note not to scale). The eight parameter 
needed to the describe the material are introduced in Figure 3.6 and explained in 
more detail, to follow. 

 

Figure 3.6 – Chang and Mander, Envelope and variable definition 
Concrete07 

Unconfined Concrete – For unconfined concrete, the peak compressive strength fc 
in the above figure is f'c and corresponding strain ec is e'c. Assuming that the 
compressive strength for unconfined concrete is readily available, the key 
parameters required for the model can be found using the following 
recommendations which include (Chang and Mander, 1994, [27] units is psi): 

′S �  pqHrq(qG4 )G3' Hrs)2G  (tG  �2Gqu�ℎ 

(3.8)    G_S � TUV
w
x

eyyy 
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(3.9) OS = 185000 ∗ _
S

�/z 

(3.10) { = 7,5 ∗ |_
S 

(3.11) X{ = { ∗ C
}V

 

"\ = 2 

"~ = 2.3 

(3.12) 2 = TU
V

��y − 1,9 

Confined concrete – Confinement increases the strength and ductility of concrete. 
These effects are accounted in the above figure by replacing the peak compressive 
strength and the corresponding strain with f'cc and e'cc, respectively. The value of r 
is also decreased. The monotonic envelope for the tension side of the confined 
concrete follows the same curve that is used for unconfined concrete. The 
recommended approach to define all critical parameters needed to model the 
confined concrete under compression are as follows (Chang and Mander, [27] 
1994): 

′S =  pqHrq(qG4 )G3' Hrs)2G  (tG  �2Gqu�ℎ;  

(3.13)  ′SS = ′S ∗ (1 + 'd ∗ "_) 

(3.14) 'd = Z ∗ ]0.1 + y,�
d��∗�Ub 

(3.15) "_ = �d + T��
C∗TUV

 

(3.16) G_Sy = TU
V�

w
x

eyyy  

(3.17) Z = 6,886 − (0,6069 + 17,275�) ∗ G�e,�z�� 

(3.18) � = e,�
�
�[y,�ze��y,��y����,�����]�y,d

− 5 
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(3.19) � = T�w
T��

 �G(qu �C ≥ �d 

(3.20) XSS � XS ∗ (1 + 'C ∗ "_)  

'C = 5 ∗ 'd  (qr2s3
  �2Gqu�ℎ �23q tG2 G 2G(qr2HGsGq�) 

"~ = 30   (�r r

r� �ℎG 4G HGq4(qu �23qHℎ �r 
32uG  �23(q ) 

(3.21) q = OS ∗ XSS/_
SS 

(3.22) 2 = ~
~�d 

The actual stress-strain relationship used for Concrete07 in the model, is shown in 
Figure 3.7 –a) and b), where compressive stresses and strains are assumed to be 
negative. Stresses are plotted in ksf, while strains are plotted in %. 
In particular, Figure 3.7 a) shows the compressive behavior of concrete07: 

- The dashed blue line is the stress-strain curve for the unconfined concrete; 

after reaching ′S , the peek compressive strength of 720 ksf, the 

descending branch starts and reaches f _SY , the ultimate compressive 

strength, of 0 ksf, corresponding to the ultimate compressive strain εSY,, of 
0,0635.  

- In solid blue the stress-strain curve for the confined concrete, whose 

yielding strength, ′SS, is equal to 1198 ksf. Here the descending branch 

starts and reaches f _SSY, the ultimate compressive strength, of 1168 ksf, 

corresponding to the ultimate compressive strain εSSY =  0,0142.   

Figure 3.7 b) shows the tensile behavior of concrete07; the tensile stress-strain 
relationship is assumed to be equal for both unconfined and confined concrete. 
Figure 3.7 c) shows the superposition of concrete01 (in red) and concrete07 (in 
blue) curves. It should be remarked that for concrete01, the Young Modulus is not 
assigned from the user, therefore there is no control over this parameter. Here 
comes from the discrepancy between the two curves for the confined concrete. 
Results of pushover analysis have been compared for both concretes, but in the 
following considerations only concrete07 have been taken into account. 
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a) 

b) 
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Figure 3.7 – a) Compressive behavior of Concrete07; b) Tensile behavior; c) 
Superposition of concret01 and concrete07 models. Not to scale. 

 Steel02 

The Steel02 command is used to construct a uniaxial Giuffre-Menegotto-Pinto [28] 
steel material object, with isotropic strain hardening option. Six parameters are 
needed to define the model of the selected steel. The first two parameters needed 
are the Young’s Modulus E and the yield strength fy (reported also the 

corresponding yield strain ε� ). The following values, corresponding to 

Reinforcing Steel A706/A706M (Grade 60/Grade 400), have been assumed 

Young's modulus   O �  4320000,0 '  

Yield strength    � = 8640,0 '  

Yield strain                  X� = 0,0025 

c) 
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The third parameter is b (Figure 3.8), the strain-hardening ratio (ratio between 
post-yield tangent and initial elastic tangent). The parameter controls the 
inclination of the second linear branch, after the  yielding strength fy is reached, by 
reducing the initial elastic tangent. For modeling purposes, the parameter b has 

been taken � � 0,01. 
Even thought the ultimate strength does not need to be specified in the 
construction of the uniaxial steel02 material, the following value is used later on 
in the computation of the plastic hinge length 

Ultimate strength                            Y = 11520,0 '  

whose corresponding Ultimate strain          XY = 0,0687 

The last three parameter needed control the transition from elastic to plastic 
branches, default values have been used. The steel02 material shows advantages, 
with respect to a simpler model such as steel01, when considering hysteretic 
behavior, important especially in dynamic analysis. 

 

Figure 3.8 – Stress-Strain relationship, Steele02 
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3.3.3.  Fiber section definition 

A fiber section was created and the area, coordinates, and material type for each 
fiber of the column cross section, corresponding to the cover, the core, and 
reinforcing steel, have been defined.  
Figure 3.9- a)  shows the fiber definition for the bent cross section, unique for 
both the left and the right bent. It is possible to note how the cover corresponds to 
0,22 ft (6,7 cm) circa, while the core constitutes all the remaining surface of the 
cross section, longitudinal reinforcing steel excluded. 
As mentioned before for a bridge reinforced concrete column, two different 
models have been adopted for the concrete for which a stress-strain relation was 
defined previously, in Paragraph 3.3.2.  

The stress-strain  relation with degrading material strength is defined separately 
for confined concrete, unconfined concrete, and steel: 

- for the “cover” concrete a elasto-plastic degrading constitutive law without 
confinement have been used; 

- for the “core” concrete a elasto-plastic constitutive law that accounts for 
confinement, given by transversal hoops, have been used. 

The fiber section itself only handles axial and flexural force-deformations 
relationship, therefore an Section Aggregator object has been used to include 
shear force-deformation (Figure 3.9 – b)). Torsion is assumed to remain linear 
elastic and uncoupled from the flexural and the axial response, therefore does not 
need to be included in the fiber section definition.  

 

a) 
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Figure 3.9 – a)Fibre definition for the bent cross section; b) Aggregator 

3.3.4. The Moment-Curvature analysis of the section 

The plastic moment capacity of a ductile concrete member shall be calculated by 
Moment-Curvature analysis based on the actual material properties. Moment-
Curvature analysis derives the curvatures associated with a range of moments for 
a cross section based on the principles of strain compatibility and equilibrium 
forces. Once defined the parameters for the three materials, and associated the 
material desired to the core and cover concrete and the reinforcing steel, a 
Moment-Curvature Analysis is executed in OpenSees on the fiber section.  

The assumptions for a flexural analysis of a concrete cross-section are: 

- the Navier-Bernoulli hypothesis, which states that plane sections normal to 
the axial axis remain plane and normal to the axial axis, holds; 

- there is a perfect bond between concrete and steel; 

- stress-strain relations for concrete and steel are known; 

- concrete tension strength is neglected; 

- an axial load is applied at the centroid of the section. 

When a fiber section is used to perform a moment-curvature analysis the 
following steps are usually required: 

b) 
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1. The section is divided into discrete elements (fibres) perpendicular to the 
loading axis; 

2. Define stress-strain relations for steel, core concrete and cover concrete; 

3. Assume a low extreme fibre compression strain; 

4. Assume a location of the neutral axis; 

5. Calculate concrete and steel stress at the center of each fiber; 

6. Check axial force equilibrium; 

7. Repeat steps 4 to 6 until equilibrium is reached; 

8. Calculate the moment and curvature; 

9. Move to the next strain value and repeat steps 3 to 8; 

The procedure ends when the ultimate compression strain has been reached. 
In Figure 3.10 a) the plot of the Moment-Curvature diagrams for the two different 
concrete used, Concrete01-Steel02 in red and Concrete07-Steel02 in blue. The 

estimated yield curvature is equal to � = 0.0127[1/�]. 
The curve can then be idealized [29] with an elasto-plastic response to estimate 
the plastic moment capacity of a member’s cross section. The elastic portion for 
the idealized curve should pass through the point marking the first reinforcing bar 

yield, (�′�, 6�), in Figure 3.10  - b) the blue dot. The elastic branch continues up 

to the nominal  moment capacity, green dot. Mn is defined as the moment 
corresponding to an extreme fibre compression strain of 0.004, in the concrete, or 
an extreme tension reinforcing bar strain of 0.015, the latter have been considered. 

The curvature corresponding to Mn is the nominal yield curvature ��, computed 

according to a linear law 

(3.23) �� =  ¡
 f

�′�  

The plastic branch is simply defined by connecting the nominal yield point, 

(��, 6~), in Figure 3.10- b)  the green dot, to the ultimate condition: (�Y, 6Y), 

the red dot. 
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Figure 3.10 – a) Moment-Curvature procedure; b) Idealized bilinear curve 

a) 

b) 
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3.4. Localization of the material nonlinearities in the bents 

As mentioned in the first chapter the nonlinear elements used for the model are 
force-based elements. In particular, both diffuse plasticity elements and 
concentrated plasticity elements have been considered during the construction of 
the model.  
Three different elements have been selected from OpenSees library: 

- beamWithHinges element (Figure 3.11 – a)) for the element with 
concentrated plasticity, that uses integration scheme modified Gauss-
Radau (seen in Chapter 2, in Paragraph 2.1.3.). This element requires the 
computation of the plastic hinge length, according to the method seen in 
Chapter 2, in Paragraph 2.1.4.) 

- nonlinearBeamColumn element (Figure 3.11 – b))for the element with 
diffuse plasticity, that uses the integration scheme Gauss-Lobatto (see 

Chapter 2, in Paragraph 2.2.3); 

- zeroLengthSection element  is a zero length element object, which is 
defined by two nodes at the same location. The nodes are connected by a 
single section object to represent the force-deformation relationship for the 
element.  

 

Figure 3.11 - a) beamWithHinges element; b) nonlinearBeamColumn element 
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3.4.1. The different scenarios employed in the bents modeling 

Several scenarios have been taken into account when modeling the reinforced 
concrete bridge columns: 

- one beamWithHinges element with a plastic hinge length Lp equal at both 
ends. The plastic hinge length have been computed and are equal to 2,560 ft 
for the 26,410 ft tall bent, and 2,690 ft for the 28,410 ft tall bent. The strain 
penetration Lsp is 1,057 ft; 

- two nonlinearBeamColumn elements, at the top and the bottom of the bent, 
and an elasticBeamColumn element for the central part of the bent. In order to 
better compare the results of the different analysis, run with the different 
elements modeling the nonlinearity of the bents, the length of the nonlinear 
elements have been assumed to be approximately equal to the length of the 
plastic hinges used for the concentrated plasticity elements. Three integration 
points have been selected, therefore even with a similar plastic zone length 
the results are expected to be quite different, due to the localization of 
plasticity at the first integration point. On the other hand, as seen in Chapter 2, 
the use of just two integration points is discouraged due to inaccuracy; 

- one nonlinearBeamColumn element with ten integration points, so that the 
first integration section would be approximately located in correspondence of 
Lp in the beamWithHinges element. Ten integration points have been used in 
order to have the best correspondence between the first integration point 
location and Lp of the beamWithHinges elements; 

- two zeroLengthSection elements located in correspondence of the bent top 
and bottom ends, plus three elasticBeamColumn elements for the central part 
of the bent. The orientation of the zeroLengthSection elements needs to be 
specified, in order to achieve reasonable results. In fact the default orientation 
locates the section parallel to the longitudinal axes, instead of orthogonally. 

In Chapter 4 the results of the pushover analysis executed on the different models 
are presented. However, in the second part of the work, when converting a 
pushover curve into a capacity spectrum, only the beamWithHinges element have 
been taken into account.  
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3.5. The Geometrical nonlinearities 

In OpenSees “geomTransf” command is used to construct a linear coordinate 
transformation object, which performs a geometric transformation of beam 
stiffness and resisting force from the basic system to the global-coordinate system. 
Furthermore, through the object the P-∆ effects, or second order effects are taken 
into account, where P-∆ effect refers to the abrupt changes in ground shear, 
overturning moment, and/or the axial force distribution at the base of a 
sufficiently tall structure or structural component when it is subject to a critical 
lateral displacement. 
The dynamic effects of column axial loads acting through large lateral 

displacements, otherwise known as P-∆  or second-order effects, is included in all 

analysis cases of the bridge model. The consideration of P-∆  effects helps 
identify the structural instability hazard of the bridge by capturing the degradation 
of strength and amplification of the seismic demand on the column bents, caused 
by the relative displacement between the column top and bottom.  During a 
pushover analysis, the degradation of strength is noted with the increase of lateral 
displacements of the column top, thus providing an accurate estimate of the actual 
capacity and base shear of the bridge. A softening behavior with a constant slope 
is observed in the force-displacement curve. During time history analysis, P- 

∆  effects play an important role in capturing the peak displacements of a yielding 
system, where a significant amplification of the response is generally expected for 
an adequate set of ground motions. 
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3.6. The Pushover Analysis procedure 

3.6.1. The solving algorithms  

The main incremental iterative procedures are available in OpenSees, for the 
nonlinear analysis. The available algorithms are Newton-Rapson, the Newton-

Rapson with line search, and Broyden and the derivatives. The algorithms are 
used in the presented order, subsequently in case of convergence failure of the 
previous one. 

- Newton-Rapson algorithm, is the most widely used and most robust  iterative 
method for solving systems of nonlinear algebraic equations. It is also the 
most demanding in terms of computational effort, because the stiffness matrix 
need to be updated at each iteration step.  

- The Newton-Rapson with line search algorithm, introduces the line search to 
solve the nonlinear residual equation. Line search increases the effectiveness 
of the Newton method when convergence is slow due to roughness of the 
residual. The stiffness matrix is not updated at each step. This implies a 
reduced computational effort, the advantage of this method. The drawback of 
this method is that it requires more iterations than Newton's method, thus the 
convergence is slower. 

- Broyden algorithm is for general un-symmetric systems. It performs 
successive rank-one updates of the tangent at the first iteration of the current 
time step. This algorithm is used in critical cases only, because the algorithm 
densifies the iterations in correspondence of the points where the solution has 
difficulty to converge. As a result the convergence is slower. 

3.6.2. The integrator  

The Integrator object determines the meaning of the terms in the system of 

equation object Z" � �. It is used to: determine the predictive step for time t+dt; 
specify the tangent matrix and residual vector at any iteration; determine the 

corrective step based on the displacement increment 48. The type of integrator 
chosen among the available is Displacement Control. In an analysis step with 
Displacement Control the objective is to determine the time step that will result in 
a displacement increment for a particular degree-of-freedom at a node to be a 
prescribed value. 
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3.6.3. The convergence test 

As of the convergence tests it is possible to chose between various types: Norm 

Unbalance Test, Norm Displacement Increment test, Energy Increment Test. In 
particular, it has been used the Energy Increment Test. This convergence test uses 
the dot product of the solution vector and norm of the right hand side of the matrix 
equation to determine if convergence has been reached. The physical meaning of 
this quantity depends on the integrator and constraint handler chosen. Usually, 
though not always, it is equal to the energy unbalance in the system. The 
convergence tests positive if one half of the inner-product of the x and b vectors 
(displacement increment and unbalance) is less than the specified tolerance. 

3.7. The Nonlinear Time-History Analysis procedure 

3.7.1. The solving algorithm, the integrator and the convergence test 

The algorithm used for the Time History Analyses in the Newton-Rapson with line 

search algorithm,  introduced in the previous paragraph. 

The Hilber-Hughes-Taylor (Method HHT) integration scheme (Hilber, Hughes, 

and Taylor, 1977 [30])  have been used for the analysis. HHT is an implicit, 
unconditionally stable method with numerical damping properties to reduce 
higher mode oscillation, while achieving second-order accuracy (error 
proportional to ∆t2) when used to solve the ordinary differential equations of 
motion. The method makes use of an α parameter ranging from -1/3 to 0. The 
smaller the value of α, the more damping is induced in the numerical solution. The 
choice of α = 0.7 have been adopted for the OpenSees analysis. 
The convergence test used is the Relative Energy Increment, it is similar to the 
Energy Increment introduced in the previous paragraph, but the test is relative to 
the first dor product computed for each step. 

3.7.2. Damping 

The damping is an effect that reduces the amplitude of oscillations in an 
oscillatory system. The damping in direct-integration time-history analysis is 
modeled using a full damping matrix. Damping matrix applied to the entire 
structure is calculated as a linear combination of the stiffness and mass matrices 
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(Rayleigh damping, see Figure 3.12). Stiffness and mass proportional damping 
coefficients are specified directly or by equivalent fractions of critical modal 
damping at two modal periods. 5 % damping coefficient have been used. 

(3.24) 5;7 � ¢567 : £5=7 

Being 5;7 the damping matrix, 567 the mass matrix, 5=7 the stiffness matrix; ¢, £ 
two scalars. 

 

Figure 3.12 – Rayleigh damping 

 

 

 



 

 

 

 

 

 

Chapter 4 

NONLINEAR ANALYSIS RESULTS 

At the completion of the analysis phase, the pushover curve is obtained where the 
total base shear and displacement capacity of the bridge are determined. The total 
base shear is obtained adding the shear reactions at the base nodes together, 
recorded in the transverse direction, the direction in which the pushover analyses 
have been executed. The displacement recorded is the one at mid-span, node 16, 
of the superstructure.  
First, a simple analysis have been executed, a pushover on the single bents. The 
load has been applied at the top of the left bent, node 11, and at the top of the right 
bent, node 21, in the course of different analysis, see Figure 4.1 – a). 

Afterwards, a pushover analysis loading the whole structure have been performed. 
In this case, the structure was loaded both on the deck and on the piers, 
proportionally to the first transverse vibrational mode, see Figure 4.1 – b). 
After running several analyses, it has been decided that the most accurate results 
are obtained by concrete07 modeling the material nonlinearities. Therefore, the 
second part of the chapter only shows results obtained with the concrete07-steel02 
materials. Due to the huge amount of output data a further selection had to be 
done. The beamWithHinges element has been preferred over the nonlinear 

element and the other settings for modeling the bents. The beamWithHinges 
element was selected for further investigation because it is supposedly the most 
accurate and widely used by OpenSees users. 
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Figure 4.1 – Loading scheme options a) Single column pushover; b) Pushover 
analysis loading the whole structure 

  

a) 

b) 
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4.1. Pushover curves using different finite elements for the bents 

The pushover analyses run loading only one of the bents at a time, tell us that the 
most stressed pile, in terms of base shear, is the left bent, which is the shorter one. 
In Figure 4.2 – a) the left bent, in Figure 4.2 – b) the right bent. In this case, the 
displacement plot is the displacement of the top of the bent loaded, left and right 
respectively. All the curves show a plastic hardening behavior,  this makes it 
difficult to identify graphically the possible collapse of the bent. Thus, the range 
of drift observed has been determined after several trials, to include the failure of 
both steel and concrete. How this drift range is determined, will be discussed in 
the next chapter. One foot drift is approximately 3,5 % of the bent height. 
All the modeling scenarios considered are plotted for both concrete01 and 
concrete07 materials, showing a certain similitude in the behavior of the two 
concretes, for all curves but the 1 nonlinearBeamColumn element, solid black in 
Figure 4.2 – a).  

 

a) 
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Figure 4.2 – a) Left bent pushover; b) Right bent pushover. 

From now on, the results are referred to the pushover analysis executed loading 
the whole structure, proportionally to the transverse mode of vibration.  In Figure 

4.3, the mid-span displacement versus the total base shear is plot. It is evident 
how all the different elements considered, compared to the beamWithHinges 

element, tend to overestimate the necessary force to achieve a certain mid-span 
displacement, especially, approaching the end of the displacement range 
considered. 
As mentioned before the slope of the elastic branch for the element with 
distributed plasticity appears to be different from the slope of concentrated 
plasticity elements. The slope for the nonlinearBeamColumn element, solid black 
curve in Figure 4.3,  is, indeed, lower. For the distributed plasticity element, the 
flexural rigidity is obtained from the geometrical inertia which might be 
overestimated when cracking of concrete occurs. Anyhow, the influence of this 
issue is limited to the elastic response, in fact, it does not interfere with the 
ultimate displacement, which mostly depends upon the plastic response.  

b) 
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Figure 4.3 – Mid-Span displacement vs Total Base Shear 
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4.2. Drift-Strain curves of different bents finite elements 

In order to estimate which are the drifts that causes different failure modes, drift 
versus strain plots have been created for the core concrete and for the steel. As 
one can notice in Figure 4.4 a) and b), two horizontal line establish for the core 
concrete the peek, dashed blue, and the ultimate, dashed red, strains. For the steel, 
the dashed blue line corresponds to yield, while the dashed red corresponds to 
ultimate strain, Figure 4.4 c) and d),. Then, having a look at the recorders, the 
intersection with all the curves drift-strain establish in correspondence of which 
drift the column reaches the different conditions, i.e. peek of concrete strength, 
failure of concrete, yield of steel bars, failure of steel bars. The compressive 
strains are assumed to be negative, while the tensile strains are positive. 
 

 

a) 
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b) 

c) 
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Figure 4.4 – a) Drift-Strain relation core concrete left bent; b) Drift-Strain 
relation core concrete right bent; c) Drift-Strain relation steel left bent; d) 

Drift-Strain relation steel right bent.  

  

d) 
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4.3. Failure modes for bents modeled with beamWithHinges 

elements 

To follow only beamWithHinges elements results are reported. In Figure 4.5 , the 
pushover curves obtained with the two different concretes and marks for the 
different failures expected. On the left part of the diagram, the blue and the light 
blue markers indicate, respectively, the yielding of the first reinforcing bar for the 
left and right bent. On the central part of the plot, the peak of concrete strength is 
reached for both left column, blue dots, and right column, light blue dots. On the 
top right of the curve, the different symbols (see legend of Figure 4.5) indicates 
when the failure of steel and concrete happens. Thus, the collapse of the structural 
element. Knowing when the collapse of the structure will happen is fundamental. 
In fact, it is then possible to establish whether the capacity is greater than the 
demand. 

 

Figure 4.5 – Pushover curves and failure modes beamWithHinges 
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4.3.1. Yield and Ultimate drift (Prietley, Calvi, Kowalsky) [29] 

It is of interest to compute the drift at yield and at ultimate condition, with the 
formulas proposed by Priestley, Calvi, Kowalsky, and compare the results with the 
experimental ones. Priestley, Calvi, Kowalsky plastic hinge length refers to a 
condition in which the load applied to the top of  the column causes the pier to act 
like a cantilever, see Figure 4.6. It is well known that the moment is expected to 
be linear, and null in correspondence of the applied load at the top of the bent. The 
curvature is expected to be null at the top as well, and have the maximum value at 
the base. The displacement, on the contrary, is expected to be zero at the fixed end 
and maximum at the top, where the force is applied. 
From the element recorders, all those conditions have been checked. The 
displacement trend along the element, as expected is maximum at the top of the 
bent. Figure 4.7 - a) shows the curvature distribution at the first yield time instant 
and in correspondence of the ultimate condition. In the plot it is reported also the 
idealized curvature distribution, solid black line, and the strain penetration, dashed 
black line. Figure 4.7 - b) shows the moment distribution along the height of both 
left and right bent. The moment on top of the bent is not zero. Thus, the height of 
the column H should be considered from the center of the plastic hinge length to 
the point of contra-flexure.  

 

Figure 4.6 – Cantilever behavior of a bridge pier 
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Figure 4.7 – a) Curvature distribution along the height right bent; b) 
Moment distribution along the height 

a) 

b) 
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The curvature at first yield, and the nominal yield curvature, were introduced in 
Chapter 3. They are now used to compute the drift at yielding and at ultimate 
condition, in order to check whether they correspond with the experimental results. 
The drift corresponding to first yielding is found according to Eq. 4.1 and the 
corresponding force Fy by Eq. 4.2. 

(4.1) ∆′� = ����	
����

�  

(4.2) �� = ��/�  

The drift and force at ultimate condition is defined by 

(4.3) �� = ∆�
�

��
��

 �� − ��
�

��
��

� � � 

(4.4) �� = ��/�  

From Figure 4.8 it is possible to notice that the yield drift computed with the Eq. 

4.1 and the one recorded from pushover analysis is quite similar. The slight 
difference might be attributed to the uncertainty over the actual H and the fact that 
a beamWithHinges element does not account for strain penetration length Lsp. The 
same is not true for the ultimate displacement, where the difference between the 
one computed with Eq. 4.1 and the one obtained from the pushover analysis is 
quite different. 
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Figure 4.8 – Comparison between theoretical and analysis yield and ultimate 
drifts 
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4.4. Performance point 

Once obtained the pushover curve, it is possible to apply the Capacity Spectrum 

Method, introduced in Chapter 1. The pushover curve is transformed into a 
capacity spectrum (solid black curve in Figure 4.9), as per ATC 40, then it is plot 
in the same graph as the 5% damped demand spectrum (red curve in Figure 4.9), 

and the reduced damping spectrum. The e damping reduction has been carried out 
according to ATC 40. The various failure modes, previously described, are 
reported on the curve, as well as the bilineariztion of the capacity spectrum 
(dashed black curve in Figure 4.9). The thin black line indicates the tangent 
stiffness. As one can note from the plot, the pushover analysis suggest that the 
structure is expected to remain standing when the design earthquake occurs. 
Failure is, in fact, well beyond the performance point, yellow marker in Figure 

4.9. Nonetheless, the bridge may suffer during the design earthquake significant 
damage requiring closure. In fact, yielding of reinforcing bars happens well before 
the performance point, and so the cracking of concrete in tension. 

 

Figure 4.9 – Intersection of capacity spectrum and demand spectrum 
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4.5. Nonlinear Time-History Analysis results 

A dynamic analysis have been executed for each of the seven accelerograms 
selected, and presented in Chapter 1. For each analysis, the time history of 
displacements and reaction forces have been examined. As required by FEMA 273 
and SDC 2010, the mean value of the maximum displacement have been 
computed, and the corresponding value of base reaction.  

4.5.1. Hysteresis curves after dynamic loading 

It is interesting to have a look at the hysteresis curves of the materials used, 
concrete07 and steel02. They appear to have a complicated path, due to the 
casualty of the input signal. In fact, dynamic loading causes loading and 
unloading cycles in the fiber in which the stress-strain relation is being recorded. 
From Figure 4.10 – a), it is possible to note how the peek for the core concrete 
have not been reached yet. On the other hand, the peek and the ultimate condition 
for the tensile concrete have been reached already, as well as the yielding of the 
bars in tension, Figure 4.10 – b). 

 

a) 



 
 

Chapter 4          NONLINEAR ANALYSIS RESULTS 

100 

 

 

Figure 4.10 –a) Stress-Strain Core Concrete07; b) Stress-Strain Steel02. 

4.5.2. Displacement Time-History 

Figure 4.11 – a) to g) show the displacement Time-Histories response, recorded 
for the seven different accelerograms applied to the structure. The displacement is 
recorded at the mid-span of the superstructure, node 16. The maximum 
displacement is marked, with a blue star, on each plot and is reported in Table 4.1 

together with the corresponding total base shear. Then the average of the sum of 
the absolute value of each maximum displacement is computed. The mean 
displacement obtained is 0,146 ft.. The displacement time history plots confirm 
what the stress-strain curves showed above: plastic deformations form 
approaching the end of the dynamic loading time interval. In fact, displacement 
does not go back to zero once the external acceleration applied is over, but there is 
a residual displacement. 

b) 
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a) 

b) 
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c) 

d) 
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e) 

f) 
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Figure 4.11 – a) to g) Displacement time-histories 

4.5.3. Base Shear Time-History 

Figure 4.12 – a) to g) show the total base shear Time-Histories response, recorded 
for each of the seven accelerograms used. The value of the base shear is computed 
as the maximum base shear found in an interval of 0,25 seconds around the time 
where the displacement is maximum. The interval in which the base shear is 
evaluated is limited by red dashed lines, in Figure 4.12 – a) to g). 

g) 
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a) 

b) 
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c) 

d) 
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e) 

f) 
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Figure 4.12 – a) to g) Total base shear time-histories 

Table 4.1 – Maximum displacement and corresponding base shear, for each 
time history 

File Name 

Absolute Value 
Maximum 

Displacement [ft] 

Absolute Value Total 
Base Shear [kips] 

821 H1 ERZ-NS 0,166 1728,82 

1085 H1 SCE018 0,139 1498,19 

949 H1 ARL090 0,098 1447,82 

6 H1 I-ELC180 0,119 1562,53 

6 H2 I-ELC270 0,160 1663,10 

1087 H1 TAR090 0,114 1441,09 
741 H2 BRN090 0,115 1489,99 

Mean value 0,130 1547,75 
 
 

g) 
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4.6. Comparison between pushover and time-history results 

The average maximum displacement and the corresponding total base shear have 

been computed, respectively ∆!	"= 0,146 ().  and +, !	" = 1576,26 012 . It is 

interesting to plot this point together with the pushover curve and the reduce 
demand earthquake curve, to see where it locates. The demand curve has been 
converted into a drift-base shear curve from spectral displacement-spectral 
acceleration curve, through an inverse procedure with respect to the one presented 
in Chapter 1, Paragraph 1.2.1.  
From the stress-strain hysteresis curve it was already known that the bents reach 
plasticity, but it was not clear how close to the performance point the time history 

point �∆!	",  +, !	" ) would be. From Figure 4.13, it is also evident that the 

dynamic solicitations will not cause failure into the bridge piers because the point 

�∆!	", +, !	") is located far away from the expected collapse point, red square 

marker. 
The point that is obtained from the time-history analysis is fairly close to the 
performance point. Thus, it is possible to say that the results obtained from the 
time history analysis validate those obtained from the pushover analysis. 

 

Figure 4.13 - Comparison between pushover and time-history results 
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Conclusion 

The present thesis work consist of the pushover analysis of an existing highway 
bridge. The structure, Jamboree Road Overcrossing, is located on route 261 in 
Irivne, Orange County, California. JRO is a Standard Ordinary Bridge, according 
to Caltrans Seismic Design Criteria. The bridge is a typical three-span continuous 
cast-in-place pre-stressed post-tension box-girder, supported on two monolithic 
piers. The total length of the bridge is 366 ft., while the piers are 26,41 and 28,41 

ft. tall. 

It was first necessary to determine the seismic demand, of the aforementioned site, 
corresponding to the Maximum Earthquake, or the level of ground shaking that 
has a 5 percent chance of being exceeded in a 50 years period. The 5% damped 
elastic design spectrum, deaggregation parameters and shear wave velocity, have 
been determined thanks to Caltrans and U.S. Geology Surveys online tools. 
Moreover, seven accelerograms, compatible with the 5% damped elastic spectrum, 
have been selected from the Next Generation Attenuation database. Input 
parameters for the selection were the distance of the site from the nearest fault,  
the magnitude indicated from the deaggregation as the most hazardous and the 
period interval based on the natural period of the structure. 

Part of the work has been dedicated to the study of force-based beam-column 
elements their formulations and issues regarding the objectivity of their response. 
Both concentrated plasticity elements and distributed plasticity elements have 
been considered. For the two categories, the issues regarding the integration 
schemes and the problems related to the material nonlinearities have been 
deepened. 
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The central part of the work is the creation of the three-dimensional nonlinear 
finite element model, by the open source software OpenSees. Great emphasis is 
put in the selection of the parameters for modeling the material nonlinearities. 
Stress-strain curves of different materials have been examined and compared. 
Furthermore, different elements present in the OpenSees library have been 
employed for modeling the bridge bents. In particular, beamWithHinges elements 
and zeroLength elements have been selected for the concentrated plasticity bents 
modeling, and nonilinearBeamColumn elements for the distributed plasticity bents 
modeling. 

Nonlinear static analyses, also known as Pushover analyses, are then run for each 
of the different model settings. Two different loading schemes have been applied 
to the finite element modeled structure:. The first load scheme, had the loads 
applied only at the top of the bent, left first and then right. The second load 
scheme, had the structure  loaded both on the deck and on the piers, proportionally 
to the first transverse vibrational mode. Pushover curves, base shear function of 
mid-span displacement curves, of each of the different model scenarios have been 
compared. Drift-Strain curves were created to determine the drift which 
corresponds to the different states, yielding of steel bars, peek of concrete strength, 
failure of concrete and steel reinforcement. Then, beamWithHinges elements were 
selected for the second part of the work. The pushover curve was transformed into 
a capacity spectrum, according to ATC 40, and intersected with the reduced 
damped spectrum, in order to determine the performance point of the structure. 
This last plot demonstrates that the structure would not collapse in case of 
Maximum Earthquake happening at the site; thought the bridge might suffer 
significant damage requiring closure. In fact, yielding of reinforcing bars happens 
before the performance point, and so the cracking of concrete in tension. 

The last part of the work consisted in the execution of dynamic analyses, i.e. 
nonlinear time-history analyses. The seven accelerograms have been applied to 
the structure with beamWithHinges elements modeling the bents, and the average 
of the maximum displacements and the corresponding base shear have been 
computed. Afterwards, the point was plotted together with the pushover curve and 
the design earthquake demand curve, converted in displacement versus base-shear 
from the spectrum. The point that the time-history analyses individuate is pretty 
close to the performance point. Thus, it is possible to say that the results of the 
dynamic analyses validate those obtained from the pushover analysis. In fact, the 
displacement demand predicted by the reduced damping curve, that corresponds 
to the performance point, is confirmed by the demand of the time history analyses.  
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