Massa, Lorenzo
(2024)
Automated Pain Assessment from Facial Expressions of Elderly People using Machine Learning.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Artificial intelligence [LM-DM270]
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (20MB)
|
Abstract
This thesis presents the development of an advanced machine learning model designed to accurately assess pain levels in dementia patients residing in elderly care homes. The project, conducted in collaboration with Sentigrate, a start-up focused on data science company, aims to create a predictive model that assigns pain scores ranging from 0 (no pain) to 6 (maximum pain) based on facial expressions. The research employs computer vision techniques, primarily convolutional neural networks, to extract meaningful features from facial images. A comparative study of various predictive techniques is conducted to determine the most effective approach. This project addresses the critical issue of inadequate pain management in dementia patients due to communication challenges. The objective is to provide an objective pain assessment tool that will significantly improve pain management strategies and enhance the quality of life for dementia patients in elderly care settings. The findings of this research have the potential to transform elderly care practices, offering valuable insights into pain management and contributing to the broader field of healthcare technology.
Abstract
This thesis presents the development of an advanced machine learning model designed to accurately assess pain levels in dementia patients residing in elderly care homes. The project, conducted in collaboration with Sentigrate, a start-up focused on data science company, aims to create a predictive model that assigns pain scores ranging from 0 (no pain) to 6 (maximum pain) based on facial expressions. The research employs computer vision techniques, primarily convolutional neural networks, to extract meaningful features from facial images. A comparative study of various predictive techniques is conducted to determine the most effective approach. This project addresses the critical issue of inadequate pain management in dementia patients due to communication challenges. The objective is to provide an objective pain assessment tool that will significantly improve pain management strategies and enhance the quality of life for dementia patients in elderly care settings. The findings of this research have the potential to transform elderly care practices, offering valuable insights into pain management and contributing to the broader field of healthcare technology.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Massa, Lorenzo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Pain Assessment,Facial Expression,Machine Learning,Computer Vision,Dino,Interpretability,Deep Learning
Data di discussione della Tesi
8 Ottobre 2024
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Massa, Lorenzo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Pain Assessment,Facial Expression,Machine Learning,Computer Vision,Dino,Interpretability,Deep Learning
Data di discussione della Tesi
8 Ottobre 2024
URI
Statistica sui download
Gestione del documento: