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“Saruman believes it is only great power that can hold evil in check, but that is not what
I have found. It is the small everyday deeds of ordinary folk that keep the darkness at

bay. Small acts of kindness and love. Why Bilbo Baggins? Perhaps because I am
afraid, and he gives me courage.”

[J.R.R.Tolkien – The Hobbit]



Sommario

La ricerca internazionale nell’ambito della produzione di energia mediante fissione nu-
cleare si sta sempre più interessando ai reattori veloci refrigerati al piombo, a partire
da quando il Generation IV International Forum (GIF) li propose come una soluzione
promettente per la prossima generazione di sistemi energetici nucleari. Uno degli aspetti
di interesse è legato alla capacità di questi reattori, grazie al loro spettro neutronico
veloce, di consentire la chiusura del ciclo del combustibile, minimizzando la quantità di
scorie nucleari generate e di risorse naturali richieste. L’Agenzia per l’Energia Nucle-
are (NEA) dell’OCSE, in collaborazione con l’Agenzia Nazionale Italiana per le Nuove
Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), sta supervisionando
un benchmark internazionale sul progetto del reattore dimostrativo avanzato europeo
refrigerato al piombo (ALFRED) come riferimento. L’obiettivo principale del bench-
mark è studiare la neutronica e la fisica dei reattori refrigerati al piombo, verificando
la capacità degli strumenti computazionali attuali di simulare tali sistemi innovativi.
In questo progetto di tesi, nato dalla collaborazione con ENEA, è stata utilizzata la
suite deterministica di riferimento ERANOS e il suo codice integrato per celle e reticoli
ECCO per affrontare le prime due fasi del benchmark neutronico di ALFRED. La prima
fase si è concentrata sullo studio bidimensionale della fisica della cella elementare, che
comprende la barra di combustibile e il refrigerante associato. La seconda fase, invece,
ha riguardato lo studio di un intero assemblaggio, analizzato attraverso tre sotto-casi:
un modello bidimensionale di un assemblaggio di combustibile, un modello bidimen-
sionale di un assemblaggio di controllo circondato da assemblaggi di combustibile, e un
modello bidimensionale di un assemblaggio di schermaggio circondato da assemblaggi di
combustibile. Lo studio ha indagato sugli effetti delle sezioni d’urto di taluni isotopi
rilevanti e sui valori dei principali parametri integrali di interesse quali: il fattore di
moltiplicazione, il fattore di riproduzione e il fattore di utilizzo. Infine, sono state con-
dotte analisi di sensibilità e incertezza per valutare la propagazione delle perturbazioni
di input a quelle di output.
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Abstract

International research in energy production by nuclear fission is increasingly focusing on
lead-cooled fast reactors, since the Generation IV International Forum (GIF) first pro-
posed them as a promising solution for the next generation of nuclear energy systems.
One of the features of interest is the ability of these reactors, thanks to their fast neutron
spectrum, to allow for the closure of the fuel cycle, minimizing the amount of nuclear
waste generated and of natural resources requested. The OECD’s Nuclear Energy Agency
(NEA), in collaboration with the Italian National Agency for New Technologies, Energy,
and Sustainable Economic Development (ENEA), is overseeing an international bench-
mark with the Advanced Lead-cooled Fast Reactor European Demonstrator (ALFRED)
as reference. The main goal of the benchmark is to study the neutronics and physics
of lead-cooled reactors, verifying the ability of current computational tools to simulate
such innovative systems. In this thesis project, which emerged from the collaboration
with ENEA, the reference deterministic ERANOS suite and its integrated cell and lattice
code ECCO were used to tackle the first two phases of the ALFRED neutron benchmark.
The first phase focused on the two dimensional study of the physics of the elementary
cell, which comprises the fuel rod and the associated coolant. The second phase, on the
other hand, involved the study of an entire sub-assembly, which was analyzed through
three sub-cases: a two-dimensional model of a fuel assembly, a two-dimensional model
of a control assembly surrounded by fuel assemblies, and a two-dimensional model of a
shield assembly surrounded by fuel assemblies. The study investigated in depth the ef-
fects of various cross sections and the values of the main integral parameters of interest,
such as the multiplication factor, the microscopic cross sections of the main isotopes,
the reproduction factor, and the thermal utilization factor. Additionally, sensitivity and
uncertainty analyses were conducted to evaluate the propagation of input perturbations
to the output ones.
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Chapter 1

Introduction

The increase in the global population and massive electrification means that the electric-
ity demand is continuously rising. This requires the development and implementation
of low-carbon-dioxide emission technologies to achieve the goal of net-zero emissions
by 2050. Among the technologies known and already available today, energy produced
through fission nuclear reactors, combined with renewables, is the most suitable to meet
the aforementioned demands. However, such energy source does not enjoy total public
support, which is certainly due to the fear of possible accidents, the most recent being
the Fukushima accident in 2011. This fear is enhanced by concerns related to prolif-
eration issues and long life nuclear waste management. It is precisely the analysis of
these critical issues that has led to the creation of the GIF (Generation IV International
Forum) [23], in which the objectives that the new generation of nuclear reactors (called
Generation IV) must possess were discussed. From this, it emerged that future nuclear
plants must guarantee high standards in terms of:

• Sustainability.

• Economic efficiency.

• Safety and reliability.

• Resistance to proliferation and physical protection.

Among the possible reactor models proposed by the GIF, the technology that is ana-
lyzed in this thesis is the one associated to LFR (Lead-cooled Fast Reactors). In these
proposed nuclear reactors, the fissions due to neutrons in the fast component of the spec-
trum take the leading role. They can therefore be designed to achieve a closed fuel cycle,
ensuring efficient conversion of fertile uranium to fissile plutonium and the management
of actinides.
This type of reactor includes the reactor studied in the LEADER EU project (Lead-cooled
European Advanced DEmonstration Reactor), focused on the review and improvement
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CHAPTER 1. INTRODUCTION

of the design of ELFR (European Lead Fast Reactor), a reference commercial reactor
with a capacity of 1500 MWth, and the design of its demonstrator ALFRED (Advanced
Lead-cooled Fast Reactor European Demonstrator), a 300 MWth reactor [10].
After conclusion of the LEADER project, the ALFRED’s design continued being de-
veloped by the Fostering ALFRED Construction (FALCON) International Consortium,
which includes Ansaldo Nucleare (Italy), RATEN ICN (Romania), and ENEA (Italy).
The main objective of the ALFRED project is to serve as a demonstrator for the Eu-
ropean concept of LFR, demonstrating its safety and reliability. Also because of the
collaborative framework within which the project is developed, it was chosen as refer-
ence system for an international benchmark on lead-cooled fast reactors, proposed by
the OECD’s Nuclear Energy Agency (NEA) jointly with the Italian National Agency for
New Technologies, Energy and Sustainable Economic Development (ENEA) which, in
its role of responsible for the core design within FALCON, can ensure access to all the
necessary information for participants in the related ALFRED benchmark exercises.
One of the topics of the benchmark regards the physics of an LFR core, aimed at study-
ing the neutronic behavior of an LFR, as well as at verifying the capability of current
computational tools to simulate such innovative systems. The need for such benchmark
arose from the lack of operational experience1 to support their design, verification, and
licensing.
The benchmark aims to assess the simulation capabilities for LFR systems through a
gradual approach, starting from local models and progressing to full system simulations
for both neutronics and thermal-hydraulics [20].
The three phases of the neutronic benchmark are:

• Phase 1: Fuel Pin Cell

– Heterogeneous modeling of a fuel pin cell and criticality analysis in an infinite
lattice.

• Phase 2: Sub-Assembly/Super-cell Simulations

– Extension of the model to a full Sub-Assembly (S/A) or a super-cell compris-
ing multiple S/As.

• Whole Core Simulations

– Full-core modeling, including control, shutdown, and reflector/shield elements.

This thesis, developed in collaboration with ENEA, focuses on the analysis of the neu-
tronic benchmark mentioned earlier. It specifically aims to present the simulation results

1The only exception derives from a dozen reactors built and operated in the ex-Soviet Union for
submarine propulsion (the so called Alpha-class units). However, because of their classification as
military secrets, no information is available in the public domain.
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CHAPTER 1. INTRODUCTION

from the first two phases, obtained using the ECCO cell code [3] and the ERANOS re-
actor code [5]. The study offers an in-depth investigation of the effects of various cross
sections and evaluates key integral parameters of interest, such as the multiplication
factor, the microscopic cross sections of the main isotopes, the reproduction factor, and
the thermal utilization factor. Moreover, sensitivity and uncertainty analyses were per-
formed to assess how input perturbations propagate to the outputs.
In particular, the structure of the thesis is the following:
after this brief introduction, the second chapter gives an overview of LFR and in par-
ticular, the design of ALFRED, underlining the information useful for the reader to
understand the benchmark. After that, the third chapter explains the numerical meth-
ods and the neutronic code used to solve the benchmark. The reader can find information
about cell calculation for homogeneous and heterogeneous cells on the ECCO code and
about sensitivity and uncertainty analysis on ERANOS. In the fourth chapter finally,
the results of the first two phases of the benchmark are shown and discussed. At the
end, the conclusions are presented.
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Chapter 2

The Lead-Cooled Fast Reactor
ALFRED

In this chapter, the concept of lead-cooled fast reactors (LFR) proposed by the GIF will
be illustrated (see Figure 2.1), and the core design of the demonstrator reactor ALFRED
- the main focus of the benchmark discussed in this thesis - will be explored in detail.

Figure 2.1: Scheme of LFR reactor [23].

9



CHAPTER 2. THE LEAD-COOLED FAST REACTOR ALFRED

2.1 Lead-Cooled Fast Reactors: Design Characteris-
tics, Challenges, and Improvement

Lead-cooled fast reactors (LFRs) are fast-spectrum reactors that operate at high tem-
peratures and pressures close to atmospheric conditions. Lead is chosen due to its high
boiling point, approximately 1737°C [19]. In practice, the coolant may be pure lead or
an alloy of lead and bismuth. Initially, the latter was preferred because its melting point
of 125°C, lower than pure lead (327°C), was better suited for the original application of
LFRs: submarine propulsion. However, the discussion here will focus only on reactors
that use pure lead, as ALFRED is one of these.
In addition to its high boiling point, lead has the advantage of being chemically inert
with water and air. This means that, unlike sodium-cooled fast reactors built between
the 1970s and 1980s [9], LFRs do not present the risk of explosion in the event of con-
tact between water/air and the coolant, so it avoids the need for an intermediate heat
exchanger between the primary and secondary circuits [19].
These characteristics, along with its favourable thermodynamic properties, make lead
intrinsically safe, allowing for a simplification of the reactor design. Indeed, with its
excellent thermal inertia and high density, lead ensures efficient decay heat removal
through natural circulation. This is facilitated by reduced pressure losses allowed by the
increased spacing between fuel rods, permitted by the neutronic properties of lead with-
out penalization to the fast neutron spectrum. The possibility of having such a spectrum
is ensured by the absence of a true moderator, together with the nuclear properties of
lead in terms of scattering and low absorption [19].
Currently, the coolant temperature at the core exit is designed to be between 480°C
(for bare steels) and 530°C (for coated steels) due to material limitations in corrosion
resistance, although it is anticipated that in the future it could be in the region between
750-880°C. The expected efficiency of the secondary cycle for the LFR system is at least
42% [18], higher than that of thermal reactors used to date.
The designs considered for this reactor were initially of two types: pool and loop; how-
ever, the former prevailed as it avoids seismic issues related to lead-filled piping (loop).
The continuous study conducted over the past twenty years has led to various approaches
in the design of the primary system for LFR reactors. Currently, Generation IV LFRs
include three reference systems: the European Lead-cooled Fast Reactor (ELFR) (600
MWe), the Russian BREST-OD-300 system (300 MWe), and a small transportable sys-
tem (SSTAR) (10-100 MWe) in the United States [18].
Both the ELFR and its demonstrator ALFRED, belonging to the European scenario,
descend from a previous LFR project called European Lead-cooled System (ELSY). The
latter played a fundamental role in the development of the lead-cooled reactor technol-
ogy. With its pool-type approach, and the inclusion of steam generators with integrated
pumps inside the vessel, ELSY achieved the goal of making this type of reactor more
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CHAPTER 2. THE LEAD-COOLED FAST REACTOR ALFRED

compact (see Figure 2.2).

Figure 2.2: Scheme of ELSY’s primary system [19].

It is worth outlining that, like all Generation IV technologies, LFRs also face challenges
associated with their practical realization. In particular, for lead, it will be necessary to
study materials capable of withstanding its high corrosive properties at elevated temper-
atures [19].

2.2 The ALFRED demonstrator
The following section will present the characteristics of ALFRED, highlighting the core-
related aspects. The information provided will help the reader understand the case
studies of the benchmark.

As previously explained, ALFRED is the demonstrator for the commercial LFR reactors
developed in Europe. Furthermore, ALFRED can be considered a prorotype of an LFR
Small Modular Reactor (LFR-SMR) [12], characterized by a power of 300MWth (cor-
responding to 125MWel), and featuring a pool-type design that self-contains the whole
primary system and other safety devices, as shown in Figure 2.3.
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CHAPTER 2. THE LEAD-COOLED FAST REACTOR ALFRED

Figure 2.3: Scheme of ALFRED’s primary system [14].

From the beginning, the design choices for ALFRED have prioritized safety, aiming for
a reactor capable of operating at temperature limits imposed by materials, and ensuring
the natural convection of lead in the event of a loss of flow. Regarding the temperature
limits, it was decided to maintain the lead temperature above 380°C (lower limit), i.e.,
well above the freezing point of 327°C to prevent solidification, and below 600°C (upper
limit) to prevent the corrosive effect of lead on the material coatings.
The problem of corrosion protection remains the main technological challenge for AL-
FRED and other LFRs. While protective strategies have been identified and character-
ized at laboratory scale, their demonstration under irradiation and ultimate qualification
are still to be performed. Due to the shortage of irradiation reactors operating in fast
spectrum, it was decided to adopt a new strategy for the qualification of coatings, that
foresees the use of ALFRED itself as irradiation system for its own needs. Accordingly,
a significant modification of the entire core design was performed in 2018. The follow-
ing section will describe only the new reactor design; readers interested in the previous
design are referred to [10].
To serve its irradiation needs, the new core has a special position at its center dedi-
cated to material irradiation testing. Along with this, the reactor’s operational phases
have been divided into steps of increasing power and coolant temperatures, allowing for
irradiation tests at progressively higher temperatures. This approach aims to achieve
material self-qualification before moving to the subsequent phases, culminating with the
final phase at nominal power [13]. All these considerations led to the core configuration
shown in Figure 2.4, from which it is possible to observe that the updated core design
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CHAPTER 2. THE LEAD-COOLED FAST REACTOR ALFRED

includes 151 main assemblies, consisting of 134 Fuel Assemblies (FAs), 12 Control Rods
(CRs), 4 Safety Devices (SDs), and 1 Test Assembly for material qualification.

Figure 2.4: Cross sectional view of the new core map of ALFRED [13].

The main assemblies are surrounded by 102 Dummy Assemblies (DAs), arranged in two
concentric rings, with the inner being the reflector, and the outer being the shielding.
Through neutronic analyses, the MOX enrichment and the distribution required for
assemblies with different enrichments was determined. The study aimed to:

• ensure criticality while operating;

• maintain the maximum expected burnup to 100 MWd/kgHM with a five-batch
refueling strategy (one year per sub-cycle);

• flatten the power distribution among the fuel rods and ensure the adequate reac-
tivity worth for control and shutdown systems.

At the end of the analysis, it was decided to have 56 FAs with an enrichment of 20.5
wt.% in PuO1.97 (inner type) and, around them, 78 FAs with an enrichment of 26.2 wt.%
(outer type) [13].
After this overview of the new ALFRED core, it will be described in more detail what
was simulated about the benchmark. Therefore, the design of a generic fuel pin, an FA,
and a control rod assembly will be shown. It should be noted that their description
will be made for a horizontal section at the height of the active zone, as the simulations
shown in this thesis work will be two-dimensional.
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CHAPTER 2. THE LEAD-COOLED FAST REACTOR ALFRED

2.2.1 The ALFRED Fuel Pin

Figure 2.5 shows the cross section of the ALFRED fuel pin, which is composed of sin-
tered cylindrical fuel pellets enclosed in a stainless steel cladding. The pellets have a
diameter of 9 mm, and an internal hole of 2 mm in diameter to reduce the pellet-cladding
mechanical interaction (PCMI) at the peak burnup. The surrounding cladding is 0.6 mm
thick, made of AIM1 steel, and acts as a barrier against fission gases release. There is a
0.15 mm gap between the pellets and the cladding, for assembling purposes and which
contributes to preventing possible PCMI.

Figure 2.5: Cross section of the ALFRED fuel pin [10].

2.2.2 ALFRED Fuel Assembly

All the ALFRED assemblies have a hexagonal shape and are enclosed by AIM1 steel
wrappers. The wrapper plays a crucial role in the reactor’s safety, as it allows for
monitoring the lead outlet temperature from each FA individually. The coolant flows
both inside the wrapper -between the fuel pins- and outside it -between the various
assemblies. Figure 2.6 shows a cross section of a FA at the level of the active region.
Inside the wrapper, a triangular lattice identifies 127 positions, out of which 126 are
occupied by fuel pins around a dummy pin at the center; the latter is present in all FAs
and is used for inserting diagnostic instrumentation. The thickness of the wrapper and
the pin lattice pitch are 3.5 mm and 13.6 mm, respectively. The 4 mm gap between two
assemblies (dashed line) is also shown, providing for bypass lead flow.

14



CHAPTER 2. THE LEAD-COOLED FAST REACTOR ALFRED

Figure 2.6: Cross section of a FA at the level of the active region (dimensions in mm) [13].

2.2.3 ALFRED Control Rod Assembly

Figure 2.7 represents the cross section of a control rod assembly (right frame) at the level
of the absorber pins, which displays the 31 absorber pins inside the assembly surrounded
by an AIM1 steel wrapper. The left frame of the same figure shows an equivalent repre-
sentation of the latter for modelling purposes. The absorber pins within the individual
control rod are made of boron carbide (B4C) pellets, with two different 10B enrichments
for the lower (shutdown function) and the upper (control function) parts of the absorber
column. The pins of the control part are enriched at 42 at.%, while those of shutdown
one are enriched at 90 at.%. Figure 2.7 also shows the coolant flow and the bypass zones,
the latter referring to the channels between the assemblies through which the lead cools
the wrapper’s outer surface.

Figure 2.7: Cross section of a CR assembly at the level of the active region [17].
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Chapter 3

The ECCO cell code and the ERANOS
suite

This chapter provides an introduction to the European Cell COde (ECCO) and the Eu-
ropean Reactor ANalysis Optimized calculation System (ERANOS), both of which were
utilized for the benchmark activities that are the subject of this thesis. It focuses on the
typical computational scheme for stationary problems, the cell flux calculation methods,
and the sensitivity and uncertainty analysis procedures.

3.1 The Calculation Scheme for static calculations
The study of nuclear reactors requires the simulation of physical phenomena on a small
scale, even when the geometrical domain under consideration spans several meters: this
arises from the competing scales created by the neutron mean free paths in the various
materials of a highly heterogeneous domain as well as macroscopic distribution of the
neutron flux. To mitigate the computational cost of such simulations, it is necessary to
split the calculation into two subsequent phases: a cell/lattice, and a reactor calculations.
The primary objective of a cell calculation is to provide, starting from a general-purpose
nuclear data library (e.g., JEFF or ENDF/B), a derived data set that is restricted and
specific to the problem being analyzed. The cell code is typically applied to a limited
domain, such as a single assembly, for which microscopic and macroscopic cross sections
are computed through energy condensation and volume homogenization. Subsequently,
for the reactor calculation, the data coming from the cell calculations are assigned to
the different core regions, each one being considered homogeneous. The reactor code is
then employed to solve the quasi-static transport equation and compute all the required
quantities, such as integral parameters, sensitivity coefficients, and uncertainties. Other
uses are possible for the reactor code, such as performing depletion calculations. For
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CHAPTER 3. THE ECCO CELL CODE AND THE ERANOS SUITE

this thesis, ECCO was used as the cell code. It is available within the ERANOS suite,
which is among the reference codes for the core design of fast spectrum nuclear reactors.
Within ERANOS, the BIdimensionnel Sn TRansport Optimisé (BISTRO) code is used
for the reactor calculations, which allows for solving the transport (or diffusion) equation
in one-dimensional or two-dimensional core geometries. It involves the discrete ordinates
and the finite difference methods for discretizing neutron flight path direction and space,
respectively. The overall calculation scheme that combines the two steps is schematized
in Figure 3.1.

Figure 3.1: Schematic representation of the ECCO/ERANOS calculation [3].

The following section aims to briefly present the physics, mathematics, and numerical
methods underlying the benchmark results discussed in this work. For a comprehensive
reading, the reader is referred to the user’s manual [3].

17
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3.2 The physics of the ECCO cell code
As mentioned in the previous section, the ECCO cell code is designed to process the
original libraries at 1968 (ultra-fine) energy groups (e.g., JEFF or ENDF/B) to produce
the condensed cross sections for use in the reactor calculations. For computational rea-
sons, the reactor calculations are typically performed with a smaller number of groups
than those of the original libraries, and the material properties are homogenized within
the calculation lattice cell. This leads to a simplified core model, but in which the cross
sections and material properties were obtained using refined cells/lattices.
To perform condensation and homogenization, ECCO needs information about the geom-
etry and materials of the cell to be analyzed. More specifically, the input data required
by ECCO can be thought of as consisting of two parts: cell description and calcula-
tion procedure description. In the first part, the geometry, materials, and boundary
conditions are defined, while in the second part, the number of calculation steps to be
performed is specified along with the operations to be carried out in each of them.
Before analyzing the two parts just mentioned, it is important to emphasize that ECCO
is a code capable of handling any type of cell, whether referring to a thermal or a fast
reactor. However, the fast neutron spectrum requires certain specific considerations due
to:

• the greater importance of inelastic scattering;

• the absence of a single moderator that solely determines the flux in the epithermal
region;

• the greater relevance of self-shielding;

• the higher ratio between the neutron mean free path and the cell size;

• the possible need for a more accurate evaluation of the diffusion coefficient.

The aspects mentioned above are discussed in detail in the ECCO manual [3], which
presents the various computation and modeling options.

3.2.1 The cell description

The geometric description of the cell entails constructing geometries with different lev-
els of complexity, starting with simple geometric elements defined as ’links’ in ECCO.’
These links are of various types based on their dimensionality. They can be 0D (zero-
dimensional, HOMOGENEOUS), 1D (CYLINDRICAL, PLANE), or 2D (SQUARE,
RECTANGULAR LATTICE, HEXAGONAL LATTICE). More generally, links are clas-
sified as either simple or lattice-type. Each cell is represented by a tree structure, in which
a simple model is a branch and a lattice is a node that capable of generating multiple
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branches. The geometry is defined in a nested structure, progressing from the outermost
link inward. Each link can contain other links, or be filled with a uniform material,
for which the composition must be specified at a given temperature (thermal expansion
coefficients can be provided to account for temperature changes). If the inner link does
not completely fill the outer one, a uniform material must be defined between them.
A ’VOID’ material can be used, reducing the densities of a generic material to zero.
It is important to note that the allowed geometries depend on the method chosen for
determining the neutron flux in the cell. For a more detailed analysis of this aspect, refer
to the section on calculation methods.
The boundary condition is defined on the faces of the outermost link, except for the
homogeneous cell where no conditions are required. Various boundary conditions are
available in the ECCO manual, and the choice of conditions depends on the cell ge-
ometry. In summary, ECCO can treat both homogeneous and heterogeneous cells with
appropriate resolution methods. Furthermore, as will be seen later, even heterogeneous
cells can be homogenized automatically at some computational step of the cross sections’
condensation process.

3.2.2 The calculation procedure description

The calculation procedure to produce the nuclear data library to be provided to the
reactor code for the specific case requires several steps. The user usually determines the
number of steps and, for each step, specifies how to handle: the geometrical schematiza-
tion, the number of groups, the list of nuclides, the resonance shielding treatment, and
the flux calculation. This is necessary because cross sections for different nuclides and
reactions may be determined from calculations at varying levels of geometrical detail, or
in different group schemes.
For example, the fine group (1968 groups in ECCO) calculations may be performed only
for a homogenized cell (even if the original cell is heterogeneous) and specifically to
condense elastic scattering matrices for light elements. In contrast, the standard broad
group (33 groups in ECCO) calculations - utilizing the subgroup method - can be con-
ducted for the heterogeneous version (if available) of the same cell geometry, to handle
the remaining nuclides and reactions.
There are two main calculation routes already implemented in ECCO: ’Reference’, and
’Fast’. The ’Reference’ route consists of a fine group treatment of the elastic scatter-
ing, with the subgroup parameters also at the same fine group level for the resonance
self-shielding treatment. The ’Fast’ option also involves a fine group treatment of elastic
scattering, but this time the subgroup parameters refer to the broad group level. Arbi-
trary group structures can be chosen too, keeping in mind that the outer boundaries of
all the involved group structures must coincide with those of the finest group structure
of the general library. More detailed information can be found in [3].
The condensation of flux, cross sections, and other useful quantities occurs whenever
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transitioning from a fine group step to one with broader groups. Most of the cross
sections are collapsed using flux weighting:

σG
x,e,i =

∑
g∈G σ

g
x,e,iϕ

g
i

ϕG
i

, (3.1)

where:

• i is the cell region;

• e is the isotope;

• x is the reaction (e.g. total, capture, fission);

• g is the fine energy group;

• G is the broad energy group;

• ϕG
i =

∑
g∈G ϕ

g
i is the collapsed flux.

However, some quantities are weighted with the current instead of the flux [3].
The homogenization of quantities can be done in the calculation steps where multiple
energy groups are used, or in the final step to produce data for reactor calculations. The
microscopic cross sections are homogenized as a volume V , flux ϕ, and number density
N weighted average [3]:

σg
x,e =

∑
i Viϕ

g
iNe,iσ

g
x,e,i

V ϕgNe

, (3.2)

where:

• ϕg =

∑
i Viϕ

g
i

V
is the homogenized flux;

• Ne =

∑
i ViNe,i

V
is the homogenized number density.

Following, the methods for determining the cell flux will be analyzed, as the latter is used
to condense and homogenize the cross sections through a weighted average. Furthermore,
grasping the method serves as the basis for understanding some choices made in Chapter
4, which is related to the benchmark results.
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3.2.3 Calculation of the flux for a homogeneous cell: the funda-
mental mode method

The flux calculation starts from the pseudo-stationary Boltzmann equation in its integro-
differential form. For position r, neutron energy E, and neutron direction Ω̂, it is ex-
pressed as follows:

Ω̂ · ∂
∂r

Φ(r, E, Ω̂) + Σt(r, E) Φ(r, E, Ω̂) =

=

∫
4π

∫ ∞

0

Σs(r, E
′ → E, Ω̂′ → Ω̂) Φ(r, E ′, Ω̂′) dE ′ dΩ̂′ + S(r, E, Ω̂), (3.3)

where Φ is the angular neutron flux, Σt is the total macroscopic cross section, Σs(r, E
′ →

E, Ω̂′ → Ω̂), is the double differential cross section related to the probability that an inci-
dent neutron with energy E ′ and direction Ω̂′ assumes energy E and direction Ω̂ through
scattering, and S(r, E, Ω̂) is the source term, which is the sum of the intrinsic fission
source Sf (r, E) as well as all the other sources (either inside or outside the medium). In
particular, considering a problem in which the source coincides with an isotropic fission
source, an eigenvalue problem is obtained, with k being the eigenvalue:

Sf (r, E) =
χ(E)

4πk

∫ ∞

0

ν(r, E ′)Σf (r, E
′)ϕ(r, E ′)dE ′ (3.4)

where ν(r, E ′) represents the average number of neutrons emitted by fission induced at
the energy E ′ and χ(E) is the fission spectrum. If a homogeneous and generally isotropic
medium is considered, the equations become [16] :

Ω̂ · ∂
∂r

Φ(r, E, Ω̂) + Σt(E) Φ(r, E, Ω̂) =

=

∫
4π

∫ ∞

0

Σs(E
′ → E, Ω̂′ → Ω̂) Φ(r, E ′, Ω̂′) dE ′ dΩ̂′ + S(r, E, Ω̂), (3.5)

Sf (r, E) =
χ(E)

4πk

∫ ∞

0

ν(E ′)Σf (E
′)ϕ(r, E ′)dE ′. (3.6)

Notice that the cross sections in Eqs. (3.5) and (3.6) do not depend on r, as the medium
is homogeneous, and on Ω̂, as the medium is isotropic.
The first simplification that can be made in Eqs. (3.5) and (3.6) - for solving them
numerically - is to turn the continuous energy variable into a discrete one, which is
done by applying the multigroup approximation. In practice, the continuous variable
E is divided into G intervals - the generic one being g of width ∆Eg - within which
multigroup constants are defined while preserving the reaction rates.
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For example, the macroscopic cross section for group g and generic reaction x is given
by:

Σg
x =

∫
∆Eg

Σx(E)ϕ(r, E) dE

ϕg(r)
; g = 1, . . . ,G, (3.7)

where
ϕg(r) =

∫
∆Eg

ϕ(r, E) dE. (3.8)

The scalar neutron flux is used as a weighting function instead of the angular neutron
flux when considering the averaging of macroscopic cross sections because it preserves
the isotropy of the medium [15]. However, this means that the group averaged cross
sections depend on the neutron flux, i.e. quantity that is to be determined. A system
of G equations is obtained by formally integrating the neutron transport equation on a
given energy group ∆Eg, which are coupled by the scattering source (yet to be defined)
and the fission terms:

Ω̂ · ∂
∂r

Φg(r, Ω̂) + Σg
t Φ

g(r, Ω̂) =

=
G∑

g′=1

∫
4π

Σg′→g
s (Ω̂′ → Ω̂) Φg′(r, Ω̂′) dΩ̂′ + Sg(r, Ω̂), (3.9)

Sg
f (r) =

χg

4πk

G∑
g′=1

νg
′
Σg′

f ϕ
g′(r). (3.10)

From now onwards, for the treatment of the fundamental method, the source Sg(r, Ω̂),
which includes the extrinsic term and the fission source, will be treated as a generic
source, though it should be remembered that the fission source represented by Eq. (3.10)
depends on the flux and will therefore be handled in ECCO through iterative algorithms.
Furthermore, in the ECCO manual [3], the solution for a homogeneous infinite medium
with a constant and isotropic source in group g is given, where the flux in each group is
isotropic and spatially constant, so the solution becomes:

ϕg =
Sg

Σg
r
, (3.11)

where:

• ϕg is the position-independent scalar neutron flux for group g (any scalar neu-
tron flux is formally obtained by angular integration of the corresponding angular
neutron flux),

• Sg is the position-independent fission and scattering source for group g,
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• Σg
r is the removal macroscopic cross section for group g, and is given by

Σg
r = Σg

t − Σgg
el − Σgg

in − Σgg
(n,Xn),

in which:

– Σg
t is the total macroscopic cross section for group g,

– Σgg
el is the elastic macroscopic cross section within group g, i.e. in which the

incident neutron energy remains in the group g after the scattering,

– Σgg
in is the inelastic macroscopic cross section within group g,

– Σgg
(n,Xn) is the macroscopic cross section for (n,Xn) reactions within group g.

For a finite homogeneous medium, on the other hand, the angular flux can vary with
space and it can be assumed that its spatial variations and those of the source follow
the fundamental mode shape determined by the square root of buckling (B2). The
angular flux and the source for group g can therefore be written as the product of an
angle-dependent term and a space-dependent one [7]:

Φg(r, Ω̂) = ψg(Ω̂)eiBr Sg(r, Ω̂) = Sg(Ω̂)eiBr (3.12)

Now, for simplicity, let’s consider the one-dimensional case in plane geometry and recall
that for an isotropic medium in the case of elastic scattering with rotational invariance
(independence from the azimuthal angle φ), the following holds:

Σg′→g
s (Ω̂′ → Ω̂) = Σg′→g

s (Ω̂′ · Ω̂) = Σg′→g
s (µ0), (3.13)

in which µ0 is the cosine of the scattering angle ϑ0 in the laboratory reference system.
For it, the following can be written [16]:

Ω̂′ · Ω̂ = cosϑ0 = µ0 = µµ′ +
√

1− µ2
√

1− µ′2 cos(φ− φ′), (3.14)

where:

• Ω̂′ is the neutron flight direction before the scattering event in the laboratory
reference frame;

• Ω̂ is the neutron flight direction after the scattering event in the laboratory reference
frame;

• µ′ = cosϑ′, with ϑ′ being the polar angle (with respect to the polar axis x) of the
neutron before the scattering event in the laboratory reference frame;

• µ = cosϑ, with ϑ being the polar angle of the neutron after the scattering event in
the laboratory reference frame;
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• φ′ is the azimuthal angle of the neutron before the scattering event in the laboratory
reference frame;

• φ is the azimuthal angle of the neutron after the scattering event in the laboratory
reference frame.

With these assumptions, the system of G equations represented by Eq. (3.9), becomes:

µ
∂

∂x
Φg(x, µ) + Σg

t Φ
g(x, µ) =

=
G∑
g′

∫ 1

−1

∫ 2π

0

Σg′→g
s (µ0) Φ

g′(x, µ′) dφ′dµ′ + Sg(x, µ), (3.15)

in which the following modifications have been made in accordance with the one-dimensional
geometry:

S(r, Ω̂) → S(x, µ)

Φ(r, Ω̂) → Φ(x, µ)

Ω̂ · ∂
∂r

→ µ
∂

∂x
,

where x is the polar axis coordinate to which the polar angles refer to.
Substituting the expressions for the flux and the source (Eq. (3.12)) and dividing every-
thing by eiBx, the following is obtained:

µiBψg(µ) + Σg
t ψ

g(µ) =
G∑
g′

∫ 1

−1

∫ 2π

0

Σg′→g
s (µ0)ψ

g′(µ′) dφ′dµ′ + Sg(µ) (3.16)

At this point, the angular dependence can be expressed using Legendre polynomials
(for functions not depending on φ, spherical harmonics reduce to Legendre polynomi-
als), which form a complete set of orthogonal functions over the interval [−1, 1]. These
polynomials are denoted by Pℓ(µ). Since they constitute a complete orthogonal set, any
function depending on µ ∈ [−1, 1] can be expanded in a series of the Pℓ(µ). Therefore,
the following series expansions are substituted into the system of Eq. (3.16):

Σg′→g
s (µ0) =

∞∑
ℓ=0

2ℓ+ 1

4π
Σg′→g

s,ℓ Pℓ(µ0) with Σg′→g
s,ℓ = 2π

∫ 1

−1

Pℓ(µ0)Σ
g′→g
s (µ0) dµ0,

ψg(µ) =
∞∑
ℓ=0

2ℓ+ 1

4π
ψg
ℓPℓ(µ) with ψg

ℓ = 2π

∫ 1

−1

Pℓ(µ)ψ
g(µ) dµ,

Sg(µ) =
∞∑
ℓ=0

2ℓ+ 1

4π
Sg
ℓPℓ(µ) with Sg

ℓ = 2π

∫ 1

−1

Pℓ(µ)S
g(µ) dµ.

(3.17)
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Before substituting the expressions into Eq. (3.16), it is useful to rewrite the scattering
term as a function of µ′ [16], since the integral is over µ′ and not µ0. The scattering term
in Eq. (3.16) becomes:

G∑
g′=1

∫ 1

−1

∫ 2π

0

Σg′→g
s (µ0)ψ

g′(µ′) dφ′dµ′ =

=
G∑

g′=1

∫ 1

−1

∫ 2π

0

∞∑
ℓ=0

2ℓ+ 1

4π
Σg′→g

s,ℓ Pℓ(µ0)ψ
g′(µ′) dφ′dµ′ =

=
G∑

g′=1

∞∑
ℓ=0

2ℓ+ 1

4π
Σg′→g

s,ℓ Pℓ(µ)2π

∫ 1

−1

Pℓ(µ
′)ψg′(µ′) dµ′

(3.18)

where the addition theorem for Legendre polynomials has been applied, and the inde-
pendence from the angles φ and φ′ has been exploited. At this point, by substituting
the scattering term and the series expansions, the following is obtained:

∞∑
ℓ=0

µiB
2ℓ+ 1

4π
ψg
ℓPℓ(µ) + Σg

t

∞∑
ℓ=0

2ℓ+ 1

4π
ψg
ℓPℓ(µ) =

=
G∑
g′

∞∑
ℓ=0

2ℓ+ 1

4π
Σg′→g

s,ℓ Pℓ(µ)2π

∫ 1

−1

Pℓ(µ
′)ψg′(µ′) dµ′ +

∞∑
ℓ=0

2ℓ+ 1

4π
Sg
ℓPℓ(µ)

(3.19)

Recalling the orthogonality property of the Legendre polynomials, it is noted that

2π

∫ 1

−1

Pℓ(µ
′)ψg′(µ′) dµ′ = ψg′

ℓ . (3.20)

Thus, by substituting into the equation, the following is obtained:
∞∑
ℓ=0

µiB
2ℓ+ 1

4π
ψg
ℓPℓ(µ) + Σg

t

∞∑
ℓ=0

2ℓ+ 1

4π
ψg
ℓPℓ(µ) =

=
G∑

g′=1

∞∑
ℓ=0

2ℓ+ 1

4π
Σg′→g

s,ℓ Pℓ(µ)ψ
g′

ℓ +
∞∑
ℓ=0

2ℓ+ 1

4π
Sg
ℓPℓ(µ).

(3.21)

At this point, (2ℓ+1)µPℓ(µ) can be replaced using the recurrence formula of the Legendre
polynomials, and the entire equation is multiplied by Pm. Integration over µ from [−1, 1]
and the use of the orthogonality property transforms each equation for each group g (see
Eq. (3.21)) into a system of infinite equations, with the moments of the flux ψg

ℓ as the
unknown. For them, the following recursive formula can be used:

ℓ+ 1

2ℓ+ 1
iBψg

ℓ+1 +
ℓ

2ℓ+ 1
iBψg

ℓ−1 + Σg
tψ

g
ℓ =

G∑
g′=1

Σg′→g
s,ℓ ψg′

ℓ + Sg
ℓ . (3.22)
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From now onwards, for simplicity, the group index g will only appear in the coupling
terms. since the focus will be on solving the system of infinite equations for a specific
group. To do this, an approximation is necessary, as it is impossible to solve infinite
equations. A possibility is to use the PN consistent method - this was the method
adopted in ECCO for the benchmarking activities of this work -, through which the
infinite system is reduced to N equations by imposing that the flux moment of order
ℓ = N + 1 is equal to zero: ψN+1 = 0. With this assumption, the system of equations
for ψ0, ψ1, . . . , ψN , after being rearranged, becomes [2]:

iBψ1 + Σtψ0 =
∑
g′

Σg′→g
s,0 ψg′

0 + S0; ℓ = 0,

iB

3
ψ0 + A1(B,N)ψ1 =

∑
g′

Σg′→g
s,1 ψg′

1 + S1; ℓ = 1,

ψℓ = − ℓ

2ℓ+ 1

iBψℓ−1

Aℓ(B,N)
; ℓ = 2, . . . , N.

(3.23)

The transport-like cross sections, Aℓ [3], depend on B and the order N.
For ℓ = 1, ..., N − 1 a continued fraction expresses them:

Aℓ = bℓ−1 +
aℓ

bℓ +
aℓ+1

bℓ+1 + ...+
aN−1

bN−1

, (3.24)

while, for ℓ = N, they are given by

AN = bN−1. (3.25)

The quantities aℓ are required for ℓ = 1, ..., N − 1 and are given by

aℓ =
(ℓ+ 1)2B2

(2ℓ+ 1)(2ℓ+ 3)
. (3.26)

Considering bℓ:

• If ℓ = 0, b0 = Σt;

• If ℓ > 0, bℓ = Σt − Σs∗,ℓ+1 , where Σs∗,ℓ+1 =
∑

g′ ̸=g Σ
g′→g
s,ℓ+1 is the (ℓ+ 1)-th moment

of scattering cross section with (ℓ+ 1)-th moment self-scattering correction.

Before considering the specific case of the P1 approximation, that is, truncating the
system of infinite equations by imposing ψ2 = 0, it is important to highlight that the
moments ψℓ are complex quantities. In particular, if the buckling B2 is positive, there is
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an alternation of real and imaginary moments. To express the solutions as real quantities,
they must be obtained using the following equation [3]:

ψℓ = iℓψℓ; ℓ = 2, . . . ,N.

For ℓ = 0, ψ0 = ϕ is the scalar flux. For ℓ = 1, ψ1 = J is the current.
Proceeding with the P1 approximation and substituting the zero and first-order flux
moments, the system in Eq. (3.27) becomes:

BJ + Σtϕ =
G∑
g′

,Σg′→g
s,0 ϕg′ + S0

−B
3
ϕ+ ΣtJ =

G∑
g′

Σg′→g
s,1 Jg′ + S1.

(3.27)

This system thus becomes solvable once the flux and current for the other groups are
known. For this reason, iterative algorithms will be used, in which at each cycle the
sources for group g (including positive scattering terms from g′ → g) are computed from
the previous cycle. This process will repeat until consistency between sources and fluxes
is achieved.

3.2.4 Calculation of the flux for a heterogeneous cell, the colli-
sion probabilities method

The flux for a heterogeneous medium is generally found using the collision probability
method. This method solves the Boltzmann equation in its steady-state integral form.
The advantage of an integral approach lies in the fact that it allows for the assumption
of isotropic scattering and sources in the laboratory system. This assumption eliminates
the directional variable Ω̂, which is not possible when solving the integral-differential
transport equation. Anisotropies can still be considered using the ’transport correction’
[15]. This correction involves truncating the expansion of the macroscopic scattering
cross section in Legendre polynomials up to order m while retaining anisotropy up to
order m+ 1. This is achieved by adding a corrective term to the macroscopic scattering
cross section. Considering the monoenergetic case, the aforementioned correction, which
is obtained by truncating the series at m = 0 [15], is:

Σ0
s0(r) = Σs0(r)− Σs1(r) (3.28)

Σ0
s0(r) = Σs0(r)− Σs1(r) (3.29)

where:

• Σ0
s0(r) is the transport-corrected macroscopic scattering cross section;
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• Σs0(r) is the zeroth-order moment of the macroscopic scattering cross section;

• Σs1(r) is the first-order moment of the macroscopic scattering cross section.

Σ0
s0 can be rewritten by substituting Σs1 = µΣ0, with µ cosine of the scattering angle in

the laboratory reference frame.

Σ0
s0(r) = [1− µ(r)] Σs0(r). (3.30)

The whole can be repeated for the multigroup case:

Σ0
s0,g′→g(r) = Σs0,g′→g(r)− δgg′

G∑
g=1

Σs1,g′→g(r). (3.31)

With this consideration, the integral equation becomes [15]:

ϕ(r, E) =

∫
V

Q (r′, E)
exp [−τ (r, r′, E)]

4π |r− r′|2
d3r

′. (3.32)

where τ is the optical path length and the source Q is given by:

Q (r′, E) =

∫ ∞

0

[
Σ0

s0 (r
′, E ′ → E) +

χ (r′, E)

k
ν (r′, E ′) Σf (r

′, E ′)

]
ϕ (r′, E ′) dE ′. (3.33)

The collision probability method solves the Eq. (3.32) through spatial discretization.
The domain is divided into R regions where neutron parameters are considered constant.
Furthermore, if the regions Vj (with j = 1, . . . ,R) are sufficiently small, a constant source
can be assumed within each region. This consideration is very important as it greatly
simplifies the calculation of probabilities, as will be shown later.
The discretized form of Eq. (3.32) becomes:

ϕ(r, E) =
R∑
j=1

∫
Vj

exp [−τ (r, r′, E)]
4π |r− r′|2

Q (r′, E) d3r
′. (3.34)

The equation solved by the method is obtained by multiplying Eq. (3.34) by the transport-
corrected total cross section [15], Σ0

t (r, E) = Σa(r, E) +Σ0
s(r, E), and integrating it over

a volume Vi:∫
Vi

Σ0
t (r, E)ϕ(r, E)d3r =

R∑
j=1

∫
Vj

Q (r′, E)

∫
Vi

Σ0
t (r, E)

exp [−τ (r, r′, E)]
4π |r− r′|2

d3rd3r
′. (3.35)

The equation then becomes:

Σ0
t,i(E)ϕi(E)Vi =

R∑
j=1

Pj→i(E)Qj(E)Vj, (3.36)

with the following volume average quantities preserving reaction rates:
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• ϕi(E) =
1

Vi

∫
Vi
ϕ(r, E)d3r;

• Qj(E) =
1

Vj

∫
Vj
Q(r, E)d3r;

• Σ0
t,i(E) =

∫
Vi
Σ0

t (r, E)ϕ(r, E)d3r

Viϕi(E)
.

Pj→i is the probability that a neutron emitted isotropically in region Vj collides for the
first time in region Vi. it is defined as:

Pj→i(E) =

∫
Vj
Q (r′, E)

∫
Vi
Σ0

t (r, E)
exp [−τ (r, r′, E)]

4π |r− r′|2
d3rd3r

′∫
Vj
Q (r′, E) d3r′

. (3.37)

Eq. (3.37) is further simplified by considering the assumption of small Vj, in which the
source Q (r, E) is uniform. It becomes:

Pj→i(E) =
Σ0

t,i(E)

Vj

∫
Vj

∫
Vi

exp [−τ (r, r′, E)]
4π |r− r′|2

d3rd3r
′. (3.38)

Eq. (3.38) thus expresses the probability that a neutron, generated uniformly and isotrop-
ically in region Vj, will undergo its first collision in region Vi.
However, to apply the collision probability method to a finite cell, additional quantities
need to be defined. These will not be derived in this work; for interested readers, refer
to pages 125-127 of reference [15]. To understand the definition of the quantities in the
integrals, see Figure 3.2.
The quantity to define is:

Pi→S(E) =
1

Vi

∫
Vi

∫
S

exp [−τ (r′, r, E)]
4π |r− r′|2

∣∣∣Ω̂ ·N′
∣∣∣ d2r′d3r, (3.39)

where Pi→S(E) represents the escape probability, i.e., the probability that a neutron
emitted isotropically and uniformly in volume Vi exits the surface S of the cell without
colliding (without interacting).
This quantity is also calculated as Pi→S = 1− Pi→i.

PS→i(E) =
Σ0

t,i(E)

πS

∫
S

|Ω̂ ·N|
∫
Vi

exp [−τ (r′, r, E)]
|r− r′|2

d3rd2r
′, (3.40)

where PS→i(E) represents the probability of collision in i for a neutron entering isotrop-
ically and homogeneously through the surface S. This quantity is also calculated as
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PS→i =
4Vi
S

Σ0
t,iPi→S.

PS→S(E) =
1

πS

∫
S

|Ω̂ ·N|
∫
S

exp [−τ (r′, r, E)]
|r− r′|2

∣∣∣Ω̂ ·N′
∣∣∣ d2r′d2r, (3.41)

where PS→S(E) represents the transmission probability, i.e., the probability that a neu-
tron has to homogeneously and isotropically enter cell i by traversing surface S, and exit
the cell without colliding. This quantity is also calculated as PS→S = 1− PS→i.

Figure 3.2: Illustration of the solid angle d2Ω̂ embedding an elementary surface d2r
′ from a

point r [15].

After analyzing the quantities involved, it is possible to define the steps for solving
Eq. (3.36). The solution proceeds in two steps. The first step involves solving the colli-
sion probabilities defined previously, while the second step involves calculating the fluxes
by solving a linear system. The computational challenge thus lies in the double integrals
of the collision probabilities, especially for more complex geometries.
Before briefly describing approximate methods for calculations in complex geometries,
it is worth highlighting that the above description is useful if one wants to calculate the
scalar flux. However, it is also possible to calculate the angular flux without eliminating
the angle Ω̂ from the variables; in this case, directional collision probabilities are con-
sidered. Moreover, a problem common to both types of calculation is that, for empty
or low-density regions, the Pj→i tends to zero along with the Σ0

t,i (see Eq. (3.38)). To
address this issue, reduced collision probabilities are used, which remain finite as the
density approaches zero:

pj→i =
Pj→i

Σ0
t,i

. (3.42)

Returning to approximate methods, in ECCO, one of them is the Roth method, which is
heavily involved in this work. It decomposes complex geometries into elementary ’links’
(usually one-dimensional), for which exact routines can be applied, and then combines
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the results to yield the probability matrix of the entire cell. The calculation consists of
three main steps. Here for, simplicity, a cell decomposed into two links, named X and
Y respectively, is considered.

• Phase 1:

– Calculation of the collision probabilities within link X, PX
i→j, where i and j

are the regions inside link X,

– Calculation of the escape probability PX
i→S = 1−

∑
j P

X
i→j;

• Phase 2: Calculation of the probability PXY that a neutron exiting the surface of
link X reaches the surface of link Y . It is calculated as:

PXY = RXY +
L∑

κ=1

RXκP
κ
S→S PκY , (3.43)

where:

– L is the number of links (in this case, L = 2),

– RXY and RXκ are the number of neutrons that reach link Y and link κ,
respectively, for a neutron leaving link X (without crossing any other link).
These are geometric quantities that depend on the average of the external
surfaces between the links,

– P κ
S→S is the probability that the neutron passes through link κ without col-

liding, and it is calculated as P κ
S→S = 1−

∑
i P

κ
S→i = 1−

∑
i

4Vi
S

Σt,iP
κ
i→S,

– PκY is the probability that a neutron exiting the surface of link κ reaches the
surface of link Y ;

• Phase 3: Linear combination of the results obtained from the previous phases, in
order to calculate the probability that a neutron born in region i of link X collides
for the first time in region j of link B, which is calculated as:

PiX→jY = PX
i→j + PX

i→SPXY P
Y
S→j if X = Y,

PiX→jY = PX
i→SPXY P

Y
S→j if X ̸= Y,

which can be compacted using the Kronecker delta function:
PiX→jY = δXY P

X
i→j + PX

i→SPXY P
Y
S→j.

(3.44)

The Roth method has been further improved to provide a more accurate calculation of
collision probabilities. In practice, it has been decided to divide the surface of the link
into several faces, with the number varying depending on the geometry, and to calculate
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not a single transmission probability for the link PX
S→S, but multiple transmission prob-

abilities PX
Sα→Sβ

, where α and β are the faces of the link considered. This improvement
led to the Roth 4 method for rectangular lattices and the Roth 6 method for hexagonal
lattices. Finally, there is another method in ECCO, used for special situations (e.g.,
HEXAGONAL LATTICE IN HEXAGON), called the Double Step method. It involves
dividing the geometry into an isolated internal link and an external one considered infi-
nite, applying the Roth method to both.
In general, until version 1.2 of the code, only the first two levels were calculated for
geometries with two or more levels, i.e. the calculation only solved the first nesting level
using the Double Step method. Three types of nesting were permitted:

• hexagonal lattice in a hexagon;

• rectangular lattice in a square;

• cylinder in a cylinder.

Since version 2.0 a new calculation method has been defined that overcomes these limita-
tions, so it is possible to define and solve (previously described but not solved) multi-level
nesting geometries in which all links are allowed. This method, born from the combi-
nation of the Double Step (calculates the collision probabilities between the regions of
two nested links) and Roth (calculates the collision probabilities between the areas of
two links located within the same lattice) methods, is called the General method and is
called up by the code by default, whenever the cell is solved in heterogeneous geometry.
Currently, it is still possible to define the old methods for cells that allow it. For more
details on the General method and its validation, it is possible to refer to the report [4].

3.3 The Flux Calculation in BISTRO, the SN Method
As previously mentioned, the flux calculation for the reactor is carried out within the
ERANOS suite. The BISTRO code is used to solve the 1D and 2D integro-differential
transport equations using the discrete ordinates method, commonly referred to as SN

method. In this section, the SN method will be explained under the assumption of the
equation:

• monoenergetic;

• monodimensional (plane geometry);

• isotropic scattering and fission source.

Adopting these assumptions aims to simplify the discussion, focusing on the peculiarity
of the discrete ordinates method, which solves the transport equation by discretizing the
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angular variable into N finite directions.
With the given assumptions, the integrodifferential transport equation becomes:

µ
∂Φ(x, µ)

∂x
+ Σt(x)Φ(x, µ) =

1

2
(Σs(x) +

νΣf (x)

k
)

∫ 1

−1

Φ(x, µ′)dµ′ + Sext(x, µ). (3.45)

To solve Eq. (3.45), N discrete flight directions and weight coefficients are defined. The
discretization of the flight directions results in µn (n = 1, ..., N), the cosines used to
describe the angular variable, while the weight coefficients wn (n = 1, ..., N) are used to
approximate the integral using the quadrature formula:∫ 1

−1

Φ(x, µ′) dµ′ ≈
N∑

n=1

wnΦ(x, µn). (3.46)

With this discretization, a single equation in the continuous variables (x, µ) is turned
into N equations - continuous in the variable x, but discrete in the variable µ - which
take the form:

µj
∂Φ(x, µj)

∂x
+ Σt(x)Φ(x, µj) =

1

2
(Σs(x) +

νΣf (x)

k
)

N∑
n=1

wnΦ(x, µn) + Sext(x, µj),

j = 1, ..., N.

(3.47)

Some aspects related to the weight functions wn and the discrete ordinates µn need to
be highlighted. Typically, an even number of µn values, symmetric about µ = 0, are

chosen. It is given that for n = 1, ...
N

2
:

µn > 0 µN+1−n = −µn wN+1−n = wn.

The choice of values symmetric with respect to µ = 0 is because, physically, neutrons
coming from the right or the left hold equal importance. Furthermore, opting for an even
number of directions avoids having µn = 0, which would eliminate the flux derivative in
the equation.
To obtain a good approximation of the integral, the Gauss-Legendre quadrature pa-
rameters are introduced (Figure 3.3). The reason why this technique is particularly
advantageous for integration is related to the fact that a symmetric interval is involved,
i.e. −1 ≤ µ ≤ +1, and to the fact that the integration nodes µn, i.e. the points where
the function is evaluated (see Eq. (3.46)), are the zeros of the N -th order Legendre poly-
nomial. This is significant because Legendre polynomials are symmetric around zero.
Moreover, thanks to this choice, it is possible to integrate polynomials exactly up to a
certain order, which is fundamental when approximating complex functions with poly-
nomials.
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Figure 3.3: Gauss-Legendre quadrature parameters [1]

With the choice of such quadrature parameters, the boundary conditions for a flat slab
immersed in a vacuum with x ∈ [0, a], can be written as:

Φ(0, µj) = Φ(a,−µj) = 0 with j = 1, ...,
N

2
. (3.48)

Proceeding with the resolution of the system of equations 3.47, it can be rewritten by
regrouping the term on the right-hand side as:

µj
∂Φ(x, µj)

∂x
+ Σt(x)Φ(x, µj) = Q(x, µj),

with Q(x, µj) =
1

2
(Σs(x) +

νΣf (x)

k
)

N∑
n=1

wnΦ(x, µn) + Sext(x, µj),

j = 1..., N.

(3.49)

At this point, all that remains is to discretize the spatial variable (see Figure 3.4), which
is divided into I intervals, in which the material properties are constant. Therefore, for
each equation in the system of Eq. (3.49), there will be a system of equations with I
unknowns, consisting of the flux at the center of the interval Φ(xi, µj) with i = 1, ..., I.

Figure 3.4: Spatial discretization for the discrete ordinates method in the planar case [22]

34



CHAPTER 3. THE ECCO CELL CODE AND THE ERANOS SUITE

The system, using the compact subscript notation (i, j) = (xi, µj), becomes

µj

Φi+1/2,j − Φi−1/2,j

∆xi
+ ΣtiΦi,j = Qi,j,

i = 1, ..., I j = 1..., N.

(3.50)

The choice of replacing the derivative with a finite difference also introduces the fluxes at
the nodes of the spatial discretization. To solve this system, the approximation known
as the Diamond Rule can be used, which consists of imposing that the flux at the center
of the interval is equal to the arithmetic mean of the fluxes at the nodes:

Φi,j =
Φi+1/2,j − Φi−1/2,j

2
.

This rule is applied in the numerical implementation for spatial resolution, resulting in
two distinct equations depending on whether the equation corresponds to µj > 0 or
µj < 0. Therefore, depending on the value of µj, the following applies:

• for µj > 0,
the calculation proceeds from left to right starting from the first node of the first
interval, for which Φi=1/2,j is known from the boundary condition. Note that the
index for the fluxes at the cell center is defined from 1 to I. The Diamond Rule is
then rewritten as:

Φi+1/2,j = 2Φi,j − Φi−1/2,j. (3.51)

Eq. (3.51) is then substituted into Eq. (3.50), which, when rearranged, gives us the
flux at the cell center:

Φi,j =

Φi−1/2,j +
∆x

2µj

Qi,j

1 +
∆x

2µj

Σti

. (3.52)

Once the flux at the center of the interval is known, it will be possible to find
Φi+1/2,j, which will then become the starting point for the calculation of the flux
for the next interval;

• for µj < 0,
the calculation will be similar to that for the case of µj > 0, with the only difference
being that this time the calculation starts from the last node of the last interval,
which is also known from the boundary condition. The equations that allow the
calculation of the flux at the center of the interval will be:

Φi−1/2,j = 2Φi,j − Φi+1/2,j, (3.53)
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which, when substituted into Eq. (3.50), gives:

Φi,j =

∆x

2µj

Qi,j − Φi+1/2,j

∆x

2µj

Σti − 1
. (3.54)

Similarly, once the flux at the center of the interval is known, it can be substituted
into Eq. (3.53) to find the flux at the node, which will be used as the starting point
for the subsequent spatial iteration.

The calculation explained previously refers to the direct flux. However, in BISTRO, it is
possible to repeat the same calculation for solving the adjoint transport equation (which
contains the adjoint operators) in the pseudo-steady-state form. This gives as a solution
the neutronic importance function Φ∗(r, E, Ω̂) (the adjoint flux), which represents the
average asymptotic increase of N0 (the number of neutrons present in the stationary
reactor) for a single neutron inserted at point r, with energy E, and direction Ω̂.
The procedure to derive the adjoint transport equation (Eq. (3.55)) can be of two types:
a mathematical approach, which utilizes the properties of adjoint operators on direct
operators, or a physical approach, which derives it through the balance of the importance
function and demonstrates that it satisfies the same equation obtained with the analytical
approach.

− Ω̂ · ∇Φ∗(r, E, Ω̂) + Σt(r, E)Φ
∗(r, E, Ω̂) =∫ ∞

0

dE ′
∫
4π

dΩ̂′Σs(r, E → E ′, Ω̂ → Ω̂′)Φ∗(r, E ′, Ω̂′)+

+
1

k∗
χ(E)

4π

∫ ∞

0

∫
4π

ν(r, E)Σf (r, E)Φ
∗(r, E ′, Ω̂′)dΩ̂′dE ′.

(3.55)

Further observations on Φ∗(r, E, Ω̂) are the following [16]:

• this quantity cannot be less than zero, thus the function in question is non-negative;

• given the definition, it is logical that the function must be continuous in r in every
direction;

• the contribution of a neutron located on the boundary of the medium and moving
outward must be zero since it escapes and therefore does not contribute. It can be
written with n̂ as the normal to the outer surface S, where (Ω̂ · n̂) > 0:

Φ∗(rs, E, Ω̂) = 0 for rs ∈ S and Ω̂ · n̂ > 0,

which represents the boundary condition for Eq. (3.55).
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In the next paragraph, it will be explained how the adjoint flux is used to calculate
the relative sensitivity coefficients for k applying the first-order Standard Perturbation
Theory.

3.4 The Adjoint Flux and Standard Perturbation The-
ory for the Calculation of the Sensitivity Coeffi-
cient of k

This section briefly introduces the properties of adjoint operators and the application
of these properties to the Boltzmann equation for the direct flux and the importance
function (adjoint flux). An approximate expression for the relative sensitivity coefficient
of k will then be derived using the first-order Standard Perturbation Theory (SPT) under
the assumption of small perturbations.

3.4.1 Definition of Adjoint Operators

Given two real functions f and h (i.e. they map real numbers to real numbers) belonging
to a set I and defined on a domain D associated with the generic variable (or set of
variables) ξ, their inner product is defined by the following operation:

⟨f, h⟩ =
∫
D

fh dξ.

Considering now two operators F and H defined on the set I, they are said to be adjoint
to one another if, for any given pair of functions (f, h) ∈ I [16], the following holds:

⟨f,Hh⟩ = ⟨Ff, h⟩, (3.56)

that is ∫
D

f (Hh) dξ =
∫
D

(Ff)h dξ. (3.57)

Now, considering the pseudo-stationary Boltzmann equation for the direct flux

Ω̂ · ∇Φ(r, E, Ω̂) + Σt(r, E)Φ(r, E, Ω̂) =∫ ∞

0

∫
4π

Σs(r, E → E ′, Ω̂ → Ω̂′)Φ(r, E ′, Ω̂′) dΩ̂′dE ′+

+
1

k

χ(E)

4π

∫ ∞

0

∫
4π

ν(r, E)Σf (r, E)Φ(r, E
′, Ω̂′) dΩ̂′dE ′,

(3.58)

it can be written in terms of operators as follows:

BΦ =

(
A− F

k

)
Φ = 0. (3.59)
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where:

• A = Ω̂ · ∇□+ Σt(r, E)□−
∫∞
0

∫
4π
Σs(r, E → E ′, Ω̂ → Ω̂′)□ dE ′dΩ̂′;

• F =
χ(E)

4π

∫∞
0

∫
4π
ν(r, E)Σf (r, E)□dΩ̂′dE ′.

The same can be done by taking Eq. (3.55) for the importance function:

B∗Φ∗ =

(
A∗ − F ∗

k∗

)
Φ∗ = 0, (3.60)

where:

• A∗ = −Ω̂ · ∇□+ Σt(r, E)□−
∫∞
0

∫
4π

Σs(r, E → E ′, Ω̂ → Ω̂′)□ dE ′dΩ̂′;

• F ∗ =
χ(E)

4π

∫∞
0

∫
4π
ν(r, E)Σf (r, E)□dΩ̂′dE ′;

• k∗ = k.

It is then proven that the following equality holds (provided that the boundary conditions
are the standard ones, i.e. there is no neutron flux entering the reactor from outside,
and that neutrons exiting the reactor have no importance [16]):∫

V

∫ ∞

0

∫
4π

Φ∗ BΦ dΩ̂dEdr =

∫
V

∫ ∞

0

∫
4π

Φ B∗Φ∗ dΩ̂dEdr, (3.61)

which, by comparison with the definition of adjoint operator expressed by Eq. (3.57),
indicates that B∗ is the adjoint operator of B (and vice-versa). Therefore, the (angular)
neutron importance function Φ∗ is also called the adjoint (angular) neutron flux, because
the operator applied to it is the adjoint of the pseudo-stationary Boltzmann operator.
The same is true for the scalar neutron importance ϕ∗.
The perturbation theory behind sensitivity analyses makes extensive use of the definition
of adjoint operators, as discussed below.

3.4.2 The Relative Sensitivity Coefficient

This section aims to determine the coefficient that quantifies the sensitivity of k to
variations in an input parameter α, e.g. a small change in a microscopic cross section
or an isotopic concentration. The perturbed quantities within the pseudo-stationary
Boltzmann operator B reflecting a generic small input perturbation δα are:

A −→ A′ = A+ δA,

F −→ F ′ = F + δF,

k −→ k′ = k + δk,

(3.62)
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where, generically, □′ is the perturbed value of □, and δ□ indicates a small variation of
□. After the perturbation, the flux Φ, which is the solution of Eq. (3.59), also changes:

Φ −→ Φ′ = Φ+ δΦ. (3.63)

Thus, the perturbed pseudo-stationary Boltzmann equation for the direct flux can be
expressed as:

B′Φ′ =

(
A′ − F ′

k′

)
Φ′ = 0. (3.64)

where B′ = B + δB. To determine the value of δk, i.e. the effect of δα on the quantity
of interest k, the starting point is to consider the inner products of the perturbed direct
equation with Φ∗, and of the unperturbed adjoint equation with Φ′:

⟨B∗Φ∗,Φ′⟩ = 0, (3.65)

⟨Φ∗, B′Φ′⟩ = 0. (3.66)

Subtracting them term by term yields:

⟨B∗Φ∗,Φ′⟩ − ⟨Φ∗, B′Φ′⟩ = 0. (3.67)

At this point, the goal is to make appear the variations δ□. Before doing so, the commu-
tation property of adjoint operators (Eq. (3.57)) is utilized, which allows for the following
expression to be written:

⟨B∗Φ∗,Φ⟩ = ⟨Φ∗, BΦ⟩.

This results in:
⟨Φ∗, BΦ′⟩ − ⟨Φ∗, B′Φ′⟩ = 0. (3.68)

If B and B′ are written in explicit form, then:〈
Φ∗,

(
A− F

k

)
Φ′
〉
−
〈
Φ∗,

(
A′ − F ′

k′

)
Φ′
〉

= 0. (3.69)

The terms can be rearranged to give:

⟨Φ∗,
(
A− A′︸ ︷︷ ︸

−δA

)
Φ′⟩ − ⟨Φ∗,

(
F

k
− F ′

k′

)
Φ′⟩ = 0. (3.70)

Now, if the quantity ⟨Φ∗,
F

k′
Φ′⟩ is added and subtracted in the previous equation, ma-

nipulating the terms leads to:

−⟨Φ∗, δAΦ′⟩ − 1

k′
⟨Φ∗, FΦ′⟩ −

(
1

k
− 1

k′

)
⟨Φ∗, FΦ′⟩+ 1

k′
⟨Φ∗, F ′Φ′⟩ = 0. (3.71)
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From the second and fourth terms:

1

k′
⟨Φ∗, δFΦ′⟩ = 1

k′
⟨Φ∗, F ′Φ′⟩ − 1

k′
⟨Φ∗, FΦ′⟩. (3.72)

In relation to the term −
(1
k
− 1

k′
)
⟨Φ∗, FΦ′⟩, the goal is to express δk by utilizing the

assumption of small perturbations. Since δk = k′ − k, it can be assumed that k′ ≃ k,
thus the term becomes:

−
(
1

k
− 1

k′

)
⟨Φ∗, FΦ′⟩ = −k

′ − k

kk′
⟨Φ∗, FΦ′⟩ = − δk

k′k
⟨Φ∗, FΦ′⟩ ≃ −δk

k2
⟨Φ∗, FΦ′⟩. (3.73)

At this point, substituting the results obtained from Eq. (3.72) and Eq. (3.73) into
Eq. (3.71) yields

−⟨Φ∗, δAΦ′⟩+ 1

k′
⟨Φ∗, δFΦ′⟩ ≃ δk

k2
⟨Φ∗, FΦ′⟩. (3.74)

The quantity δk/k2 can be expressed by rearranging the previous equation and using
k′ ≃ k as:

δk

k2
≃

−⟨Φ∗, δAΦ′⟩+ 1

k
⟨Φ∗, δFΦ′⟩

⟨Φ∗, FΦ′⟩
. (3.75)

At this point, if the perturbed flux is written as Φ′ = Φ + δΦ, higher-order terms in δ
appear. These terms can be neglected due to the small perturbation assumption made
earlier (neglecting these terms is what makes it a first-order approach). This leads to:

δAΦ′ = δA(Φ + δΦ) = δAΦ + δAδΦ︸ ︷︷ ︸
≃0

≃ δAΦ,

δFΦ′ = δF (Φ + δΦ) = δFΦ + δFδΦ︸ ︷︷ ︸
≃0

≃ δFΦ.
(3.76)

Thus, Eq. (3.75) becomes:

δk

k2
≃

−⟨Φ∗, δAΦ⟩+ 1

k
⟨Φ∗, δFΦ⟩

⟨Φ∗, FΦ′⟩
, (3.77)

Using the assumption Φ′ ≃ Φ and combining the terms, the equation can be rewritten
in a more elegant form:

δk

k
≃ −k

⟨Φ∗,
(
δA− δF

k

)
Φ⟩

⟨Φ∗, FΦ⟩
(3.78)

Eq. (3.78) shows the relative variation of k due to a perturbation on the Boltzmann
operator. The adjoint flux acts as a weighting function, and both it and the direct flux
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appear as unperturbed quantities: they can be computed once and for all, independently
of any perturbation, andused for estimating the propagation of perturbations from input
data to k.
Starting from this formula, the relative sensitivity coefficient S(k, α) of k with respect
to an input parameter α can be defined:

S(k, α) =
δk

k

/
δα

α
=
α

k

∂k

∂α
≃ −k

⟨Φ∗,
(
α
∂A

∂α
− α

k

∂F

∂α

)
Φ⟩

⟨Φ∗, FΦ⟩
, (3.79)

or, equivalently,

S(k, α) = −k
⟨Φ∗, α

∂B

∂α
Φ⟩

⟨Φ∗, FΦ⟩
. (3.80)

In practice, the sensitivity coefficient acts as a factor of amplification or reduction be-
tween the relative input variation δα/α and the associated output one δk/k. In practice,
it indicates that the relative variation of k due to a change in an input parameter α (e.g.,
the concentration or microscopic cross section of an isotope) is given by:

δk

k
= S(k, α)

δα

α
. (3.81)

In summary, the adjoint flux is used to determine the sensitivity coefficient of the multi-
plication factor k, for which, thanks to the SPT theory with first-order approximation,
it is not necessary to involve perturbed quantities. Moreover, the components of the
Boltzmann operator are linear in the microscopic cross sections and in the isotopic con-

centrations, making the term α
∂B

∂α
easy to compute.

It should be noted that the presence of multiple materials (multiple cross sections ) im-
plies that, within ERANOS, α assumes more than one value during a single computation,
leading to multiple corresponding S(k, α), which results in a vector S̄ (or set) of sensi-
tivity coefficients. This vector is then used in combination with input data uncertainties
to compute output uncertainties on k through an uncertainty analysis.

3.5 Uncertainty Analysis in ERANOS
Nuclear data found in libraries are associated with uncertainties. These uncertainties are
calculated based on how errors propagate during the phases leading to the production
of the nuclear data (i.e., errors made during experimental measurements, errors in the
evaluation phases associated with the nuclear models used, etc.).
Typically, uncertainties in cross sections are correlated and are not independent from
one another. In particular, correlations may occur between:
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• the energy ranges of a given cross section;

• the different cross sections of a given isotope;

• the cross sections of different isotopes.

Correlations are contained in the so-called dispersion matrix which is a square, symmet-
ric, positive-definite matrix that includes variance and covariance data related to the
multigroup nuclear data used by the code. In ERANOS, three methods are implemented
for constructing the dispersion matrix. The method used in this thesis employs the sub-
directive AMERE_FILE. The format of the file to be provided with the AMERE_FILE
sub-directive contains multiple blocks, with each block relating to the dispersion data
between, for instance, reaction R1 of nuclide N1 and reaction R2 of nuclide N2, formatted
as follows [6]:

• a line containing the names of the reactions and nuclides involved: R1, N1, R2, N2;

• a line containing the G values (g = 1, ..., G) of the standard deviations for reaction
R1 on nuclide N1;

• a line containing the G values (g = 1, ..., G) of the standard deviations for reaction
R2 on nuclide N2;

• a G×G table T (with the first index being the line index, the second index being
column index, while g, g1, and g2 are the group indices ranging between 1 and G),
which involves R1, N1, R2, and N2 according to the following:

– if R1 = R2 = R and N1 = N2 = N, then T (g, g) = 1, and for g1 ̸= g2, T (g1, g2) =
T (g2, g1) represents the correlation between group g1 and group g2 for reaction
R of nuclide N;

– if R1 ̸= R2 or N1 ̸= N2, then T (g1, g2) represents the correlation between reaction
R1 of nuclide N1 in group g2 and reaction R2 of nuclide N2 in group g1 (note
the order of the group indices!).

An example is shown in Figure 3.5, where two blocks of reactions and nuclides are
involved and only 3 energy groups are considered (g = 1, 2, 3), and thus T is a 3 × 3
table:
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Figure 3.5: Example of the format of the file to be provided with the AMERE_FILE sub-
directive for defining the dispersion matrix.

In summary, the file used with the AMERE_FILE sub-directive contains two things.
The first one corresponds to the values of the standard deviations

σX =
√

E [(X− E[X])2], (3.82)

where:

• X is the generic input quantity of interest (e.g. the microscopic cross section for a
given triad isotope, reaction, and energy group);

• E[X] is the expected value of X;

• E [(X− E[X])2] is the expected value of the square of the difference between X and
its expected value, i.e. it is the variance σ2

X.

The second thing corresponds to a matrix of correlations (dispersion matrix), whose
generic element is

ρX1X2 =
Cov(X1, X2)
σX1σX2

− 1 ≤ ρX1X2 ≤ 1, (3.83)

where Cov(X1, X2) is the covariance between X1 and X2 given by

Cov(X1, X2) = E [(X1 − E[X1])(X2 − E[X2])] = (σX1σX2)ρX1X2 . (3.84)

More precisely, if D is the dispersion matrix, then its element Dij, which is indexed by
composite indices i = (r, g, n) and j = (r′, g′, n′), where r, r′ are the reaction indices, g,
g′ are the group indices, and n, n′ are the nuclide indices, is given by:

• Dii (on the main diagonal, where i = j), i.e. variance of the cross section of index
i, as the covariance coincides with the variance if X1 = X2 (Eq 3.84);
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• Dij (outside the main diagonal, where i ̸= j), i.e. the covariance between cross
sections of composite indices i and j.

Once the dispersion matrix has been obtained, the square of the uncertainty ε is calcu-
lated using the well-known sandwich formula [6]:

ε2 = S̄TDS̄ =
∑

n,r,g,n′,r′,g′

Sn,r,gDn,r,g;n′,r′,g′Sn′,r′,g′ , (3.85)

where:

• Sn,r,g is the sensitivity coefficient (belonging to the sensitivity column vector S̄)
of a given fixed output quantity Q (e.g. k) with respect to the microscopic cross
section of nuclide n for reaction r and group g:

Sn,r,g = S(Q, σn,r,g) =
δQ
Q

/
δσn,r,g
σn,r,g

; (3.86)

• S̄T is the transpose of S̄.

Specifically, in ERANOS, the module that calculates the uncertainty [6] provides three
tables containing the square root of each partial sum:

• the sum over the energy groups, which is presented as a table (nuclides against
reactions), where the generic term is

εg(n, r) =

√ ∑
g,g′,n′,r′

Sn,r,gDn,r,g;n′,r′,g′Sn′,r′,g′ ; (3.87)

• the sum over the nuclides, which is presented as a table (groups against reactions),
where the generic term is

εn(g, r) =

√ ∑
n,n′,r′,g′

Sn,r,gDn,r,g;n′,r′,g′Sn′,r′,g′ ; (3.88)

• the sum over the reactions, which is presented as a table (groups against nuclides),
where the generic term is

εr(g, n) =

√ ∑
r,r′,n′,g′

Sn,r,gDn,r,g;n′,r′,g′Sn′,r′,g′ . (3.89)

Each of these tables also presents the total value, which corresponds to the result of
Eq. (3.85): ∑

n,r

ε2g(n, r) =
∑
g,r

ε2n(g, r) =
∑
g,n

ε2r(g, n) = ε2. (3.90)
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ALFRED’s benchmark

This chapter introduces the ALFRED benchmark cases and presents the results obtained
from this work. For each case, the modeling process using ECCO and ERANOS is
described, followed by an analysis of the corresponding results.

4.1 Introduction to the Benchmark
The ALFRED benchmark is organized into three phases, with the second phase further
divided into three sub-cases. The structure is:

• Phase 1: fuel pin elementary cell;

• Phase 2: cells and super-cells:

– 2.1: fuel assembly,

– 2.2: absorber super-cell,

– 2.3: shield super-cell;

• Phase 3: full core (not taken into account for this work).

Each case was solved using ECCO for cell calculations and ERANOS for uncertainty and
sensitivity analysis. The ENDF/B-VIII.0 nuclear data set was used as reference library.
In ECCO, materials were defined based on either their complete elementary and isotopic
composition (providing weight or volume percentages on the whole) or their chemical
composition (thus only providing the isotopy of elements combined by their stoichiom-
etry). As per benchmark’s specifications, the density for all materials was set at 20°C,
consistent with cold model, except for lead, which was assigned a density of 10502.9
kg/m3, corresponding to the average coolant temperature in the core. Subsequently,
media were defined by combining these materials and specifying their volume fraction.
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Cells were then defined by arranging the various media in a 2-D geometry and specifying
the required boundary conditions for the benchmark.
Once the cell was characterized, it was possible to perform the calculation scheme deputed
to homogenization and condensation of cross sections, which were then transferred to
the reactor portion of ERANOS for post-processing and/or their use in flux calculations
necessary to perform sensitivity and uncertainty analyses. The data post-processing was
automated in ERANOS by creating custom files using LU (Langage Utilisateur) func-
tions. This approach was implemented to minimize reading errors, ensuring streamlined
post-processing for all cases.

4.2 PHASE 1: fuel pin elementary cell simulations
Phase 1 focuses on the study of the bi-dimensional heterogeneous model of the fuel pin
elementary cell. It was modeled considering a typical ALFRED inner fuel pin (see Sec-
tion 2.2), surrounded by lead corresponding to the coolant fraction assigned to that pin
(see Figure 4.1). The cell was considered to be immersed in an infinite lattice of identical
cells with the axial dimension assumed infinite by reflection boundary conditions.

Figure 4.1: Fuel pin cell model.

The benchmark requires to find the following quantities:

• the infinite multiplication factor k∞;

• the fission and capture microscopic 1-group cross sections for 239Pu, 241Pu, 235U,
and 238U, together with their average number of neutrons emitted per fission event
ν;

• the 1-group inelastic scattering microscopic cross section for 238U and 208Pb;

• the 1-group capture microscopic cross sections for 56Fe and 208Pb;

• the 172-group neutron spectrum;
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• the reproduction factor η =
νΣf

Σa,fuel

;

• the utilization factor f =
Σa,fuel

Σa,tot

;

• the transport cross section Σtr = Σt − µ0Σs;

• the five isotope and reaction combinations that give the highest k∞ sensitivity
coefficients and uncertainties.

Furthermore, the benchmark requires finding the buckling B2 that makes the cell critical.
For comparison purposes only, the calculations for the infinite configuration (buckling is
zero) were repeated also for the critical configuration (in which the buckling is greater
than zero, but the radially infinite condition is retained), sensitivity and uncertainty
analyses excluded.

4.2.1 Phase 1 Execution

The Phase 1 case was treated using the ECCO cell code, within which the materials
’lead’, ’AIM1’ (stainless steel), ’UO2’ (uranium dioxide), and ’PuO2’ (plutonium dioxide)
were implemented. Subsequently, the media ’lead’ and ’AIM1’ were defined by simply
associating a 100% volume fraction of the respective materials. For the definition of
the MOX fuel medium, the uranium dioxide and plutonium dioxide materials were used
with the volume fraction given by the enrichment of the inner-type fuel. Furthermore,
to speed up the computation time, the cell geometry was simplified by removing the
hollow and the gap, which were combined into a single homogeneous region proceeding
with a dilution of the volume fraction (density) of the materials within the MOX (see
Figure 4.2).

Figure 4.2: Simplified Fuel pin cell model.

47



CHAPTER 4. ALFRED’S BENCHMARK

After implementing the materials, the geometry was defined on ECCO as in Listing 4.1.
1 CELL ’PIN_CELL ’
2 COMPOSITION_ORDER ’lead_med ’ ’AIM1_med ’ ’MOX_med ’
3 GEOMETRY DATA
4 HEXAGON 1 (PIN_PITCH)
5 CYLINDRICAL 2
6 (R_EXT_FUEL) REGION 1 ’fuel’ COMP 3 (TEMP_CELSIUS +273.15)
7 (R_EXT_CLAD) REGION 2 ’clad’ COMP 2 (TEMP_CELSIUS +273.15)
8 IN
9 REGION 3 ’lead’ COMP 1 (TEMP_CELSIUS +273.15)

10 REFLECT
11 END OF GEOMETRY DATA
12 ;

Listing 4.1: Geometry of the pin cell for benchmark Phase 1.

As it can be seen from line 10 of Listing 4.1, the reflection boundary condition was
applied to the outer face of the hexagon. This condition was necessary to recreate the
infinite lattice required by the benchmark. As required by ECCO, the geometry was de-
fined from the outside inwards, with the gaps between the various geometric boundaries
representing the regions. The media were assigned to each region using the COMP keyword
followed by the number with which the medium appears in the COMPOSITION_ORDER list.
After defining the geometry, the cell calculation routine was executed, with the following
inputs: the cell name (line 1 of the listing), the cross section library (see Section 4.1),
and the temperatures in Kelvin associated with each region. These temperatures differ
from those used for material definition in the cold model because they are specifically
used for modeling the Doppler effect (i.e., the broadening of the resonance absorption
cross sections due to temperature rising).
As mentioned earlier, the Phase 1 calculations were performed for this work both consid-
ering an infinite configuration (following the benchmark requirements) and a critical one
(not required). In ECCO, the cell can be characterized to assume an infinite or a critical
configuration through the buckling. In particular, an infinite cell (both radially, as a con-
sequence of the boundary conditions, and axially) is obtained by imposing B2 = 0, while
a critical configuration (only radially infinite) requires to perform buckling searches, i.e.,
the code iteratively finds the buckling that gives a given multiplication factor provided
by the user (typically, 1). Performing calculations in ECCO involves a series of steps
aimed at homogenizing the cross sections in space and condensing them into the energy
groups required by the user.

Description of the calculation algorithms

In the first step, the cell is homogenized, and using the 172-group cross section library,
the fluxes are found by imposing or searching the buckling, depending on the desired
cell configuration (infinite or critical, respectively). In the second step, the calculation
is carried out in original geometry (i.e., heterogeneous) starting from the buckling of the
previous step and keeping the same number of energy groups. In the third step, the
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calculation is repeated exploding the energy description to the 1968-group (fine) struc-
ture library (fine groups) For the main isotopes, a standard library is used, while for the
remaining ones the 172 structure is deconvoluted to 1968 groups. Then the cross sections
are condensed to the number of groups n chosen as indicated in the benchmark. In the
fourth step, the calculation is carried out in the original geometry with the condensed
groups and the buckling is updated (in the infinite configuration, this does not change
the buckling). In the last step, the buckling is taken from the previous step and the ho-
mogenization of the cell -hence of the cross sections- is performed. The newly condensed
and homogenized cross sections are saved and sent to ERANOS. From now onwards, the
scheme for the critical cell (schematized in Figure 4.3) will be called "Critical" while the
scheme for the infinite cell (schematized in Figure 4.4) will be called "Axially Infinite", to
emphasize that both cells have the radial reflection condition and are therefore limitless
in that direction.

Critical

Step 1: homogenized geometry, 172 energy groups, buckling search to have k = 1

Step 2: original geometry, 172 energy groups, buckling from step 1

Step 3: original geometry, 1968 energy groups, buckling from step 1, condensing to n groups

Step 4: original geometry, n energy groups, buckling search to have k = 1

Step 5: homogenized geometry, n energy groups, buckling from step 4

OUTPUT LIBRARY CROSS SECTIONS (condensed and homogenized) & FLUX

Figure 4.3: Block diagram of the ECCO steps for the critical cell (condensation to n groups).
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Axially Infinite

Step 1: homogenized geometry, 172 energy groups, buckling set to zero

Step 2: original geometry, 172 energy groups, buckling set to zero

Step 3: original geometry, 1968 energy groups, buckling set to zero, condensing to n groups

Step 4: original geometry, n energy groups, buckling set to zero

Step 5: homogenized geometry, n energy groups, buckling set to zero

OUTPUT LIBRARY CROSS SECTIONS (condensed and homogenized) & FLUX

Figure 4.4: Block diagram of the ECCO steps for the infinite cell (condensation to n groups).

4.2.2 Phase 1 Results

This subsection presents the results for both the Critical and Axially Infinite calculations,
which are then compared. Sensitivity and uncertainty analyses are excluded from the
comparison as they are performed only for the Axially Infinite calculations.

172-group neutron spectum

The neutron spectrum at 172 groups has been calculated using the previously men-
tioned routines with n=172. Figure 4.5 shows, for both cell configurations, the neutron
spectrum normalized with respect to the total flux as:

ϕnorm
i =

ϕi∑172
j=1 ϕj

, (4.1)

where:

• ϕnorm
i is the normalized flux of the i-th group,

• ϕi is the flux of the i-th group,

•
∑172

j=1 ϕj is the total flux, which is the sum of the fluxes of the 172 groups.
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Figure 4.5: Neutron spectrum at 172 groups normalized on the total flux: critical case (red)
vs axially infinite case (blue).

From Figure 4.5, it can be observed that the flux calculated for the critical cell is harder
compared to that calculated for the infinite one. This behavior is justified by the fact
that in an infinite cell, neutrons undergo more collisions since they cannot escape from it,
thus losing more energy. This observation is also confirmed by the cross sections shown
in Table 4.1.
In addition to the normalization over the total flux, a weighted normalization over the
energy range of each group was also done to better observe the distribution that flux
takes over the various energy groups. The same was repeated using lethargy widths in
place of the energy ones.
The flux of the i-th group is normalized in energy as a weighted average of the flux ϕi

by the energy group width ∆Ei of the i-th group using the following equation:

ϕnorm
i =

ϕi ·∆Ei∑172
j=1 ϕj ·∆Ej

, (4.2)

where:

• ∆Ei is the energy group width of the i-th group;

•
∑172

j=1 ϕj · ∆Ej is the total flux weighted by the energy group widths of the 172
groups.

The flux of the i-th group is normalized in lethargy u(E) = ln
E0

E
(E0 is an arbitrary

reference neutron energy), where the flux ϕi is weighted by the lethargy width ∆ui =
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ln
Ei

Ei+1

= u(Ei+1)− u(Ei) associated with the i-th group using the following equation:

ϕnorm
i =

ϕi ·∆ui∑172
j=1 ϕj ·∆uj

(4.3)

As observed in Figures 4.6 and 4.7, the harder nature of the neutron spectrum in the
critical case is even more evident when normalized in energy and lethargy, as hinted by
the vertical axis scale.

Figure 4.6: Neutron spectrum at 172 groups normalized on energy: critical case (red) vs
axially infinite case (blue).
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Figure 4.7: Neutron spectrum at 172 groups normalized on lethargy: critical case (red) vs
axially infinite case (blue).

1-group microscopic quantities

For this part of Phase 1, the calculation schemes were used with n=1. As can be deduced
from Table 4.1, the microscopic fission cross section for fissile isotopes is higher for the
infinite cell case than the critical one, the opposite happens for fissionable isotopes; this
is consistent with what was found for the 172 group neutron spectrum. In fact, for a
fissile isotope, the microscopic fission cross section increases as the energy of the incident
neutron decreases, whereas, for fissionable ones, the opposite is true because of the fission
threshold energy (see Figure 4.8). This is confirmed by the values found, as the 238U
fission cross section is higher for the critical case, where the spectrum is harder. Another
parameter that confirms what has been discussed so far is ν, a number that increases with
the energy of the neutrons for both fissile and fissionable isotopes (see Figure 4.9). What
has been observed for the microscopic cross sections will also influence the macroscopic
ones and the criticality factors.
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Isotope Quantity Axially Infinite Critical Unit
configuration configuration

239Pu σc 4.46348× 10−1 3.73400× 10−1 b
239Pu σf 1.72480 1.69814 b
239Pu ν 2.93925 2.95080 #
241Pu σc 4.05293× 10−1 3.55038× 10−1 b
241Pu σf 2.39221 2.24477 b
241Pu ν 2.96546 2.97244 #
235U σc 5.10091× 10−1 4.46780× 10−1 b
235U σf 1.82902 1.70896 b
235U ν 2.45511 2.46391 #
238U σc 2.70765× 10−1 2.39577× 10−1 b
238U σf 3.66421× 10−2 4.66242× 10−2 b
238U ν 2.72276 2.72579 #
56Fe σc 8.17717× 10−3 7.49093× 10−3 b

208Pb σc 6.74317× 10−4 7.27047× 10−4 b
208Pb σin 2.59467× 10−2 3.37407× 10−2 b

Table 4.1: 1-group microscopic cross sections σ and the average number of neutrons emitted
per fission event ν for Phase 1. The values are presented for both the axially infinite and critical
configurations. The subscripts c, f , and in represent the capture, fission, and inelastic reactions
respectively.

Figure 4.8: Microscopic fission cross sections of 235U, 238U, 239Pu, and 241Pu in barn [11].
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Figure 4.9: The average number of neutrons emitted per fission ν for 239Pu, 235U and 233U
[8].

1-group macroscopic cross sections and integral parameters

In Table 4.2, the parameters that are input data for the calculation schemes (see Fig-
ures 4.4 and 4.3) are highlighted in red. Actually, while B2 can be set to 0, k = 1 is only
a consequence of a buckling search. Therefore, the value of k corresponding to the buck-
ling search can be 1, very close to 1, or far from it, depending on the effectiveness of the
iterative search method, which can be influenced by aspects such as the cell complexity.
Comparing the results for the two configurations, the most striking one is Σf , which is
larger in the critical case. This occurs even though the microscopic fission cross sections
for fissile isotopes are larger in the infinite cell case, and those for fissionable isotopes
are two orders of magnitude smaller in both case. To understand this, it is necessary to
highlight that both cases have the same concentration, and what influences the macro-
scopic fission cross section is the product between concentrations and microscopic cross
sections of the various isotopes, as it is shown in the following equation:

Σf (E) =

Ni∑
i=1

Niσf,i(E) (4.4)

where:

• Σf (E) is the macroscopic fission cross section,

• Ni is the concentration of the i-th isotope,
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• σf,i(E) is the microscopic fission cross section of the i-th isotope,

• Ni is the total number of isotopes considered.

It is then understood how, within the critical case (harder spectrum), the fissionable
component plays a fundamental role in the balance for the calculation of Σf . Indeed,
although both cases have the same concentrations and the microscopic cross sections
of fissile isotopes seem to favor the infinite case, in reality, the higher concentration
of fissionable material in the fuel (only 20% enrichment) is predominant, in particular
thanks to 238U.

Quantity Axially Infinite Critical Unit
configuration configuration

k 1.35207 1.00000 #
B2 0.0000 1.86698× 10−3 cm−2

Σa 5.47884× 10−3 5.19005× 10−3 cm−1

Σa,fuel 5.26678× 10−3 4.99338× 10−3 cm−1

νΣf 7.38894× 10−3 7.59000× 10−3 cm−1

Σf 2.52561× 10−3 2.58861× 10−3 cm−1

Σtr 2.70825× 10−1 2.57346× 10−1 cm−1

η 1.40293 1.52001 #
f 9.61294× 10−1 9.62107× 10−1 #

Table 4.2: 1-group output quantities for Phase 1: multiplication factor k, buckling B2, main
macroscopic cross sections, reproduction factor η, and utilization factor f . The values are
presented both for axially infinite and critical configurations.

Another aspect evidenced by the table is a lower Σtr in the critical case than the infinite

one, which translates into a higher diffusion coefficient D =
1

3Σtr

. This result still

confirms the presence of a harder spectrum compared to the infinite case.

Uncertainty and sensitivity analysis for the axially infinite configuration

The uncertainty and sensitivity analyses were carried out using BISTRO (see Sections 3.4
and 3.5), with the cross sections provided by ECCO. The cross sections were calculated
using the Axially Infinite routine, in which they were condensed to 33 groups (n=33),
although the results for each isotope are the sum of the groups (see Eq. (3.87)). The
benchmark does not provide any information about the number of groups for performing
sensitivity and uncertainty analyses. Therefore, the choice of using 33 groups was related
to multiple reasons:

• it is a standard discretization adopted for fast reactors;

56



CHAPTER 4. ALFRED’S BENCHMARK

• ENEA has access to 33-group nuclear data variances and correlations for uncer-
tainty calculations;

• it is a good trade-off between precision, physics, and computational time (when
compared to the 1-group and the 172-group discretizations).

This discretization allowed for a sufficiently accurate calculation of the direct flux and the
adjoint flux (importance function), which in turn were used to calculate the sensitivity
coefficients for k.
Table 4.3 shows the five most relevant combinations of isotopes and reactions in terms
of k sensitivity, regardless of the sign. This ranking was made on the isotopes involved
in the previous benchmark requests.

α S(k,α)

σ
239Pu
f 4.549614× 10−1

σ
238U
c −2.244481× 10−1

σ
238U
in −7.289689× 10−2

σ
241Pu
f 6.995399× 10−2

σ
239Pu
c −5.146001× 10−2

Table 4.3: Most relevant sensitivity coefficients S(k, α) of the multiplication factor k to the
cross sections as input data α for Phase 1.

Naturally, the infinite multiplication factor is most sensitive to the fission of 239Pu, as it
is the primary fissile isotope in MOX fuel. In general, the high relevance of 239Pu fission
for nuclear reactors is associated with particularly low uncertainties regarding its cross
section data in libraries. Therefore, it was expected that the output uncertainties on k
originated from the 239Pu fission were relatively low, even in presence of high sensitivities.
However, the uncertainty in the fission reaction turns out to be the highest among those
calculated (see Table 4.4). Despite this, when considering the order of magnitude, it is
practically the same as the other reactions in the top five and is twice as small as the
sensitivity coefficient.

α ε(k, α)

σ
239Pu
f 5.41360× 10−3

σ
238U
c 3.39680× 10−3

σ
238U
in 3.32530× 10−3

σ
239Pu
c 3.01970× 10−3

σ
239Pu
in 1.61000× 10−3

Table 4.4: Most relevant uncertainties ε(k, α) of the multiplication factor k to the cross sections
as input data α for Phase 1.
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The sensitivity and uncertainty analysis with α = ν for k are shown in Table 4.5 con-
sidering the main fissile and fissionable isotopes. The results underline the relevance of
239Pu on the infinite multiplication factor and they highlight how 238U contributes more
than 235U, confirming what was said for the macroscopic fission cross sections and η.

α S(k, α) ε(k, α)

ν
235U 8.593767× 10−3 4.45340× 10−5

ν
238U 9.415277× 10−2 1.17110× 10−3

ν
239Pu 6.904930× 10−1 1.88950× 10−3

ν
241Pu 1.028110× 10−1 2.54970× 10−4

Table 4.5: Values of sensitivity coefficients S(k, α) and the uncertainty ε(k, α) of the multi-
plication factor k to ν for fissile and fissionable isotopes in Phase 1.

4.2.3 Further Considerations on Phase 1

The results reported so far were obtained using the default General method in the
ECCO calculation routines in relation to flux calculations for heterogeneous cells (see
Section 3.2.4). However, the results were also obtained using the Roth 6 method, which,
as suggested by its name, was developed specifically for treating hexagonal lattices,
which in general involve multiple rings of hexagons. Since Phase 1 involves only a single
hexagon, the geometry was created unconventionally by assembling a degenerate lattice
consisting of one ring only, i.e. the single hexagonal pin. The results obtained with the
two methods are compared in Tables 4.6 and 4.7.

General Roth 6
Quantity A. Infinite Critical A. Infinite Critical Unit

k 1.35207 1.0000 1.35221 1.0000 #
B2 0.0000 1.86698×10−3 0.0000 1.86806×10−3 cm−2

Σa 5.47884×10−3 5.19005×10−3 5.47899×10−3 5.19066×10−3 cm−1

Σa,fuel 5.26678×10−3 4.99338×10−3 5.26679×10−3 4.99389×10−3 cm−1

νΣf 7.38894×10−3 7.59000×10−3 7.38991×10−3 7.59159×10−3 cm−1

Σtr 2.70825×10−1 2.57346×10−1 2.70880×10−1 2.57390×10−1 cm−1

η 1.40293 1.52001 1.40311 1.52018 #
f 9.61294×10−1 9.62107×10−1 9.61271×10−1 9.62092×10−1 #

Table 4.6: 1-group quantities for Phase 1: multiplication factor k, buckling B2, main macro-
scopic cross sections, reproduction factor η, and utilization factor f . The values are compared
both for axially infinite and critical configurations for General and Roth 6 methods.
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General Roth 6
Isotope Quantity A. Infinite Critical A. Infinite Critical Unit

239Pu σc 4.46348E-1 3.73400E-1 4.46438E-1 3.73500E-1 b
239Pu σf 1.72480 1.69814 1.72490 1.69833 b
239Pu ν 2.93925 2.95080 2.93927 2.95082 #
241Pu σc 4.05293E-1 3.55038E-1 4.05356E-1 3.55111E-1 b
241Pu σf 2.39221 2.24477 2.39245 2.24509 b
241Pu ν 2.96546 2.97244 2.96547 2.97246 #
235U σc 5.10091E-1 4.46780E-1 5.10167E-1 4.46868E-1 b
235U σf 1.82902 1.70896 1.82921 1.70923 b
235U ν 2.45511 2.46391 2.45512 2.46392 #
238U σc 2.70765E-1 2.39577E-1 2.70699E-1 2.39548E-1 b
238U σf 3.66421E-2 4.66242E-2 3.66637E-2 4.66569E-2 b
238U ν 2.72276 2.72579 2.72290 2.72593 #
56Fe σc 8.17717E-3 7.49093E-3 8.19216E-3 7.50305E-3 b

208Pb σc 6.74317E-4 7.27047E-4 6.74395E-4 7.27088E-4 b
208Pb σin 2.59467E-2 3.37407E-2 2.59114E-2 3.36930E-2 b

Table 4.7: 1-group microscopic cross sections σ and the average number of neutrons emitted
per fission event ν for Phase 1. The subscripts c, f , and in represent the capture, fission, and
inelastic reactions. The values are compared both for axially infinite and critical configurations
for General vs Roth 6 methods.

As shown in Tables 4.6 and 4.7, the differences in results between the two methods
are practically negligible, at least for these simple geometries. To further illustrate this,
Table 4.8 presents the differences (in absolute value) in microscopic cross sections between
calculation methods for both axially infinite and critical cases, with the values expressed
in pcm.
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Isotope Quantity ∆ A. Infinite [pcm] ∆ Critical [pcm] Unit
239Pu σc 9 10 b
239Pu σf 10 19 b
239Pu ν 2 2 #
241Pu σc 6 7 b
241Pu σf 24 32 b
241Pu ν 1 2 #
235U σc 8 9 b
235U σf 19 27 b
235U ν 1 1 #
238U σc 7 3 b
238U σf 2 3 b
238U ν 14 14 #
56Fe σc 1 1 b

208Pb σc 0 0 b
208Pb σin 4 5 b

Table 4.8: Differences ∆ (in absolute value) for microscopic cross sections and ν between the
Roth 6 and General methods, Phase 1 axially infinite and critical configurations.
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4.3 PHASE 2.1: Fuel Assembly Simulations
Phase 2.1 of the benchmark focuses on the study of a two-dimensional heterogeneous
model of an inner-type fuel assembly (see Section 2.2). In modeling the cell, it was
decided to include the fraction of inter-assembly lead corresponding to the coolant of the
analyzed assembly (see Figure 4.10). As in the previous case, the boundary conditions
were set in such a way as to recreate an infinite lattice of identical and axially infinite
cells.

Figure 4.10: Fuel assembly model [20].

The benchmark requires to find the following quantities:

• The multiplication factor k.

• The fission and capture microscopic 1-group cross sections for 239Pu, 241Pu, 235U,
and 238U, together with their average number of neutrons emitted per fission event
ν.

• The 1-group inelastic scattering microscopic cross section for 238U and 208Pb.

• The 1-group capture microscopic cross sections for 56Fe and 208Pb.

• The reproduction factor η =
νΣf

Σa,fuel

.

• The utilization factor f =
Σa,fuel

Σa,tot

.

• The transport cross section Σtr = Σt − µ0Σs.
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• The macroscopic fission, capture, elastic, and inelastic cross sections for the 7-group
discretization.

• The five isotope and reaction combinations that give the highest k sensitivity co-
efficients and uncertainties.

Furthermore, for comparing purposes only, the calculation for the critical configuration
(Critical calculation routine was used) was repeated, as in Phase 1.

4.3.1 Phase 2.1 Execution

As for the previous case, Phase 2.1 was studied using the ECCO cell code. For this
case, in addition to the materials and media defined previously, the ’VOID’ medium was
implemented, which was used to model the dummy pin region (see Section 2.2.2).
After implementing the materials, the geometry was defined as in Listing 4.2.

1 CELL ’FUEL_ASSEMBLY_CELL ’
2 COMPOSITION_ORDER
3 ’lead_med ’ ’AIM1_med ’ ’MOX_med ’ ’VOID_med ’
4 GEOMETRY DATA
5 HEXAGON 3 (W_IN)
6 HEXAGONAL LATTICE (N_RING) (PIN_PITCH) 2
7 CYLINDRICAL 2
8 (R_D_CLAD_IN) REGION 1 ’void_dummy ’ COMP 4 (TEMP_CELSIUS +273.15)
9 (R_D_CLAD_OUT) REGION 2 ’clad_dummy ’ COMP 2 (TEMP_CELSIUS +273.15)

10 IN
11 REGION 3 ’lead_dummy ’ COMP 1 (TEMP_CELSIUS +273.15)
12 CYLINDRICAL 2
13 (R_EXT_GAP) REGION 4 ’fuel’ COMP 3 (TEMP_CELSIUS +273.15)
14 (R_EXT_CLAD) REGION 5 ’clad’ COMP 2 (TEMP_CELSIUS +273.15)
15 IN
16 REGION 6 ’lead’ COMP 1 (TEMP_CELSIUS +273.15)
17 1 2 2 2 2 2 2
18 IN
19 REGION 7 ’lead_flow ’ COMP 1 (TEMP_CELSIUS +273.15)
20 (W_OUT)
21 REGION 8 ’wrapper ’ COMP 2 (TEMP_CELSIUS +273.15)
22 (SA_PITCH)
23 REGION 9 ’bypass ’ COMP 1 (TEMP_CELSIUS +273.15)
24 REFLECT
25 END OF GEOMETRY DATA
26 ;

Listing 4.2: Geometry of fuel assembly cell for benchmark Phase 2.1.

As can be seen from line 24, the reflection boundary condition was applied to the outer
face of the hexagon. The geometry was defined starting from the three nested hexagons
that define the region of the assembly wrapper and the fraction of coolant outside it,
called ’bypass’ in the listing. Subsequently, the hexagonal pin lattice was defined using
the HEXAGON LATTICE command, in which the number of rings characterizing the
lattice and the types of pins implemented were specified. In this case, the two types of
pins that were implemented are the dummy pin and the fuel pin, respectively. In line
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17, the type of pin contained in each ring of the lattice was defined starting from the
innermost ring, repeated as many times as the number of rings previously defined.
Then, the ECCO routines defined for Phase 1 were used to obtain the required results
and to provide the condensed and homogenized cross sections to ERANOS for performing
the sensitivity and uncertainty analysis. For Phase 2.1, the results obtained using the
General method will be presented first, followed by a comparison with those achieved
using the Roth 6 method.

4.3.2 Phase 2.1 Results

1-group macroscopic cross sections and integral parameters

In Table 4.9, the parameters that are input data for the calculation routines are high-
lighted in red. It can be seen that, as in Phase 1, the critical cell presents a harder neutron
spectrum and shows higher values of ν and Σf , even though, again, the microscopic fis-
sion cross section for fissile isotopes is higher in the axially infinite case (see Table 4.10).
This remarks the importance of fissionable isotopes in a cell/reactor characterized by a
fast neutron spectrum.

Quantity Axially Infinite Critical Unit
configuration configuration

k 1.27819 1.0000 #
B2 0.0000 1.33006× 10−3 cm−2

Σa 4.87732× 10−3 4.64099× 10−3 cm−1

Σa,fuel 4.58094× 10−3 4.36394× 10−3 cm−1

νΣf 6.22053× 10−3 6.32225× 10−3 cm−1

Σf 2.12810× 10−3 2.15909× 10−3 cm−1

Σtr 2.73044× 10−1 2.61599× 10−1 cm−1

η 1.35792 1.44875 #
f 9.39232× 10−1 9.40305× 10−1 #

Table 4.9: 1-group output quantities for Phase 2.1: multiplication factor k, buckling B2,
main macroscopic cross sections, reproduction factor η, and utilization factor f . The values are
presented both for axially infinite and critical configurations.
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Isotope Quantity Axially Infinite Critical Unit
configuration configuration

239Pu σc 4.97566× 10−1 4.30927× 10−1 b
239Pu σf 1.76403 1.73502 b
239Pu ν 2.93500 2.94393 #
241Pu σc 4.36060× 10−1 3.91242× 10−1 b
241Pu σf 2.49383 2.36006 b
241Pu ν 2.96309 2.96820 #
235U σc 5.47788× 10−1 4.91494× 10−1 b
235U σf 1.91086 1.80196 b
235U ν 2.45248 2.45899 #
238U σc 2.87142× 10−1 2.60123× 10−1 b
238U σf 3.33734× 10−2 4.09367× 10−2 b
238U ν 2.71981 2.72227 #
56Fe σc 8.25634× 10−3 7.64046× 10−3 b

208Pb σc 6.65240× 10−4 7.08432× 10−4 b
208Pb σin 2.24075× 10−2 2.79476× 10−2 b

Table 4.10: 1-group microscopic cross sections σ and the average number of neutrons emitted
per fission event ν for Phase 2.1. The values are presented for both the axially infinite and
critical configurations. The subscripts c, f , and in represent the capture, fission, and inelastic
reactions.

What might be less obvious is seeing the values of k, η, and f decrease in the case of
the fuel assembly cell compared to the fuel pin cell, for both types of calculations. This
is due to a decrease in the fuel volume fraction within the assembly, as each cell has a
fraction of void and wrapper that was not present in the pin case. Therefore, even in
the case of an infinite lattice, where the fuel is infinite, there is still a lower fraction of
fuel per individual cell. Another important aspect is the buckling found for the Critical
calculation routine. Comparing the buckling with that of Phase 1 (see Table 4.2), it is
observed that it is larger in the case of the single fuel pin. This reinforces what has been
said so far regarding the higher volumetric fraction of fuel in the pin cell compared to
that of the assembly, and therefore in the former a smaller volume of material is required
to achieve criticality.

Uncertainty and sensitivity analysis for the axially infinte configuration

The five most impactful isotope and reaction combinations in terms on k sensitivity and
uncertainty (see Sections 3.4 and 3.5) were chosen among the main isotopes involved in
the previous benchmark requests. Similarly to Phase 1, they were calculated in ERA-
NOS with condensed cross sections at 33 groups. In Table 4.11, where sensitivities are
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displayed as sums of the contributions related to all energy groups, it can be seen that
the k is particularly sensible to the 239Pu fission, as in Phase 1. It can be noticed that,
in Phase 2.1, the sensitivities due to fission microscopic cross sections of fissile isotopes
are higher than those recorded in the single fuel pin case. This is due to the different
fuel fractions contained in the two cells and the distribution of the neutron spectrum.
Comparing the microscopic cross sections reported in Tables 4.1 and 4.10, it emerges that
the neutron spectrum in the case of the fuel assembly is softer, as the fission microscopic
cross sections for fissile isotopes are higher than those of the fuel pin case, and vice versa
for the fission microscopic cross sections of the fissionable isotopes.

α S(k, α)

σ
239Pu
f 4.7166× 10−1

σ
238U
c −2.2671× 10−1

σ
241Pu
f 7.3591× 10−2

σ
238U
in −6.2494× 10−2

σ
239Pu
c −5.4890× 10−2

Table 4.11: Most relevant sensitivity coefficients S(k, α) of the multiplication factor k to the
input data α for Phase 2.1.

Considering the higher output uncertainties reported in Table 4.12, it can be observed
that, although the fission cross section of plutonium gives the largest contribution in
terms of sensitivity, it also has the greatest uncertainty. However, as observed in Phase
1, this uncertainty is comparable to those present in the ranking and is two orders of
magnitude smaller than the own sensitivity coefficient.

α ε(k, α)

σ
239Pu
f 5.53310× 10−3

σ
238U
c 3.28260× 10−3

σ
239Pu
c 3.06630× 10−3

σ
238U
in 2.95370× 10−3

σ
239Pu
in 1.43420× 10−3

Table 4.12: Most relevant uncertainties ε(k, α) of the multiplication factor k to the input data
α for Phase 2.1.

7-group macroscopic cross sections for the axially infinite configuration

Table 4.13 shows the macroscopic fission, capture, elastic and inelastic cross sections
at 7 energy groups, for the infinite cell case. The groups are numbered from 1 to 7
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in descending energy order. It can be observed that the fission cross sections initially
decrease, and then follow an increasing trend. For group 1, which includes neutrons
with energies above 2 MeV, the fission cross section is larger compared to groups 2, 3, 4,
and 5. This is due to fissions occurring in the fast region, involving fissionable isotopes
that exhibit higher microscopic fission cross sections at high energies. Starting from
group 5, the likelihood of fission increases until it reaches a maximum in group 7, which
corresponds to thermal neutrons. In fact, at thermal energies, fissile materials have
microscopic cross sections that are orders of magnitude larger than those of fissionable
materials (see Figure 4.8). The difference of only two orders of magnitude between the
values of group 1 and group 7 is due to the higher concentration of fissionable isotopes
compared to fissile ones, which increases the fission cross section of group 1 (see Eq. (4.4)).

Group Σf [cm−1] Σc [cm
−1] Σel [cm

−1] Σin [cm−1]
1 6.16505 ×10−3 1.10511 ×10−3 1.70487 ×10−1 5.70061 ×10−2

2 2.72180 ×10−3 8.57478 ×10−4 1.99223 ×10−1 2.16799 ×10−2

3 1.55154 ×10−3 1.37110 ×10−3 3.12897 ×10−1 7.28359 ×10−3

4 1.93563 ×10−3 4.81136 ×10−3 4.38265 ×10−1 7.14300 ×10−4

5 5.70937 ×10−3 1.52861 ×10−2 4.67522 ×10−1 7.70350 ×10−12

6 5.09056 ×10−2 9.91938 ×10−2 4.77298 ×10−1 3.53622 ×10−18

7 2.19376 ×10−1 2.08257 ×10−1 5.16920 ×10−1 2.54689 ×10−18

Table 4.13: 7-group macroscopic cross sections Σ for Phase 2.1. The values are presented for
the axially infinite configuration. The subscripts f , c, el, and in represent the fission, capture,
elastic, and inelastic reactions.

4.3.3 Further Considerations on Phase 2.1

Tables 4.14 and 4.15 compare the results obtained using the two methods, as for Phase
1. It is evident that, unlike the previous phase, there is a greater discrepancy between
the results obtained with the two methods, which is due to the increased complexity of
the geometry. Moreover, as previously explained, the Roth 6 method was specifically
developed to handle hexagonal lattices, so it can be considered more reliable in this
case. The differences with respect to the Roth 6 method for the Axially Infinite case
are presented in Tables 4.16 and 4.17 (the values are expressed in pcm rounding decimal
numbers).
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General Roth 6
Quantity A. Infinite Critical A. Infinite Critical Unit

k 1.27819 1.0000 1.28283 1.0000 #
B2 0.0000 1.33006×10−3 0.0000 1.34121×10−3 cm−2

Σa 4.87732×10−3 4.64099×10−3 4.85933×10−3 4.62680×10−3 cm−1

Σa,fuel 4.58094×10−3 4.36394×10−3 4.56424×10−3 4.35097×10−3 cm−1

νΣf 6.22053×10−3 6.32225×10−3 6.21994×10−3 6.32494×10−3 cm−1

Σf 2.12810×10−3 2.15909×10−3 2.12774×10−3 2.15982×10−3 cm−1

Σtr 2.73044×10−1 2.61599×10−1 2.72558×10−1 2.61175×10−1 cm−1

η 1.35792 1.44875 1.36276 1.45368 #
f 9.39232×10−1 9.40305×10−1 9.39272×10−1 9.40384×10−1 #

Table 4.14: 1-group quantities for Phase 2.1: multiplication factor k, buckling B2, main
macroscopic cross sections, reproduction factor η, and utilization factor f . The values are
compared both for axially infinite and critical configurations for General vs Roth 6 methods.

General Roth 6
Isotope Quantity A. Infinite Critical A. Infinite Critical Unit

239Pu σc 4.97566E-1 4.30927E-1 4.93653E-1 4.27648E-1 b
239Pu σf 1.76403 1.73502 1.76208 1.73379 b
239Pu ν 2.93500 2.94393 2.93530 2.94426 #
241Pu σc 4.36060E-1 3.91242E-1 4.33637E-1 3.89194E-1 b
241Pu σf 2.49383 2.36006 2.48648 2.35414 b
241Pu ν 2.96309 2.96820 2.96327 2.96841 #
235U σc 5.47788E-1 4.91494E-1 5.44892E-1 4.89041E-1 b
235U σf 1.91086 1.80196 1.90488 1.79712 b
235U ν 2.45248 2.45899 2.45274 2.45928 #
238U σc 2.87142E-1 2.60123E-1 2.85236E-1 2.58516E-1 b
238U σf 3.33734E-2 4.09367E-2 3.36093E-2 4.12174E-2 b
238U ν 2.71981 2.72227 2.72030 2.72277 #
56Fe σc 8.25634E-3 7.64046E-3 8.22405E-3 7.60986E-3 b

208Pb σc 6.65240E-4 7.08432E-4 6.67805E-4 7.10718E-4 b
208Pb σin 2.24075E-2 2.79476E-2 2.24779E-2 2.80199E-2 b

Table 4.15: 1-group microscopic cross sections σ and the average number of neutrons emitted
per fission event ν for Phase 2.1. The subscripts c, f , and in represent the capture, fission, and
inelastic reactions. The values are compared both for axially infinite and critical configurations
for General vs Roth 6 methods.
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Isotope Quantity ∆ A. Infinite [pcm] Unit
239Pu σc -391 b
239Pu σf -195 b
239Pu ν 30 #
241Pu σc -242 b
241Pu σf -735 b
241Pu ν 18 #
235U σc -290 b
235U σf -598 b
235U ν 26 #
238U σc -191 b
238U σf 24 b
238U ν 49 #
56Fe σc -3 b

208Pb σc 0 b
208Pb σin 7 b

Table 4.16: Differences ∆ with respect to Roth 6 for microscopic cross sections and ν, Phase
2.1 axially infinite configuration.

Quantity ∆ A. Infinite [pcm] Unit
k 464 #
B2 0 cm−2

Σa -2 cm−1

Σa,fuel -2 cm−1

νΣf 0 cm−1

Σf 0 cm−1

Σtr -49 cm−1

η 484 #
f 4 #

Table 4.17: Differences with respect to Roth 6 method for 1-group quantities: multiplication
factor k, buckling B2, main macroscopic cross sections, reproduction factor η, and utilization
factor f , Phase 2.1 axially infinite configuration.

Table 4.17 highlights how the difference in k is larger than in the previous phase (only 14
pcm). However, this value decreases from 464 pcm to about 100 pcm when comparing
the multiplication factor obtained through a 7-group energy condensation.
It may be interesting to further investigate these differences based on the validation tests
of the General method shown in [4].
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4.4 PHASE 2.2: Absorber Super-cell Simulations
Phase 2.2 of the benchmark focuses on studying a two-dimensional heterogeneous model
of a control rod assembly (see Subsection 2.2.3) surrounded by inner-type fuel assemblies
(see Section 2.2). In modeling the super-cell, it was decided to include the fraction of
inter-assembly lead corresponding to the coolant of the analyzed assemblies (see Fig-
ure 4.11), and as in the previous case, the boundary conditions were set to recreate an
infinite lattice of identical and axially infinite super-cells.

Figure 4.11: Control rod assembly surrounded by fuel assembly model [20].

The benchmark requires to find the following quantities:

• The multiplication factor k.

• The fission and capture microscopic 1-group cross sections for 239Pu, 241Pu, 235U,
and 238U, together with their average number of neutrons emitted per fission event
ν.

• The 1-group inelastic scattering microscopic cross section for 238U and 208Pb.

• The 1-group capture microscopic cross sections for 56Fe and 208Pb.

• The 1-group capture microscopic cross sections for 10B.

• The reproduction factor η =
νΣf

Σa,fuel

.

• The utilization factor f =
Σa,fuel

Σa,tot

.

• The transport cross section Σtr = Σt − µ0Σs.
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• The macroscopic fission, capture, elastic, and inelastic cross sections for the 7-group
discretization.

• The five isotope and reaction combinations that give the highest k sensitivity co-
efficients and uncertainties.

Notice that, unlike the previous cases, a comparison between the critical and the axially
infinite case is not made, since in Phase 2.2, it is decided to adopt a single fuel ring,
which does not ensure the criticality of the cell. This choice will be justified during the
analysis of the results.
Moreover, Phase 2.2 was carried out using two approaches: the first approach was the
same as that used for all other phases, in which a single geometry for the whole model
was defined and resolved using the computational routines developed for Phase 1; the
second one was used to observe how the 1-group microscopic capture cross sections for
10B vary when studying the control rod assembly as a subcritical cell, which receives the
flux from a fuel assembly. This explanation will be elaborated further below.

4.4.1 Phase 2.2 Execution with the First Approach

As for the previous case, Phase 2.2 was solved using the ECCO cell code; however,
unlike Phase 2.1, only the General method was used, as Roth cannot handle a lattice
of lattices. In this case, the ’B4C’ medium, with the enrichment of the control part,
was implemented in addition to materials and media defined previously. After that, the
geometry was defined through Listing4.3.

1 CELL ’CONTROL_super -cell’
2 COMPOSITION_ORDER
3 ’lead_med ’ ’AIM1_med ’ ’MOX_med ’ ’VOID_med ’ ’B4C_med ’
4 GEOMETRY DATA
5 HEXAGONAL LATTICE (N_RING_SUPER) (SA_PITCH) 2 !START LAT super -cell
6 HEXAGON 2 (W_IN) !DEFINITION OF FUEL ASSEMBLY
7 HEXAGONAL LATTICE (N_RING) (PIN_PITCH) 2
8 CYLINDRICAL 2
9 (R_D_CLAD_IN) REGION 1 ’void_dummy ’ COMP 4 (TEMP_CELSIUS +273.15)

10 (R_D_CLAD_OUT) REGION 2 ’clad_dummy ’ COMP 2 (TEMP_CELSIUS +273.15)
11 IN
12 REGION 3 ’lead_dummy ’ COMP 1 (TEMP_CELSIUS +273.15)
13 CYLINDRICAL 2
14 (R_EXT_GAP) REGION 4 ’fuel’ COMP 3 (TEMP_CELSIUS +273.15)
15 (R_EXT_CLAD) REGION 5 ’clad’ COMP 2 (TEMP_CELSIUS +273.15)
16 IN
17 REGION 6 ’lead’ COMP 1 (TEMP_CELSIUS +273.15)
18 1 2 2 2 2 2 2
19 IN
20 REGION 7 ’lead_flow ’ COMP 1 (TEMP_CELSIUS +273.15)
21 (W_OUT)
22 REGION 8 ’wrapper ’ COMP 2 (TEMP_CELSIUS +273.15)
23 IN
24 REGION 9 ’bypass ’ COMP 1 (TEMP_CELSIUS +273.15) ! END DEFINITION FUEL ASSEMBLY
25

26 HEXAGON 1 (W_OUT) !DEFINITION OF CONTROL ASSEMBLY
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27 CYLINDRICAL 1 (R_W_CR)
28 HEXAGONAL LATTICE (N_RING_CR) (PIN_PITCH_CR) 2
29 CYLINDRICAL 1
30 (R_CR) REGION 10 ’lead_pin ’ COMP 1 (TEMP_CELSIUS +273.15)
31 IN
32 REGION 11 ’lead_cr ’ COMP 1 (TEMP_CELSIUS +273.15)
33 CYLINDRICAL 3
34 (R_CR) REGION 12 ’absorber ’ COMP 5 (TEMP_CELSIUS +273.15)
35 (R_CR_CLAD_IN) REGION 13 ’void_cr ’ COMP 4 (TEMP_CELSIUS +273.15)
36 (R_CR_CLAD_OUT) REGION 14 ’clad_cr ’ COMP 2 (TEMP_CELSIUS +273.15)
37 IN
38 REGION 15 ’lead’ COMP 1 (TEMP_CELSIUS +273.15)
39 GENERAL
40 2
41 2 2 2 2 2 2
42 2 2 2 2 2 2 2 2 2 2 2 2
43 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2
44 IN
45 REGION 16 ’lead_flow_cr ’ COMP 1 (TEMP_CELSIUS +273.15)
46 IN
47 REGION 17 ’wrapper_cr ’ COMP 2 (TEMP_CELSIUS +273.15)
48 IN
49 REGION 18 ’bypass_cr ’ COMP 1 (TEMP_CELSIUS +273.15) ! END CONTROL ASSEMBLY
50 2 1 ! END LATTICE super -cell
51 REFLECT ! BOUNDARY CONDITION super -cell
52 END OF GEOMETRY DATA
53

54 ;

Listing 4.3: Geometry of control super-cell for benchmark Phase 2.2.

In line 51, the reflection boundary condition was applied to the outer face of geometry.
The geometry of the super-cell was defined as an assembly of control rods surrounded by
one ring of fuel assemblies. This macrostructure was created using the HEXAGONAL
LATTICE command on line 5, setting the option for the number of cell types in the
lattice to 2. The cell of type 1 is the fuel cell, which is identical to that defined in Phase
2.1. The cell of type 2, on the other hand, is that of the control rods. It is itself a
hexagonal lattice composed of two types of pins. It was necessary to define an absorber
pin and a dummy pin filled with lead because, within the assembly, the control rods
form a lattice where in some positions the control rod gives way to the coolant (see
Figure 2.7). Given the presence of different pins within the same ring, the GENERAL
command was used to choose the type of each pin that makes up the lattice (see lines 39
to 43). Finally, on line 50, the two rings that make up the super-cell are defined, with
the innermost being the control ring.
Notice that the choice to adopt a single fuel assembly ring derived from the fact that with
more than two rings of hexagons that are themselves hexagonal lattice, the geometry was
too complicated and the results are wrong. For instance, with two fuel assembly rings,
the k is 1.75 and this is impossible since it was 1.27819 in Phase 2.1, where there are
only fuel assemblies in the infinite lattice.
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4.4.2 Phase 2.2 Results

1-group macroscopic cross sections and integral parameters

Table 4.18 shows the results obtained using the Axially Infinite ECCO computational
routines, with input data highlighted in red (see Figure 4.4).

Quantity Axially Infinite Unit
configuration

k 8.73467× 10−1 #
B2 0.0000 cm−2

Σa 6.35599× 10−3 cm−1

Σa,fuel 3.71542× 10−3 cm−1

νΣf 5.54086× 10−3 cm−1

Σf 1.89132× 10−3 cm−1

Σtr 3.01011× 10−1 cm−1

η 1.49131 #
f 5.84555× 10−1 #

Table 4.18: 1-group output quantities for Phase 2.2: multiplication factor k, buckling B2,
main macroscopic cross sections, reproduction factor η, and utilization factor f .

It can be seen that k is less than one, confirming the subcriticality of the super-cell. An
important aspect noted during the simulations is that in Phase 2.2, contrary to simple
cells (i.e. those of Phase 1 and 2.1) for which the k calculated with a 1-group conden-
sation matches those obtained in multi-group calculations, the greater cell complexity
requires increased calculation precision. Table 4.19 compares the values of k calculated
by condensing to 1, 7 and 33 groups both in ECCO and BISTRO.

G k (ECCO) k (BISTRO)
1 8.73467× 10−1 8.73905× 10−1

7 9.07372× 10−1 9.06960× 10−1

33 9.13384× 10−1 9.13018× 10−1

Table 4.19: Comparison of k between ECCO and BISTRO or 1, 7, and 33 group condensations
for Phase 2.2.

In BISTRO, a Cartesian geometry with reflective boundary conditions was defined, to
which the macroscopic cross sections, condensed and homogenized in ECCO, were ap-
plied. The transport equation was solved for this geometry using the discrete ordinate
and the finite difference methods (see Section 3.3). It is important to note that, in
general, when studying an infinite homogeneous domain in BISTRO, that represents a
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single cell in ECCO, the actual adopted geometry becomes of minor significance since
there is no spatial variation in the neutron flux to consider. For example, a complex
heterogeneous infinite cell can be modeled in BISTRO (after homogenization in ECCO)
using a simple slab of arbitrary length with reflective boundary conditions. The only
true concern is selecting a proper spatial discretization.
Regarding the integral parameters (see Table 4.18), it can be observed that, due to the
presence of 10B in the absorber pins, the Σa is larger than in Phase 2.1. This, combined
with a smaller Σa,fuel, leads to a lower utilization factor for Phase 2.2. Furthermore,
although ν is higher for Phase 2.2 compared to that of the axially infinite configuration
for Phase 2.1 (this indicates a harder neutron spectrum), the Σf is lower. This is caused
by the reduced fuel concentrations in the super-cell under consideration, as it contains a
non-fuel assembly.

1-group microscopic quantities

Table 4.20 confirms that the neutron spectrum is harder compared to Phase 2.1 since
the 238U fission microscopic cross section is larger.

Isotope Quantity Axially Infinite Unit
configuration

239Pu σc 4.01244× 10−1 b
239Pu σf 1.76328 b
239Pu ν 2.94623 #
241Pu σc 3.76655× 10−1 b
241Pu σf 2.35030 b
241Pu ν 2.96959 #
235U σc 4.74038× 10−1 b
235U σf 1.78972 b
235U ν 2.46136 #
238U σc 2.53228× 10−1 b
238U σf 4.31081× 10−2 b
238U ν 2.72212 #
56Fe σc 7.13324× 10−3 b

208Pb σc 7.14255× 10−4 b
208Pb σin 2.67603× 10−2 b
10B σc 1.51920 b

Table 4.20: 1-group microscopic cross sections σ and the average number of neutrons emitted
per fission event ν for Phase 2.2. The subscripts c, f , and in represent the capture, fission, and
inelastic reactions.
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7-group macroscopic cross sections

Considering the 7-group macroscopic cross sections displayed in Table 4.21, a similar
trend to that described for the Phase 2.1 infinite cell can be observed. However, a lower
value for the respective groups can be noted for the fission cross sections due to the
dilution of the fuel concentrations. This can be observed in Table 4.22, which shows the
relative differences of Σf between Phases 2.1 and 2.2. On the other hand, Table 4.23
shows increased capture cross sections in Phase 2.2, which can be attributed to the
presence of 10B. This difference would be much larger if the absorber rods were shutdown
rods rather than control ones. The value for Phase 2.2 increases towards the thermal
group 7, as the capture of 10B increases at thermal energies, as shown in Figure 4.12.

Group Σf [cm−1] Σc [cm
−1] Σel [cm

−1] Σin [cm−1]
1 5.75845 ×10−3 1.37239 ×10−3 1.71854 ×10−1 5.62675 ×10−2

2 2.45154 ×10−3 1.27979 ×10−3 2.00286 ×10−1 2.02639 ×10−2

3 1.36684 ×10−3 3.07829 ×10−3 3.13065 ×10−1 6.58684 ×10−3

4 1.68897 ×10−3 8.49664 ×10−3 4.34572 ×10−1 7.28260 ×10−4

5 5.08689 ×10−3 2.24821 ×10−2 4.67512 ×10−1 7.44856 ×10−12

6 4.71473 ×10−2 1.04724 ×10−1 4.77161 ×10−1 3.25805 ×10−18

7 1.65882 ×10−1 2.21601 ×10−1 5.20491 ×10−1 2.63935 ×10−18

Table 4.21: 7-group macroscopic cross sections Σ for Phase 2.2. The subscripts f , c, el, and
in represent the fission, capture, elastic, and inelastic reactions.

Group Σf Case 2.2 [cm−1] Σf Case 2.1 [cm−1] Relative difference
1 5.75845× 10−3 6.16505× 10−3 -6.60%
2 2.45154× 10−3 2.72180× 10−3 -9.93%
3 1.36684× 10−3 1.55154× 10−3 -11.90%
4 1.68897× 10−3 1.93563× 10−3 -12.74%
5 5.08689× 10−3 5.70937× 10−3 -10.90%
6 4.71473× 10−2 5.09056× 10−2 -7.38%
7 1.65882× 10−1 2.19376× 10−1 -24.38%

Table 4.22: Relative differences in fission macroscopic cross-sections Σf between Phases 2.2
and 2.1, where the values are presented for the axially infinite configuration.
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Group Σc Case 2.2 (cm−1) Σc Case 2.1 (cm−1) Relative difference
1 1.37239× 10−3 1.10511× 10−3 24.19%
2 1.27979× 10−3 8.57478× 10−4 49.25%
3 3.07829× 10−3 1.37110× 10−3 124.51%
4 8.49664× 10−3 4.81136× 10−3 76.60%
5 2.24821× 10−2 1.52861× 10−2 47.08%
6 1.04724× 10−1 9.91938× 10−2 5.58%
7 2.21601× 10−1 2.08257× 10−1 6.41%

Table 4.23: Relative differences in capture macroscopic cross-sections Σc between Phases 2.2
and 2.1 for the axially infinite configuration.

Figure 4.12: 10B microscopic capture cross section from ENDF/B-VIII.0 Nuclear Data Library
[21].
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Uncertainty and sensitivity analysis

The five most impactful isotope and reaction combinations in terms of k sensitivity and
uncertainty (see Sections 3.4 and 3.5) were chosen among the main isotopes involved in
the previous benchmark requests. Similarly to Phase 1, they were calculated in ERANOS
with condensed cross sections at 33 groups.

α S(k, α)

σ
239Pu
f 5.2549× 10−1

σ
10B
c −2.1244× 10−1

σ
238U
c −1.1964× 10−1

σ
238U
in −7.8427× 10−2

σ
241Pu
f 7.5585× 10−2

Table 4.24: Most relevant sensitivity coefficients S(k, α) of the multiplication factor k to the
input data α for Phase 2.2.

As in the previous case, the leading sensitivity coefficient is that with respect to the
fission of 239Pu (see Table 4.24). The second one is 10B, with a negative contribution on
k. Considering the highest uncertainties reported in Table 4.25, it can be observed that,
although the fission cross section of plutonium gives the largest contribution in terms of
sensitivity, it also has the greatest uncertainty. However, as observed in Phase 1, this
uncertainty is comparable to those present in the ranking and is two orders of magnitude
smaller than the associated sensitivity coefficient. Interestingly, the k uncertainty related
to 10B does not feature among the most relevant, despite the related sensitivity being
ranked 2nd.

α ε(k, α)

σ
239Pu
f 6.34510× 10−3

σ
238U
in 2.87070× 10−3

σ
238U
c 2.04920× 10−3

σ
239Pu
in 1.55840× 10−3

σ
239Pu
c 1.48280× 10−3

Table 4.25: Most relevant uncertainties ε(k, α) of the multiplication factor k to the input data
α for Phase 2.2.
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4.4.3 Phase 2.2 Study of the 10B Capture Cross section with
Subcritical Cell

The investigation of the 10B capture cross section also was conducted using the subcrit-
ical cell approach. This approach involves defining the fuel assembly and the absorber
assembly separately, without implementing a hexagonal lattice (super-cell) in which the
rings of assemblies are defined. The geometry of the fuel assembly was treated in ECCO
using the axially infinite calculation routine, from which the flux was extracted and sent
to the control assembly, acting as an imposed neutron source. The routine for the fuel
assembly alone was analogous to that of the model considered for Phase 2.1. Once the
flux was obtained, it was possible to study the control cell, providing it with the flux
and defining its buckling as

B2 =
5

8

( π
H

)2

, (4.5)

where H is a characteristic dimension of the cell, corresponding in this case to its radial
thickness [3]. This buckling accounts for neutron leakage from the cell. After performing
the calculation steps by condensing the cross sections to a single energy group, the 10B
capture cross section was extracted. Additionally, a second calculation for the subcritical
cell was performed, in which only the flux from the fuel assembly was provided as input
and the buckling was set to zero to achieve an axially infinite configuration. The results
for the 10B capture cross section are presented in Table 4.26 for the various calculation
modes considered.

Calculation Mode σ
10B
c [b]

Super-cell 1.51920
Subcritical (B2 = 0) 1.70482
Subcritical (B2 > 0 through Eq. (4.5)) 1.83432

Table 4.26: Comparison of 10B capture values for different calculation modes.

For Phase 2.2, the k was calculated both in ECCO and BISTRO for all 3 calculation
modes. Considering the values of k obtained in BISTRO, between the k related to the
B2 > 0 subcritical mode and that associated with the B2 = 0 configuration, the former
was the one to closely match the k of the super-cell case. In particular, the calculation
in BISTRO, using the cross sections from the subcritical cell approach in ECCO, was
performed by cylindrizing the internal control assembly and the external fuel ring, where
the latter becomes a ring around the former. The cross sections calculated in ECCO
for the subcritical cell were then assigned to the internal circle, and those from the fuel
assembly are assigned to the ring. Finally, the reflection boundary condition was applied.
From Table 4.26, it can be observed that for the case of the super-cell calculation (see
Section 4.4.1), the smallest value of the capture cross section is recorded, while for the
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B2 > 0 calculation that accounts for neutron leakage, the highest value is obtained. This
observation is a consequence of the condensation of cross sections weighted by the fluxes
in the different groups:

σx,i,G =

∑
g∈G σx,i,gϕg∑

g∈G ϕg

, (4.6)

where:

• σx,i,G is the condensed microscopic cross section for reaction x in group G and
isotope i.

• σx,i,g is the microscopic cross section for reaction x in energy group g and isotope
i.

• ϕg is the neutron flux in energy group g.

•
∑

g∈G indicates that the summation is performed over all energy sub-groups g that
belong to the larger group G.

Indeed, observing Figure 4.13, which shows the comparison of the energy-normalized
neutron flux (see Eq. (4.2)) for the super-cell and the control cell (B2 > 0) , it is
clear that for the former there is a harder neutron flux corresponding to a smaller 10B
capture cross section (see Figure 4.12). However, this result could also be dependent on
resonances.

Figure 4.13: Comparison of neutron spectrum normalized by energy at 33 energy groups
between super-cell (MACROCELL) and control cell (B2 > 0).
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Considerations on super-cell calculation

It is important to emphasize here certain aspects of this complex and heterogeneous
super-cell calculation. During the simulations, it was noted that even with identical
overall geometry, minor adjustments - such as eliminating small gaps or reversing the
order of pin or assembly definitions - resulted in substantial variations in the outcomes.
For instance, analyzing the k values for the 1-group condensation, the following results
were obtained:

• For the super-cell without approximations (see Listing 4.3), k = 0.873467, corre-
sponding to a microscopic capture cross section for 10B of 1.51920 b.

• For the geometry with:

– The definition of the fuel assembly, followed by the definition of the control
rod assembly.

– The elimination of the void with cladding dilution for the dummy pin of the
fuel assembly.

– The elimination of the gap with absorber dilution for the absorber pins.

– The hexagonalization of the internal profile of the wrapper of the control rod
assembly.

the result is k = 0.928186, corresponding to a microscopic capture cross section for
10B equal to 1.34464 b.

The result obtained with these approximations seems to be the most accurate when
looking at the k found across the various ECCO steps. However, the capture cross
section for 10B deviates from the one calculated using the subcritical cell process. For
this reason, it seems that the best result for the 10B capture cross section is the one
obtained through the calculation process for with the subcritical cell, however, further
studies are necessary to better understand the super-cell calculation.

4.5 PHASE 2.3: Shield Super-cell Simulations
Phase 2.3 of the benchmark focuses on studying a two-dimensional heterogeneous model
of a shield assembly surrounded by inner-type fuel assemblies (see Section 2.2). In
modeling the super-cell, it was decided to include the fraction of inter-assembly lead
corresponding to the coolant of the analyzed assemblies (see Figure 4.14). Additionally,
the shield assembly was modeled as a fuel assembly with solid pellets made of yttria-
stabilized zirconia (YSZ). Again, the boundary conditions were set in such a way as to
recreate an infinite lattice of identical and axially infinite super-cells.
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Figure 4.14: Model of the shield assembly surrounded by the a ring of six fuel assemblies.

The benchmark requires to find the following quantities:

• The infinite multiplication factor k.

• The fission and capture microscopic 1-group cross sections for 239Pu, 241Pu, 235U,
and 238U, together with their average number of neutrons emitted per fission event
ν.

• The 1-group inelastic scattering microscopic cross section for 238U and 208Pb.

• The 1-group capture microscopic cross sections for 56Fe and 208Pb.

• The reproduction factor η =
νΣf

Σa,fuel

.

• The utilization factor f =
Σa,fuel

Σa,tot

.

• The transport cross section Σtr = Σt − µ0Σs.

• The macroscopic fission, capture, elastic, and inelastic cross sections for the 7-group
discretization.

• The five isotope and reaction combinations that give the highest k sensitivity co-
efficients and uncertainties.
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4.5.1 Phase 2.3 Execution

As for the previous case, Phase 2.3 was solved using the ECCO cell code, and only
the General method for the axially infinite configurations, was involved. Due to the
high heterogeneity of the super-cell, it was necessary to make some simplifications to
reduce the number of links and void regions. For this reason, it was decided to eliminate
the void inside the dummy pin at the center of the assemblies by diluting its cladding.
The same procedure was repeated for the gap surrounding the YSZ pellet inside the
shield assembly (see Figure 4.15). These simplifications were introduced after analyzing
multiple simulations, where efforts were made to preserve the geometry as defined by the
benchmark, in which, it was evident that the cell calculation process led to significant
fluctuations in the value of k.

Figure 4.15: Simplified YSZ pin model.

For this case, in addition to the materials and media defined previously, the ’YSZ’
medium was implemented and used to model the pin region of the shield assembly.
The geometry is defined as in Listing 4.4.

1 CELL ’SHIELD super -cell’
2 COMPOSITION_ORDER
3 ’lead_med ’ ’AIM1_med ’ ’MOX_med ’ ’AIM1_DIL_med ’ ’YSZ_med ’ ’2AIM1_DIL_med ’
4 GEOMETRY DATA
5 HEXAGONAL LATTICE 2 (SA_PITCH) 2 ! START LAT super -cell
6 HEXAGON 2 (W_IN) ! DEFINITION OF SHIELD ASSEMBLY
7 HEXAGONAL LATTICE (N_RING) (PIN_PITCH) 2
8 CYLINDRICAL 1
9 (R_D_CLAD_OUT) REGION 1 ’dummy_ysz ’ COMP 4 (TEMP_CELSIUS +273.15)

10 IN
11 REGION 2 ’lead_dummy_ysz ’ COMP 1 (TEMP_CELSIUS +273.15)
12 CYLINDRICAL 2
13 (R_EXT_YSZ) REGION 3 ’pin_ysz ’ COMP 5 (TEMP_CELSIUS +273.15)
14 (R_EXT_CLAD_YSZ) REGION 4 ’clad_ysz ’ COMP 6 (TEMP_CELSIUS +273.15)
15 IN
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16 REGION 5 ’lead_ysz ’ COMP 1 (TEMP_CELSIUS +273.15)
17 1 2 2 2 2 2 2
18 IN
19 REGION 6 ’lead_flow_ysz ’ COMP 1 (TEMP_CELSIUS +273.15)
20 (W_OUT)
21 REGION 7 ’wrapper_ysz ’ COMP 2 (TEMP_CELSIUS +273.15)
22 IN
23 REGION 8 ’bypass_ysz ’ COMP 1 (TEMP_CELSIUS +273.15)
24 HEXAGON 2 (W_IN) ! DEFINITION OF FUEL ASSEMBLY
25 HEXAGONAL LATTICE (N_RING) (PIN_PITCH) 2
26 CYLINDRICAL 1
27 (R_D_CLAD_OUT) REGION 9 ’clad_dummy ’ COMP 4 (TEMP_CELSIUS +273.15)
28 IN
29 REGION 10 ’lead_dummy ’ COMP 1 (TEMP_CELSIUS +273.15)
30 CYLINDRICAL 2
31 (R_EXT_GAP) REGION 11 ’fuel’ COMP 3 (TEMP_CELSIUS +273.15)
32 (R_EXT_CLAD) REGION 12 ’clad’ COMP 2 (TEMP_CELSIUS +273.15)
33 IN
34 REGION 13 ’lead’ COMP 1 (TEMP_CELSIUS +273.15)
35 1 2 2 2 2 2 2
36 IN
37 REGION 14 ’lead_flow ’ COMP 1 (TEMP_CELSIUS +273.15)
38 (W_OUT)
39 REGION 15 ’wrapper ’ COMP 2 (TEMP_CELSIUS +273.15)
40 IN
41 REGION 16 ’bypass ’ COMP 1 (TEMP_CELSIUS +273.15)
42 1 2 ! END LATTICE super -cell
43 REFLECT ! BOUNDARY CONDITION super -cell
44 END OF GEOMETRY DATA
45 ;

Listing 4.4: Geometry of shield super-cell for benchmark Phase 2.3.

The reflection boundary condition was applied to the outer face of geometry. The ge-
ometry of the super-cell was defined as a shield assembly surrounded by one ring of
fuel assemblies. This macrostructure was created using the HEXAGONAL LATTICE
command on line 5, setting the option for the number of cell types in the lattice to 2.
The cell of type 2 is the fuel cell, which is identical to that defined for Phase 2.1 of the
benchmark. The cell of type 1, on the other hand, is that of the shield, which has the
same structure as that of type 1, with the exception that the fuel pins are replaced by
YSZ pins. In line 42, the two rings that make up the super-cell were defined, with the
innermost being the shield ring.
Notice that the choice to adopt a single fuel assembly ring derives from the fact that
with more than two rings of hexagons that are themselves hexagonal lattice, the geometry
became too complicated, leading to wrong results (see Subsection 4.4.1).

4.5.2 Phase 2.3 Results

1-group macroscopic cross sections and integral parameters

Table 4.27 shows the results obtained using the Axially Infinite ECCO computational
routines, with input data highlighted in red.
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Quantity Axially Infinite Unit
configuration

k 1.20104 #
B2 0.0000 cm−2

Σa 4.65356× 10−3 cm−1

Σa,fuel 4.29301× 10−3 cm−1

νΣf 5.57724× 10−3 cm−1

Σf 1.90952× 10−3 cm−1

Σtr 2.79985× 10−1 cm−1

η 1.29914 #
f 9.22521× 10−1 #

Table 4.27: 1-group output quantities for Phase 2.3: multiplication factor k, buckling B2,
main macroscopic cross sections, reproduction factor η, and utilization factor f .

The first thing that can be observed is the value of k, which falls between that of Phase 2.2
and that of Phase 2.1. This result was expected, as it is lower than the case of an infinite
lattice composed only of fuel cells and higher than a lattice where, for every six fuel cells,
there is one control rod cell. An important aspect detected during the simulations is that,
while for simple cells such as those of Phases 1 and 2.1, the k calculated with a 1-group
condensation matches those related to multi-group calculations, Phase 2.3 evidences that
a greater cell complexity requires an increased calculation precision. Table 4.28 shows
the values of k calculated by condensing to 1, 7, and 33 groups.

G k (ECCO) k (BISTRO)
1 1.20104 1.20023
7 1.21977 1.21898
33 1.21910 1.21837

Table 4.28: Comparison of k between ECCO and BISTRO for 1, 7, and 33 group condensations
for Phase 2.3.

Referring to the values in Table 4.27, it can be observed that in the absence of an
absorber, Σa is lower compared to Phase 2.2. Regarding other quantities, the utilization
factor f for the case under consideration is higher than that of the control super-cell,
as almost all of the absorption occurs in the fuel. However, it remains lower than in
Phase 2.1, where the fuel concentration is higher. In relation to Σf , Phase 2.2 and
Phase 2.3 have the same fuel concentrations, but the microscopic fission cross sections
differ: they are higher for fissile isotopes in Phase 2.3, and for the fissionable ones in
Phase 2.2 (see Table 4.29). This difference is due to the cell neutron spectrum, which
exhibits lower energies in the cell with a shield. However, these effects counterbalance
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each other, resulting in nearly identical macroscopic fission cross sections Σf . Despite
this, the reproduction factor η is higher for the control super-cell, as the fuel absorption
is lower than the shield one. Recalling that Σa = Σc + Σf , this indicates that in Phase
2.3 the fuel exhibits higher captures (see Table 4.29).

1-group microscopic quantities

Isotope Quantity Axially Infinite Unit
configuration

239Pu σc 5.98756× 10−1 b
239Pu σf 1.85967 b
239Pu ν 2.93145 #
241Pu σc 4.95534× 10−1 b
241Pu σf 2.69710 b
241Pu ν 2.96164 #
235U σc 6.22048× 10−1 b
235U σf 2.07526 b
235U ν 2.45017 #
238U σc 3.19766× 10−1 b
238U σf 3.32071× 10−2 b
238U ν 2.72048 #
56Fe σc 9.48593× 10−3 b

208Pb σc 6.39065× 10−4 b
208Pb σin 2.03507× 10−2 b

Table 4.29: 1-group microscopic cross sections σ and the average number of neutrons emitted
per fission event ν for Phase 2.3. The subscripts c, f , and in represent the capture, fission, and
inelastic reactions.

In Table 4.29, the observations made so far regarding the spectrum of the super-cell con-
taining the shield assembly become evident. Specifically, the spectrum is softer compared
to all other cases, as indicated by the iron capture cross section and ν.

Uncertainty and sensitivity analysis for the infinite case

The five most impactful isotope and reaction combinations in terms on k sensitivity and
uncertainty (see Sections 3.4 and 3.5) were chosen among the main isotopes involved in
the previous benchmark requests. Similarly to Phase 1, they were calculated in ERANOS
with condensed cross sections at 33 groups.
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α S(k, α)

σ
239Pu
f 4.8410× 10−1

σ
238U
c −2.2859× 10−1

σ
241Pu
f 7.6745× 10−2

σ
239Pu
c −5.8212× 10−2

σ
238U
el −5.6519× 10−2

Table 4.30: Most relevant sensitivity coefficients S(k, α) of the multiplication factor k to the
input data α for Phase 2.3.

α ε(k, α)

σ
239Pu
f 5.61860× 10−3

σ
238U
c 3.17660× 10−3

σ
239Pu
c 3.10750× 10−3

σ
238U
in 2.58440× 10−3

σ
239Pu
in 1.26020× 10−3

Table 4.31: Most relevant uncertainties ε(k, α) of the multiplication factor k to the input data
α for Phase 2.3.

Once again, it can be seen that plutonium tops both rankings while maintaining that
difference of two orders of magnitude between sensibility and uncertainty.

7-group macroscopic cross sections

Group Σf [cm−1] Σc [cm
−1] Σel [cm

−1] Σin [cm−1]
1 5.68055 ×10−3 1.10298 ×10−3 1.70507 ×10−1 5.63820 ×10−2

2 2.40361 ×10−3 7.78752 ×10−4 2.03757 ×10−1 1.98916 ×10−2

3 1.33382 ×10−3 1.22223 ×10−3 3.16759 ×10−1 6.29525 ×10−3

4 1.66019 ×10−3 4.31564 ×10−3 4.40912 ×10−1 6.17705 ×10−4

5 5.12613 ×10−3 1.41287 ×10−2 4.65635 ×10−1 5.69743 ×10−12

6 2.39908 ×10−2 5.36102 ×10−2 4.62478 ×10−1 3.64970 ×10−18

7 5.81829 ×10−2 6.54146 ×10−2 4.45448 ×10−1 1.21933 ×10−18

Table 4.32: 7-group macroscopic cross sections Σ for Phase 2.3. The subscripts f , c, el, and
in represent the fission, capture, elastic, and inelastic reactions.

Table 4.32 shows that the cross sections follow the same trends across the 7 groups as in
the previous phases; however, they show differences in terms of values for the respective
groups. In particular, compared to Phase 2.2, the following differences are observed:
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• Macroscopic fission cross section Σf : The values of Σf are slightly different between
the two phases for all groups. In Phase 2.3, the values are generally lower compared
to Phase 2.2, particularly in groups 6 and 7, where a significant reduction is ob-
served. However, when considering the one-group condensed fission cross section,
it shows a higher value for Phase 2.3. This result is likely due to the condensation
weighted by the flux (see Eq. (4.6)).

• Macroscopic capture cross section Σc: The values of Σc show variations between
the two phases. Phase 2.3 shows a reduction in capture values for most energy
groups compared to Phase 2.2, this is due to the presence of an absorber in the
super-cell case of Phase 2.2.

• Macroscopic elastic cross section Σel: The macroscopic elastic cross sections change
slightly between the two phases. In Phase 2.3, the values for groups 2 to 4 are
slightly higher, while for groups 5, 6, and 7, the values are lower compared to
Phase 2.2.

• Macroscopic inelastic cross section Σin: The macroscopic inelastic cross sections
also present differences. In Phase 2.3, the values for the first three groups are quite
similar to those in Phase 2.2, but for groups 4 to 7, there is an even more significant
reduction compared to Phase 2.2.
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Conclusions

The Lead-cooled Fast Reactors (LFR) have garnered increasing international attention
after being selected by the Generation-IV International Forum (GIF) as a promising
candidate for future nuclear energy systems. However, very limited operating experience
exists to support the design, verification, and licensing of LFRs, especially for the core
design. For this reason, the Expert Group on Physics of Reactor Systems (EGPRS) of
the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy
Agency (NEA) endorsed a neutronic benchmark to assess the simulation capabilities for
LFR systems. The benchmark aims to: familiarize with the physics of an LFR core,
practice with the neutronics of an LFR core, and assess the confidence in the ability to
simulate an LFR core. The reference system chosen for the benchmark is the Advanced
Lead-cooled Fast Reactor European Demonstrator (ALFRED). The neutronic bench-
mark of ALFRED, organized in three phases, aims to assess the simulation capabilities
of fast reactor codes for LFR systems through a gradual approach, starting from local
models and progressing to whole-core simulations.
In this thesis, calculations concerning the first two phases of the benchmark were per-
formed using the deterministic ERANOS system and its integrated cell code, ECCO.
Specifically, ECCO was used to compute the cross sections and integral parameters for
each cell in the study cases. To achieve this, the numerical methods for solving both
homogeneous and heterogeneous cell calculations were thoroughly explored in depth to
set up the calculation procedures capable of accurately modeling the physics of the cell.
To assess the variation in the multiplication factor k due to changes in microscopic cross
sections or uncertainties in the input parameters from nuclear data, sensitivity and uncer-
tainty analyses were performed. As ECCO does not support these analyses, the BISTRO
reactor code, included in the ERANOS suite, was used instead. As a result, routines
were developed within ERANOS to automatically extract condensed and homogenized
cross sections from ECCO and transfer them to BISTRO. Within the reactor code, the
geometry was recreated and the homogenized cross sections were assigned to proceed
with the aforementioned analyses.
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For Phases 1 and 2.1, in addition to the benchmark requirements, two other types of
analyses were conducted:

• Comparison between the infinite lattice cell (required by the benchmark) and a
critical cell case (still radially infinite), in which the axial dimension is finite, de-
termined by buckling.

• Comparison between the Roth 6 and General solution methods.

From the comparison of the two configurations (for both Phase 1 and Phase 2.1), it was
found that the critical cell exhibits a slightly harder neutron spectrum compared to the
infinite cell. This difference impacted the microscopic cross sections (and consequently
the macroscopic ones), particularly the fission cross sections, where lower values were
observed for fissile isotopes and higher values for fertile isotopes in comparison to the
infinite cell. The result is a larger macroscopic fission cross section for the critical cell
configuration, highlighting how, in a harder spectrum, the fertile fuel component, par-
ticularly 238U, plays a key role.
Another interesting result came from the axial buckling search for the critical configu-
ration (for both Phase 1 and Phase 2.1). The result obtained is plausible for a reactor
whose core is designed to develop more horizontally than vertically (e.g. with a 3:1
aspect ratio). Additionally, when comparing the buckling for the critical configuration
of the Pin Cell with that of the Fuel Assembly, a higher value was observed, which is
justified by the greater fuel fraction than in the Fuel Assembly cell, as the latter con-
tains also, wrapper material and dummy pins, thus requiring a larger axial dimension to
achieve criticality. This is also confirmed in the infinite configuration, where the largest
multiplication factor is for the Fuel Pin cell.
The comparison between the two numerical methods showed minimal differences for
Phase 1, where the geometry is relatively simple and not very heterogeneous, while
greater differences emerged for Phase 2.1. Using the manual and literature sources, it
was concluded that the Roth 6 method provides better results for a single hexagonal fuel
assembly than the General method, as the search for the multiplication factor yields a
more stable result throughout the calculation steps.
For the 2.2 and 2.3 cases, only the General method could be used, as for Super-cells (i.e.,
an assembly of multiple S/As), the Roth 6 method cannot find a solution.
For the Absorber Super-cell case, particular attention was given to the capture micro-
scopic cross sections for 10B. This was calculated using both the approach employed in
previous cases, where the entire cell is defined and solved as a single geometry (using the
General method), and the approach proposed in ECCO for control rod cell calculations.
In this approach, the fuel assembly and control rod assembly are defined separately, as-
suming that the former provides the flux to the latter. Comparing the 10B microscopic
cross sections, differences emerged, likely due to an overestimation in the split-cell ap-
proach and an underestimation in the single-cell calculation. However, the results suggest
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that the split-cell calculation provides a more plausible value, as applying the General
method to complex and heterogeneous cells, such as those in Phases 2.2 and 2.3, leads
to results affected by numerical uncertainties. Specifically, for both cases (more evident
in 2.2, being subcritical), instability in the solution of k was observed depending on how
the geometry is defined in the code. This is due to the fact that, for heterogeneous
geometry steps, the collision probability methods used to solve the transport equation
for the flux introduce a series of approximations that become non-negligible for geome-
tries with many nested elements, varying based on how these elements are declared (e.g.,
which assembly is defined first in the geometry). For this reason, further investigation of
the ECCO cell code and the General method for treating heterogeneous cells with many
nested elements will be necessary in the future.
The final result to highlight is related to the sensitivity coefficients and the uncertainties
that nuclear data introduce in the solution of the multiplication factor k. In all simula-
tions, k was particularly sensitive to variations in the microscopic fission cross section of
239Pu, which proved to be the most significant factor, and the microscopic capture cross
section of 238U, which ranked second in importance (in Phase 2.2, the microscopic cap-
ture cross section of 10B emerged as the second most significant factor). Despite this, the
uncertainties associated with 239Pu and 238U remained the largest, though comparable
to those of other key nuclide-reaction pairs.
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