Advanced Deep Learning Models in Earth Observation for Urban Applications: Bologna and Turin Case Studies

Tavakoli Shalmani, Navid (2024) Advanced Deep Learning Models in Earth Observation for Urban Applications: Bologna and Turin Case Studies. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria per l'ambiente e il territorio [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (3MB) | Contatta l'autore

Abstract

This thesis investigates the application of deep learning models for building segmentation and footprint extraction using pansharpened satellite imagery, with the aim of supporting or optimizing urban data management and enhancing environmental resource management. Building footprint extraction is critical for identifying the exact spatial extent of structures, which can be used to inform various urban planning and resource management efforts. The study utilized panchromatic and multispectral satellite images from the WorldView-2 platform to assess multiple deep learning architectures, including UNet with attention mechanisms, DHAUNet with hybrid and multi-head attention configurations, and several iterations of DEEPLabV3 with ResNet backbones. Among these, DEEPLabV3 with ResNet-50, tested across different tile sizes (1024, 512, and 256), demonstrated the highest accuracy in extracting building footprints, with optimal results achieved using a 256×256 tile size. The refined model was applied to datasets from two cities - Turin and Bologna - representing distinct urban roof architectures. Additionally, a combined dataset facilitated the comparative analysis of segmentation performance across varying urban environments. The results emphasize the model’s adaptability and precision in extracting building footprints, demonstrating its robustness across diverse architectural contexts. This research contributes to the advancement of deep learning integration with satellite remote sensing, providing valuable insights for future applications in sustainable urban development. Furthermore, the findings underscore the potential for leveraging accurate building footprint data to support renewable energy initiatives, disaster risk management, and improved urban planning practices globally.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Tavakoli Shalmani, Navid
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Earth resources engineering
Ordinamento Cds
DM270
Parole chiave
Satellite Imagery,Building Footprint Extraction,Deep Learning Segmentation,Geospatial Analysis,Geospatial Information Systems
Data di discussione della Tesi
7 Ottobre 2024
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^