D'Abramo, Jacopo
(2024)
Dynamic Few-Shot Learning for Knowledge Graph Question Answering.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Artificial intelligence [LM-DM270]
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (5MB)
|
Abstract
The advent of large language models has opened up new avenues for Question Answering over Knowledge Graphs (KGQA), a field that has witnessed significant advancements due to their capabilities. Despite these advancements, large language models are not inherently designed for query generation, necessitating the development of fine-tuning solutions or ad-hoc architectures,
which, while effective in certain scenarios, exhibit limitations in generalizing across diverse domains.
In response to these challenges, this thesis presents a groundbreaking method known as Dynamic Few-Shot Learning (DFSL). DFSL leverages the principles of in-context learning combined with semantic similarity measures to create a versatile and robust framework for KGQA. An extensive evaluation across multiple benchmark datasets and architecture configurations, reveals not only the superior performance of DFSL in comparison to existing state-of-the-art methods but also exhibits adaptability
against different KGs. This highlights the potential of DFSL to serve as a universally applicable solution for KGQA.
Abstract
The advent of large language models has opened up new avenues for Question Answering over Knowledge Graphs (KGQA), a field that has witnessed significant advancements due to their capabilities. Despite these advancements, large language models are not inherently designed for query generation, necessitating the development of fine-tuning solutions or ad-hoc architectures,
which, while effective in certain scenarios, exhibit limitations in generalizing across diverse domains.
In response to these challenges, this thesis presents a groundbreaking method known as Dynamic Few-Shot Learning (DFSL). DFSL leverages the principles of in-context learning combined with semantic similarity measures to create a versatile and robust framework for KGQA. An extensive evaluation across multiple benchmark datasets and architecture configurations, reveals not only the superior performance of DFSL in comparison to existing state-of-the-art methods but also exhibits adaptability
against different KGs. This highlights the potential of DFSL to serve as a universally applicable solution for KGQA.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
D'Abramo, Jacopo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Knowledge Graph,Large Language Model,Prompting,Question Answering
Data di discussione della Tesi
8 Ottobre 2024
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
D'Abramo, Jacopo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Knowledge Graph,Large Language Model,Prompting,Question Answering
Data di discussione della Tesi
8 Ottobre 2024
URI
Statistica sui download
Gestione del documento: