Cappelli, Simona
(2012)
Modello di rete neurale per lo studio di fenomeni di integrazione visuoacustica in soggetti sani e patologici.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Ingegneria biomedica [LM-DM270] - Cesena
Documenti full-text disponibili:
Abstract
L’integrazione multisensoriale è la capacità del sistema nervoso di utilizzare molteplici sorgenti sensoriali. Una tra le più studiate forme di integrazione è quella tra informazioni visive ed acustiche. La capacità di localizzare uno stimolo acustico nello spazio è un processo meno accurato ed affidabile della localizzazione visiva, di conseguenza, un segnale visivo è spesso in grado di “catturare” (ventriloquismo) o di incrementare (enhancement multisensoriale) la performance di localizzazione acustica.
Numerose evidenze sperimentali hanno contribuito ad individuare i processi neurali e le aree cerebrali alla base dei fenomeni integrativi; in particolare, un importante contributo viene dallo studio su soggetti con lesioni cerebrali.
Tuttavia molti aspetti sui possibili meccanismi coinvolti restano ancora da chiarire. Obiettivo di questa tesi è stato lo sviluppo di un modello matematico di rete neurale per fare luce sui meccanismi alla base dell’interazione visuo-acustica e dei suoi fenomeni di plasticità. In particolare, il modello sviluppato è in grado di riprodurre condizioni che si verificano in-vivo, replicando i fenomeni di ventriloquismo ed enhancement in diversi stati fisiopatologici e interpretandoli in termini di risposte neurali e reciproche interazione tra i neuroni. Oltre ad essere utile a migliorare la comprensione dei meccanismi e dei circuiti neurali coinvolti nell’integrazione multisensoriale, il modello può anche essere utile per simulare scenari nuovi, con la possibilità di effettuare predizioni da testare in successivi esperimenti.
Abstract
L’integrazione multisensoriale è la capacità del sistema nervoso di utilizzare molteplici sorgenti sensoriali. Una tra le più studiate forme di integrazione è quella tra informazioni visive ed acustiche. La capacità di localizzare uno stimolo acustico nello spazio è un processo meno accurato ed affidabile della localizzazione visiva, di conseguenza, un segnale visivo è spesso in grado di “catturare” (ventriloquismo) o di incrementare (enhancement multisensoriale) la performance di localizzazione acustica.
Numerose evidenze sperimentali hanno contribuito ad individuare i processi neurali e le aree cerebrali alla base dei fenomeni integrativi; in particolare, un importante contributo viene dallo studio su soggetti con lesioni cerebrali.
Tuttavia molti aspetti sui possibili meccanismi coinvolti restano ancora da chiarire. Obiettivo di questa tesi è stato lo sviluppo di un modello matematico di rete neurale per fare luce sui meccanismi alla base dell’interazione visuo-acustica e dei suoi fenomeni di plasticità. In particolare, il modello sviluppato è in grado di riprodurre condizioni che si verificano in-vivo, replicando i fenomeni di ventriloquismo ed enhancement in diversi stati fisiopatologici e interpretandoli in termini di risposte neurali e reciproche interazione tra i neuroni. Oltre ad essere utile a migliorare la comprensione dei meccanismi e dei circuiti neurali coinvolti nell’integrazione multisensoriale, il modello può anche essere utile per simulare scenari nuovi, con la possibilità di effettuare predizioni da testare in successivi esperimenti.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Cappelli, Simona
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Modelli computazionali, Integrazione multisensoriale, Ventriloquismo, Plasticità sinaptica, Meccanismi hebbiani di apprendimento
Data di discussione della Tesi
28 Marzo 2012
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(?? magistrale ??)
Autore della tesi
Cappelli, Simona
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Modelli computazionali, Integrazione multisensoriale, Ventriloquismo, Plasticità sinaptica, Meccanismi hebbiani di apprendimento
Data di discussione della Tesi
28 Marzo 2012
URI
Statistica sui download
Gestione del documento: