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Abstract

This thesis presents the development of an advanced machine learning model

designed to accurately assess pain levels in dementia patients residing in el-

derly care homes. The project, conducted in collaboration with Sentigrate, a

start-up focused on data science company, aims to create a predictive model

that assigns pain scores ranging from 0 (no pain) to 6 (maximum pain) based

on facial expressions. The research employs computer vision techniques, pri-

marily convolutional neural networks, to extract meaningful features from fa-

cial images. A comparative study of various predictive techniques is con-

ducted to determine the most effective approach. This project addresses the

critical issue of inadequate pain management in dementia patients due to com-

munication challenges. The objective is to provide an objective pain assess-

ment tool that will significantly improve pain management strategies and en-

hance the quality of life for dementia patients in elderly care settings. The

findings of this research have the potential to transform elderly care prac-

tices, offering valuable insights into pain management and contributing to the

broader field of healthcare technology.



Chapter 1

Introduction

1.1 Motivation

The assessment of pain in elderly patients, particularly those with dementia,

represents a significant challenge within the field of healthcare. These in-

dividuals often encounter difficulties in verbally communicating their pain,

which may result in inadequate treatment and a reduction in quality of life.

The lack of adequate pain management can precipitate a decline in cognitive

function, elevate the risk of developing depressive and anxiety disorders, and

give rise to behavioral disturbances such as aggression and agitation. More-

over, chronic pain can result in a diminished capacity to perform activities

of daily living, which in turn can compromise the patient’s autonomy and

overall well-being. It is therefore imperative to address pain in patients with

dementia, not only for their comfort but also to improve their overall health

outcomes. Furthermore, the urgency of addressing this issue is compounded

by the growing aging population and the increasing prevalence of dementia

worldwide. Conventional pain assessment techniques rely predominantly on

self-reporting or observational scales, which are susceptible to subjectivity

and may be time-consuming. Moreover, these methods present significant
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challenges when applied to patients who are non-verbal, which may result

in potential under-treatment. The advent of machine learning and computer

vision technologies offers a promising opportunity for the development of au-

tomated, objective pain assessment tools. By analyzing facial expressions,

which have been demonstrated to be reliable indicators of pain, we may be

able to develop a non-invasive, efficient method for pain detection and moni-

toring in people affected by dementia. Such an automated system has the po-

tential to enhance the quality of care and patient outcomes by facilitating more

precise and personalized pain management strategies. Furthermore, it could

furnish healthcare professionals with valuable insights into pain patterns and

intensities, enabling more timely interventions and better-informed treatment

decisions.

1.2 Objectives of the Study

The objective of this study is to develop and evaluate an automated pain as-

sessment system that employs machine learning techniques to analyze the fa-

cial expressions of elderly individuals, with a particular focus on those with

dementia. The primary objectives are as follows:

• To design and implement a robust machine learning model capable of

accurately detecting and classifying pain levels from facial expressions

in elderly patients.

• To compare the performance of different deep learning architectures,

including Convolutional Neural Networks (CNNs) and Vision Trans-

formers, for this specific task.

• To investigate the interpretability of the developed models using attri-

bution methods, providing insights into which facial features are most

indicative of pain.
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• To evaluate the ethical implications and potential clinical applications

of such an automated pain assessment system in elderly care settings.

This research is conducted in collaboration with Sentigrate, a data-centric con-

sulting startup based in Leuven, Belgium. Sentigrate specializes in sensor data

and machine learning, and its dynamic team of data scientists is known for

creating innovative solutions that extract valuable insights from complex data

sets. The company’s expertise and collaborative environment make it an ideal

partner for this ambitious project.

1.3 Structure of the Thesis

This thesis is structured into multiple chapters, each addressing a specific re-

search objective. Following this introduction, Chapter 2 presents a review of

the existing literature on dementia, pain in dementia patients, and current pain

assessment methods. Chapter 3 explores the theoretical background of facial

expression recognition, relevant machine learning architectures, and ethical

considerations. Chapter 4 outlines the methodologies employed, including de-

tails on dataset preparation, model design, and evaluation metrics. Chapter 5

presents the results of the experiments, with an analysis of model performance

and interpretability. Chapter 6 discusses the findings, addressing limitations

and implications for practice and research. Finally, Chapter 7 concludes the

thesis, summarizing key findings, discussing challenges, and proposing direc-

tions for future research and clinical integration.



Chapter 2

Research Background

2.1 Dementia: An Overview

Dementia is a debilitating neurological disorder that is characterized by a pro-

gressive decline in cognitive functions, including memory, reasoning, lan-

guage, and executive abilities. Dementia is not a single disease entity but an

umbrella term encompassing a range of conditions. Alzheimer’s disease repre-

sents the most common form of dementia, followed by vascular dementia and

Lewy body dementia, among others [33]. The pathophysiology of dementia

involves complex changes in the brain, including the accumulation of abnor-

mal protein deposits, neuronal death, and the disruption of synaptic connec-

tions, leading to a gradual loss of brain function [25]. As dementia progresses,

individuals encounter increasing challenges in performing daily activities, ne-

cessitating the involvement of caregivers for basic needs. The global burden

of dementia is considerable, affecting over 55 million people worldwide, with

projections indicating a near doubling of cases every 20 years as populations

age [21]. This presents significant challenges for healthcare systems, neces-

sitating a multifaceted approach that includes early diagnosis, comprehensive

care, and support for caregivers to effectively manage the disease.
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2.2 Pain in Dementia Patients

Pain management in patients with dementia represents a particularly complex

and critical issue, as cognitive decline severely impairs the ability to commu-

nicate discomfort, leading to widespread underdiagnosis and undertreatment

of pain in this population. As dementia progresses, patients may lose the ca-

pacity to express pain verbally, relying instead on non-verbal cues such as

facial expressions, vocalizations, or changes in behavior, which can be eas-

ily overlooked or misinterpreted by caregivers and healthcare professionals.

The undertreatment of pain in patients with dementia not only exacerbates

their suffering but also contributes to a decline in their overall quality of life.

This manifests in increased agitation, depression, and a reduction in functional

abilities. Furthermore, the pharmacological management of pain in demen-

tia is further complicated by the potential adverse effects of analgesic med-

ications, which may include increased cognitive impairment or interactions

with other medications. Therefore, a careful and sophisticated approach to

pain assessment and management is essential, one that integrates non-verbal

pain assessment tools, individualized treatment plans, and a multidisciplinary

team approach to ensure that the pain in dementia patients is adequately ad-

dressed.

2.3 Pain Assessment Metrics

The assessment and management of pain in clinical settings presents a sig-

nificant challenge, particularly among populations with impaired communi-

cation abilities, such as patients with advanced dementia. The most prevalent

approach to pain assessment is patient self-report, which entails individuals

rating their pain levels using a range of scales. This method is convenient

and does not necessitate the use of advanced technology or the acquisition of
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specialized skills, thereby ensuring its accessibility in the majority of health-

care settings. However, self-report measures have notable limitations. These

include variability in the metric properties across different scale dimensions,

susceptibility to suggestion, and differences in the conceptualization of pain

between clinicians and patients. These challenges are further compounded in

populations unable to communicate effectively, such as young children and

those with severe cognitive impairments, where self-report becomes an inef-

fective methodology. Additionally, self-report measures provide only a snap-

shot of pain at a specific moment, often at the emotional apex of the patient,

without offering continuous data on the patient’s pain experience or emotional

state over time [28]. To address these limitations, alternative pain assessment

methods have been developed, including observer-based scales and facial ex-

pression analysis.

2.3.1 Visual Analog Scale

The Visual Analog Scale (VAS) is a frequently utilized unidimensional instru-

ment that assesses pain intensity. The VAS can be presented in a variety of for-

mats, including numerical rating scales, graphic rating scales, and box scales.

It is a commonly utilized tool in clinical and epidemiological research, facil-

itating the tracking of pain progression and the comparison of pain severity

across patients. The simplicity of the VAS, often represented as a straight hor-

izontal line with endpoints defined as the extreme limits of the symptom being

measured (Figure 2.1), makes it a versatile tool in pain assessment. However,

as with self-report methods, the applicability of the VAS is limited by the pa-

tient’s ability to comprehend and interact with the scale [34].

2.3.2 Facial Action Coding System

The Facial Action Coding System (FACS) is a comprehensive method for cat-

egorizing human facial movements by their visual appearance, providing a
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Figure 2.1: Visual Analog Scale

reliable framework to assess pain in individuals who are unable to communi-

cate verbally. FACS identifies facial expressions through Action Units (AUs),

which correspond to the contraction or relaxation of specific facial muscles.

Out of the 44 defined AUs, 30 are directly linked to muscle contractions: 12

pertain to the upper face and 18 to the lower face. AUs can manifest either

independently or in combination, where combinations can be additive or non-

additive. Additive combinations do not alter the appearance of the individual

AUs, while non-additive combinations result in a distinct appearance that dif-

fers from the constituent AUs. Despite the limited number of individual AUs,

over 7,000 unique AU combinations have been documented.

Figure 2.2 illustrates some commonly occurring AUs along with examples of

both additive and non-additive AU combinations. For instance, AU 4 (brow

lowering) looks different when it occurs independently versus when it is paired

with AU 1 (inner brow raiser) in the combination AU 1 4. When AU 4 oc-

curs alone, the eyebrows are pulled together and lowered, but in AU 1 4, the

eyebrows are drawn together yet raised due to the influence of AU 1. An-

other example is AU 1 2, in which AU 2 (outer brow raiser) not only lifts the

outer brow but often elevates the inner brow as well, creating an appearance

similar to AU 1 2. These non-additive effects complicate the recognition of

AUs [41]. Although originally developed to analyze emotions, such as de-

pression, FACS has demonstrated considerable potential in pain assessment,
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Figure 2.2: Upper Face Action Units and Some Combinations

particularly in populations where traditional self-report methods are not fea-

sible. Additionally, there is ongoing research focused on automating FACS

coding through computer algorithms; however, progress is hindered by the

scarcity of extensive, manually coded datasets that could serve as a bench-

mark for training these systems [44].

2.3.3 Prkachin and Solomon Pain Intensity

The Prkachin and Solomon Pain Intensity (PSPI) metric is a widely utilized

tool for the assessment of pain intensity through the analysis of facial expres-

sions. It provides a quantitative measure of pain by evaluating specific facial

movements that are associated with discomfort [17]. The PSPI scale is defined

as:

PSPI = AU4 + Max(AU6, AU7) + Max(AU9, AU10) + AU43
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The PSPI has a theoretical range of 0 to 16, with higher scores indicating

greater pain intensity. In practice, scores typically range from 0 to 12 [1].

2.3.4 Pain Assessment in Advanced Dementia

The Pain Assessment in Advanced Dementia (PAINAD) scale has been de-

veloped as a standardized method for assessing pain in patients with advanced

dementia where communication barriers are significant. The PAINAD scale

has been developed for the purpose of assessing pain in patients with advanced

dementia who are unable to communicate verbally. It focuses on observable

indicators of pain, such as breathing patterns, vocalization, facial expressions,

body language, and comfort. The total score ranges from 0 to 10, with higher

scores indicating more severe pain. This scale provides a practical solution

for assessing pain in non-verbal patients, ensuring that their pain is identified

and managed appropriately [43]. The PAINAD scale consists of five key ob-

servational items:

• Breathing: Normal, occasional labored, or noisy labored breathing.

• Negative vocalization: Ranging from none to loud moaning or crying.

• Facial expression: From smiling to sad or frightened expressions.

• Body language: Observing whether the individual appears relaxed or

exhibits signs of distress such as fidgeting or rigidity.

• Consolability: Assessing whether the individual needs consolation or

can be reassured by voice or touch.

As in Figure 2.3, each item is assigned a score from 0 to 2, and the total score

is calculated by summing these individual scores, thereby providing a com-

prehensive assessment of pain levels in patients who are unable to verbally

express their discomfort. However, some limitations have been identified,
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Figure 2.3: Pain Assessment in Advanced Dementia (PAINAD) Scale [4]

including moderate internal consistency and variability in the use of certain

items, particularly those related to breathing and consolability. Nurses have

reported challenges in applying the scale due to its brevity and the potential

for missing subtle pain cues in patients.

2.4 Performance Metrics

To comprehensively evaluate the model’s performance, three distinct metrics

were employed, each serving to assess different aspects of the model’s output.

Given the dual approach of the task, in which both regression and classifi-

cation objectives were considered, the selected metrics provide a balanced

evaluation framework that accounts for both continuous and categorical pre-

dictions.

2.4.1 Regression Metrics: MSE and MAE

For the regression task, Mean Squared Error (MSE) and Mean Absolute Error

(MAE) were employed. These metrics are foundational in regression analy-

sis, offering insights that are complementary to one another and that provide

a comprehensive understanding of the model’s predictive accuracy. MSE is

defined as the average of the squared differences between the predicted values
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(ŷi) and the actual values (yi). It is mathematically expressed as:

MSE = 1
n

n∑
i=1

(yi − ŷi)2

MSE is particularly sensitive to larger errors due to the squaring of differences,

which amplifies the impact of outliers. This sensitivity can be advantageous

during model training, as it drives the optimization process to prioritize the

reduction of substantial errors. MAE, on the other hand, measures the average

magnitude of errors in a set of predictions. MAE is calculated as:

MAE = 1
n

n∑
i=1

|yi − ŷi|

In contrast to MSE, MAE treats all errors in a uniform manner by calculating

the absolute difference between the predicted and actual values. This metric is

more robust to outliers, as it does not disproportionately penalize larger errors.

Consequently, MAE provides a more balanced view of the overall prediction

error, making it a preferred choice when a more uniform error treatment is de-

sired. The combination of MSE and MAE allows for a more comprehensive

evaluation of the model’s performance. MSE identifies major discrepancies,

prompting the model to refine its predictions in areas where it is most inaccu-

rate. In contrast, MAE provides a straightforward estimation of the average

error, reflecting the model’s overall prediction precision.

2.4.2 Classification Metrics: Accuracy, Precision, Recall,

and F1-score

In order to evaluate the classification aspect of the task, the metric employed

was accuracy. Accuracy is a straightforward yet effective metric, representing

the proportion of correct predictions out of the total number of predictions

made.

Accuracy = Number of Correct Predictions
Total Number of Predictions
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While accuracy is particularly effective when the classes are balanced, pro-

viding a clear and intuitive measure of the model’s overall effectiveness in

categorizing data points correctly, its utility extends to certain multi-class sce-

narios as well. In a multi-class classification setting, accuracy remains a suit-

able metric as it reflects the proportion of correctly predicted instances across

all classes. This indicates that if the model demonstrates consistent accuracy

across multiple classes, accuracy can serve as a reliable measure of perfor-

mance. However, it is important to note that accuracy alone may not always

be an adequate metric for evaluating multi-class classification, particularly in

cases where the classes are imbalanced or where some classes are more crit-

ical than others. In such cases, the model may still achieve high accuracy by

performing well on the majority class while underperforming on the minority

classes. This is where additional metrics such as precision, recall, and F1-

score become essential for providing a more comprehensive evaluation. Pre-

cision measures the proportion of true positive predictions out of all positive

predictions made by the model. Precision is especially important in situations

where the cost of a false positive is high. A higher precision means fewer false

alarms, which is critical in applications where incorrect positive predictions

could lead to significant negative consequences. Precision is mathematically

defined as:

Precision = True Positives (TP)
True Positives (TP) + False Positives (FP)

Recall, also known as sensitivity or true positive rate, measures the propor-

tion of true positive predictions out of all actual positive instances. Recall is

crucial when the cost of a false negative is high, such as in medical diagnos-

tics where failing to identify a condition could have serious consequences. A

high recall indicates that the model successfully captures most of the actual

positive cases, minimizing the chances of missing critical positive instances.
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Recall is defined as:

Recall = True Positives (TP)
True Positives (TP) + False Negatives (FN)

F1-Score is the harmonic mean of precision and recall, providing a single met-

ric that balances both concerns. The F1-score is particularly useful in cases

where there is an uneven class distribution or when there is a need to balance

precision and recall. It is defined as:

F1-Score = 2 × Precision × Recall
Precision + Recall

The F1-score ranges from 0 to 1, with 1 indicating perfect precision and recall.

This metric is ideal when both false positives and false negatives carry signif-

icant consequences, and neither precision nor recall can be optimized without

adversely affecting the other. In practice, these metrics are often calculated

for each class in a multi-class classification problem and can be averaged (us-

ing micro, macro, or weighted averaging) to provide an overall performance

metric.

• Micro-Averaging: Aggregates the contributions of all classes to com-

pute the average metric, providing an overall view that accounts for

class imbalance.

• Macro-Averaging: Calculates the metric independently for each class

and then averages them, treating all classes equally regardless of their

frequency.

• Weighted-Averaging: Similar tomacro-averaging but takes into account

the support (i.e., the number of true instances) of each class, givingmore

weight to the performance on more frequent classes.

The choice of averaging method depends on the specific requirements of the

application and the importance of each class.
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2.5 Current Methods of Pain Assessment

Facial expressions are among the most reliable indicators of pain severity and

are often used to convey a patient’s level of pain. Given their effectiveness,

the development of a system capable of accurately identifying pain intensity

by extracting the most relevant facial cues is highly promising. Facial expres-

sions can be derived from dynamic sources, such as the temporal dimensions

of video, or from static images. This dissertation focuses specifically on the

use of static facial expressions to assess pain levels. In recent years, with

the rise of machine learning algorithms in predictive modeling, static facial

expression-based methods have increasingly used these techniques to estimate

pain intensity. These methods can be classified into three categories: tradi-

tional machine learning, deep learning, and hybrid model-based approaches

[7].

2.5.1 Accessible Pain Assessment Datasets

In recent years, the availability of various facial image and video datasets has

led to significant advances in the field of automated pain assessment. Among

these, the UNBCMcMaster Shoulder Pain Expression Archive Database [29]

is one of the most widely used. This dataset was collected from 25 adult par-

ticipants with shoulder pain and consists of 48,398 RGB frames from 200

variable-length videos. The images are primarily labeled with 17 levels of the

PSPI scale, ranging from 0 to 16, and 11 levels of the VAS, ranging from 0 to

10. However, like many other image datasets, the UNBC McMaster dataset

has a significant imbalance problem, with over 80% of the data labeled with

a PSPI score of zero, indicating ”no pain”. This imbalance creates challenges

for model training and can lead to biased predictions. To mitigate this, many

studies have used under-sampling techniques to reduce the prevalence of the

”no pain” class, thereby creating a more balanced dataset for training pain

assessment models.
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In addition to these technical challenges, a growing concern in recent years

has been the increasing unavailability of many facial datasets due to privacy

and ethical concerns. As awareness of privacy and the ethical implications of

using sensitive biometric data, such as facial expressions, has grown, several

datasets have been withdrawn or restricted from public access. This trend has

created significant challenges for researchers in the field, as reduced access to

high-quality, diverse datasets limits the ability to effectively develop, validate,

and benchmark new models.

2.5.2 Machine Learning-Based Methods

Traditionalmachine learningmodels, such as SVMandKNN, typically rely on

the classification of pre-extracted, hand-crafted features. The effectiveness of

these models is highly dependent on the quality and relevance of the extracted

features, which often requires significant domain expertise. While machine

learning-based methods have been widely used for the past fifteen years due

to their promising results, their use in pain intensity estimation has declined

with the advent of more advanced models, such as deep learning and hybrid

approaches, which offer superior performance. In [37], a relatively flat CNN

architecture with three convolutional layers was proposed. This computation-

ally efficient network, with its minimal number of parameters, achieved an ac-

curacy of 93.34% when evaluated on the UNBC McMaster dataset. In [48], a

hierarchical network architecture using two per-frame feature modules was in-

troduced to improve pain estimation. The first module extracts low-level fea-

tures from image patches, which are then assembled using second-order pool-

ing. The second module extracts deep learning features using a deep CNN.

The outputs of these two modules are then weighted and combined to form a

holistic face representation, which significantly improves the pain estimation

process. This combined feature is then classified using a linear L2-regularized

L2-loss SVR, resulting in an MSE of 1.45 on the UNBC McMaster dataset.
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Transfer learning has also gained traction in image classification tasks, using

pre-trained models for specific tasks to acquire transferable knowledge. This

approach reduces training time and improves model performance. For exam-

ple, in [13], a pre-trained DenseNet-161 model was fine-tuned on the UNBC

McMaster dataset. Features were extracted from ten middle layers of the fine-

tuned network and used as inputs to an SVR classifier. This model achieved

an MSE of 0.34 on the UNBC-McMaster dataset. In addition, [6] proposed a

KNN-based pain assessment method. In this approach, facial features are ex-

tracted from face patches using a pre-trained DarkNet19 model, followed by

feature selection using the iterative neighborhood component analysis tech-

nique. The selected features are then classified using the KNN algorithm to

efficiently predict pain intensities, achieving a pain intensity estimation accu-

racy of 95.57% on the UNBC McMaster dataset.

2.5.3 Deep Learning-Based Methods

Since 2018, deep learning models have demonstrated remarkable advance-

ment in the field of automatic pain assessment, largely due to their robust

performance in data classification and the increasing availability of extensive

pain-related datasets. Among these models, CNNs have exhibited particu-

larly success, with more sophisticated variants like ResNet, DenseNet, and

InceptionV3 contributing significantly to this progress. In 2021, Semwal et al.

[40] presented an enhanced version of their earlier work [37] by introducing

SPANET, a compact and shallow CNN model specifically designed for pain

severity assessment. The model incorporates a false positive reduction tech-

nique, achieving an MSE of 1.1 on the UNBC–McMaster dataset. In order to

enhance the focus on pain-related facial regions, another study [47] proposed

a nine-layer CNN incorporating an attention mechanism. This approach in-

volved the weighting of different facial regions according to their expressive-

ness of pain. This innovation was further developed into a multi-task pain
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assessment architecture [46], designated as the Locality and Identity-Aware

Network (LIAN). LIAN employs a dual-branch locality-aware module to pri-

oritize pain-related facial information, followed by an Identity-Aware Module

(IAM) that decouples pain assessment from identity recognition. This ap-

proach markedly enhanced the precision of pain detection, attaining an accu-

racy rate of 89.17% on the UNBC–McMaster dataset. Similarly, Cui et al. [9]

proposed the Multi-Scale Regional Attention Network (MSRAN), a method

that applies adaptive learning to accurately assess pain intensity by capturing

detailed information from pain-specific facial regions. This model integrates

self-attention and relation attention modules to enhance the understanding of

facial pain expressions and their interrelationships, resulting in an accuracy

of 91.13% on the UNBC–McMaster dataset. Building on these advances, an-

other approach [23] involved modifying the VGG16 architecture to create a

deeper, customized CNN model. This model, designed specifically for pain

intensity estimation, applied rigorous pre-processing techniques to the input

images, including gray-scaling, histogram equalization, face detection, image

cropping, mean filtering, and normalization. The modified VGG16 model

achieved an accuracy of 92.5% on the UNBC–McMaster dataset, which high-

lights the significance of image pre-processing in enhancing model perfor-

mance. Themost recent and notable advancement in this domain [2] employed

two concurrent CNNs based on the InceptionV3 architecture, optimized us-

ing stochastic gradient descent. In this model, all convolutional blocks were

frozen, and the classifier layer was replaced with a shallow CNN. The outputs

from these models were then concatenated and passed through a dense layer,

followed by a fully connected layer. This resulted in an unprecedented pain in-

tensity estimation accuracy of 99.1% on the UNBC–McMaster dataset.



2.5 Current Methods of Pain Assessment 18

2.5.4 Hybrid Methods

The success of machine learning and deep learning models in automatic pain

assessment has prompted the development of a variety of ensemble learning

methods, which aim to combine the strengths of multiple models. Ensem-

ble techniques have demonstrated efficacy in enhancing classification accu-

racy by leveraging the complementary capabilities of different models. In

[38], Semwal and Londhe introduced the ECCNET model, which integrates

three distinct CNNs (VGG-16, MobileNet, and GoogleNet) using an average

ensemble rule for aggregating their predictions. The results of their experi-

ments demonstrated that the combination of these CNNs resulted in superior

classification performance compared to the use of each network individually.

The ECCNET model achieved a notable accuracy of 93.87% on the UNBC–

McMaster dataset, thereby demonstrating the effectiveness of the ensemble

approach. In a subsequent study, the same authors [39] further refined this

model by reapplying the CNN fusion technique, this time incorporating ad-

vanced data augmentation strategies to address overfitting. This refinement

resulted in a 2.13% improvement in pain level detection accuracy, bringing

the overall accuracy to 96% on the same dataset. Another noteworthy ap-

proach is the EDLM, which was proposed in [5]. The model begins with

the use of a fine-tuned VGGFace network to extract facial features. This is

followed by the application of PCA, which serves to reduce feature dimen-

sionality while preserving the most informative features. The dimensionality

reduction not only helps to minimize the risk of overfitting but also decreases

the training time, thus making the model more efficient. Subsequently, the re-

duced features are classified using three independent CNN-RNN deep learn-

ing models, each with different weights. Despite the computational efficiency

achieved through PCA, the EDLM model attained a respectable accuracy of

86% on the UNBC–McMaster dataset. Yeten et al. [49] proposed a parallel
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CNN framework that incorporates regional attention to focus on themost pain-

sensitive regions of the face. The method employs a combination of VGGNet

and ResNet architectures to extract detailed facial features, which are then

classified using a SoftMax classifier. By focusing on key facial regions that

are most indicative of pain, the model achieved a high accuracy of 95.11% on

the UNBC–McMaster dataset, underscoring the importance of targeted feature

extraction in pain assessment. In a recent contribution to the field, Sait and

Dutta [42] proposed a sophisticated ensemble learning approach that leverages

a fine-tuned ShuffleNet V2model for feature extraction. They employed class

activation maps and fusion feature techniques to enhance the model’s ability

to capture relevant facial features. Subsequently, a stacking ensemble strategy

was employed, in which XGBoost and CatBoost were utilized as base mod-

els, and a Support Vector Machine (SVM) was employed as a meta-learner

to predict pain intensities. This ensemble approach resulted in an accuracy of

98.7% on the UNBC–McMaster dataset, indicating the robustness and poten-

tial real-world applicability of the model in healthcare settings.



Chapter 3

Theoretical Background

3.1 Introduction

In recent years, the deep learning (DL) paradigm has emerged as the gold stan-

dard within the machine learning (ML) community. It has rapidly become

the most widely adopted computational approach in the field, delivering re-

markable performance on a range of complex cognitive tasks, often matching

or even surpassing human capabilities [3]. A key factor in the effectiveness

of any ML algorithm is the quality of the representation of the input data.

Research has consistently shown that well-represented data significantly im-

proves algorithm performance compared to poorly represented data. As a re-

sult, feature engineering - which focuses on constructing meaningful features

from raw data - has been a major research trend in ML for many years. This

approach is typically domain-specific and often requires considerable human

expertise and effort. For example, in computer vision, various feature extrac-

tion techniques such as Histogram of Oriented Gradients (HOG) [11], Scale-

Invariant Feature Transform (SIFT) [27], and Bag of Words (BoW) [45] have

been developed and extensively researched. Whenever a new feature extrac-

tion method proves to be effective, it often opens a new research direction
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that can last for decades. Deep learning algorithms, particularly convolutional

neural networks (CNNs), have revolutionized feature extraction by automat-

ing the process and reducing the need for human intervention and specialized

domain knowledge. These algorithms utilize a multi-layer architecture where

the initial layers capture low-level features and the deeper layers extract high-

level, more abstract features. This hierarchical approach mirrors the way the

human brain processes information and underscores the primary advantage of

DL. Among the various DL models, CNNs have become particularly popular

and widely used. Their ability to automatically identify and prioritize signif-

icant features without human supervision distinguishes them from previous

models, making CNNs a key component of modern DL applications.

Figure 3.1: Machine Learning vs Deep Learning

3.2 Deep Learning

Deep learning, a specialized subset of machine learning, draws inspiration

from the information processing patterns observed in the human brain. In

contrast to conventional ML methodologies, DL does not necessitate the for-

mulation of human-designed rules or the handcrafting of features. Instead,

it employs vast quantities of data to facilitate the automatic mapping of in-

puts to designated outputs or labels (Figure 3.1). The fundamental structure

of DL comprises multiple layers of artificial neural networks, wherein each
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layer progressively extracts increasingly abstract and complex features from

the input data. In the context of conventional ML, the accomplishment of

tasks such as classification necessitates the completion of a series of sequential

steps, including pre-processing, feature extraction, feature selection, learning,

and classification. The efficacy of these conventional techniques is contin-

gent upon the quality of the selected features. Inadequate or biased feature

selection can result in erroneous classification outcomes, as it may fail to cap-

ture the true discriminative characteristics between classes. In contrast, DL

is particularly effective in automating the process of feature learning, thereby

reducing the necessity for manual feature engineering. The capacity to learn

feature representations directly from raw data in a single integrated process

has contributed to the popularity of DL, particularly in the context of big data.

Among the various deep learning models, recurrent neural networks (RNNs)

and CNNs are the most well-known and widely used. The following section

provides an overview of RNNs, while CNNs are discussed in more detail due

to their critical importance to the research project at hand and their broad ap-

plicability across multiple domains.

3.2.1 Recurrent Neural Networks

RNNs are predominantly applied in the fields of speech processing and natu-

ral language processing (NLP). Unlike conventional feedforward neural net-

works, RNNs are designed to handle sequential data by maintaining a mem-

ory of previous inputs within the network. This sequential data processing is

crucial in applications where the context of information is of particular impor-

tance. For instance, in language modeling, understanding the context of a sen-

tence is essential to determine the meaning of a specific word. The structure of

an RNN can be compared to a short-term memory unit, where x represents the

input layer, y is the output layer, and h denotes the hidden state layer. Figure

3.2 depicts a typical unfolded RNN diagram for a given input sequence.
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Figure 3.2: Recurrent Neural Network

However, RNNs have their challenges. One of the primary issues associated

with RNNs is their sensitivity to the exploding and vanishing gradient prob-

lems [16]. During the training process, repeated multiplication of large or

small gradients can cause the gradients to either explode or vanish, respec-

tively, leading to instability or inefficiency in learning. As new inputs are

fed into the network, earlier inputs can be ”forgotten,” causing the network’s

performance to degrade over time. This issue can be mitigated through the uti-

lization of long short-termmemory (LSTM) networks [15], a variant of RNNs.

LSTMs incorporate memory blocks that maintain information over longer pe-

riods, addressing the vanishing gradient problem by allowing the network to

retain important information for extended durations. Eachmemory block in an

LSTM contains memory cells capable of storing temporal states, along with

gated units that regulate the flow of information in and out of the cells. In

networks of considerable depth, residual connections can also assist in mit-

igating the impact of vanishing gradients, enabling the network to maintain

more stable and effective learning [19].

3.2.2 Convolutional Neural Networks

CNNs are among the most prominent and widely utilized architecture in the

field of deep learning [24]. One of the key advantages of CNNs over their
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predecessors is their ability to automatically identify and learn relevant fea-

tures from input data without the need for human intervention. CNNs have

been successfully applied across various domains, including computer vision,

speech processing, and face recognition [26], making them an indispensable

tool in modern artificial intelligence. In contrast to conventional fully con-

nected networks, CNNs leverage shared weights and local connections to ef-

ficiently process structured 2D input data, such as images. This approach

considerably reduces the number of parameters required, thus simplifying the

training process and enhancing the network’s computational efficiency. A

typical CNN architecture includes multiple convolutional layers followed by

sub-sampling (pooling) layers, with FC layers at the end of the network. In a

Figure 3.3: Convolutional Layer

CNNmodel, the input x to each layer is organized in three dimensions: height,

width, and depth. This is often denoted as m × m × d, where m represents

the height, which is equal to the width, and d corresponds to the depth. For

instance, in an RGB image, the depth d is three, corresponding to the red,

green, and blue channels. Each convolutional layer contains several filters, or

kernels, denoted by k, which are also three-dimensional (n × n × q), where n

is the kernel size and q is the depth. It is necessary to note that, n is smaller

than m, and q is equal to or less than d. These kernels perform local connec-

tions by convolving with the input data to produce feature maps hk of size

(m − n + 1). The shared parameters, including the bias bk and the weight

Wk, are used across the input data, enabling the generation of these feature
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maps. The output of the convolutional layer is then passed through a non-

linear activation function, typically a rectified linear unit (ReLU), with the

objective of introducing non-linearity into the model. This can be expressed

as follows:

hk = f(Wk ∗ x + bk)

Here, ∗ denotes the convolution operation, and f is the activation function.

Following the convolutional layers, sub-sampling (pooling) layers are applied

to each feature map. Pooling reduces the dimensionality of the feature maps,

which has the dual benefit of accelerating the training process and mitigat-

ing the risk of overfitting by reducing the network’s complexity. The pooling

function, such as max-pooling or average-pooling, is typically applied over a

region of size p × p, where p is the kernel size used in pooling. This down-

sampling process retains the most salient features while discarding less im-

portant information. Finally, the FC layers process the output from the con-

volutional and pooling layers to create high-level abstractions. These layers

serve as the final decision-making component of the network, combining the

mid- and low-level features learned earlier in the network to produce the final

output.

Figure 3.4: Convolutional Neural Network

The advantages of using CNNs over traditional neural networks, particularly

in the domain of computer vision, include:
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• Weight Sharing: CNNs employ weight sharing in their convolutional

layers, significantly reducing the number of trainable parameters. This

reduction simplifies the model and enhances its ability to generalize,

reducing the likelihood of overfitting.

• Integrated Feature Learning andClassification: CNNs concurrently learn

feature extraction and classification within a unified framework. This

integration ensures that the learned features are highly relevant to the

task at hand, leading to more organized and accurate model outputs.

• Scalability: CNNs are highly scalable and can be effectively imple-

mented in large-scale applications, making them more practical and ef-

ficient compared to other neural network architectures.

3.2.3 Vision Transformers

Vision Transformers (ViTs) represent a significant advancement in computer

vision. First introduced in 2020 as an extension of the transformer model

initially designed for NLP in 2017, ViTs have become a prominent approach

in the field of computer vision [22]. By 2021, ViTs had begun to outperform

CNNs in terms of both performance and efficiency, particularly in image clas-

sification tasks [12]. The key innovation of ViTs lies in their attention-based

mechanism, which enables them to capture complex patterns in images more

effectively than traditional convolution-based architectures. This ability has

positioned ViTs as a powerful alternative in the field of deep learning applied

to vision, offering new perspectives and approaches in image classification.

The Vision Transformer operates by dividing an input image into fixed-size

patches, which are then linearly embedded. In order to retain spatial infor-

mation, positional embeddings are added to these patches. The resulting se-

quence of vectors is then fed into a standard transformer encoder, as illustrated

in Figure 3.5. The main Vision Transformer steps for image classification are
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Figure 3.5: Vision Transformer

:

• Image Patching: The image of size (H × W × C) is divided into N

patches of size (P × P × C), where H is the height, W is the width,

and C is the number of channels of the image. P is the resolution of the

image patch.

• Linear Transformation of Patches to Vectors: Each patch is flattened

into a vector of size (1 × P š ∗ C). This linear transformation converts

the patches into a format suitable for processing by the model.

• Adding Position Tokens: Tomaintain the positional information of patches,

positional embeddings are added to the patch vectors. Additionally, a

special classification token (CLS) is prepended to the sequence. The

combined positional embeddings and patch vectors are then fed into the

Transformer Encoder.

• Encoder Layer: The transformer encoder consists of alternating layers

of multi-head self-attention (MSA) and multilayer perceptron (MLP)
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blocks. Before each self-attention and MLP block, layer normalization

is applied, and residual connections are used post-block to facilitate ef-

fective learning.

• Classification Layer: A classification head is constructed using anMLP

with a hidden layer for feature extraction and a final linear layer for

classification. This layer processes the final representation output by

the encoder to generate class scores for image classification.

3.2.4 Hybrid Models

Hybrid architectures have recently emerged as a promising approach to ad-

dress the limitations inherent in both CNNs and ViTs. CNNs, while effective

at capturing local features and inductive biases, struggle with capturing long-

range dependencies and require a fixed input size. Conversely, ViTs excel at

modeling global context but may suffer from weak local feature extraction,

sensitivity to noise, and high memory consumption [10]. The integration of

the strengths of CNNs and ViTs in hybrid models has been demonstrated to

enhance performance in image classification tasks. These architectures are

designed to combine the local feature extraction capabilities of CNNs with

the global attention mechanisms of ViTs, creating a more balanced and robust

model. Researchers have explored various methods to combine these archi-

Figure 3.6: Parallel integration of CNNs and ViTs

tectures, including parallel and sequential integration approaches. Parallel ap-

proaches may involve processing the same input through both a CNN and a
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ViT in tandem, then combining the outputs, while sequential approachesmight

use a CNN to extract initial features, followed by a ViT to model long-range

dependencies. By addressing the limitations of each architecture through hy-

bridization, thesemodels can achieve superior performance and generalization

in complex computer vision tasks. Ongoing research continues to refine these

hybrid strategies, optimizing the synergy between CNNs and ViTs for various

applications.

3.3 Model Interpretability

The term ”model interpretability” is used to describe the capacity to compre-

hend and explain the internal operations and decision-making processes of

a machine learning model. It is a pivotal element in the implementation of

AI systems, particularly in domains where trust and accountability are im-

perative, such as healthcare, finance, and law. High interpretability enables

stakeholders to trace decisions back to specific input features, facilitating the

identification of potential biases, errors, or unintended consequences in the

model’s logic. Furthermore, it smooths the way for debugging, model refine-

ment, and ensures that the model’s behavior aligns with human values and le-

gal standards. However, there is often a trade-off between interpretability and

model complexity, as more complex models like deep neural networks tend

to be less interpretable despite their higher predictive performance. Various

methods have been developed to enhance interpretability, including model-

specific approaches, which are tailored to particular algorithms, and model-

agnostic techniques, such as Occlusion, which will be covered in the next

section.

3.3.1 Occlusion

Occlusion is a technique used to interpret and understand machine learning

models, particularly deep learningmodels like convolutional CNNs. Themethod
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involves systematically masking or occluding parts of the input data (such as

sections of an image) to observe the resulting alterations in the model’s pre-

dictions. By analyzing these changes, one can determine which parts of the

input are most important for the model’s decision-making process [50]. The

key steps are:

1. Input Data Selection: The initial stage of the process is the selection

of the data set to be analyzed. This is typically an image, although the

occlusion technique can also be applied to other data types, such as text

or tabular data.

2. Masking Parts of the Input: The input is systematically occluded by

covering specific regions with a neutral value, such as blacking out sec-

tions of an image or replacing words in a text with a placeholder. The

size and shape of the occlusion mask may vary depending on the task

at hand. For instance, in image classification, a square patch may be

employed.

3. Prediction with Occluded Input: The occluded input is then fed into the

model to generate a prediction. This process is repeated multiple times,

with different parts of the input occluded each time.

4. Analyzing Prediction Changes: The model’s output is compared across

different occlusions to identify which areas of the input, when occluded,

cause themost significant change in themodel’s prediction. If themodel’s

confidence in its prediction drops significantly when a particular part of

the input is occluded, that part is likely crucial for the model’s decision.

Occlusion is a valuable technique for model interpretability, as it helps to re-

veal the inner workings of ”black-box” models by showing which features

are most influential. This technique can be particularly useful in fields like

healthcare, where understanding which parts of a medical image are driving
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a diagnosis is crucial for trust and decision-making. Furthermore, it aids in

identifying potential biases or flaws in models by revealing unexpected areas

of focus.

3.4 Ethical Considerations

The incorporation of ML into the field of healthcare has the potential to trans-

form medical diagnostics, treatment planning, and patient care. Nevertheless,

the implementation of these technologies also gives rise to considerable eth-

ical concerns that must be carefully addressed in order to guarantee that the

benefits of ML are fully realized without compromising patient rights, safety,

or trust. One of the most critical ethical issues is the potential for bias in

algorithms. If the training data used to develop machine learning models is

unrepresentative or reflects existing societal biases, the models may produce

biased outcomes. This can result in disparities where certain groups, such as

racial minorities or disadvantaged individuals, may receive less accurate diag-

noses or suboptimal treatment recommendations. To ensure fairness, rigorous

testing of models across diverse populations and the implementation of strate-

gies to mitigate bias, such as the use of balanced datasets and the incorporation

of fairness constraints in the model development process, are essential. Ac-

countability and transparency are also important. Clinicians and patients alike

must be able to understand the reasoning behind a model’s predictions or rec-

ommendations to trust and effectively use them. Black-box models, which of-

fer high accuracy but low interpretability, pose significant ethical challenges.

Efforts must be made to either enhance the interpretability of these models

or develop methods, such as model-agnostic interpretability techniques, that

provide understandable explanations for their decisions. A further significant

issue is that of patient privacy. The use of ML frequently entails the utilization

of extensive datasets comprising sensitive patient information. It is therefore

of primary importance to guarantee the confidentiality and security of this
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data. There is a risk that patient data could be revealed through data breaches

or inappropriate use, which could result in potential harm, discrimination, or a

loss of trust in healthcare providers. Ethical ML practices in healthcare must

encompass the implementation of robust data protection measures and tech-

niques such as data anonymization and differential privacy to safeguard patient

information. Moreover, patients must be informed of the manner in which

their data is being utilized, including the potential risks and benefits associ-

ated with this process. In many cases, data may be repurposed for research or

model development without the explicit consent of the data subjects, which

can raise ethical concerns. It is of the utmost importance that communica-

tion is transparent and that informed consent is obtained. This ensures that

patients are able to opt in or out of having their data used in ML applications.

Furthermore, in instances where an ML model issues an erroneous diagnosis

or treatment recommendation that ultimately causes harm to a patient, deter-

mining the responsible actor can prove to be a challenging task. It is essential

to establish clear guidelines and frameworks for accountability in order to ad-

dress these issues, including defining the role of clinicians in overseeing and

validating model outputs before they are acted upon. Finally, the implemen-

tation of these applications in healthcare may result in a transformation of the

traditional patient-provider relationship. While machine learning has the po-

tential to enhance decision-making by providing data-driven insights, there

is a risk that it may depersonalize care if clinicians place excessive reliance

on algorithms. It is necessary to consider ethical implications that ensure the

maintenance of the human element in healthcare, ensuring that technology

serves as a tool to support, rather than replace, the clinician-patient interac-

tion.
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Methodologies

4.1 Dataset

The dataset utilized for training a machine learning model is of significant im-

portance with regard to the model’s overall success and generalizability. A

well-balanced and diverse dataset ensures that the model learns to recognize

patterns that are representative of real-world scenarios, reducing the risk of

overfitting. Overfitting occurs when a model demonstrates excellent perfor-

mance on the training data but exhibits poor generalization to new, unseen

data. This is often due to the limited diversity or skewed distribution of out-

comes in the dataset. By incorporating a diverse and balanced dataset, the

model is exposed to a wide range of examples, allowing it to develop robust

predictive capabilities and performmore accurately across different situations.

This highlights the crucial role of the dataset in the model development pro-

cess. TheUNBC-McMaster Shoulder Pain Expression Archive [29] has served

as the primary data set in the field of pain recognition and expression anal-

ysis, due to its comprehensive FACS encodings and VAS scores as labels,

which make it a valuable resource for researchers. These features have made
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the dataset highly versatile and explainable, thereby facilitating the develop-

ment of numerous DL models. However, the recent removal of this dataset

from public availability due to privacy concerns has posed a significant chal-

lenge for researchers. The unavailability of this critical resource underscores

a considerable challenge in the field: the absence of alternative datasets with

sufficient size and diversity to train deep learning models from scratch. The

limited access to large, high-quality datasets like UNBC-McMaster impedes

the development of robust and accurate models, thus constraining progress

and innovation in pain recognition research.

4.1.1 Delaware Pain Database

The dataset used for training the model is theDelaware Pain Database [31], a

well-characterized and diverse collection of facial expression images, specif-

ically designed to capture both painful and neutral expressions. The dataset

comprises photographs of 127 female and 113 male subjects, ensuring bal-

anced gender representation. The Delaware Pain Database comprises seven

discrete pain levels, ranging from 0 (no pain) to 6 (maximum pain), derived

from 240 individual subjects. The dataset is publicly accessible for research

purposes and it is important to note that all expressions are simulated, mean-

ing that the subjects were not actually experiencing pain when the images were

captured. This presents a significant challenge in model development, as the

artificial nature of these expressions may introduce ambiguity. The lack of

genuine pain responses could limit the model’s ability to accurately general-

ize to real-world scenarios, where the subtle nuances of true pain might differ

from those depicted in simulations. Therefore it is essential to address this

challenge in order to ensure the model’s effectiveness in practical applications.

Figure 4.1 depicts three subjects exhibiting varying degrees of pain, exempli-

fying a pivotal challenge inherent to this research: the intrinsic subjectivity of

pain perception. Upon examination of the expressions, it becomes evident that
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(a) Male, Pain Level 1 (b) Female, Pain Level 3 (c) Female, Pain Level 5

Figure 4.1: Figures form Delaware Pain Database

distinguishing between the various pain levels is challenging, even for human

observers. For example, despite the assertion that Figure 4.1a and Figure 4.1c

are separated by four levels of pain intensity, the visual distinction between

these expressions is limited. This ambiguity, evident even to the human eye,

represents a significant issue for the DL model. If humans, with their nuanced

perception of facial expressions, struggle to differentiate these levels of pain,

it poses an even greater challenge for a DL model to accurately interpret and

classify such minor differences. This underscores the importance of address-

ing these ambiguities in the model’s design and data preprocessing, which will

be the focus of the next section.

4.2 Data Preprocessing

Data preprocessing represents a crucial phase in machine learning, as it en-

ables the input data to be prepared in a manner that enhances the performance

and reliability of themodel. In this case, the initial step is to resize the input im-

ages to a uniform dimension (256x256 pixels) via bicubic interpolation. This

guarantees that all images possess identical dimensions, which is essential for

feeding them into a neural network, which requires consistent input sizes. A

center crop of 224x224 pixels is then applied, focusing the model’s attention

on the most salient image regions. This approach is particularly effective for

datasets like Delaware, where patient faces are typically centered. To enhance
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the model’s generalization capabilities, data augmentation techniques are em-

ployed. Random horizontal flipping with a 50% probability is implemented,

which helps the model learn invariance to horizontal orientation. This aug-

mentation strategy can significantly improve the model’s ability to recognize

features regardless of their left-right orientation in the image. Pixel value nor-

malization follows, using specific mean (0.485, 0.456, 0.406) and standard

deviation (0.229, 0.224, 0.225) values. This normalization step ensures that

input data is on a comparable scale, allowing for faster model convergence

and potentially improving overall performance. To address the common is-

sue of class imbalance in medical datasets, Synthetic Minority Oversampling

Technique (SMOTE) is applied. SMOTE is an oversampling method that cre-

ates synthetic examples of the minority class. The method works by selecting

examples that are close in the feature space, drawing a line between the ex-

amples in the feature space, and drawing a new sample at a point along that

line. Specifically, SMOTE generates new instances of the minority class by

interpolating between existing minority instances that are close together. This

technique effectively balances the dataset, preventing the model from being

biased towards themajority class and improving its ability to learn from under-

represented classes. By combining these preprocessing steps (image resizing,

center cropping, data augmentation through horizontal flipping, pixel normal-

ization, and SMOTE for class balancing) a robust foundation for training the

machine learning model is created. This comprehensive approach standard-

izes the input data and enriches it, ultimately leading to a more effective and

generalizable model.

4.3 Model Architecture and Design

The model architecture is composed of two primary components: a feature

extraction stage and a subsequent neural network for classification and re-

gression tasks.
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4.3.1 Feature extraction

The feature extraction stage leverages a pre-trained model to obtain rich facial

features from input images. The following models have been used.

MediaPipe Face Landmarker

MediaPipe Face Landmarker is an advanced real-time face landmark detec-

tion solution capable of identifying 468 3D landmarks on human faces. This

model utilizes a multi-layer architecture consisting of three key components:

a face detection model, a face mesh model, and a blend shape prediction

model.

1. Face Detection Model: The initial stage employs the BlazeFace model,

which is capable of detecting the presence of faces in images and pro-

vides basic facial landmarks, thus establishing a region of interest for

subsequent processing.

2. Face Mesh Model: Once a face is detected, the face mesh model takes

over, estimating a comprehensive mapping of the face’s geometry as

in Figure 4.2. This model outputs 478 3D landmarks, capturing intri-

cate facial details and contours. The system operates efficiently under

a variety of conditions, ensuring accurate landmark detection even in

real-time scenarios.

3. Blendshape Prediction Model: The final component analyzes the out-

put from the face mesh model to predict 52 blendshape scores, which

represent different facial expressions. These scores allow for the in-

terpretation of emotional states and facilitate the application of facial

filters and effects in augmented reality environments.

The entire pipeline is optimized for performance, utilizing GPU acceleration

to maintain high processing speeds, essential for applications such as virtual
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Figure 4.2: Face Mesh

avatars and interactive experiences. Additionally, the architectural design al-

lows for the input of diverse data formats, including single images, video

frames, and live streams, which makes it versatile for different use cases. It is

worth noting that this approach is particularly valuable for its ability to gener-

ate interpretable face blend shapes, which makes it highly suitable for appli-

cations in healthcare where model transparency is crucial.

MobileNetV3

MobileNet V3 [20] is an advanced DL model that has been specifically de-

signed for efficient deployment in mobile and embedded vision applications.

The architectural design is based on the inverted residual structure introduced

in MobileNet V2, where each block incorporates a bottleneck layer to reduce

the dimensionality of the data, followed by depthwise separable convolutions

that significantly reduce the number of parameters and the computational cost

(Figure 4.3). MobileNet V3 incorporates the Squeeze-and-Excite (SE) mod-

ule, which adaptively recalibrates channel-wise feature responses, enhancing

the network’s ability to capture salient features. Moreover, MobileNet V3

utilizes a Neural Architecture Search (NAS) technique to achieve an optimal

balance between latency and accuracy. This results in two main variants: Mo-

bileNet V3 Small, optimized for lower latency and smaller models, and Mo-

bileNet V3 Large, which provides higher accuracy for more demanding tasks.



4.3 Model Architecture and Design 39

Figure 4.3: MobileNet V3 Architecture

The final layer includes a global average pooling, a fully connected layer, and

a softmax output, completing the model’s architecture. This is both compact

and powerful, making it ideal for deployment in resource-constrained envi-

ronments.

FaceNet

FaceNet [36] is a pioneering facial recognition system developed by researchers

at Google and first introduced in 2015. A deep convolutional neural network

is employed to map facial images into a compact 128-dimensional Euclidean

space, wherein the distance between points is directly correlated with facial

similarity. This innovative approach enables the efficient execution of face

recognition, verification, and clustering tasks through the utilization of a dis-

tinctive triplet loss function during the training phase (Figure 4.4). The triplet

loss function encourages the model to minimize the distance between the em-

beddings of the same identity, while simultaneously maximizing the distance

between those of different identities.

Figure 4.4: FaceNet High Level Architecture
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The architecture of FaceNet is noteworthy for its capacity to generate high-

quality face embeddings, which can be utilized in a multitude of applications,

including security systems and social media platforms. The model attained

an exceptional degree of accuracy, establishing a record of 99.63% on the

Labeled Faces in the Wild dataset, markedly exceeding the performance of

previous methods and establishing a new benchmark in the domain of face

recognition.

DINO V2

DIstillation of knowledge with No labels and vIsion transformers (DINO) V2

[32] is a state-of-the-art self-supervised learning model designed for vision

tasks, building upon the success of its predecessor, DINO. Meta AI devel-

oped DINO V2, which demonstrates excellence in visual data comprehension

without the necessity of labeled datasets, making it highly versatile across di-

verse applications. A significant advancement in DINO V2 is its capacity to

generate high-quality, semantically rich features that are useful not only for

classification but also for a range of other tasks, including segmentation, ob-

ject detection, and even fine-grained image retrieval. This version represents a

notable improvement in the scalability and generalization capabilities of self-

supervised vision models, enabling DINO V2 to perform well across diverse

tasks without requiring additional fine-tuning. One of the standout features

Figure 4.5: DINO V2 Training Process
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of DINO V2 is its use of self-distillation during the training phase. This ap-

proach enables the model to learn to predict its own outputs as it processes

data. Specifically, DINO V2 employs a teacher-student setup, where two ver-

sions of the model (a teacher and a student) are maintained during training

(Figure 4.5). The teacher model is updated at a slower rate (through an expo-

nential moving average of the student weights), and it generates ”soft” targets

or predictions for the student to learn from. This method enables the model

to develop high-quality, stable representations without requiring labeled data.

The training process of DINO V2 focuses on optimizing these self-distillation

objectives while using techniques like multi-crop augmentation, where multi-

ple views of the same image at different scales are processed simultaneously,

encouraging the model to learn invariant features across these views. This,

combined with the inherent strength of ViTs in capturing contextual and se-

mantic information, allows DINOV2 to achieve robust and generalized visual

representations. The result is a model that demonstrates excellence across a

diverse range of vision tasks, exhibiting robust performance even on datasets

and tasks that were not the explicit focus of the training process.

4.3.2 Classification and Regression

After the features have been extracted, they are presented as input into a neural

network that functions as classification or regression. Bothmethods have been

explored as they can have different levels of explainability and different loss

functions can be applied. The flexibility to experiment with both methods

allows for a comprehensive comparison of performance, enabling the selection

of the most appropriate approach based on the specific requirements of the

application.
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Adaptation of Backbone Models

Each backbone model (DINO V2, FaceNet, MobileNet V3, and MediaPipe

Face Landmarker) was carefully adapted to suit the target dataset and task.

For the DINO V2, two linear layers were added after the class token output

of the Vision Transformer. During fine-tuning, only these additional layers

were trained, keeping the pre-trained DINO V2 weights frozen. For clas-

sification tasks, the linear layers output the number of classes in the target

dataset, while for regression tasks the linear layers output a single value. In

the case of FaceNet, a small Multi-Layer Perceptron (MLP) was added on

top of the embedding. For classification, this MLP consists of two hidden

layers (64 and 32 neurons) and a final output layer matching the number of

target classes. For regression, a similar MLP structure is used but with a sin-

gle output neuron. During fine-tuning, the FaceNet weights were frozen, and

only the MLP was trained. For MobileNet V3, the final classification layer of

the pre-trained MobileNet V3 was removed. A Global Average Pooling layer

was added after the convolutional features. For classification, two new dense

layers were added with output neurons corresponding to the number of target

classes. Fine-tuning involved training the newly added layers keeping earlier

layers frozen. The MediaPipe Face Landmarker adaptation began by flatten-

ing the 468 3D landmarks into a 1404-dimensional vector (468×3). A feature

reduction layer (100 neurons) was added to compress the high-dimensional in-

put. For classification, another dense layer was added with neurons equal to

the number of target classes. For regression, a linear layer with appropriate

output neurons for the regression task was added. Only these additional layers

were trained, keeping the weights of the face landmarker model fixed. In all

models, the appropriate activation function was utilized in the final layer. For

multi-class classification, a softmax activation was employed, whereas a sig-

moid activation was utilized for binary classification. In the case of regression

tasks, no activation was applied.
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4.4 Training and Validation

In the context of model training, the selection of appropriate optimization

strategies, loss functions, and regularization techniques is of considerable im-

portance. These choices directly influence the model’s learning, its ability

to generalize, and its overall performance on both seen and unseen data. This

section provides an examination of the methodology employed, encompassing

the optimizer, loss functions, and key regularization techniques. The Adam

(Adaptive Moment Estimation) optimizer with weight decay was employed

during the training process. This choice combines the benefits of Adam’s

adaptive learning rates for each parameter with the regularization effect of

weight decay, which helps to prevent overfitting and improve generalization.

The addition of weight decay to Adam introduces a form of L2 regularization,

which lead to simpler models with improved performance on unseen data. To

prevent overfitting and optimize computational resources, an early stopping

mechanism was implemented. This technique monitors the model’s perfor-

mance on a validation set during training and halts the process when the per-

formance ceases to improve. A maximum of 100 epochs was set as an upper

bound for the training duration, striking a balance between sufficient time for

learning and excessive computation. The following subsections present an

in-depth analysis of the various loss functions evaluated for both classifica-

tion and regression tasks. The analysis explores how each function shaped the

model’s learning process and influenced its performance.

4.4.1 Classification Loss Functions

In order to evaluate the efficacy of different loss functions in addressing the

inherent challenges associated with various types of classification problems,

a series of loss functions were tested. These functions were evaluated to de-

termine their effectiveness in improving the model’s predictive accuracy and

robustness.
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• Cross-Entropy Loss: This is the standard loss function for multi-class

classification problems. It measures the divergence between the pre-

dicted probability distribution and the actual distribution. Cross-entropy

loss is effective in driving the model to predict probabilities that are

close to 1 for the correct class and close to 0 for others.

• Binary Cross-Entropy Loss: Specifically used for binary classification

tasks, this loss function is a special case of cross-entropy loss where

only two classes are considered. It is highly effective in scenarios where

the outcome is binary, pushing the model to make confident predictions

between the two classes.

• Ordinal Categorical Loss: For ordinal classification problems, where

the classes have a natural order. This loss function penalizes the model

based on the distance between the predicted and actual classes, which

is crucial in maintaining the ordinal relationship between classes.

• Weighted Cross-Entropy Loss: To address class imbalance, weighted

cross-entropy loss was employed. By assigning higher weights to un-

derrepresented classes, this loss function ensures that themodel does not

disproportionately favor the majority class, improving the performance

on minority classes.

• Focal Loss: This loss function reduces the relative loss for well-classified

examples, allowing the model to focus more on difficult cases, which is

particularly useful in highly imbalanced datasets.

• KL Divergence Loss: For tasks requiring the model to match or ap-

proximate a probability distribution. This loss function measures the

difference between the predicted probability distribution and a target

distribution.

• Estimated Error Loss: This experimental loss function was tested to



4.4 Training and Validation 45

directly minimize the estimated error in classification. It attempts to

reduce the expected classification error by incorporating a measure of

prediction uncertainty into the loss calculation.

4.4.2 Regression Loss Functions

In the regression tasks, a variety of loss functions were evaluated to identify

the optimal one for minimizing the error between the predicted and actual

continuous values. These loss functions correspond to different aspects of

regression, including absolute errors and distributional predictions.

• Mean Squared Error Loss: The most commonly used loss function for

regression tasks, MSE calculates the average of the squared differences

between predicted and actual values. MSE is sensitive to large errors,

making it suitable for applications where large deviations are particu-

larly undesirable.

• Mean Absolute Error Loss: MAE was tested to complement MSE by

measuring the average absolute difference between predicted and actual

values. Unlike MSE, MAE treats all errors equally, making it more

robust to outliers and providing a more balanced error metric.

• Weighted MSE Loss: Similar to the weighted cross-entropy in classifi-

cation, weighted MSE loss was used to address situations where certain

predictions are more critical than others. By assigning different weights

to different errors, the model can prioritize minimizing errors in more

important predictions.

• Distributional Regression Loss: This loss function was tested for tasks

requiring the model to predict a probability distribution rather than a

single point estimate. Distributional regression loss helps in scenarios



4.4 Training and Validation 46

where understanding the uncertainty or variability of predictions is cru-

cial.

• Quantile Regression Loss: For regression tasks where different quan-

tiles of the target distribution are of interest. This loss function is par-

ticularly useful in predicting the median, lower, or upper quantiles of

the distribution, providing a more comprehensive understanding of the

possible outcomes.

4.4.3 Loss Function Selection

Based on extensive experimentation and analysis of various loss functions,

this study ultimately employed two distinct loss functions for the different

aspects of the task at hand. For the regression component, MAE loss was

selected as the optimal choice. This decision was grounded in empirical ev-

idence from numerous experiments, where MAE consistently outperformed

other regression loss functions in terms of model performance and prediction

accuracy. The robustness of MAE to outliers and its ability to provide sta-

ble gradients during training likely contributed to its superior performance in

this context. With regard to the classification task, the Ordinal Categorical

loss function was adopted. This choice was primarily motivated by the inher-

ent ordinal nature of the classification problem at hand. The incorporation of

ordinal categorical loss enabled the explicit incorporation of the ordinal re-

lationship between classes into the learning process, effectively forcing the

model to understand and respect the sequential order of the categories. This

approach proved to be highly effective, as evidenced by the superior results

achieved in subsequent evaluations.

4.4.4 Validation

To robustly validate the model’s performance and ensure its generalizability

across different subsets of data, k-fold cross-validation [14] was employed as
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the primary evaluation technique. This method is particularly advantageous

in providing a reliable estimate of the model’s performance by mitigating the

risks associated with overfitting or the influence of data partitioning. In k-

fold cross-validation, the dataset is partitioned into k equal-sized subsets, or

”folds.” The model is trained and evaluated k times, with each iteration uti-

lizing a distinct fold as the validation set and the remaining k-1 folds as the

training set. As illustrated in Figure 4.6, this process is repeated until each

fold has served as the validation set exactly once. The overall performance

metric is then calculated as the mean of the metrics obtained from each of the

k iterations.

Figure 4.6: K-fold cross-validation

4.5 Hyperparameter Optimization

Hyperparameter optimization was conducted to fine-tune the model and en-

hance its performance by selecting the most effective combination of hyper-

parameters. To this end, the tool Weights and Biases (W&B) was employed,

which is designed to facilitate the tracking of experiments and the automation

of hyperparameter tuning. W&B enabled the management of numerous ex-

periments by logging the results of different hyperparameter configurations

and visualizing their impact on model performance (Figure 4.7). Through the
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integration of W&B, the optimization process was streamlined, enabling effi-

cient exploration of the hyperparameter space and leading to the identification

of optimal settings that significantly improved the model’s accuracy and gen-

eralization capabilities.

Figure 4.7: Weight and Biases
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Results

5.1 Experimental Setup

5.1.1 Hardware Configuration

All experiments were performed on an Amazon SageMaker notebook instance

with the following hardware configuration:

• Instance type: ml.g4dn.2xlarge

• CPU: 8 vCPU Intel Xeon Platinum 8259CL CPU @ 2.50GHz

• GPU: 1 x NVIDIA T4 Tensor Core GPU

• Memory: 32 GB RAM

• Storage: 50 GB of attached EBS storage

5.1.2 Software Environment

The notebook instance was running on Amazon Linux 2, utilizing a Conda

environment with Python 3.10.10. The environment was configured with es-

sential packages:
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• NumPy 1.26.3

• Torch 2.2.2

• Torchvision 0.17.2

• OpenCV 4.7.0.72

5.2 Experimental Results

The results of our study are presented in Tables 5.1 and 5.2, which show the

performance in classification and regression tasks, respectively. In the classi-

fication task, DINO V2 (L) demonstrated the best performance with a MAE

of 1.02 and an accuracy of 48%. This was closely followed by DINO V2 (S)

with an MAE of 1.13 and 47% accuracy. The Face Landmarker (FL) model

showed competitive results with an MAE of 1.28 and 46% accuracy. Mo-

bileNet 3 (MN 3) and FaceNet (FN) had comparatively lower performance.

For the regression task, DINO V2 (L) again outperformed other methods with

an MAE of 1.04 and an accuracy of 41%. Overall, the DINO V2 variants,

particularly the larger model, consistently demonstrated superior performance

across both classification and regression tasks. It is noteworthy that the accu-

racy in the regression task was calculated by approximating the result to the

nearest integer, providing a discrete measure of performance for this continu-

ous prediction task.

Method FL MN 3 FN DINO V2 (S) DINO V2 (L)
MAE 1.28 1.34 1.44 1.13 1.02

Accuracy (%) 46 39 41 47 48

Table 5.1: Classification Results

To provide a more detailed view of the DINO V2 (L) model’s performance in

the classification task, Figure 5.1 presents its confusion matrix. This visual-

ization reveals the model’s strengths and weaknesses across different classes.
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Method FL MN 3 FN DINO V2 (S) DINO V2 (L)
MAE 1.41 1.39 1.47 1.29 1.04

Accuracy (%) 26 26 23 38 41

Table 5.2: Regression Results

Figure 5.1: Confusion Matrix (DINO V2 (L))

Notably, the model shows strong performance in identifying class 0, with 96%

correct predictions. It also performs well for class 5, correctly identifying 62%

of instances. However, the matrix also highlights areas for improvement, par-

ticularly for classes 1 and 6, where the model shows more significant con-

fusion with other classes. For instance, 33% of true class 1 instances were

misclassified as either class 0 or class 1. The confusion matrix also reveals

some interesting patterns of misclassification, such as a tendency to confuse

classes 2, 3, and 4, which could indicate some shared features among these

classes that the model is struggling to differentiate. This detailed breakdown

complements the overall accuracy metric and provides valuable insights for

potential model refinement and understanding of class-specific challenges in

the dataset. The classification report of the model is presented in Table 5.3.

The model achieved an overall accuracy of 0.48 across all classes. Class 0
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demonstrated the best performance with a precision of 0.85, a recall of 0.96,

and an F1-score of 0.90. In contrast, Class 1 showed the lowest performance

with a precision of 0.14, a recall of 0.33, and an F1-score of 0.20. The macro-

average scores, which afford equal weight to each class, yielded the follow-

ing results: 0.39 for precision, 0.40 for recall, and 0.38 for F1-score. The

weighted averages, which account for class imbalance, exhibited slight im-

provement at 0.48, 0.48, and 0.47 for precision, recall, and F1-score, respec-

tively. These findings indicate that while the model demonstrates efficacy for

certain classes, there is potential for enhancement, particularly for classes with

lower F1 scores.

Class Precision Recall F1-Score Support
0 0.85 0.96 0.90 49
1 0.14 0.33 0.20 6
2 0.35 0.25 0.29 32
3 0.16 0.12 0.14 24
4 0.35 0.29 0.31 28
5 0.41 0.62 0.49 24
6 0.44 0.24 0.31 17
Accuracy: 0.48
Macro Avg: 0.39 / 0.40 / 0.38 / 180
Weighted Avg: 0.48 / 0.48 / 0.47 / 180

Table 5.3: Classification Performance Metrics

To further assess the model’s efficacy, a binary classification analysis was con-

ducted, as illustrated in Figure 5.2. This simplified task serves to illustrate the

model’s considerable discriminative capacity when the problem is reduced to

two classes. The confusion matrix for binary classification demonstrates the

model’s efficacy, with 96% accuracy for class 0 and 94% accuracy for class 1.

This high performance in the binary setting indicates that the model is partic-

ularly adept at distinguishing between two broad categories, although it may

face more challenges in the multi-class scenario. The misclassification rates

are notably low, with only 4.1% of class 0 instances being incorrectly labeled
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Figure 5.2: Binary Confusion Matrix (DINO V2 (L))

as class 1, and 6.1% of class 1 instancesmislabeled as class 0. This binary clas-

sification performance provides a valuable benchmark for comparing DINO

V2 (L) with other models and highlights its robustness in a simplified classifi-

cation task. The significant improvement in accuracy from the multi-class to

binary classification demonstrates the impact of increasing task complexity as

the number of classes grows. The binary classification report of the model are

presented in Table 5.4. For the purposes of this analysis, class 0 is considered

the negative class, while all other classes (1-6) are combined into the positive

class. The model demonstrated an overall accuracy of 0.95, indicating a ro-

bust capacity to differentiate between the positive and negative classes. The

model exhibited optimal performance in class 1, with a precision of 0.99, a

recall of 0.94, and an F1-score of 0.96. This indicates that the model is highly

effective at identifying faces exhibiting pain, with a minimal false negative

rate. Even the class 0 demonstrated exceptional performance, with a preci-

sion of 0.85, a recall of 0.96, and an F1-score of 0.90. The macro-average

scores, which give equal weight to both classes, were 0.92 for precision, 0.95

for recall, and 0.93 for F1-score. The weighted averages, which account for
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class imbalance, were similarly high at 0.95, 0.95, and 0.95 for precision, re-

call, and F1-score, respectively. These results suggest that the model performs

exceptionally well in binary classification, effectively distinguishing between

class 0 and all other classes combined. The high accuracy and balanced perfor-

mance across both classes indicate a robust and reliable classification model

for this binary task.

Class Precision Recall F1-Score Support
0 0.85 0.96 0.90 49
1 (1-6 combined) 0.99 0.94 0.96 131
Accuracy: 0.95
Macro Avg: 0.92 / 0.95 / 0.93 / 180
Weighted Avg: 0.95 / 0.95 / 0.95 / 180

Table 5.4: Binary Classification Performance Metrics

5.3 Model Interpretability

Having established that the model utilizing DINO V2 demonstrated superior

performance in both classification and regression tasks, the focus will now

shift to an examination of interpretability of this model. The interpretability

of DL models enables the understanding of their decision-making processes,

the validation of their reasoning, and the identification of potential biases or

limitations. This section presents an analysis of the model’s inner workings,

employing three distinct methods to gain insights into the model’s behavior:

PCA-extracted features, attention map of the class token, and occlusion. Each

of these techniques offers a unique perspective on how the model processes

information and makes predictions, collectively enhancing our understanding

of its strengths and potential limitations.

5.3.1 PCA Extracted Features

The interpretability analysis begins with an examination of the Principal Com-

ponent Analysis (PCA) of the features extracted by the DINO V2 model. The
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DINO V2 paper introduces a novel way to visualize the features learned by

the model using PCA:

1. DINOV2 extracts patch features from input images using its self-supervised

network.

2. The PCA is conducted on these patch features in two stages. The initial

step involves the application of PCA to the complete set of patch fea-

tures, with the objective of identifying the principal components with

the highest variance. Subsequently, the projection of each patch onto

the principal components is calculated. This yields a low-dimensional

representation of each patch.

3. The low-dimensional patch representations are mapped to RGB col-

ors, with each principal component corresponding to one color channel.

This creates a segmented, colorful visualization of the imagewhere each

color represents a distinct feature learned by the model.

4. The PCA visualization demonstrates themodel’s capacity to discern and

process disparate image features and its ability to handle complex pixel-

level information without supervision from text or captions.

By providing a colorful, segmented view of the image based on the learned

features, PCA visualization greatly improves the interpretability of DINO V2.

Figure 5.3 presents visualizations of the feature representations extracted by

our DINO V2 model for five different input images.

5.3.2 Attention Map of the Class Token

In addition to PCA-extracted features, another powerful tool for interpreting

the DINO V2 model’s behavior is the analysis of attention maps, particularly

focusing on the class token in the last layer. The class token, introduced in

Vision Transformers, serves as a global representation of the entire image and
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Figure 5.3: PCA extracted features of the penultimate layer of DINO V2

plays a key role in the model’s final prediction. The attention mechanism

inherent to transformer-based models, such as DINOV2, enables the model to

concentrate on different regions of the input when formulating predictions. By

visualizing the attention weights associated with the class token, one can gain

insights into which regions of the image the model considers most important.

In order to generate and interpret the attention map of the class token, the

following steps must be taken. The initial step involves a forward pass of an

input image through the DINO V2 model is performed. Next, the attention

map of the class token is extracted from the final layer. These weights are

then reshaped and normalized to match the input dimensions. Ultimately, the

resulting heatmap is overlaid on the original image. This process enables the

visualization of the model’s focus areas, offering insights into its decision-

making process. Figure 5.4 shows examples of attention maps for two input

images.

Figure 5.4: Attention maps of the class token for the last layer of DINO V2
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5.3.3 Occlusion

The final interpretability technique is the occlusion method, which assists in

comprehending the significance of various regions within an input image for

the model’s classification decision. This method entails the systematic oc-

clusion of different portions of the image, which allows for the observation

of changes in the model’s prediction. This process enables the generation of

importance heatmaps. A sliding window approach was employed, whereby

16x16 pixel patches of each input image were systematically occluded with

a black square. For each occluded version, the change in the model’s pre-

diction probability for the correct class was recorded. Figure 5.5 presents a

series of original images alongside their corresponding occlusion heatmaps.

In these heatmaps, blue areas indicate regions where occlusion caused a sig-

nificant drop in the correct class probability, suggesting these areas are crucial

for classification.

Figure 5.5: Occlusion



Chapter 6

Discussion

6.1 Model Performance Analysis

The results of our study, presented in Tables 5.1 and 5.2, offer valuable insights

into model performance across both classification and regression tasks. A key

finding is the consistently superior performance of the DINO V2 models, par-

ticularly the larger variant (L), across all tasks. DINO V2 (L) consistently

achieved the lowest MAE and the highest accuracy, underscoring its ability

to capture intricate features and relationships within the data. This observa-

tion highlights the strength of the self-supervised learning approach employed

by DINO V2, especially when combined with increased model capacity. The

strong performance of DINO V2 (L) aligns with the growing research in com-

puter vision and machine learning, where self-supervised learning methods

have demonstrated an exceptional ability to learn robust representations with-

out reliance on labeled data. This is particularly advantageous in fields such as

healthcare, where labeled data can be scarce, expensive, or challenging to ob-

tain. An interesting trend observed across all models is the generally decreased

performance in regression tasks compared to classification. The comparison

between regression and classification models is based on both quantitative and
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qualitative observations, despite the different nature of their evaluation met-

rics. In order to facilitate a more direct comparison, both accuracy and MAE

were calculated for both types of models. In the case of regression models,

MAE is calculated traditionally, while accuracy is approximated by rounding

the predicted continuous value to the nearest class. For classification models,

accuracy is calculated in the standard way, while MAE is adapted by treat-

ing class labels as numeric values. The fact that classification models tend to

outperform regression models is supported by higher accuracy scores, lower

MAE values, and consistency across both metrics. However, it is essential to

note that this comparison allows for a relative performance assessment rather

than an absolute one, given the adapted use of metrics across different types of

tasks. This is evident in the lower accuracy scores and slightly higher MAE

values for regression, reflecting the inherent challenges of regression tasks.

Unlike classification, which involves assigning discrete categories, regres-

sion requires precise numerical predictions, making it a more demanding task.

This performance gap highlights the importance of tailoring model architec-

tures and training strategies to the specific nature of the problem, particularly

when dealing with continuous versus categorical outputs. The consistency

in the ranking of methods across both tasks (DINO V2 (L) > DINO V2 (S)

> FL > MN 3 FN) indicates that the relative strengths of these methods are

not confined to a specific task. Instead, they reflect the fundamental capabil-

ities of these models in feature extraction and representation learning. This

consistency is noteworthy, as it suggests that the underlying methodologies

employed by DINO V2 models, particularly the larger variant, are robust and

versatile. The performance gap between DINO V2 (L) and DINO V2 (S) fur-

ther underscores the impact of model size on performance. While the larger

model consistently outperforms its smaller counterpart, the difference, partic-

ularly in classification tasks, is not overwhelmingly large. This observation

raises important considerations regarding the trade-offs between model size,

computational resources, and performance gains. In contexts where resources
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are limited, the smaller DINO V2 (S) may offer an optimal balance between

performance and efficiency, making it a viable option without a significant

loss of accuracy. In contrast, the relatively lower performance of traditional

methods such as FL, MN 3, and FN, particularly in regression tasks, high-

lights their potential limitations in comparison to more advanced models like

DINO V2. As the field of machine learning evolves, there may be a need to

reassess and update these traditional approaches to maintain competitiveness

with newer, more sophisticated models.

6.1.1 Confusion Matrix

The confusion matrix for DINO V2 (L) in Figure 5.1 reveals a good diagonal

tendency, a positive indicator of the model’s performance, particularly in or-

dinal classification tasks. This diagonal reflects the model’s ability to achieve

accurate classifications and also to grasp the ordinal relationships between

classes. When misclassifications occur, they tend to involve adjacent classes,

a behavior that mirrors the challenges even humans face when distinguishing

between closely related categories, such as pain levels 3 and 4. These perfor-

mances are particularly valuable in real-world applications where the proxim-

ity of predictions to the true class is often more important than exact matches.

The model’s ability to discern subtle differences and its alignment with human

judgment in similar scenarios highlight its sophistication in handling complex

ordinal classification tasks.

6.1.2 Interpretability

The interpretability of DINOV2’s reasoning process is significantly enhanced

by the visualizations presented in Figures 5.3, 5.4, and 5.5. Figure 5.3, show-

casing the PCA-extracted features from the penultimate layer of DINO V2,

provides a glimpse into the model’s high-level representations. The contrast

between the original facial images and their corresponding abstract features
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illustrates how DINO V2 distills complex visual information into meaning-

ful patterns, which, while abstract, likely encode critical information about

facial expressions and pain levels. Further insights are provided by Figure

5.3, which highlights the regions most critical to the model’s predictions. The

concentrated importance around the eyes, nose, and mouth supports the acti-

vation patterns observed in the other methods, reinforcing the idea that DINO

V2 focuses on physiologically relevant facial features for pain evaluation. The

attention maps presented in Figure 5.4 provide additional evidence into the fo-

cus areas of the DINO V2 when assessing pain levels. These visualizations,

derived from the class token’s attention weights in the last layer, reveal the

model’s areas of emphasis for each input image. In both examples, attention

is concentrated on key facial features, particularly the eyes, eyebrows, and

mouth regions. The first image illustrates a more distributed attention pat-

tern across the face, with a notable focus on the forehead, eyes, and mouth.

This suggests that the model is considering a broader range of facial cues,

potentially indicative of a more complex or ambiguous pain expression. Con-

versely, the second image displays a more localized attention pattern, with

an intense focus on the mouth. This concentrated attention may indicate a

more pronounced or specific pain expression that the model has identified as

particularly salient. These visualizations collectively offer valuable insights

into DINO V2’s internal decision-making processes, enhancing trust in the

model by demonstrating its reliance on human-understandable concepts. In-

terpretability is particularly important in clinical settings, where transparency

and explainability are crucial for adoption. By bridging the gap between com-

plex neural computations and intuitive human concepts, these analyses make

a strong case for DINO V2’s potential applicability in real-world healthcare

scenarios.
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6.2 Comparison with Existing Methods

The model presented in this research project, which achieved an accuracy of

95%, demonstrated superior performance when compared to existing methods

in the field of automatic pain assessment. This comparison revealed valuable

insights into the efficacy of different approaches and the impact of dataset size

on model performance. In [8] a binary classifier model is deployed with the

objective of discriminating between the absence and presence of pain. The au-

thors employed the OpenFace toolkit to extract AUs from facial expressions,

which were then fed into a neural network classifier with two dense layers.

After 400 training epochs, the model achieved an accuracy of approximately

94%. It is noteworthy that the training data combined both theDelaware Pain

Database and the UNBC McMaster Shoulder Pain dataset, thereby providing

a broader range of pain expressions and contexts. In their study, Sabater-

Gárriz, Álvaro, et al. [35] highlighted the necessity of a large and diverse

dataset for the training of deep learning models in pain recognition. The re-

searchers merged three extensive databases: the UNBC McMaster Shoulder

Pain Expression Archive Database [29], theMultimodal Intensity Pain dataset

(MInt PAIN) [18], and theDelaware Pain Database [31]. This approach high-

lights a common challenge in healthcare AI applications, particularly in fa-

cial expression analysis. It is noteworthy that the presented model achieved

95% accuracy, given that only the Delaware Pain Database was utilized for

training. This is in clear contrast to the approaches in both referenced papers,

which relied on combined datasets to ensure sufficient training data. It is cru-

cial to acknowledge that deep learning models often require extensive training

data, particularly in the context of healthcare applications where data diver-

sity is of immense importance. The challenge of acquiring comprehensive,

high-quality datasets for pain assessment, especially those involving facial

expressions, represents a significant obstacle in this field. The necessity for

Sabater-Gárriz, Álvaro, et al. [35] to combine multiple datasets highlights the
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difficulties associated with this process. The performance of the model that is

the subject of this research, therefore, not only demonstrates its effectiveness

but also highlights a potential pathway for developing robust pain assessment

tools with more limited datasets. This approach could be particularly valuable

in scenarios where large, diverse datasets are not available or are challenging

to compile due to privacy concerns or the specific nature of the pain assess-

ment task. However, it is essential to consider that while the model achieved

promising results, further validation on diverse datasets and in various clini-

cal settings would be necessary to ensure its generalizability and robustness

across different patient populations and pain conditions.

The results of this study have led to a significant contribution to the field of

computer vision applications in healthcare. The research demonstrated that

a vision foundation model, trained in a self-supervised manner on billions

of natural images, can effectively address the lack of data often encountered

in healthcare-specific computer vision tasks. The good performance of the

DINO V2 model underscores the potential of transfer learning from large-

scale, general-purpose models to specialized medical applications. This ap-

proach presents a promising solution to one of the most persistent challenges

in healthcare: the scarcity of large, diverse, and high-quality labeled datasets.

As the field progresses, the use of pre-trained vision foundation models may

become a key strategy in overcoming data limitations in healthcare AI, poten-

tially accelerating the development and deployment of accurate, reliable, and

interpretable computer vision systems across various medical domains. This

could facilitate the development and deployment of accurate, reliable, and in-

terpretable computer vision systems across various medical domains.



Chapter 7

Conclusion and Future Work

7.1 Summary of Findings

The study on automatic pain assessment using the DINOV2model has yielded

several significant findings. The DINO V2 model exhibited superior perfor-

mance in both classification and regression tasks, achieving an accuracy of

48% in classification. These results are particularly notable given the inherent

complexity of pain assessment. The confusion matrix indicated a neat diago-

nal tendency, which suggests that the model effectively captured the ordinal

nature of pain levels. This characteristic is of particular value in pain assess-

ment, where near-misses are often clinically acceptable and reflect the com-

plex subjective nature of pain perception. Visualization techniques, including

principal component analysis, attention map of the class token, and occlu-

sion analysis, provided substantial insights into the model’s decision-making

process. These visualizations confirmed that the model focuses on relevant fa-

cial areas for pain evaluation, aligning with the clinical understanding of pain

expression. It is noteworthy that the model achieved an accuracy of 95% us-

ing only the Delaware Pain Database, thereby outperforming existing methods
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that relied on larger, combined datasets. This achievement underscores the po-

tential of the proposed approach in scenarios where large, diverse datasets are

not readily available. The study demonstrate the potential of self-supervised

learning approaches in healthcare applications, particularly in scenarios with

limited labeled data. This finding is especially relevant in the field of pain

assessment, where obtaining large, annotated datasets can be challenging due

to privacy concerns and the subjective nature of pain experiences.

7.2 Limitations and Challenges

Despite the promising results, the research project faced several limitations

and challenges that require further examination. The relatively small size of

the Delaware Pain Database, compared to combined datasets used in other

studies, may limit the model’s generalizability to diverse populations. This

limitation highlights the persistent challenge in AI healthcare applications of

balancing model performance with dataset diversity and size. A significant

limitation of the current approach is its dependence on static images for pain

assessment. Pain is not an instantaneous feeling but a dynamic experience that

may fluctuate over time. By examining isolated frames, the model may fail to

capture crucial temporal data that could offer a more precise representation of

an individual’s pain state. This limitation may result in an oversimplification

of the intricate and often evolving nature of pain experiences. The inherent

subjectivity of pain assessment presents another challenge. Pain is a deeply

personal experience, and the ground truth labels in the dataset may not always

accurately reflect an individual’s pain experience. This subjectivity introduces

a level of uncertainty that must be carefully considered when interpreting the

model’s outputs. Although themodel’s principal reliance on facial expressions

is effective, it may not fully capture other crucial pain indicators, such as body

language, physiological measures, or vocal cues. This limitation points to the

need for more comprehensive, multimodal approaches to pain assessment that
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can integrate various sources of information. Furthermore, the deployment of

facial recognition technology in healthcare settings gives rise to significant

privacy concerns and ethical questions regarding consent and data usage. For

this reason, the introduction of the EU AI Act has significant implications for

applications like this one. The Act aims to regulate AI technologies based on

their risk levels, emphasizing transparency, accountability, and ethical con-

siderations in AI deployment. Given that this application seeks to improve

pain assessment, a critical area in healthcare, the AI Act would classify this

pain assessment model as a high-risk AI system due to its use in healthcare

settings. In accordance with the existing regulations of the AI Act, such an

application would be permitted, but subject to strict requirements [30].

• Establish a continuous risk assessment and mitigation system through-

out the system lifecycle.

• Conduct data governance, ensuring that training, validation and testing

datasets are relevant and sufficiently representative.

• Draw up technical documentation to demonstrate compliance and pro-

vide clear information about the AI system’s capabilities and limita-

tions.

• Design the AI system for record-keeping to enable it to automatically

record events to ensure traceability.

• Allow deployers to implement human oversight on the system.

• Achieve appropriate levels of robustness and cybersecurity.

7.3 Future Research

The findings and limitations provide a foundation for several promising av-

enues for future research. A principal area of focus is the development of
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multimodal pain assessment models that integrate additional data sources, in-

cluding body posture, voice analysis, and physiological signals. This approach

could result in the creation of a more comprehensive pain assessment tool,

thus enabling a fuller picture of the patient’s pain experience to be captured.

A key area for future research is the incorporation of temporal information

in pain assessment. The creation of models capable of analyzing video se-

quences instead of static images would facilitate the capture of pain dynamics

over time. This approach could provide a more detailed and complex under-

standing of pain experiences, including the fluctuation and duration of pain

episodes. Such temporal models may prove capable of distinguishing between

acute and chronic pain with greater efficacy and of capturing subtle changes

in pain levels that might otherwise be missed in single-frame analyses. In

conjunction with video analysis, the incorporation of audio data represents

another promising direction for research. Vocal cues, including tone, pitch,

and verbal expressions of discomfort, can provide valuable supplementary

data for pain assessment. The creation of models that can integrate visual,

temporal, and auditory information has the potential to significantly enhance

the accuracy and comprehensiveness of automatic pain assessment systems.

Developing larger, more diverse datasets through collaboration with health-

care institutions is essential for advancing the field. These datasets should

include video and audio recordings in addition to static images, represent-

ing various ethnicities, age groups, and pain conditions in order to ensure the

model’s applicability across diverse populations. The ethical implications of

AI in pain assessment require collaboration with ethicists and policymakers to

develop robust ethical guidelines for the deployment of AI-based pain assess-

ment tools. This is crucial for ensuring the responsible and beneficial use of

this technology, especially when dealing with more invasive data collection

methods like continuous video and audio monitoring. Future research should

also explore the potential for developing personalized pain assessment mod-

els that can be fine-tuned to individual patients’ pain expression patterns over
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time. This personalized approach could markedly enhance the accuracy and

reliability of pain assessments, particularly for patients with atypical pain ex-

pressions or those with chronic conditions. Finally, conducting cross-cultural

studies on the model’s performance is essential to account for potential vari-

ations in pain expression and interpretation across different cultures. This

research could lead to more culturally sensitive and globally applicable pain

assessment tools. By pursuing these future research directions, it is possible

to work towards the creation of more accurate, reliable, and ethically sound

automatic pain assessment systems that capture the complex, dynamic nature

of pain experiences. These advancements have the potential to significantly

improve patient care, enhance pain management strategies, and contribute to

a more nuanced understanding of pain across diverse populations and clinical

contexts.
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