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Abstract

This research investigates the effectiveness of transformer-based models in
mitigating hallucinations within the biomedical domain, a crucial area in nat-
ural language processing (NLP). Hallucinations occur when language mod-
els generate unsupported or divergent information. Despite their capabilities,
large language models (LLMs) are prone to such errors, impacting critical sec-
tors like biomedicine. The study has two main objectives: exploring methods
like Retrieval-Augmented Generation (RAG) and Retrieval-Augmented Fine-
Tuning (RAFT) to reduce hallucinations, and developing techniques for de-
tecting persistent hallucinations. These efforts aim to limit and identify hallu-
cinations in transformer-based models. Additionally, the research introduces
a biomedical RAG system to enhance response reliability, using fine-tuned
LLMs with PubMed abstracts. This system outperforms the PubMed search
engine and GPT-4 Turbo in referencing relevant abstracts. The study also
presents a Verification Engine for an open-source scientific QA system, using
models fine-tuned on the SciFact dataset. The DeBERTa model achieved an
F1 score of 88%, outperforming other models on the HealthVer dataset. These
findings advance NLP techniques, particularly in biomedicine, by improving

the accuracy and reliability of transformer-based models.

11



Contents

1 Introduction
[[.1 Motivation . . . . . . . . . .
(1.2 Thesis Structurd . . . . . . . o v v v e

2 Background
P.1 Generative Model . . . . . . . ... ... ..

R.1.1 Transformery . . . . . . . . . . . . . . ...

.2 Large Language Models . . . . . . .. ... ... ......
2.2.1 Language Model Fine-Tuning . . . ... ... ....
R2.2.2 Approaches . . . . .. .. ... ... ... ...
.3 Efficient Training . . . . . . . . . . o v i

B Related Work
B8.1 LLM for Generating Referenced . . . . . ... .. ......

B.1.1 Approaches to Generating Text with References . . . .

B.2 Retrieval augmented generation . . . . . . . . . . ... ...

B.3 Retrieval Component . . . . . .. .. .............
B.3.1 BiEncodel . .. ... ... .. ... ...
B.3.2 CrossEncoder . . . . . . . . . .. . ... ... .. ..
B.3.3 Additional Approaches . . . . . ... ... ......
B.4 Claim Verification. . . . . . . .. .. .. ... ........

v

10
11
12
13



4 Methodology

4.1 Information Retrieval Component{ . .

1.1 Lexical Retrieval . . . . . ..

“.1.2 Semantic Retrieval . . . . . .

“.1.3 Data Processing and Indexing
#.1.4 Hybrid SearcH . . ... ...

4.2 Generative Componen{ . . . ... ..
21 Datasef . ...........
4.3 Fact Verification. . . . ... ... ..

“.3.1 Dataset Transformation . . . .
32 Fine-Tuning. . . .. ... ..

5 Evaluation

5.1 Information Retrieval Componen{ . .

5.2 Generative Componen{ . . . ... ..

5.2.1 Automated Evaluation . . . .

5.2.2 Manual Evaluation] . . . . . .
5.3 RAG: Joint Evaluation . . . ... ..

5.4 Fact Verification. . . . ... ... ..

5.4.1 In-domain Evaluation. . . . .

5.4.2 Out-of-domain Evaluation . .
5.4.3 Comparison with GPT-4 Model

6 Conclusion and Future Workl

25
25
26
26
26
27
28
29
30
31
33

34
35
38
40
42
44
46
46
47
49

51

60



List of Figures

R.1 Transformer Architecturd . . . . . . . . . . . ... ... ... 5
R.2  Multi head self attention schemd . . . . . ... ... ..... 6
2.3 LoRA reparametrization, just A and B matrices are trained| . . 12
B.1 BiEncoder architecturd . . . . . . . . . . .. ... ... ... 21
B.2 CrossEncoder architectured . . . . .. ... ... ... .... 22
4.1 Architecture of our RAGsystem) . . . . ... ... ... ... 27
4.2 Distribution of answer length across train, val and test split§ . 30

vi



List of Tables

6.1

Our IR and PubMed search engine performance evaluation on

the BioASQ dataset| . . . . . . .. . . .. ... ... .... 37

5.2

Number of referenced abstracts per model on the PQAref test

set. N: number of referenced abstracts per answer. TOTAL: i

the sum of referenced abstracts per model. AVG: the averagd

number of references per answer) . . . . . . ... .. .. ... 42
5.3 The number of missed and referenced most relevant abstracts

of 823 abstracts across the models|

................................. 44

5.4 Recall values for relevant abstracts on 10 examples from the

PQAref test set and same 10 questions with abstracts retrieved

withour IR system) . . . . . ... ... ... ......... 46
5.5 Performance metrics for ROBERTa L¢z and XLM RoBERTa

ILsr across different conditions] . . . . ... ... ...... 47
5.6 Performance metrics for DeBERTa L ¢~ and DeBERTa SQuAD

[l ¢ across different conditions| . . . . . . ... ... .... 47
5.7 Results of the DeBERTa model fine-tuned on the 80% and

90% of the SciFact dataset end evaluated on the HealthVer

............................. 48
5.8 Results of GPT-4models) . . . . ... ... ... ... .... 50

vii



Chapter 1

Introduction

1.1 Motivation

This project is the result of my internship at Bayer Pharmaceutical Company.
It is a collaborative effort between Bayer and the Institute of Artificial Intel-
ligence of Serbia. The primary goal of this project is to develop a system
capable of providing accurate answers to complex biomedical and medical
questions, with references to the biomedical documents used.

One of the significant challenges in using transformer-based models is the
occurrence of hallucinations, where models generate information that is not
supported by input data or diverges significantly from intended meanings. To
address this issue, the project includes the creation of a verification component
designed to check if each sentence in the generated response is supported by
the cited documents.

The project aims to improve natural language processing and help make
better decisions, especially in important areas like medicine. By providing
accurate and reliable information, it helps professionals make well-informed
choices, leading to better healthcare results. Since VerifAi is open-source, it
can be used and improved by researchers everywhere, making it a trustworthy

tool for ongoing scientific studies.
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1.2 Thesis Structure

This thesis is organized into 6 chapters and appendix:

* In Chapter 2 — Background: this chapter introduces the key concepts,

methodologies, and terminologies essential for understanding the thesis.

* In Chapter 3 — Related Work: this section reviews the current state of
research, identifies gaps, and provides a cohesive context for the subse-

quent chapters.

* In Chapter 4 — Methodology: this chapter describes the research meth-
ods, including the main task, research questions, hypotheses, and refer-

ence baselines.

* In Chapter 5 — Evaluation: this chapter assesses the different compo-

nents of the system.

* In Chapter 6 — Conclusion and Future Work: this chapter summa-
rizes the key findings and contributions of the study, and outlines po-

tential directions for future research and improvements.



Chapter 2

Background

This chapter serves as a foundational guide, providing the essential informa-
tion necessary to comprehend the entirety of this thesis. It lays the groundwork
by introducing key concepts, methodologies, and terminologies that are piv-
otal to understanding the subsequent chapters. By establishing a solid concep-
tual framework, this chapter ensures that readers are well-equipped to follow
the detailed discussions and analyses that follow.

Moreover, the content of this chapter is designed to bridge any knowledge
gaps and offer a comprehensive overview of the primary subjects addressed in
the thesis. It systematically covers the background, theoretical underpinnings,
and relevant literature, thereby creating a cohesive context for the research
presented. With this foundational knowledge, readers will be better positioned
to appreciate the nuances and significance of the findings and contributions

made in the later chapters.

2.1 Generative Model

2.1.1 Transformers

Transformers have revolutionized the field of natural language processing

(NLP) since their introduction by [1]]. The Transformer model introduced the
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concept of self-attention mechanisms, allowing the model to weigh the impor-
tance of different words in a sentence relative to each other. This architecture
enables the parallelization of training processes, which significantly reduces
training time compared to previous sequential models like Recurrent Neural
Networks (RNNs) [2] and Long Short-Term Memory networks (LSTMs) [3].
The core innovation of the Transformer is the self-attention mechanism, which
helps capture long-range dependencies in text more effectively. This has led to
the development of various Transformer-based models, such as BERT (Bidi-
rectional Encoder Representations from Transformers) [4] and GPT (Genera-

tive Pre-trained Transformer) [5].

Architecture

Transformer architecture is the process of converting a sequence of discrete
tokens into vector embeddings. These embeddings are then processed by a
series of encoder blocks, which produce encodings that highlight the relation-
ships between different parts of the input. The output from the encoder is
subsequently fed into a series of decoder blocks, which generate the final out-

put in an autoregressive manner.

Attention Mechanism

The self-attention mechanism calculates the importance of each token in a
sequence with respect to other words. Given an input sequence of tokens
X = {z1,29,...,x,}, self-attention computes a set of query (Q), key (K),
and value (V) vectors for each element in the sequence. These vectors are lin-
ear transformations of the input sequence, learned during the training process.

The attention score between a query vector ¢; and a key vector £; is cal-

culated using a dot product re-scaled by the root of the head dimension:

score(q;, kj) =

vk @2.1)
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Figure 2.1: Transformer Architecture

The attention weights (A) are obtained by applying a softmax function
to the attention scores, normalizing them to represent the importance of each
word:

A;; = softmax(score(g;, k;)) (2.2)

The output of self-attention is then computed as a weighted sum of the

value vectors:

j=1

Multi head self-attention

In a multi-head self-attention mechanism with h heads, given an input se-
quence X, each head i computes its own set of query, key, and value vectors

as follows:
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where W, WX, and W) are the learnable weight matrices specific to the
i-th head. Each head then computes the attention scores, attention weights,
and the attended output using the self-attention mechanism described earlier.
Finally, the outputs of all heads are concatenated and linearly transformed to

obtain the final multi-head self-attention representation:
MultiHead(X) = Concat(head,, head,, . . . , heady,) - W

where head; = SelfAtt(q;, k;, v;) is the output of the i-th head, W© is the
learnable weight matrix for the output transformation, and Concat denotes the
concatenation operation. The idea behind multiple heads is that we are able

to learn a diverse independent set of features for each token.

2.2 Large Language Models

Large Language Models (LLMs) have emerged as a powerful application of
Transformer architectures. These models, including GPT-3 [6] and T5 (Text-

To-Text Transfer Transformer) [7], are trained on vast amounts of data and
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contain billions of parameters. Their large scale allows them to generate co-
herent and contextually relevant text across a wide range of tasks, from trans-

lation and summarization to question answering and text generation.

Architecture and Training

LLMs are trained using unsupervised learning on a diverse corpus of text. The
training objective is typically to predict the next word in a sentence, which
requires the model to capture syntactic and semantic relationships in the data.
The size of the training data and the number of parameters in the model are
key factors that contribute to the performance of LLMs. For instance, GPT-3
has 175 billion parameters and was trained on hundreds of gigabytes of text

data [6].

Capabilities and Applications

One of the most remarkable capabilities of LLMs is their ability to perform
tasks with little to no task-specific training data, known as few-shot, one-shot,
and zero-shot learning. In few-shot learning, the model is given a few exam-
ples of the task it needs to perform. In one-shot learning, it is given only one
example, and in zero-shot learning, it receives no examples at all [6]. GPT-3
and GPT-4, in particular, has demonstrated outstanding performance in these
scenarios, making it a versatile tool for various natural language processing
(NLP) tasks.

The applications of LLMs are broad and varied. They can be used for
machine translation, where they convert text from one language to another,
and for text summarization, where they condense long documents into shorter
summaries while preserving key information. Additionally, LLMs are em-
ployed in question answering systems, which can understand and respond to
queries, and in text generation, where they produce human-like text for appli-

cations such as chatbots, content creation, and storytelling [0, [7].
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Prompting and Few-Shot Learning

Prompting and few-shot learning are critical capabilities of Large Language
Models (LLMs) that have significantly advanced the field of natural language
processing. These techniques enable LLMs to perform a wide range of tasks
with minimal task-specific training data, which is particularly useful in scenar-
10s where annotated data is scarce or expensive to obtain [§]. This approach
leverages the pre-trained knowledge of the model to adapt to new tasks dy-
namically. For example, when given a prompt like “Translate the following
English sentence to French: "How are you?’”, the model can produce the cor-
rect translation based on its understanding of both languages [6]. The method
of prompting modifies the original input using a template into a textual string
with unfilled slots that the model probabilistically fills, effectively enabling
the model to perform new tasks with few or no labeled data. This paradigm,
known as “’pre-train, prompt, and predict,” allows the model to be pre-trained
on massive amounts of raw text, making it versatile in adapting to new sce-
narios [9]. This framework has proven powerful for various applications,
such as translation and text classification, and underscores the importance
of prompt engineering to improve task performance and model robustness
[9]. We have various prompting techniques, one of which is prompt augmen-
tation, which involves automatically generating and optimizing prompts for
large language models (LLMs) to enhance their reasoning capabilities. The
Automate-CoT (Automatic Prompt Augmentation and Selection with Chain-
of-Thought) strategy improves performance in various reasoning tasks by cre-
ating and selecting optimal rationale chains from a small labeled dataset. This
method bypasses the need for manually designed rationales, which are labor-
intensive and sensitive to order, complexity, diversity, and style. Automate-
CoT generates multiple pseudo-chains, prunes low-quality ones, and uses a
variance-reduced policy gradient strategy to select the most effective chains.

This approach has demonstrated significant performance improvements across
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different types of reasoning tasks, showing its adaptability and efficiency in

generating high-quality prompts automatically [10].

2.2.1 Language Model Fine-Tuning

After retraining a language model, it is crucial to ensure it aligns with the
user’s specific goals. Although a retrained language model benefits from the
extensive knowledge and skills acquired during pretraining, it may not natu-
rally understand or meet the user’s intended context or objectives. Therefore,
a process known as “alignment” is necessary, where the model is fine-tuned
or adapted to better fit the desired tasks or behaviors. The challenge of align-
ment stems from the general nature of language models, which are pretrained
on large and diverse datasets. This broad training allows them to generate
coherent text across various contexts, but it also means their responses may
not always align with specific user goals, potentially resulting in irrelevant,

biased, or even harmful outputs.

Benefits

An aligned language model offers numerous advantages, such as:

* Enhanced Task Performance: Alignment allows the model to perform
specific tasks more effectively, providing accurate and contextually ap-

propriate results.

* Minimized Bias and Harm: Alignment helps in reducing biases and

prevents the generation of harmful or inappropriate content.

* Improved User Interaction: Aligned models produce responses that
align with user intent, resulting in more efficient and engaging interac-

tions.



2.2 Large Language Models 10

2.2.2 Approaches

There are multiple methods to achieve alignment:

Task-Specific Fine-Tuning

One method is to fine-tune the language model for a specific task. By training
the model with task-specific tokens and adjusting its parameters, it can be
guided to produce more relevant and contextually accurate responses for the

given task [5].

Instruction-Based Fine-Tuning

While standard task-specific fine-tuning enhances the model’s performance
on a particular task, it might restrict its flexibility across various domains.
Instruction-based fine-tuning involves training the model on a diverse set of
instructional data. This allows the model to learn to follow general instruc-
tions in input, making it adaptable to a wide range of tasks. This approach was
initially explored in the FLAN model [|11]], where a decoder-only transformer
language model was trained across several tasks such as natural language in-
ference, commonsense reasoning, reading comprehension, sentiment analysis,

and others.

Reinforcement Learning from Human Feedback

Reinforcement Learning from Human Feedback (RLHF) [[12] is a technique
that aligns language models with user intent by incorporating human feedback
into the training process. This approach consists of four main stages: instruc-
tion fine-tuning, gathering human feedback, training the reward model, and

applying reinforcement learning.
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1. Instruction Fine-Tuning: Initially, the language model undergoes fine-
tuning as previously described. This step helps the model produce better-
aligned responses to user prompts, establishing a solid baseline for the

subsequent steps.

2. Gathering Human Feedback: Following the initial fine-tuning, hu-
man feedback is collected to train a reward model. This feedback typi-
cally involves humans ranking several responses generated by the model
for a single prompt, helping the model identify which responses align

best with human preferences.

3. Training the Reward Model: The gathered human feedback is used
to train a reward model, which assigns a scalar value (reward) to each

prompt-response pair.

4. Reinforcement Learning: The language model is further fine-tuned
using reinforcement learning to maximize the reward assigned by the
reward model. The objective function for the language model, based on

the reward function, can be formulated as follows:
max B y)~p [R(2,y;0)]

where 6 represents the model parameters, D is the dataset of prompt-
response pairs, x is the input prompt, y is the model-generated response,
and R(x,y;0) is the reward model that evaluates the quality of the re-

sponse y given the input prompt x and the model parameters 6.

2.3 Efficient Training

The size of language models has been shown to improve performance, re-
sulting in the development of larger models. This leads to high resource

requirements not only for training language models but also for fine-tuning
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them. Several strategies have been studied to improve upon this and make

fine-tuning more efficient.

2.3.1 LoRA

LoRA, or Low-Rank Adaptation [[13], is a method proposed to efficiently fine-
tune neural networks for specific tasks and datasets while reducing the number
of trainable parameters. LoRA freezes the pre-trained model weights and con-
catenates new factorized low-rank matrices next to some pretrained matrices
of a given neural network.

As shown in Figure .3, the same input is passed to the adapter, and its
output is then summed over the output of the pretrained matrix.

In LoRA, given amatrix W € R"*" that we want to train, it was speculated
that the update on the given matrix AW € R"™*" resulting from the training
process is not necessarily full rank when the model is already pretrained. So
the matrix W could potentially be represented in a factorized way with two

matrices A € R™ " and B € R"*" such that:

Wz + AWz =Wz + (A+ B)z

hC—

RN

Pretrained
Weights

xC————— ]

Figure 2.3: LoRA reparametrization, just A and B matrices are trained.

This kind of strategy offers several advantages:
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* Reduced storage requirements: LoRA allows storing only the factor-
ized matrices, which can be integrated into the pretrained model when

necessary.

» Faster training and lower compute requirements: LoRA speeds up
the training process and requires less memory compared to traditional

full fine-tuning.

Furthermore, LoRA has been shown to match or exceed the performance
of full fine-tuning in terms of model quality, despite having fewer trainable

parameters and increased training efficiency.

2.3.2 QLoRA

QLoRA [|14] is a fine-tuning technique that combines LoRA and quantization
to further reduce memory usage and accelerate inference. The core idea is
that, during the updating of the adapter with LoRA, the frozen weights remain
untrained and can thus be quantized without compromising inference accu-

racy.

4-bit NormalFloat

The quantization method recommended in the original QLoRA paper lever-
ages the fact that hidden activations in neural networks approximately follow
a normal distribution, allowing for more efficient quantization. This method
is based on quantile quantization, initially introduced in [[15]. For k-bit quan-
tization, the quantized outputs are distributed evenly among the 2% different
bit representations.

Quantile quantization estimates the quantiles of the input tensor by calcu-
lating the empirical distribution function. Normally, computing the quantiles
would require the cumulative distribution function of the input tensor distribu-
tion, which can be computationally expensive. Although approximations ex-

ist, they often perform poorly with outliers, which are crucial in quantization.
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By assuming a normal distribution for the input tensor, we can precompute
fixed quantile values for a standard normal distribution and rescale the input
tensor values by the standard deviation to fit the N (0, 1) distribution. This
assumption has been empirically validated in the QLoRA paper.

Formally, the process is as follows:

1. Estimate the 2¥ + 1 quantiles of a theoretical N (0, 1) distribution to

create a k-bit quantile quantization data type for normal distributions:

1 i 1+ 1
W= 2<QX (2k+1) T Ox (2k+1)>’
where ()x is the quantile function of N(0, 1), k is the number of bits

in the quantized representation (4 in this case), and i € {0,...,2"}

indexes the evenly split quantile values.
2. Normalize the values of this data type into the [—1, 1] range.

3. Quantize an input weight tensor by normalizing it into the [—1, 1] range

through absolute maximum rescaling.

Thus, each weight of the pretrained neural network can have two different

types:

* Quantization type: This refers to how the weights are stored, typically

in GPU memory.

* Compute type: This is the type to which the weights are dequantized,
usually either fp16 or bfloat16.

This approach has been shown to maintain performance quality while sig-

nificantly reducing memory usage.



Chapter 3

Related Work

This section serves as a comprehensive review of the related work, providing
the essential background necessary to understand the research context of this
thesis. It lays the groundwork by discussing key studies, methodologies, and
findings that are crucial to comprehending the subsequent chapters. By estab-
lishing a solid review of existing literature, this section ensures that readers
are well-equipped to follow the detailed discussions and analyses that follow.

Moreover, the content of this section is designed to highlight the current
state of research and identify gaps that this thesis aims to address. It systemat-
ically covers relevant studies, theoretical frameworks, and technological ad-

vancements, thereby creating a cohesive context for the research presented.

3.1 LLM for Generating References

The advancement of generative large language models (LLMs), particularly
models like GPT [6], has significantly impacted the domain of question-answering
(QA) tasks across various fields, including medicine. Despite their transfor-
mative potential, these models face significant challenges in ensuring the ver-
ifiability and reliability of the information they generate. This chapter ex-
plores the existing literature on these challenges and the proposed solutions to

enhance the credibility of LLM-generated content.
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Challenges in Verifiability and Reliability

Several studies have highlighted the issues with the verifiability of responses
generated by LLMs. [|16] found that 69% of references generated by Chat-
GPT in the medical domain were fabricated. Additionally, the quality of these
answers was rated at a median of 60% by professionals. Similarly, [[17] eval-
uated four generative search engines [|16] discovered that only 51.5% of the
sentences generated were fully supported by their citations. Moreover, only
74.5% of the citations accurately supported the statements they were linked to,
underscoring a significant gap in the reliability of these systems. Instead the
paper [18] emphasize the importance of developing comprehensive citation
mechanisms to enhance content transparency and verifiability. They propose
that such mechanisms should account for both parametric and non-parametric
content. Despite the complexities involved, incorporating citations can ad-
dress intellectual property (IP) and ethical concerns, improving the overall
reliability of LLMs.

The literature identifies several key challenges in implementing effective

citation mechanisms:

* Over-citation: may lead to information overload and inadvertently ex-
pose sensitive information. Users could exploit extensive citations to

gather additional sensitive data, increasing privacy risks [[18].

* Inaccurate Citations: LLMs may incorrectly attribute information to

sources that do not contain that information, misleading users [|L7, [19]

* Outdated Citations: as knowledge evolves, cited sources may become

outdated, leading to the propagation of obsolete information.

* Propagation of Misinformation: LLMs could inadvertently cite un-
reliable sources, spreading misinformation [20]. Models might favor

certain types of sources due to biases in the training data or retrieval
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mechanisms, leading to an uneven representation of information [21,

22]

* Diminished Creativity: Reliance on citations could stifle the gener-
ation of novel content, reducing the model’s creativity and ability to

propose innovative solutions.

3.1.1 Approaches to Generating Text with References

There are two primary approaches for incorporating references in generated

text: parametric and non-parametric knowledge [|18] .

Parametric Knowledge

This approach involves training LLMs to generate references from internal-
ized information (i.e., knowledge embedded in the model’s parameters during
training). However, this method poses technical challenges since LLMs do
not maintain an explicit index of training data, making it difficult to refer-
ence sources accurately. The paper [23] proposed training models to include
references using source identifiers, but this method is limited by citation inac-

curacies and a focus on academic citations.

Non-Parametric Knowledge

Known as retrieval-augmented generation (RAG), this approach combines
LLMs with information retrieval (IR) systems to form a hybrid system. The
LLM is trained to recognize when citations are needed, and the IR system re-
trieves suitable sources to provide context. This method enhances the credibil-
ity and accuracy of the generated responses by integrating external knowledge
bases without additional training, thereby reducing hallucinations. Annotators
often perceive RAG-enhanced answers as more factual and specific compared

to those generated by fine-tuned models [24].
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3.2 Retrieval augmented generation

Retrieval-Augmented Generation (RAG) [24] is a sophisticated approach that
combines the strengths of retrieval-based methods and generative models to
improve the quality and relevance of generated text. This hybrid model lever-
ages a retrieval component to fetch relevant documents or passages from a
large corpus and uses a generative model to synthesize the final output. This
methodology has shown significant promise in various natural language pro-
cessing (NLP) tasks, particularly in question answering, dialogue systems, and

text completion.

Mechanism of RAG

The RAG framework operates in two main stages: retrieval and generation.
During the retrieval stage, a retriever model searches a vast corpus to find doc-
uments or passages that are most relevant to the input query. This retriever is
often based on dense passage retrieval techniques, such as those implemented
using bi-encoder architectures like DPR (Dense Passage Retrieval) [25].

Once relevant passages are retrieved, the generation stage commences.
Here, a generative model, such as GPT-3 [6] or BERT [4], uses the retrieved
passages as additional context to generate a coherent and contextually accurate
response. The integration of retrieved information helps the generative model
to produce more factually correct and informative outputs, addressing one of
the key limitations of purely generative models, which can often hallucinate
or generate plausible but incorrect information [24].

Various methods are employed for interfacing with external data. One
of the simplest approaches, as utilized in [26], involves the user inputting a
question that is then processed by an information retrieval engine. This engine
returns a series of relevant documents, which are subsequently concatenated

with the question and fed into the model to generate the answer.
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In other methods, the retrieved text is directly integrated into the trans-
former architecture [27, 28]. These models are trained such that auto-regressive
language models learn to generate text conditioned on document chunks re-
trieved from a large corpus. The retrieved text is encoded using an Encoder
model like BERT and passed as key-value pairs into the attention block of the
auto-regressive model.

Different strategies exist regarding how models engage with external data.
Rather than merely receiving a question along with some retrieved evidence
text, the model can be fine-tuned to actively query an external information
retrieval system [29]. In contrast, the approach described in [30] adopts a less
supervised method, enabling the model to learn to access external information
sources in a more unsupervised fashion.

In [B1], the model is trained to emulate human interaction with search en-
gines by creating a text-based web-browsing environment. Both in [31] and
[32], once the model is conditioned on retrieved text, multiple responses are
generated and then ranked by human annotators. The preferences indicated
by these annotators are subsequently used to train the initial model using Re-
inforcement Learning from Human Feedback (RLHF).

Another important aspect to consider is the length of the retrieved text.
In [29], very short text fragments (just one or two sentences returned by the
search engine) are used. Conversely, in [31], the model is capable of selecting
a series of quotes from a large volume of text. In [32], the model processes
entire documents up to the maximum context size. Utilizing only selected
passages instead of full documents has the clear advantage of reducing the
number of tokens fed into the model, allowing for a broader range of input.
However, research [33] has indicated that isolated passages may sometimes
lack the necessary context to provide accurate information, for instance, they

could include acronyms or references that haven’t been explained.
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Applications of RAG

RAG has been effectively applied in several domains:

* Question Answering: In question answering systems, RAG can pro-
vide more accurate answers by grounding responses in retrieved doc-
uments, thus ensuring that the generated answers are backed by actual

data.

* Dialogue Systems: In conversational Al, RAG helps in maintaining
context over long dialogues by retrieving and incorporating relevant

previous interactions or external documents.

* Text Generation: For tasks like article completion or creative writing,
RAG can enhance the generated text’s coherence and factual accuracy

by drawing on a large body of knowledge.

3.3 Retrieval Component

One crucial aspect in the performance of retrieval-augmented generation sys-
tems is the retrieval component. Since each language model can process a
limited amount of information, it is essential that the retrieved text is as rele-
vant and comprehensive as possible to answer the given question.
Traditionally, information retrieval has employed methods such as TF-
IDF, which relies on measuring the frequency of a word within a document.
However, recent years have seen the rise of neural network-based approaches
that utilize pretrained language models, providing a semantic understanding
of both queries and documents. Various types of retrievers offering these ca-

pabilities have been researched.
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3.3.1 BiEncoder

A BiEncoder model [25] employs two encoders that independently process the
query and the document, resulting in two separate embeddings. These embed-
dings are then compared using cosine similarity or other similarity measures
to determine the relevance of the document to the query. BiEncoders can be
used to compute document embeddings offline and store them, creating what
is known as a dense vector database. When a query is submitted, a dense rep-
resentation is efficiently computed and matched against all stored vectors to
find the most relevant documents.

Given a dataset: D = {(¢;,d;,d;,,...,d;,)}i",, where each instance
consists of a query ¢;, one related document d;", and n unrelated documents

d; , the objective is to optimize the log-likelihood of the document related to

the query:

6sil‘rl(qi,d?L)

L(q:, dz ’dz_h e ’di_,"> = —log esim(qi,d; ) + Zn emiandi)

Here, sim(g;, d;) = EncQ(g;) " EncD(d;) represents the cosine similarity of
the embeddings of the query and the document, respectively obtained from

two pretrained encoders.

Query Entity

Figure 3.1: BiEncoder architecture
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3.3.2 CrossEncoder

CrossEncoders process both the query and the document together, generating
a single score that represents the similarity between the input sentence pairs
[34]. Although CrossEncoders typically deliver superior performance, they
are considerably slower. As aresult, they are generally employed as re-rankers
to evaluate the relevance of the top 100-1000 documents retrieved by a faster
information retrieval mechanism. CrossEncoders can be trained similarly to
BiEncoders, but instead of using a similarity function, they return a single

embedding vector from one encoder.

Figure 3.2: CrossEncoder architecture

3.3.3 Additional Approaches

Beyond the BiEncoder and CrossEncoder models, several other methods have
been investigated in semantic retrieval. One such method is the Late Interac-
tion model, which strikes a balance between the efficiency of BiEncoders and
the effectiveness of CrossEncoders. This model computes multiple embed-
dings for each document and query, which are then matched and reranked
using a more expressive similarity score. The ColBERT model [35] is a prime

example of this approach.
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Another category of methods integrates lexical techniques with deep learn-
ing approaches. These methods involve optimizing the hyperparameters of in-
formation retrieval algorithms using pretrained language models. By utilizing
the semantic understanding provided by these models, the hyperparameters

can be fine-tuned to enhance retrieval performance.

3.4 Claim Verification

In the literature, the task of determining a claim’s truthfulness is referred to
by various terms, such as verdict prediction [36], veracity prediction [37], and
claim verification [38]. This task is typically a component of a multi-step pro-
cess aimed at generating highly accurate results [36]. The process generally
involves evaluating a claim and its corresponding evidence and categorizing
it into one of three labels: support/evidence, contradiction/refute, or no ev-
idence/not enough information. Verifying scientific claims can be seen as a
natural language inference (NLI) task, treating it as a multi-class classification
problem, consistent with previous research [39, 3§].

Various techniques have been developed to enhance claim verification,
with transformer models recently achieving state-of-the-art performance in
general and scientific fact-checking [36]. These models typically take con-
catenated claim and evidence pairs as input to create representations for clas-
sifying the relationships between them [36]. Including the entire context of
the evidence (e.g., the entire document) ensures minimal information loss and
improved inference results [38].

Interestingly, both general-purpose and domain-specific large language
models are utilized for scientific claim verification [37]. The successful use of
general-purpose models for this task is supported by the creators of the SciFact
dataset, who released the VeriSci model [38]. This model uses the RoOBERTa-
large model [40], pretrained on the FEVER dataset [39] and fine-tuned on the
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SciFact dataset, demonstrating superior performance compared to other sce-
narios. The model also outperformed SciBERT [41], BioMedRoBERTa [42],
and RoBERTa-base when trained solely on the SciFact dataset.

General-domain datasets for claim verification have existed since 2014
[43], with the first scientific claim verification dataset, SciFact, emerging in
2020 [38]. Since then, the number of scientific claim verification datasets
has increased, including those collecting claims from social media posts [44],
Wikipedia, and the internet in general [45, 46], various web portals [47, 37],
science exam questions [36], or publications [48]. However, SciFact remains
one of the few datasets containing claims from research papers and is the most
utilized dataset for building scientific claim verification systems to date [37].

The study by Sarrouti et al. [46]] demonstrates that the choice of in-domain
dataset for fine-tuning significantly impacts performance. Experiments on
several baseline models—BERT [4], SciBERT, BioBERT [49], and TS5 [50]—
trained and evaluated on the HealthVer dataset [46] showed that TS5 outper-
formed all other models. They also tested the BERT-base model fine-tuned
on the FEVER, SciFact, PubHealth, and HealthVer datasets and evaluated its
performance on the HealthVer test set. Despite the FEVER dataset’s size ad-
vantage, the model achieved better F1 scores when trained on SciFact and
HealthVer datasets, supporting the notion that in-domain training yields sig-
nificant benefits for domain-specific claim verification tasks.

Further evidence of the benefits of in-domain datasets is provided by Tan
et al. [36], who performed in-domain fine-tuning using Med-Fact and Gsci-
Fact datasets, followed by SciFact, HealthVer, and CLIMATE-FEVER [45]
datasets on models such as BERT, DeBERTa [51]], SciBERT, Longformer,
and BioBERT. Compared to fine-tuning solely on SciFact, HealthVer, and
CLIMATE-FEVER datasets, this approach improved performance for most

models, with DeBERTa achieving the best results in nearly all scenarios.



Chapter 4

Methodology

This chapter outlines the research methods used to achieve the study’s objec-
tives. It begins with a description of the primary task, detailing the research
questions and hypotheses. Next, it presents the baselines, serving as reference
points for comparing the performance of proposed methods. The chapter then
describes the datasets, including data sources, selection criteria, and prepro-
cessing steps. It also covers data collection techniques, sampling strategies,
and analytical procedures. Finally, ethical considerations related to data han-

dling are discussed, ensuring the integrity and compliance of the research.

4.1 Information Retrieval Component

The Information Retrieval component utilizes data from the PubMed database
[52] which is a comprehensive resource containing citations and biomedical
literature from numerous sources, serves as the foundational data for our IR
system. The system is designed to integrate both sparse vectors (lexical index)
and dense vectors (semantic index), thus facilitating both lexical and semantic

searches, as well as a hybrid combination of the two.
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4.1.1 Lexical Retrieval

For the lexical retrieval, we employed a ranking function based on Best Match-
ing 25 [53]]. Using OpenSearchﬂ], we created an index for PubMed articles by
concatenating titles and abstracts into a single indexed field. Additionally, we
incorporated metadata such as authors’ names, publication dates, and journal
names to facilitate filtering. This comprehensive indexing enables the system

to perform efficient and accurate lexical searches.

4.1.2 Semantic Retrieval

For the semantic retrieval component, we utilized dense vectors stored in the
Qdrant vector database?. Qdrant’s capability to memory map vectors to a hard
drive significantly reduced the system’s memory (RAM) requirements. To
further optimize the retrieval time for semantic searches, we employed 8-bit
quantized embeddings [|1 5], while retaining the option to use full embeddings
for rescoring results to ensure accuracy.

We implemented the Hierarchical Navigable Small World indexing tech-
nique for Approximate Nearest Neighbors using dot product metrics to facil-
itate vector comparisons [54] . Vector embeddings were generated using a
bi-encoder sentence transformer model pre-trained on the MSMarco dataset
[55], which, at the time of indexing, demonstrated superior performance on

the Passage Retrieval Task.

4.1.3 Data Processing and Indexing

In processing our corpus of 36,797,469 abstracts, we identified and omitted
11,308,679 empty abstracts. These empty abstracts primarily originated from
articles published before the digital era, articles from journals that are not

freely accessible, or journals that do not require abstracts. After excluding

'https://opensearch.org/
’https://qdrant.tech/
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these, we constructed two indices offline for subsequent use in online seman-
tic and lexical searches.

The lexical index was created by indexing concatenated fields of titles
and abstracts, supplemented with additional fields from PubMed articles for
filtering purposes. The semantic index involved generating embeddings for
the concatenated titles and abstracts using our model. This process, depicted
in Figure §.1, marked with an asterisk, ensured that the average number of
tokens in the dataset’s title and abstract concatenation was 650. Given that the
model’s maximum input size for embedding creation is 512 tokens, abstracts
exceeding this limit were subdivided into segments of no more than 512 tokens
each and indexed separately. These splits were carefully made at the end of

sentences before reaching the 512-token threshold.

Prompt
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+

PubMed abstract

Data

User query 4
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Figure 4.1: Architecture of our RAG system.

4.1.4 Hybrid Search

Our hybrid search methodology combines the strengths of both lexical and
semantic IR components. To utilize this hybrid approach, we normalized the
scores from each IR method to a scale ranging from O to 1. These normalized

scores were then weighted according to the importance of each method. This
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dual approach allows the system not only to identify direct matches but also to
discover semantically related phrases and text segments, even in the absence of
exact textual matches. This hybrid search significantly enhances the system’s

ability to provide comprehensive and relevant search results.

4.2 Generative Component

The generative component of our system is based on the Mistral-7B model.
Despite having fewer parameters, Mistral-7B demonstrates superior perfor-
mance over larger models such as Llama 2 13B across all evaluated bench-
marks and Llama 1 34B in reasoning benchmarks, maths, and code generation
[56]. Compared to its 0.1 version, Mistral-7B v0.2 introduced an expanded
context window (32K compared to the previous 8K) and several other adjust-
ments (rope-theta = 1e6, no sliding-window attention), contributing to more
accurate and consistent outputs, improved efficiency, and adaptability to var-
ious tasks [57].

For comparison purposes, we opted for testing both currently available
instruction-tuned versions of Mistral-7B (v0.17 and v0.28). We test both mod-
els in the zero-shot mode and also fine-tune them using a custom dataset for
referenced QA (see Section §.2.1)).

The input for the generative component consists of a user query and 10
abstracts retrieved by the IR component as most relevant to the user query.
While generating the answer, the models perform another relevance check
and answer the question using only the abstracts they find relevant. The final
output is a concise answer that includes an abstract ID as a reference after each
claim originating from the 10 abstracts.

In the following subsections, we briefly describe the dataset we used to

fine-tune these models, as well as the fine-tuning process.
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4.2.1 Dataset

We developed a custom dataset specifically for fine-tuning the large language
models (LLMs) to perform referenced question answering (QA). The dataset
comprises 9,075 questions, each accompanied by 10 relevant abstracts, in-
cluding titles and PubMed IDs (PMIDs), as well as referenced answers to the
questions derived from the provided abstracts.

The questions were randomly selected from the PubMedQA dataset [58],
a benchmark dataset designed for biomedical question answering. For each
question, the most relevant abstracts were retrieved from the PubMed repos-
itory. This retrieval process utilized a combination of entity search and free
text search to ensure that the abstracts selected were highly pertinent to the
questions.

To generate the answers based on the retrieved abstracts, we employed
GPT-4 Turbo, specifically the gpt-4—1106-previewﬂ. This version of GPT-
4 Turbo features enhanced instruction-following capabilities, making it suit-
able for generating high-quality referenced answers. GPT-4 Turbo is currently
ranked as the top model on the Chatbot Arena leaderboard, a crowdsourced
open platform for evaluating large language models [59].

The prompt used to instruct GPT-4 Turbo to include references (PMIDs)
in the answers was carefully designed to ensure that the model generated re-
sponses that were not only accurate but also appropriately cited the relevant
abstracts. This meticulous process ensured the creation of a robust dataset
that enhances the LLMs’ ability to perform referenced QA effectively. The

prompt used is as follows:

Answer the question using relevant abstracts provided, up to 300 words.

Reference the statements with the provided abstract id in brackets next to

the statement.

Shttps://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
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To ensure the completeness of answers, GPT-4 Turbo was instructed to
continue generating content if there was more to generate. The answers were
then automatically checked for completeness, and any incomplete final sen-
tences were removed. This process resulted in answers ranging from 69 to
1221 tokens in length. In a small number of cases (25 questions), no direct
answer was found in the abstracts, so the answer did not contain any refer-
ences. The total input length in the dataset (question + abstracts + answer)
ranges from 1686 to 6987 tokens.

We named this dataset PQAref and made it available through Hugging
Facefl.

£ 1000

Figure 4.2: Distribution of answer length across train, val and test splits

4.3 Fact Verification

The performance of our models is evaluated using various metrics, including
macro and weighted precision, recall, F1-score, and accuracy. These metrics
collectively provide a comprehensive understanding of the models’ effective-
ness in the task at hand.

In our recent exploration of advanced natural language processing tech-
niques, we opted to fine-tune three cutting-edge models: RoBERTa-large [40],
XLM-RoBERTa Large [60], and DeBERTa Large [51], alongside DeBERTa
SQuAD—a DeBERTa model fine-tuned using the SQuAD dataset. Our pri-
mary objective was to enhance their performance on the task of textual entail-

ment.

“https://huggingface.co/datasets/BojanaBas/PQAref
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The selection of DeBERTa was motivated by its outstanding performance
in claim verification experiments [S1]. RoBERTa was chosen for its modi-
fied attention mechanisms and its strong performance on label prediction tasks
[40]. XLM-RoBERTa exhibited better performance on English data com-
pared to RoBERTa [60]. DeBERTa SQuAD was selected due to its training
on question-answer pairs, specifically tailored for question-answering tasks.

Fine-tuning was conducted using the SciFact dataset [61]], which is specif-
ically designed to support the development and evaluation of automated fact-
checking systems focusing on scientific claims. Our objective in fine-tuning
these models with the SciFact dataset was twofold: to improve their perfor-
mance in discerning textual entailment within scientific texts and to compare

their effectiveness in this specialized domain.

4.3.1 Dataset Transformation

The SciFact dataset comprises pairs of claims and evidence within the biomed-
ical domain—a domain noted for its classification challenges even among hu-
man experts. We anticipate that it will serve as an optimal dataset for the
fine-tuning of models aimed at claim verification within our system.

The SciFact dataset is structured into two separate files: corpuses and
claims. The corpuses file contains the titles and abstracts of scientific articles,
providing a rich source of evidence. The claims file includes various claims
linked to these scientific articles via an identification number, facilitating the
process of verifying the claims against the provided evidence. Initially, the
claims file is divided into three parts: training, validation, and test. However,
the publicly available version of the dataset does not include labels for the test
partition. As a result, the 300 examples in the test partition were excluded
from our analysis. To maximize the data available for our experiments, we
combined the training and validation subsets, yielding a total of 1,711 exam-

ples. This combined dataset serves as the foundation for training, validating,
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and evaluating our claim verification models.

Initially, the titles and abstracts extracted from the corpus file underwent
individual cleaning procedures. This process involved eliminating redundant
spaces, excluding special characters present at the ends of the texts, remov-
ing surplus parentheses and brackets, and filtering out superfluous informa-
tion contained within the abstracts. Recognizing the informative value in-
herent in article titles, we made a deliberate choice to concatenate them with
their corresponding abstracts to construct a comprehensive response to the
claims. Throughout this concatenation process, special attention was paid to
titles lacking terminal punctuation. To maintain coherence and facilitate com-
prehension, we ensured that a concluding punctuation mark was appended to
such titles. This step was essential to mitigate potential ambiguity and prevent
the model from misinterpreting the concatenated text in instances where un-
punctuated titles were directly joined with the initial sentence of the abstract,
creating potentially unrelated sentences.

Subsequently, using the identification number, we integrated information
from both files, ensuring that each claim was matched with its correspond-
ing concatenation of the title and abstract, along with one of three labels: no
evidence, support, or contradict. The SciFact dataset was initially designed
so that the same labels for an abstract were repeated if they were found in
multiple sentences of that abstract. However, since we opted to consider the
entire concatenated title and abstract as a single response to the claim, rather
than treating each sentence separately, we performed a deduplication of these
instances. This step ensured that redundant combinations were removed. Ul-
timately, this process yielded 1,213 unique claim+titlet+abstract] combina-
tions, which form the final dataset for our experiments. This comprehensive
and deduplicated dataset provides a robust foundation for training and evalu-

ating our claim verification models.
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Descriptive statistics of the combined dataset formed in this manner re-
vealed that approximately 36% of claim+[titlet+abstract] combinations are la-
beled as no evidence, about 42% are labeled as support, and around 22% are
labeled as contradict. We divided the dataset into training, validation, and
test subsets in a ratio of 80:10:10, ensuring that the proportion of each la-
bel is preserved across all subsets. This stratified division helps maintain the
consistency of label distribution, which is crucial for accurately training and

evaluating the model’s performance.

4.3.2 Fine-Tuning

Our study conducts a comparative analysis of transformer models fine-tuned
and evaluated using a processed SciFact dataset. We conceptualized the task of
claim verification as a multi-class classification problem, aiming to determine
one of three relationships (no evidence, support, contradict) between a claim
and its evidence. This task was structured as a Textual Entailment task.

The models were fine-tuned by concatenating claims (c) with correspond-

ing PubMed titles and abstracts as evidence (e). The input format was:

[CLS]c[SEP]e[SEP]

The objective was to classify each input pair into one of the labels (I): no

evidence, support, or contradict. Formally, the model’s prediction is:

l{c, e} € {no evidence, support, contradict}

Training was performed using the ADAM optimizer [62] with a learning
rate of 1e-5 and a weight decay of 0.01. The training process was conducted
on a DGX NVIDIA A100-40GB GPU, utilizing the PyTorch framework and
the Hugging Face Transformer library. Each model underwent training for up

to 15 epochs.
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Evaluation

In this chapter, we present a detailed evaluation of the various components
of our system: Information Retrieval (IR), the Generative Component, and
Fact Verification. The purpose of this chapter is to systematically assess the
performance and effectiveness of each component, ensuring a comprehensive
understanding of their capabilities and limitations.

The first section focuses on the Information Retrieval component. We
describe the evaluation metrics and methodologies used to measure the accu-
racy and efficiency of our IR system in retrieving relevant abstracts from the
PubMed database.

The second section evaluates the Generative Component. Here, we dis-
cuss the criteria and benchmarks used to assess the quality of the generated
answers. This includes a detailed examination of the completeness, relevance,
and coherence of the answers produced by the model, as well as a compari-
son with baseline models to highlight the improvements achieved through our
approach.

The final section addresses Fact Verification. We outline the methods em-
ployed to verify the accuracy of the claims generated by our system. This

involves evaluating the system’s ability to correctly identify the relationship
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between claims and evidence as either “no evidence,” ”support,” or “contra-
dict.” We use standard metrics such as precision, recall, and F1-score to quan-
tify the system’s performance in this critical task.

Throughout this chapter, we provide insights into the strengths and weak-
nesses of each component, supported by empirical data and rigorous analysis.
By the end of this chapter, the reader will have a clear understanding of how

effectively our system performs across its different functions and the potential

areas for future improvement.

5.1 Information Retrieval Component

To evaluate our Information Retrieval (IR) system, we utilized the BioASQ
dataset [63]], specifically designed to advance biomedical information retrieval
and question answering (QA). This extensive dataset comprises 5,049 ques-
tions, each paired with gold-standard answers, relevant document snippets,
and the PubMed IDs (PMIDs) of articles pertinent to each question.

Our evaluation involved comparing the PMIDs retrieved by our system
against the gold-standard PMIDs provided in the BioASQ dataset. We quan-
tified this comparison using the precision metric, which measures the propor-
tion of relevant identifiers retrieved by our system out of the total PMIDs re-
trieved. Precision was evaluated using two metrics: precision at 10 retrieved
documents (P@10) and mean average precision for 10 retrieved documents
(MAP@10) [64].

The retrieval component of our system was assessed using three differ-
ent approaches: (1) only lexical, (2) only semantic, and (3) a combination of
both. Additionally, we experimented with varying weights for the lexical and
semantic combinations to optimize performance.

In the lexical search, we experimented with stopword removal from the
query, which yielded better results compared to lexical search without stop-

word removal, as shown in Table b.1].
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For semantic search, we explored three approaches: semantic search with
full embeddings, semantic search with compressed embeddings (using 8-bit
quantization), and semantic search with compressed embeddings followed by
rescoring with full embeddings. The semantic search with full embeddings
had an average response time of 30 seconds, rendering it inefficient for real-
world applications.

In contrast, the semantic search with rescoring approach involved using
compressed embeddings to retrieve 100 results and then rescoring the top 10
using full-size embeddings. This method improved precision by 0.3% and was
only 52 milliseconds slower than the approach without rescoring, as illustrated
in rows 1 and 2 of Table B.1|. Given the minimal additional time required, we
tested various weight combinations of hybrid search incorporating semantic
search with rescoring.

Furthermore, the parallel execution of semantic and lexical search con-
tributed to the system’s time efficiency, reducing the average execution time
from 489 milliseconds to 442 milliseconds, as demonstrated in Table 1. This
comprehensive evaluation highlights the effectiveness and efficiency of our

IR system across different retrieval strategies.

From the experiments detailed in Table .1, it is clear that the performance
of semantic search alone is suboptimal, with significant improvements ob-
served when integrated with lexical search. Initially, a notable enhancement
was achieved with the hybrid search employing a 0.1 lexical search weight,
followed by a second substantial improvement with a 0.6 lexical search weight,
resulting in absolute improvements of 10.3% and 16.3% respectively. Further
increasing the lexical search weight beyond 0.6 did not yield noticeably dif-
ferent outcomes. Assigning a weight of 1 to lexical search in hybrid search ex-
cludes the semantic search component, effectively reducing the system to pure
lexical search, which produces worse results. Since the subsequent generative

component does not account for the order of retrieved documents, we employ
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Table 5.1: Our IR and PubMed search engine performance evaluation on the
BioASQ dataset.

P@10 MAP@I10 time [ms]

1. Semantic without rescore 14.0% 25.7% 245
2. Semantic with rescore 14.4% 26.0% 297
3. Hybrid with rescore (lex. 0.1 sem. 0.9) 24.7% 32.5% 442
4. Hybrid with rescore (lex. 0.2 sem. 0.8) 24.7% 32.5% 442
5. Hybrid with rescore (lex. 0.3 sem. 0.7) 24.7% 32.5% 442
6. Hybrid with rescore (lex. 0.4 sem. 0.6) 24.7% 32.6% 442
7. Hybrid with rescore (lex. 0.5 sem. 0.5) 25.2% 41.0% 442
8. Hybrid with rescore (lex. 0.6 sem. 0.4) 30.7% 42.0% 442
9. Hybrid with rescore (lex. 0.7 sem. 0.3) 30.8%  42.5% 442
10. Hybrid with rescore (lex. 0.8 sem. 0.2) 30.8% 42.5% 442
11. Hybrid with rescore (lex. 0.9 sem. 0.1)  30.8% 42.6% 442
12. Lexical with stopwords removal 28.7% 41.1% 189
13. Lexical without stopwords removal 28.3% 40.1% 189
14. PubMed without MeSH Terms 9.2% 15.3% 698
15. PubMed with MeSH Terms 12.0% 19.1% 742

the P@10 metric to determine the most effective combination of parameters
for hybrid search. After evaluating various configurations, we identified the
optimal parameters for hybrid search to be a lexical search weight of 0.7 and
a semantic component weight of 0.3. By allocating a higher weight to the se-
mantic search component (0.3 in row 9 instead of 0.1 in row 11), we enhance
the model’s ability to capture and utilize the deeper, contextual relationships
inherent in biomedical texts. Consequently, as shown in row 9, we choose
these parameter values to conduct a hybrid search in our system.

Additionally, we evaluated the performance of the PubMed search engine
on the BioASQ dataset. When searching without MeSH terms, the PubMed
search engine achieved a P@10 of 9.2% and a MAP@10 of 15.3%. When
MeSH terms were included, the results improved, with a P@10 of 12% and a
MAP@10 of 19.1%, as detailed in rows 14 and 15 of Table .1,

These findings underscore the importance of combining lexical and se-

mantic search approaches to maximize retrieval performance. The hybrid
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search, with carefully balanced weights, leverages the strengths of both meth-
ods, leading to superior results compared to either method alone. The evalu-
ation of PubMed’s performance further highlights the potential for improve-
ment in biomedical information retrieval systems through the integration of

advanced search techniques.

5.2 Generative Component

For the purpose of a comprehensive standalone evaluation of the generative
component, we utilized the PQAref test set. Our evaluation process encom-
passed both automated and manual methodologies to assess the effectiveness
of the referenced Question Answering (QA) task. This detailed analysis in-
volved several critical steps:

Firstly, we examined the total number of references included in each an-
swer provided by the model. This step was crucial to understand the extent of
information the model used to formulate its responses.

Secondly, we scrutinized the relevance of these references. This involved
determining how many of the references per answer were pertinent and di-
rectly supportive of the answer given. The relevance check was vital to ensure
that the model was not just generating numerous references, but generating
ones that were contextually appropriate and valuable.

Thirdly, we verified the correctness of the reference IDs. This step was
essential to confirm that the model accurately identified and utilized the correct
references, thereby maintaining the integrity and reliability of the information
provided.

Finally, we compared the number of relevant references to irrelevant ones
within the model’s answers. This comparison was critical to evaluate the over-
all quality and precision of the model’s reference generation capability. A
higher ratio of relevant to irrelevant references would indicate a more effec-

tive and accurate generative component.
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Through this multi-faceted evaluation approach, we aimed to rigorously
assess the performance of the generative component in producing referenced
answers, ensuring both the quantity and quality of references met the standards
required for reliable and informative QA outputs.

To generate referenced answers in zero-shot mode, we used the following

prompt:

Respond to the Instruction using only the information provided in the
relevant abstracts under Abstracts. Reference the statements with the
provided abstract id in brackets next to the statement (for example
PUBMED:1235):

{INSTRUCTION}

To obtain referenced answers from the fine-tuned models, we used the

following prompt:

Respond to the Instruction using only the information provided in the rel-

(133

evant abstracts in “‘Abstracts“‘ below.

{INSTRUCTION}

Both prompts were chosen after extensive testing of several different prompt-
ing strategies and prompt versions. We employed default inference parameters
for all four models, with the exception of setting the repetition penalty to 1.1
for the fine-tuned models and varying the values of max new tokens (or max
tokens for the zero-shot mode) for all four models. Despite attempts to limit
the length of answers using the max new tokens parameter or by specifying
constraints in the prompt (e.g., "Answer in at most 300 words”), all models
continued to generate an arbitrary number of tokens. This behavior was simi-
larly observed in GPT-4 Turbo during the creation of the PQAref dataset. To-
ken limitations, primarily imposed due to prolonged inference times for higher
values, often resulted in truncated answers. Ultimately, the token limit was set

to 1225, slightly exceeding the longest complete answer length in the training
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dataset (Fig. §.2).

We refer to the zero-shot results of these two models as 0-M1 for version
0.1 and 0-M2 for version 0.2, and to the results of the fine-tuned models as M 1
for version 0.1 and M2 for version 0.2. In both prompts, the instruction for
the fine-tuned models consists of the user query and 10 retrieved abstracts. An
example of a question and GPT-4 Turbo’s answer from the test set, along with
the answers from the other four models to the same question, can be found in

the Appendix 6.

5.2.1 Automated Evaluation

The number of referenced abstracts in generated answers within the PQAref
test set, which contains 908 examples, is detailed in Table 2. From this table,
it is evident that the majority of GPT-4 Turbo answers from PQAref include
one reference per answer, with 241 answers falling into this category. In con-
trast, models M1 and M2 show the highest occurrence of answers with three
references, tallying 185 cases for M1 and 178 for M2.

In the zero-shot results, it is most common for both 0-M1 and 0-M2 not
to reference any abstracts in their responses. Specifically, 0-M1 did not refer-
ence any abstracts in 527 instances, accounting for 58% of all answers, while
0-M2 did so in 165 instances, which is 18.2% of all answers. In comparison,
M1 and M2 did not reference any abstracts in only 8 (0.9%) and 5 (0.5%)
answers, respectively. Upon manual inspection, it was found that in these in-
stances, the models indicated that none of the abstracts were relevant, show-
casing their capability in executing the task accurately. Conversely, in the
majority of answers without references from 0-M1 and 0-M2, the models an-
swered the question without providing any references. Additionally, some
responses from 0-M2 (35 instances) repeated the initial part of the instruction,
highlighting the need for further post-processing of its answers.

Analyzing the entire test set of 908 examples, each with 10 abstracts, we
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find that 0-M2 has the highest average number of references per answer at
4.74. This is followed by M2 with an average of 4.2 references per answer,
M1 with 4.01, and 0-M1 with 2.51 references per answer.

To assess the relevance of the referenced abstracts, we evaluated whether
the models included at least the most relevant abstract for each question. Our
dataset, derived from PubMedQA, often includes questions that match actual
PubMed abstract titles, making it likely that the relevant article is retrieved. In
our test split, this was true for 823 out of 908 inputs. We used these abstracts
as the benchmark for relevance and measured how frequently the models ref-
erenced them. Table 3 shows the number of missed and correctly referenced
most relevant abstracts using this approach.

For GPT-4 Turbo answers, the most relevant article was missed in only
one case, indicating it served well as a referencing role model. M2 missed the
relevant abstract in 10 examples, while M1 missed it in 29 examples. Overall,
the fine-tuned models frequently referenced the most relevant abstract, with
M2 and M1 achieving rates of 98.8% and 96.5%, respectively. In contrast,
0-M1 missed the most relevant abstracts in 60.4% of answers, and 0-M2 in
22.5% of answers, demonstrating a significantly weaker ability to identify and
extract the most relevant abstracts compared to their fine-tuned counterparts.

We also verified whether all the IDs in the models’ answers matched the
PMIDs of the context-provided abstracts to ensure no hallucinated IDs were
present. GPT-4 Turbo’s answers in the PQAref dataset contained no halluci-
nated IDs. However, both M1 and M2 did produce hallucinated IDs, with a no-
table difference between the two. M1 produced 79 hallucinated IDs, whereas
M2 produced only 3. These hallucinated IDs typically differed from the actual
IDs by one or two digits. Upon manual inspection, it was found that M1 often
blended information from various abstracts, while M2 strictly used informa-
tion from the corresponding abstract, suggesting that M2’s hallucinations were
limited to minor errors in the ID digits without affecting the content. This pat-

tern remained consistent across different temperature values of the model. In
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zero-shot performance, 0-M1 hallucinated 11 IDs and did not reference any
abstracts in 58% of cases, presenting a higher number of answers without ref-
erences compared to those with references. These findings indicate a clear

advantage for M2 in producing more accurate and reliable answers.

N GPT-4 Turbo 0-M1 0-M2 Ml M2
0 2 527 165 8 5

1 241 27 11 86 105
2 76 66 47 138 112
3 128 28 92 185 178
4 126 17 114 172 169
5 119 25 110 117 124
6 87 28 94 72 75
7 45 26 61 66 34
8 29 47 64 27 34
9 31 47 83 22 23
10 24 70 67 15 49
TOTAL 3,464 2,285 4,307 3,648 3,816
AVG 3.81 251 474 401 420

Table 5.2: Number of referenced abstracts per model on the PQAref test set.
N: number of referenced abstracts per answer. TOTAL: is the sum of refer-
enced abstracts per model. AVG: the average number of references per an-
SWer.

5.2.2 Manual Evaluation

To perform a manual evaluation, we extracted 10 random examples from the
PQAref test set and assessed the relevance of each abstract within these ex-
amples. We categorized the abstracts into two primary types: relevant and
irrelevant. Relevant abstracts are those that address all specific aspects of
the question, providing direct answers. Among these, we identified abstracts
whose titles matched the question as the most relevant, similar to the 823 ex-
amples used during automatic evaluation.

On the other hand, irrelevant abstracts were divided into two subcate-
gories. The first type includes abstracts that miss the main topic of the ques-

tion entirely (e.g., discussing heart failure instead of knee problems), which
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we considered completely irrelevant. The second type includes abstracts that
discuss a more general topic and therefore do not cover all aspects of the ques-
tion; these were considered partially irrelevant. This group might contain ad-
ditional information but does not provide a direct answer to the question.

It is crucial to understand that irrelevant abstracts can lead to two types
of mistakes. If the model references a completely irrelevant abstract, it is
clearly a mistake. However, referencing a partially irrelevant abstract can be
more nuanced. If the answer also includes a relevant abstract that provides a
direct answer, the partially irrelevant abstract might be considered additional
information. If no relevant abstract is provided, the model has likely missed
the main point of the question.

We then examined how the models referenced the most relevant and irrel-
evant abstracts in these 10 qualitatively observed examples. The fine-tuned
models referenced the most relevant abstracts consistently, demonstrating their
ability to grasp the main point. In contrast, 0-M1 and 0-M2 failed to reference
the most relevant abstracts 4 and 2 times, respectively, and these answers con-
tained no references at all. None of the models referenced completely irrel-
evant abstracts. All four models tended to provide additional information by
referencing partially irrelevant abstracts. In several cases, the models seemed
to filter abstracts based on their understanding of a term used in the question,
excluding abstracts that used different phrasing or an extended meaning of
the term (e.g., interpreting “donation” to refer only to organ, tissue, or bone
marrow donation, and not to cell and blood donation).

We also conducted a quantitative analysis to evaluate how well the mod-
els identified all relevant abstracts. To account for variations in the number
of relevant abstracts per document and document-specific characteristics, we
collectively considered all 100 abstracts across the 10 questions. Among these
100 abstracts, evaluators identified 42 as relevant and 58 as irrelevant. We
prioritized and calculated recall for relevant abstracts for each model, as our

primary concern was their ability to correctly identify and reference relevant
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Table 5.3: The number of missed and referenced most relevant abstracts of
823 abstracts across the models.

GPT-4 Turbo  0-MI 0-M2 M1 M2
Relevant missed 1(0.1%) 497 (60.4%) 185(22.5%) 29 (3.5%) 10 (1.2%)
Relevant referenced 822 (99.9%) 326 (39.6%) 638 (77.5%) 794 (96.5%) 813 (98.8%)

abstracts. M1 exhibited the highest recall at 0.76, followed by M2 with 0.67,
0-M2 with 0.62, and 0-M1 with 0.29. For reference, the recall measured on
GPT-4 Turbo answers from the test set was 0.62. These results are summa-
rized in the first row of Table 4. Based on the analysis of these 10 manually
reviewed documents, the findings suggest that M1 outperforms the other mod-
els in terms of referencing abstracts deemed relevant by evaluators, showing

the highest benefit from the fine-tuning process.

5.3 RAG: Joint Evaluation

In this section, we present a joint evaluation of our system, combining the
Information Retrieval (IR) component (which leverages a hybrid lexical and
semantic search) and the generative component using the IR outputs. We con-
ducted a manual evaluation of the IR output using the same 10 PQAref ques-
tions selected for evaluating the generative component.

To retrieve relevant abstracts from indexed PubMed articles, we employed
the best-performing hybrid search parameter combination. We retrieved 10
abstracts for each question and manually assessed their relevance. This man-
ual evaluation yielded a Precision at 10 (P@10) score of 50%, highlighting the
effectiveness of our IR component in locating pertinent documents for query
responses. The IR evaluation on BioASQ, which achieved a P@10 of 30.8%
with the same hybrid search weight combination, further supports the validity
of our manual evaluation results on the PQAref dataset.

Next, we used the same prompts for GPT-4 Turbo as in Section §.2.1], and
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those used in Section @ for models 0-M1, 0-M2, M1, and M2, to gener-
ate referenced answers based on the retrieved documents. We calculated the
recall values for the relevant abstracts in the 10 generated answers and dis-
played them in the second row of Table 5.4. Notably, the best-performing
model was M1, with a recall of 0.64. This model cited a higher number of
abstracts containing relevant answers compared to the other models. Based
on recall alone, 0-M2 performed slightly better than M2, though only by a
margin of 0.01. However, in one of the 10 examples, 0-M2 did not provide
any references in its detailed answer. M2, the third-best model with a recall
of 0.58, properly referenced all the answers.

From Table .2, we observe that 0-M2 has the highest number of refer-
ences overall, but it also fails to provide any references in 18.2% of the an-
swers. Considering this aspect, M2’s answers are deemed more reliable com-
pared to 0-M2. Although M2 shows a slightly lower recall compared to M1
because it includes fewer references to abstracts that provide direct answers,
its answers are preferred since the IR component consistently identifies docu-
ments related to the topic, and M2 includes more additional citations, offering
more comprehensive answers on the same topics. In this context, GPT-4 Turbo
achieved a recall of 0.46, while 0-M1 had the lowest recall of all the models
(0.37), largely due to a significant number of answers with no references (5
out of 10).

By combining the strengths of both the IR and generative components, we
demonstrate that M2, despite its lower recall compared to M1, produces more
elaborate and contextually rich answers, making it a valuable model for gen-

erating well-referenced responses in our evaluation framework.
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GPT-4 Turbo 0-M1 0-M2 M1 M2
PQAref 0.62 029 062 0.76 0.67
IR 0.46 037 0.59 0.64 0.58

Table 5.4: Recall values for relevant abstracts on 10 examples from the
PQAref test set and same 10 questions with abstracts retrieved with our IR
system.

5.4 Fact Verification

We conducted a detailed three-step evaluation of our fact-checking models to
ensure they were accurate and reliable. First, we tested our fact-checking mod-
els using a specific part of the transformed SciFact dataset [61]]. This helped
us see how well each model could verify facts in a controlled setting. We
measured different performance metrics like precision, recall, and F1-score to
find out which model was the best. Next, we took the best model from our
initial tests and validated it using a different dataset. We checked the same
performance metrics to make sure the model was still performing well out-
side of the original test environment. Finally, we compared the performance
of our top model with GPT-4 models, which are some of the most advanced
language models available today. This comparison helped us understand how
our model stacked up against leading technology in the field of fact-checking.

By following these three steps, we ensured that our best-performing model
was accurate and reliable across different datasets and in comparison to state-

of-the-art models like GPT-4.

5.4.1 In-domain Evaluation

The top-performing model achieves an F1-score of 0.87. On the other hand,
the DeBERTa model with an early stopping patience of 4 achieved the highest
F1-score of 0.88. The results also indicate that the CONTRADICT class is
the most challenging for the models, which is expected given that this class
makes up only 22% of the dataset. This results in fewer examples for training

and evaluation. This imbalance likely contributes to the models’ struggles to
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accurately predict this class, emphasizing the need for more focused strategies

to enhance performance in underrepresented categories.

RoBERTa Lgr XLM RoBERTa Lgf
NE* S C wa NE S C wa

P 0.71 0.55 0.00 048 0.83 0.69 0.54 0.71
R 0.73 0.82 0.00 061 0.89 067 0.55 0.71
F1 ~ 0.72 0.66 0.00 0.53 086 0.68 0.53 0.71

Acc 0.61 0.71

P 085 0.75 0.67 0.77 0.75 0.76 0.71 0.74
R 089 0.76 0.79 0.77 0.78 0.70 0.73 0.73
F1 087 0.76 0.73 0.77 082 0.71 0.72 0.74

Acc 0.77 0.75

Table 5.5: Performance metrics for RoOBERTa Lgr and XLLM RoBERTa Lgr
across different conditions.

DeBERTa Lgr DeBERTa SQuAD Lgr
NE S C wa NE S C wa

P 0.83 0.86 0.85 0.84 086 0.90 0.82 0.87
R 0.86 0.84 081 0.84 0.86 0.88 0.85 0.87
F1 084 085 083 0.834 086 0.89 0.84 0.87

Acc 0.84 0.87

P 0.88 090 0.88 0.89 0.82 091 0.88 0.87
R 095 0.88 0.78 0.89 0.87 0.88 0.85 0.87
FI 091 0.89 0.82 0.88 0.87 0.88 0.85 0.87

Acc 0.89 0.87

Table 5.6: Performance metrics for DeBERTa Lgr and DeBERTa SQuAD
Lgr across different conditions.

5.4.2 Out-of-domain Evaluation

To evaluate our best-performing model, DeBERTa fine-tuned, on a dataset

different from the one used for training and in-domain evaluation, we selected
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the HealthVer dataset [65]. This dataset is tailored for evidence-based fact-
checking of health-related claims, allowing researchers to assess the accuracy
of real-world claims by verifying them against scientific articles.

The fine-tuned model achieved a weighted average F1 score of 0.44 and
an accuracy of 0.50. Comparing these results with those reported by [65], who
fine-tuned a BERT-base model with SciFact and evaluated it on the HealthVer
test set, we see that they achieved an F1 score of 0.36 and an accuracy of
0.39. This indicates that our DeBERTa model, fine-tuned on the transformed
SciFact dataset, outperformed these results.

We identified DeBERTa fine-tuned with 80% of the transformed SciFact
dataset as the optimal model for Textual Entailment. We then tested this model
out-of-domain on the Health Ver dataset, observing superior performance com-
pared to previous state-of-the-art (SOTA) models, with an absolute increase
of 8% in the F1 score. Given that the test subset, comprising 10% of the trans-
formed SciFact dataset, had already been used for in-domain evaluation, we
included it in the training set. We then retrained the DeBERTa model on 90%
of the data from the transformed SciFact dataset. Evaluating this new model
on the HealthVer dataset, we observed a further absolute improvement of 4%
in the F1 metric. This exploration of expanding the training dataset highlights

the adaptability and robustness of our approach.

DeBERTaSF,&) DeBERTaSF,go
NE S C wa NE S C wa

P 046 0.70 0.66 0.60 0.47 0.67 0.69 0.59
R 094 025 0.15 0.50 0.88 0.29 0.27 0.52

F1 062 037 024 0.44 0.61 040 0.39 0.48
Acc 0.50 0.52

Table 5.7: Results of the DeBERTa model fine-tuned on the 80% and 90% of
the SciFact dataset end evaluated on the HealthVer test set.
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5.4.3 Comparison with GPT-4 Model

We used the same test set as for our in-domain evaluation, which consisted of
10% of our transformed SciFact dataset. This subset included 122 examples
covering three classes. We assessed the performance of GPT-4, GPT-4 Turbo,
and GPT-40 in zero-shot mode using this test set. The specific prompt used

for this evaluation was as follows:

Critically asses whether the statement is supported, contradicted or there
is no evidence for the statement in the given abstract. Output SUPPORT
if the statement is supported by the abstract. Output CONTRADICT if

statement is in contradiction with the abstract and output NO_EVIDENCE

if there is no evidence for the statement in the abstract.

For all models, the temperature parameter was set to 0 to minimize ran-
domness and produce the most consistent outputs, while the maximum tokens
parameter was set to 350 to allow sufficient context generation. This setup
enabled us to directly compare the performance of our fine-tuned transformer-
based model with that of the GPT-4 series models in a zero-shot scenario under
identical conditions.

In our experiments, we found that our transformer-based model for claim
verification outperformed GPT-4, GPT-4 Turbo, and GPT-40. Specifically,
our model demonstrated superior performance across various evaluation met-
rics, including accuracy and Fl-score. In particular, DeBERTa achieved an
F1 score of 0.88, as shown in Table .6, compared to GPT-4’s performance
with an F1 score of 0.81, as shown in Table b.8, on the SciFact test set.

These results underscore the eftfectiveness of our fine-tuning approach and
the robustness of our model architecture in handling complex claim verifica-
tion tasks. The consistent outperformance of our model compared to these
state-of-the-art models highlights its potential for real-world applications and
further establishes its credibility in the domain of automated fact-checking.

Additionally, our model is open-source, providing the transparency and
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flexibility crucial for industries such as pharmaceuticals and biomedicine, where
stringent process control is required. Unlike closed models, our open-source
solution allows for comprehensive customization and verification, ensuring
that the claim verification process meets the rigorous standards necessary in

these fields.

GPT-4 GPT-4 Turbo GPT-40
NE S C wa NE S C wa NE S C wa

P 085 0.77 0.84 0.82 0.93 0.81 0.65 0.82 0.72 091 0.74 0.80
R 0.80 0.94 0.59 0.81 0.64 092 0.81 0.80 0.89 0.80 0.63 0.80

F1 0.82 0.85 0.70 0.81 0.76 0.86 0.72 0.79 0.80 0.85 0.68 0.79
Acc 0.81 0.80 0.80

Table 5.8: Results of GPT-4 models.



Chapter 6

Conclusion and Future Work

In this thesis, we developed and evaluated a novel biomedical generative search
system that integrates information retrieval (IR) with a generative component
to answer biomedical questions using PubMed data. Our goal was to provide
accurate, verifiable answers while leveraging open-source models.

Our findings show that combining lexical and semantic searches yields
the highest precision. Our system improved Mean Average Precision at 10
(MAP@10) by 23.4% compared to PubMed’s search engine. While lexical
search alone was superior, integrating semantic search was beneficial, espe-
cially for non-exact term matches. Future improvements could involve fine-
tuning models with domain-specific data to enhance semantic search.

We evaluated multiple generative models, including Mistral 7B Instruct
and GPT-4 Turbo. Fine-tuned models (M1 and M2) outperformed zero-shot
models in referencing relevant abstracts. M2 showed a 2.3% improvement
over M1 and performed best in reducing hallucinations in reference IDs. Man-
ual evaluation confirmed fine-tuned models’ superiority in recall values, though
results varied with abstracts retrieved by our IR system.

Overall, our system achieved performance comparable to GPT-4 Turbo
using smaller, open-source models. Automated methods for evaluating refer-
enced QA quality are proposed for more comprehensive assessment.

In the final phase, we fine-tuned models for fact verification using the
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SciFact dataset. The DeBERTa model, fine-tuned with 80% of the dataset,
achieved an F1 score of 0.88. Testing on the HealthVer dataset yielded an
F1 score of 0.44 and an accuracy of 0.50, surpassing previous benchmarks.
Increasing the training dataset to 90% further improved the F1 score by 4%.
Our model outperformed GPT-4 in a zero-shot regime by 7% in F1 score.
Our open-source model is beneficial for pharmaceuticals and biomedicine,
ensuring transparency and adherence to industry standards. It enhances sci-
entific productivity and provides a reliable framework for automated fact-
checking. Given the challenges of the SciFact dataset, our model’s real-world
performance may be underestimated, and we aim to further improve our ver-

ification methodology.

Future Work

Our research has laid a strong foundation for developing effective biomedi-
cal generative search systems. However, several avenues for future work can

further enhance the system’s performance and reliability:

Fine-Tuning on Domain-Specific Data: To improve semantic search per-
formance, future efforts should focus on fine-tuning models on extensive biomed-
ical datasets. This would enhance the models’ ability to encode domain-
specific knowledge and improve contextual understanding, leading to more

accurate and relevant search results.

Automated Evaluation Methods: Implementing automated evaluation meth-
ods, would allow for a more comprehensive and faster assessment of refer-
enced QA quality. This would facilitate continuous improvement of the mod-
els and provide a reliable benchmark for comparison with other state-of-the-art

systems.
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Expanding the Evaluation Dataset: To ensure the robustness of our find-
ings, future research should involve testing the models on larger and more
diverse datasets. This would help identify potential limitations and areas for
improvement, ensuring the models’ generalizability across various biomedical

domains.

User-Centric Enhancements: Incorporating user feedback into the system’s
development cycle can help tailor the models to better meet user needs. Future
work could explore interactive features that allow users to provide input on the
relevance and accuracy of generated answers, thereby continuously refining

the system’s performance.

Generate a New Dataset for Claim Verification: The SciFact dataset, while
adequate for biomedical claim verification using literature, presents challenges
such as short and unclear claims lacking contextual labels. We aim to collab-
orate with industry partners to create a cleaner, more comprehensive dataset
that overcomes these challenges. A well-curated dataset will provide richer
context and clearer claims, improving the training and evaluation of verifica-

tion models.

Develop a Comprehensive Verification Methodology: Recognizing the
limitations of NLI, even with the most powerful neural architectures, we plan
to develop a more holistic approach. This methodology will combine textual
entailment tasks, text similarity measures, and chains of thought in fine-tuned
large language models. By integrating these techniques, we aim to enhance

the robustness and accuracy of claim verification.

Integration with Clinical Decision Support Systems (CDSS): Extending
the application of our generative search system to integrate with CDSS could

significantly impact healthcare delivery. Providing accurate, evidence-based
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answers will assist healthcare professionals in making informed decisions, ul-

timately improving patient outcomes.

User-Centric Enhancements: Incorporating user feedback into the system’s
development cycle can help tailor the models to better meet user needs. Future
work could explore interactive features that allow users to provide input on the
relevance and accuracy of generated answers, thereby continuously refining

the system’s performance.

By pursuing these future directions, we aim to advance the capabilities of
biomedical generative search and verification systems, ensuring they provide
reliable, accurate, and user-centered information. This will support biomedi-
cal research and clinical practice, fostering greater trust and adoption of gen-

erative Al technologies in these critical domains.



Appendix

Appendix A: Example answers of generative LLMs

Models’ answers to the question ”Does leisure time physical activity in early

pregnancy protect against pre-eclampsia?”’

GPT4 Turbo: Therelationship between leisure time physical activity (LTPA)
in early pregnancy and the risk of pre-eclampsia is not clearly established,
with studies showing mixed results. Some studies suggest that there may
be a protective effect of LTPA against pre-eclampsia, while others do not
find a significant association or suggest an in- creased risk with high lev-
els of activity. A prospective cohort study in Denmark found that moder-
ate levels of physical ac- tivity (1-270 minutes/week) in the first trimester
had no statistically significant association with the risk of pre-eclampsia, but
high levels of activity (exceeding 270 minutes/week) were associated with
an increased risk of severe pre-eclampsia (PUBMED:19055653). Similarly,
a population-based prospective cohort study in Amsterdam reported that the
amount of time or intensity of physical activity in leisure time was not asso-
ciated with a difference in risk of pre-eclampsia or gestational hy- pertension
(PUBMED:19916877). In contrast, a study from the New Haven, Connecti-
cut area suggested that women who engaged in any regular LTPA during early
pregnancy were at decreased risk of pre- eclampsia (PUBMED:15466498).

Another study found a tendency towards a lower risk of pre-eclampsia in
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women with the highest degree of physical activity during leisure time, espe-
cially in overweight women, although no significant associations were found
(PUBMED:20121498). A systematic review examining the association be-
tween LTPA before and/or during pregnancy and the risk of pre-eclampsia
found mixed results, with some studies sug- gesting that vigorous-intensity
LTPA may reduce the risk of pre-eclampsia, while one study reported an ele-
vated risk with high amounts of LTPA (PUBMED:23836014). Another case-
control study found that women who performed regular LTPA during the first
20 weeks of pregnancy had a reduced risk of pre-eclampsia and gestational
hypertension (PUBMED:2592903). In summary, the evidence is inconclu-
sive regarding the protective effect of LTPA in early pregnancy against pre-
eclampsia. While some studies suggest a potential bene- fit, especially with
moderate activity levels, others indicate no effect or an increased risk with
high levels of activity. It is important to consider the intensity and duration of

LTPA when evaluating its impact on pre-eclampsia risk.

0-M1: he instruction is to provide a response to the instruction using only the
information provided in the abstracts. The instruction is: ”Does leisure time
physical activity in early pregnancy protect against pre-eclampsia?”’ Based on
the provided abstracts, the answer is: No, leisure time physical activity in early

pregnancy does not protect against pre-eclampsia.

0-M2: The available evidence from the provided abstracts suggests that the
relationship between leisure time physical activity (LTPA) in early pregnancy
and the risk of pre-eclampsia is not clear-cut. Some studies indicate a protec-
tive effect of LTPA against pre-eclampsia, while others do not find a signifi-
cant association or suggest an increased risk with high levels of activity. One

prospective cohort study in Denmark found that moderate levels of physical
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activity (1-270 minutes/week) in the first trimester had no statistically signifi-
cant association with the risk of pre-eclampsia, but high levels of activity (ex-
ceeding 270 minutes/week) were associated with an increased risk of severe
pre-eclampsia (PUBMED:19055653). Another population-based prospective
cohort study in Amsterdam reported that the amount of time or intensity of
physical activity in leisure time was not associated with a difference in risk
of pre-eclampsia or gestational hypertension (PUBMED:19916877). How-
ever, a study from the New Haven, Connecticut area suggested that women
who engaged in any regular LTPA during early pregnancy were at decreased
risk of pre-eclampsia (PUBMED:15466498). Another study found a tendency
towards a lower risk of pre-eclampsia in women with the highest degree of
physical activity during leisure time, especially in overweight women, al-
though no significant associations were found (PUBMED:20121498). A sys-
tematic review examining the association between LTPA before and/or dur-
ing pregnancy and the risk of pre-eclampsia found mixed results, with some
studies suggesting that vigorous-intensity LTPA may reduce the risk of pre-
eclampsia, while one study reported an elevated risk with high amounts of
LTPA (PUBMED:23836014). Another case-control study found that women
who performed regular LTPA during the first 20 weeks of pregnancy had a re-
duced risk of pre-eclampsia and gestational hypertension (PUBMED:2592903).
In summary, the evidence is inconclusive regarding the protective effect of
LTPA in early pregnancy against pre-eclampsia. While some studies suggest
a potential benefit, especially with moderate activity levels, others indicate
no effect or an increased risk with high levels of activity. It is important to
consider the intensity and duration of LTPA when evaluating its impact on pre-
eclampsia risk. Further research is needed to clarify the relationship between

LTPA and pre-eclampsia risk.

M1: Based on the provided abstracts, leisure time physical activity in early

pregnancy does not appear to protect against pre-eclampsia. A prospective
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cohort study in Denmark found that the two highest levels of physical activ-
ity were associated with increased risk of severe pre-eclampsia compared with
the nonexercising group, suggesting that leisure time physical activity exceed-
ing 270 minutes/week in first trimester may increase the risk of severe pre-
eclampsia (PUBMED:19055653). Another study in Amsterdam, The Nether-
lands, did not find any association between physical activity in leisure time
early in pregnancy and the incidence of preeclampsia or gestational hyperten-
sion (PUBMED:19916877). Similarly, a study in New Haven, Connecticut,
found that women who engaged in any regular leisure time physical activity,
regardless of caloric expenditure, were at decreased risk of preeclampsia, but
there was no indication of a protective effect of workplace activity, leisure-
time physical activity, or unemployment (PUBMED:15466498). These find-
ings suggest that while certain forms of physical activity may have a protective
effect on preeclampsia, the overall evidence does not support a clear protective
effect of leisure time physical activity in early pregnancy against this condi-
tion. Therefore, based on the available abstracts, leisure time physical activity

in early pregnancy does not protect against pre-eclampsia.

M2: Based on the provided abstracts, there is conflicting evidence regard-
ing whether leisure time physical activity (LTPA) in early pregnancy pro-
tects against pre-eclampsia. Some studies suggest that LTPA may offer pro-
tection against pre-eclampsia, while others do not find a significant associ-
ation or even indicate that excessive LTPA could increase the risk of severe
pre-eclampsia. For instance, one study found that women who engaged in
any regular LTPA regardless of caloric expenditure were at decreased risk of
preeclampsia, although another study did not find a significant association be-
tween the amount of time or intensity of physical activity in leisure time and
the risk of preeclampsia or gestational hypertension (PUBMED:15466498;
PUBMED:19916877). Another study suggested that women who performed
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regular LTPA had a reduced risk of pre-eclampsia and gestational hyperten-
sion, with the relative risks decreasing as the average time spent in LTPA in-
creased (PUBMED:2592903).

However, another study documented an increased risk of severe pre-eclampsia
with higher levels of LTPA (PUBMED:19055653). Similarly, a systematic
review reported that high-intensity LTPA before and/or during pregnancy or
more than 4 hours per week of LTPA may reduce the risk of pre-eclampsia, but
also noted that one study found an elevated risk of severe pre-eclampsia with
high amounts of LTPA (PUBMED:23836014). Furthermore, a case-control
study indicated that women who performed regular LTPA had a reduced risk
of pre-eclampsia and gestational hypertension, with the relative risks decreas-
ing as the average time spent in LTPA increased (PUBMED:26910608). A
systematic review and meta-analysis of RCTs and cohort studies supported
the promotion of LTPA in pregnancy as a strategy to improve maternal and
child health, suggesting that participation in LTPA was associated with lower
weight gain during pregnancy, lower likelihood of gestational diabetes melli-
tus (GDM), and lower risk of preterm delivery (PUBMED:27282925). In con-
clusion, while some studies suggest that LTPA in early pregnancy may protect
against pre-eclampsia, particularly at moderate intensities, the evidence is not
consistent across all studies. Further research is needed to clarify the relation-
ship between LTPA and pre-eclampsia risk, taking into account the intensity
and duration of physical activity, as well as individual differences in suscep-
tibility to the condition. Additionally, the potential influence of other factors
such as prepregnancy BMI and socioeconomic status should be considered

(PUBMED:32093248).
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