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Abstract

Since the confirmation of the first exoplanet in 1992 , exoplanetary science has
expanded significantly , with over 5600 confirmed planets in the NASA database.
A central goal of the field is to understand habitability and identify biomarkers for
life detection. However , the science of biosignature currently lacks a universally
accepted theoretical framework to make rigorous life detection claims. My the-
sis focuses on the application of the Bayesian framework to biosignature detection
and highlights both its strengths and limitations. The Bayesian framework offers
a flexible and quantitative tool for evaluating life-detection claims, but currently
his reliability seems to be hindered by the uncertainties on prior probability of life
P (life), which remains poorly constrained due to the absence of a robust theoret-
ical framework.Furthermore the application of Bayesian model shows that in the
scenario where P (molecule|life) << P (molecule|nolife) , a high posterior proba-
bility of life can only be achieved if the prior probability is already very high, which
is a rarely realistic assumption. In such cases repeated observations lead to a steep
decline in posterior probability rather than an increase.Only eliminating false posi-
tives or selecting biomarkers with no false positives , combined with large statistical
samples, can lead to high-confidence detection over time. The results obtained from
sensitivity analysis highlight the necessity of detecting multiple biosignatures to re-
duce the dependency on prior assumptions , making high-confidence life-detection
claims more attainable.

Finally ,as a case study ,in the last chapter I analyzed the alleged detection of
Phosphine in Venus, highlighting the challenges in life-detection and how the lack
of application of a Bayesian framework makes it difficult to rigorously establish
confidence in life detection claims.
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Chapter 1

The study of exoplanetary atmo-
spheres

1.1 A brief history and current state of the field

The study of planetary atmospheres through telescopes is probably the only method

we will ever have in order to be able to study the composition of the exoplanets.

It is indeed very hard to think of the time when we will be able to study them

with in situ observations.The last decades of observations have brought us enormous

advancements. Thousands of exoplanets have now been found, and we are beginning

to appreciate with increasing precision their diversity, from the chemical composition

to the processes by which they begin to form. Since the first discovery of an exoplanet

in 1992[58], around a pulsar, many others have followed: 51 Pegasi b in 1995[2],

which was the first discovered around a main sequence star, indirectly found using

stellar Doppler shift, classified later as a gas giant, with 0.5 M⊙ and a 4.23-day

orbit.From the beginning, it was clear that the next step would be to try to study

the atmosphere using spectroscopy. One of the main challenges to face in this type

of analysis is dealing with the planet-star contrast, which is very low, of the order of

10−6. This is one of the reasons why from 1999, when we obtained a spectrum for

the first time, until 2008, there have been no significant advancements in the study

of exoplanetary atmospheres with high-resolution spectroscopy.

The first studies regarding atmospheric absorption from a transiting exoplanet

can be found in [14] , for what concerns thermal emission instead in [15]. When

exoplanetary spectra are combined with bulk parameters of the planets and host

star it is possible to obtain important informations about the planet atmosphere
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Figure 1.1: timeline of high spectral resolution history

, internal properties and formation history. The observables that you can obtain

from an exoplanets are strongly dependent upon the detection method, but for

what concerns transiting exoplanets they can include: bulk parameters (mass and

radius), atmospherical spectra and host star spectra. The atmospherical spectra

taken individually are able to give us information about chemical composition ,

temperature profiles and energy distributions in the atmospheres, which in turn

give us information about chemical atmospherical processes as equilibrium processes,

presence or not of chemical inversion , atmospherical dynamics and aerosol. [37]

Figure 1.2: Schematic diagram of exoplanets characterization. from observables
to various aspects of planets. from [37]

In the last decades , with the discovery of thousands of different exoplanets , it
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was clear that there is a big variety in exoplanetary zoo. The range of values that

the properties span is much larger than the one we are familiar in the solar system.

The measured temperatures go from 200 to 4000K , radius and mass go from

0.5-20 R⊙ to 1−104 M⊙. In the Solar system instead the temperatures stay between

50 and 500K and only Venus stays above 300K. A possible exoplanet size and mass

classification can be found in 1.1 and 1.8 later in the chapter.Currently it is believed

that the transition between planets that must have an atmosphere , and smaller

rocky planets that might or might not have atmospheres, is close to 1.5R⊙ and

1.7R⊙.

Figure 1.3: process in exoplanetary atmospheres and how they are probed by
different parts of the EM spectrum,the chemical species whose signatures can be
detected in each wavelength range are also indicated. On the left are shown three
types of temperature profile which can arise as a result of atmospheric processes:
the profile of a highly-irradiated planet with a thermal inversion (red), that of an
irradiated planet without a thermal inversion (cyan), and the temperature profile of
a poorly irradiated planet (grey, dashed), taken from [72])

As shown in 1.3 different spectral ranges probe different region of the atmosphere,

so gaining informations on different processes. This can be studied as a function of

pressure P in the atmosphere [72]. In the depths of the atmosphere (P > 1bar) the

pressure and temperature, and so density and opacity are sufficiently big so that

the termochemical equilibrium and radiative convective equilibrium prevail and so

the chemical reactions occur at a higher rate than kinetical processes. The result-

ing composition is then the one that minimizes the free gibbs energy of the system

for a given temperature, pressure and elemental abundance. In the high region

of the atmosphere , between 1 mbar and 1 bar , different processes begin to be
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prevail , including atmospherical dynamical processes like clouds and temperature

inversions, as a result of the complex interaction between incident radiation field,

chemical composition and others planetary properties. These processes strongly in-

fluence and are influenced by chemical composition and the temperature structure

of the atmosphere and both can be out of the equilibrium. Higher in the atmo-

sphere (P = 10−6 − 10−3 bar ) the low density and the high radiation field cause

the photochemical processes to prevail in the atmosphere trough photodissociation

of prominent molecules. Finally at very low pressures , the atmospherical escape

of atomical species brings to mass loss in the atmosphere. This is why every at-

mospherical region probes different chemical and physical processes, as outlined by

[72].

At the same time different chemical species are accessible from different region

of the EM spectrum. The prominent chemical species (H2O, CO, CO2, CH4, etc.)

absorb mainly in infrared due to the rotovibrational transitions, except some metal

species (TiO; VO, TiH, etc.) that have a strong absorb features in the optical.

Instead, the atomic species absorb mainly in optical and UV, depending on the

excitation states and ionization. So while observation in UV probe the upper re-

gion of the atmosphere where the composition is mainly atomic, the observations

in infrared probe low regions in the atmosphere where the composition is mainly

molecular, where the molecular spectra probe intermedial regions. [72]

The study of exoplanetary atmospheres has had a rapid progress since 2008,

only few years ago less than 25 planets were known transiting and the first images

from direct imaging have been obtained. Only a handful of atomic species had been

measured robustly, manly in the two gaseous giants HD 209458b and HD 189733b

using transmission spectra in optical and UV obtained from Hubble.[14] [52] Besides

this, the first observations of exoplanetary atmospheres were made using multi band

space-based infrared photometry and spectroscopy with Spitzer and HST. [3] [26]

In [50] for the first time it was claimed the possible presence of methane in an

exoplanetary atmosphere. It is important to say that these first observation were

made with instruments like HST NICMOS spectrograph and spitzer photometric

instruments that had not been designed to study exoplanets, which require very

high sensitivities( with a photometric precision of at least 10−4). For this reason

many of these observation have been debated and some of them also corrected. An

analysis and summary of these arguments can be found in [7]. Today the situation
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is changed a lot, the HST telescope has allowed to obtain high quality exoplanetary

spectra frequently enough to allow a fast advancement in the field.

In those years , at the same time the first attempts of transit spectroscopy were

being made. [81] However ,the inferences on molecular absorption and pressure-

temperature profile were based primarily on forward models with solar like elemental

composition and equilibrium conditions. In those years the retrieval methods were

still at the beginning and the statistical constrain of the atmospherical properties

not feasible yet.

In the last decades a combination of technically challenge observation of tran-

siting exoplanets and theoretical advancements have brought us to the rapid devel-

opment we see nowadays. The Nasa database counts more than 5600 exoplanets

discovered using different techniques both from ground and space observations.

Today more than a Hundred of exoplanets spectra have been obtained.

Besides the improvement of the detection methods , the development of the

retrieval techniques has allowed to study the atmosphere of exoplanets and obtain

statistical information as a standard procedure. Such inversion techniques have

allowed us to obtain initial constraints about the key properties of the atmosphere

such as molecular and atomical species. Elemental ratios (O/H, C/O), temperature

profiles, cloud/hazes, circulation patterns and exospheres. [72].As outlined by [72]

The most successful studies have focused on 3 different techniques:

1. Extensive high precision transit spectroscopy with HST from UV to NIR,

which brought to many characterization of transiting exoplanets. The spec-

trograph WXF3 of the HST in NIR in particular has made observation of H20

in the exoplanetary atmospheres and has observed dozens of exoplanets from

hot jupiters to exoneptunes and even super Earths. A remarkable achieve-

ments because even in the solar system is hard to characterize this molecule

in gaseous giants due to low temperatures at which H2O condensates.

2. direct imaging and spectroscopy of exoplanets

3. high resolution Doppler spectroscopy in the NIR has allowed to observe molecules

in the exoplanetary atmospheres, both in transit and not, using cross correla-

tion with template spectra.
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1.2 Properties comparison between Solar system

planets and Exoplanets

As we can see from figures 1.4,1.6,1.7, there seems to be very few exoplanets discov-

ered in the region of the parameter space where Solar system planets lay.Partially

it is caused by a selection effect due to the fact that the radial velocity, transit,

and direct imaging methods are currently not sensitive to planets in this region of

parameter space, as highlighted by [60]. However, in the study of exoplanet demo-

graphics, it is still unclear how common Earth-analog planetary systems actually

are. A surprising result of the Kepler analyses was precisely discovering that most

stars seem to host close-in super-Earths and/or sub-Neptunes. Since our planetary

system does not host this type of planets, this result would suggest that planetary

systems like ours—i.e., with small rocky planets in the temperate zone and gas gi-

ants beyond the ice line—might not be common. One of the main goals will be to

combine different detection methods that are complementary to each other, in order

to derive constraints across the entire parameter space. For what concerns the Ex-

oplanet classification there is not a universally accepted one. The size classification

adopted by [11] is the following:

Planet Type Planet Size
Earth size < 1.25R⊕
Super Earth size 1.25− 2R⊕
Neptune size 2− 6R⊕
Jupiter size 6− 15R⊕

Table 1.1: Planet size classification, as proposed by [11]
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Figure 1.4: comparison between Solar system planets mass and ra-
dius with exoplanets.The exoplanets data come from NASA archive:
https://exoplanetarchive.ipac.caltech.edu/index.html. The data are updated
to 23/07/2024.

Figure 1.5: comparison between Solar system planets mass and pe-
riod with exoplanets.The exoplanets data come from NASA archive:
https://exoplanetarchive.ipac.caltech.edu/index.html, The data are updated
to 23/07/2024.
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Figure 1.6: comparison between Solar system planets mass and ma-
jor semiaxes with exoplanets.The exoplanets data come from NASA archive:
https://exoplanetarchive.ipac.caltech.edu/index.html,The data are updated to
23/07/2024.

Figure 1.7: comparison between Solar system planets mass and tem-
perature with exoplanets.The exoplanets data come from NASA archive:
https://exoplanetarchive.ipac.caltech.edu/index.html,The data are updated to
23/07/2024.
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Figure 1.8: Classification of planet masses. From [77], the classification follows
the proposal by Stevens and Gaud̀ı (2013)

1.3 different types of rocky exoplanets

since when we are looking fro biosignature and habitable planets we look for rocky

exoplanets in the habitable zone, it is useful to list the different types of rocky

exoplanets discovered. In 1.2 I show the types classification used by [68].
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Table 1.2: Rocky Exoplanets Types

Rocky planet type Atmospheric phenomena oc-

curring

Possible chemical composition

Lava worlds: boil-

ing hot

Extremely high temperatures >

1500K.

The atmosphere comes from vapor-

ization of lava with gradients both

in pressure and composition.

Na,

SiO,

O,

O2

Searing-hot plan-

ets

Orbital and stellar insolation similar

to Mercury.

If any water is present, it exists as

steam.

Water can be lost via photolysis and

H escape.

Silicate materials dissolve readily in

steam atmospheres.

Si(OH)4,

KCl,

ZnS,

CO2,

N2 (if water has been lost)

Exo-Earth or Exo-

Venus

Often within the habitable zone.

Possible abiotic O2 atmosphere for

planets that start with water but

lose hydrogen.

At habitable temperatures , water

should condensate and make oceans

H2 could act as an efficient green-

house gase that may extend the HZ

if life is present , disequilibrium at-

mosphere may be present

H2O ,CO2 , N2

Exo-Titan and

Beyond: Cold

Planets beyond the HZ

(very few have been discovered)

water is no longer a volatile

species,behaving more like silicate

rocks for HZ planets

gases like N2 , NH3 and CO2 become

less

volatile at greater distances and

may be

stable as ices or liquid at planetary

surfaces

N2, H2
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Figure 1.9: plot of exoplanets discovered with masses < 2MTer

, made using the NASA database archive. Mass vs. radius.

Figure 1.10: plot of exoplanets discovered with masses < 2MTer

, made using the NASA database archive.Mass vs. equilibrium temperature.

1.4 The different detection methods for exoplan-

ets

1.4.1 Transit Spectroscopy

The transit occurs when an exoplanet passes in front of its host star and blocks

part of the light. What we observe is a drop in the star’s brightness. This is the

observable we are going to work with. From this we can obtain different parameters:

P (transit period), ∆F (variation in luminosity in the host star), tT (time duration
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of the transit), tF (duration of the period of minimum luminosity). With these

parameters, we can obtain the fundamental properties: the planet’s radius Rp, the

semi-major axis of the orbit a, the radius of the star R⋆, the mass of the host star

M⋆, eccentricity e, angle of inclination i. For example, it is possible to calculate Rp

if the radius of the host star R⋆ is known: [4]

∆F =

(
Rp

R⋆

)2

(1.1)

Figure 1.11: The light curve and position of the exoplanet relative to its host star,
from [4]

The transit spectroscopy has revealed to be the most successful method for their

atmospheric characterization both by number of exoplanets observed (more than

4000) and the range of atmospheric constraints obtained [72]. The reason is that the

favourable geometry makes it relatively easier for atmospheric observation compared

to other methods. The transit method allows three configurations to observe a

planet’s atmosphere:

• a transmission spectrum when the planet transits in front of the host star ,

i.e. a primary eclipse
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Figure 1.12: cumulative graph of exoplanets discovered by method, plot taken
form NASA archive

Figure 1.13: exoplanets found by different method; the green islands corresponds
to the period of observation of Kepler , plot taken form NASA archive

• an emission spectrum as the planet passes behind the host star , at secondary

eclipse

• a phase curve as the planet orbits between the primary and secondary eclipses

During the first eclipse , the light of the star towards the line of sight passes

through the atmosphere at the day-night terminator of the planet. The resulting

spectra observed contains absorption features of the planetary atmosphere imprinted
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Figure 1.14: discovered planets, orbital period vs. planet mass plot taken form
NASA archive

in the stellar spectrum. The difference between in-transit and out-of-transit spec-

trum, normalized from the out of transit spectrum, brings to transmission spectrum.

That is a measure of the extinction because of the planetary atmosphere at his day-

night terminator region. The secondary eclipse spectrum measures the emergent

spectra from the dayside atmosphere of the planet. Just prior to secondary eclipse

the combined spectrum of both the star and the planetary dayside is observed.This

combined spectrum , when subtracted by stellar spectrum , which is observed during

secondary eclipse , yields the primary spectrum. Finally the phase curve gives us

a spectra of the planet at different phases. Each of these configurations of transit

spectroscopy gives us different and complementary constraints on the atmospherical

properties of a transient planet. [72]. A transmission spectra is essentially a mea-

sure of the thickness of the atmosphere probed perpendicular at the line of sight

as a function of wavelength. It gives us constraints primarily on the chemical com-

position of the atmosphere at the day-night terminator region, together with the

mean molecular weight and temperature through the scale height. As said before ,

different spectral regions give us constraints on different chemical species.

An emission spectra probes directly the temperature structure of the dayside

atmosphere of the planet together with the chemical composition. In principle ,

the planetary spectra observed at the secondary eclipse contains both reflection

and emission. Where instead the reflection dominates at higher optical wavelengths

correspondingly with the peak of the stellar spectra for stars FGK. The planetary

emission typically dominates in infrared at lower temperature. The planet star flux
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contrast dominates in infrared due to much lower temperatures. The planet-star

flux contrast increases with the wavelength with the star becoming weaker and

the planets that becomes brighter. So most of the observations in the dayside of

the exoplanetary atmospheres have been reported in infrared. The observed spectra

probe the brightness temperature of the planet at different wavelengths, which means

measuring the temperature at different depths in the atmosphere [72].

1.4.2 High resolution Doppler Spectroscopy

A detailed review of this method can be found in [1]. If a stellar system is made of

one or more planets , the system will rotate around the centre of mass of the entire

system. This will make the star rotate in a circular or elliptical orbit. Observed

from Earth, the system will include a star that has a velocity in respect to the line

of sight and has periodic variations. This brings to periodic blue shifts and red

shifts of the spectra of the planet , that can be observed from a telescope on Earth.

Measuring the shift in a specific wavelength , ∆λ and his original wavelength λ, the

speed at the line of sight of the star v, can be calculated with the following formula:

[4]

δλ

λ
=

v

c
(1.2)

where c is the speed of light. From a plot velocity-time is possible to obtain the

maximum velocity of the star K, and the period of the motion of the star, t. The

minimum mass of the planet can be calculated: [4]

K = (
2Gπ

T
)1/3 ∗ Mp sin i

Mp+Ms

1√
1− e2

(1.3)

Where G is the gravitational universal constant , Mp the mass of the planet, i

the orbital inclination (The angle between observers and the axes of revolution of

the planet), Ms the mass of the host star , and e represents the eccentricity of the

orbit of the exoplanets. The high resolution Doppler spectroscopy of planets has

also offered a powerful tool to discover chemical species in the atmosphere of the

exoplanets, particularly hot jupiters.

This method involves phase resolved high resolution ( R = 105) spectroscopy

of the star-planet system to deduce the Doppler motion of the planet using the
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planetary spectral lines. The combined spectra, observed using large ground based

facilities, contains contributes both from stellar and planetary spectra together with

telluric features because of the Earth’s atmosphere. For a typical hot Jupiter the RV

semi-amplitude of the planets is a 1000 times bigger of that of the star. So the stellar

and telluric features are relatively not modified during the observations, if compared

with the planetary spectral lines that have significant Doppler shifts. The firsts 2

are removed using different methods, that leave only the time varying signal from

the planet. The residual spectra, after detrending are then cross correlated with the

template planetary spectra containing the expected prominent molecules. For the

matching planet spectrum the orbital motion of the planet can be reconstructed , the

radial velocity semi-amplitude of the planet Kp and the systematic velocity Vsys are

constrained. An high significance peak in the plane Kp-Vsys constitutes a detection

of the molecule present in the model template. Typically a 5σ is considered a strong

detection. This method has been used to find chemical species in a certain number

of hot jupiters. For example CO [55], H2O[10]. Besides Molecular detection , this

technique has also brought infromations on the profiles of temperature and atmo-

spherical velocity of the winds. This technique is also been used to characterize the

atmospheres of directly imaged exoplanets at big orbital separations. For example

the observation of CO in β Pic b [47], using a combination of high contrast imaging

and high resolution spectroscopy. Given the big orbital separation we don’t expect

these planets to be tidally locked. So their rotational speed can be measured with

the broadening of the spectral lines. For βPicb has been measured a 25 km/s ve-

locity using CO spectral features. The combination of high resolution spectroscopy

and high contrast imaging improves the sensitivities of flux contrasts beyond what

is achievable with other methods. Besides this the combination of cross correlation

technique with adaptive optics assisted integral field spectrographs at medium res-

olution can be used to discover chemical species in the two dimensional field of the

image. Such a molecular mapping has been showed to be a strong method with high

significance detection of prominent molecular species like H2O and CO in directly

imaged planets.
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1.4.3 direct imaging

A detailed review of this method can be found in [90]. The only method that is

able to directly catch the photons directly emitted by the planetary bodies is direct

imaging. It’s a very useful method for analyze nascent planetary systems. This

method requires high contrast imaging(HCI) , to resolve objects millions of times

fainter than the parent star.So extreme adaptive optics systems, telescopes exceeding

8 meters in diameter, coronographs and modern imagers. The HCI requires the

corographs to block the light of the primary star. There are two main categories

of coronographs: occulting masks and phase masking coronographs. The first class

uses an opaque mask that attenuates the first peak of the Airy function, the second

exploits the principle of the destructive interference of the on-axis light. In the

infrared the exoplanets emit light coming from their own heat. Even if the luminosity

is still very faint in this band is possible to observe the exoplanet. The exact orbit

can be determined from the observation and the temperature can be inferred from

the radiation emitted by the planet. The first exoplanet detected with this technique

is 2M1207b . It was discovered using NACO (NAos COnica) on the VLT.In 2004

the first epoch was obtained observing the star 2MASSW J1207334-393254 , an M8

type star of the TW Hydra association. The age is around 8Myr. The object is

separated from the host star by about 0.78”(=55au). The nature of the planet ha

been confirmed one year later. The estimated mass is M = 5 +- 2 Mjup and the Teff

=1250 +- 200K. Now it’s considered a binary system of low-mass objects, rather

than a planetary system.

One of the main challenge with this method has to do with the high sensitivity

required and the inner working angle,which is the radius where the peak flux of

the star is attenuated by 50%. The goal of the new coronographs is to lower as

much as possible this value , in order to be able to detect planets orbiting at small

separations. For example , a Jupiter analogous orbiting a sun like star at 10 pc

would require a flux contrast planet-star below 10−7 in the NIR at a inner working

angle of 0.5”, but the requirements are even more stringent in the optical band.[72].

Nonetheless , for young giant planets with high temperatures ( > 1000K ) at big

orbital separation the planet star flux contrast in the NIR approaches 10−4, making

them observable with today facilities. Even if the number of planet discovered

with direct imaging is a lot smaller than transiting exoplanets (78 vs. 4176 with
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transit method) , the spectra are typically of an higher resolution and the SNR is

bigger. Due to the large aperture ground based facilities with adaptive optics used

for this goal. For this reason the method has been successful for obtaining thermal

emission spectra of different young giant exoplanets in the NIR. The atmospherical

properties that can be obtained with direct imaging are similar to that obtained

with the transit method but with crucial differences.A direct imaging spectra is

similar with an emission spectra observed for the transiting planets and so it gives

us important informations on the temperature profiles and on the atmospherical

compositions. However ,differently from transiting exoplanets , the radius, mass and

so gravity are not known. This causes degeneracies in the accurate estimate of the

actual chemical composition of the spectra since the shapes of the spectral features

strongly depend upon gravity. However, the bigger resolution and the SNR of the

spectra observed make possible to obtain robust observation of the chemical species

in the atmosphere. For example, different observations at high confidence of H2O,

CO and CH4 have been reported for different directly imaged exoplanets in the recent

years. Given the orbital periods, the spectra of a planet is obtained typically at a

single orbital phase that is known,that restricts the constraints on the atmospherical

dynamics. However , precise constraints on the globally averaged compositions and

profile temperatures at the observed phase are possible using retrieval techniques

method. Besides this, given the low radiation regime , the temperature profiles of

the atmosphere of directly imaged planets are expected to be really different from

those of transiting exoplantes that tend to be highly irradiated.

1.4.4 timing

Besides this 3 method exposed, there are others that are used to find exoplanets,

but for now are not useful to do spectroscopic studies: timing and microlensing.

The first is based on a concept similar with radial velocity method: If a stellar

system has one or more planets, so the radial distance between stars and the Earth

changes periodically because of the same reason mentioned in the radial velocity

method.So , if the host star has a stable period, if the host star is for example a

pulsar, the length of his period changes periodically. Because of the variation of the

radial distance between the pulsar and the Earth , every impulse will arrive before

or after the moment of arrive predicted (in the absence of the planet), since the
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Figure 1.15: 2M1207b , the first planet ever detected with the high contrast
imaging technique citare (Chauvin et al.2004)

distance variation brings to the variation of the time of arrival of every impulse.The

amplitude of every variation of the arrival time, τp, can be determined. Subsequently

it is possible to obtain the minimum mass of the planet Mpsin i:

τp =
a sin iMp

cM∗
(1.4)

Where c represents the speed of light , Mp the mass of the planet, i represents the

orbital inclination,M∗ the mass of the host star , and a the semi-major axis of the

orbit of the exoplanet. Besides Pulsars , there are different celestial bodies that have

their period, like the variable pulsing star and the binaries with the eclipse. The

exoplanets that orbit around them can even be obtained from the same principle

of the pulsar timing. Moreover , if a planetary system has more than a planet,

so the gravity between the planets will accelerate or decelerate every one of them.

However in a planetary system with multiple planets , the speed of every planet keeps

changing due to the gravitational interaction with the other planets. So the transit
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period of a planet will not be constant. When the observers will find variations in

the transit period of a discovered planet, it is possible to predict that other planet

exist in that system. This method is called TTV( transiting timing variation), and

can determine the maximum potential mass of an exoplanet.

Figure 1.16: schematic diagram of the timing method: each black dot represents a
pulse emitted by the pulsar.The y axis shows a residual between the actual moment
for each pulse arriving at the Earth, and the predicted value of arriving moment if
the pulsar has no planet.The red curve is a sin that fits the dots. from [4]

1.4.5 microlensing

From the theory of general relativity it is known that a star is able to curve the light

rays that pass nearby. When 2 stars and the Earth find them self on a straight line,

the star between the Earth and another star bends the light emitted by the star

behind and acts like a convex lens that focus the light from the source behind on

the Earth. So the luminosity of the star behind will increase drastically. However ,

when the star has a planet , the gravity of the planet will cause a microlensing effect.

With this method it is possible to estimate the mass of the planet. Thanks to this

method more than 200 planets have been found.Depending on how the source, lens

and observer are aligned , a distorted image of the source is generated. the robust

lensing , observable at the level of individual object , is then classified in macro and

microlensing. Where instead the microlensing has to do with discrete, unresolved

sources, macrolensing generates multiple resolved images , or ”archs”. The weak

lensing is a different regime that is statistically achieved without a clear resolution

of the individual objects. [? ] Nevertheless the observation is not replicable and

this raises the big problem of the lack of falsifiability of the results.
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Figure 1.17: comparison of different analysis method ,from [? ]

Figure 1.18: Perryman Tree 2024

1.4.6 comparison of the different methods

As outlined before , it is necessary to distinguish between the detection methods

that can help us to study the atmosphere of an exoplanet spectroscopically and

those that by now are useful just to find exoplanets and to estimate the bulk pa-

rameters.For what concerns the first 3 methods , which are those mostly used for

spectroscopic studies, the transit method remains the most successful one,more than

a 100 exoplanet’s atmosphere have been studied and more than 4000 discovered as

it is possible to see in the Perryman tree in figure 1.18.

The advantages of the different methods are the following [72] :

21



1. Transit spectroscopy allows observations of transmission spectra of day-night

terminator, thermal emission spectra of dayside, and phase curves over the

orbit.

2. Direct imaging provides high S/N thermal emission spectra at a single phase.

3. High-resolution Doppler spectroscopy allows detection of chemical signatures

in planetary spectra Doppler shifted due to radial velocity of the planet.

Most of the planets discovered with the transit method have very short periods,

this shows that this method is particularly useful to find planets that are closer to

the host star, because shorter is the radius and shorter is the period. The parameters

that is possible to find with this method are: radius, orbital radius, radius of the

host star, mass of the host star, eccentricity and inclination angle. Beside this ,

as has been seen from the Kepler telescope and TESS , the transit method allows

to find thousands of exoplanets in a small area of the sky simply by continuing to

observe the luminosity of the stars in the area.However the transit method can not

recognize if the transit is caused by exoplanets or celestial bodies that have the same

radius of the planet as for example brown dwarfs.

The radial velocity method is better for exoplanets that have a small orbit radius

or a big mass. In other words these exoplanets that can cause bigger impacts on

the motion of host stars and the shift of the spectra of the host stars. So it is

easier for the observers to see the variations in the spectra. Since the gravity of the

exoplanet is directly proportional to the his mass and inversely proportional with

the square of the distance between the planet and his host star, it can only help to

obtain to identify the minimum mass of the planet, as outlined by [4]. Fortunately

if the exoplanet can also be detected with the transit method , substituting the

values i in Mpsin i, it is possible to calculate the exact mass of the planet. The

microlensing instead can help us to measure the mass of very distant exoplanets,

the main problem is that it is not possible to observe again the microlensing event.

And this unfortunately undermines the necessary requirement of replicability of the

method.

the direct imaging work better with planets that are extremely far away from

their host star. Differently from the other methods, that detect the planet indirectly

, this method directly ”sees” the planet in infrared. If a star is a pulsar, a pulsating

star, or part of an eclipsing binary system , the transit method cannot be applied due

22



to the constant variations in its luminosity. Additionally , the radial velocity method

is ineffective since these types of star have highly unusual and complex spectra. As

a results , the timing method is the most suitable for detecting exoplanets orbiting

such stars. Finally , transiting timing variations (TTV) can help identify additional

planets in a system where on has already been detected using the transit method.

However ,TTV is only useful for specific types of stars or systems where at least one

planet can be observed transitinf from Earth.

1.4.7 Summary

1.5 The modelling of the exoplanetary atmospheres

Besides the detection methods explained , that are useful to discover a planet and

then analyze the data that we acquire regarding the atmosphere , it is necessary to

use atmospheric modelling techniques to understand better the data and estimate

the plausibility of a certain detection. In [72] these techniques are classified in 3

different types:

• Forward spectral modelling

• Retrieval methods

• Atmospheric theory

The forward spectral modelling has to do with the study that is done a priori

about an observation for being able to estimate the feasibility of this and try to

understand a priori what it is possible to find, as chemical abundance , chemical

equilibrium and/or radiative convective equilibrium. For the interpretation of the

spectra we rely on the retrieval techniques or the inverse techniques , that have to

do with the derivation of statistical constraints of the atmospherical properties of

a planet from the spectral data using methods for estimating the parameters. In

addition to these , there exists many studies that use theoretical atmospherical mod-

els to investigate different chemical process and physical in act in the exoplanetary

atmospheres as for example non equilibrium chemistry , atmospheric circulation ,

clouds/hazes, atmospheric escape, thermal inversion.
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Chapter 2

Addressing the Challenge of Defin-

ing Reliable Biomarkers in Exoplan-

etary Atmosphere Studies

2.1 The search for gaseous biomarkers

One of the most important aspects of the study of exoplanetary atmosphere is the

identification of biomarkers. Currently there are dozens of rocky exoplanets dis-

covered in the habitable zone. However the most significant aspect of this kind of

studies is being able to establish which conditions and biosignatures constitutes a

robust evidence of the presence of life, which means p(Life|B) >> p(abiotic|B)

,where p(life|B) is the probability of life given a certain biosignature B, which is

the core question of all the thesis. Currently there have been discovered dozens

of terrestrial rocky exoplanets terrestrial sized, that have equilibrium temperature

that allow the existence of liquid water on surface. We could classify these plan-

ets as habitable, but the extension of a given habitable zone depends strongly on

the internal properties of the planet , the atmospherical properties and from the

astrophysical conditions. [72] Some reference article regarding habitability are: [62]

[33]

It is not the goal of this thesis to outline all the aspects regarding habitability

since it is a vast topic that would require a work focused on that. It is however im-

portant to recall some important aspects. The factors that influence the habitability

are: atmospherical and geophysical conditions of the planet, orbital parameters and
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evolution, nature and evolution of the host star and his environment, the magneto-

spheric protection, the history of formation of the planet and other factors.

From an observational standpoint , planets orbiting late-type stars present an

excellent opportunity for atmospheric characterization. Due to the smaller size of

these stars , there is a bigger planet-to-star contrast in both radius and luminos-

ity, making these systems particularly well-suited for transit spectroscopy. Many

planets have been discovered around late-type K and M stars, suggesting that their

environmental condition could be significantly different from those on Earth. Re-

cent Observations of planets in the habitable zone of stars like TRAPPIST-1 and

Proxima Centauri further encourage ongoing research in this field.

As previously said , for this planetary system it is necessary to being able to

establish which could be a biosignature that is a robust evidence of the presence of

life. From [43], an ideal biomarker should satisfy the following requirements:

1. it should not have any false positives,i.e. should not be a product of a non

biological mechanism

2. it should have strong enough spectral features to be detectable

3. it should be abundant enough to be detectable.

Based on the Earth’s atmosphere , the main biomarkers traditionally have been

considered to be: O2, O3, N2O and CH4. Until recently the most promising biomark-

ers have been considered to be O2 and O3, recent studies however have shown the

possibility of abiotic genesis for O2 , that would produce detectable quantities. [38]

It is important to outline that currently there is no molecule that can be considered

alone as a robust biomarker,and so to asses the presence of a biosphere it could

be important to assess the presence of multiple biosignature that can increase the

confidence on the inference. Like The simultaneous presence of O2,CH4 and/or

N2O alongside liquid H2O, located in the habitable zone could be indicative of the

presence of a biosphere,

Furthermore , for every exoplanets , different properties of the planet and the

host star must be taken into account to better costrain the probability of biogenic

activity.

As outlined by [13] , the only thing that will be probably possible will be to

define probabilistic estimates on the presence of life in a given planetary system

with respect to a binary inference.
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As we will see later, it is the combination of multiple biomarkers that may

eventually help the inference of the presence of biological activity on a planet. For

instance, the simultaneous detection of O2, CH4, and/or N2O alongside liquid H2O

on a planet within the habitable zone could suggest a perfect Earth analog.

However, it is important to remain open-minded regarding biological activity

in this field, since our theory of life is far to be complete and consequently our

knowledge of gaseous biomarkers.

In 2.1 I have outlined the different definition proposed for biosignatures and i

added my proposal.

Author Definition
Thomas-Keprta et al. 2002 [31] A physical and/or chemical marker of

life that does not occur through random,
stochastic interactions or through directed
human intervention

Des Marais et al. 2008 Object, substance and/or pattern whose ori-
gin specifically requires a biological agent

Catling et al. 2018 [13] Any substance, group of substances, or phe-
nomenon that provides evidence of life

Pohorille and Sokolowska 2020 [78] Chemical species, features, or processes that
provide evidence for the presence of life

proposed definition Any phenomenon, substance, or group
of substances A that provides a
conditional probability P (life|A) ≫
P (non-life|A)

Table 2.1: Different definitions of biosignature throughout the time

In [31], they were analysing the possible biogenity of some presumed Magneto-

fossil on the Martian meteorite ALH84001.

The second definition , presented in [19], is the definition considered by the

NASA astrobiology roadmap of 2008.

In [13] , The Bayesian framework is considered and simulations of potential

biosignature in spectra or photometry are considered to derive the likelihood of the

bayesian model.

Finally , in [78], Conceptual frameworks are developed for evaluating the ability

of different biosignatures to provide evidence for the presence of life in planned

missions or observational studies. They have focused on intrinsic characteristics of

biosignatures in space environments rather than on their detection.
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2.1.1 potential biosignature gases

An atmospheric biosignature is a volatile molecule that is either direct product of life

or a secondary product from the environmental processing of biogenic compound.

A biogenic gas emission can include those directly related to the primary energy-

yielding metabolism or incidental products from other cellular processes. The best

targets for the search of biosignature gasses are volatile molecules, with a reasonable

chance of accumulating to detectable concentrations. The detailed description of the

different gaseous biosignature can be found in [79]. Here I take Phosphine PH3 as

an example to outline the most important aspects to understand in order to analyze

a gaseous biomarker.

Figure 2.1: prominent biosignature gases on Earth , from [79]
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Figure 2.2: alternative biosignature gases , from [79]

2.2 Phosphine PH3

2.2.1 Phosphine as a biomarker in spectroscopic

observations

Phospine has been described in many works as a very promising biomarker. [82].

That’s because on Earth it is only associated with anaerobic ecosystems industrial

environment, and as such it a promising biosignature gas in anoxic exoplanets [82].

Currently there are no known abiotic false positives that could generate the high

fluxes required for detection.Also it has 3 strong spectral features such that at least

1 could be easily recognized even in the presence of other dominant spectroscopic

molecules.

Currently the only weakness is his high reactivity , that requires high outgassing

rates for detectability. The abiotic production in the planets of the solar systems

occurs where there are regions that reach temperatures >= 800K, for example in

Jupiter and Saturn where the molecule production is thermodynamically favored.

Even if there is robust evidence for the production of Phosphine by biological

activity , the exact mechanism of production is still debated.

However,the synthetic pathways for many of life’s natural compounds remains
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Figure 2.3: Measurements of Phosphine concentrations in the Earth’s atmo-
sphere:Green bars- marshlands and paddy fields , black bars-industrial environments
, red bars-Namibia(rural environment), White bars-arctic and Antartic environ-
ments, Yellow bars-Upper troposphere, blue bars-oceanic samples(coastal and open
ocean. From [82]

unknown. Despite this , their origin is generally considered to be biological due to

the improbability of abiotic synthesis , their strong association with living organism

, and their resemblance to other biological substances.

There are two proposed explanations for the production of PH3 in anoxic ecosys-

tems:

1. PH3 is directly produced by anaerobic bacteria from environmental phosphorus

2. PH3 is indirectly produced by anaerobic bacteria. Anoxic fermentation of

organic matter by anaerobic bacteria results in acid products; these acid prod-

ucts , in turn could react with organic metal phosphides , like those present

as a trace elements in scrap metal , resulting in phosphine generation

2.2.2 spectral properties of of Phosphine

With photochemical modelling and spectral simulations the team has reached these

results on the spectral properties of Phosphine as a biomarker [82]:

• PH3 is able to reach detectable levels in an exoplanet atmosphere, provided it

has high production rate at the planet surface

• PH3 has unique spectral features , namely strong bands around 2.7-3.6 mi-

crons, 4.0 -4.8 microns and 7.8-11.5 microns , that allow it to be distinguishable

from other dominant atmosphere molecules
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• based on the abundances and surface fluxes needed to produce detectable levels

of PH3 , it has no known false positives provided that the planet’s surface

temperature is below 800K

• At surface fluxes near the minimum flux necessary to allow fro PH3 detection

, a ”runaway” effect for PH3 occurs, where the production increases dramati-

cally.

2.2.3 phosphine Surface fluxes required for detec-

tion

The surface flux necessary for phosphine to assemble to detectable abundance levels

in anoxic atmospheres, so the biological production rate ,is critical to assess to

determine the efficacy of PH3 as a biosignature. The surface flux that a biosphere

can plausible generate must be within the range of the detectable levels of PH3.

Up in the atmosphere the destruction rate and consequent mixing ratio changes

, due to the different levels of radical concentrations and radiation at different alti-

tudes. The dominant PH3 reaction in H2 dominated atmospheres is PH3+H. The

dominant reaction in H2 dominated atmospheres is PH3+O. In the high regions

of the atmosphere, H produced from the PH3 photolysis becomes an increasingly

important sink for PH3, even in CO2 dominated atmospheres. The team of [82]

has used a photochemical model to estimate the minimum surface production flux,

PPH3, for the detectability of Phosphine in transmission and emission for a range of

planetary scenarios. The results are shown in figure 2.4.
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Figure 2.4: Phosphine mixing ratios needed for detection in transmission and
emission for different atmospheric and stellar scenarios, as well as associated surface
flux requirements (PPPH3 [cm

−2 s−1]). The values in red represent surface fluxes and
associated atmospheric abundances where PH3 would be able to approach detection
but would require longer than 200 hours of observation (which is longer than our
allowed limit for detectability). Taken from [82].

The team [82] found the existence of a critical Phosphine surface production flux

, past which PH3 accumulation is efficient and the atmosphere transitions to a PH3

rich state.The effect is analogous to the CO runaway effect identified in the early

Earth. Once the critical point is passed , the PH3 production outpaces the ability of

stellar NUV photons to destroy PH3, whether via direct photolysis or via generation

of radical species.

2.2.4 Sensitivity to temperature and radiation lev-

els

Since different surface temperature can allow a planet to be habitable, we have to

consider the effect of temperature on the concentrations of Phosphine. It can affect

the the reaction rates of PH3 with radicals , and the concentrations of H2O in the

atmosphere from which the radical species are largely derived.

Besides temperature , there is another factor to consider , UV irradiation, since it

limits Phosphine concentrations through direct photoplysis and radical production,

H,O or OH. The hypothesis is that PH3 would build to higher concentrations on

a planet orbiting a star with low UV output, such as quiet M-dwarf. The team of

[82] has found that , for the equivalent surface production rates, Phosphine concen-

trations are two orders of magnitude higher on planets in the quiet M-dwarf cases

compared to the active M-dwarf cases. Low UV emission favors buildup of PH3 due
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to lower radical concentrations and photolysis rates. So the team concludes that

as with other proposed biosignature gases , planets orbiting quiet M-dwarfs are the

best targets for detecting biogenic PH3. Also they found that ,in planets orbiting a

quiet M-dwarf , PH3 is able to enter a runaway phase with two orders of magnitude

lower surface fluxes than those required in more active stars.

2.2.5 Phosphine spectral distinguishability

Phospine’s spectral signature is distinct from other gases that are expected to be

present in the atmospheres of rocky exoplanets, such as water vapor, methane,

carbon dioxide, carbon monoxide, ammonia, and hydrogen sulfide. Its spectra in

the infrared region contain three key features at: 2.7−3.6µm 4−4.8µm and 7.8−11

µm. In the table 2.2 I have summarized the different properties of the different

spectral regions, given the informations provided in [82].

Spectral Region Description
2.7− 3.6 µm Dominated by a combination of a hot band and an over-

tone band, both corresponding to the symmetric bend-
ing motion of PH3. Additionally, six other combination
bands are present in this region.

4− 4.8 µm The most prominent spectral feature of PH3, primar-
ily due to the fundamental symmetric and asymmet-
ric stretching vibrations of the PH3 molecule. Several
weaker overtone and combination bands also contribute
to this feature, which is the strongest part of PH3’s spec-
trum and clearly distinguishes it from methane, ammo-
nia, and hydrogen sulfide. Some spectral overlap with
CO2 is noted.

7.8− 11 µm The symmetric and asymmetric bending fundamental
bands, along with hot bands, combine to create a broad
and strong absorption feature. While there is some over-
lap with the ammonia spectrum in this region, Phos-
phine can still be distinguished from other molecules.

Table 2.2: Spectral regions and corresponding features of PH3.

( figures 2.6 is preliminary since in 2020, when was written the article , out

of the 534 molecules for which there are available spectra, only a few dozen have

been adequately measured or calculated , and consequently their spectra should be

considered preliminary.There are also thousands of volatile molecules which could

contribute to an atmospheric spectra [43] for which there is no available spectra, so
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Figure 2.5: Comparison of the spectral cross-sections of Phosphine with other
molecular gases at room temperature. PH3, shown in black, is distinguishable from
all compared molecules due to its strong bands in the 2.7–3.6 µm, 4 − 4.8 µm and
7.8− 11 µm regions. image taken from [82]

Figure 2.6: Comparison of the spectral cross section of Phosphine (orange) with
all the available cross-sections for molecules that are volatile at room tempera-
ture.Intensity on y-axes in a linear scale representing absorbance (normalized to 1)
and wavelength represented on the x-axes in microns, with the spectral range con-
strained to 2.5 – 18.5 microns for fair comparison (many molecules have incomplete
spectra beyond this region). Opacity for all molecules is plotted at 1% so that heav-
ily populated regions are highlighted. all cross sections are calculated with SEAS ,
using molecular inputs from NIST and EXoMol. The strongest band of PH3 (84.0-
4.8 microns) is easily distinguishable from all other gases, but the broad band at 10
microns can become obscured by other molecules image taken from [82]
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further studies are required to reveal the full extent of the spectra comparison in

the figure.)

2.2.6 Phosphine false positives

As said before , on Earth Phosphine is produced only anthropologically or biolog-

ically. As oulinedi by [82] the formation of PH3 on temperature, rocky planets is

thermodinamically disfavored, even in the high reducing environments. In thermo-

dynamic equilibrium , phosphorus can be conservatively expected to be found in the

form of PH3 , only at T > 800K and at P> 0.1 bar. Since the critical temperature

of water is 647K there are no surface conditions that allow both PH3 production

and the presence of liquid water. So in a temperate , rocky planet , it’s implausible

that PH3 can be produced without biological intervention. However the team [82]

has considered many false positive that can influence the global concentrations of

PH3:

• Phosphite and Phosphate disproportionation:Phosphine could form geochem-

ically by reduction of phosphate or phosphite to PH3, however the team con-

cludes that the formation of PH3 from phosphate or phosphite is unlikely in

the absence of a biological catalyst.

• Lightning: Lightning discharges even in highly reducing atmospheres produce

only negligible amount of reduced phosphorous species, including PH3, and

are very unlikely to provide high flux sources of PH3 globally.

• Volcanism: Phosphine in not known to be produced by volcanoes on Earth.

The team [82] estimated that the maximum production of PH3 by volcanoes

in any planetary scenario, even H2-rich atmospheres, is at least seven orders

of magnitude lower than the surface fluxes required for detections

• meteoric delivery: as a source of reduced phosphorus species that could lead

to the abiotic production of phosphine. The team concludes that the contri-

bution from meteoric sources to the global average PH3 production rates is

still negligible.

From the study of [82] it is clear that non-biological PH3 formation is not favored

on temperate rocky worlds and no abiotic pathways can produce PH3 with produc-

tion rates necessary for its detection on habitable exoplanets. So they conclude that
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unlike ammonia and methane , a detection of PH3 on a temperate exoplanet is likely

to only be explained by the presence of life.

2.2.7 conclusion:phosphine as a biosignature gas

As previously outlined the perfect biosignature has three characteristics:

1. Lacks of (currently known) abiotic false positives

2. has uniquely identifiable spectral features

3. Is unreactive enough to build up to detectable concentrations in exoplanet

atmospheres.

PH3 fulfills the two criteria. As we have seen the geochemical false positives

for PH3 generation are highly unlikely , it possesses three strong features in the

2.7-3.6 microns , 4-4.8 microns and 7.8-11 microns regions that are distinguishable

from common outgassed species that may be present in terrestrial exoplanets atmo-

spheres, such as CO2, H2O, CO, CH4, NH3 and H2S. The biggest challenge in the

detectability of Phosphine at low surface fluxes is its reactivity to radicals, and its

vulnerability to UV photolisis. The study of [82] suggests that at high but plausible

surface fluxes (1012− 1014cm−2s−1 ) , PH3 is able to exhaust the supply of M-dwarf

NUV photons and enter a ”runaway” phase. This will make PH3 easily detectable,it

also protects other trace gases from destruction by radicals and rapidly changes the

overall composition of the planetary atmosphere. [82]

2.3 chemical imbalance as a biomarker

The chemical disequilibrium, i.e. the logn-term coexistence of two or more chemi-

cally incompatible species that is maintained in the Earth’s environment by biogenic

fluxes, has also been proposed as a biosignature. Due to oxygenic photosynthesis

Earth has a much larger chemical disequilibrium than other solar system planets

with atmosphere. As we have seen O2 has many problems as a biosignature , since

even if it is relatively easy to detect , and is generated in large quantities by rela-

tively few abiotic processes, it has been detectable in the Earth’s history for only the

past 1/8 of the earth inhabited history. Also , oxygenic photosynthesis is a complex
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metabolism that only evolved once on Earth and it is unknown whether its origin on

an exoplanet is likely. The coexistence of CH4 and O2 is an example and indicates

continuous replenishment of these gases by biogenic fluxes. But under certain cir-

cumstances it can also be an anti signature. In particular it has been showed from

[59], that the prebiotic earth likely had a relatively large atmosphere-ocean dise-

quilibrium due to the coexistence of water vapour and volcanic H2, CO2 and CO.

The subsequent chemotrophic life probably destroyed nearly all of the prebiotic dis-

equilibrium through its metabolism, leaving a likely smaller disequilibrium between

N2,CO2, CH4, and liquid water. The disequilibrium fell with the rise of chemotrophic

life then later rose with atmospheric oxygenation due to oxygenic photosynthesis.

The study concludes that big prebiotic disequilibrium between H2 and CO2 or CO

and water is an anti-biosignature because these easily metabolized species can be

eaten due to redox reactions with low activation energy barriers. They suggest that

a large chemical disequilibrium can also be a biosignature when the disequilibrium

arises from a chemical mixture with biologically insurmountable activation energy

barriers and clearly identifiable biogenic gases. The Earth modern disequilibrium

between O2, N2, and liquid water along with minor CH4 is such a case. As with

mostly all the biosignatures , chemical disequilibrium can be used to infer the dead

or living worlds only analyzing carefully the context.

In the study of [34] they found that Earth’s atmosphere-ocean system has more

than an order of magnitude disequilibrium (in joules per mole of atmosphere ) than

any other planet due to biogenic fluxes. As pointed out in [59] , the interpretation

of disequilibrium as a sign of life in unclear. If a planet has no life it still might

have a large disequilibrium of untapped free energy because life is not consuming

it, so disequilibrium in that case becomes an antisignature. The study of [59] helps

to distinguish the general cases when disequilibrium indicates life versus when it is

an anti-biosignatures. In the table 2.7 there have been outlined different types of

disequilibrium biosignature gasses.
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Figure 2.7: example of disequilibrium biosignature gases , from [79]

2.4 critical aspects of the concept of biosignature

In the study of [17] many critical aspects about the field have been outlined.Since

in my thesis I focus on gaseous biosignatures I will outline the problems concerning

the definition of this type of biosignature. Regarding a gaseous biosignature, for

example oxygen, the concept may refer to the gaseous substance(oxygen) directly

produced by biological entities , to the gaseous substance ozone, resulting from the

transformation of primary products (intermediaries), to specific properties of either

substances, such as their specific absorption spectra or their abundance (”observable

features”), or to the end-observations that are made , for instance the full spectrum

resulting from a measurement procedure (”observations”). As noted by [80] it is

difficult to say whether a biosignature is the measured spectral signal or the inferred

presence of the gas based on the signal, or even the inferred presence of biological

entities at the origin of that gas.

The problem that they have found to be the most crucial are the following:

1. The terms ”Biomarkers” or ”biosignature” are generally poorly defined , so

there is the need of a more formal and rigorous definition, especially because
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of the big number of missions that include the topics of life detection in their

mission strategy, and because the term biosignature implies implicitly a certain

proof of the presence of life, which is impossible to obtain due to the high

number of false positives.

2. The inference from observations of a certain signal all the way back to the

assertion of the presence of biological entities somewhere at the origin of that

signal is actually a chain of interwoven abductive backward inferences mediated

by several layers of theories, models and particular conditions. Furthermore,

since each of these theories, models and particular conditions only receive

a certain degree of confirmation, the overarching inference of the presence

of biological entities can only be confirmed up to the compounded degrees of

confirmation of all the ingredients used in the chain of backward inferences. In

practice, this confirmation ought to be even lower than that since alternative,

less favorable models cannot be ruled out for sure, which is a general issue for

any abductive reasoning.[80]

3. Depending on context, the concept of biosignature may apply to different types

of elements intervening along the way in the causal chain. Yet, depending on

the position of these elements in the chain of backward inferences, correspond-

ing biosignatures will be subject to varying degrees of confirmation. [80]

4. it is necessary to answer 3 question regarding the signal: 1) is the signal real?

2)does the signal correspond to what we think it corresponds to? 3) Is the

thing you think the signal corresponds to actually indicative of life?

5. Since there is always a non zero probability that a biosignature is not produced

by life , the claims of a biosignature discover should always be used together

with a confidence level specifically addressing the uncertainty.

It is impossible to deny from what we have seen that the concept of biosignature

is intrinsically fraught with ambiguities. Nevertheless , as pointed out in [17] , many

scientific concepts are vague but nevertheless useful , for example: information, gene,

evolution and probability. In some ways they are useful because they are vague:

flexible or ”fuzzy” definitions may guard against inflexible thinking and promote

interdisciplinary. [17] have suggested a series of question for those interpreting

biosignature concepts and terms in the work of others.
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• If several similar concepts are used in a publication, are they used as synonyms

or with specific differences?

• Are terms such as “biomarker” being used in a sub-discipline-specific way?

• What does the word “biosignature” (or similar) refer to? Is it being used to

refer to an observation (e.g., signal from a spectrograph), an observable feature

(a transmission spectrum), an observable object or substance (ozone), or an

intermediary object or substance (oxygen that is transformed into ozone), or

a plurality of any of these?

• Upon which models and assumptions do the backward abductive inferences

from observations to the presence of life rely?

• Is the context of the signature well-described and is this context fully consid-

ered in the assessment of biogenicity?

• If the detection is presented with error bars/caveats/less than total confidence,

is this because of uncertainty about the association of the phenomenon with

life, the identification of the phenomenon in the data, or the quality of the data

themselves? Is an abiotic hypothesis tested? Has enough science been done to

explore the possibility of abiotic “mimics” in the relevant environment?

• Does the concept of biosignature that is used correspond to a stronger (binary)

or weaker (probabilistic) inference to the presence of life?

• What implicit conceptualization of life do the authors have in mind?

Another work that has brought attention on many critical aspects regarding the

field of biosignature is [63]. Here I make a summary of the main critical aspects that

have been covered.

1. The search for life outside the solar system seems more a study of the Earth 2.0

biosphere in the galaxy , instead of the search for life , Since the discovery of an

exoplanet with an atmosphere similar to Earth’s would not teach us anything

new about life, it would only help us better understand the distribution of

exoplanets with a Earth 2.0 biosphere.

2. It is not possible to detect life with features that are shared between non-living

and living system since there is no underlying theory of life, we should better
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ask ourselves what kinds of exploration are needed to help us formalize such

a theory.

3. Building bigger telescopes that can resolve more data , have more spatial

resolution, won’t resolve the problem since we are limited by the theories

developed to assign cause to the observations we are making. the question is

”how useful is the detection of a very high confidence biosignature if it doesn’t

teach us anything new about life, or even change our approach to learning

about life.

They propose that the community should focus on identifying unambiguous fea-

tures of life via four areas of active research: understanding the principles of life on

Earth, building life in the lab, detecting life in the solar system and searching for

techno signatures.

Regarding the third critical aspect it is not true that in fact it doesn’t change

our approach , since as we will see later , the observation can help us to constrain

better the parameters of the Bayesian approach and so help us to better decide

which strategy to focus on when searching for biospheres.
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Chapter 3

Application of the Bayesian statis-

tics to the inference of gaseous biomark-

ers

3.1 The use of a Bayesian approach

3.1.1 The different ways of seeing probability

Probability can be defined as the quantification of the level of randomness of an

event, where something is termed random if it is not known or cannot be predicted

with absolute certainty. The various interpretations of probability fundamentally

arise from its dual meaning: epistemic, that is, as uncertainty related to (limited)

human knowledge, and empirical, that is, as intrinsic uncertainty of phenomena.

Let’s see the different interpretation of the concept of probability:

• classic interpretation ( De Moivre, Laplace): the probability of an event is

the ratio between the number of positive results and those possible, supposed

that every event has the same probability , so PA = NA

N
, where N is the number

of possible cases and NA is the number of positive cases for the event A. This

definition of probability is based on discrete events of finite number and it is

hard to extend it to the case of continuous variable. Another problem is that

every event has the same probability.

• Frequentist (Von Mises): The probability of an event is the limit towards

which the relative frequency of the event tends, as the number of trials ap-
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proaches infinity. PA = limN→∞
Na(N)

N
. Such a definition can also be applied

without knowing the sample space a priori and without assuming the condition

of equiprobability of the elementary events. However, it is assumed that the

experiment can be repeated multiple times, ideally infinitely, under the same

conditions. The rigorous definition is :

lim
n→∞

Pr

(∣∣∣∣Na(N)

N
− Pa

∣∣∣∣ > ϵ

)
= 0

. This definition, however, contains a circularity issue related to deciding how

small the approximation should be (i.e., how large N should be). Addition-

ally, not all experiments are repeatable or can be repeated under the same

conditions, and probability applies exclusively to phenomena that occur on

a large scale, while it is not possible to talk about the probability of single

events (or never-occurred events).An important advancement from the classi-

cal conception, where probability is established a priori before looking at the

data, is that in the frequentist view, probability is derived a posteriori from

the examination of data. However, both views are objective probabilities. The

frequentist perspective is not about epistemic uncertainty but rather tied to

an empirical view of probability.

• Bayesian In the Bayesian approach, probability is a measure of the degree

of plausibility of a proposition. This definition is applicable to every event.

Bayesian probability is an inverse probability, it consists of going from the

observed frequencies to probability. In the Bayesian approach ”personal con-

sideration” are used to assign probability to a given event before doing the

experiment. So the prior probability is connected to the degree of credibility

of the event, chosen in a subjective way. The Bayes theorem allows, using the

observed frequencies , to ”adjust” the prior probability, calculate the posterior

probability. Thus, through this approach, a prior estimate of the degree of

credibility of a given hypothesis is used before observing the data, in order to

assign a numerical value to the degree of credibility of that same hypothesis af-

ter observing the data. Being based on prior information, it is not an absolute

probability but always conditioned (on prior knowledge).In the frequentist ap-

proach you calculate how many times the observation falls in a certain interval

, instead in the Bayesian approach you choose directly a probability of truth
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for the interval. In Bayesian terms, there is no distinction regarding the origin

of uncertainty, i.e., between statistical uncertainty (due to the finite precision

of the measurement instrument) and systematic uncertainty (related to deter-

ministic effects that are only partially known, such as calibration effects). In

both cases, the issues are related to a lack of information, and the random na-

ture of statistical uncertainty is simply due to the unknown exact conditions

of the system.Bayesian statistics only considers the data actually observed,

whereas in the frequentist approach, assumptions must be made about the

distribution of possible unobserved data.

So in Bayesian analysis probabilities do not represent the frequency of specific

outcomes after repeated observation or experiment. Instead they represent the

confidence in that outcome being an accurate model of reality. This is a subtle

difference and in many application it doesn’t matter in which way you see

probability. For example if you consider the flipping of a fair coin , you know

that there is a 50% chance of landing heads up, and it doesn’t matter whether

you chose for a frequentist observation or a Bayesian interpretation. However

if we are considering life detection, if we claim that there is a 50% probability

a planet hosts alien life, we are not saying that out of many observations

of that planet half of the time it has no life- instead we are quantifying our

uncertainty about a presumably objective, observational feature of that planet.

That’s why the Bayesian approach to probability is the most suitable for the

application to biosignature studies.

3.1.2 General properties of probability

let’s recall the basic axioms of probability theory as formulated by Kolmogorov in

the XX century. If we calls S the space of events, so the set of all the possible

results in the experiment, and we consider an event A , so a subset of the set S,

A ⊆ S. The probability PA associated with A is a real number that has the following

characteristics:

1. PS = 1

2. PA ≥ 0,∀A

3. P (A ∪B) = P (A) + P (B) for every B such that A ∩B = ∅
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From these axioms, it is possible to demonstrate that P (¬A) = 1 − P (A), where

¬A is the complement of A. Additionally, P (B) ≤ P (A) if B ⊆ A and P (A∪B) =

P (A) + P (B)− P (A ∩B).

These are the axioms of probability but they don’t say anything about how it

should be interpreted. The conditional probability P (A|B) , which is the probability

of A given B , is given by:

P (A|B) =
P (A ∩B)

P (B)
(3.1)

Two subsets A and B are independent if P (A ∩ B) = P (A)P (B). P (A,B) =

P (A∩B) is called joint probabilities , instead P (A∪B) is called disjoint probability.

It can be demonstrated that
∑

B P (A,B) = P (A) where here P (A) is called marginal

probability.

3.1.3 What is the Bayesian approach to probabil-

ity theory

The Bayesian approach to probability theory allows us to make inferences from the

data using Bayes’ theorem and formula. The Oxford Dictionary of Statistics (2014)

describes it as: “an approach concerned with the consequences of modifying our

previous beliefs as a result of receiving new data.” Bayes’ theorem states that the

posterior conditional probability of A given B can be written as:

P (A|B) =
P (B|A)P (A)

P (B)
(3.2)

where:

• P (B|A) is called the likelihood

• P (A), P (B) are called the prior probabilities

Let’s see an easy derivation of this expression.The formula to calculate a condi-

tional probability is:

P (A|B) =
P (A ∩B)

P (B)
(3.3)

Thus, we have:

P (A ∩B) = P (A|B) · P (B) (3.4)
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Similarly, for the reverse conditional probability, we have:

P (B|A) = P (B ∩ A)

P (A)
(3.5)

And therefore:

P (B ∩ A) = P (B|A) · P (A) (3.6)

From the equations above, we can write:

P (B|A) · P (A) = P (A|B) · P (B) (3.7)

By dividing both sides by P (B), we obtain Bayes’ theorem:

P (A|B) =
P (B|A) · P (A)

P (B)
(3.8)

As noted in [74], there are essentially two ways of thinking about Bayes’ theorem:

• It describes the relationship between P (A|B) and P (B|A)

• It describes how a subjective degree of belief should rationally change consid-

ering the evidence

It is possible to use Bayes’ theorem every time we have a conditional probability

P (A|B) but we are asked to find the inverse, so P (B|A). The theorem is helpful

because it is often easier to estimate one of these conditional probabilities instead

of the other, as outlinedi in [74].

The expanded version of Bayes’ theorem focuses on inference and has the form:

P (A|B) =
P (B|A) · P (A)

P (B|A) · P (A) + P (B|¬A) · P (¬A)
(3.9)

Where:

• P (A|B) is the probability of A given B

• P (B|A) is the probability of B given A

• P (A) is the probability of A

• P (¬A) is the probability of not A
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• P (B|¬A) is the probability of B given not A

and it is the one that we will use in the model. The denominator is still the sum of

two joint probabilities that equals the marginal probability P (B). Bayesian inference

can be defined as: “The use of Bayes’ Theorem to draw conclusions about a set of

mutually exclusive, exhaustive, alternative hypotheses by linking prior knowledge

about each hypothesis with new data. The result is updated probabilities for each

hypothesis of interest.”

As pointed out in [74], Bayes’ greatest insight was that when we use Bayes’

theorem in this way, the equation itself can be used to draw inferences regarding

competing hypotheses and thus is directly tied to the scientific method.

Figure 3.1: Schematising the scientific method, Bayesian inference begins with the
notion of multiple hypotheses, taken from [74].

Regarding Figure 3.1, we can say that the hypotheses has to do with the prior

probabilities, the consequences box has to do with the likelihood. Regarding the

likelihood, the definition given in [74] is: ”likelihood involves the collection of data,

and we look retrospectively at the probability of collecting those data.” In fact,

likelihood can be seen as another way of saying probability. There is a subtle dif-

ference in the way the word is used in statistics: here the likelihood describes the

probability of observing data that have already been acquired. The likelihood and

the probability can also be differentiated in this way: likelihood is the hypothetical

probability that an event that has already happened will give us a specific outcome.
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Probability instead has to do with future events, the likelihood instead refers to past

events with known results.

In Bayesian analysis, the sum of the prior probabilities around the hypothesis,

as the sum of the posterior probabilities on the hypothesis, must be 1. This is in

general not true for the likelihoods of observing the data under every hypothesis.

In the frequentist notion of Bayes’ theorem, priors are only the marginal prob-

abilities. But in Bayesian inference, priors represent a prior probability that every

alternative hypothesis is correct, where a priori means: ”before collecting data”. It

is not possible to do a Bayesian analysis without using a priori distribution, and also

it is necessary to take data to estimate the likelihood of the data itself, considering

the hypothesis true.

The problem that arises when considering a flat distribution for P (Hi), which is

what is done in the frequentist approach, is that in this case P (H|E) is proportional

to P (E|H) which is not true in Bayesian statistics.

All the significance testing in the frequentist approach is based only on P (E|H),

which is the likelihood of observing the data, given that the hypothesis is true.

One of the hardest things to do in Bayesian analysis is the estimation of the

prior. This can be differentiated between non-informative prior and informative

prior. The first is a distribution that adds almost no information to the Bayesian

inference. If we choose to use a non-informative prior it is because our goal is

to obtain a posterior distribution that is shaped primarily from the likelihood of

the data. When we do analysis based on the frequentist approach we are in fact

considering a flat distribution of the priors, where every hypothesis has the same

prior.

3.1.4 Bayesian approach applied to astrobiology

As outlined by [64]: ”Bayesian methods are founded on the explicit use of judgment,

expressed as prior beliefs , and provide a natural means of revising opinions in the

light of new evidence”. For this reason, Bayesian statistics can be very flexible. In

principle, it can be applied to every problem where we can calculate the likelihood

under every hypothesis. This is not always easy and can often lead to computations

that cannot be done analytically, but once it is done, we can apply this kind of

analysis. The Bayesian framework can help us make claims for the detection of
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life and estimate the prior probability of finding a certain biosignature. It permits

evaluating the probability of a hypothesis, like the presence of life, given a set of

observed data. The posterior probability quantifies the probability of a hypothesis

once the evidence has been taken into account. As previously stated, the definitions

of biosignatures are the following:

Author Definition

Thomas-Keprta et al. 2002 A physical and/or chemical marker of

life that does not occur through random,

stochastic interactions or through directed

human intervention

Des Marais et al., 2003, 2008 Object, substance and/or pattern whose ori-

gin specifically requires a biological agent

Catling et al. 2018 Any substance, group of substances, or phe-

nomenon that provides evidence of life

Pohorille and Sokolowska 2020 Chemical species, features, or processes that

provide evidence for the presence of life

Proposed Definition Any phenomenon, substance, or group

of substances A that provides a con-

ditional probability P (life | A) ≫
P (non-life | A)

Table 3.1: Different definitions of biosignature throughout the time

The problem with the first and second definition is that in most cases it is dif-

ficult, if not impossible, to rule out an abiotic origin when we talk about chemical

signatures. The problem with the third is that the word ”evidence” may suggest

that the probability of the biosignature being biogenic is 100%, which again is al-

most always impossible. The definition that I propose relies on on the quantitative

framework of the Bayesian statistics. Thus, the problem shifts to being able to

calculate the various terms of the Bayes inference formula, and so to calculate the

posterior probability. as we will see later in the chapter.

As pointed out in [54], a Bayesian claim of detection of life requires quantifying

the following:

• The likelihood of the signal arising due to living processes
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• The likelihood of the signal arising due to abiotic processes

• The prior probability of the living process

The terms used are conditional probabilities: the likelihood of observing an event

A, given another event B has already occurred, P (A|B).For example, on Earth, the

probability of phosphine arising by biotic production is much higher than by abiotic

origin: P (PH3|biotic) >> P (PH3|abiotic). The same can be said for O2, since

on Earth the likelihood of it arising due to life, P (O2|oxygenic photosynthesis) >>

P (O2|abiotic). Thanks to Bayes’ theorem, we can calculate the posterior probability

of life for a given set of observational data:

P (life|data) = P (data|life)P (life)

P (data)
(3.10)

where data refers to every observable indicative of life, for example: the statistics

from the planet surveys, the context of a particular planetary system, or the obser-

vation of the planet itself. So the conditional probability will be a function of the

system parameters: P (data|life) = f(M,ρ, o, c) and P (data|abiotic) = g(M,ρ, o, c)

are both functions of the planetary observables. The denominator of Eq. 2.1 is the

total likelihood of observing a given data set and can be expanded further with:

P (life|data) = P (data|life)P (life)

P (data|life)P (life) + P (data|no life)(1− P (life))
(3.11)

What we would like to know is P (life|data), the posterior probability of life, given

a set of observational data. But first we have to tightly constrain P (data|life), the
probability of the observational data given life is present, and P (data|no life), the

probability of the observations arising if life is not present. In addition, knowledge of

P (life), the prior probability of living processes, is required to assess the likelihood

of life, as outlined in [54]. One of the main positive aspects of the Bayesian approach

is that it permits separating the calculation of the prior probability of life, P (life),

from the likelihood of observational data if life is present P (data|life) or if life is

not present P (data|abiotic). So it allows us to quantify the detectability of life

from a specific type of data and provides a tool for identifying promising targets

in our search for life without necessarily knowing the prior probability of life itself,

which is currently unconstrained, as outlined in [54]. In the Bayesian framework,
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detectability can be quantified as:

D =
P (data|life)

P (data|abiotic) + P (data|noise)
(3.12)

In the limit of no experimental noise, we have:

Dnoise→0 =
P (data|life)

P (data|abiotic)
(3.13)

This equation gives us an operational definition of detectability, providing a guide

for our search for the best targets for observing life in terms of both what to look for

and where to look [54]. In other words, detectability provides a quantitative means

to answer the question: if we detect a candidate biosignature, can we be confident

life produced it? Detectability is distinct from habitability: a world might be hab-

itable but could host life that is not detectable. D > 1 is a quantitative threshold

for the definition of a detectable biosignature. A given signal may be a biosigna-

ture but not be evidence for life if D ≤ 1. To link observations to biosignatures,

the surface chemistry, atmospheric mass, temperature profile, outgassing rate, and

photochemistry of a planet must all be modeled, along with any putative biological

processes that could be occurring on its surface. The modeled atmospheres can then

be compared with observed spectral features, and the plausibility of the biogenicity

of the observations evaluated [54]. If no plausible abiotic model can reproduce the

atmospheric context for the gas at the same level of detection, but a model including

life processes can, then we could conclude that the gas is biogenic. In this case, we

should expect D >> 1.

Nevertheless it should always be applied the Bayesian model to calculate the pos-

terior probability and assign a threesold to assess th high confidence for biogenicity,

which I consider P > 0.95 but there is not a currenty universally acceppted value.

The hardest parameter to constrain is P (life). This is due to the fact that we

don’t have a theory for life’s origin, so we don’t know how to calculate this probability

yet. The studies [73] [83] that have tried to constrain P (life) in a Bayesian framework

, have concluded that P (life) could be close to 1 or 0 based on our current state of

knowledge, which means there are basically no constraints at all. As pointed out

by [54], the goal of the Bayesian framework is to answer the question: How can we

develop the most effective strategies for searching for life, faced with the challenge

that we have only trivial bounds on its prior occurrence? In the next section I will
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offer some answers that come from the strenght and limitation of the model. In table

3.2, we can see how the different term in the field of astrobiology can be quantified

in terms of the bayesian framework, where I’ve also added my proposal definition

for biosignature. Instead In 3.2 there are listed all the different aspects that have

an influence on the Bayesian parameters, as presented in [54].

Table 3.2: Exoplanet Biosignature terminology quantified in a Bayesian framework.
Adapted from [54]

Biosignature Any phenomenon, substance, or group of substances A that

provides a conditional probability:

P (life | A) ≫ P (non-life | A)

Detectability (D) Confidence in biological origins for an observed biosignature signal.

In the Bayesian framework, D = P (data|life)
P (data|abiotic) (in the absence of

noise).

Habitable Conditions suitable for life where the expectation of the prior prob-

ability of life is nonzero, P (life) > 0.

False positive Abiotic observations that mimic biologically produced observables,

occurring when P (data | abiotic) is large, such that D ≤ 1.

False negative Biosignatures that are not detectable,

occurring when P (data | life) is small, such that D ≤ 1, even in

cases where life may be present.

Antibiosignature An object, substance, and/or pattern that diminishes the likelihood

that the signal is generated by life,

such that P (data | life) is less than its absence. A given piece of con-

textual information C is an antibiosignature if P (data | life, C) <

P (data | life).

3.1.5 Statistical approaches to characterizing at-

mospheres of non-Earth like worlds

The statistical approaches that can be used to better constrain atmospheres of non-

Earth like worlds proposed by [54] are:

• The first approach eludes the need to either define the biosignature produced
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Figure 3.2: Summary of Observational, Theoretical, and Empirical Research Nec-
essary to Constrain Variables in a Bayesian Framework for Life Detection [54].

by life or the processes that produce them and has to do with searching for

any signal that is unexpected from an abiogical model of a planet. Looking at

equation 3.13 we can maximize detectability by either maximizing the numer-

ator, P (data|life) , or minimizing the denominator, P (data|abiotic). Even if

there is an extremely small probability that a signal is consistent with life,

we can still identify it as a biosignature if we can demonstrate there is yet a

smaller probability for the signal to be consistent with an abiotic origin.

• it is important however to develop strategies to avoid Earth-centric approach

if we are to determine P (data|abiotic) and P (data|life) for many words that

are not considered Eart-like.The approach should follow [43], which focused

on identifying volatile molecules as atmospheric signatures and determining all

gases that can stably accumulate in any atmosphere. A size limit was set for

molecules with no more than six non-hydrogen atoms stable in the presence of

water. The project’s goals are to create a database for biosignature research

and to explore potential molecules for probing biochemical ”laws” in other

worlds. Major challenges include a lack of kinetic and thermodynamic data,

solubility in water, and atmospheric reaction chemistry for many biosignature

molecules. Additionally, measuring kinetic data for gas reactions at various
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temperatures and pressures is complex and time-consuming, but not often

rewarded with high-profile publications. As noted by [54], future research

should focus on new technologies to expedite the measurement of gas kinetics

and thermodynamics, making data collection more efficient and less time-

consuming.

3.1.6 P (data|abiotic)
Constraining P (data|abiotic) , means studying all the possible false positives, and

involves enhancing our understanding of lifeless worlds and their observational char-

acteristics. But Merely observing planets outside the habitable zone is not enough

to ensure the absence of life since those planets might still harbor life and not ac-

curately represent those within the habitable zone. This is evident in the contrasts

between present-day Earth and Venus. Our current knowledge about likely uninhab-

ited worlds is undoubtedly incomplete. Additionally, it is crucial to recognize that

planets within the habitable zone that do not exhibit obvious biosignatures could

still be inhabited. The early Earth in fact possessed a photosynthetically active

biosphere , but the biosignatures were challenging to detect. To better constrain

P (data|abiotic) it will be important to develops strategy and models to study and

constrain observational signatures of planets without life. This could be done in

the future by a combination of detailed understanding of abiotic processes , and

observational surveys that constrain with care likely uninhabited worlds for obser-

vation to constrain P (data|abiotic). As outlined in [54]: ”By better constraining

the observables of strictly abiotic planets, it will become easier to disentangle true-

positives biosignatures from false-positive biosignatures and to understand cases

where life might be present, but not detectable”. Many aspects have an effect

on P (data|abiotic), like stellar environment, climate and geochemistry. a detailed

treatment can be found in [54].

As correctly outlined by [45], the history of life detection is a history of false

positives. Given the high number of false positive explanation for current most used

biosignatures, there is a common assumption that biosignatures with false positives

are unavoidable. This problem also arises from the fact that we don’t have a theory

of life that is able to quantify rigorously and separate life from non life. Even if

biological matter follows the same physical and chemical rules of abiotic matter ,
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nevertheless it has great differences and if it is so ,and this differences are objectives

there must be a method to measure them [45]. If they are not objective, we cannot

expect to ever detect life, as the distinction between life and non-life would not be

a naturally defined category. This pushes us to study them but also to focus our

attention to the signature that have no false positives, like technosignatures.As we

will see later this is also suggested by the analysis of the Bayesian approach.

Assembly theory is an example of a theoretical framework that tries to quantify

the difference between abiotic and biotic matter [49].

The Assembly index (AI) gives the number of operations needed to construct

a molecular graph, representing the minimum steps required to create a molecular

structure. This index captures the molecule’s specificity within the set of all possible

alternatives. The core assertion of the theory is that complex, multi-step assembled

objects cannot arise without life, which means that they will not be created in

significant quantities through abiotic processes.

The theory has been empirically validated: molecules with a high assembly in-

dex in detectable quantities have only been observed in living systems. Therefore ,

finding such molecules on another planet would serve as strong biosignature, which

lacks of false positives. What assembly thoery suggests is that , while abiotic pro-

cesses can create molecules , they cannot replicate identical , non-trivial structures

without the information processing found in living organisms.

Most importantly , this biosignature can be tested experimentally on Earth,

without the need to simulate an entire planetary environment or biosphere, so it is

a falsisiable theory.

Life detection based on molecular assembly avoids false positives associated with

traditional biosignatures. It directly detects phenomena dependent on an evolu-

tionary process , making the probability P (life|obs), certain. Unlike biosignatures,

which need environmental context for validation , molecular assembly detection only

requires confirmation of the signal, offering direct insights into the underlying evo-

lutionary process and life itself.

The assembly index is defined as ”the total amount of selection necessary to

produce an ensemble of observed objects” . With NT total objects in the ensemble,

N of which are unique , the assembly index is defined as:
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A =
N∑
i=1

exp(ai) ·
(
ni − 1

Nt

)
(3.14)

where ni denotes the copy number , the number of objects of type i = (1, 2, ...., N)

having assembly index ai.

3.1.7 P (data|life)
To constrain P (data|life) , we have to acquire knowledge about the biotic processes

that could generate a signal.

As suggested by [48],to study the biosignatures on another planet , it can be

used a black box approach , where nothing need to be assumed about the internal

workings of life on a planet, it consumes some gases and emits others. So it can be

done a classification based on this approach. The biosignatures are then classified

by the process that has produced them, with the idea to use this as a guide to view

those processes each as a ”black box” of unknown mechanism. This classification

scheme considers the potential inputs and outputs of the system that could provide

energy and mass to the system. Potential biosignature waste products are considered

as the output from processes that:

1. capture chemical energy

2. capture biomass

3. other processes

The type classification of [48] provide four classification types for biosignatures,

as described in table 3.3.
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Type Classification by [48]

Type Description

Type I: Energy

Capture

Energy capture by life can occur through exploiting chemical gra-

dients and harvesting light, producing biogenic molecules like gases

and pigments. Examples include methane from methanogenesis

and CO2 from respiration. Predicting type I biosignature gases

requires understanding the chemical environment of life, with am-

monia being a potential biosignature on hydrogen-rich planets. The

challenge is accounting for Earth’s diverse chemical environments,

where methane can be both an oxidized and reduced waste prod-

uct. Future research should focus on understanding the diversity of

environments and their impact on biosignature detection, as high-

lighted by [48]

Type II:

Biomass Cap-

ture

On planet-sized bodies with thin atmospheres, carbon is likely

mostly oxidized (CO2) or reduced (CH4), the thermodynamic min-

ima. Life converts this carbon into intermediate redox states to

build complex molecules, needing to oxidize or reduce environmen-

tal materials. This process can be modeled to predict biosigna-

ture outputs, informing P (data|life). Photosynthesis exemplifies

this, with CO2, H2O, and light input producing biomass and O2,

Earth’s most notable biosignature. This ”organism-level black box”

approach helps suggest inputs and outputs for biomass capture be-

fore understanding the internal mechanisms.

Type III: Other

Uses

The production of type III gases is a result of the ecological or

physiological demands on the organism, themselves the result of

evolutionary contingencies and of relationships with other organ-

isms: data that are not accessible for exoplanets. As a result, in

principle we might consider any chemical to be a type III biosigna-

ture.

Type IV: Prod-

ucts of Modifica-

tion of Gases

Gases produced by life can be modified by the environment, pro-

viding a source of secondary signatures of life. Examples include

ozone (the photolytic product of oxygen) and dimethyl sulfoxide

(the oxidation product of dimethyl sulfide—DMS). These could in

principle be predicted if the environment and products of life are

known, for example, for types I and II biosignature gases, but will

not be predictable for type III biosignature gases.

Table 3.3: Type Classification by [48]
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Another ”black box” approach focuses on the complexity of life’s chemical prod-

ucts rather than classifying the processes by which they are produced. The ability

to produce similar , complex or non-random structures in large quintities could be

exploited as a key observable that distinguishes living organisms from inanimate

matter. In fact , the distribution of molecules from abiotic sources differs signifi-

cantly from biotic ones, exhibiting a smooth curve, as shown in 3.3. A biosignature

could be the entropy of a molecular distribution , where such a distributions are

highly improbable to form abiotically. The challenge with this methd lies in defin-

ing a minimun threshold of complexity, beyond which we can confidently assert that

P (data|life) > P (data|abiotic) for a given molecule.

Assembly theory , as we have seen provides a useful framework that can help to

quantify that threshold through the use of assembly index.

Figure 3.3: Schematic illustrating the difference between abiotic (smooth curve)
and biological (spikes) distributions of organic molecules. Nonliving systems tend
to produce smooth thermodynamic distributions, whereas in living processes, only
a subset of molecule species are selected (through natural selection) to form a func-
tional set, from [54]

3.1.8 P(life)

The final term to constrain to being able to calculate the posterior likelihood of life

(apart from knowledge of experimental noise) is the prior probability for life to exist,

P(life). As we have seen previously it is the most challenging term to quantify.It is
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not sufficient to simply assign a probability that life as we know it exists on another

world(which is unknown) ,instead P(life) should be considered as decomposed into

a family of conditional probabilities for the existence of different living processes on

other worlds, which may be similar or dissimilar to those on Earth, as pointed out

in [54].

The prior probability of any living process ultimately depends on p(emerge),

the probability that life originated in a given environment. Our ability to constrain

P (life) relies on how accurately we can estimate the probabilities of the candidate

living processes that may have produced the signal, along with their evolutionary

history, and the origins of life in that specific planetary context.

As we have seen, in the works of [73] and [83] they have tried to constrain

P (emerge) with the conclusion that it can be arbitrarily close to 1 or 0, so it is

currently unconstrained. The problem is that right now there are no theoretical

framework from which to calculate it. We don’t have a definition of life nor a theory

of emergence for life. Even if for now it is very hard to calculate P(life) a priori,

there are situations where we can estimate that P(life) is very low. Since we think

that the emergence and evolution of life requires time, knowing the age of the star

can tell us where P(life) might be too low to detect it [54].

As pointed out by [45], there are three sources of new data that could help to

constrain P (life):

1. New evidence of life earlier in Earth’s history

2. New knowledge of the emergence of life from experiments in the lab

3. Detection of another biosphere

the third data accumulation means to do large scale surveys of Earth-like exo-

planets in a search for biosphere. In [16] they have demonstrated how this surveys

will provide the data most likely to change the shape of the mean of the probability

distribution for the likelihood of abiogenesis per unit time, at least on Earth-like

planets. This data could be useful in constraining the likelihood of the origin of

life even if none of the planets surveyed had detectable biospheres. This strategy

however presents a problem , as outlined by [45]; since in the coming years , our

ability to gather data from exoplanets will be limited by technological challenges

and the lack of clear theories about life. These limitations may prevent us from
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accurately interpreting the data, leading to only weak constraints on the probability

of life, even considering missions like JWST , LUVOIR, HABex.

Apart from this, [45] has identified some of the aspects that the lab experiments

that study the emergence of life should focus on answering and that can help to

constrain P (life):

1. Understand the timescales for the emergence of life in different chemical con-

texts.

2. Understanding the relationship between chemical initial conditions and the

observable features of the biochemistry , or the lack of.

3. Understand if we can trade time for space (volume of chemical experiments)

in solving the origin of life, or if indeed there is a contingent set of steps , each

of finite duration necessary for life to emerge ( in which case we cannot trade

time for space)

One of the most recent work that has focused on rigorous estimates of the pa-

rameter plife is [69]. Using a Bayesian framework, they showed that, by considering

the fact that life has appeared on Earth, it is possible to place lower bounds (at

a given confidence level) on the potential value of plife. They also demonstrated

that these bounds crucially depend on both the prior presuppositions concerning

the probability of abiogenesis and the independent expectation about the number

of habitable worlds.

The parameter plife is strictly tied to the parameter NH , which represents the

number of habitable planets. According to conservative estimates, the number of

planets in the Milky Way N is at least of the same order of magnitude as the number

of stars [12], with N = 1011. The number NH of habitable planets is, however, much

more difficult to assess. Estimates have ranged from merely a few in models inspired

by the ”Rare Earth” hypothesis [87] to the upper limit where NH = N [86]. Due

to the lack of knowledge regarding what makes a planet habitable, we can treat NH

as a free parameter, as pointed out by [69]. Since the expected number of inhabited

planets is NL = plifeNH , the absence of confirmed estimates of plife translates into the

impossibility of calculating this number, even assuming that NH is well constrained.

As discussed in detail in [69], we cannot rely on the so-called principle of mediocrity

to help us constrain the value of plife, which is the assumption that our situation is
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not privileged or special, and that it can be considered a random sample drawn from

some suitable set. This assumption, in fact, has many limitations and/or flaws.

Finally in [69] using the Bayesian framework they investigate how the number of

habitable worlds (NH) in the Milky Way , as well as crucial assumptions concerning

the prior likelihood , regulate the bounds that can be placed on the probability of

abiogenesis. The expected number of inhabited planets is expressed as NL = plNH

,where pl stands between 0 and 1. The equation used to calculate P (pl|E) where E

is the evidence that at least life has appeared on Earth is:

P (pl | E) =
P (E | pl) · P (pl)∫
P (E | pl) · P (pl) dpl

(3.15)

where P (pl) is the prior probability of pl, which is unknown. So the team has

adopted three different priors:

• the prior P(pl) constant , that is uniform in pl , this choice represent an

optimistic or deterministic scenario for abiogenesis

• The prior P(pl) =
1

(pl)2
which is uniform in (pl)

−1 and accords more weight to

values pl close to 0, so it corresponds to a pessimistic scenario for the origin

of life.

• Log uniform prior P (pl) =
1
pl

gives equal weight to all orders of magnitude of

pl and may consequently be considered neither optimistic nor pessimistic; this

prior is usually called uninformative.

The lower bounds they have obtained are listed in 3.4. The findings of the study

conclude the following:

• Varying NH ostensibly has a minimal effect on NL for both the optimist and

pessimist; the lower bound for pl is mostly independent of NH , as seen in 3.4.

• Varying NH does indeed exert some influence on the agnostic, but it roughly

goes in the opposite direction with respect to the naive surmise that large

values of NH are tantamount to a higher likelihood of extraterrestrial life.

More precisely, as indicated by 3.4, increasing NH makes a smaller value of pl

more compatible, but it does not directly shed light on the frequency of life

elsewhere.
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• However, it is extremely important to quantify NH , since the parameter mod-

ulates the plausible lower bound on pl. If future studies are able to constrain

NH , it will be possible to take advantage of a Bayesian approach.

• On account of the approximate inverse correlation between NH and the lower

bound for pL evinced by Table 1, it is conceivable that ’Rare Earth’ hypotheses

might favor the emergence of life on habitable worlds. The reason is that such

hypotheses suggest that truly habitable worlds (akin to Earth) are rare because

a number of criteria (e.g., large moon) must be met. A low value of NH would,

in turn, be compatible with an enhanced lower bound for pL.

From this it this possible to understand that the prior has a central role and

has the ability to cancel the evidence in certain cases. So the paper highlights that

until rigorous theory of living systems and the prior probability distribution P (pl)

is available , we will not be able to accurately judge the frequency of abiogenesis

and the number of inhabited worlds in the universe.

Figure 3.4: Lower bound on the probability of abiogenesis (pL) at 95 per cent
confidence level, assuming the cut-off pL,min = 10−15. The first row corresponds
to the bounds derived from the optimistic, uninformative, and pessimistic priors,
whereas the remaining rows show the bounds for the posteriors, where the evidence
that life exists on Earth is taken into account. The bounds are a function of the
number of habitable worlds (NH) in the Milky Way. Taken from [69]

).

3.1.9 Bayesian framework example: building a toy

model for phosphine detection

To begin with , I try to replicate the results of [54]. The parameter he uses are

completely arbitrary so I take PH3 as an example from the beginning. Since PH3

has been very well characterized recently [82], and seems to be one of the best

biosignatures, due to the fact that in many circumstance it lacks of the false positives
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and it has some very strong features. The model that I will apply is meant to be

conceptual, since the likelihoods and priors are not known. It used the Bayesian

inference framework in order to asses the posterior probability of biogenity for a given

gaseous biosignature, and allows to add contextual information to better constrain

it.

As we have seen the posterior probability of life given a set of observational data

is given by:

P (life|PH3) =
[P (PH3|life) + P (PH3|error)]P (life)

[P (PH3|life) + P (PH3|error)]P (life) + [P (PH3|no life) + P (PH3|error)]P (no life)
(3.16)

P(PH3, error) is the likelihood of failure in our detection apparatus and captures

the possibility of falsely detecting a positive signal of PH3 , when there is no PH3

present, or could correspond to failure to detect PH3 when it is present, and it

will be considered in the next section. The goal of the method is to determine

P (life|PH3). We have to assume a reasonable value for P (PH3|life), which can be

the fraction of Earth life for which it had detectable PH3 in the atmosphere. That

will be the fraction of planets with life that have detectable PH3. Then we have

to assume a value for P (PH3|no life), the fraction of planets without life that will

have detectable PH3 in the atmosphere. We want P (PH3|error) = e, which is the

measurement error to be small. As we have seen, the prior probability of life can

be considered unconstrained. So it is uniformly distributed between 0 and 1 with a

value given by P (life) = pl . As done by [54], I assume e = 0 to start, and then I vary

the parameter in the next chapter when i expand the model. As in [54], I assume

that our measurements are Bernoulli distributed, the number of positive results will

follow a Binomial distribution, with probability mass function:

P (data = X) =

(
n

x

)
px(1− p)n−x (3.17)

where x is our measurement (the number of planets with confirmed PH3), n is

the number of planets we have taken measurements (the same as x in this example

since we assume every observation yields a positive result for simplicity), p is the

probability of positive measurement.

The first plot, Figure 3.5 simply shows that P (life|PH3) increases with the in-

crease of P (life).
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Figure 3.5: Posterior probability of life against prior probability P (life) with no
additional context, here the posterior probability simply increases with P (life).

htbp

Figure 3.6: Posterior probability of life for different values of P (molecule|nolife)
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In Figure 3.6 we can see how our posterior probability of life changes , assuming

one transit measurement, for different values of P (PH3|nolife). Even in cases where

the signal is unlikely to be produced abiotically , where P (PH3|abiotic) = 0.001, so

a 0.1% probability for an uninhabited world to have detectable levels of atmospheric

PH3, if life is not common , P (life) , our posterior probability for life will not be

”very likely inhabited” . which means that the value is < 0.95. In this case there is

the need for more data.

Then I consider a Bernoulli distributed probability and use the parameter in

table 3.4 , to make the plot of figure 3.7, just as in [54].The number here are chosen

arbitrarily just to show the trends.

P (life) P (no life) P (PH3|life) P (PH3|no life) P (PH3|error)
pl 1− pl 0.1 0.2 e

Table 3.4: First parameters for the model with no additional contextual informa-
tion, plot shown in Figure 2.7

Figure 3.7: Posterior probability of life as a function of repeated independent
observations of PH3. The number of observations is discrete; continuous curves are
shown here to better illustrate trends. Model parameters are from Table 2.1 (with
e = 0), using Eq. 2.16 for the measurement distribution as described in the text.
Shown are cases for varying assumptions about the prior probability of life P (life).

Since P (PH3|no life) > P (PH3|life) in this case, increasing our number of in-

dependent measurements decreases our confidence in detection of life, due to the

false positives, as we can see from Figure 3.7. That’s because nonliving processes

are more likely to produce the same signal. Any biosignature that is more likely
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to be produced abiotically than biotically will hardly be used to detect life without

additional context.

In the Bayesian framework, it is possible to add contextual information. The

formula in this case becomes:

P (life|PH3) =

n∑
i=1

P (PH3|life, Ci)P (life, Ci)

P (PH3|life, Ci)P (life, Ci) + P (PH3|no life, Ci)P (no life, Ci)
(3.18)

The Bayesian framework allows us to quantify when and how context can permit

distinguishing between the hypotheses of biogenic or abiotic sources.In the next

section I will choose different contextual information for Phosphine.

3.2 Expanding the model

To start let’s try to change the parameter in table 3.2 to see how the posterior

probability of life changes with P(life). If we have P (molecule|life) equal to the

probability of false positive P (molecule|nonlife) this will result in a slightly faster

growth of P (life|molecule) which happens to be linear as we can see in figure 3.6.

In this case i choose a value of 0.1.

Figure 3.8: Posterior probability of life against prior probability P (life) with no
additional context, where now P (molecule|life) = P (molecule|nolife) = 1 , we can
see that now P (life) increases linearly with P (life).

If now instead we consider the case in which the value of P (molecule|life) is

bigger than P (molecule|nolife) , choosing for example 0.2 for the former and 0.1
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for the latter we obtain a trend that approaches the logarithmic one,as we can see

from figure 3.9.

Figure 3.9: Posterior probability of life against prior probability P (life) with no
additional context, where now P (molecule|life) > P (molecule|nolife) , we can see
that now P (life) increases logarithmically with P (life).

In both these cases , we reach an high posterior probability only for a very high

prior.

As we have previously seen in paragr. 3.1.5, one strategy could be to better

constrain all the possible abiotical sources of a molecule , in order to have a very

small parameter P (molecule|nolife). In this case we can have a great increase in

the posterior probability even if P (molecule|life) is low. If we take for example

P (molecule|life) = 0.05 and P (molecule|nonlife) = 0.001, which means that only

1 in 1000 exoplanets will give us a false positive, the posterior probability of life has

a much steeper trend as shown in figure 3.10, and is over 0.9 from a prior probability

of life of 0.149 .

Now let’s try again to use the equation 3.18 and a bernoulli distribution for the

likelihood as done in 3.7 and see what happens when we change the parameters.If we

try to see the opposite case in respect to 3.4 , where now we consider P (PH3|life) =
0.2 and P (PH3|nolife) = 0.1 , so now the likelihood of the presence of life is twice

the likelihood of false positive, we can see from 3.11 that the curve all converge

towards 1 while approaching observation number 10. if we take P (PH3|life) = 0.15

and P (PH3|nolife) = 0.1 now we can see from fig 3.12 that all the curves except for

P (life) = 0.1 are over 0.9, which means that even with a low prior probability of life
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Figure 3.10: Posterior probability of life against prior probability P (life) with no
additional context, where now P (molecule|life) = 0.05andP (molecule|nolife) =
0.001 ,

we can have an high posterior in this case. If now we consider P (PH3|life) = 0.11

and P (PH3|nolife) = 0.1 we can see from figure 3.13 that only the curve with

a value of P (life) = 0.9 and 1 are over 0.95 , which can be consider as The

threshold beyond which the presence of life can be considered plausible given the

observation of the biomarker. Even if it could be very difficult for a biomarker

to have P (PH3|life) > P (PH3|nolife) due to the presence of the always possible

unknowns false positives, these cases show that constraining the false positives of a

biomarker and/or focusing on developing a theoretical framework that can help us

to look for biosignature that lack of false positive should be the optimal strategy for

life detection missions.

The situation changes when we consider more observations. As we can see from

3.14 the curves converge to 1 after 70 observation , even in the case of a low prior.

This suggests that even with a very pessimistic prior, repeated observations can lead

to results that might indicate an high probability of the presence of life.
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Figure 3.11: Posterior probability of life considering a binomial distribution ,
where now P (PH3|life) = 0.2andP (PH3|nolife) = 0.1.

Figure 3.12: Posterior probability of life considering a binomial distribution ,
where now P (PH3|life) = 0.15 and P (PH3|nolife) = 0.1.
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Figure 3.13: Posterior probability of life considering a binomial distribution ,
where now P (PH3|life) = 0.11 and P (PH3|nolife) = 0.1.

Figure 3.14: Posterior probability of life considering a binomial distribution ,
where now P (PH3|life) = 0.11 and P (PH3|nolife) = 0.1 but now we consider 100
observations.

Again all these graph show how the combination of eliminating possible false

positives during biomarker discovery , or selecting a biomarker without false positives

, along with a large number of observations that build large statistical samples , can

lead to obtaining posterior probabilities of high confidence detection.
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3.2.1 Application to Phosphine case

The goal of this section is to analyze the currents abiotically favored productions of

phosphine in Earthly exoplanets to propose the contextual information that can be

used to apply the Bayesian model. As we have seen in [82] , different possible false

positives are considered for phosphine, which are:

1. Phospine and Phosphate disproportion

2. Lightning

3. Volcanism

4. Exogenous delivery

For what concerns Phosphite and phosphate disproportionation [82] concludes

that the formation of PH3 is thermodynamically disfavored , and that the forma-

tion is unlikely in the absence of a biological catalyst. Nevertheless Phosphine can

disproportionate to phosphine at T > 323K and acidic pH , raising the possibility

that ”black smoker” Hydrothermal system (T <= 678K pH = 2 − 3) might gen-

erate phosphine [82]. Such systems do not dominate volcanic emission on Earth

, leading them to propose they would be a negligible contributor on Earth analog

worlds.On the other hand, if a world had global, hot, acidic oceans (e.g., due to

very high pCO2), then the theoretical possibility of abiotic phosphine production

exists, though likely only in the presence of high H2 concentrations, very low pH and

within a very hot temperature band [82], Given that these oceans would be unlikely

to have pH values below 4 (carbonic acid has a pH of 3.6) and PH3 formation is

only favored at pHs closer to 2. From [82] this scenario is considered possible but

implausible.So it has to be considered in the model.

For what concerns lightning there are no current kinetically favored reactions

that would promote the conversion of the thermodynamically favored phosphate to

PH3 [82]. So this source can be neglected in the model.

For volcanism ,the team [82] has estimated the maximum production of PH3 by

volcanoes in any planetary scenario; even H2 rich atmospheres , is at least seven

orders of magnitude lower than the surface fluxes required for detection.

For what concerns exogenous delivery , so the possibility of meteoric delivery

as a source of reduces phosphorus species, is also considered negligible from the
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calculation of [82].This calculations are in agreement with previous estimations of

the phosphine production through meteoric delivery , which were also found to be

negligible [66].

Now let’s try to build a model where we apply the contextual information to

inference the presence of life given the observation of phosphine. Firstly , since we

don’t know how life can be possible without the presence of water , let’s consider

the observation of the presence/absence of it as a contextual information. Secondly

let’s consider the possibility of presence/absence of hot acid oceans (HAO) that ,

as we have seen ,could produce abiotically generated phospine. The parameter of

the models are listed in 3.5 and 3.6. The results can be seen in figure 3.15. But we

can see that, since we have a case where P (molecule | life) > P (molecule | non-life),
we obtain slightly increasing results, where, however, only with P (life) = 0.9 do we

reach a posterior probability value higher than 0.95.As we can see from 3.16, the

results stabilise after 10 observations.

Ci P (life, Ci) P (nolife, Ci)

H2O, HAO 0.495 1−pl
4

no H2O, HAO 0.495 1−pl
4

H2O, no HAO 0.495 1−pl
4

no H2O, no HAO 0.495 1−pl
4

Table 3.5: Model parameter, where now contextual information is added.

Ci P (PH3|life, Ci) P (PH3|nolife, Ci)
H2O, HAO 0.01 0.09

no H2O, HAO 0 0.05
H2O, no HAO 0.09 0.01

no H2O, no HAO 0 0.05

Table 3.6: Model parameter, where now contextual information is added.

As outlined by [82] , detection of contextual observables that discriminate be-

tween true and false positives will further constrain the posterior probability of

life. cases where a given piece of contextual information significantly increases de-

tectability should inform prioritized measurements for future missions. And also

any constrain on P (life) that comes from biology or from statistical analysis of

exoplanets data sets can be crucial to narrow the space of probabilities. Knowledge

about what environments cannot make life emerge or where it can be sustained is

just as important as knowledge about where it can be.
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Figure 3.15: Posterior probability distribution where now contextual information
is added.

H

Figure 3.16: Posterior probability distribution where now contextual information
is added. Where now we considered 30 observations, we can see that the curves
stabilise after 10 observations.
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This example shows how the knowledge about contextual information added

in the Bayesian model can help us to have situations where P (molecule|life) >

P (molecule|NL) and so to have an high confidence detection given by the high

posterior probability.

3.2.2 Quantifying the error

As we have seen in the previous section , in equation 3.16 , to use a complete

model we have to consider and quantify the parameter P (PH3|error) which is the

likelihood of failure in our detection apparatus and captures the possibility of falsely

detecting a positive signal of PH3 , when there is no PH3 present, or could correspond

to failure to detect PH3 when it is present. in this section we will see the trend of the

plot first considering it as a free parameter and then we will try to see what happens

when we try to constrain the value considering the results in [24]. One of the main

problem that raised when considering the results of ALMA and JCMT is that there

could be a possible contamination by sulphure dioxide SO2, and the team calculated

that there was a 10% and 2% contamination respectively for JCMT and ALMA

observation. This values can be taken for the error when considering the likelihood

of failure that captures the possibility of falsely detecting a positive signal of PH3

when there is no PH3. If instead we want to consider the standard deviation σ as

as the likelihood of failure , in both cases there is a very robust result: for JCMT

and ALMA they claim a 15σ confidence interval [24] , which means that the error

probability associated with the result is of the order of 10−51 which is negligible.

To see how the likelihood of error influences the posterior probability i performed

the computation varying the parameters. The results can be seen in 3.17, 3.18,

3.19. As we can see from 3.17 , the situation in very similar with 3.7, that has

the same values for the parameter but lacks of the error term. So again, since we

have P (molecule|life) << P (molecule|nonlife) the posterior probability decreases

rapidly with increasing observations and the likelihood of error doesn’t change much

the results.

In 3.18 and 3.19, the fact that the plots with different values of likelihood error

shows almost overlapping curves indicates that the likelihood error parameter has

little influence on the final result, and this in consistent with the sensitivity analysis

performed later in the text.
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Figure 3.17: Posterior probability of life , with P (PH3|error) = 0.2 for different
values of the prior.

H

Figure 3.18: Posterior probability of life , with different values for P (PH3|error)
and P (life) = 0.9
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Figure 3.19: Posterior probability of life , with different values for P (PH3|error)
and P (life) = 0.9

3.3 Sensitivity analysis

The aim of sensitivity analysis in general is to determine how sensitive the output of

a model is, with respect to the elements of the model which are subject to uncertainty

or variability. As outlined by [75] , this is useful as a guiding tool when the model

is under development as well as to understand model behaviour when it is used

for prediction or for decision support. In [64] It has been performed an sensitivity

analysis on the bayesian model in order to provide a first quantitative framework that

evaluates the uncertainty of in situ biogenic assessments using recursive Bayesian

statistics. Their results show that detecting more than seven potential biosignatures

does not increase the reliability of biogenic assessments unless the probability of

detection of biosignatures in the sample and the probability of the biosignature being

false positive are well constrained. So their work focus on the need for quantitative

support of biogenic assessments and astrobiology strategies in general. Even if their

analyses is applied to in situ biogenic assessment , the model can be modified to

apply the same to the biogenic assessment for gaseous biomarkers. The team also

postulates that the potential biosignatures may be ranked according to three criteria:

1. Reliability (the probability of a biosignature to be produced by life)

2. their detectability (the likelihood that a biosignature can be observed or mea-

sured)

3. Their survivability(their ability to be preserved in the geological record)
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For the case of gaseous biomarkers detected from a telescope on Earth, we can not

of course consider the third one, but we can still use the other 2 to classify them.

In the study [64] they have done a sensitivity analysis on the recursive Bayesian

equation , which is:

P (biogenic | signature, C)n = P (signature|C,biogenic)i·P (biogenic|C)n−1

P (signature|C,biogenic)i·P (biogenic|C)n−1+P (signature|C,abiogenic)i·(1−P (biogenic|C)n−1)
(3.19)

Where n >= 1 is the number of signatures detected in the sample, and i (1 <=

i <= n) is the ith signature. As outlined by [64], the sensitivity analysis may have

various objectives, and this should be specified beforehand. these can include:

1. Identify and prioritise the most influential inputs

2. Identify non-influential inputs in order to simplify a model

3. calibrate model inputs using the information that is known on the model

In my case , as in [64], it is to identify and prioritise the most influential inputs.

Since in the model considered by them there are only three different parameters , it

is possible to choose a sensitivity analysis method that has an high computational

cost, so they choose the Sobol indices. The Sobol indices ,also called variance-based

sensitivity analysis , decompose the variance of a model output into fractions that

can be attributed to the variance of the model inputs.There are different types of

Sobol indices, in this study they use the first. The first order Sobol sensitivity index

accounts for the proportion of variance of a model output explained by changing

each variable alone while marginalizing over the rest , and are computed as follows:

Si = V

[
ε[Y [Qi]]

V (Y )

]
(3.20)

where Si is the first order Sobol index for the ith parameter , V [ε[Y [Qi]] is the

conditional variance of the expected model output Y when the parameter Qi is fixed,

and V(Y) is the total variance of the response. The higher the first order index is,

the more influential the variable is. The Sobol method allocate the output variance

to each inputs variance, but it also evaluates the interactions between the model

inputs. Performing the Sobol method requires the model inputs to be independent

and non-correlated, and the model to be deterministic.[64] In [64] the first order
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method has been computed following the Monte Carlo method described in (monod

et al.2006) and implemented in the ’sobolSalt’ function of the R ’sensitivity package.

The indices were computed along fifteen biosignatures ( n = 15) as beyond fifteen

Bayesian inferences the results from the sensitivity analysis stabilises. Following the

(monod et al. 2006) procedure , the indices were estimated using m = 1.000000

combinations of p = 3 variables uniformly and randomly distributed on [0;1] and

for a total cost of m ∗ (2p2 + 2) = 15.000000 model evaluations.The results of the

analysis is showed in 3.20.

Figure 3.20: The Sobol’ index values of each variable are given by the vertical
extent of the colored fields. For example, for n = 4, the prior probability has a first
Sobol’ index value of 0.12, whereas the likelihood and false positive variables have
first Sobol’ index values of 0.35 each. In other words,when detecting four potential
biosignatures, the uncertainty of the prior is responsible for 12% the uncertainty of
the biogenic assessment, whereas the uncertainty of the likelihood and false positive
are distinctively responsible for 35% of the final assessment’s uncertainty

3.3.1 application of the sensitivity analysis to the

model

to begin with , i performed the sensitivity analysis on equation , 3.19, as did by

[64]. Nevertheless I followed a slightly different approach. I used the Salib module

in python ,and applied the procedure used by [64]. Salib is and open source library

for performing sensitivity analyses. It provides a decoupled workflow, meaning it
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does not directly interface with the mathematical or computational model. Insted

, Salib is responsible for generating the model inputs, using the sample functions,

and computing the sensitivity indices form the model outputs , using one of the

analyze functions. A typical sensitivity analysis using Salib follows 4 steps:

1. Determine the model inputs and their sample range

2. Run the sample function to generate the model inputs

3. Evaluate the model using the generated inputs, saving the model inputs

4. Run the analyze function on the outputs to compute the sensitivity indices

The program uses the application of the Bayesian model as used in [13] and

the application of the Monte Carlo simulation for the computation of the Sobol

indices used in [75].The structure of the program used to perform the analysis is the

following:

• The program generates 2 matrix N rows and 3 columns ,with N number of

sampling .

• the Bayes recursive formula is written using a method used by [13]

• Computes the Sobol indices using the formulas reported in [75]

I’ve chosen a number of samples of m = 217 = 131072 and p = 3 so it has a total

cost of m ∗ (2p2 + 2) = 2621440 . My result is showed in 3.21. i used this value of

m because Salib uses only sampling values that can be written as 2N .
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Figure 3.21: Sobol indices of recursive Bayes model using SAlib.

What I have obtained is showed in 3.7.

number of biosignatures P (signature|biogenic) P (signature|abiogenic) P (life)
n=1 0.16 0.16 0.60
n=4 0.35 0.35 0.12
n=7 0.37 0.37 0.05

Table 3.7: Results for sensitivity analysis of the recursive Bayes formula with
m = 217 = 131072 and p = 3, at different number of biosignatures.

The I applied the same sensitivity analysis to the Bayesian equation that includes

the likelihood of the error, eq. 3.16. This help us to see the influence on adding the

error term in the Bayesian model.
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Figure 3.22: Sobol indices of Bayes formula including the error, using SAlib.

Number of Biosignatures P (signature|biogenic) P (signature|abiogenic) P (life) P (molecule|error)
n = 1 0.38 0.38 0.89 0.0001
n = 4 0.24 0.24 0.39 −0.0005
n = 7 0.32 0.32 0.18 9.7× 10−5

n = 15 0.37 0.37 0.05 0.0007

Table 3.8: Results for sensitivity analysis of the recursive Bayes formula, consider-
ing the likelihood of error, with m = 217 = 131072 and p = 4, at different numbers
of biosignatures.

As we can see when we are considering eq.3.19 the results show that 60% of

the uncertainty of biogenic assessment based on a single potential biosignature is

due to the uncertainty of the prior. With the detection of new biosignautes we can

see that the effect of the prior decreases , from 12% at 4 biosignatures to 5% at 7

biosignatures. So we can conclude, as done in [64] that after 7 detected biosignatures,

the effect of the prior on the final biogenic assessment becomes negligible. These

findings align with recursive Bayesian inference, which aims to update the prior belief

in a hypothesis as new data is collected, reducing its influence on the final outcome.

Therefore, this result indicates that the Sobol’ method is consistent with the model

expressed by the equation 3.19. As we can see , for four biosignatures detected

the likelihoods are equally responsible for the 35% of the biogenic assessment’s

uncertainty. So knowing the exact probability of a potential biosignature to occur in

a biogenic sample and to be a false positive would increase the reliability of biogenic

assessment’s by nealy 70%. When considering the equation where now the error

term in added, as we can see from 3.8 the influence of the prior on the uncertainty
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becomes negligible only after 15 biosignatures detected. This can make difficult the

analysis where the likelihood of an error is not negligible. Nevertheless , as we can

see from the figure 3.22 the likelihood of the error has no influence on the uncertainty

of the results even for only 1 biosignature detected.

Since in the analysis we are considering a uniform prior ,which is uninformative,

future investigations may perform a sensitivity analysis on the prior in order to

choose a prior that is more informative and closer to realistic situations when looking

for extra terrestrial life, as noted by [64].

3.3.2 Search Strategies Based on Bayesian Ap-

proach

As we have seen, the fact that P (life) is poorly constrained can become less impor-

tant if we are able to detect more than 15 biosignatures. As outlined by [54], there

are two strategies that can be employed in the development of future missions to

search for life:

• to maximize our confidence in P (data|life)

• the second is to maximize our confidence in P (data|abiotic)

Having confidence in these terms, together with knowledge of P (life), can inform

mission design. This is, in fact, the strongest advantage of a well-developed Bayesian

framework: it can quantitatively inform observational strategies.

Clearly, the best way to constrain P (data|abiotic) is to conduct large statisti-

cal surveys of uninhabited worlds. The advantage of a statistical approach to life

detection is that it allows for the combination of a range of observations, includ-

ing integrating over time and sampling large statistical datasets. This can help to

constrain the three parameters of the Bayesian framework , as outlined in[54].

In [54], another toy model has been developed that shows important statistical

aspects of the Bayesian approach.

In this case, it has been assumed that the number of inhabited worlds is Poisson

distributed, rather than uniformly distributed as in the previous toy model. For a

sample of exoplanets of size N , the probability of life arising k times is:

PPoisson(k, λ,N) = exp (−λN)× (λN)k

k!
(3.21)
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Figure 3.23: The posterior probability of life assuming a fraction f(O2) of the
Nexoplanets observed havedetectable levels of atmospheric O2.Plot from [54]

where λ is the probability per planet of life developing. The probability to have

no life in a sample of N worlds is then:

P (no life) = PPoisson(0, λ,N) = exp (−λN) (3.22)

with:

P (life) = 1− exp (−λN) (3.23)

In [54], they assume life is detectable when O2 is observed, but also that life is

rare. P (O2|life) > P (O2|no life), with P (O2|life) = 0.1 and P (O2|no life) = 0.01.

Let’s consider two different cases:

1. Life occurs on 1 in 100 worlds (λ = 0.01)

2. Life occurs on 1 in 1000 worlds (λ = 0.001)

For both, they calculate the posterior probability of life assuming the fraction f(O3)

of the total number of exoplanets observed (Nexoplanets) have detectable O2. In the

figure , the trend for P (life|PH3) is shown for different measurement distributions

with different percentages of worlds having detectable atmospheric PH3.

When the percentage of observed planets with PH3 is low, 1%, our posterior

probability for life approaches zero as additional data are accumulated. However, if

the percentage of observed planets with PH3 is much higher than our expectation

for an ensemble of exoplanets with no life, then our confidence in the hypothesis of
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Figure 3.24: The posterior probability of life assuming a fraction f(O2) of the
Nexoplanets observed havedetectable levels of atmospheric O2.Plot from [54]

life as the correct explanation for the data increases with our number of samples at

a rate determined by the rarity of our prior.

As the sample size increases, it becomes increasingly unlikely that the abiotic

distribution of uninhabited worlds with PH3 atmospheres will deviate significantly

from the expected value of 1%. In large samples of observations, deviations from

the expected abiotic value, therefore, lend support to the hypothesis that life is

generating PH3 on a fraction of the worlds.

This model shows how the unknown value P (life) can be critical to determining

the most effective search strategy. Depending on the value of P (life), different

strategies could be followed. If P (life) ≫ 0, it may make sense to target individual

worlds and obtain high-resolution spectra. If instead P (life) is very low, it could

be better to take more lower-resolution spectra of more worlds to generate better

statistics, as outlined in [54].

3.4 critical aspects of the Bayesian approach to

astrobiology

In [63] many critical aspects regarding various topic of biosignature are analyzed,

and also the Bayesian approach to life detection. To understand the reasoning made

by Smith and Mathis, I present the example they gave:
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The two observers example

Suppose Observer A claims to have detected O2 and CH4 in an Earth-like at-

mosphere and, for this reason, argues that their posterior probability P (L|D)

is sufficiently high to justify the hypothesis that life is present on that planet.

Observer B, on the other hand, has observed a random spectral signature

from a random planet and also claims to have a P (L|D) that justifies the hy-

pothesis of the presence of life. Observer A criticizes B’s results, arguing that

there is no model to justify the correspondence between the spectral signature

detected and the possible presence of life. B responds that they can simply

invent a new alien metabolism that produces what they have observed and

create a new geological cycling that allows for that metabolism. A replies that

this metabolism and cycling are not based on any known metabolism or cy-

cling, so their model will surely have a lower value of P (L|D). B counters that

there is no parameter in the Bayesian framework that would lower the proba-

bility based on this argument. They argue that it is included in the parameter

P (L), which is not constrained at present, and therefore, their P (L|D) will

not be lower due to the lack of an existing metabolism that justifies their

observations with the presence of life.

The problem that arises from this example is that P (D|L) is completely deter-

mined by whatever model you choose to use to represent your abiotic scenario and

your biotic scenario , with no way to account for how ”realistic” those are. So the

greatest problem seems to be that the only factor really determining P (L|D) would

be P(L) , which is unconstrained and strictly depends on our theory of life which is

based only on 1 example. When comparing the model A and B we recognize only

intuitively that A is ”more likely” but in fact there is no way to rigorously assign any

different certainty to either. The author criticizes the fact that without a complete

theory of the living systems , the prior probability of life in any particular environ-

ment remains unconstrained boht numerically and conceptually. It seems that the

probability of a biological explanation given the data is completely dependent on

an unconstrained variable. While this is in fact true , as we have seen the study

of the Bayesian framework can help us to understand how the different parameters

influence our posterior probability of life and so it can help us to decide the strategy

to follow in order to maximize the probability to find biospheres. As we have seen,
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when Kepler started the observatory campaign , it has been decided to focus on

scanning many stellar systems since the probability P(planet) was not constrained,

so it was not known if and how many star systems had planets.

Now let’s examine another important example that comes from [45]:

the biased coin example

suppose we have two coins. One is a fair coin with a side for heads and a side

for tails, while the other is a biased coin where both sides are tails. We pick one

of the coin without knowing which one we have chosen. So we want to know it

by flipping it and reveal which one we picked. The results can be head or tails

, but because we are uncertain about which coin we have , the probabilities

are conditional on the likelihood you have selected either coin: a tail result

from the fair coin with chance P (T |F ) , a heads result from the fair coin

P (H|F ) , a tails result from the biased coin P (T |B) , and a heads result from

the biased coin P (H|B). Let’s say we observe tails when we flip it. What can

we infer from this? to find the answer we use the Bayes theorem, P (F |T ) =
P (T |F )P (F )

P (T )
. By definition P (T |F ) = 0.5, P (F ) = 0.5. The denominator can

be decomposed in conditional probabilities for getting tails from either coin:

P (T ) = P (T |B)P (B) + P (T |F )P (F ), P (T ) = (1 ∗ 0.5) + (0.5 ∗ 0.5) = 0.75 ,

using the Bayesian equation you get P (F |T ) = 0.5 ∗ 0.5/0.75 = 0.33 , which

means that if you flip a coin and observe tails , you can have a confidence of

approximately 33% chance you have picked up the fair coin. Nevertheless ,

if you had observed heads you know with 100% confidence you have the fair

coin in hand

The problem of discerning between the fact that we have in hand a fair coin or a

biased coin , as suggested by [45] can be analogized to the problem of detecting life,

where we want to determine whether we have observed a planet that has a biosphere

or does not. All the ambiguity arise because we don’t have enough data to assign a

higher likelihood to one of our hypotheses over the other.

The major issue with biosignature susceptible to false positives is that they are

not based on a robust theory distinguishing life from non-life, making it impossible

to determine if all potential abiotic mechanism have been accounted for. Every time

we detect a potential biosignature on a planet , we must first understand the abiotic

formation pathways before we can assess the likelihood of a biological origin. As
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we’ve seen , form most current biosignature candidates, conducting an exhaustive

search for all possible abiotic formation mechanism is not feasible, either because

these mechanism are not fully understood , or because there is insufficient knowledge

about the planetary environment to constrain them completely.

As suggested by [45] ,the example with biosignatures is in direct analogy to the

”tails” result, where the inhabited planets is analog to the biased coin ( always pro-

duces tail is analogous to always produces an atmosphere containing the gaseous

biosignature), and uninhabited worlds to the unbiased coin (sometimes produces

tails is analogous to sometimes produces the atmosphere containing the biosigna-

ture). So if, instead of testing the hypothesis ” i have the biased coin” , we want to

test the hypothesis that ”this planet has a biosphere”.

The equation now can be written as:

P (life|obs) = P (obs|life)P (life)

P (obs|life)P (life) + P (obs|NL)P (NL)
(3.24)

which is the same considered in the previous sections. If P (Obs|NL), the prob-

ability of false positive is zero, than the posterior probability is one, independent of

the prior probability of life, P (life). This aspects is the key point of the example.

If there are any false positives associated with our biosignature, we need strong

priors that life is responsible for producing the signature. Nevertheless, if we know

with certainty that a specific observation can only arise from living systems, regard-

less of the context , we do not need to consider the prior probability of life emerging

in an alien environment, since the observation would suffice to claim life detection.

The coin analogy teaches us an important lesson:when we have false positives it

is required a well supported prior hypothesis explaining why life should be expected

in a particular environment. This holds true even when contextual information

reduces the likelihood of false positives to a minimal value. If false positives are

not entirely ruled out , this problem persists. The alternative is that life detection

should rely on biosignature that are not susceptible to false positives (similar to the

coin always landing on heads).

So this example shows us that the high confidence in detection claims using the

Bayesian hypothesis testing requires:

1. A strong prior hypothesis on the existence of life in a given alien environment

when we have false positives for the observation
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2. Biosignatures that lack of false positives

3.5 Signal detection theory

In this chapter i present the results and equation as shown in [78]. Signal detection

theory is a conceptual framework which provides a precise language for decision

making under certain conditions. It come from psychology and the military, since

it was applied in the world war 2 to interpret radar signals. It has been applied

in many fields like: medicine , telecommunications and artificial intelligence. In

signal detection theory it is assumed that there is a stimulus that , if present , elicits

response. For life detection , the presence of life (L) is the stimulus and the presence

of a biosignature (B) is a response to this stimulus. Each outcome is summarized

in table 1.

Figure 3.25: taken from [78]

P (B|L) is the probability of the biosignatures being present, given that life is

present. P (¬B|L) is the probability of B being absent if life is present. These two

are not independent. Therefore their sum must be equal to 1. [78] In the same way

P (B|¬L) and P (¬B|¬L) are complementary event. Different pair of conditional

probabilities can be chosen to characterize outcomes. If we are looking for true and
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false discovery rates , P (B|L) and P (B|¬L) should be considered.The former can

be interpreted as the signal and the latter as the noise. If we want to understand

errors due to false positives and false negatives , the appropriate pair of probabilities

is P (¬B|L) and P (B|¬L). A perfect ideal biosignature has the probabilities of both

false positives and false negatives equal to zero. All other biosignature can be

evaluated with respect to this ideal. An index used for this purpose is the Youden’s

J statistics. J is defined as:

J = P (B|L) + P (¬B|¬L)− 1 (3.25)

the equation che be rewritten in terms of true and false positives:

J = P (B|L)− P (B|¬L) (3.26)

it changes in the range between -1 and 1. In general J is a measure of the distance

from perfect biosignatures. The closer the index is to 1 the more likely it is that

finding B means that life is present. [78] The equation can also be expressed in

terms of false positives and false negatives.

J = 1− [P (B|¬L) + p(¬B|L)] (3.27)

it is also possible to place more emphasis on either false positive or false negatives

, introducing a parameter α and redefine J:

J = 1− [αP (B | ¬L) + (1− α)P (¬B | L)] (3.28)

large value of α (close to 1) correspond to avoiding false positives and small

values are used if the goal is to avoid false negatives.So this parameter can be

considered the ”mission objectives parameter”. If several missions to a given target

are considered, the goal of the initial mission might be to establish whether this

target is worth further exploration in search for life. Then, it might be desirable to

set a to a small value, not to overlook possible, though not definitive, signs of life.

Along with J there is another parameter that can be used: a measure of signal/noise

ration , K(B) , defined as:

K(B) =
P (B|L)
P (B|¬L)

(3.29)

90



used together with J it can be used to ascertain utility of a biosignature for

detecting life. Even if J and K(B) are different , they are monotonically related ,

which means that they will give the same ranking of biosignatures.This parameter

also connects SDT with Bayesian hypothesis testing formalism.

3.5.1 Bayesian Hypothesis testing

As we have seen, in the Bayesian framework we are interested in the conditional

probability P (L|B) that life is present if biosignature B is present and has been

found. This is a posterior probability. Instead, in SDT we are interested in P (B|L),
which is a likelihood. As shown in [78], the two methods don’t lead to different

evaluations of biosignature. As we have seen before, Bayes’ theorem tells us that:

P (L|B) =
P (B|L)P (L)

P (B)
(3.30)

In an analogous way, this probability can be expressed as:

P (¬L|B) =
P (B|¬L)P (¬L)

P (B)
(3.31)

P (¬L) is the prior probability that there is no life. We can now consider the

ratio RLB of the posterior probabilities:

RLB =
P (L|B)

P (¬L|B)
=

P (B|L)P (L)

P (B|¬L)P (¬L)
= K(B)

P (L)

P (¬L)
(3.32)

This is the relative probability of the hypothesis that life is present compared to

the hypothesis that life is absent, both evaluated assuming the presence of biosig-

nature B. If RLB is less than 1, it means that the presence of B does not give us

high confidence in the presence of life, as B is likely to be of abiotic origin. If RLB is

larger than 1, it is more likely than not that life is present if B is present. In statis-

tics, it is usually required that RLB ≥ 20. The problem with this equation is that it

depends also on prior belief about the probability that life is present at the target,

and this is not constrained at all so it can vary widely. If we were able to obtain a big

variety of data, P (B|L) would be sufficiently big to overcome prior belief, even if it

disagreed with evidence. In life detection, obtaining such data could be impossible.

If we instead compare two biosignatures, there are no more problems regarding the
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influence of the prior. As shown in [78], considering another biosignature B′, one

can define the ratio RLB for B′:

RLB′ = K(B′)
P (L)

P (¬L)
(3.33)

Then the ratio

RLB

RLB′
=

K(B)

K(B′)
(3.34)

is independent of the prior and depends only on the Bayes factors for B and B′.

If K(B) is larger than K(B′), B can be considered a better diagnostic biosignature

than B′. As pointed out in [78], we would reach the same conclusion if we used the

equation for K(B) derived with SDT, so the ranking of biosignatures obtained from

SDT and Bayesian hypothesis testing should be the same.

3.5.2 possible application of SDT and BHT to

gaseous biomarkers

As we have seen we can use the signal detection theory method combined with
the Bayesian hypothesis testing in order to build a framework that can guide our
biomarkers detection, i.e. our inference on the probability of life, and also to guide
our observation strategy when we have to confront different the quality of different
biomarkers. In practice i propose to use the following equations to classify the
biomarkers and to confront them:

J = P (B|L)− P (B|¬L) (3.35)

K(B) =
P (B|L)
P (B|¬L)

(3.36)

RLB′ = K(B′)
P (L)

P (¬L)
(3.37)

RLB

RLB′
=

K(B)

K(B′)
(3.38)

Here i propose a method to classify the biomarkers considering equation 3.35
and 3.36:When studying a given habitable exoplanet, considering the information
we have acquired, we will consider the number of possible biotic productions that
can occur, referring to the existing knowledge regarding the biomarker in question
and the number of known false positives that can generate the molecule. Through
these, we will construct our P (B|L) and P (B|¬L). Using these two values, we
classify the biomarker based on the indices J and K(B).
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3.6 Ladders for life detection

Since we don’t have an universal accepted method for reporting high detection find-
ings about life detection , every claim of finding of exolife will always remain am-
biguous. One tempting of a standardized method has come in the forms of ladders.

One such scale is the Confidence of Life Detection (CoLD) scale [25]. This scale
, illustrated in 3.9,is structured around a sequence of evidence thresholds that must
be met before a life detection claim can be substantiated. Another framework ,
developed through a community-wide effort , is the 3.10. This scale proposes five
criteria for assessing life detection claims, categorized into two groups.

The level 1 criteria are common to every field of planetary science and not just
astrobiology. Even if these ladders can be useful , they present some problems, as
pointed out by[45]:

• These scale based approaches separate assessment of the life hypothesis from
the assessment of abiotic explanations, but as we have seen they are not in-
dependent. Assessing a signal that is known to be produced by both living
and non-living systems also depends on the prior probability of life existing in
a given environment. This poses a challenge because evaluating the strength
of a biosignature requires robust theoretical support, which is not explicitly
addressed in the scale format. Consequently , any assessment of the prior
probability of life will be largely theoretical rather than empirical.

• they make an explicit assumption that any life detection will always be subject
to false positives.

The main problems when considering the advancements in the theory of life con-
nected to astrobiology , such as the ”life detection knowledge database” (LDK),is
that the works that are used to motivate each argument are themselves not trans-
lated into probabilistic statements. As pointed out in [45], the LKD could serve
as a point of organization in aggregating the data and models needed to quanti-
tatively evaluate biosignatures , which can provide estimates for P (data|life) and
P (data|NL). So what is needed in the field right now is a connected work between
the field of life sciences, and biosignature science, to construct a common framework,
based on Bayesian methodology, for Life detection in astrobiology.
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CoLD scale
level

Corresponding Measurement Indicator

Level 1 Detection of a signal known to result from a biological
activity

Level 2 Contamination ruled out
Level 3 Demonstration or prediction of biological production of

signal in the environment of detection
Level 4 All known non-biological sources of signal shown to be

implausible in that environment
Level 5 Additional, independent signal from biology detected
Level 6 Future observations that rule out alternative hypotheses

proposed after original announcement
Level 7 Independent, follow-up observations of predicted biolog-

ical behavior in the environment

Table 3.9: CoLD, Confidence of Life Detection scale proposed by [25]

Level Standards of Evidence
Criteria

Question

Level 1
1 Have you identified the signal

of interest?
2 What confidence do you have

in the source, strengths, and
possible confounding factors in
the data analysis?

Level 2
3 Have you ruled out abiotic ex-

planations?
4 Can you rule in biological ex-

planations?
5 Can you identify alternative

lines of evidence?

Table 3.10: Standards of Evidence Life Detection scale, produced by a community-
wide effort
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Chapter 4

The case of detecting Phosphine in
the atmosphere of Venus

4.1 Venus properties and habitability

Venus if often defined as the twin of the Earth, due to the great similarities in

their bulk properties. Since there are great differences between the two in terms of

Atmospherical composition, pressure and temperature, it is important to understand

what brought the planets to differentiate each other so much. This can give us

important insights about the evolution of habitability of rocky planets outside the

solar system.

Despite the great similarities in mass and radius, there are important differences

in terms of: rotation rate, obliquity and magnetic field. In 4.2 we can see a com-

parison between different astronomical data of Venus and Earth. because of this it

is not possible to explain the differences in temperature and chemical atmospheric

composition only considering the smaller distance from the Sun of Venus. For this

reason the precise contribution of the solar flux to the global evolution of Venus,

remains unconstrained. In this sense Venus offers a key point to start with to dis-

cuss about the habitability of a planet, since its evolution history represents an

alternative development from Earth despite the similar origins. In the Astro2020

Decadal Survey of 4th of November 2021 3 priority area have been identified for

the future development of astrophysics. One of this is the ”Pathways to Habitable

worlds”. What has been proposed as strategy has to do , beside the observation

and characterization of exoplanets, The necessity of accurately interpreting the solar

system data , so the close collaboration of astronomy and planetary sciences. Un-
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derstanding the evolution of the Properties of Venus will be important in the future

to have a much more clear comprehension of habitability in the context of geologi-

cal evolution. In Astro2020 it has been reported: “Venus provided context for loss

of habitability, with relevance for Venus-analogue extrasolar planets, and studies

of stellar wind/planetary atmosphere interactions at Mars discovered and informed

planetary atmospheric loss processes” and also : “Combination of measurements

and theory of the nature and processes that drove Earth’s early habitability, and

the loss of habitability on Venus and Mars can inform our understanding of exo-

planet habitability”. The possibility that we have with Venus, to understand with

in situ missions a rocky terrestrial planet that has extremely different climatic con-

ditions won’t be given from the exoplanetary studies. Studying Venus will help us to

understand the conditions that allow long-term habitability and to better interpret

the exoplanetary data, as pointed out in [84].

As previously said, despite the similar bulk properties, there are great differences

in the planets: The insolation of Venus is twice the one on Earth, it has a retrograde

period of rotation of 243 days and its atmosphere is composed mainly of CO2, with a

little amount of N2, traces of other gases as SO2, Ar and water vapour. Besides this

the planet is surrounded of a layer of clouds of H2SO4 that give the planet an albedo

that is twice the one of the Earth. All this contributes to make the planet extremely

hot and with a pressure that is the one at 900m below the terrestrial ocean. The

surface temperature expected is 735K. The high surface temperature can not be

attributed only to heating , but due to the high pressure. The atmosphere is opaque

, with an optical depth >> 1 due to the predominance of green house gases.

Below the clouds and down to the surface, the temperature profile of Venus’s

atmosphere is primarily regulated by convection and follows a dry adiabatic. The

lapse rate , which can be calculated using thermodynamic principles , is approx-

imately 10 K km−1. The diagram of the mean vertical temperature is shown in

4.1
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Figure 4.1: A diagram of the mean vertical temperature profile in Venus’s atmo-
sphere, showing the major processes at work, and the approximate locations of the
main cloud layers.From [51]

Beside this Venus lacks an intrinsic magnetic field. The measurement of the deu-

terium hydrogen rate made by the pioneer probe in the 70s have showed that Venus

lost a big amount of water.One of the hypothesis made to reconcile the observations

with what is known about the planet today is that the planet has formed with an

atmosphere rich in water vapour, over a magma ocean and it would have been too

close to the Sun for being able to disperse heat in space with another method other

than the atmospheric escape of water , as pointed out in [36]. For this reason the

planet would have acquired his conditions in the initial phases of his evolution and

wasn’t habitable ever since.

In [70] It has been noted how the lost of oceans or of an atmosphere rich of Water

vapour through a runaway greenhouse can bring to a temporary increase of atmo-

spherical O2. In particular, in addition to undergoing potential desiccation, planets

with inefficient oxygen sinks at the surface may build up hundreds to thousands of

bars of abiotically produced O2, resulting in potential false positives for life[70].

97



Figure 4.2: Data comparison between Venus and Earth. From [51]

Despite the fact that there are not enough data to choose for a particular model

of the history of Venus it is possible to make measurements that give us important

constraints. For example to understand the atmospherical composition of elemental

gasses and isotopes could give important insight on the initial composition of Venus

and his history of water loss [30]. In the same way understanding the history and

the rate of volcanic activity on Venus could allow us to do estimates on the entire

planet and the degassing rate [76].Besides giving useful insights to understand the

atmospheric evolution of Venus, such a comprehension could allow us to obtain

critical informations regarding the heat loss mechanism on the habitability of Venus

to generate and to maintain a magnetic field and the effects that we expect on his

atmosphere, as outlined in [40]. One of the main methods with whom a planet

regulates his climate is through the cycle of carbons-silicates, in which the carbons

is stripped away from the atmosphere and brought inside the planet.On the Earth

this happens mainly thanks to tectonics plates. If this is ever happened on Venus is

not completely clear, although at least some spatially limited subduction has been

documented on the planet [18]. An important aspect of this is that water plays an

important role in the development and operation of plate tectonics.

In [84] it is defined the Venus Zone(VZ) as a reference target to identify rocky
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terrestrial planets where the atmosphere could have potentially gone towards a run-

away greenhouse that could bring to similar conditions to those on the surface of

Venus.

The external boundary of the VZ is the ”runaway Greenhouse” line, that is

calculated with the terrestrial atmosphere models.

The internal boundary is estimated on where the radiation of the star would

cause a complete atmospheric erosion. [29] has calculated an occurrence rate of VZ

terrestrial planet of 32 % for low mass star, and 45 % for a Sun-like stars. The team

has calculated the occurrence rate of VZ planets for GKM stellar spectral types ,

using the data from dressing and Charonneau 2013 (for M dwarfs) and [41] (for K

and G dwarfs). In these studies the occurrence rate has been calculated based on

the following equation:

f(Rp, P ) =

Np∑
i=1

ai
R∗,iN∗,i

(4.1)

where ai is the semi-major axis of planet i, R∗i is the host star’s radius of planet

i, N∗i is the number of stars around which planet i could have been detected and

Np(Rp, P ) is the number of planets with the radius Rp and period P. The ratio

ai/R∗i is the inverse of the probability of transit orientation , which is considered to

take non transiting geometries into the estimation of occurrence rate. The extent of

the VZ and HZ boundaries are shown in figure 4.3.

Figure 4.3: incident stellar flux on a planet versus stellar effective temperature,
showing the extent of Venus zone and habitable zone
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As noted in [29],it is important to remember that the boundaries of the habit-

able zone (HZ) and the Venus zone (VZ), are hypotheses subject to testing , as the

runaway greenhouse effect could occur beyond the calculated limits. Additionally ,

while the insolation flux of a planet is a significant factor, it is not the sole deter-

minant of a planet’s climate. Other factors also play a crucial role in influencing

whether a planet might enter greenhouse phases during the early stages of its evolu-

tion. The future missions included the VERITAS NASA’s mission, and DAVINCI

, and ESA’s ENvision spacecraft will allow us to understand better the evolution

history of Venus.

4.2 venus and the search for life

The recent debated discovery of Phosphine in his atmospheres has raised the question

of whether there might be niches of microbiotical activity in his clouds, where the

condition might not be so hostile and this raises questions about the past life on

Venus. Since it has been suggested that in the past Venus might not have had such a

hostile environment and life that has emerged in the past might persist today in the

dense clouds above its surface [? ]. Phosphine is a molecule suggested as a potential

biosignature since on Earth it is only associated with anaerobic ecosystems and

with human industrial chemistry as we have seen in chapter 2. Even if it is clearly

associated with anaerobic biology the specific biochemical pathway for Phosphine

production in anaerobic systems remains unclear. As discussed , while Venus’s

surface is currently an extremely hostile environment, there is a potential niche for

biological processes within the planet’s clouds. There are region in the clouds that

are cool enough to allow for the presence of liquid water , with atmospheric pressures

comparable to those at Earth’s sea level.

4.2.1 The alleged discovery of Phosphine in the

atmosphere of Venus

Since Venus is the best rocky planet candidate to search for Phosphine in the solar

system , in 2016 it has been put together a proposal , from a team of astronomers led
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by Prof Jane Greaves , to the JCMT to conduct observations to look for the J=1-0

rotational transition of Phosphine, which would produce an absorption line at 1.123

mm(267 GHZ). Even if there are other transitions of Phosphine in other wavelenght

in farIR and midIR, this one has several advantages.First of all observations can be

conducted from the ground. The next highest rotational transition , J=2-1, would

require observation from the stratosphere. It is also possible to conduct Mid-IR

observations of other transitions from the ground , but the team could not have

easy access to mid IR facilities. The first observational idea was to acquire a few

hours of data to better understand the observational issues with looking for a weak

absorption line against the very bright continuum source which is Venus with the

eventual intent to propose a longer series of observation to set a stringer upper limit,

since phosphine was not expected to be found.

4.2.2 JCMT and ALMA observations

Venus was observed by the JCMT using RxA3 in search of Phosphine on five morn-

ings in June 2017. These dates were chosen so that Venus appeared large enough

to fill the telescope beam, minimising any effects due to errors in pointing the tele-

scope.Venus is a strong continuum emitter at millimetre wavelengths , so phospine

would be detected as a weak absorption line against this strong continuum. This

continuum can cause a number of issues regarding the quality of the data. Many

effects can influence them, like the reflections from the floor or roof of the telescope

dome, or in the receiver cabin itself, entering the beam, lead to strong, time varying

baselines in the output spectra. It was important to detect this errors and remove

them.These effects were removed using the fitting of polynomial functions to the

data, and then exclude regions of the spectrum where Phosphine might lie. This

method was applied to the 140 spectra that made the observation and an absorption

line attributed to Phosphine was detected, and it did correspond to an abundance

of 20-25 parts per billion (ppb), as shown in figure 4.4.
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Figure 4.4: Panels show spectra of PH3 1-0 in Venus’ atmosphere as observed
with the JCMT. Axes are line to-continuum ratio against Doppler-shifted velocity
referenced to the Phosphine wavelength. Left: the least and most conservative
solutions after fitting and removing spectral ripple. from [22]

Figure 4.5: Spectra of Venus obtained with ALMA. Left panel shows the PH3 1-0
spectrum of the whole planet, with 1σ errors (here channel-to-channel) of 0.11 10-4
per 1.1 km/s spectral bin. Right panel shows spectra of the polar (histogram in
black), mid-latitude (in blue) and equatorial (in red) zones. From [22]

As soon as the surprising detection of Phosphine from JCMT was claimed there
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was a urgent need of and independent confirmation. This was done using the ALMA

observatory in March 2019. A very diffent facilities since it is an interferometer, made

up of 66 separate antennas , 12m in diameter , and the signals are combined together

to produce the final result.Only 43 of the antennas were used. The signals are treated

in a similar way with the RxA3 on the JCMT, with a heterodyne SIS mixer and

local oscillator in the receiver. But then they are cross correlated with those from

each of the other antennae in the array(each pair of antennae is a baseline) and this

produce as a result the interferometric map of the target. The angular resolution

that is possible to achieve with an interferometer correspond with the one achievable

with a telescope whose diameter equals the longest baseline in the array. The process

of cross correlation of the signals produces the so called visibilities, that consist of

a measure of the 2D Fourier transform of the sky distribution of brightness. These

are then Fourier transformed to produce a series of images at successive frequencies,

a spectral cube.Since there is a finite number of antennas in the array , the Fourier

space is never covered completely as happens with a telescope that uses only one

big mirror. That’s why to derive the image from the under sampled Fourier space

it is necessary to use an algorithm called CLEAN , to do the cleaning process. The

use of an interferometer to observe Venus leads to different challenges in respect to

JCMT. One of this was that that angular size of Venus was so great that even the

shortest ALMA baseline could not provide good images on the scale of the whole

disc and the imperfect sampling led to strong ripples so the data from the affected

short baselines, all less than 33m in length , were removed.There were also found

some errors in the standard reduction script used. Once all the possible error and

effects were taken into account , a good detection of phosphine absorption of 20ppb

that matches what was seen by the JCMT but with somewhat an higher SNR.

4.2.3 further analysis from the ground

After the detection paper by [22] the data from ALMA were reanalyzed by a separate

group [53], they did not find the detection claimed by [22], and found instead an

upper limit to the Phosphine abundance of about 1 ppb. They identified some

processes used in the standard ALMA calibration scripts which were not adequate
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for a very bright, time varying, beam-filling target or indeed for the correspondingly

bright calibrator sources used , as pointed out in [? ]. After this the staff of the ESO

reprocessed the raw data from ALMA independently. This process simplified the

basic removal of instrument bandpass ripples using the moon callisto as a calibrator,

and also avoided the chance of spectral averaging producing sharp edges which

could mimic an absorbtion line. The new script also accounted for the non linear

instrumental response to the high intensity of Venus (that is the brightest source in

the sky after after the Sun at these wavelengths) and its large angular size , although

, since this exceeds the extent of accurate models of the response of individual

ALMA dishes, this is thought to be a source of residual error. The response by [22]

to this reanalysis can be found in [23] using the new scripts and exploiting three

different independent methods to obtain the final images and spectra. The steps

after the observatory calibration are the following: removing the shortest baselines

, and make a linear spectral fit to the visibility data to remove the contribution of

Venus. Next, residual spectral ripples can be corrected either in the visibility data or

after the Fourier transforming to make an image cube, and before or after cleaning.

Spectra were extracted over different portions of the planet; small residuals errors

meant that only those spectra extracted from regions symmetric about the planet

centre were considered reliable. The Phosphine signal was obtained using all the

updated methods. The team of [22] attributed the negative result of the team of

[53] as caused by including baselines shorter than 33m in most of their analyses, and

including parts of the image of the planet that had significant spectral artifacts that

raise the noise in the final combined spectrum , as outlined by[? ]. Greaves team

concluded that the Phosphine detection in the ALMA data remained robust.

4.2.4 The debate around the line

Many authors suggested that the use of high order polynomials to allow the removal

of varying baselines caused the generations of fake lines in both the ALMA and

JCMT Phosphine detection. In fact , when using this method you have to mask out

the region of the spectrum around a suspected line otherwise the polynomial fitting

method might fit and remove a real line , recognizing it as a small scale baseline
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ripple. however, as pointed out by [? ] the detection of Phosphine did not rely solely

on measuring the depth of an absorption line at a random position. It also relied on

the wavelength of the line seen coinciding with that of the line being searched for ,

Phosphine. This reduces a lot the chances of a noise spike or residual masquerading

as a Phosphine detection. In [21] it is shown how adding the additional constraint

that a fake line must be at a specific frequency reduces the chance of a false positive

to < 1.5%. besides this the chances that a fake line appears exactly at the same

wavelength both in ALMA and JCMT are very low. Both these reasons improve

the probability that the line of Phosphine detected is not a a statistical artefact but

real.

Even if , given the mentioned reasons , the line is unlikely fake, there still is the

possibility that the absorption feature in indicative of some other molecule and not

Phosphine. For example SO2, that is a constituent in the Venus atmosphere , has a

transition at 266.9443329 GHZ ( J = 309,21 - 318,24) , it is at a frequency shift from

PH3 J=1-0 at 266.944513 GHz that corresponds to a velocity difference of just 1.3

km/s. By [? ] have been pointed out many problems with this interpretation:

• while the two line centres of these two transition are close, theory are still 1.3

km/s apart , and this leads to a 3σ discrepancy between the measured line

centre and that expected for the SO2 line.

• Simultaneous (for ALMA) and near simultaneous (for JCMT) observations of

a different and stronger SO2 line , [? ] provide predictions of the relative

strenght of the SO2 transition that might contaminate the Phosphine line.

They find that the level of contamination of the Phosphine line by SO2 is 10%

for the JCMT data and < 2% for the ALMA data. Given this conclusions it really

seems likely that the detected line in indeed related to Phosphine.

There have been other analyses that tried to observe Phosphine at different

transitions and have produced conflicting results, also because the observation at

different wavelength and using very different facilities is probing the presence of

Phosphine at different altitudes and times. However none of these observations

have disproved the original ALMA or JCMT results. The observation are:
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• the observations done with Nasa infrared telescope facility (IRTF) on Mauna

Kea in Hawaii, at 10.471 um (28.65 THz). No Phosphine absorption was

detected. The dataset was from 2015

• Observation from Venus express at 4.125 um above the cloud layers, failed to

find any Phosphine absorption. The data came from 2006 to 2014.

• Observations in the far infrared at 534 and 1067 GHZ with SOFIA observa-

tory(stratospheric Observatory fro infrared Astronomy). SOFIA observations

were done in 2021. The first analysis of the data failed to find any sign of Phos-

phine, both for the J=4-3 line and J=2-1 line. Subsequent reanalysis corrected

a precedent error and by analysing the line-to-continuum ratios, Phosphine was

found at a level of 1 − 2 , averaged over altitudes from 75-110km, with 6.5σ

significance.

Surely one of the best way to understand the presence of Phosphine in the at-

mosphere of Venus is to probe it with in situ measurement. The pioneer Venus

Multiprobe some years ago was carrying a mass spectrometer into the atmosphere.

In 2021 the data were reanalysed , they were regarding the descent into the atmo-

sphere in 9 december 1978. The data regarded an altitude of 51.3 km above the

surface. A very important region for the search of life. The analysis found evidence

for Phosphine at 0.1-2 parts per million (ppm) (an abundance which is much higher

than the JCMT or ALMA observations). The data suggested also the presence of

different chemical species like nitrite, nitrate, nitrogen and possibly ammonia. These

ensemble of molecules might indicate the presence of chemical disequilibrium. An

interest feature often associated with life that requires future investigations.

The reasons why the observations are partially contradictory are also because

they sample the atmosphere of Venus at different altitudes and, in a very wide span

of time, almost 40 years. The concentration of a molecule in the atmosphere can

vary over a timescale of years or even days, as it happens with SO2. Also Phosphine

can vary with function of altitude and differently from in situ observations, it is

difficult to extract this type of information from Earth. In principle an analysis of

the pressure broadening of a particular line can reveal the altitude from the pressure,
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since the greater the pressure , the broader the wings. However, there are different

problems with this type of analysis:

• The pressure broadening for Phosphine in CO2, which is the dominant con-

stituent of Venus atmosphere , is not currently known,

• the data reduction technique used to extract the absorption line remove any

broad line wings as part of the process that removes baseline ripples. This

causes the observation to being unable to catch broadened lines. [? ]

Another factor to consider is the timing of the observation. Currently we can’t

monitor the changes in the amount of Phosphine with time. But we can analyze

if there are any correlations between the time of the observation and the different

detections and non detection of the molecule with the illumination of atmosphere’s of

Venus by the Sun. Since it can modify the abundance of the molecule by photolisis.

4.3 hypothesis on the origins of Phosphine on Venus

Since Venus has an oxidised atmosphere, the presence of Phospine, a compound

of phosphorous with hydrogen should not naturally appear. As previously said,

Phosphine on Earth is known to be produced only from industrial processes and from

anaerobic life. However we do not know yet if there are any abiotic processes that

can produce the observed amount of Phosphine in the atmosphere of the planet.A

work that has explored a wide range of chemical processes to explain the Phospine

observations is [56]. The processes examined included gas reactions , geochemical

reactions , photochemistry , volcanism, lightning and impactors. The results of

these research point out that we currently do not know how it is possible to produce

Phosphine on Venus in the quantity seen. The presence of anaerobic life is another

potential explanation , but before we can do such a statement it is necessary to first

exclude all the possible abiotic origins, and being able to explain how life is able to

survive in the extremely acid environment of Venusian cloud droplets. It is possible

that the ammonia present in the atmosphere of Venus can buffer the sulfuric acid.

There is a possible detection by LNMS and in preliminary analysis of data from the

Green Bank telescope, so this aspect is rather promising [9].
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Until the next in situ observations that will search for life, with the VLF, it is

important to establish , with our current knowledge about the clouds of Venus and

microbial life, if there are the conditions for life to replicate. Since the medium

temperature on Venus is 424°C , most biological organic molecules are pyrolized,

enzymes are speedily inactivated and protein denatured. But , as previously said ,

since the clouds of Venus host , as shown in the figure 4.6, a temperate zone where

the temperature can remain close to 60 °C and the pressure of 1bar , the possibility

of life must be scrutinized. On Earth there have been observed different types of life

presence at high altitudes: bacteria, pollen, and algae in a region as high as 15km.

[89]

Furthermore, evidence has been found for the growth of bacteria in the droplets

sampled from a super cooled cloud near a meteorological station on a mountain top in

the alps [42]. And the same mechanism that have brought these organism high in the

atmosphere could have done the same with Venusian microorganism: evaporation,

storms, eruptions, meteor impacts. Most importantly, on Venus the clouds are a

stable , global phenomenon that can host aerosol particles for a long period of time,

and not only few days as in the terrestrial atmosphere. In [28] it is has been supposed

that the microorganism populating the Venusian atmosphere are not free floating

but confined to the liquid environment inside cloud aerosols or droplets. In the

study it has been constrained the maximum size of droplets that could be floating

in the Venusian atmosphere and estimated whether their stokes fallout times to

reach moderately high temperatures are larger than the microbe’s replication time.

For the Stokes fallout time the team has concluded that to maintain the colony of

microbes alive the required fallout times is longer than half an Earth day. The team

has also analyzed the possible influence of cosmic rays on the microbial life in the

clouds of Venus. An important aspect since Venus is known to not have a magnetic

field to shield from energetic particles coming from the space. For what concerns the

temperate zone (51km to 62km) , numerical simulations show that cosmic radiation

would not have had any hazardous effect on putative microorganism. [27]

In conclusion the team [28] has shown that for aerosols , the stokes fall-out times

to reach the lower haze atmospheric layers is pronouncedly larger than the typical

bacterium replication time on Earth. So they conclude that if in the past bacterial
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life is emigrated from the surface to the clouds through updraughts , it is possible

that now their remain confined in the aerosols.

Figure 4.6: Plot showing the temperature and pressure conditions of different
regions of the Venus atmosphere, with the temperate zone highlighted from [57]

4.4 The future of Phosphine study on Venus

Currently there is no solid conclusion neither on the presence of Phosphine on Venus

and on the possibility of life in the clouds. Further missions need to constraint these

aspects. The further missions should focus on the in situ observations and possibly

return samples to Earth to acquire more solid informations.

4.4.1 Earth and space based studies

The largest of the projects currently studying phosphine is JCMT-Venus.The new

receiver has a wider bandwindht than RxA3 so it is possible to observe simultane-

ously HD and SO2 and search for other molecules such as SO and PO2 to see how

the different species vary in relation to each other.When complete, the JCMT-Venus

will provide a major new database of observations of Venus in the mm band, includ-

ing phosphine and other important molecules which will gave us key informations

of the origin of Phosphine.
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There are also facilities that will study life on Venus that will not target Phos-

phine, for example the Green bank telescope(GBT) at radiowavelenghts that will

look for ammonia (NH3) in absorption. NH3 is another molecules that is not ex-

pected to be present in the oxidised atmosphere of Venus. In the future will also be

important the laboratory studies regarding the formation and destruction of Phos-

phine and other hydrogen-rich compounds in Venus like conditions. In August 2025

the JUICE spacecraft , that plans to go on the moons of Jupiter will be make a flyby

in august 2025. The submillimetre wave instrument (SWI) will be able to observe

higher J transitions of phosphine, included those observed from the Earth by Sofia.

In the 2030’s three missions directly targeted at Venus will be launched: the ESA

EnVISION mission and NASA VERITAS( Venus Emissivity , radio science, InSAR,

Topography, Spectroscopy and imaging).Those two missions will be studying the

surface and interiors of Venus,and will focus on study the history and role of vol-

canism on the planet. However they won’t have much to say about the presence of

Phosphine in the atmosphere. Davinci mission instead will focus on it. It will flight

through the clouds and sample the atmosphere. The first to enter the atmosphere

since the pioneer Venus probe in 1978. It will have a a mass spectrometer that will

improve the results of LNMS. Thanks to this it will be able to monitor the presence

of Phosphine and other gases with altitude and other conditions. The four instru-

ments combined with imagers on the orbiting mothership, will improve greatly our

in situ knowledge of the atmosphere. Also private missions are about to come, the

company Rocket lab for example is developing a series of missions called Venus life

finder (VLF).[44] the first of these missions , will look for organic molecules using

ultraviolet autoflourescence technique. On the mission there are not only spectrom-

eter but also a microscope that will search cloud droplets for evidence of biological

cells.The mission was planned for the 2023 but was delayed for the 2025. One of

the most exciting mission planned by the VLF is the one that will use a balloon to

collect samples of cloud droplets and gas.It will be a key to study the presence of

life on Venus.
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4.5 conclusion: Bayesian life detection on Venus

Since there are possible ways to produce Phospine abiotically,to determine the bio-

genic origin on Venus it is necessary to costrain the likelihood that is has been

produced abiotically. As previously stated, in the work of [22] it has been used a

series of abiotic models base on thermodynamic calculations and photochemistry.

The expected production rate for most of the mechanism they tested , is much lower

than the one that was extracted from the observations, often by several orders of

magnitude. Even if it is not possible to rule out all the existing mechanism that

could produce Phosphine on Venus , most of them could be excluded , and so the

hypothesis of life so far remains a valuable explanation. Nevertheless, it has not

been done a Bayesian analysis so far, and so even if it is a plausible hypothesis, it

is not possible to derive a conclusion yet.

In fact , constraining only P (obs|NL) , with the analysis of all the possible

abiotic pathways could not be enough if P (life) has no constrain at all. As pointed

out by [45] , we are left with a conditional likelihood in the absence of context for

assessing how it impacts our conclusion. Especially considering that there are many

properties of the Venusian Atmosphere that are not completely understood.

We are in a situation where it is not possible to accurately constrain the strength

of a claim on either side. This leads to various claims and subsequent debate about

the origin of Phosphine on Venus, without the ability to moderate the strengths of

those claims, from either side (life vs. non life), based on what we can reasonably

infer about the likelihood of a biosphere on Venus.

We can understand how the Bayesian approach can help us by outlining the result

obtained by [8], where it has been applied to quantify the probability that methano-

genesis (biotic methane production) might explain the excape rates of molecular

hydrogen and methan in Enceladus’s plume, as measured by Cassini instruments.

They find that the observed escape rates score the maximum likelihood under the

hypothesis of methanogenesis, assuming that the probability of life emerging is high

enough.

Instead if the probability of life emerging on enceladus is low, the Cassini mea-

surements are consistent with habitable yet unhabited hydorthermal vents and point
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to unknown sources of methane.

The results obtained from [8] show how the application of the Bayesian model for

inferring the presence of life within the solar system allows for a clear and rigorous

conclusions regarding the biogenicity of the phenomenon , depending on the prior

probability of life. In the future , it will be necessary to conduct a similar analysis

for Venus, which can then benefit from future data collected by in situ missions.
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Chapter 5

conclusions

As we have seen in chapter 2 the current state of gaseous biosignature science and
biomarkers more in general contain many different critical aspect that currently
undermine the strenght and reliability of the life detection claims. Some of the most
crucial are:

• Need for a more rigorous definition of biomarkers that is based on strong
theoretical framework.

• Need for a better universal accepted terminology in the field

• Need to clearly define our objectives when searching for biosignatures , whether
we are aiming to detect signs of life or sumply identifying a biosphere on an
exoplanet. This clarity is essential for effectively designing observations related
to life detection. Because in most of the cases the observations won’t teach
us anything new about life but just improving our statistics about exoplanets
biospheres. As outlined in [63].

The bayesian Framework , together with a strong theoretical theory of life, can
help to solve this problems.

As we have seen, the Bayesian framework can be a flexible and powerful tool
that helps guide and shape our future strategies for life detection,and solve many
current problems of the field, as well as support more rigorous and realistic claims
about our findings.

In Sections 3.1.9 and 3.2, we observed that in any situation where P (molecule|life) ≪
P (molecule|NL), a high posterior probability can only be achieved by having a very
high prior probability of life. However, this might never be a realistic scenario in
the future.

In such cases, repeated observations would not lead to an increase in the posterior
probability but rather to a steep decline.

Nevertheless, the subsequent results show that the combination of eliminating
possible false positives for a biomarker, or selecting a biomarker without false posi-
tives, along with a large number of observations that build large statistical samples,
can lead to obtaining posterior probabilities of high-confidence detection.

Furthermore, we saw that incorporating contextual information into the Bayesian
framework can help create scenarios where P (molecule|life) > P (molecule|NL), lead-
ing to high-confidence detection based on high posterior probabilities. This is par-
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ticularly helpful when we do not have the possibility of collecting a large number of
observations.

The sensitivity analysis performed on equations 3.11 showed that when we have
only a single observation, 60% of the uncertainty in biogenic assessment is due to
the uncertainty of the prior. However, when the detection reaches 7 biosignatures,
the effect of the prior becomes negligible, as demonstrated in [65]. The results
of the sensitivity analysis for equation 3.16, where the likelihood of the error is
also considered in the equation, shows that the influence of the prior’s uncertainty
becomes negligible only after detecting 15 biosignatures, which could pose problems
when the likelihood of error is not negligible.

Finally, in Section 3.3.2, using the results from [54], we observed how different
strategies can be followed depending on the value of P (life). If P (life) ≫ 0, it may
be sensible to target individual worlds and obtain high-resolution spectra. However,
if P (life) is very low, it might be more effective to take lower-resolution spectra of
more worlds to generate better statistics.

As I have outlined in section 3.4, there are different aspect of the Bayesian
framework that are critical and that come from the lack of a rigorous theoretical
framework about life origin. In the first example presented, I outlined how the lack
of a theoretical framework that could hlep to better constrain P (life) makes the
bayesian framework conceptually uncostrained , allowing for the possibility of hy-
phothesizing unknown methabolism , and life forms without a priori reasons within
the model to exclude them. For this reason, to successfully apply the framework,
it is necessary that the assumption regarding P (life) are based on solid theoretical
foundations. From this we can note how in one of the best strength of the bayesian
framework , which is the flexibility, relies its biggest weakness. As I have highlighted
, one example of this is the use of theories like Assembly theory. Then the biased
coin example has showed how high confidence detection claims using the bayesian
hypothesis testing requires either a strong prior hypothesis on the existence of life
in a given alien environment when we have false positives for the observaton or a
biosignature that lacks of false positives.

Then We have seen how the combination of the equation given by bayesian
hypothesis testing togheter with the ones provided by SDT can help to build a
quantifiable framework to classify the biosignatures during an observation.

Finally , in the last chapter ,I analyzed the recent alleged discovery of phosphine
on Venus as a case study that helps to understand many critical issues and key
aspects of life detection. As seen , it is not yet possible to infer with certainty the
presence of life based on the observations that reported detecting phosphine , both
due to the uncertainty of the observations itself and the current inability to rule out
all the possible false positives , despite various efforts to study them, the subject is
still highly debated. Phosphine on Venus remains a key example of how extremely
difficult is it to make high confidence claims regarding the presence of life , even on
planets so close to us. It also raises many doubts abut the realistic possibility of
making such claims regarding exoplanets , where in situ missions will not be possible
in the near future, and where life detection will essentially be a study of the presence
of biosphere in the galaxy rather than improving our theoretical framework on life.
Nevertheless , it could help us better define the values of Bayesian parameters. The
improvement of our theories on life and the science of life detection must start with
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the study of life in the lab and in the solar system, through both in situ and remote
mission, using a Bayesian framework to moderate conclusions about the presence or
absence of lfe on a planet as rigorously as possible.

Here I present a list of the possible ways in which astrobiology can in the future
better constrain the search for life:

1. Use Strong theoretical framework , like assembly theory to search for molecules
that have no false positives

2. Plan mission to make statistical analysis on the presence of the biosignatures
in order to better constrain the parameter of the bayesian framework and being
able to do more rigorous claims about life.

3. Use the Bayesian framework in order to choose the best strategy for the search
of exolife.

4. Trying to better define the difference between the search for life and the study
of the distribution of terrestrial biospheres.

5. Study life in the solar system with in situ observations, this will be crucial to
better constrain P(life).

6. Study life in the laboratory on Earth, exploring the chemical space in a system-
atic way in order to build stronger theoretical framework to asses biogenicity
of other planets.
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