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Abstract

The advent of large language models has opened up new avenues for Question

Answering over Knowledge Graphs (KGQA), a field that has witnessed sig-

nificant advancements due to their capabilities. Despite these advancements,

large language models are not inherently designed for query generation, ne-

cessitating the development of fine-tuning solutions or ad-hoc architectures,

which, while effective in certain scenarios, exhibit limitations in generalizing

across diverse domains.

In response to these challenges, this thesis presents a groundbreakingmethod

known as Dynamic Few-Shot Learning (DFSL). DFSL leverages the princi-

ples of in-context learning combined with semantic similarity measures to cre-

ate a versatile and robust framework for KGQA.

An extensive evaluation across multiple benchmark datasets and archi-

tecture configurations, reveals not only the superior performance of DFSL in

comparison to existing state-of-the-art methods but also exhibits adaptability

against different KGs. This highlights the potential of DFSL to serve as a

universally applicable solution for KGQA.
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Chapter 1

Introduction

The growth of the Semantic Web has transformed the traditional, document-

based web into an intelligent system that integrates data and web content into

a more structured environment. This revolutionary change enables software

agents to autonomously perform tasks for users, thus enhancing the web’s util-

ity and efficiency. Central to the Semantic Web are ontologies, which repre-

sent the information in a machine-processable structure. Ontologies are data

models used to represent the semantics of domain concepts through classes

(entities) and relationships (properties). These ontologies define the schema

of a domain without including specific information about individual instances.

When data instances are inserted into these ontological terms, they form what

is known as a Knowledge Graph (KG) [1].

The creation and storage of vast amounts of structured knowledge have re-

sulted in the development of massive Knowledge Graphs such asWikidata [2],

DBpedia [3], and FreeBase [4]. For instance, Wikidata alone contains over

109million items 1, showcasing the extensive scale of these KGs. However, as

the size of KGs has expanded, extracting relevant information from them has

become increasingly challenging. This challenge has given rise to the field

of Knowledge Graph Question Answering (KGQA), which aims to answer

natural language questions posed over those massive KGs.

1https://www.wikidata.org/wiki/Wikidata:Statistics
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 Entity Linking           wd:Q5284        

 Relation Linking             wdt:P19        wdt:P17

Query Generation    SELECT DISTINCT ?uri       
        WHERE {wd:Q5284 wdt:P19/wdt:P17 ?uri }

country Bill GatesWhich was in?born

EXECUTE

Answer:
http://www.wikidata.org/entity/Q30 

Figure 1.1: A typical KGQA system

A typical KGQA system is composed of three main components. Firstly,

the objects of interest in a natural language question (NLQ) are detected and

linked to the KG in a process known as entity linking (EL). Secondly, the

relationship between these objects is identified and connected to the KG in a

step called relation linking (RL). Finally, a formal query, usually in SPARQL,

is generated using the linked entities and relations, and executed on the KG to

retrieve the answer [5]. This final step, known as Query Generation (QG), is

the primary focus of this thesis. Figure 1.1 illustrates this KGQA pipeline.

State-of-the-art approaches to SPARQLquery generation from natural lan-

guage questions are primarily based on fine-tuning language models such as

T5 [6] or utilizing ad-hoc architectures that leverage large language mod-

els (LLMs) and dependency trees [7]. These methodologies have demon-

strated substantial success, significantly outperforming traditional approaches

like rule-based or template-based methods. However, despite their advance-

ments, these state-of-the-art techniques exhibit certain limitations in terms of
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flexibility and scalability. Fine-tuning language models can be computation-

ally expensive due to the large size of datasets and the limited availability

of GPUs. Additionally, these models often struggle to handle out-of-domain

distributions effectively.

This thesis introduces a novel approach to KGQAby leveraging in-context

learning with Large LanguageModels. The central hypothesis of this research

is that: a significant number of errors in current systems can be mitigated

by making more effective use of the examples within the training set. To this

end, the proposedmethodology, termedDynamic Few-Shot Learning (DFSL),

employs semantic search to retrieve similar questions from the training set and

enrich the prompt accordingly. This approach not only eliminates the need for

fine-tuning models but also has the potential to establish a general system for

KGQA. This general system would feature a storage of examples that are not

limited to the training set of a specific dataset but could encompass a broader

repository of examples.

To evaluate the performance and robustness of DFSL, experiments were

conducted on two widely-used Knowledge Bases, DBpedia andWikidata, uti-

lizing four publicly available datasets: QALD-9 (based on DBpedia), and

QALD-9 plus, QALD-10, and LC-QuAD 2.0 (based on Wikidata). As back-

bones, three state-of-the-art LLMs were employed: Mixtral 8x7B, Llama-3

70B, and CodeLlama 70B. The experimental results demonstrate that the pro-

posed model achieves new state-of-the-art results, with significant advantages

in terms of speed and efficiency. Additionally, ablation studies were conducted

to assess the effectiveness of the approach in the absence of gold information

from the Entity Linking (EL) and Relation Linking (RL) modules.

Overall, this thesis presents a significant advancement in the field ofKGQA

by addressing the limitations of current approaches and proposing a more flex-

ible and scalable solution.



Chapter 2

Background

In the following section, an overview of large languagemodels (LLMs) will be

provided, explaining the transformer-based architecture that underpins them.

Additionally, the discussion will detail the concepts behind the three main

LLMs used in this thesis: the SparseMixture of Experts, which forms the basis

of the Mixstral 8x7 model, and the Llama architecture, which is foundational

for Llama3 and CodeLlama.

2.1 Large Language Model

Large Language Models (LLMs) represent a groundbreaking advancement in

the field of artificial intelligence, particularly within natural language process-

ing (NLP). These models are designed to comprehend, generate, and manip-

ulate human language with an unprecedented level of sophistication and ac-

curacy [8]. The development and deployment of LLMs have revolutionized

the way machines interact with human language, enabling a wide range of ap-

plications that were previously thought to be the exclusive domain of human

intelligence.

The journey towards the development of LLMs has beenmarked by signif-

icant milestones in the evolution of NLP. Initially, language processing tasks

were handled using rule-based systems. These models were more flexible
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and could handle a wider range of language patterns, but they required a lot

of computer power and large datasets to work well. In the early 1970s, the

field of artificial intelligence saw the introduction of Hidden Markov Models

(HMMs) [9], and Conditional Random Fields (CRFs) [10].

The advent of deep learning, particularly the use of sequence-to-sequence

neural networks, marked a transformative phase in NLP. Recurrent Neural

Networks (RNNs) [11] and their variants, such as Long Short-Term Memory

(LSTM) [12] networks and Gated Recurrent Units (GRUs) [13], have collec-

tively shaped the landscape of natural language processing and deep learning,

opening up new possibilities for understanding and processing human lan-

guage. They enabled the processing of sequential data and improved the han-

dling of context in language . However, these models still faced challenges

with long-range dependencies and computational efficiency.

Ultimately, the introduction of theTransformer architecture addressedmany

of above-mentioned shortcomings, leading to significant improvements in per-

formance. This models, introduced in the 2017 paper ‘Attention is All You

Need’ [14], brought parallel sequence processing and the ability to capture

extensive dependencies across large sequences.

TheTransformermodel discards the recurrence used in RNNs and LSTMs,

instead relying entirely on a mechanism called self-attention. Self-attention

allows the model to weigh the importance of different words in a sequence

when encoding a word, thereby capturing contextual relationships more ef-

fectively. The architecture consists of an encoder and a decoder, each com-

posed of multiple layers of self-attention and feed-forward neural networks.

The transformer architecture is shown in Figure 2.1

In the encoder, each layer has two main components: a multi-head self-

attentionmechanism and a position-wise fully connected feed-forward net-

work. The multi-head attention mechanism enables the model to focus on dif-

ferent parts of the input sequence simultaneously. Positional encodings are

added to the input embeddings to retain information about the position of each
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Figure 2.1: Transformer architecture

word in the sequence.

The decoder also has these components but includes an additional layer of

attention that attends to the output of the encoder stack. This helps the decoder

to generate sequences by focusing on relevant parts of the input sequence and

its previously generated outputs.

One of the key innovations of the Transformer is the self-attention mecha-

nism which computes dependencies between all words in the sequence simul-

taneously, as opposed to the sequential nature of RNNs. The self-attention

mechanism operates on an input sequence, where each word is first embedded

into a high-dimensional space. Given an input sequence of n words, repre-

sented as X = [x1, x2, . . . , xn], the self-attention mechanism computes the
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attention as follows:

1. Linear Transformations: The input embeddings are linearly trans-

formed to create three distinct vectors for each word: the query vector

Q, the key vector K, and the value vector V. These are computed using

learned weight matrices WQ, WK , and WV :

Q = XWQ, K = XWK , V = XWV

2. Scaled Dot-Product Attention: The attention scores are calculated by

taking the dot product of the query vector Q with the key vector K> of

all words, followed by scaling by the square root of the dimension dk

of the key vectors. This is then passed through a softmax function to

obtain the attention weights:

Attention(Q, K, V) = softmax

(
QK>
√

dk

)
V

3. Output Representation: The attention weights are used to create a

weighted sum of the value vectors V. This weighted sum represents

the contextualized embedding for each word, incorporating information

from the entire sequence.

To allow the model to attend to different parts of the sequence from mul-

tiple perspectives, the Transformer employs multi-head attention. Instead of

computing a single attention function, the mechanism projects the queries,

keys, and values into multiple subspaces, applies the attention function in each

subspace (referred to as a head), and concatenates the results:

MultiHead(Q, K, V) = Concat(head1, head2, . . . , headh)WO
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where each head is computed as:

headi = Attention(QWQi
, KWKi

, VWVi
)

Here, WQi
, WKi

, WVi
are the projection matrices for the i-th head, and

WO is the output projection matrix.

The Transformer model revolutionized NLP by introducing a more effi-

cient, scalable, and interpretable architecture that excels in capturing depen-

dencies across long sequences, laying the foundation for numerous state-of-

the-art models such as BERT [15], GPT3 [16] and T5 [17] .

2.1.1 Sparse Mixture of Experts

The Sparse Mixture of Experts (SMoE) architecture addresses the limitations

of traditional dense models, which, despite their power, suffer from high com-

putational costs and scalability issues.

At the heart of the SMoE architecture are multiple sub-models, referred

to as ”experts.” Each expert is trained to specialize in different aspects of the

data, allowing the model to handle a variety of tasks with greater precision.

For example, the Mixtral 8x7B model utilizes eight experts, each of which

focuses on distinct features or patterns within the data

A key feature of SMoE is its sparse activation mechanism. Unlike tradi-

tional models that activate all parameters during inference, SMoE selectively

engages only a subset of the experts. This selective activation is managed

by a small, trainable network known as a router. The router dynamically as-

signs input tokens to the most relevant experts based on the characteristics

of the data. The router’s ability to direct tokens to specific experts ensures

that only the necessary parameters are utilized during each forward pass. This

approach not only optimizes resource usage but also allows the model to han-

dle larger contexts and more complex tasks without a proportional increase in

computation. An advantage of the SMoE architecture is its scalability. The
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model’s effective parameter usage per inference remains manageable, even

with a high total parameter count. The selective activation mechanism also

contributes to the model’s enhanced performance. By engaging only the most

relevant experts, the SMoE model can process inputs more effectively. This

is particularly evident in benchmarks where Mixtral 8x7B [18] has demon-

strated superior performance over models like Meta’s LLaMA2 70B [19] and

OpenAI’s GPT-3.5.

2.1.2 LLaMAArchitecture

LLaMA (Large Language Model Architecture) [20], a LLM developed by

Meta AI, has advanced through several updates, currently up to LLaMA 3.

Despite these advancements, all versions are based on the core LLaMA ar-

chitecture, which employs a transformer-based optimized version (see figure

2.2).

One of the significant advancements in LLaMAis the introduction ofGrouped

QueryAttention (GQA), which improves inference scalability by allowing the

model to handle larger context windows more efficiently.

The architecture of LLaMAmodels also includes pre-normalization using

RMSNorm [21] and SwiGLU activation functions. RMSNorm helps stabilize

training by normalizing the inputs to each layer, while SwiGLU provides non-

linear transformations that improve model expressiveness and performance.

Another notable feature is the use of rotary positional embeddings (RoPE),

which encode positional information in away that enhances themodel’s ability

to handle long-range dependencies within the input data.

LLaMA models utilize a tokenizer based on Byte Pair Encoding (BPE),

implemented through SentencePiece. This tokenizer splits input text into sub-

word units, allowing the model to handle rare words and out-of-vocabulary

terms more effectively. The vocabulary size for LLaMAmodels is 32k.

In terms of model sizes, Llama 1 was originally released with 4 different
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Embeddings

Input

RMS Norm 

Self-Attention (Grouped Multi-Query Attention)
with KV Cache

Q K V

Rotary 
Positional Encodings

RMS Norm 

Feed Forward
SwiGLU

RMS norm

Linear

Softmax

Nx

Figure 2.2: LLaMa architecture

variants with parameters 6.7B, 13B, 32.5B and 65.2B. The number of heads

in the multi head attention in each of these variants are 32, 40, 52 and 64

respectively as opposed to transformer which had 8 heads in the multi head

attention. The most recent version of LLaMa, namely LLaMa 3 has been

released in 2 versions:

• LLaMa 3 8B, an 8-billion parameter model with a knowledge cutoff of

March 2023

• LLaMa 3 70B, a 70-billion-parameter model with a knowledge cutoff

of December 2023

To unlock Llama 3’s full potential for chat and dialogue applications, Meta

introduced a new approach aligned with the concept of instruction fine-tuning.
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Thismethod combines supervised fine-tuning (SFT), rejection sampling, prox-

imal policy optimization (PPO), and direct preference optimization (DPO).



Chapter 3

Related Works

The following section explores the literature concerning the evolution ofmeth-

ods in the field of Knowledge Graph Question Answering. It examines the

major features that influence In-Context Learning and delves into the cognate

domain of text-to-SPARQL, namely Text-To-SQL.

3.1 Knowledge Graph Question Answering

3.1.1 Early approaches

Early research in this area focused on manually crafting queries to test the

inference capabilities of ontology systems [22, 23]. A notable development

was SPLODGE, a tool designed to generate benchmark SPARQL queries for

Linked Open Data (LOD). SPLODGE systematically combines smaller query

patterns based on predefined characteristics such as structure and data source

count, with constants chosen randomly to ensure diversity. A verification step

ensures that the generated queries meet specific constraints [24]. However,

these manual or semi-manual approaches have limitations when adapting to

large-scale knowledge bases like WikiData and DBpedia.
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3.1.2 Template-Based approaches

Template-filling approaches have been extensively explored in Knowledge

Graph Question Answering (KGQA). The core idea involves generating tem-

plates of SPARQL queries and filling in the slots using defined heuristics to

produce the final SPARQL query. One method relies on parsing the question

to create a SPARQL template that mirrors the internal structure of the question,

then instantiates the template using statistical entity identification and predi-

cate detection [25]. Another approach introduces a pipeline paradigm, recog-

nizing the query intention structure inherent in natural language questions and

mapping the involved semantic items into existing knowledge bases to instan-

tiate these structures [26]. The QUICK approach [27] identifies keywords

to generate an initial query template and refines it incrementally to create the

final query. Additionally, a semantic parsing model has been presented that

learns to generate SPARQL queries from question-answer pairs.

One of the primary challengeswith template-based approaches is the labor-

intensive nature of template creation. Typically, templates are constructed ei-

ther manually or through a semi-automated process, both of which are time-

consuming. Furthermore, query templates are inherently specific to the knowl-

edge graph being utilized, meaning any changes to the underlying graph struc-

ture may necessitate a complete overhaul of the entire set of templates.

3.1.3 Pretrained Language Models for Text-to-SPARQL

The recent advancements in pretrained language models (PLMs), have signif-

icantly enhanced performance in the Knowledge Graph Question Answering

task. These improvements have been achieved through fine-tuning models,

developing ad-hoc architectures, and prompting LLMs. One notable contri-

bution in this domain utilizes a relation-aware attention decoder and a pointer

network encoder [28]. This model incorporates three distinct scaled dot-

product attention mechanisms to generate SPARQL queries that effectively
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Figure 3.1: SGPT architecture

capture entity, relation, and keyword representations.

Further explorations involved experimenting with various models, includ-

ing T5 [17], BART [29], and Pointer Generation Networks [30], to assess

their effectiveness in KGQA tasks [5].

Another significant model employs a stack of transformer encoders to ex-

tract linguistic features from questions and uses GPT-2 as a decoder [7]. This

model preprocesses input sequences through five distinct embedding layers

to capture various properties of the input: word embeddings for token-level

information, POS-tag embeddings for part-of-speech tagging, dependency re-

lation embeddings for encoding relationships betweenword pairs, dependency

level embeddings for information about token children, and positional embed-

dings for absolute position information (see Figure 3.1). Word and positional

embeddings are utilized in the decoder, while the other embeddings are used in
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Figure 3.2: TSET architecture

the encoder. Despite its comprehensive design, this model is limited in captur-

ing connections among entities and relations in the knowledge graph, leading

to errors in generating accurate triple sequences for SPARQL queries.

Aone-shot generative approach has also been proposed, where the prompt

is augmented with a knowledge graph fragment necessary for constructing the

query and an example of a question-subgraph query [31].

To address this, a fine-tuned T5 model with a pretraining stage called

Triplet Structure Correction (TSC) was developed [6] (see Figure 3.2). In this

stage, the model randomly swaps the subject, predicate, and object positions

in SPARQL query triples with a certain probability, enhancing the model’s

understanding of triple order. Additionally, in the pretraining stage, they im-

plement masked language modeling (MLM) by randomly masking specific

tokens in an input sequence and allowing the model to predict the original

masked tokens from their context. Following the pretraining phase, the model

undergoes fine-tuning for the SPARQL query generation task. This approach

has established state-of-the-art performance on major KGQA datasets.
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Figure 3.3: KATE architecture

3.2 In-Context Learning

In-Context Learning (ICL) is a paradigm where learning is facilitated through

analogy. In this approach, a few demonstration examples are provided to form

a contextual prompt, typically expressed in natural language. The query ques-

tion is then appended to this prompt context, creating an input that is processed

by the language model to generate predictions. Unlike supervised learning,

which necessitates a training phase involving backward gradients to update

model parameters, ICL does not involve parameter adjustments. Instead, the

model is designed to discern patterns within the provided demonstrations and

make predictions accordingly [32]. Research has indicated that the efficacy of

ICL significantly depends on the characteristics of the demonstration surface,

including the selection, formatting, and sequencing of the examples [33].

3.2.1 Demonstrations selection

The selection of demonstrations aims to identify samples that serve as effec-

tive examples for ICL. KATE, an unsupervised retriever, employs k-nearest

neighbors and distance metrics, such as L2 distance and cosine similarity, to

select in-context examples for tasks like sentiment analysis, table-to-text gen-

eration, and question answering [34] (see Figure 3.3).
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The inclusion of diverse demonstrations in prompts for compositional se-

mantic parsing tasks has been shown to enhance structural coverage in target

utterances [35]. Using output scores of LLMs as unsupervised metrics has

shown effectiveness in demonstration selection; in particular, the best subset

permutation of kNN examples was selected based on the code length for data

transmission to compress label y given x and C [36]. Additionally, selecting

examples based on perplexity, specifically lower perplexity, has been found

to be an effective strategy [37].

3.2.2 Demonstrations formatting

In addition to directly selecting examples from training data, recent research

has focused on utilizing large language models to reformat the representation

of existing demonstrations. One approach involves generating demonstrations

directly from LLMs, thereby reducing reliance on external demonstration data

[38]. Structured Prompting has been proposed to encode demonstration ex-

amples separately with special positional embeddings, which are then pro-

vided to the test examples using a rescaled attention mechanism [39]. Other

approaches diverge by modifying the latent representation of demonstrations

[40].

3.2.3 Demonstrations ordering

Ordering the selected demonstration examples is also a crucial aspect. One ap-

proach is to arrange examples based on their similarity to the input, with the

closest example positioned as the first demonstration [34]. Another method

uses global and local entropy metrics, which have been shown to correlate

positively with in-context learning performance, to optimize demonstration

ordering [41]. Furthermore, an alternative strategy involves ranking demon-

strations from simple to complex, thereby progressively increasing the com-

plexity of examples during the inference process [42].
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3.3 Text-To-SQL

Acognate domain, text-to-SQL, focuses on the translation of natural language

questions to SQL queries. In this area, research has demonstrated a zero-shot

and few-shot approach using simple prompts, achieving lower results com-

pared to fine-tuned approaches with models such as GPT-3 [16] and CODEX

[43]. Various strategies for selecting examples based on similarities and dis-

similarities have been introduced [44]. For instance, selecting similar ques-

tions with the same difficulty level and dissimilar questions using k-means

clustering to obtain diverse examples close to each centroid has shown promis-

ing results.

More recently, an automatic chain-of-thought [45] approach has been pro-

posed [46], where question slices are matched with all possible table and

column names to identify the most relevant ones for a given question. This

approach utilizes models such as GPT-3.5 and GPT-4.

Despite the similarities between text-to-SQLand text-to-SPARQL, themeth-

ods developed for the former are not directly applicable to the latter. The

primary difference lies in the data models: text-to-SQL deals with a rela-

tively small-sized set of tables and columns, whereas text-to-SPARQL op-

erates within a domain modeled by a large-scale, semi-structured knowledge

graph. This fundamental difference necessitates distinct approaches and strate-

gies for effectively handling text-to-SPARQL tasks.



Chapter 4

Methodology

The following section defines the task to be tackled and provides an explana-

tion of the proposed approach, detailing the function of all its components.

4.1 Problem formulation

Knowledge GraphQuestionAnswering (KGQA) encompasses twomain com-

ponents: a knowledge graph and a question answering system. A knowledge

graph is a structured representation of facts, comprising entities, relationships,

and semantic descriptions [47]. Formally, a knowledge graph G is defined

as G := (E , R, F), where E represents entities, R represents relations, and

F ⊆ E × R × E are facts. Entities can be real-world objects or abstract

concepts, relationships denote the connections between entities, and seman-

tic descriptions of entities and their relationships include types and properties

with well-defined meanings [47] (see Figure 4.1) . Knowledge is expressed

in factual triples in the form of <head, relation, tail> or <subject, predicate,

object> under the Resource Description Framework (RDF) 1. For example, a

fact can be represented as (Albert Einstein, WinnerOf, Nobel Prize).

On the other hand, Question Answering (QA) systems can be seen as an

1https://www.w3.org/TR/rdf-concepts/
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Figure 4.1: An example of a Knowledge Graph (KG)

extension of search engines. They aim to automatically provide users with pre-

cise answers to questions posed in natural language, instead of simply return-

ing a ranked list of relevant sources based on a set of keywords. The architec-

ture of QAsystems depends significantly on the type of underlying knowledge

sources. If the objective is to extract answers from plain text, traditional infor-

mation retrieval techniques combined with machine comprehension methods

are commonly used. Conversely, if data is represented as a graph, methods

relying on graph processing and SPARQL query generation are employed to

extract the required information [48].

Thus, the KGQA task can be framed as a text-to-SPARQL task where a

question q must be translated into a SPARQL query sq to be executed on G by

a SPARQL engine, to return a (possibly empty) answer a. According to the

official definition 2 a SPARQL query sq can be formally considered as a tuple

〈GP, DS, SM, Ri〉 where GP is a graph pattern, DS is an RDF dataset, SM

is a set of solution modifiers (ORDER, PROJECTION, DISTINCT, OFFSET,

LIMIT ), R is a result form (SELECT, CONSTRUCT, DESCRIBE, ASK). The

2https://www.w3.org/2001/sw/DataAccess/rq23/defns
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In-Context Prompt
The task involves translating questions from English into
SPARQL queries for the Wikidata knowledge graph. The
queries must follow specific guidelines to ensure
accuracy and correct execution:
1. Enclose SPARQL queries within <SPARQL></SPARQL> tags.
2. Utilize all provided golden entities and relations
exclusively to construct the query accurately. Do not use
any other entities or relations. 
3. Examples are provided below for guidance.

Examples:

###

Question: Where was Bach born?

Golden entities:
http://www.wikidata.org/entity/Q1339 (Johann 
Sebastian Bach)
Golden relations:
http://www.wikidata.org/prop/direct/P19 (place of birth)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> 
PREFIX wd: <http://www.wikidata.org/entity/> SELECT
DISTINCT ?uri WHERE { wd:Q1339 wdt:P19 ?uri . }</SPARQL>
###

...
###

Question: Which country was Bill Gates born in?

Gold Entities:
http://www.wikidata.org/entity/Q5284 (Bill Gates)

Gold Relations:
http://www.wikidata.org/prop/direct/P19 (place of birth),
http://www.wikidata.org/prop/direct/P17 (country)

Query:

Question: Which country was Bill Gates born in?
Entities: http://www.wikidata.org/entity/Q5284
Relations: http://www.wikidata.org/prop/direct/P19,
http://www.wikidata.org/prop/direct/P17

Encode

Multi-Query Generation

LLM

PREFIX wdt: <http://www.wikidata.org/prop/direct/>  PREFIX wd:
<http://www.wikidata.org/entity/> SELECT DISTINCT ?uri WHERE { wd:Q5284
wdt:P19 ?uri . ?uri wdt:P17 ?uri . }

Answer
Selection

PREFIX wdt: <http://www.wikidata.org/prop/direct/>  PREFIX wd:
<http://www.wikidata.org/entity/> SELECT DISTINCT ?uri WHERE { wd:Q5284
wdt:P19 ?uri . ?uri wdt:P17 ?uri2 .

Encode

SPARQL
Engine

http://www.wikidata.org/entity/Q30(United States of America)

... b

Dynamic Few-Shot Retrieval

Figure 4.2: Sketch of DFSL. Given a question, its entities and its relations, k-

most similar examples are retrieved from a text-to-SPARQL collection S and

injected into the in-context prompt. Then, the LLM generates one or more

queries that are all executed by a SPARQL engine. An answer selection strat-

egy identifies which response to pick.

entities and relations in q, denoted as Eq and Rq, may be, and usually are, ex-

tracted from q before generating sq. Hence, query generation can be tackled as

a conditional text generation problem given q, Eq and Rq. Within the scope of

ICL, Pθ is a pre-trained LLM and the conditional input Eq, Rq, q is combined

with other contextual information C, such as additional instructions, guide-

lines, constraints and demonstrations, all expressed in natural language text.

Accordingly, the generated query is:

sq = arg max
s

Pθ(s|C, Eq, Rq, q). (4.1)
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4.2 Dynamic Few-Shot Retrieval

The selection and sequencing of demonstrations in the prompt significantly

influence performance in the field of In-Context Learning (ICL), as demon-

strated in Section 3.2.Typically, without a strategic approach, the examples in-

cluded in the prompt are predetermined, representative instances of the task at

hand, chosen manually during the prompt design phase. However, this hand-

picking process presents several challenges:

• Scalability: As the number of classes increases, ensuring that the pre-

determined examples are representative of each class becomes increas-

ingly difficult. This limitation can restrict the model’s applicability to

larger and more complex datasets.

• LimitedVariabilityWithin Classes: Predetermined examples may not

cover the full spectrum of possible variations within a class. Conse-

quently, the model may struggle to generalize well to new instances.

• Effort andTimeRequirements: Hand-picking examples demands sig-

nificant effort and time, making it an inefficient approach.

To address these issues, a dynamic retrieval method for selecting relevant

examples based on their similarity to the input question is employed. Inspired

by KATE [34], the approach employed leverages the similarity between a

question q and a set of previously answered text-to-SPARQL examples col-

lected in a storage S (see Figure 4.2). Each stored example consists of a tuple

containing a question x, its entities Ex and relations Rx, and the associated

SPARQL query sx. To capture the semantic features of the question, enti-

ties, and relations, these components are mapped onto a vector representation

eq ∈ Rd using a sentence encoder. The input for the encoder-only language

model (LM) is formed by concatenating the question, entities, and relations

into a single sequence q := [q, Eq, Rq].
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Likewise, we encode each example x ∈ S into a vector ex ∈ Rd and then

compute the similarity between the target question and the storage:

score(q, x) = sim(eq, ex), ∀x ∈ S, (4.2)

where sim is a similarity function. Based on the computed scores, the k-

most similar examples from S are retrieved and included as demonstrations in

the in-context prompt. This dynamic approach ensures that the examples are

relevant and representative, improving the model’s performance and general-

ization capabilities.

4.3 In-Context Prompt

The in-context prompt employed inDynamic Few-Shot Learning (DFSL) com-

prises three distinct parts:

• Task Description: This section instructs the Language Model (LLM)

using a numbered list of guidelines. These guidelines provide detailed

instructions on the output format and the available information. This

part is highlighted in Figure 4.3 with a blue block.

• Retrieved Demonstrations: Highlighted in Figure 4.3 with a green

block, this section includes the top-k retrieved demonstrations. Each

demonstration consists of a question, its entities and relations, denoted

as gold entities/relations, all paired with their SPARQL query delimited

by <SPARQL></SPARQL> tags. Each individual example within this sec-

tion is separated by the ### symbol.

• Input Question: This final section presents the input question along

with its associated gold entities and relations. This part is highlighted

in Figure 4.3 with a red block.

The answer generated by the LLM, prompted with the above structure, is
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In-Context Prompt

The task involves translating questions from English into SPARQL queries for the
Wikidata knowledge graph. The queries must follow specific guidelines to ensure
accuracy and correct execution:
1. Enclose SPARQL queries within <SPARQL></SPARQL> tags.
2. Utilize all provided golden entities and relations exclusively to construct the
query accurately. Do not use any other entities or relations. 
3. Examples are provided below for guidance.

Examples:

###
Question: Where was Bach born?

Golden entities:
http://www.wikidata.org/entity/Q1339 (Johann 
Sebastian Bach)
Golden relations:
http://www.wikidata.org/prop/direct/P19 (place of birth)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>  PREFIX wd:
<http://www.wikidata.org/entity/> SELECT DISTINCT ?uri WHERE { wd:Q1339 wdt:P19 ?
uri . }</SPARQL>
###

...
###

Question: Which country was Bill Gates born in?

Gold Entities:
http://www.wikidata.org/entity/Q5284 (Bill Gates)

Gold Relations:
http://www.wikidata.org/prop/direct/P19 (place of birth),
http://www.wikidata.org/prop/direct/P17 (country)

Query:

Figure 4.3: DFSL Prompt

parsed to extract the text enclosed within the <SPARQL></SPARQL> tags. The

resulting query, denoted as sq is executed by a SPARQL engine on G to yield

the answer to q. We call our approach Dynamic Few-Shot Learning (DFSL).

4.4 Multi-Query Generation

One of the primary challenges faced by Large Language Models (LLMs) in

SPARQL query generation is the identification of the subject and object in a

relation, a problem known as the triple-flip error [6]. This error arises when
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Multi-Query Generation

LLM

SELECT DISTINCT ?uri WHERE { wd:Q5284 wdt:P19 ?
uri . ?uri wdt:P17 ?uri . }

Answer
Selection

SELECT DISTINCT ?uri WHERE { wd:Q5284 wdt:P19 ?
uri . ?uri wdt:P17 ?uri2 . }

SPARQL
Engine

http://www.wikidata.org/entity/Q30(United States of America)

... b

PROMPT

Figure 4.4: Dynamic Few Shot Learning Multi-Query

LLMs incorrectly swap the subject with the object in the query, often seem-

ingly at random. Addressing this issue without resorting to fine-tuning is chal-

lenging. One potential solution is to extract a relevant subgraph based on the

given question; however, this method has significant drawbacks. It is inef-

ficient for multi-hop queries due to the large volume of facts that need to be

extracted, and it can result in exceedingly large prompts.

The Dynamic Few-Shot Learning (DFSL) methodology offers a way to

mitigate this issue by including similar examples in the in-context prompt,

which helps clarify subject-object roles. To further reduce triple-flip errors,

the generation of multiple SPARQL queries is proposed, as depicted in Figure

4.4. This can be achieved either by explicitly instructing the model in the

prompt to producemultiple queries that swap the subject and object in different

queries (DFSL-MQP), or by retaining all final hypotheses generated during

beam search. The uncertainty of the model in correctly identifying subjects

and objects is likely reflected in the beam search process, thus considering
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both possible triple-ordering hypotheses plausible.

Thus, instead of just returning the most probable sequence s according

to Equation 4.1, all b queries {sq,1, . . . , sq,b} formulated by beam search are

retained. This approach, referred to as DFSL-MQ, denote such a multi-query

extension of DFSL.

4.4.1 Query Selection

Executing multiple queries inevitably results in multiple possible answers.

Therefore, it is essential to define an answer selection criterion. Two heuristics

were designed for this purpose: Largest Set (LS) and First Set (FS).

The LS heuristic executes all the b queries, obtaining with each query sq,j a

(possibly empty) answer set Aj . LS then selects the largest answer set among

{A1, . . . , Ab}, formally defined as:

A = arg max
Ai

(|A1|, . . . , |Ab|), (4.3)

In cases of ties, the first largest set is chosen. The rationale behind LS is that

incorrect candidates will likely produce empty results. However, LS can be

misled by under-constrained queries that returnmany irrelevant instances. The

FS heuristic, on the other hand, adheres to the natural ordering of the beams

by selecting the first query that yields a non-empty answer set. This method

leverages the inherent prioritization in the beam search process to identify the

most relevant answers efficiently.



Chapter 5

Experiments and Evaluation

This section studies the effects of each component involved in the DFSL ap-

proach. DFSL and its extension DFSL-MQ are evaluated on four KGQA

datasets. The investigation considers different backbones and compares them

with multiple baselines and state-of-the-art solutions.

5.1 Datasets

To assess the flexibility and robustness of the approach, it was evaluated on

four heterogeneous KGQAbenchmark datasets based on two different Knowl-

edge Graphs: Wikidata and DBpedia.

QALD-9 is a dataset from theQuestionAnswering over LinkedData (QALD)

challenge series. It comprises 408 training questions and 150 test questions.

Unlike other KGQAbenchmarks, the SPARQLqueries are intended for a DB-

pedia Knowledge Graph, hence it is referred to as QALD-9 DB.

QALD-9 plus extendsQALD-9with new languages and transfers SPARQL

queries from DBpedia to Wikidata. Despite some queries not being portable

toWikidata due to the absence of corresponding information, it still comprises

371 training questions and 136 test questions. Only English questions are con-

sidered in the experiments.

QALD-10 is the latest dataset in the QALD series, designed to increase
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Figure 5.1: LC-QUAD 2.0 questions distribution

Modifier Q10-WD

Test

Q9-Plus-

DB Train

Q9-Plus-

DB Test

Q9-Plus-

WD Train

Q9-Plus-

WD Test

COUNT* 126 57 33 32 18

LIMIT 17 39 11 43 12

ORDER BY 17 36 11 43 12

FILTER 74 31 17 30 13

ASK 60 37 4 36 3

UNION 5 29 17 10 6

OFFSET 3 1 0 2 0

GROUP BY 95 19 11 12 2

HAVING* 1 3 2 2 1

YEAR* 43 6 10 20 4

NOW* 1 3 2 1 1

Table 5.1: QALD Datasets statistics

the complexity of gold SPARQL queries. It consists of 412 training questions

extracted from QALD-9 plus Wikidata. The test set, created from scratch,

includes 394 test questions that express real-world information needs. Test

questions significantly differ from those in the training set.
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Table 5.1 provides a detailed statistical overview of the QALD datasets,

highlighting the distribution of various SPARQLquery modifiers across train-

ing and test sets.

LC-QUAD 2.0 is a large-scale dataset grounded in Wikidata. It consists

of 30,226 simple and complex questions: 24,180 in the training set, and 6,046

in the test set. Questions are diverse, including single-fact and multi-fact,

boolean, count, and other query types, the distribution of the queries in the

dataset is shown in the diagram in Figure 5.1. LC-QuAD 2.0 allows for the

evaluation of DFSL performance against a large text-to-SPARQL dataset.

5.2 Backbones

The DFSL architecture is built upon three large language models: Mixstral

8x7B, LLaMA-3 70B, and CodeLLaMA 70B.

Mixstral 8x7B [18] is based on the Sparse Mixture of Experts (SMoE)

architecture. It utilizes eight ”experts” with only two experts activated per

token, significantly reducing computational load. This model contains 46.7

billion parameters, making it the smallest backbone used in this work. Due

to its SMoE architecture, fewer than 13 billion parameters are active at each

inference step, enhancing its efficiency.

LLaMA-3 70B is an LLM developed on the LLaMA architecture. It has

been trained on 15 trillion tokens, representing a 650% increase from its pre-

decessor, LLaMA 2 [19]. The vocabulary of LLaMA-3 70B has expanded to

128,256 tokens, up from 32,000 in LLaMA 2. Additionally, the training data

includes four times more coding data compared to LLaMA 2, improving its

capabilities. As of this writing, LLaMA-3 70B is one of the best-performing

open-weights LLMs available.
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CodeLLaMA 70B [49] is initialized from LLaMA-2 70B and is a spe-

cialized version fine-tuned on 1 trillion tokens of code-heavy data. This spe-

cialization makes CodeLLaMA particularly suitable for SPARQL query gen-

eration

5.3 Baselines

To evaluate the architecture, several baselines were implemented, allowing an

analysis of the impact of the dynamic retrieval of examples versus simple and

straightforward solutions for this task (details on the prompts used for each

baseline are provided in Appendix).

• Plain Questions: The first baseline assesses the model’s inherent mem-

ory stored in its parameters. In this approach, the LLM is provided with

a task description, minor formatting guidelines, and the question q, and

it is required to generate a SPARQL query. No in-context examples,

entities, or relations associated with q are provided. This baseline aims

to evaluate the LLM’s general SPARQL query generation capabilities

without additional contextual information.

• Zero-Shot Learning: The second baseline investigates the effect of ex-

cluding dynamically retrieved examples, providing only the question q

along with its gold entities and relations. The DFSL prompt, as illus-

trated in Figure 4.3, remains unchanged except for the removal of the

green block containing the demonstrations and minor adjustments in

the guidelines within the Instruction Block to account for the absence

of examples.

• Few-Shot Learning: Following the zero-shot approach, a few-shot

learning method is tested. This involves feeding a single set of k man-

ually selected examples, which are used for all questions in the test set.
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These examples are chosen based on the dataset to maximize diversity

and cover various types of queries.

• Multi Query Prompting (DFSL-MQP): The final baseline provides an

alternative to the multi-query generation method (DFSL-MQ) based on

beam search. This naive multi-query prompting strategy entails asking

the model to generate multiple queries to answer the question. To facil-

itate the creation of inverted subject-object queries and address triple-

flip errors, the prompt explicitly requests the model to produce such

SPARQLqueries. Answer selection employs LS and FS heuristics, sim-

ilar to DFSL-MQ.

5.4 Experimental Setup

5.4.1 Implementation

The implementation of the proposed method leverages the advanced language

understanding capabilities of LLMs for the English language. Consequently,

the experiments are restricted to English questions. Each dataset’s training set

functions as a storage for retrieving the k most similar examples using DFSL.

The specific tuning of k is discussed in the subsequent section. This approach,

while currently dataset-specific, can be generalized for non-dataset-specific

storage, thereby enhancing both efficiency and flexibility.

Examples, which consist of questions paired with their corresponding gold

entities and gold relations, are encoded using a sentence transformer model,

all-mpnet-base-v2 1. The similarity score is computed using the cosine simi-

larity function:

cosine similarity = cos(θ) = A · B
‖A‖‖B‖

1https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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The advantages of utilizing the cosine similarity function include:

• Scale Invariance: The function is independent of the magnitude of

the vectors, thus accommodating richer and higher-dimensional embed-

dings without issues.

• Efficiency: Cosine similarity computation is computationally efficient

as it primarily involves dot products and vector norms.

Inference is conducted using beam search in two configurations: in DFSLwith

a beam size b of 3, and in DFSL-MQ with a beam size of 10. All experiments

were executed on a cluster with four NVIDIAA100 GPUs.

5.4.2 Number of Few-shot Examples

An initial experiment was conducted to analyze the effect of the k param-

eter, which represents the number of few-shot examples, prior to exploring

different architectural variants. To balance context length and computational

efficiency, k was restricted to the values 1, 3, 5, 7, and the DFSLapproach with

the LLaMA 3 70B backbone was evaluated across the four datasets.

1 3 5 7
k

40

50

60

70

80

F1

QALD-9 Plus WD
QALD-9 DB
QALD-10
LC-QUAD 2.0

Figure 5.2: Impact of the number of in-context examples on the four bench-

marks.

The results in Figure 5.2 indicate that values of k greater than one perform

comparably well on smaller benchmarks. However, for LC-QUAD 2.0, which
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contains approximately 25,000 examples as storage, increasing k appears to

be beneficial. This improvement can be attributed to the higher likelihood

of finding similar examples in larger datasets as k increases. Consequently,

k = 5 was chosen for all subsequent experiments as it provides a balanced

trade-off across all datasets.

5.4.3 Prompt

The default template for the prompt used in our experiments is depicted in

Figure 4.3. The golden entities and relations are represented in their full In-

ternationalized Resource Identifier (IRI) form rather than a contracted form.

For example, the city ofMunich is represented as http://www.wikidata.org/en-

tity/q1726 in Wikidata and http://dbpedia.org/resource/Munich in DBpedia.

Additionally, for theWikidata experiment prompts, both entities and relations

are provided with their associated labels, such as http://www.wikidata.org/en-

tity/q38111 (Leonardo DiCaprio). This inclusion of labels helps the model

better understand the context of the entities and relations involved.

However, minor modifications are necessary in certain scenarios. For in-

stance, when conducting experiments on the DBpedia knowledge graph, the

reference toWikidata in the initial text segment (blue-block) is substitutedwith

DBpedia. In studies examining the absence of gold information, all references

to gold entities and relations are omitted from the prompt in accordance with

the specific ablation. Detailed descriptions of each prompt variation used in

our experiments are provided in the Appendix.

There are no differences in the prompt layout when performing few-shot

learning baseline experiments. In zero-shot learning, the in-context examples

and any references to them are removed, while all other aspects remain un-

changed.
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5.4.4 Evaluation metric

In our experiment, we utilize the standard F1 score to evaluate the accuracy

between the ground truth answer and the answer derived from the predicted

SPARQL queries. Assume Ap is the predicted answer and Aq is the ground

truth. Let P represent the precision, defined as the ratio of the number of

correct results obtained from the predicted query to the total number of results.

Similarly, let R represent the recall, defined as the ratio of the number of

correct results obtained from the predicted query to the total number of correct

results in the ground truth query.

The formal mathematical definition of the F1 score is the harmonic mean

of precision and recall, expressed as:

F1 = 2 · P · R
P + R

(5.1)

When both the predicted and ground truth queries return an empty set, an

F1 score of 1 is assigned. The overall F1 score for the test set is calculated as

the average F1 score for each example in the test set.

5.5 Results

A comprehensive evaluation was conducted to assess the performance of the

proposed approach in various contexts. Initially, the impact of the primary

approach was compared against baseline methods. Subsequently, the differ-

ences between the two architectures, DFSL and DFSL-MQ, were analyzed,

including a comparison with the Multi-Query Prompt-based baseline. Finally,

the results were compared with state-of-the-art approaches to establish the ef-

fectiveness of the proposed methods.
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5.5.1 Impact of Dynamic Examples

To evaluate the impact of dynamically retrieving few-shot examples, a com-

parison was conducted between Dynamic Few-Shot Learning (DFSL) on var-

ious backbones against Zero-Shot and Few-Shot Learning baselines. The re-

sults are detailed in Table 5.2 for Wikidata and in Table 5.3 for DBpedia.

Regarding backbones, Llama 3 consistently surpasses Mixtral and CodeL-

lama in the zero-shot learning scenario. In the few-shot learning context, the

performance of Llama 3 and CodeLlama is generally comparable. The strong

zero-shot performance of Llama 3 may be attributed to data contamination;

however, further investigation is required to confirm this hypothesis.

Approach Backbone QALD-9 Plus QALD-10 LC-QUAD 2.0

Zero-shot 49.90 33.76 40.66

Few-shot Mixtral 7x8 54.80 (+4.90) 50.26 (+16.50) 61.04 (+20.38)

DFSL 71.75 (+21.85) 49.90 (+16.14) 81.81 (+41.15)

Zero-shot 63.01 58.31 54.21

Few-shot Llama-3 70B 67.69 (+4.68) 51.28 (-7.03) 68.52 (+14.31)

DFSL 73.60 (+10.59) 56.59 (-1.72) 81.93 (+27.72)

Zero-shot 45.94 33.36 38.40

Few-shot CodeLlama 70B 64.49 (+18.55) 57.38 (+24.02) 64.46 (+26.06)

DFSL 76.59 (+30.65) 57.69 (+24.33) 85.45 (+47.05)

Table 5.2: Comparison between zero-shot, few-shot and DFSL with different

backbones on Wikidata Datasets. Absolute F1 gains with respect to the naive

zero-shot approach are reported between parenthesis.

Both few-shot learning and DFSL generally demonstrate substantial im-

provements over the zero-shot baseline across all backbones and datasets.

An exception is observed with Llama 3 on the QALD-10 dataset. Notably,

DFSL exhibits significant enhancements in F1 scores compared to the few-

shot learning baseline, particularly in the LC-QUAD 2.0, QALD-9 Plus, and

QALD-9 DB datasets, with F1 score increases reaching up to 21 absolute

points.

In contrast, for QALD-10, where the test set distribution differs from the



5.5 Results 36

Approach Backbone QALD-9 DB

Zero-shot 65.73

Few-shot Mixtral 7x8 63.86 (-1.87)

DFSL 72.74 (+7.01)

Zero-shot 70.49

Few-shot Llama-3 70B 68.84 (-1.65)

DFSL 72.66 (+2.17)

Zero-shot 66.43

Few-shot CodeLlama 70B 72.67 (+6.24)

DFSL ì75.14 (+8.71)

Table 5.3: Comparison between zero-shot, few-shot and DFSL with different

backbones on DBpedia Dataset. Absolute F1 gains with respect to the naive

zero-shot approach are reported between parenthesis.

training set, there are no significant differences between DFSL and the stan-

dard few-shot learning approach. This suggests that DFSL provides limited

benefits when the storage contains unrelated examples.

Overall, DFSL with CodeLlama achieved the highest performance across

all configurations. Consequently, CodeLlama is selected as the backbone for

subsequent DFSL experiments.

5.5.2 Impact of Multi-Query Generation

This section examines the performance of DFSL-MQ, the multi-query exten-

sion of DFSL. Both answer selection strategies, Largest Set (LS) and First Set

(FS), were assessed and compared against the standard DFSL and the multi-

query prompting baseline described in Section 5.3. The comprehensive results

are presented in Table 5.4.

The analysis reveals that the advantage of utilizing multiple queries is not

guaranteed. Specifically, the multi-query prompting baseline exhibited infe-

rior performance in three out of four datasets compared to the single-query

DFSL, regardless of the answer selection strategy implemented. In contrast,

DFSL-MQ generally provided performance improvements. Both LS and FS

heuristics were effective when hypotheses were generated from the beams.
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Approach QALD-9 Plus QALD-10 LC-QUAD 2.0 QALD-9 DB

DFSL 76.59 57.69 85.45 75.14

DFSL-MQPLS 73.67 58.85 85.06 73.25

DFSL-MQPFS 74.40 58.34 85.38 73.92

DFSL-MQLS 83.21 60.48 85.54 72.06

DFSL-MQFS 84.45 (+7.86) 62.20 (+4.51) 89.10 (+3.65) 77.89 (+2.75)

Table 5.4: Multi-query Generation: comparing DFSL-MQ with DFSL and

Multi-query prompting baselines. Absolute F1 gains with respect to DFSL

are reported for the best performing configuration.

Furthermore, FS consistently surpassed LS, showing notable improvements

in the QALD-9 DB dataset.

5.5.3 In-context Learning vs Fine-tuning

Prior sections have focused on evaluating DFSL within the context of In-

Context Learning approaches. In Table 5.5 and in Table 5.6, however, the

performance of DFSL is compared against state-of-the-art models that have

been specifically trained and fine-tuned for downstream KGQA tasks.

Approach QALD-9 Plus QALD-10 LC-QUAD 2.0

Plain Question 0.08 0.02 12.00

BART [5] - - 64.00

PGN-BERT-BERT [5] - - 86.00

SGPT [7] - - 89.04

TSET-small [6] 72.86 47.15 94.00

TSET-base [6] 75.85 51.37 95.00

Zero-shot Learning 45.94 33.36 38.40

Few-shot Learning 64.49 57.38 64.46

DFSL 76.59 57.69 85.45

DFSL-MQ beam FS 84.45 (+8.60) 62.20 (+10.83) 89.10 (-5.90)

Table 5.5: DFSL and ICL approaches vs state-of-the-art fine-tuned models on

Wikidata Benchmark.

Remarkably, without any training, DFSL-MQ surpasses current state-of-the-

art methods in three out of four benchmarks: QALD-9 Plus, QALD-10, and

QALD-9 DB, even in the single-query DFSL configuration.
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Approach QALD-9 DB

Plain Question 16.42

SGPT [7] 67.82

Zero-shot Learning 66.43

Few-shot Learning 72.67

DFSL 75.14

DFSL-MQ beam FS 77.89 (+10.07)

Table 5.6: DFSL and ICL approaches vs state-of-the-art fine-tuned models on

DBpedia Benchmark.

However, DFSL-MQdoes not achieve state-of-the-art results in LC-QUAD

2.0, the dataset most susceptible to triple-flip errors. This indicates that while

multi-query generation mitigates this issue to some extent, it does not com-

pletely resolve the problem.

5.6 Qualitative Analysis

The qualitative analysis of the results encompasses several key aspects. Firstly,

it demonstrates how errorsmade by traditional few-shot learning are addressed

by the DFSL approach. Following this, a comparative qualitative analysis be-

tween the two heuristics employed is presented. Lastly, the analysis illustrates

how the top-performing DFSL-MQ approach resolves triple flip errors com-

mitted by the DFSL method.

5.6.1 DFSL vs Few-Shot Learning

The qualitative comparison between Dynamic Few-Shot Learning (DFSL)

and standard Few-Shot Learning in Table 5.7, Table 5.8, and Table 5.9 high-

lights the benefits of DFSL in mitigating errors through the use of similar

in-context examples.

In Table 5.7, the traditional Few-Shot Learning approach misplaces enti-

ties and fails to capture the complete relationship, resulting in an inaccurate
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Question Who is the daughter of Robert Kennedy married to?

Target Query SELECT DISTINCT ?uri WHERE { wd:Q25310 wdt:P40
?daughter . ?daughter wdt:P21 wd:Q6581072 .
?daughter wdt:P26 ?uri .}

Few-Shot SELECT DISTINCT ?uri WHERE { ?uri wdt:P40 wd:Q25310
; wdt:P21 wd:Q6581072 ; wdt:P26 ?spouse .}

DFSL SELECT DISTINCT ?uri WHERE { wd:Q25310 wdt:P40
?child . ?child wdt:P21 wd:Q6581072 . ?child
wdt:P26 ?uri . }

Similar IC Example SELECT DISTINCT ?uri WHERE { wd:Q43247 wdt:P40
?child . ?child wdt:P26 ?uri . }

Table 5.7: A qualitative comparison between DFSL and Few-shot Learning

for the query ”Who is the daughter of Robert Kennedy married to?”.

query. DFSL, by leveraging a similar example, correctly identifies the hier-

archical relationship between Robert Kennedy, his daughter, and her spouse,

thus constructing a precise query. For the query in Table 5.8, Few-Shot

Question Which countries are connected by the Rhine?

Target Query SELECT DISTINCT ?uri WHERE { wd:Q584 wdt:P17 ?uri .
?uri wdt:P31 wd:Q6256 .}

Few-Shot SELECT DISTINCT ?uri WHERE { ?uri wdt:P31 wd:Q6256
; wdt:P17 wd:Q584 .}

DFSL SELECT DISTINCT ?uri WHERE { wd:Q584 wdt:P17 ?uri .
?uri wdt:P31 wd:Q6256 . }

Similar IC Example SELECT DISTINCT ?res WHERE { wd:Q3392
wdt:P885/wdt:P17 ?res . }

Table 5.8: A qualitative comparison between DFSL and Few-shot Learning

for the query ”Which countries are connected by the Rhine?”.

Learning misplaces the entity representing the Rhine (wd:Q584), leading to

an incorrect query. DFSL, however, retrieves a relevant example involving

the triple wd:Q3392 wdt:P885/wdt:P17 ?res from a similar example, cor-

rectly positioning the Rhine entity. In Table 5.9 the Few-Shot approach

incorrectly places the ?capital variable, resulting in an inaccurate query that

doesn’t list capitals correctly. DFSL, by using a similar example, accurately

identifies the relationship between African countries and their capitals, posi-

tioning ?uri, the variable associated to the capitals, in the correct position.
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Question Give me the capitals of all countries in Africa.

Target Query SELECT DISTINCT ?uri WHERE { ?country wdt:P31
wd:Q6256 . ?country wdt:P30 wd:Q15 . ?country
wdt:P36 ?uri .}

Few-Shot SELECT DISTINCT ?uri WHERE { ?uri wdt:P31 wd:Q6256
; wdt:P30 wd:Q15 ; wdt:P36 ?capital .}

DFSL SELECT DISTINCT ?uri WHERE { ?country wdt:P31
wd:Q6256 ; wdt:P30 wd:Q15 . ?country wdt:P36 ?uri
.}

Similar IC Example SELECT DISTINCT ?uri WHERE { wd:Q5451 wdt:P17
?country . ?country wdt:P36 ?uri . }

Table 5.9: A qualitative comparison between DFSL and Few-shot Learning

for the query ”Give me the capitals of all countries in Africa.”.

5.6.2 First Set vs Large Set heuristics

Table 5.10 showcase errors caused by employing LS answer selection heuris-

tic. Notably, by choosing larger sets,are choosen queries that are often rele-

gated to latter positions in the beam hypotheses, which tend to bemore general,

thus more prone to returning a greater number of results. On the other hand

FS return queries placed in the first positions which are the most likely to be

correct.

Question Target Query Heuristic Predicted Query Beam

What is manufactured
NEC PC-9800 series
whose sector is elec-
tronics?

SELECT ?answer WHERE
{ wd:Q183505 wdt:P176
?answer . ?answer
wdt:P452 wd:Q11650 }

LS
SELECT ?answer WHERE {
wd:Q183505 wdt:P176 ?X .
?X wdt:P452 wd:Q11650 . ?X
wdt:P31 ?answer}

7

FS select distinct ?obj where
{ wd:Q183505 wdt:P176 ?obj
. ?obj wdt:P452 wd:Q11650 }

4

What is the enthalpy of
vaporization for potas-
sium hydroxide?

select distinct
?answer where {
wd:Q132298 wdt:P2116
?answer}

LS
ASK WHERE { wd:Q14982
wdt:P2116 ?obj filter(?obj
= 37400) }

3

FS select distinct ?answer
where { wd:Q132298
wdt:P2116 ?answer}

1

Which is the rural city
of Fukushim?

SELECT ?answer WHERE
{ wd:Q161176 wdt:P131
?answer . ?answer
wdt:P150 wd:Q1347240}

LS
SELECT ?answer WHERE {
wd:Q161176 wdt:P131 ?X . ?X
wdt:P150 ?answer}

3

FS SELECT ?answer WHERE
{ wd:Q161176 wdt:P131
?answer . ?answer wdt:P150
wd:Q1347240}

1

Table 5.10: Qualitative comparison between different answer selection strate-

gies in DFSL-MQ.
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5.6.3 DFSL vs DFSL-MQ

Table 5.11, 5.12 and 5.13 present examples of triple flip errors with the DFSL

architecture. The DFSL architecture returns a single query, the one which is

the most likely to be correct according to the model but also affected by triple

flip error. In contrast, the DFSL-MultiQuery (DFSL-MQ) variant returns mul-

tiple queries based on the hypotheses generated by beam search and thus ex-

ploring a range of potential answers and choose themost appropriate one. In

Question Who is the enclave within of Montreal?

Target Query select distinct ?sbj where { ?sbj wdt:P501 wd:Q340
. ?sbj wdt:P31 wd:Q171441 }

DFSL select distinct ?obj where { wd:Q340 wdt:P501 ?obj
. ?obj wdt:P31 wd:Q171441 }

DFSL-MQ select distinct ?sbj where { ?sbj wdt:P501 wd:Q340
. ?sbj wdt:P31 wd:Q171441 }

Table 5.11: Some triple-flip errors that are solved by DFSL-MQ for the query

”Who is the enclave within of Montreal?”.

Table 5.11, the DFSLmodel incorrectly places the entity wd:Q340 (Montreal)

as the subject of the triple with the relation wdt:P501 (enclave within). Table

Question The trachea is of what anatomical branch?

Target Query select distinct ?answer where { ?answer wdt:P3261
wd:Q175449}

DFSL select distinct ?answer where { wd:Q175449
wdt:P3261 ?answer}

DFSL-MQ select distinct ?answer where { ?answer wdt:P3261
wd:Q175449}

Table 5.12: Some triple-flip errors that are solved by DFSL-MQ for the query

”The trachea is of what anatomical branch?”.

5.12 shows an instance of a 1-hop query where the DFSL model erroneously

places the entity wd:Q175449. Finally, in Table 5.13, the DFSL model

incorrectly positions the entity wd:Q34266 (Russian Empire) as the object of

the triple. The DFSL-MQ approach, leveraging the beam search hypothesis,

correctly places the entity.
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Question What revolution caused the destruction of the
Russian Empire?

Target Query select distinct ?obj where { wd:Q34266 wdt:P770
?obj . ?obj wdt:P31 wd:Q10931 }

DFSL select distinct ?sbj where { ?sbj wdt:P770
wd:Q34266 . ?sbj wdt:P31 wd:Q10931 }

DFSL-MQ select distinct ?obj where { wd:Q34266 wdt:P770
?obj . ?obj wdt:P31 wd:Q10931 }

Table 5.13: Some triple-flip errors that are solved by DFSL-MQ for the query

”What revolution caused the destruction of the Russian Empire?”.

5.7 Ablation studies

5.7.1 Different Example Encoding

As described in Section 4.2, the embeddings were computed by concatenating

the textual input, which consists of the question along with its corresponding

list of gold entities and relations, and utilizing a Sentence Transformer model

to obtain the relative embeddings. This section examines the impact of in-

corporating this additional information compared to a baseline where only the

question is used to generate embeddings.

In Figure 5.3, the performance of the DFSL, represented by orange bars,

is compared with the baseline approach, represented by blue bars, across all

datasets and model backbones. The results demonstrate that, with the excep-

tion of the LLaMA 3 70B model on the QALD9 DB dataset, the DFSL em-

bedding strategy augmentedwith gold entities and relations consistently yields

higher performance than the baseline.

The enhanced performance can be attributed to the model’s ability to re-

trieve examples not solely based on semantically similar questions, but also

those that contain similar entities and relations. This leads to the inclusion of

SPARQL query examples in the prompt that closely align with the test set’s

golden SPARQL query, thereby improving the model’s overall efficacy.
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Figure 5.3: Comparison of Embeddings: DFSL (in orange) encoding that in-

corporates question, entities and relations versus an embedding solely based

on the question q (in blue).

5.7.2 Absence of gold Information

In knowledge graph question answering (KGQA), the generation of SPARQL

queries typically relies not only on the question itself but also on the associated

entities and relations. This information is often pre-identified, as SPARQL

query generation is usually the final step in a pipeline where entities and re-

lations are extracted in earlier stages. However, this information may not al-

ways be available. Therefore, it is crucial to evaluate the approach in scenar-

ios where some or all of this information is missing. Specifically, the model

is assessed by omitting either the entities (Eq) or the relations (Rq), and also

when both are completely absent. The absence of information is maintained

throughout the entire process. For instance, when entities are removed, they

are excluded from both storage and the prompt. The embeddings used for re-

trieval are computed by encoding an input without any entities concatenated in

q, resulting in q = [q, Rq]. he impact of this absence of information is evalu-
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Approach QALD-9 DB

Plain Question 16.42

DFSL 75.14

DFSL w/o Rq 56.62 (-18.56)

DFSL w/o Eq 60.92 (-14.22)

DFSL w/o Eq, Rq 49.59 (-25.55)

Table 5.14: DFSL in the absence of entities and/or relations.

ated on the QALD-9 DB dataset. The results, as presented in Table 5.14, indi-

cate a significant drop in performance of the LLM when the complete knowl-

edge of the entities and relations required for generating the query is missing.

Nevertheless, even in scenarios where no such information is provided (DFSL

without Eq andRq), the incorporation of dynamic demonstrations remains cru-

cial. This approach results in an absolute F1 score increase of over 33 points

compared to the baseline where only the question is provided.



Chapter 6

Conclusion and Future work

This thesis presents Dynamic Few-Shot Learning (DFSL), a novel approach

to Knowledge Graph Question Answering (KGQA). The method focuses on

leveraging large languagemodels (LLMs) to generate SPARQLqueries, which

are subsequently executed on prominent knowledge graphs such as Wikidata

and DBpedia. The core innovation of DFSL lies in its strategy of retrieving

relevant examples from the training dataset using semantic search within a

dense vector space. These examples enrich the final prompt provided to the

LLM, resulting in a significant improvement in the quality of the generated

SPARQL queries.

Extensive evaluations were conducted on various datasets that differ in

query complexity, size, and underlying knowledge graphs. Four publicly avail-

able datasets were utilized, with three based on Wikidata and one on DBpe-

dia. To assess the effectiveness of the approach, three different LLMs were

employed: LLaMA 3 70B, CodeLLaMA 2, and Mistral 8x7B. The results

indicate that DFSL consistently outperforms both standard in-context learn-

ing techniques and state-of-the-art models fine-tuned for the downstream task

across almost all datasets, with only one exception.

Additionally, a variant of DFSL, namely DFSL-Multi Query (DFSL-MQ),

was proposed. This variant leverages the hypotheses generated by beam search

to return multiple answers to a question, thereby addressing a known issue in
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KGQA, the triple-flip error. DFSL-MQ achieves the highest possible perfor-

mance, demonstrating a significant positive gap compared to current state-of-

the-art approaches.

Further, an in-depth evaluation of DFSL was performed through ablation

studies. These studies examined the impact of various hyperparameters, in-

cluding the number of top-k examples retrieved, different backbone models,

embedding methods, answer selection strategies, and the inclusion or exclu-

sion of entity and relation information associatedwith a question. The findings

underscore the robustness and versatility of DFSL, highlighting its potential

as a superior method for KGQA tasks.

Future Work

This research represents a significant milestone in the task of Knowledge

GraphQuestionAnswering (KGQA) through the use of LanguageModel (LLM)

prompting. However, several avenues for future work can further enhance the

system’s performance and reliability:

Experiment with Different Languages: The experiments conducted in this

studywere based solely on English-language questions, where LLMs are known

to perform optimally. To validate the robustness and generalizability of the

proposed methodology, it is essential to evaluate the approach using datasets

available in multiple languages. This will help to ensure the system’s applica-

bility and performance across diverse linguistic contexts.

Addressing Data Contamination: Given the extensive pre-training of LLMs

on vast portions of the web, there is a risk of unintended data contamination.

Future research should investigate mechanisms to identify and mitigate the

impact of such contamination on model performance. This could involve de-

veloping techniques to detect and handle instances where the model’s training
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data overlaps with the evaluation datasets.

Exploring Smaller Models: The current study focused exclusively on LLMs

with a large number of parameters, neglecting the potential of smaller models.

Future investigations should explore the behavior and performance of smaller

models, which could offer benefits in terms of computational efficiency and

resource utilization without significantly compromising accuracy.

Diverse Example Encoding Strategies: In this research, the investigation

into example encoding was limited to the type of text encoded (i.e., only the

question or the question along with its entities and relations). Future work

should explore various embedding models, similarity criteria, and input con-

catenation strategies. This could include experimenting with different embed-

ding techniques, optimizing similarity measures, and testing alternative ways

of structuring the input to the LLM.
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The task involves translating questions from English into SPARQL queries for the Dbpedia knowledge
graph. These queries must follow specific guidelines to ensure accuracy and correct execution:
1. Enclose SPARQL queries within <SPARQL></SPARQL> tags.
2. Utilize all provided golden entities and relations exclusively to construct the query
accurately.
3. Examples are provided below for guidance.

Examples:

###
Question: What is the timezone in San Pedro de Atacama?
Gold Entities:
http://dbpedia.org/resource/San_Pedro_de_Atacama 
Gold Relations:
http://dbpedia.org/ontology/timeZone 

Query:
<SPARQL>
PREFIX dbo: <http://dbpedia.org/ontology/> PREFIX res: <http://dbpedia.org/resource/> SELECT
DISTINCT ?uri WHERE { res:San_Pedro_de_Atacama dbo:timeZone ?uri }
</SPARQL>
###
Question: Which U.S. states are in the same time zone as Utah?
Gold Entities:
http://dbpedia.org/resource/Utah http://dbpedia.org/class/yago/WikicatStatesOfTheUnitedStates
http://dbpedia.org/resource/Utah 
Gold Relations:
http://dbpedia.org/property/timezone http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/property/timezone 

Query:
<SPARQL>
SELECT DISTINCT ?uri WHERE { <http://dbpedia.org/resource/Utah>
<http://dbpedia.org/property/timezone> ?x . ?uri a
<http://dbpedia.org/class/yago/WikicatStatesOfTheUnitedStates> ;
<http://dbpedia.org/property/timezone> ?x FILTER ( ?uri != <http://dbpedia.org/resource/Utah> ) }
</SPARQL>
###
Question: Which U.S. states are in the same timezone as Utah?
Gold Entities:
http://dbpedia.org/resource/Utah http://dbpedia.org/class/yago/WikicatStatesOfTheUnitedStates
http://dbpedia.org/resource/Utah 
Gold Relations:
http://dbpedia.org/property/timezone http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/property/timezone 

Query:
<SPARQL>
PREFIX yago: <http://dbpedia.org/class/yago/> PREFIX res: <http://dbpedia.org/resource/> PREFIX
dbp: <http://dbpedia.org/property/> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT DISTINCT ?uri WHERE { res:Utah dbp:timezone ?x . ?uri rdf:type
yago:WikicatStatesOfTheUnitedStates ; dbp:timezone ?x FILTER ( ?uri != res:Utah ) }
</SPARQL>
###
Question: In which time zone is Rome?
Gold Entities:
http://dbpedia.org/resource/Rome 
Gold Relations:
http://dbpedia.org/ontology/timeZone 

Query:
<SPARQL>
PREFIX dbo: <http://dbpedia.org/ontology/> PREFIX res: <http://dbpedia.org/resource/> SELECT
DISTINCT ?uri WHERE { res:Rome dbo:timeZone ?uri }
</SPARQL>
###
Question: Which city has the oldest running metro?
Gold Entities:
http://dbpedia.org/resource/Rapid_transit http://dbpedia.org/ontology/City 
Gold Relations:
http://dbpedia.org/ontology/type http://dbpedia.org/ontology/openingYear
http://dbpedia.org/ontology/location http://www.w3.org/1999/02/22-rdf-syntax-ns#type 

Query:
<SPARQL>
PREFIX dbo: <http://dbpedia.org/ontology/> PREFIX dbr: <http://dbpedia.org/resource/> PREFIX rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> SELECT ?loc WHERE { ?uri dbo:type dbr:Rapid_transit ;
dbo:openingYear ?date ; dbo:location ?loc . ?loc rdf:type dbo:City } ORDER BY ASC(?date) LIMIT 1
</SPARQL>
###
Question: What is the time zone of Salt Lake City?
Entities:
http://dbpedia.org/resource/Salt_Lake_City 
Relations:
http://dbpedia.org/ontology/timeZone 

Query:

Figure A.1: DFSL prompt DBpedia
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The task involves translating questions from English into SPARQL queries for the Wikidata knowledge
graph. The queries must follow specific guidelines to ensure accuracy and correct execution:
1. Enclose SPARQL queries within <SPARQL></SPARQL> tags.
2. Utilize all provided golden entities and relations exclusively to construct the query
accurately. Do not use any other entities or relations. 
3. Examples are provided below for guidance.

Examples:

###
Question: Which U.S. states are in the same time zone as Utah?
Gold Entities:
http://www.wikidata.org/entity/Q829 (Utah), http://www.wikidata.org/entity/Q35657 (U.S. state),
http://www.wikidata.org/entity/Q829 (Utah), 
Gold Relations:
http://www.wikidata.org/prop/direct/P421 (located in time zone),
http://www.wikidata.org/prop/direct/P31 (instance of), http://www.wikidata.org/prop/direct/P421
(located in time zone), 

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/>
SELECT DISTINCT ?uri WHERE { wd:Q829 wdt:P421 ?timezone . ?uri wdt:P31 wd:Q35657 ; wdt:P421 ?
timezone . FILTER(?uri != wd:Q829) }
</SPARQL>
###
Question: Which U.S. states are in the same timezone as Utah?
Gold Entities:
http://www.wikidata.org/entity/Q829 (Utah), http://www.wikidata.org/entity/Q35657 (U.S. state),
http://www.wikidata.org/entity/Q829 (Utah), 
Gold Relations:
http://www.wikidata.org/prop/direct/P421 (located in time zone),
http://www.wikidata.org/prop/direct/P31 (instance of), http://www.wikidata.org/prop/direct/P421
(located in time zone), 

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/>
SELECT DISTINCT ?uri WHERE { wd:Q829 wdt:P421 ?timezone . ?uri wdt:P31 wd:Q35657 ; wdt:P421 ?
timezone . FILTER(?uri != wd:Q829) }
</SPARQL>
###
Question: What is the timezone in San Pedro de Atacama?
Gold Entities:
http://www.wikidata.org/entity/Q187893 (San Pedro de Atacama), 
Gold Relations:
http://www.wikidata.org/prop/direct/P421 (located in time zone), 

Query:
<SPARQL>
 SELECT DISTINCT ?o1 WHERE { <http://www.wikidata.org/entity/Q187893> 
<http://www.wikidata.org/prop/direct/P421>  ?o1 .  } 
</SPARQL>
###
Question: In which time zone is Rome?
Gold Entities:
http://www.wikidata.org/entity/Q220 (Rome), 
Gold Relations:
http://www.wikidata.org/prop/direct/P421 (located in time zone), 

Query:
<SPARQL>
SELECT DISTINCT ?uri WHERE {  <http://www.wikidata.org/entity/Q220>
<http://www.wikidata.org/prop/direct/P421> ?uri }
</SPARQL>
###
Question: Which city has the oldest running metro?
Gold Entities:
http://www.wikidata.org/entity/Q5503 (rapid transit), 
Gold Relations:
http://www.wikidata.org/prop/direct/P31 (instance of), http://www.wikidata.org/prop/direct/P571
(inception), http://www.wikidata.org/prop/direct/P131 (located in the administrative territorial
entity), 

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>  PREFIX wd: <http://www.wikidata.org/entity/>
SELECT DISTINCT ?uri WHERE { ?metro wdt:P31 wd:Q5503 ; wdt:P571 ?inception ; wdt:P131 ?uri . }
ORDER BY ?inception LIMIT 1
</SPARQL>
###
Question: What is the time zone of Salt Lake City?
Entities:
http://www.wikidata.org/entity/Q23337 (Salt Lake City), 
Relations:
http://www.wikidata.org/prop/direct/P421 (located in time zone), 

Query:

Figure A.2: DFSL prompt Wikidata
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The task involves translating a question from English into  SPARQL queries for the Wikidata
knowledge graph. The queries must follow specific guidelines to ensure accuracy and correct
execution:
1. Enclose SPARQL queires within <SPARQL></SPARQL> tags.
2. Utilize all provided golden entities and relations exclusively to construct the query. Do not
use any other entities or relations. 
3. you can generate multiple queries for the same question.
Question: What is the time zone of Salt Lake City?

Entities:
http://www.wikidata.org/entity/Q23337 (Salt Lake City), 

Relations:
http://www.wikidata.org/prop/direct/P421 (located in time zone), 

Query:

Figure A.3: Zero-Shot prompt Wikidata

The task involves translating a question from English into SPARQL queries for the DBpedia knowledge
graph. The queries must follow specific guidelines to ensure accuracy and correct execution:
1. Enclose SPARQL queries within <SPARQL></SPARQL> tags.
2. Utilize all provided golden entities and relations exclusively to construct the query. Do not
use any other entities or relations. 
3. you can generate multiple queries for the same question.
Question: What is the time zone of Salt Lake City?

Entities:
http://dbpedia.org/resource/Salt_Lake_City 

Relations:
http://dbpedia.org/ontology/timeZone 

Query:

Figure A.4: Zero-Shot prompt DBpedia

The task involves translating a question from English into  SPARQL queries for the Wikidata
knowledge graph. The queries must follow a specific guideline to ensure accuracy and correct
execution:
1. Enclose SPARQL queries within <SPARQL> </SPARQL> tags.

Question: Who killed John Lennon?

Query:

Figure A.5: No-shot prompt Wikidata

The task involves translating a question from English into SPARQL queries for the DBpedia knowledge
graph. The queries must follow a specific guideline to ensure accuracy and correct execution:
1. Enclose SPARQL queries within <SPARQL> </SPARQL> tags. 

Question: Who killed John Lennon?

Query:

Figure A.6: No-shot prompt DBpedia
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The task involves translating questions from English into SPARQL queries for the Dbpedia knowledge
graph. These queries must follow specific guidelines to ensure accuracy and correct execution:
1. Enclose SPARQL queries within <SPARQL></SPARQL> tags.
2. Utilize all provided golden entities and relations exclusively to construct the query
accurately.
3. Examples are provided below for guidance.

Examples:

###
Question: Where did Hillel Slovak die?
Entities:
http://dbpedia.org/resource/Hillel_Slovak
Relations :
http://dbpedia.org/ontology/deathPlace

Query:
<SPARQL>
SELECT DISTINCT ?uri WHERE { <http://dbpedia.org/resource/Hillel_Slovak>
<http://dbpedia.org/ontology/deathPlace> ?uri }
</SPARQL>
###
Question: Who is the mayor of Paris?
Entities:
http://dbpedia.org/resource/Paris
Relations:
http://dbpedia.org/ontology/mayor

Query:
<SPARQL>
SELECT DISTINCT ?uri WHERE { <http://dbpedia.org/resource/Paris>
<http://dbpedia.org/ontology/mayor> ?uri }
</SPARQL>
###
Question: Give me the grandchildren of Elvis Presley.
Entities:
http://dbpedia.org/resource/Elvis_Presley
Relations:
http://dbpedia.org/ontology/child http://dbpedia.org/property/children

Query:
<SPARQL>
SELECT DISTINCT ?uri WHERE { <http://dbpedia.org/resource/Elvis_Presley>
<http://dbpedia.org/ontology/child> ?child . ?child <http://dbpedia.org/property/children> ?uri }
</SPARQL>
###
Question: How many inhabitants does the largest city in Canada have?
Entities:
http://dbpedia.org/resource/Canada
Relations :
http://dbpedia.org/ontology/largestCity http://dbpedia.org/ontology/populationTotal

Query:
<SPARQL>
PREFIX dbo: <http://dbpedia.org/ontology/> PREFIX res: <http://dbpedia.org/resource/> SELECT
DISTINCT ?num WHERE { res:Canada dbo:largestCity ?city . ?city dbo:populationTotal ?num }
</SPARQL>
###
Question: How many theories did Albert Einstein come up with?
Entities:
http://dbpedia.org/resource/Albert_Einstein
Relations:
http://dbpedia.org/ontology/knownFor

Query:
<SPARQL>
PREFIX dbo: <http://dbpedia.org/ontology/> PREFIX dbr: <http://dbpedia.org/resource/> SELECT
(COUNT(?uri) AS ?count) WHERE { dbr:Albert_Einstein dbo:knownFor ?uri }
</SPARQL>
###
Question: What is the time zone of Salt Lake City?
Entities:
http://dbpedia.org/resource/Salt_Lake_City 
Relations:
http://dbpedia.org/ontology/timeZone 

Query:

Figure A.7: Few-Shot prompt DBpedia
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The task involves translating questions from English into SPARQL queries for the Wikidata knowledge
graph. These queries must follow specific guidelines to ensure accuracy and correct execution:
1. Enclose SPARQL queries within <SPARQL></SPARQL> tags.
2. Utilize all provided golden entities and relations exclusively to construct the query
accurately. Multiple relations can be combined within a single triple using a forward slash (/).
For example: ?spouse wdt:P19/wdt:P17 wd:Q183
3. Examples are provided below for guidance.

Examples:

###
Question: Give me all companies in Munich.
Entities:
http://www.wikidata.org/entity/q4830453 (business), http://www.wikidata.org/entity/q1726 (Munich)
Relations:
http://www.wikidata.org/prop/direct/p279 (subclass of), http://www.wikidata.org/prop/direct/p31
(instance of), http://www.wikidata.org/prop/direct/p159 (headquarters location)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/>
SELECT DISTINCT ?uri WHERE { ?type wdt:P279* wd:Q4830453 . ?uri wdt:P31 ?type ; wdt:P159 wd:Q1726 .
}
</SPARQL>
###
Question: Was Marc Chagall a jew?
Entities:
http://www.wikidata.org/entity/q93284 (Marc Chagall), http://www.wikidata.org/entity/q7325 (Jewish
people)
Relations:
http://www.wikidata.org/prop/direct/p172 (ethnic group)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> ASK
WHERE { wd:Q93284 wdt:P172 wd:Q7325 . }
</SPARQL>
###
Question: How many films did Leonardo DiCaprio star in?
Entities:
http://www.wikidata.org/entity/q11424 (film), http://www.wikidata.org/entity/q38111 (Leonardo
DiCaprio)
Relations:
http://www.wikidata.org/prop/direct/p31 (instance of), http://www.wikidata.org/prop/direct/p161
(cast member)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/>
SELECT (COUNT(DISTINCT ?uri) AS ?c) WHERE { ?uri wdt:P31 wd:Q11424 ; wdt:P161 wd:Q38111 . }
</SPARQL>
###
Question: Give me all libraries established earlier than 1400.
Entities:
http://www.wikidata.org/entity/q7075 (library)
Relations:
http://www.wikidata.org/prop/direct/p31 (instance of), http://www.wikidata.org/prop/direct/p571
(inception)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/>
SELECT DISTINCT ?uri WHERE { ?uri wdt:P31 wd:Q7075 ; wdt:P571 ?date . FILTER (YEAR(?date) < 1400 )
}
</SPARQL>
###
Question: Is Christian Bale starring in Batman Begins?
Entities:
http://www.wikidata.org/entity/q166262 (Batman Begins), http://www.wikidata.org/entity/q45772
(Christian Bale)
Relations:
http://www.wikidata.org/prop/direct/p161 (cast member)
###
Question: What is the time zone of Salt Lake City?
Entities:
http://www.wikidata.org/entity/Q23337 (Salt Lake City), 
Relations:
http://www.wikidata.org/prop/direct/P421 (located in time zone), 

Query:

Figure A.8: Few-Shot prompt Wikidata



Acknowledgements

I would like to express my deepest gratitude to my family, whose unwavering

support and encouragement have been the cornerstone of my journey through-

out these two years. To my girlfriend, your patience, understanding, and con-

stant belief in me have meant the world. Lastly, to all my friends, thank you

for always being there. This accomplishment would not have been possible

without you all by my side.


