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Abstract

The advent of quantum simulation platforms has motivated the study of new theoret-
ical “quantum circuit” models for the dynamics of quantum many-body systems. In
recent years, these models have revealed new many-body phenomena of physical inter-
est. A particularly important example is that of the so-called measurement induced
phase transitions. In this context, we will study systems that evolve through a uni-
tary circuit, which generates quantum entanglement, interspersed with local projective
measurements, which instead tend to destroy it. By increasing the frequency of these
measurements, a transition between two phases is observed, in which the entanglement
passes from a “volume-law” to an “area-law”. The goal of this thesis is to study circuit
dynamics that can be mapped onto non-interacting fermions. In this context, recent
studies have demonstrated the absence of a phase transition. The objective of the thesis
is to investigate whether changes to the standard measurement protocol can lead to the
appearance of a transition.
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Introduction

Quantum dynamical phenomena have typically been employed to explore the universal
characteristics of quantum condensed matter at low temperatures and near equilibrium.
On the other hand, given that quantum coherence is easily disrupted at elevated tem-
peratures, one might assume that quantum matter far from its ground state would not
display universal dynamics that are uniquely quantum. However, the study of out-of-
equilibrium dynamics in lattice models ([1], [2], [3], [4]) and quantum field theories ([5],
[6]) has demonstrated that universal patterns can arise in quantum correlations and the
entanglement structures within many-body systems.

These studies have been intensified by the advent of quantum simulation platforms[7].
Nowadays, Quantum Simulation and Quantum Computing have Noisy Intermediate-
Scale Quantum (NISQ) technology at their disposal [8]. NISQ devices are quantum
system that have up to hundreds of qubits, which are affected by noise. In particular,
the development of digital quantum simulators allow for a greater degree of control of
the studied systems’ dynamics. Indeed the evolution on digital quantum simulators is
discrete in time and it is done via unitary gates, measurements and feedback, which lead to
the study new theoretical “quantum circuit” models for the dynamics of quantum many-
body systems, which revealed new many-body phenomena [9]. In these models a lattice
of spins (qubits) evolve under local unitary gates and measurements and the discrete time
structure (the so called “quantum circuit” [10]) recalls the trotterization of continuous
time Hamiltonians. A minimally-structured unitary quantum circuit which lacks any
symmetries or other special properties will rapidly bring the system into a steady-state
that is locally completely disordered, in the sense that local observables reproduce an
infinite-temperature statistical ensemble. The study of new quantum phenomena involves
quantities typical of theoretical quantum information, such as the entanglement entropy,
which is a measure of the correlations that is non linear in the reduce density matrix of
a subsystem.

In such models, the application of local unitaries brings the system toward a local
thermal equilibrium and the understanding the irreversible nature of this thermaliza-
tion process [11] requires the understanding of the production of quantum many-body
entanglement. When measurements are introduced in the discrete evolution of a quan-
tum circuit, new quantum dynamical phenomena appear. In this thesis we will focus
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on one of such phenomena, namely measurement induced phase transitions ([12], [13]).
Indeed, under weak monitoring the wavefunction describing the system is highly entan-
gled, whereas for sufficiently frequent measurements the wavefunction remains close to
a product state, which is less entangled. These phase and the transition between them
can be mapped to effective classical statistical models ([14], [15]) and many monitored
many-body systems have been studied ([16], [17],[18],[19],[20] and more).

However the experimental validation of such studies proves to be challenging ([21],
[22]) and means to study large system through classical simulations prove to be necessary
for numerical studies of such phenomena. In this context, non interacting fermionic
dynamics can be efficiently simulated on classical computers [23]. Therefore we will
study free-fermionic dynamics that can be mapped onto quantum circuits and analyze
the evolution of the entanglement entropy in such systems under monitored dynamics.
In this context it has been proven that simple projective measurements do not allow for a
measurement induced phase transition ([24], [25]), therefore we will investigate whether
modification to the measurement procedure can instead lead to the appearance of such
a transition. The structure of this thesis is outlined below.

In Chap. 1 we review the basic concepts and methods of Quantum Many-Body
Physics, Statistical Mechanics and Quantum Information needed to investigate the topic
of measurement induced entanglement phase transitions [9]. First of all, the concept of
entanglement entropy ([10]) is introduced in Sec. 1.1. Then, in Sec. 1.2, we look at the
quantum gates that can be mapped onto non-interacting fermions via the Jordan-Wigner
transformation ([26]). Afterwards, in Sec. 1.3, we describe fermionic Gaussian states
([27]), introducing the correlation matrix as a means to efficiently simulate the system
and extract information from it, concentrating on number conserving Hamiltonians. To
conclude the first chapter we review, in Sec. 1.4 the concept of measurement in Quantum
Mechanics ([10]), focusing on projective measurements and weak measurements, which
will be used throughout this thesis.

In Chap. 2 we describe measurement induced entanglement phase transitions, de-
scribing the mechanism that can bring to their appearance and the main features of the
related phase diagram (Sec. 2.1, 2.2). Furthermore, in Sec. 2.3, we describe more deeply
the concept of quantum trajectories, which was already introduced in Sec. 1.4.

In Chap. 3 we study the time evolution of the entanglement entropy under unitary
dynamics. We do this for the well known Hamiltonian evolution and also for brickwork
circuits. More precisely, in Sec. 3.1, we briefly describe why it is interesting to map
physical Hamiltonians to quantum circuits with the objective to carry out quantum
simulations ([7]). Then, in Sec. 3.2, we describe the behaviour of the entanglement
entropy under continuous unitary dynamics, introducing the quasiparticle-picture as a
semi-classical interpretation of the entanglement entropy’s behaviour [28]. Finally in
Sec. 3.3 we prove how the brickwork circuit evolution reproduces the continuous one
in a certain limit. Moreover in Sec. 3.3.1 there is the first original result of this thesis,
namely the definition the quasiparticle picture for a brickwork circuit that can be mapped
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onto free fermions.
At last, in Chap. 4 we introduce measurements in the dynamics of free-fermionic

chains. In Sec. 4.1 we first review the entanglement entropy behaviour for a free-
fermionic dynamics containing local projective measurements [24]. Since in such model
there is a crossover and not a phase transition, we proceed studying two original models.
In Sec. 4.2 we study a fermionic chain placed side by side with an ancillary fermionic
chain. In this context we implement a procedure which drives the system towards a target
state and which presents projective measurements on the ancillary system, demostrating
how also for this model there is no phase transition, since the volume-law phase is not
stable. Therefore in Sec. 4.3 we introduce a weak non-linear measurement on a free-
fermionic chain, which seeks a stable volume-law phase. In this model, we provide results
suggesting the existence of two different phases, a volume-law and an area-law phase.
However, to have conclusive results, the study of the thermodynamic limit should be
done, which, though, was not possible due to computational resource limitations.

5



Chapter 1

Background

This chapter will contain all the building blocks needed for the models that will be
discussed in this thesis. As mentioned in the introduction, this work addresses the
phase transition observed for the entanglement entropy when random measurements are
introduced into the standard unitary evolution of a closed quantum system. Since the
models that will be studied in this thesis are brickwork circuits that can be mapped
onto free-fermions, in Sec. 1.2 we will describe such circuits and then we will analyze
which quantum gates can be mapped onto quadratic (free) fermionic operators via the
Jordan-Wigner transformation, explaining why it is interesting to study such models.
Free fermionic system can be described as Fermionic Gaussian States, hence these will
be defined in Sec. 1.3. Here we will explain how to take advantage of the fact that a
fermionic chain can be described with this formalism. Indeed all the information about
such systems is encoded in the correlation matrix, thus the study of its evolution permits
to simulate such system efficiently on a classical computer. Moreover we will focus on how
to extract the entanglement entropy and the local density from the correlation matrix,
since this will be necessary in Chap. 3, 4. In addition, in Sec. 1.3.6, we will focus on
the analysis of system with a Hamiltonian that conserves the number of fermions, since
this is the first model that we will analyze in Chap. 3 and since it will be the basis for
the other models analyzed in this thesis.

Furthermore we will introduce the concept of measurement in Quantum Mechanics.
Here, starting from projective measurements, we will introduce the fundamental concept
of quantum trajectories, which are clearer in this context, with respect to the case of
weak measurements, that will also be introduced, since they will be widely employed in
Chap. 4.

Finally we specify that throughout this thesis we will study quantum many-body
systems composed of two-level systems, which are organized in a one-dimensional chain.
These two level system can be viewed as spin systems, with spin 1/2, as qubits and also
as fermionic states. In the following these different views will all be employed, however
we will refer to the two-level systems mainly as qubits, when we will be talking about
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circuit models, as for example in Sec. 1.2, and as fermions, when we will do the Jordan-
Wigner transformation and when we will address fermionic Gaussian states (Sec. 1.3).
Finally in Sec. 1.4 we will review the concept of measurements in quantum mechanics,
focusing on the cases that are relevant for this thesis, i.e. projective measurements and
generalized measurements.

1.1 Entanglement Entropy

In the following, we denote the Hilbert space by H. To describe the quantum states
we will use both the state vector formalism, i.e. we will denote states |ψ⟩ ∈ H, and
the density matrix formalism, i.e. ρ ∈ S(H), where S(H) is the space of all quantum
states. We will consider quantum systems composed by N two-level systems, for which
H = (C)⊗N .

For a quantum system defined by a pure state, the physical quantity that determines
the amount of correlation between two parts of the system is the entanglement entropy.
Consider a quantum many-body system composed by N two-level systems (this defini-
tion applies to any composite quantum system), described by a wavefunction |Ψ⟩, with
corresponding density matrix ρΨ = |Ψ⟩ ⟨Ψ|. Then the system is bipartitioned into two
subsystems A and B. The state of a portion of the system is described by the reduced
density matrix. The reduced density matrix for the subsystem A id defined as

ρA = TrB(ρΨ), (1.1)

where the TrB is the partial trace over subsystem B [10]. Before arriving at the definition
of the entanglement entropy, we must introduce an operation that quantifies the entropy
itself. Throughout this work, this quantity will be the Von-Neumann entropy, defined
as, for a quantum state ρ:

SV (ρ) = −Tr[ρ log ρ], (1.2)

where the logarithm is usually chosen to be in base 2 or base e. The only difference
between the two entropies thus defined is a multiplicative factor. Throughout these
thesis we chose the base 2 for the logarithm. The Von-Neumann entropy has some
important properties:

1. Let ρ ∈ S(H), where dim(H) = d. Then 0 ≤ SV (ρ) ≤ log(d).

2. SV (ρ) = 0 if and only if ρ is a pure state, whereas SV (ρ) = log(d) if and only if
ρ = 1̂/d, namely if and only if ρ is maximally mixed.

3. The Von-Neumann entropy is additive, namely if ρAB = ρA ⊗ ρB, SV (ρAB) =
SV (ρA) + SV (ρB).
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4. The Von-Neumann entropy satisfies concavity: ∀ {pj}, {ρj}, with
∑

j pj = 1, pj ≥
0, and ρj ∈ S(H), we have that

SV

(∑
j

pjρj

)
≥

∑
j

pjSV (ρj). (1.3)

Remark. The Von-Neumann entropy can be related to the Shannon entropy. Given a
classical distribution function {pj}, the Shannon entropy is:

S({pj}) = −
∑
j

pj log pj. (1.4)

Thus the Von-Neumann entropy is the Shannon entropy of {λj}, where {λj} are the
eigenvalues of ρ, because of the properties of the eigenvalues of a density matrix, namely
λj ≥ 0 ∀ j and

∑
j λj = 1.

Now we can introduce the entanglement entropy, which quantifies the entanglement
of a state.

Definition 1.1.1. (Entanglement Entropy) Let |ψAB⟩ ∈ HA⊗HB. The entanglement
entropy (EE) is defined as

EAB(ψAB) = SV (ρA). (1.5)

Moreover, given the definition, the entanglement entropy derives the properties of
the Von-Neumann entropy.

Remark. For a system in a pure state, for instance |ΨAB⟩, we have that SV (ρA) = SV (ρB),
which can be easily seen using the Schmidt’s decomposition. Therefore, the entanglement
entropy can be computed from both ρA and ρB [10].

Remark. For a system in a mixed state, the just defined EE looses its meaning. As a
matter of fact, suppose that ρAB ∈ S(HA ⊗HB) is mixed, for example let

ρAB =
1

2
|00⟩ ⟨00|+ 1

2
|11⟩ ⟨11| , (1.6)

which is a separable state, thus not entangled. However one can easily see that ρA = 1̂/2,
hence EAB = SV (ρA) = 2 ̸= 0.

1.2 Quantum Gates

Throughout this thesis we will discuss free-fermionic models that can be mapped onto
quantum circuits (and vice-versa), for reasons that will be thoroughly explained i Sec.
3.1. Quantum circuit models with nearest neighbour interactions are called brickwork
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Figure 1.1: Sketch of a brickwork circuit. Here a spin is positioned one each site of the
chain. The blue boxes represent unitary operators on nearest neighbours spins, while the
wires represent the evolution of the spins.

circuits. In this models neighbouring qubits interact via a unitary operators Uj,j+1. The
evolution of the whole system is done applying such unitaries in layers, namely these
unitaries are applied first for all odd js in the chain, then for all even js in the chain, as
shown in Fig. 1.1.

In the following, the studied quantum many-body systems will undergo the usual
unitary evolution, which will then be modified introducing random measurements during
the evolution. We are interested in studying free-fermionic dynamics, therefore in this
section we will introduce the Jordan-Wigner transformation, which maps spin operators
onto fermionic operators, and we will see what type of gates quadratic fermionic operators
generate. Since we are interested in Hamiltonians that can be mapped onto brickwork
circuits, we look at the possible one ant two-qubit operators. First of all we recall that
any Hermitian one-qubit operator may be written as a linear combination of the three
Pauli matrices plus the identity [10], i.e.

I =

(
1 0
0 1

)
σx ≡ X =

(
0 1
1 0

)
σY ≡ Y =

(
0 −i
i 0

)
σZ ≡ Z =

(
1 0
0 −1

)
, (1.7)

in the form
O =

∑
A∈{I,X,Y,Z}

cAA = cII + cXX + cY Y + cZZ, (1.8)

where the coefficients are given by cA = Tr(AO). For a pair of qubits, any Hermitian
operator can be written as a sum of tensor products of these operators acting on the two
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qubits, for example (Y1 = Y ⊗ I). Since the above described operators are Hermitian,
they will lead to a unitary evolution. We now see how to map these operators onto
free-fermionic operators.

1.2.1 The Jordan-Wigner transformation

It is well known, from standard Quantum Mechanics, that for a single spin 1/2, the
three components of the spin-operators are represented by the Pauli matrices σα, with
α = x, y, z. The Hilbert space for a single spin 1/2 is two-dimensional and a basis is, for
instance, {|↑⟩ , |↓⟩}, which is the basis of eigenstates of σz. If now we take a lattice with
sites labelled by j, we have

[σα
j , σ

β
j′ ] = 2iϵαβγσγ

j δjj′ . (1.9)

Defining the raising and lowering operators

σ±
j =

σx
j ± iσy

j

2
, (1.10)

one can easily verify that, using {σα, σβ} = 2δαβ,

{σ+
j , σ

−
j } = 1, (1.11)

which is the typical fermionic anticommutation rule in second quantization. After these
preliminary considerations, we can start to look at the mapping between spin operators
and fermionic operators.

Take fermionic creation and annihilation operators c†j, cj which satisfy the anticom-
mutation rules1:

{ci, c†j} = δij {ci, cj} = 0 = {c†i , c
†
j}. (1.12)

Now, going back at the 1D chain, we can relate the vectors of the basis of the fermions
to the ones of the spin 1/2, in a non-unique way [29]. For instance we take |0⟩ ↔ |↑⟩
and |1⟩ = c† |0⟩ ↔ |↓⟩ on each site. Recalling the raising and lowering operators, the
fact that σ+ |↓⟩ = |↑⟩, σ− |↑⟩ = |↓⟩, and that σz = 1− 2σ−σ+, we get the Jordan-Wigner
transformations [26]:

σ+
j = eiπ

∑
k<j c

†
kckcj =

j−1∏
k=1

(1− 2c†kck)cj, (1.13)

σ−
j = eiπ

∑
k<j c

†
kckc†j =

j−1∏
k=1

(1− 2c†kck)c
†
j, (1.14)

σz
j = 1− 2c†jcj. (1.15)

1One can also have anti-commutation rules of the Clifford algebra, which define the Majorana
fermions.
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We can also write the Jordan-Wigner transformations for the operators σx
j , σ

y
j , σ

z
j , re-

calling Eq. (1.10). 
σx
j =

∏j−1
k=1(1− 2c†kck)(c

†
j + cj),

σy
j =

∏j−1
k=1(1− 2c†kck)i(c

†
j − cj),

σz
j = 1− 2c†jcj.

(1.16)

A question now arises naturally: what types of gates can be mapped onto operators
between free fermions? Indeed, tackling quantum many-body problems is not easy.
Furthermore, when one seeks a numerical solution, the number of memory required to
store quantum information grows exponentially on a classical computer. For example
for N spin 1/2 particles, there are 2N basis states, thus needing 2N complex variables
to store this information. This problem with dimensionality could be solved by the rise
of quantum computers, for which, in the example at hand, just N qubits are needed,
thus having a linear complexity in the number of qubits, instead of an exponential one.
Therefore to simulate the evolution of a many-body Hamiltonian on a quantum computer
we need to be able to map the Hamiltonian into a quantum circuit. Here we will show
how to map free-fermionic Hamiltonians onto gates, which are employed in quantum
computers, with the Jordan-Wigner transformation. Moreover this mapping is bijective,
namely we can map a spin or qubit system onto a fermionic system. This will be useful
in Chap. 3, where we will try to tackle the problem of simulating a quantum circuit
using the formalism of fermionic Gaussian states (which will be introduced in Sec. 1.3).
Therefore we will see what types of gates a number conserving free-fermionic Hamiltonian
generates, since this is the case that we will analyze in this thesis.

The most general number conserving quadratic Hamiltonian is such as:

H =
∑
i,j

(αi,jc
†
icj + α∗

i,jc
†
jci), (1.17)

where α is a complex parameter. We will be dealing with brikwork circuits (Fig. 3.6).
In this case Eq. (1.17) will be a sum over nearest neighbours Hamiltonians of the kind:

Hi,i+1 ∝ c†ici + c†i+1ci+1 + c†ici+1 + c†i+1ci. (1.18)

To see which gates can be generated with this Hamiltonian we consider the Eq. (1.13),
(1.14), (1.15), the fact that Pauli matrices are unitary and the fact that

j−1∏
j′=1

(1− 2nj′) =

j−1∏
j′=1

σz
j′ . (1.19)
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Hence we get that the Jordan-Wigner transformation can be written as:

c†j =
( j−1∏
j′=1

σz
j′

)
σ−
j , (1.20)

cj =
( j−1∏
j′=1

σz
j′

)
σ+
j . (1.21)

Now we plug these transformations into the terms of Eq. (1.18), where one can easily
see how from the diagonal terms σz gates pop out, whereas from the non-diagonal terms
combinations of σx and σy gates pop out:

c†ici =
( i−1∏
i′=1

σz
i′

)
σ−
i

( i−1∏
i′=1

σz
i′

)
σ+
i = σ−

i σ
+
i =

1

2
(1− σz

i ) ∝ σz
i , (1.22)

c†ici+1 =
( i−1∏
i′=1

σz
i′

)
σ−
i

( i∏
i′=1

σz
i′

)
σ+
i+1 = σ−

i σ
z
i σ

+
i+1

∝ σx
i σ

x
i+1 + σy

i σ
y
i+1 + i(σx

i σ
y
i+1 + σy

i σ
x
i+1).

(1.23)

Thus we can map free fermions into the gates: σz
j , σ

z
j+1, σ

x
j σ

x
j+1, σ

y
jσ

y
j+1, σ

x
j σ

y
j+1, σ

y
jσ

x
j+1.

This set of gates generates the so called nearest neighbour matchgates, which are defined
as [23]:

Definition 1.2.1. (Matchgate) Let G(A,B) be the two-qubit gate given by:

G(A,B) =


A11 0 0 A12

0 B11 B12 0
0 B21 B22 0
A21 0 0 A22

 (1.24)

where

A =

(
A11 A12

A21 A22

)
B =

(
B11 B12

B21 B22

)
(1.25)

Then G(A,B) is a matchgate if detA = detB.

The sets of gates Ai,j = {σz
i , σ

z
j , σ

x
i σ

x
j , σ

y
i σ

y
j , σ

x
i σ

y
j , σ

y
i σ

x
j } generate all gates G(A,B)

acting on qubits i, j. Free fermions generate gates in the set Ai,i+1, namely free fermions
generate nearest neighbours matchgates. Nevertheless, free fermions can generate multi-
qubit gates when we let go of the assumption of nearest neighbour interaction. In [30]
it has been shown that a circuit generated with free fermions can be implemented by a
poly-sized circuit of nearest neighbours matchgates, thus it is computationally equivalent
to nearest neighbours matchgates.
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1.3 Fermionic Gaussian States

In the previous section we saw the mapping between spin operators and fermionic op-
erators. We also saw how a free-fermionic dynamics can be efficiently simulated on a
classical computer, thus now we will introduce the formalism needed to deal with such
dynamics. Indeed Fermionic Gaussian States (FGS) have the handy property that all
the information about the system can be extracted from the correlation matrix, which
is a 2N × 2N matrix, being N the number of sites in the 1D chain. Thus, if we want
to study the evolution of a chain with N sites, which has a Hilbert space of dimension
2N , and the evolution can be mapped into a free-fermion evolution, the dynamics is re-
duced to the study of the evolution of the correlation matrix, namely operations between
2N × 2N square matrices, which can be computed efficiently on a classical computer.
Therefore in this section we will describe fermionic quadratic Hamiltonians, then define
what is a fermionic Gaussian state and the associated correlation matrix and how it
evolves under a quadratic Hamiltonian. At a later time the technique to extract the
entanglement entropy from the correlation matrix will be described. Finally we will an-
alyze the case of a dynamics which conserves the number of fermions in the chain, since
in Chap. 3 and 4 we will deal with such case.

1.3.1 Fermionic Quadratic Hamiltonians

The distruction and creation operators ci,c
†
i satisfying the anti-commutation rules

{ci, c†j} = δij {ci, cj} = 0 = {c†i , c
†
j}, (1.26)

and they represent the action of adding and removing one fermionic mode. We can
collect the Dirac operators of a system with N modes in a vector α⃗ with 2N elements2:

ˆ⃗α =



c1
...
cN
c†1
...

c†N


ˆ⃗α† = (c†1, . . . , c

†
N , c1, . . . , cN). (1.27)

The most general fermionic quadratic Hamiltonian on a lattice with N sites can be
written as:

Ĥ =
N∑

i,j=1

(
Aijc

†
icj − A∗

ijcic
†
j +Bijcicj −B∗

ijcic
†
j

)
, (1.28)

2One could also introduce the Majorana representation, however we will skip this, since they will not
be used in this thesis.
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where A is a Hermitian matrix (A† = A) and B is an skew-symmetric complex matrix
(B = −BT ). Thus defining the matrix

H̃ =

(
A −B∗

B −A∗

)
, (1.29)

the Hamiltonian can be written in a compact from as:

Ĥ = ˆ⃗α†H̃ ˆ⃗α. (1.30)

To diagonalize the Hamiltonian we apply a canonical transformation:(
c
c†

)
=

(
U V ∗

V U∗

)(
b
b†

)
, (1.31)

or equivalently ˆ⃗α = S ˆ⃗
β. Looking at each component:

ci = Uiaba + V ∗
iab

†
a, (1.32)

c†i = Viaba + U∗
iab

†
a. (1.33)

In order for this to be a canonical transformation, the anticommutation rules must be
conserved, namely

{bi, b†j} = δij {bi, bj} = 0 = {b†i , b
†
j}. (1.34)

This means that the transformation is unitary:

S†S = SS† = I. (1.35)

From the condition S†S = I we find that:(
U † V †

V T UT

)(
U V ∗

V U∗

)
=

(
U †U + V †V U †V ∗ + V †U∗

V TU + UTV V TV ∗ + UTU∗

)
=

(
I 0
0 I

)
, (1.36)

from which this conditions follow:
U † U + V †V = I

U †V ∗ + V †U∗ = 0

V TU + UTV = 0

V TV ∗ + UTU∗ = I.

(1.37)

We can also write
ˆ⃗
β = S† ˆ⃗α, which gives the inverse transformations:

ba = U∗
aici + V ∗

aic
†
i (1.38)

b†a = Vaici + Uaic
†
i . (1.39)
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Now we require that the transformed Hamiltonian is diagonal, namely

S†H̃S = E =

(
E 0
0 −E

)
. (1.40)

At this point the Hamiltonian is in the diagonal form:

H =
∑
a

Ea(b
†
aba − bab

†
a). (1.41)

1.3.2 Fermionic Gaussian States

We can now introduce the concept of Fermionic Gaussian States [27].

Definition 1.3.1. (Fermionic Gaussian States) A state ρ is a fermionic Gaussian
state (FGS) if it can be represented as

ρ =
e−H

Z
(1.42)

where Z = Tr[e−H ] is a normalization constant andH is a fermionic Gaussian (quadratic)
Hamiltonian (FQH).

One can see how fermionic Gaussian states have an immediate interpretation as
thermal Gibbs states of the fermionic quadratic Hamiltonian. Furthermore, because of
the evenness of the FQH, since FGS are exponential of FQH, fermionic Gaussian states
are even operators. To better understand the handy properties of these states we look
at an example.

Example 1.3.1. (Single mode Gaussian state) As a first example we consider a
single mode parent Hamiltonian H1 = E(b†b − bb†). The related Gaussian state is
ρ = exp(−H1)/Z1. Its representation on the basis {|0⟩ , |1⟩} can be written as

ρ =

(
f 0
0 1− f

)
(1.43)

where f = ⟨0|ρ|0⟩ and the two off-diagonal entries are 0 because of the evenness of H1.

Now we prove an important property of single mode fermionic Gaussian states.

Proposition 1.3.1. A single mode fermionic Gaussian state is completely characterized
by the occupation ⟨b†b⟩.
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Proof. We saw that in the {|0⟩ , |1⟩} basis the fermionic Gaussian state ρ is represented
in terms of f = ⟨0|ρ|0⟩ (Eq. (1.43)). Now f = ⟨0|ρ|0⟩ = Tr[ρ]− ⟨1|ρ|1⟩. Also Tr[ρ] = 1
because ρ is a state, i.e. a density matrix. Since b†b |0⟩ = 0 and b†b |1⟩ = 1, we can write

f = 1− ⟨0|ρb†b|0⟩ − ⟨1|ρb†b|1⟩ = 1− Tr[ρb†b]. (1.44)

Since Tr[ρb†b] = ⟨b†b⟩, we have
⟨b†b⟩ = 1− f (1.45)

and we can finally write

ρ =

(
1− ⟨b†b⟩ 0

0 ⟨b†b⟩

)
, (1.46)

thus obtaining Eq. (1.43).

1.3.3 Correlation Matrices

We have seen that each single mode Gaussian state is completely characterized by its
occupation number. Furthermore we have also seen that a fermionic quadratic Hamil-
tonian can always be diagonalized. This means that the Hamiltonian will be a sum of
commuting single-mode Hamiltonians, which makes possible to write

ρ =
e−

∑N
k=1 Ek(b

†
kbk−bkb

†
k)

Z
=

N⊗
k=1

e−Ek(b
†
kbk−bkb

†
k)

Zk

, (1.47)

where Zk = Tr[e−Ek(b
†
kbk−bkb

†
k)]. We can also write it in the from

ρ =
N⊗
k=1

ρk =
N⊗
k=1

(
fk 0
0 1− fk

)
, (1.48)

where fk = ⟨0|ρk|0⟩. Thus in this last case the state is fully characterized by the set of
occupation numbers {⟨b†ibi⟩}Ni=1. Exploiting the inverse transformations in Eq.(1.39), we
see that the fermionic Gaussian state is completely characterized by the collection of the
correlators ⟨c†icj⟩, ⟨cicj⟩, and their Hermitian conjugates, which can be collected in the
so called correlation matrix [27].

Definition 1.3.2. (Correlation Matrix)

Γ ≡ ⟨α⃗α⃗†⟩ =
(
Γcc† Γcc

Γc†c† Γc†c

)
, (1.49)

where, clarifying the indexes, Γc†c
i,j = ⟨c†icj⟩, Γcc

i,j = ⟨cicj⟩. Because of the fermionic

anticommutation rules, Γcc
ij = −(Γc†c†

ij )∗ and Γcc†
ij = (I −Γc†c)†ij. Thus Γ is Hermitian, Γcc

and Γc†c† are skew-symmetric, Γcc† and Γc†c are Hermitian.
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Notice now that Wick’s theorem states that every correlation function may be decom-
posed into a sum of two-point correlation functions [31]. Thus any correlation function
can be expressed as a sum of elements of the correlation matrix Γ.

Example 1.3.2. Four point correlation function Let’s see as an example how we
can compute the four-point correlation function ⟨ψ|cicjckcl|ψ⟩ in terms of two-point
correlation functions, using Wick’s theorem. We have to keep in mind that fermionic
operators anti-commute, so in the end:

⟨ψ|cicjckcl|ψ⟩ = ⟨ψ|cicj|ψ⟩ ⟨ψ|ckcl|ψ⟩ − ⟨ψ|cick|ψ⟩ ⟨ψ|cjcl|ψ⟩
+ ⟨ψ|cicl|ψ⟩ ⟨ψ|cjck|ψ⟩
= Γcc

ijΓ
cc
kl − Γcc

ikΓ
cc
jl + Γcc

il Γ
cc
jk,

(1.50)

thus showing how any correlator can be written as a sum of products between elements
of the correlation matrix.

While discussing the entanglement entropy we will be interested in the eigenvalues
of the correlation matrix. Notice how, in the case of a Gaussian state like the one in Eq.
(1.48), the correlation matrix is diagonal:

Γ = diag(f1, . . . fN , 1− f1, . . . , 1− fN). (1.51)

Moreover, even if the parent Hamiltonian of the Gaussian state has not been diagonal-
ized, thus yielding a correlation matrix as the one in Eq. (1.49), the correlation matrix
is Hermitian, thus it exists a unitary transformation V that brings a non diagonal cor-
relation matrix to a diagonal form as the one in Eq. (1.51).

1.3.4 Entanglement Entropy from the Correlation Matrix

We saw in Sec.1.1, that Eq. (1.5) quantifies the entanglement entropy for a pure state.
In this section we have introduced fermionic Gaussian states and we now address the
problem of extracting the entanglement entropy for such states. Given the fact that the
Von-Neumann entropy is additive for product states, if we deal with a Gaussian state as
the one in Eq. (1.48), we get:

S(Γ) ≡ S(ρ) = −
N∑
k=1

[(1− fk) log(1− fk) + fk log(fk)]. (1.52)

What we will be studying is the bipartite entanglement, in a 1D chain with N sites,
between a set of contiguous L qubits, which form a block of qubits that we will denote
as BL, and the qubits in the rest of the chain, which form a block of qubits that we will
call BL̄. This means that we will measure the following entropy, parametrized by L:

SL ≡ −Tr[ρL log(ρL)], (1.53)
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where ρL = TrBL̄
[ρ] is the reduced density matrix.

Since we are concerned with free-fermionic Hamiltonians, the states we will consider
will be Gaussian states, which are completely characterized by their correlation matrix.
We will thus see how to extract the entanglement entropy from the correlation matrix [32].
If the Hamiltonian has not been previously diagonalized, the corresponding correlation
matrix will have the shape as the one in Eq. (1.49). To be more explicit:

Γ =



⟨c1c†1⟩ ⟨c1c†2⟩ . . . ⟨c1c†N⟩ ⟨c1c1⟩ ⟨c1c2⟩ . . . ⟨c1cN⟩
⟨c2c†1⟩ ⟨c2c†2⟩ . . . ⟨c2c†N⟩ ⟨c2c1⟩ ⟨c2c2⟩ . . . ⟨c2cN⟩
...

...
. . .

...
...

...
. . .

...

⟨cNc†1⟩ ⟨cNc†2⟩ . . . ⟨cNc†N⟩ ⟨cNc1⟩ ⟨cNc2⟩ . . . ⟨cNcN⟩
⟨c†1c

†
1⟩ ⟨c†1c

†
2⟩ . . . ⟨c†1c

†
N⟩ ⟨c†1c1⟩ ⟨c†1c2⟩ . . . ⟨c†1cN⟩

⟨c†2c
†
1⟩ ⟨c†2c

†
2⟩ . . . ⟨c†2c

†
N⟩ ⟨c†2c1⟩ ⟨c†2c2⟩ . . . ⟨c†2cN⟩

...
...

. . .
...

...
...

. . .
...

⟨c†Nc
†
1⟩ ⟨c†Nc

†
2⟩ . . . ⟨c†Nc

†
N⟩ ⟨c†Nc1⟩ ⟨c†Nc2⟩ . . . ⟨c†NcN⟩


(1.54)

Since we need the reduced density matrix ρL for the qubit block BL in order to compute
the EE, we need to extract the correlation matrix for the subsystem BL. To achieve this
we eliminate 2(N − L) contiguous columns and rows from the correlation matrix of Eq.
(1.54), namely those corresponding to the (N − L) traced out spins. This procedure
gives the correlation matrix ΓL for the state ρL. Take for instance the first L spins in
the chain to be BL, then:

ΓL =



⟨c1c†1⟩ . . . ⟨c1c†L⟩ ⟨c1c1⟩ . . . ⟨c1cL⟩
...

. . .
...

...
. . .

...

⟨cLc†1⟩ . . . ⟨cLc†L⟩ ⟨cLc1⟩ . . . ⟨cLcL⟩
⟨c†1c

†
1⟩ . . . ⟨c†1c

†
L⟩ ⟨c†1c1⟩ . . . ⟨c†1cL⟩

...
. . .

...
...

. . .
...

⟨c†Lc
†
1⟩ . . . ⟨c†Lc

†
L⟩ ⟨c†Lc1⟩ . . . ⟨c†LcL⟩


. (1.55)

To compute the Von-Neumann entropy we need the eigenvalues of the correlation
matrix. As a matter of fact, we saw that the correlation matrix is Hermitian and deleting
contiguous rows and columns does not change this fact. Thus, also ΓL is hermitian and
therefore it exists a unitary matrix V that brings ΓL in a diagonal form. Also notice that
if we had already diagonalized the free fermionic Hamiltonian, we would have already a
diagonal correlation matrix (see Eq. (1.48),(1.51)), from which, to get ΓL we delete the
rows and columns associated to the traced out spins.
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1.3.5 Time evolution of the correlation matrix

We will now address the matter of how the correlation matrix evolves. The evolution of
a quantum system is described by the evolution operator

U(t) = e−iHt, (1.56)

where we takeH to be a quadratic Hamiltonian, thus allowing the usage of the correlation
matrix for numerical simulations. A state |ψ0⟩ evolves as:

|ψ(t)⟩ = U(t) |ψ0⟩ . (1.57)

We are now interested to see how the correlation matrix is evolved by the evolution op-
erator in Eq. (1.56). Naming Cij any combination of creation and destruction operators
at sites i, j, and given Eq. (1.57), the matrix elements of the correlation matrix at time
t will be given by:

Γi,j(t) = ⟨ψ0|U †(t)Ci,jU(t)|ψ0⟩ = ⟨ψ0|eadiHtCi,j|ψ0⟩ , (1.58)

where adA(B) = [A,B] is the so called adjoint action, which is a linear operator acting
on the space of operators.

Proof. Expanding the exponents, with a direct computation one finds:

e−ABeA = B + [B,A] +
1

2
[[B,A], A] + . . . (1.59)

Defining the adjoint action as adA(Y ) = [A, Y ], let’s compute

eadA(B) = (1 + adA +
1

2!
(adA)

2 + . . . )(B)

= B + [A,B] +
1

2!
adA([A,B]) + . . .

= B + [A,B] +
1

2
[A, [A,B]] + . . .

(1.60)

Using the fact that [−A,B] = −[A,B] = [B,A], we can write

ead−A(B) = (1 + ad−A +
1

2!
(ad−A)

2 + . . . )(B)

= B + [−A,B] +
1

2
ad−A([−A,B]) + . . .

= B + [B,A] +
1

2
ad−A([B,A]) + . . .

= B + [B,A] +
1

2
[−A, [B,A]] + . . .

= B + [B,A] +
1

2
[[B,A], A] + . . . ,

(1.61)
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thus prooving that e−ABeA = ead−A(B). In our specific case we have A ≡ −iHt and
B ≡ Cij.

Therefore, the time evolution of the full correlation matrix is

Γ(t) =

(
Γcc†(t) Γcc(t)

Γc†c†(t) Γc†c(t)

)
, (1.62)

where for each matrix element Γi,j we apply the rule in Eq. (1.58).

1.3.6 Number Conserving Hamiltonians

The number conserving Hamiltonian for a chain with N sites is

Ĥ =
N∑

i,j=1

(Aijc
†
icj + A∗

jic
†
jci), (1.63)

because the other two terms in the general quadratic Hamiltonian (Eq. (1.28)) do not
commute with the number operator N̂ =

∑
i c

†
ici, namely [ni, cjck] ̸= 0 and [ni, c

†
jc

†
k] ̸= 0.

Moreover we can rewrite this in the following form:

Ĥ =
N∑

i,j=1

(Aij + A∗
ji)c

†
icj =

N∑
i,j=1

Hijc
†
icj, (1.64)

where we have defined Hij = Aij + A∗
ji. We can now see how the Hamiltonian operator

can be represented by an N × N matrix. Indeed one can define, similarly to what we
have done before, the vectors

ˆ⃗α =

c1,...
cN

 ˆ⃗α† = (c†1, . . . , c
†
N) (1.65)

and thus the Hamiltonian is represented by the N ×N matrix

H = A+ A†, (1.66)

thus giving
Ĥ = ˆ⃗α†H ˆ⃗α. (1.67)

Furthermore, since the Hamiltonian is Hermitian, the matrix H can be diagonalized.
Let ϕk(i) be the eigenstates of H with eigenvalues ϵk, then the transformation to new
fermionic operators

ci =
N∑
k=1

ϕk(i)ak (1.68)
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diagonalizes Ĥ:

Ĥ =
N∑
k=1

ϵka
†
kak. (1.69)

Also the matrix representation of Ĥ becomes diagonal:

HD = P †HP = diag(ϵ1, . . . , ϵN), (1.70)

where P is the matrix that has the eigenfunctions as columns.
As we saw in the previous section, a Gaussian state is fully characterized by its corre-

lation matrix, namely by ⟨c†icj⟩. The correlation matrix of a Gaussian state corresponding
to a number conserving Hamiltonian, with N particles, is a N ×N matrix:

Γ =

 ⟨c†1c1⟩ . . . ⟨c†1cN⟩
...

. . .
...

⟨c†Nc1⟩ . . . ⟨c†NcN⟩

 . (1.71)

This is due to the fact that correlators of the kind ⟨cicj⟩ and ⟨c†ic
†
j⟩ are zero and the

correlators ⟨cic†j⟩ can be extracted from the ones in the above matrix using the anti-
commutation rules.

Furthermore, as we have seen in the previous section, when we want to extract the
bipartite entanglement between a block of L spins and the rest of the chain, we will have
to look at the L× L correlation matrix

ΓL =

⟨c†1c1⟩ . . . ⟨c†1cL⟩
...

. . .
...

⟨c†Lc1⟩ . . . ⟨c†LcL⟩

 . (1.72)

Furthermore ⟨c†icj⟩† = ⟨c†jci⟩, meaning that ΓL is hermitian, therefore ΓL can be diago-
nalized: ΓD

L = diag(γ1, . . . , γL), having named the eigenvalues γi.
As we have already mentioned, the bipartite entanglement between a block of con-

tiguous L spins and the rest of the chain can be quantified with the Von-Neumann
entropy:

EBLBL̄
= S(ρL) = −Tr[ρL log(ρL)]. (1.73)

As we saw in the previous section, for a diagonal Gaussian Hamiltonian it stands the
result of Eq. (1.48), for which

S(ρ) = −
N∑
k=1

[fk log(fk) + (1− fk) log(1− fk)], (1.74)
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where fk = ⟨a†kak⟩. We notice here that eigenvalues of the corresponding density matrix

are precisely ⟨a†kak⟩, meaning that we can calculate the Von-Neumann entropy from the
eigenvalues of the correlation matrix. Thus in the case of a non-diagonal correlation
matrix, to compute the entanglement entropy between the two blocks of spins BL,BL̄,
we can find the eigenvalues γi of the correlation matrix (1.72) and then compute the
entanglement entropy from Eq. (1.74), namely

EBLBL̄
= −

L∑
k=1

[γi log(γi) + (1− γi) log(1− γi)]. (1.75)

Since we are interested in the time evolution of the entanglement entropy, we need to
see how the correlation matrix evolves in the case of a number-conserving Hamiltonian.
Of course one can use the general formula (1.58), however in this case we will find that
the correlation matrix can be evolved using just matrix multiplication. Let’s take the
correlation matrix element Γij = ⟨c†icj⟩ of Eq. (1.71). If we let the system evolve, this
matrix element will become

Γij(t) = ⟨ψ|Û †(t)c†icjÛ(t)|ψ⟩ . (1.76)

Exploiting the unitarity of Û(t),

Γij(t) = ⟨ψ|Û †(t)c†i Û(t)Û
†(t)cjÛ(t)|ψ⟩ = ⟨ψ|c†i (t)cj(t)|ψ⟩ , (1.77)

where ci(t) = Û †(t)ciÛ(t) is the destruction operator in the Heisenberg picture. We can
now find an explicit expression for these operators using the Heisenberg picture:

d

dt
cj(t) =

d

dt
(Û †(t)cjÛ(t)) = itÛ †(t)ĤcjÛ(t) + itÛ †(t)cj(−Ĥ)Û(t)

= −itÛ †(t)[cj, Ĥ]Û(t) = −itÛ †(t)
(∑

k,l

Hkl[cj, c
†
kcl]

)
Û(t)

= −itÛ †(t)
(∑

k,l

Hkl({cj, c†k}cl − c†k{cj, cl})
)
Û(t)

=
∑
l

(−itHjl)Û
†(t)clÛ(t) =

∑
l

(−itHjl)cl(t).

(1.78)

Solving this differential equation we find[30]:

cj(t) =
n∑

l=1

e−iHjltcl =
N∑
l=1

Ujl(t)cl. (1.79)

With an identical procedure, we find also:

c†i (t) =
N∑
k=1

eiHiktc†k =
N∑
k=1

U∗
ik(t)c

†
k. (1.80)
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Thus, implying the convention of sum over repeated indexes, the time evolution of the
correlation matrix element can be written as:

Γij(t) =
∑
k,l

⟨U∗
ik(t)c

†
kUjl(t)cl⟩ = U∗

ik(t)⟨c
†
kcl⟩U

T
lj (t) = U∗

ik(t)ΓklU
T
lj (t) = (U∗(t)ΓUT (t))ij.

(1.81)
This formula can be also derived from Fourier space. This is shown in appendix A.
We here stress the fact that this formula is the basis for the implementations of most
numerical simulations presented in this thesis.

Before moving on to measurements, we describe the numerical procedure we will
follow to compute the time evolution of the entanglement entropy. We will do this using
the so called hopping Hamiltonian, since this will be employed in this thesis. Indeed this
is a simple quadratic Hamiltonian which acts only on nearest neighbours, thus satisfying
our requirements of a Gaussian evolution that can be mapped onto a brickwork circuit.

Example: Hopping Hamiltonian We will now describe how to simulate the evolu-
tion of a chain of L free fermions and extract the bipartite entanglement as a function
of time, using what just discussed in this section. In order to do a numerical simulation
of the dynamics of a quantum system we need to set the initial state. Throughout the
whole thesis we choose the initial state to be the so called Néel state:

|Ψ0⟩ = |0101 . . . 01⟩ =
L/2∏
j=1

c†2j |0⟩ . (1.82)

For this state the initial correlation matrix is Γij = ⟨Ψ0|c†icj|Ψ0⟩ = δij for i, j even.
Then we will let the system evolve under a Hopping Hamiltonian.

H =
L∑

j=1

(Aj,j+1c
†
jcj+1 + A∗

j+1,jc
†
j+1cj). (1.83)

This Hamiltonian can be defined by the circulant matrix [27]

A =


0 A1,2 0 . . . A1,N

A2,1 0 A2,3 . . . 0
0 A3,2 0 . . . 0
...

. . .
...

AN,1 0 0 . . . 0

 , (1.84)

noticing that here we set periodic boundary conditions. In this way Ĥ = ˆ⃗αA ˆ⃗α, as in
Eq. (1.67). We also need to impose Ĥ to be Hermitian, thus Aij = A∗

ji, which translates
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into:

A =


0 A1,2 0 . . . A1,N

A∗
1,2 0 A2,3 . . . 0
0 A∗

2,3 0 . . . 0
...

. . .
...

A∗
1,N 0 0 . . . 0

 . (1.85)

The matrix elements Ai,j can be taken to be random numbers, under the constraints just
mentioned, or to be fixed (in the latter case we will use the Hamiltonian of Eq. (A.8)).
We will let the system evolve in discrete time steps, namely at each time step we will
apply

Û = e−iĤ (1.86)

to the state of the system after the previous time step. Doing so straightforwardly will
be computationally demanding for a classical computer, given the fact that the Hilbert
space of the system will have dimension 2L. However we saw that for Gaussian states the
entanglement entropy can be extracted from the correlation matrix, which, in the case
of number conserving Hamiltonians, is a l× l matrix (when we extract the entanglement
entropy of a block of l contiguous fermions). So in each time step we will compute

Γ′ = U∗ΓUT , (1.87)

where also U is an L×L matrix. Since we are interested in the bipartite entanglement of
a block of l fermions, we will take, at each time step, the first l columns and l rows of the
evolved correlation matrix, then we will compute the eigenvalues of Γ′

l (Eq. (1.72)), thus
being able to extract the entanglement entropy using Eq. (1.75). How the entanglement
entropy evolves in this setting will be thoroughly analyzed in Chap. 3.

1.4 Measurements

In Quantum Mechanics a measurement destroies the unitary evolution. Indeed a quan-
tum system undergoes unitary evolution if the system is closed [10]. Performing a mea-
surement means that there is an interaction between the quantum system and the mea-
surement apparatus, which makes the system no longer closed and thus not necessarily
subject to unitary evolution. In this thesis we will deal with projective measurements
and also with more general forms of measurements, such as weak measurements. Fur-
thermore, introducing random measurements during a discretized unitary evolution, will
give rise to the concept of quantum trajectories. Therefore in this section we will be-
gin illustrating projective measurements, which allows the expleination of the concept
of quantum trajectories. Then we will introduce generalized measurements, also called
weak measurements.
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1.4.1 Projective Measurements

When an observable is described by an Hermitian operator M it admits a spectral de-
composition

M =
∑
m

mPm, (1.88)

where Pm is the orthogonal projector onto the eigenspace of M with eigenvalue m,
since P †

m = Pm and P 2
m = Pm (orthogonal projectors are Hermitian, idempotent and

PmPm′ = δm,m′Pm). The Measurement Postulate of Quantum Mechanics for projective
measurements ([10]) states that the probability to measure the eigenvalue m is

p(m) = ⟨ψ|Pm|ψ⟩ (1.89)

and the post-measurement state is

|ψ′⟩ = Pm |ψ⟩√
⟨ψ|Pm|ψ⟩

. (1.90)

In the language of density operators, we have that the probability that the outcome of
the measurement is m is

p(m) = Tr[ρPm] (1.91)

and the post-measurement state is

ρ′ =
PmρPm

Tr[ρPm]
. (1.92)

Projective measurements have some handy properties, such as a simple way to compute
the mean, which will not be discussed as not relevant for the purposes of this dissertation.

Now a simple example on projective measurements will be analyzed, since it will be
useful also in the expleination of quantum trajectories.

Example 1.4.1. A projective measurement on a two-level system, embedded in a quan-
tum many-body system, will disentangle the measured subsytem. Indeed let’s assume
that the entire system is in the state

|Ψ⟩ = |00⟩+ |11⟩
2

. (1.93)

Let’s assume we want to measure Z1. This has the spectral decomposition

Z1 = (|0⟩ ⟨0| − |1⟩ ⟨1|)⊗ (|0⟩ ⟨0|+ |1⟩ ⟨1|) = P+ − P−, (1.94)

where P± are the projectors onto the eigenspaces of such operator:

P+ = |0⟩ ⟨0| ⊗ (|0⟩ ⟨0|+ |1⟩ ⟨1|) P− = |1⟩ ⟨1| ⊗ (|0⟩ ⟨0|+ |1⟩ ⟨1|). (1.95)
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The probabilities of the outcomes ±1 are p± = ⟨Ψ|P±|Ψ⟩ = 1/2 and the post measure-
ment states are completely disentangled: |Ψ+⟩ = |00⟩ and |Ψ−⟩ = |11⟩. Suppose now
that the observer looses the result of the measurement. In this case the only thing he
can infer about the system is that it will be in state |Ψ+⟩ with probability 1/2 and in
state |Ψ−⟩ with probability 1/2. This means that the system is in a classical mixture,
namely the state can be defined with the density matrix

ρ =
1

2
|Ψ+⟩ ⟨Ψ+|+

1

2
|Ψ−⟩ ⟨Ψ−| , (1.96)

which could also describe the system after an interaction with an external bath.

This simple observation allows us to introduce the concept of quantum trajectories.

Quantum Trajectories

Let’s now assume to have a spin chain on which the evolution is done via unitary oper-
ations on nearest neighbours [9]. This dynamics is discrete in space and time and the
application of the unitaries are divided into even and odd steps, namely one layer of
unitaries Uj,j+1 is done on all odd spins and the next layer is done only on even spins.
For instance we do U1,2, U3,4, . . . on the first layer and U2,3, U4,5, . . . (this is shown in Fig.
1.2 (a)).

Figure 1.2: Scheme of the unitary dynamics with the insertion of measurements. Quan-
tum trajectories are schematically depicted in the last picture.

As we saw in the last example, measurements modify the state of the system, and,
if the number of local measurements is extensive in space and time, they fundamentally
alter the dynamics of the system, as we will thoroughly see in this thesis. The example
of the brickwork circuit with projective measurements is a simple case where we can see
how this happens. The basic concept here is the one of quantum trajectories. Suppose
that we make an experiment where we initialize the quantum many-body system in a
pure state |ψ⟩. Then we let it evolve with a circuit-like evolution, but we also do a
sequence of M ≥ 1 local measurements, at different locations and times, alternated to
the unitary evolution. In order to avoid confusion, let’s suppose that the sequence of
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unitaries Uj,j+1(t) are fixed in advance and in different runs of the experiment these
unitaries are the same, thus leaving randomness just to the measurement outcomes.
Suppose, for instance, that we do local projective measurements of Z. Therefore, if spin
i is measured, the state undergoes a stochastic evolution

|ψ⟩ −→

{
Pi↑ |ψ⟩ /

√
pi↑ with probability pi↑ = ⟨ψ|Pi↑|ψ⟩

Pi↓ |ψ⟩ /
√
pi↓ with probability pi↓ = ⟨ψ|Pi↓|ψ⟩

. (1.97)

In a given run of the experiment, we will obtain a random sequence m⃗ = (m1, . . . ,mM)
of measurement outcomes, with mα =↑, ↓. In general, different runs will yeld different se-
quences m⃗. To each measurement record m⃗, there is an associated evolving state |ψm⃗(t)⟩
and these define a trajectory. It is important to notice that the repeated measurements
do not read out a pre-existing unitary dynamics, instead they produce a new kind of
dynamics, which can be seen as a random walk in the Hilbert space. If our system was
made of a single spin, this would be a trajectory on the Bloch sphere, with measurement
causing quantum jumps to the north and south pole ([33])

It is important to notice that, as long as the experimenter keeps track of the measure-
ment outcomes m⃗, the measurement events to not introduce any classical uncertainty
about the state, namely the state remains pure (as explained in Ex. 1.4.1). This is dif-
ferent from the interaction of the system with an external bath, where one has to work
with mixed states due to this interaction. However there are formal connections between
the two settings [34].

Before introducing the concept of measurement induced phase transitions for the
entanglement entropy, which will bring us also in a deeper discussion about quantum
trajectories, we will look at more general forms of measurements.

1.4.2 Generalized Measurements

One of the first lectures of any Quantum Information course, will most certainly include
the topic of the Postulates of Quantum Mechanics (following the model of [10]). In
particular, postulate 3 concerns the measurement operation:

Postulate 1.4.1. Quantum measurement are described by a set {Mm} of measurement
operators. They operate on the state space of the system being measured. If a system is
in the state |ψ⟩ before being measured, the probability that the outcome of the measure
is m is

p(m) = ⟨ψ|M †
mMm|ψ⟩ (1.98)

and the system is left in the state

|ψ′⟩ = Mm |ψ⟩√
⟨ψ|M †

mMm|ψ⟩
. (1.99)

27



Furthermore the {Mm} satisfy the completeness relation∑
m

M †
mMm = I, (1.100)

which represents the fact that probabilities sum to one (
∑

m p(m) = 1). In the formalism
of density matrices this translates into a probability

p(m) = Tr[MmρM
†
m] (1.101)

and a post-measurement state

ρm =
MmρM

†
m

p(m)
. (1.102)

These are more general forms of measurements, since they do not require the mea-
surement operators to be Hermitian. Sure enough, these types of operators just need to
satisfy a completeness relation (Eq. (1.100)).

Any general measurement of this form may be implemented by performing a unitary
interaction between the system and an ancillary system and then performing a projective
measurement on the latter. Therefore any possible measurement may be derived from
unitary evolution and projective measurements [10]. Since this is one of the types of
measurements that we are going to employ in Chap. 4, we will here explain what just
said in detail.

Generalized measurements are “projective measurements in enlarged space”
Suppose we have a system HS and an ancillary system HA. Suppose that on HS we
have a generalized measurement defined by the set of operators {Mm}Rm=0, which sat-
isfy the completeness condition in Eq. (1.100). Suppose also that HA is the span of
{|0⟩ , |1⟩ , . . . , |R⟩}, namely it has dimension equal to the number of measurement oper-
ators Mm.

On this system we define the operation

U |ψS⟩ |0A⟩ =
R∑

m=0

(Mm |ψS⟩)⊗ |0A⟩ , (1.103)

namely U performs a measurement on HS. This is clearly a linear operator. Moreover
it preserves the scalar product. Indeed, suppose we have the states |Φ⟩ = |ϕS⟩ |0A⟩ and
|Ψ⟩ = |ψS⟩ |0A⟩, then we find that

⟨Φ|U †U|Ψ⟩ =
R∑

m,n=0

⟨ϕ|M †
mMm|ψ⟩ ⟨m|n⟩ =

R∑
m,n=0

⟨ϕ|M †
mMm|ψ⟩ δm,n

=
R∑

m=0

⟨ϕ|M †
mMm|ψ⟩ = ⟨ϕ|I|ψ⟩ = ⟨ϕ|ψ⟩ .

(1.104)
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We now define a subspace H̃ = span{|ψS⟩ , |0A⟩}, which is a subspace of HS ⊗ HA.
Formalizing what said until now about U , we have that

U : H̃ −→ HS ⊗HA

|ψS⟩ |0A⟩ 7→ U |ψS⟩ |0A⟩
(1.105)

and it is an isometry, namely

⟨v|U †U|w⟩ = ⟨v|w⟩ ∀ |v⟩ , |w⟩ ∈ H. (1.106)

An operator having this property can be linearly extended to an operator V : HS ⊗
HA −→ HS ⊗HA such that:

• when acting upon states in H̃, U and V operate in the same manner, i.e.

V |ψS⟩ |0A⟩ = U |ψS⟩ |0A⟩ (1.107)

• V is an isometry, i.e V†V = I.

Take now projective operators Pm on the ancilla system, such that Pm = IS ⊗
|m⟩A ⟨m|. We can now prove that performing a generalized measurement Mm on the
system HS is equivalent to perform V and then the projective measurement Pm on HA,
following the points of postulate 1.4.1.

Proof. Taking the state |ψ⟩ |0⟩, applying V and then Pm we have:

p(m) = ⟨0| ⟨ψ|V†PmV|ψ⟩ |0⟩ =
∑
l,r

⟨l| ⟨ψ|M †
l (I ⊗ |m⟩ ⟨m|)Mr|ψ⟩ |r⟩

=
∑
l,r

⟨ψ|M †
l Mr|ψ⟩ δl,mδr,m = ⟨ψ|M †

mMm|ψ⟩ ,
(1.108)

which is doing a generalized measurement on HS. Then we need to look at the post-
measurement state, which is

PmV |ψ⟩ |0⟩√
⟨0| ⟨ψ|V†PmV|ψ⟩ |0⟩

=
Mm |ψ⟩√

⟨ψ|M †
mMm|ψ⟩

, (1.109)

where we can discard the ancilla, since this is a factorized state, and recover the post-
measurement state for a generalized measurement.
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Weak Measurements Generalized measurements are also called weak measurements.
With respect to projective measurements, they perturb less the system, meanwhile ex-
tracting less information from it. Indeed suppose we have

M1(ϵ) =

√
1

2
− ϵ |0⟩ ⟨0|+

√
1

2
+ ϵ |1⟩ ⟨1| (1.110)

M2(ϵ) =

√
1

2
+ ϵ |0⟩ ⟨0|+

√
1

2
− ϵ |1⟩ ⟨1| , (1.111)

for which is easy to verify that
∑2

m=1M
†
mMm = I. This measurement operation is

projective for ϵ→ 1/2, whereas for ϵ→ 0, the post measurement states are close to each
other 3 and we have less information about the system, because p(0), p(1) → 1/2.

3Close in the sense that their scalar product is close to one.
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Chapter 2

Measurement Induced
Entanglement Phase Transitions

In this chapter we will describe measurement induced entanglement phase transitions
(MIEPT). In Sec. 2.1 we will briefly recall the general features of phase transitions.
More precisely we will highlight the differences between classical and quantum phase
transitions, stressing the peculiarity of MIEPT. Then in Sec. 2.2 we will describe the
mechanism that generates the MIEPT, without going into the formal details1. However,
in order to understand this mechanism, we will explore deeper the concept of quan-
tum trajectories, explaining some details that are crucial in the understanding of this
phenomenon (Sec. 2.3).

2.1 Phase Transitions: an Overview

Classical and quantum phase transitions are processes where a system undergoes a change
from one phase to another, but the two differ fundamentally in their underlying mech-
anisms and in the nature of the transition. Classical phase transitions are driven by
thermal fluctuations, whereas quantum phase transitions occur at zero-temperature, due
to the change in a non-thermal control parameter. Their common trait is that the
variation of an external control parameter leads to a qualitative change in the system
properties [35]. Moreover, at the critical point of quantum phase transitions, the system’s
properties are dominated by quantum fluctuations. Also, quantum phase transitions are
characterized by a change in the ground state properties of the system [35], however, as
we will see, this is not the case for MIEPT.

Classically, phase transitions are classified in first-order phase transitions and second-
order phase transitions. The former involve a latent heat, they are characterized by a

1A Conformal Field Theory approach to MIEPT is possible, however this is not the topic of this
thesis.
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finite value of the correlation length and a discontinuous change of the order parameter.
The latter, also called continuous phase transitions, are characterized by the absence
of a latent heat, the divergence of the correlation length at the critical point and the
continuous change of the order parameter. In this case, derivatives of the order parameter
diverge following power laws. Furthermore, the behaviour of some quantities at the
critical point is characterized by the set of critical exponents, which also define the
universality class of the phase transition [36].

For the sake of completeness, we here recall that for continuous phase transitions,
given the fact that the correlation length diverges, one can study the system at the
critical point with more advanced approaches, such as the renormalization group and
Conformal Field Theory (CFT)[36]2.

Before diving into MIEPT, we will discuss an example ([36]) of phase transitions
from classical physics, because it clearly explains the competitive principles that lead
to phase transitions and therefore it will help in the understanding of the mechanism
behind entanglement transitions.

Example 2.1.1. Take a material in which magnetic dipoles are randomly oriented and
they produce a zero-total magnetic field. However, in certain materials (ferromagnetic),
one can observe, below a critical temperature Tc (called Curie temperature), that there
is a non-zero total magnetic field. The system has undergone a phase transition at
the temperature T = Tc, which, in this case, is a spontaneous magnetization, due to the
alignment of the dipoles. The occurrence of this phase transition is due to the interplay of
two competitive principles: energy minimization and entropy maximization. The former
tends to align the spins and the minimum energy is achieved when all spins are aligned
(corresponding to aligned dipoles and thus non-zero magnetic field). The latter tends
to randomly orientate the spins. Indeed, from the prospective of the phase space, the
number of configurations in which the spins are randomly oriented are way more than
the only configuration where all spins are aligned. The control parameter, in this case
the temperature, establishes which of the two principles is dominant.

Having in mind this simple example, we can now discuss MIEPT.

2.2 Measurement Induced Entanglement Transition

Entanglement phase transitions refer to changes in the entanglement properties of a
quantum system, unlike common quantum phase transitions, where there are changes in
the properties of the ground state of the system ([35]). Moreover MIEPT are different
from other phase transitions, since there is not an evident order parameter.

2We will not recall more concepts of these approaches, since they are not strictly addressed in this
thesis. However, in the following, some aspects of these theories may be recalled if relevant.
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Before describing MIEPT, we here recall that entanglement transitions are also ob-
served in disordered systems, where the transition from an ergodic phase, where the
system thermalizes and the entanglement spreads extensively, to a many-body localized
phase, where the system fails to thermalize and entanglement does not spread extensively,
can be viewed as an entanglement transition [2].

Now we move to the description of measurement induced phase transitions. To under-
stand how they work, we follow the example of the previous section. Let’s assume that
a qubit chain is in an initial state |ψ0⟩, which is a product state. Obviously, the initial
entanglement is zero. Now we let the system evolve under a unitary dynamics (following
the unitary operator U = exp(−iHt)). If the Hamiltonian has multi-qubit terms, the
system will no longer be in a product state, hence leading to a growth of entanglement, at
least with respect to the initial state. Therefore we can state that the unitary dynamics
brings to a growth of correlations in the system, namely a growth in the entanglement
entropy, since the wavefunction that describes the system is no longer a product state.
If one adjusts the system and subsystem sizes3, respectively L and l, in order to satisfy
the condition l/L≪ 1, one finds that the entanglement entropy saturates to a constant
value, which is proportional to the volume of the subsystem size 4. Indeed, under unitary
evolution, the entanglement entropy follows a volume-law, meaning that the entangle-
ment entropy saturates to a value proportional to the volume of the subsystem (in case
of a qubit-chain, the volume is the number of qubits in the subsystem).

Figure 2.1: Monitored dynamics in (1 + 1)-dimensions brings to a phase transition in
the entanglement entropy as a function of p. This is schematically showed in the left
picture. on the right, the scaling of the entanglement entropy for a subsystem size |A| is
displayed.

We saw, in Example 2.1.1, that in order to have a phase transition, there has to be an
interplay between two physical instances. In the case of MIEPT, the other player that
gives rise to the entanglement phase transition is the measurement operation. Indeed,

3The subsystem is the block of spins that we take in order to compute the bipartite entanglement.
4See Sec. 3.2.1 for more details about this.
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as discussed in Example 1.4.1, measuring a qubit disentangles it, namely one can write
the system as a product state between the state of the measured qubit and the rest of
the system, which may still be entangled. In order to talk about this type of phase
transitions, let’s put ourselves in the context of a brickwork circuit, where we assume
that, after each step of unitary evolution, there is a probability p that a measurement
occurs in each site of the qubit chain.

Before diving in the intermediate cases, let’s focus on the case where each site of
the chain is measured at every time step, namely let’s assume that p = 1. Given an
initial product state, the steps of unitary evolution will tend to generate entanglement
in the system, however, since p = 1, after each one of such steps all the qubits are
measured and therefore disentangled. Hence the system will be described by a product
state throughout its evolution, yielding an entanglement entropy equal to zero after each
time step (made of a unitary layer and a measurement layer). This is an example of
quantum Zeno effect [13]. This is a first instance, although drastic, of the entanglement
entropy following an area-law. Indeed we call area-law the case where the entanglement
saturates to a value which is a constant (in this case zero).

Now we can clearly see how the probability p to perform a measurement on a given
site is the external control parameter that drives the phase transition. Indeed, in order
to build a phase diagram, we need to see what happens for intermediate values of p.

In Fig. 2.1 a scheme of the phase diagram of a typical MIEPT is displayed. Here
we can see that for values of p (i.e. for weak monitoring), namely for values of p < pc,
where pc is the critical probability that denotes the critical point, the entanglement
entropy follows a volume-law or a mixed phase law, whereas for values of p > pc (i.e. for
strong monitoring), the entanglement entropy follows an area-law. Instead, looking at
the critical dynamics (p = pc), the entanglement entropy follows a logarithmic law. This
is a random but scale-invariant structure for the entanglement entropy [9].

For random circuits, the phases and the transitions can be mapped to an effective
classical statistical mechanics model, where the problem is approached using, for in-
stance, the replica trick and tensor network techniques ([14], [15], [37], [38]). This is a
vast and advanced theory that we will not consider further, since its study would have
been a whole other thesis.

Finally we must mention that numerical evidence of this transition has been found
in several microscopic models ([12], [13], [16], [19], [39], [20], [40] etc.) and also some
experimental attempts have been done. The first one ([21]) was carried out on a trapped
ion quantum computer, whereas another one ([22]) was done on IBM’s superconducting
quantum computers.
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2.3 Quantum Trajectories

Another key point in understanding MIEPT is the concept of quantum trajectories.
Here we give more details, which widen the description already given in Sec. 1.4, in the
paragraph about quantum trajectories. We saw that an initial pure state |ψ(0)⟩, evolving
under a hybrid circuit, defines a set of trajectories, labelled by the measurement outcomes
m⃗:

|ψm⃗⟩ =
Km⃗ |ψ(0)⟩

√
pm⃗

. (2.1)

The Born probability pm⃗ = ⟨ψ(0)|K†
m⃗Km⃗|ψ(0)⟩ of a trajectory depends on the state,

making the dynamics of the monitored circuit both non-linear and non-unitary. The
idea of measurement induced transitions ([12], [13], [16]) is that there is a qualitative
change in the nature of the trajectories (Eq. (2.1)) as a function of the measurement
rate p. One can view the MIEPT as the evolution of quantum trajectories in the Hilbert
space. Indeed when p is above the threshold pc, the stochastically evolving wavefunction
is trapped in the subspace of the Hilbert space of area-law states. Instead when p < pc,
the wavefunction escapes this subspace and enters into the volume-low subspace of the
Hilbert space.

Now let ρi denote the density operator for the quantum trajectory Ti. Let O[ρi] be
a general functional on the density operator5. We denote by Ō the average over all
quantum trajectories, which in general is:

Ō =
1

N

N∑
i=1

O[ρi], (2.2)

where N is the number of quantum trajectories. Now we denote ρ̄ =
∑N

i=1 ρi/N the aver-
age density operator. If and only if O is a linear functional of ρ, we have that Ō = O[ρ̄].
One must notice that if a measurement is performed, but its outcome is lost, the state is
not pure and evolves as ρ →

∑A
a=1KaρK

†
a, where Ka are Kraus operators representing

the measurement operation. If we consider observables that are linear functionals of the
density matrix, the result of the average over a statistical mixture and the average in
Eq. (2.2) coincide. In our case we are looking at the entanglement entropy (Eq. (1.5)),
which is non-linear. Therefore in order to have the average over quantum trajectories
we must utilize Eq. (2.2). This is the difference between coherent trajectories and dis-
sipative information loss. Under the circuit dynamics the density matrix ρ(0) evolves
into ρm⃗ = Km⃗ρ(0)K

†
m⃗/pm⃗, with a probability pm⃗ = Tr[K†

m⃗Km⃗ρ(0)], which is the state
if the measurement outcomes m⃗ have been recorded. Instead, if this information is lost
(meaning that we have classical uncertainty on the measurement outcomes), we have
the trajectory average ρ̄ =

∑
m⃗ pm⃗ρm⃗. In the hybrid circuit dynamics ρ̄ will tend to the

5In Chap. 4 we will do averages over quantum trajectories.
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trivial infinite temperature density matrix [9]. Quantum trajectories are not a problem
that can be tackled easily in an experimental setting, where the issue of post-selection
arises ([21], [22]). Indeed, we need to run several experiments with the same state pro-
duced at every run, namely we need to be able to reproduce the same outcomes of all
the measurements m⃗.

36



Chapter 3

Entanglement Entropy in the
Brickwork Circuit Model

The goal of this chapter is to better explain why the study of brickwork circuits is crucial
for the development of quantum simulations [41]. Therefore in Sec. 3.1 we will give an
overview of quantum simulations, stressing how analog quantum simulations (AQS) are
different from digital quantum simulations (DQS), explaining also why brickwork circuits
are interesting for the latter type of quantum simulations. As explained in Chap. 1, we
are studying systems that can be simulated on classical computers. We will therefore
describe the evolution of the entanglement entropy in a fermionic chain which evolves
under a hopping Hamiltonian in Sec. 3.2. At last, in Sec. 3.3 we will analyze the
brickwork circuit that describes a system evolving under a hopping Hamiltonian and we
will prove that, in this case, the entanglement entropy evolves in the same way as in the
continuous model, thus showing that a fermionic chain can be simulated on a quantum
computer. The theoretical proof of this is very straightforward, however we will give also
a numerical proof, since the code implemented at this stage will be useful in the next
chapter. Moreover, as we will explain the continuous time evolution in Sec. 3.2, we will
also describe how the entanglement entropy behaves in the systems under consideration,
giving also a semi-classical interpretation to the growth of the entanglement entropy. We
here notice that, as explained in Chap. 1, in this thesis we are studying quantum systems
that can be simulated on a classical computer, therefore all the results displayed in this
chapter are obtained from classical simulations. This, however, does not affect the result
of this chapter, namely that a fermion chain evolving under a hopping Hamiltonian can
be simulated on a digital quantum computer.
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3.1 Quantum Simulation: an Overview

With nowadays NISQ devices, the scientific community is looking foreword to quantum
simulation as the mean to validate models through experiments. Indeed the goal of
quantum simulation is to simulate Quantum Mechanics on quantum computers, thus
overcoming the limits of such simulations on classical computers. Quantum simulation is
divided in two main categories: Analog Quantum Simulation (AQS) and Digital Quantum
Simulation (DQS) [7].

For AQS, a mapping between the Hamiltonian of the system and the Hamiltonian of
the simulator must exist in order to do the simulation. Sometimes the mapping can be
very straightforward, however this is not the case in general.

In DQS, the circuit model of quantum computation is employed. The initial state of
the system |ψ(0)⟩ will evolve under a Hamiltonian Hsys in the well known way |ψ(t)⟩ =
U(t) |ψ(0)⟩ = exp(−iHsyst) |ψ(0)⟩. Here the unitary U(t) is a complicated many-body
unitary, which in DQS must be mapped onto a sequence of one and two-qubit gates.
Any unitary operation can be written in terms of universal quantum gates [10], hence
any system can be simulated [42]1.

Leaving aside the problem of the initial state preparation and of the measurement of
the digital quantum simulator, we will address the problem of the unitary evolution on
a digital device, being this the scope of this chapter.

Unitary Evolution Let’s assume that the Hamiltonian of the system we wish to
simulate can be written as a sum of local interactions:

H =
∑
α

Hα. (3.1)

In this case, if [Hα, Hα′ ] = 0 ∀ α, α′, then

U(t) =
∏
α

e−iHαt, (3.2)

making the decomposition into local gates very straightforward. Examples of this are
the Hubbard and Ising Hamiltonians [7]. However this is not the general case. Indeed if
[Hα, Hα′ ] ̸= 0, Eq. (3.2) no longer holds. Indeed the following asymptotic approximation
is at the core of quantum simulation [10]:

Theorem 3.1.1. (Trotter Formula) Let A and B be Hermitian operators. Then, for
any real t,

lim
M→∞

(eiAt/MeiBt/M)M = ei(A+B)t. (3.3)

1Not any Hamiltonian can be efficiently simulated, however we will not get into this, as we will not
get into many other details of quantum simulations, since it is not the goal of this thesis.
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Therefore, if we assume that H =
∑

αHα, even if [Hα, Hα′ ] ̸= 0, we will have that

e−iHt = lim
M→∞

(∏
α

e−iHαt/M
)M

. (3.4)

We are not proving this theorem, since it is a well known result in Quantum Mechan-
ics, neither we will here give explicit examples, since in the next sections we will apply
what just stated to our model.

It is now important to notice how brickwork circuit models are important for DQS.
Indeed they are simple discrete-time models for many-body dynamics. In these models,
a lattice of qubits (spins) evolves through the application of local unitary gates. During
the unitary evolution also measurements can be applied, as we saw in Chap. 1 and as
we will discuss also in Chap. 4. This discrete time structure recalls the trotterization of
a continuous-time Hamiltonian evolution that we just discussed. However in this models
the time steps are not infinitesimal, since each local operation will not be close to the
identity in general [9].

3.2 Continuous Evolution

In order to compare the continuous evolution and the discrete-time evolution of the
brickwork circuit, we first analyze the continuous case, which is simpler. In this setting
we will also describe how the entanglement entropy behaves in a chain of L fermions and
give a semi-classical interpretation to this behaviour.

It is well established that, for a closed quantum system, given an initial state |ψ(0)⟩
and a Hamiltonian H, the state of the system after a time t will be |ψ(t)⟩ = Û(t) |ψ(0)⟩ =
exp(−iĤt) |ψ(0)⟩. Now our goal is to study a fermionic chain, governed by the hopping
Hamiltonian

Ĥ =
L∑

j=1

(αc†jcj+1 + α∗c†j+1cj). (3.5)

This Hamiltonian conserves the number of fermions in the chain, i.e. [Ĥ, N̂ ] = 0. As we
saw in Chap. 1, the entanglement entropy can be extracted from the correlation matrix
and the correlation matrix evolves as described in Eq. (1.81). Being this a multiplication
between L×L matrices, this system can be efficiently simulated on a classical computer,
but this will not be continuous in time. Even so, this is not a problem. Indeed let’s
assume that the time t is discretized such as t = τM . Now at each time step τ we will
apply to the system the evolution operator Û(τ) = exp(−iĤτ). Hence we apply Û(τ)
M times:

|ψ(t)⟩ = Û(τ)Û(τ) . . . Û(τ) |ψ(0)⟩ = (Û(τ))M |ψ(0)⟩ . (3.6)
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This product of evolution operators is a product between exponential operators whose
exponents commute (obviously [Ĥ, Ĥ] = 0), therefore

(Û(τ))M = (e−iĤt/M)M = e−iĤt, (3.7)

thus proving that the discrete evolution is equal to the continuous one. Therefore the
evolution of the correlation matrix can be done setting τ = 1, thus

Γ′ = U †ΓUT , (3.8)

where U = e−iH . This can be directly implemented on a classical computer.

Figure 3.1: Evolution of the entanglement entropy under a hopping Hamiltonian for a
system of size L = 100, subsystem size of l = 50.

In order to do a simulation we need to set four parameters. First of all we have to
choose the value of α in Eq.(3.5). For the sake of simplicity in the topics that will follow
soon, we take α = −1/2. As explained in the example of Sec. 1.3.6, H will be a circulant
matrix, with all non-zero entries equal to −1/2. Then we need to set L and l. As a
first approach we can take them arbitrarily. For example we can look at the bipartite
entanglement in a chain of L = 100 fermions between two subsystems of equal length
l = 50. Finally we need to set the total evolution time. We can take t = 50, which, as
just explained, translates into applying U 50 times to the initial correlation matrix. The
initial correlation matrix depends on the initial state of the system which we choose to
be the Néel state (for reasons that will be clear in a little while):

|Ψ0⟩ = |0101 . . . 01⟩ . (3.9)
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For this state the initial correlation matrix is Γij = ⟨Ψ0|c†icj|Ψ0⟩ = δij for i, j even. The
result of the simulation is displayed in Fig. 3.1. Here we can see how the entanglement
entropy grows linearly up to a certain time and then its value begins oscillating. This
behaviour is called collapse and revival and it turns out to be due to a finite-size effect
[43]. To understand this behaviour we introduce a semi-classical interpretation known
as the quasiparticle picture.

3.2.1 Quasiparticle Picture

The quasiparticle picture is a semi-classical setting which describes how the entanglement
entropy behaves in certain 1D systems, which include free fermions ([28], [43]). More
precisely this is described by the classical motion of quasiparticles inside the system. In
order to describe this we first need to briefly describe thermalization end the Generalized
Gibbs Ensemble.

Stationary States and Entanglement Entropy Let us consider a quantum many-
body system out of equilibrium. If the system is initially in a pure state, it will remain
such during the time evolution, since the time evolution is unitary. If now we take
a bipartition of the system in A, Ā, the density matrix of the total system will be
ρ(t) = |Ψ(t)⟩ ⟨Ψ(t)| (pure), whereas the reduced density matrix of the subsystem A will
be ρA(t) = TrĀ[ρ(t)], which can be mixed. It is important to notice that the physics of
subsystem A is fully encoded in its reduced density matrix [28], in the sense that ρA(t) is
sufficient to determine all the correlation functions within the subsystem itself. In fact,
the expectation values of a product of local operators

∏
iO(xi) with xi ∈ A, which, by

the way, are the ones accessible in experiments, is given by

⟨Ψ(t)|
∏
i

O(xi)|Ψ(t)⟩ = Tr[ρA(t)O(xi)]. (3.10)

Now a question rises naturally: do local observables reach stationary values? In the
following we will say that, after a quantum quench, an isolated infinite system relaxes
to a stationary state, if, for all subsystems A, it exists the limit

lim
t→∞

ρA(t) = ρA(∞). (3.11)

Therefore the balancing of a closed quantum system to a statistical ensemble is tightly
connected with the concept of reduced density matrices. Notice also that, in the limit
procedure, the thermodynamic limit has to be taken before the infinite time limit. In
fact phenomena as quantum recurrences and revivals prevent relaxation for finite systems
[28] (more on this later). We also must notice that the subsystem A can be taken to be
anywhere on the infinite translational invariant entire system. Also the limit of a large
subsystem A can be taken, but only after the large time limit. Only the here outlined
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order of the limits leads to a consistent definition of equilibrium for an isolated quantum
system.

Now we can see how ρA(t) might correspond to a statistical ensemble. A first guess
would be to identify ρA(t) with a thermal state. Nevertheless this would be valid only
for thermodynamically large subsystems. Instead we will take the path outlined in [44,
45, 46, 47, 48]. Let us consider a statistical ensemble with density matrix ρE for the
entire system. The reduced density matrix for subsystem A is

ρA = TrĀ[ρE]. (3.12)

The stationary state is said to be described by the statistical ensemble ρE if, for any
finite subsystem A, it holds that

ρA(∞) = ρA,E. (3.13)

The implication of this is that any local multi-point correlation function within A may
be evaluated using ρE. We will be concerned with two statistical ensembles: the ther-
mal (Gibbs) ensemble and the generalized Gibbs ensemble (GGE). We say that a non-
equilibrium quantum system thermalizes after a quench when ρE is the Gibbs distribution

ρE =
e−βH

Z
, (3.14)

with Z = Tr[e−βH ]. Notice that the inverse temperature is not a free parameter, but
is fixed by the conservation of energy. Thermalization leads to the fact that all local
observables will have thermal expectation values, whereas some non-local quantities will
remain non-thermal for arbitrary large times. Meanwhile all non-integrable systems
thermalize ([1], [49], [50], [51]), the conservation laws present in integrable models lead
to a different dynamics and relaxation. Since integrable models have, by definition, an
infinite number of integrals of motion in involution, rather than a thermal ensemble, the
system, at large times, is expected to be described by a GGE [52], with density matrix

ρGGE =
e
∑

n λnIn

Z
. (3.15)

Here the operators In form a complete set of integrals of motion and Z = Tr[e
∑

n λnIn ]
is the usual normalization constant. As in the Gibbs ensemble the Lagrange multipliers
{λn} are not free, but are set by the conservation laws 2.

In finite systems, when there is a maximum velocity of propagation vM , as long as
we consider times such that vM t < L, where L is the linear size of the whole system,

2An exhaustive discussion of integrable models and their conservation laws go beyond the scope of
this thesis, so they will be not treated here.
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all measurements will provide the same outcome as in an infinite system (away from the
boundaries) [28]. Therefore, a subsystem of linear size l can show stationary values as
long as L is large enough to guarantee l ≪ vM t < L.

Now let us discuss a little more the bipartite entanglement of a many-body quan-
tum system formed by many 1/2 spins on a lattice and a state which is a collection
of singlets between different pairs of spins at arbitrary distances. All singlets within
A or Ā do not contribute to the entanglement entropy SA, whereas each share singlet
contributes with a log2(2) bit of entanglement. Thus the total entanglement entropy
is SA = nA:Ā log2(2), with nA:Ā being the number of shared singlets. In out of equi-
librium many-body quantum systems the stationary value of the entanglement entropy
SA(∞) = −Tr[ρA(∞) log(ρA(∞))] for a thermodynamically large subsystem A is deduced
from the reasoning previously outlined. In fact we saw that a system relaxes for large
times to a statistical ensemble ρE when, for any subsystem A, ρA,E = ρA(∞). Therefore
the stationary entanglement entropy must equal SA,E = −Tr[ρA,E log(ρA,E)]. For a large
subsystem with volume VA, SA,E scales like VA, since the entropy is an extensive quantity.
Hence SA,E equals the density of the thermodynamic entropy SE = −Tr[ρE log(ρE)] times
VA. Since SA,E = SA(∞), the stationary entanglement entropy has the same density of
the thermodynamic entropy. We have thus just proved [28]:

s ≡ lim
t→∞

SE

V
= lim

VA→∞

limV→∞ SA,E

VA
= lim

VA→∞

limV→∞ SA(∞)

VA
. (3.16)

Here we must stress that this equality holds only for the extensive leading terms of
the entropy. This equality has been verified analytically for non-interacting many-body
systems ([3], [53] etc.).

Quasiparticle Picture for Entanglement Entropy This picture is just a simplified
model, which allows us to explain the observations on the time evolution of the entangle-
ment entropy [28]. The initial state of the system has a higher energy then the ground
state of the Hamiltonian that drives the quench (for example a Néel state evolving under
a hopping Hamiltonian), thus this state acts as a source of quasiparticle excitations.
Particles emitted from different points on the lattice, further apart then the correlation
length, are not entangled, whereas particles emitted from the same point are highly en-
tangled. We suppose that the probability to create a pair of particles with momenta
(q, q′) is f(q, q′) and that they move classically once they separate. If the quasiparticle
dispersion relation is E(p), the classical velocity will be dE(p)/dp. We also assume that
there is a maximum velocity that we set to 1, namely |v(p)| ≤ 1. Ignoring scattering
effects between these particles, a particle’s position at time t will be x(t) = x + v(p)t.
Indeed let’s assume that a quasiparticle pair is produced with opposite momentum q and
−q at point x. At time t they will be in the positions x′ = x+ vqt and x

′′ = x− vqt and
the entanglement between two subsystems l and l̄ of the chain is related to the pairs of
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Figure 3.2: Scheme of the propagation of quasiparticles (here l is the subsystem).

quasiparticles shared between the two subsystems after being emitted from the arbitrary
same point x. For a fixed momentum q, this is proportional to the length of the interval
in x such that x′ = x ± vqt ∈ l and x′′ = x ∓ vqt ∈ l̄. The proportionality constant de-
pends on the production rate of quasiparticle pairs with opposite momenta (q,−q) and
their contribution to the entanglement entropy itself. The combined result of these two
effects is a function s(q) which depends on the momentum q of each quasiparticle in the
pair. This function encodes all the information of the initial state for the entanglement
evolution. The total entanglement entropy is thus:

Sl(t) ≈
∫
x′∈l

dx′
∫
x′′∈l̄

dx′′
∫ +∞

−∞
dx

∫
dqs(q)δ(x′ − x− vqt)δ(x

′′ − x+ vqt). (3.17)

In this formula we see all the elements previously discussed:

• particles are emitted from arbitrary points (integral over all possible x);

• particles move ballistically (delta functions);

• they are forced to arrive in l or l̄ (domain of integration of x′ and x′′);

• we integrate over all possible momenta with a weight s(q).

In the case when l is a subsystem of finite length, the integrations on the coordinates
yield [28] (the proof can be found in the Appendix B):

Sl(t) ≈ 2t

∫
p>0

dps(p)2vpΘ(l − 2vpt) + 2l

∫
p>0

dps(p)Θ(2vpt− l)

= 2t

∫
2vpt<l

dps(p)2vp + 2l

∫
2vpt>l

dps(p)

(3.18)
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Now we can discuss the properties of this formula. First of all we notice that for
t→ ∞ the domain of the first integral goes to zero and so the integral vanishes. Therefore
the stationary value of the entanglement entropy is

Sl(∞) ≈ 2l

∫
p>0

dps(p) = l

∫
dps(p), (3.19)

where we use the fact that s(p) = s(−p) by construction. Now we assume that the
velocity of the quasiparticles is limited, which is guaranteed by the Lieb-Robinson bound
[54]. Calling vM such velocity, the second integral in Eq. (3.18) vanishes as long as
t < t∗ = l/2vM , hence, for t < t∗, Sl(t) is linear in t. For t > t∗ both integrals are non
vanishing. The physical interpretation of this is that while the fastest quasiparticles reach
a saturation value, the slower quasiparticles continue to arrive so that the entanglement
entropy slowly reaches the asymptotic value SL(∞).

The only missing ingredients to make the result in Eq. (3.18) quantitative are vp and
s(p). As for vp, the quasiparticle velocity, one has a different velocity depending on the
examined model. For non-interacting systems we identify the entangling quasiparticles
with the free modes that diagonalize the Hamiltonian. Such single-particle modes have
a non trivial dispersion ϵ(p) that depends on p and their velocity is given by the group
velocity of the modes [28],[55]:

vp =
d

dp
ϵ(p). (3.20)

Notice that for non-interacting systems vp does not depend on the pre-quench state [55].
In our case, form Eq. (A.10), we get that

vp =
d

dp

[
− cos

(2π
L
p
)]

=
2π

L
sin

(2π
L
p
)
. (3.21)

We are now left with the task of identifying the entanglement content of the pair
with momenta p,−p, which we called s(p). From the analysis of the previous para-
graph, s(p) can be deduced from the thermodynamic entropy of the stationary state,
because of the fact that the stationary entanglement entropy has the same density as
the thermodynamic one.

We now consider a quench from an initial state |Ψ0⟩ which is then let evolve with the
Hamiltonian of Eq. (A.10). For all this models, it has been proved that the GGE built
with local conservation laws is equivalent to the one built with the mode occupation
number nk = c†kck [48]. The local properties of the stationary state are captured by the
GGE density matrix

ρGGE ≡ e−
∑

k λkn̂k

Z
, (3.22)

where Z = Tr[e−
∑

k λkn̂k ]. This is true under some assumption on the initial state, namely
that the initial state is a Gaussian state [56]. The thermodynamical entropy of the GGE
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is STD = −Tr[ρGGE log ρGGE] and with calculations analogous to the ones done in the
previous sections, after taking the thermodynamic limit, we find

STD = L

∫
dk

2π
H(nk), (3.23)

where nk ≡ ⟨n̂k⟩GGE = Tr[ρGGEn̂k] and

H(n) = −n log n− (1− n) log(1− n), (3.24)

analogous to Eq. (1.52) 3. Since nk is an integral of motion, we can compute it on the
initial state, namely nk = ⟨Ψ0|n̂k|Ψ0⟩: from Eq. (A.17) we get that

Γp,q(t = 0) =
1

L

∑
i,j

ei
2π
L
(pi−qj)Γi,j(t = 0), (3.25)

where Γi,j, at t = 0 has non zero entries only for δi,j for i even. Taking the diagonal
elements p = q:

Γp,p(t = 0) =
1

L

∑
i,j

ei
2π
L
p(i−j)δi,j( i even) =

1

L

∑
i even

1 =
1

L

L

2
=

1

2
. (3.26)

Hence, in the themrodynamic limit this quantity does not change, giving nk = 1/2
∀ k. Therefore, a trivial calculation shows that H(nk) = log2(2) = 1 ∀ k, meaning
that all quasiparticle, no matter their momenta, carry an entanglement entropy of one.
Plugging all what just said into Eq. (3.18), and identifying s(p) with the density of the
thermodynamic entropy we get

Sl(t) = 2t

∫
2|ϵ′k|t<l

dk

2π
|ϵ′k|+ l

∫
2|ϵ′k|t>l

dk

2π
. (3.27)

This integral can be evaluated numerically and this result can be compered to the
output of the simulation in the Hilbert space. Eq. (3.27) is predictive for L ≫ l. To
prove this, in Fig. 3.3a we plot the entanglement entropy computed from the evolution of
the system in the Hilbert space, as described in previous sections, and the entanglement
evolution from the quasiparticle picture for a system of L = 500 and l = 20, which
are values in the regime L ≫ l. As we can see the two plots basically overlap. A
more thorough analysis highlights how the entanglement entropy grows linearly up to
t ⪅ l/2 = 10, whereas it saturates to a value Sl ≈ l for large times. This is due to
the boundaries of the integrals in Eq. (3.27): for t ⪅ l/2 the first integral dominates,
whereas for t ⪆ l/2 the second integral dominates. The slow saturation to Sl ≈ l can be

3Here the integral replaces the sum over discrete momenta that come out computing the trace.
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(a) Comparison between the entanglement
entropy from the evolution of the correla-
tion matrix in the Hilbert space and the
entanglement entropy form the quasipar-
ticle picture. This is done for a system
with L = 500, l = 20, evolving under a
hopping Hamiltonian.

(b) Comparison between the entangle-
ment entropy from the evolution of the
correlation matrix in the Hilbert space
(dashed-blue lines) and the entanglement
entropy form the quasiparticle picture
(orange lines), keeping L = 500 and vary-
ing l ∈ {10n|n ∈ [1, 10]}. l increases from
the bottom plot to the upper plot.

Figure 3.3: Comparisons between the entanglement entropy computed from the correlation
matrix evolution in the Hilbert space and from the quasiparticle picture.

interpreted as the arrival of the slower quasiparticles to the different domains l and l̄ of
the chain.

Moreover a numerical check allows us to verify that when l is not small enough with
respect to L, the quasiparticle picture prediction, in the thermodynamic limit, does no
longer hold. Indeed we can plot the entanglement entropy from the simulation and the
entanglement entropy predicted by the quasiparticle picture keeping L fixed and varying
l. This is shown in Fig. 3.3b, where we can see that for values of l ⪅ 10, Eq. (3.27)
provides a good prediction of what actually happens in the system, whereas for l ⪆ 10
this is not the case. Indeed as l increases the collapse of the entanglement entropy
becomes more and more accentuated4.

To better see this we plot (in Fig. 3.4) Sl(t)/l over t/l for different subsystem sizes,
keeping the system size fixed. We do this for L = 500 and l ∈ {10n|n ∈ [1, 5]}. As we
can see from the pictures in Fig. 3.4, as l increases the agreement with the quasiparticle
picture lasts for smaller times. Indeed as l increases the collapse and revivals of the
entanglement entropy show up at shorter times. This is due to the finite size of the
system. We also notice, from Fig. 3.4a, that also for l = 10, at a time t ≈ 250 finite size

4To take into account the finite size of the system there are some methods, which are discussed in
[43]. With some adjustments the quasiparticle pictures provides good predictions also when collapses
and revivals are present.
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(a) Plot in the range t/l ∈ [0, 30]. (b) Plot in the range t/l ∈ [0, 6].

Figure 3.4: Plot of Sl(t)/l over t/l for L = 300 and l ∈ {10n|n ∈ [1, 5]}, extracted from
the simulation in the Hilbert space (continuous lines) and from the quasiparticle picture
(dashed lines).

effect show up.
In the following, if we want to look at the entanglement entropy neglecting the finite-

system effects, we should keep in mind what just said. Indeed, for a chain of length L
with PBC, at a time t = (L− l)/2, the fastest quasiparticle (v = 1) that started from the
boundary of the subsystem of size l, enter back in the subsystem Bl (the same stands for
the quasiparticle starting at the boundary of Bl̄), causing a collapse in the entanglement
entropy.

In the following we will introduce random measurements breaking out the unitary
evolution. As we will see in the next chapter, introducing measurements makes the
simulations more computationally challenging for the computer. Therefore we need to
find a small enough L and l that avoid finite-system size effects. As an example of the
reasoning behind a choice of L,l and t for a given simulation, we here take L = 80 and
l ∈ {5n|n ∈ [1, 5]} and thus understand up to what time the evolution does not show
finite-system size effects. Looking at Fig. 3.5, we get that the best choice is to take
l = 5 and let evolve the system until t ≈ 35. This does not come as a surprise, because
we already discuss that the smaller l with respect to L, the more we are in the limit
l/L≪ 1, which shows a saturation of the entanglement entropy to a volume law, namely
Sl(t) ≈ αl, where α is a constant. However we recall that, strictly speaking, to avoid
finite size effects we must take the limits L, l, t → ∞. It is thus clear how, for such
system sizes, we will never be fully free of finite-size effects, as will be very manifest in
the model studied in Sec. 4.3.
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Figure 3.5: Plot of Sl(t)/l over t/l for L = 80 and l ∈ {5n|n ∈ [1, 5]}, extracted from
the simulation in the Hilbert space (continuous lines) and from the quasiparticle picture
(dashed lines).

3.3 Brickwork Evolution

We now arrive at the main result of this chapter, namely that the dynamics described
in the previous section can be simulated efficiently also on a quantum computer. Indeed
the hopping Hamiltonian can be precisely mapped into a Hamiltonian for gates acting
on qubits, via the Jordan-Wigner transformation (Sec. 1.2.1). Indeed, given Eq. (1.21),
we have that

c†jcj+1 =
( j−1∏
j′=1

σz
j′

)
σ−
j

( j∏
j′=1

σz
j′

)
σ+
j+1 = σ−

j σ
z
jσ

+
j+1 = σ−

j σ
+
j+1, (3.28)

where we used the fact that σ−
j σ

z
j = σ−

j , and

c†j+1cj =
( j∏
j′=1

σz
j′

)
σ−
j+1

( j−1∏
j′=1

σz
j′

)
σ+
j = σ−

j+1σ
z
jσ

+
j = σ−

j+1σ
+
j , (3.29)

where we used the fact that σz
jσ

+
j = σ+

j . It’s important to notice that we can also do
the inverse mapping, as shown in Appendix C.

Therefore, assuming a brickwork circuit like the one in Fig. 3.6, we have that the
local unitaries are

Uj,j+1 = e−i(ασ−
j σ+

j+1+α∗σ−
j+1σ

+
j ). (3.30)

However we will use, for the classical simulation, the fermionic Gaussian state formalism,
thus the brickwork circuit can be efficiently simulated classically using local unitaries such
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Figure 3.6: Sketch of the brickwork circuit, where we assume L to be even and we assume
PBC.

as
Uj,j+1 = e−i(αc†jcj+1+α∗c†j+1cj). (3.31)

As we can see from Fig. 3.6, the evolution is divided into odd and even layers. The
evolution is therefore given by:

|ψ′⟩ =
∏
j even

Uj,j+1

∏
j odd

Uj,j+1 · · ·
∏
j even

Uj,j+1

∏
j odd

Uj,j+1 |ψ0⟩ , (3.32)

where we apply the layersM times. However, in the multiplication, not all the operators
in the exponent of the evolution operator commute. Indeed, from a direct computations,
we have that

[c†icj, c
†
kcl] = δj,kc

†
icl − δi,lc

†
kcj. (3.33)

Therefore we have that on a same layer∏
j even/odd

Uj,j+1 = e−i
∑

j even/odd(αc
†
jcj+1+α∗c†j+1cj), (3.34)

but the exponents on different layers do not commute, thus we do not have an equation
such as the one in Eq. (3.7). Indeed, since not all the exponents commute, we have that
Eq. (3.4) stands, therefore, taking H =

∑
j(αc

†
jcj+1 + α∗c†j+1cj), we have that

e−iHt = lim
M→∞

(∏
j

Uj,j+1

( t
M

))M

. (3.35)
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We now want to prove this numerically. To do so we have to look at the evolution of
the correlation matrix. This evolution can be computed in two ways, which are equiv-
alent, but they require two different code implementations. Indeed the two approaches
start from two different results of Chap. 1:

• the first one starts from the result in Eq. (1.58), as shown in App. C.1;

• the second one starts from Eq. (1.81).

Since the second one is the starting point also for the numerical simulations carried out
in Sec. 3.2, 4.1, 4.2, we will follow this path, because with only a simple observation we
can recycle the same code. Indeed let’s focus on a single unitary of the brickwork circuit
(Fig. 3.6). The Hamiltonian associated to this evolution is Hj,j+1 = αc†jcj+1 + α∗c†j+1cj,
which corresponds to a single term of the sum in the Hamiltonian of Eq. (3.5). This
will yield a matrix form of the Hamiltonian which has all zero entries, except for α in
position (j, j +1) and α∗ in position (j +1, j). All this said we can use Eq. (3.8), where
we take U = e−iHj,j+1 . We do this matrix multiplication first for all j odd and then for
all j even, repeating it for a certain number of times. We thus reproduced the brickwork
circuit evolution of Fig. 3.6. The entanglement entropy resulting from this simulation is
compered to the one of the continuous time evolution in Fig. 3.7, where we can see how
the entanglement entropy is not the same after a given time. This should not come as a
surprise, since we have just showed, in Eq. (3.35), that the two evolution are equivalent
in the limit of M → ∞.

We therefore trotterize the evolution and we compere the entanglement entropy of
the continuous evolution with the brickwork one, for different values of M . The results
are displayed in Fig. 3.8, where we can see how asM increases, the entanglement entropy
of the discretized dynamics reproduces better the one of the continuous dynamics.

We can now apply the quasiparticle picture to this setting.

3.3.1 Quasiparticle Picture in a Brickwork Circuit

The evolution of a brickwork circuit is described by alternating the application of unitary
operators (of the kind in Eq. (3.31)) on odd and even operators. On each layer the
unitary evolution is described by

Uo(τ) = e−iτ
∑L/2

j=1(c
†
2j−1c2j+c†2jc2j−1) (3.36)

Ue(τ) = e−iτ
∑L/2

j=1(c
†
2jc2j+1+c†2j+1c2j) (3.37)

In order to have a semi-classical interpretation, we need to extract the quasiparticle
velocity (from the dispersion of the Hamiltonian) and the entropy density, thus combining
them and obtaining the quasiparticle picture entanglement entropy from Eq. (3.18)) .
Let’s look at these two issues separately.
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Figure 3.7: Entanglement entropy for a system of size L = 70 and a subsystem size
of l = 5. For a brickwork dynamics we can see how this does not correspond to the
continuous time entanglement entropy.

Quasiparticle Velocity The problem here is that we do not have an Hamiltonian.
However we can extract it, by looking at the composition U(τ) = Uo(τ)Ue(τ). Indeed,
looking at the exponent of U(τ), we will get the Hamiltonian. As we did in Sec. 3.2.1,
the quasiparticle velocity is the derivative of the dispersion (Eq. (3.20)). Thus we need
to diagonalize the Hamiltonian for the whole system. In order to find it we must look at
the exponent of U(τ), which can be found using some algebra, as outlined in [57].

the first step is a Fourier transform of the fermionic operators. This has already been
done in App. A, but here the period is L/2. Given the Fourier transform of a fermionic
operator (Eq. (A.4)), we have that the term

L/2∑
j=1

c†2j−1c2j =
1

L

∑
p,q

e−i 2π
L
p(2j−1)c†pe

i 2π
L
q2jcp

=
∑
p,q

ei
2π
L
p 1

L

L/2∑
j=1

e−i 4π
L
(p−q)jc†pcq.

(3.38)

Given the delta condition δp,q+kL/2 (proved in App. C.2) and since the allowed values
of p ore p = 0, 1, . . . , L − 1, the only possible integers are k = 0, 1. Therefore we have
that

1

L

L/2∑
j=1

e−i 4π
L
(p−q)j =

1

2
(δp,q + δp,q+L/2). (3.39)
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Figure 3.8: Entanglement entropy for a system of size L = 70 and a subsystem size of
l = 5. We take M ∈ {30, 50, 100, 200}, showing how for increasing M the entanglement
entropy often brickwork circuit gets closer and closer to the one of the continuous evo-
lution.

Now Eq. (3.38) can be rewritten as

L/2∑
j=1

c†2j−1c2j =
1

2

∑
p,q

ei
2π
L
p(δp,q + δp,q+L/2)c

†
pcq =

1

2

∑
p

ei
2π
L
p(c†pcp + c†pcp−L/2). (3.40)

We can now do the same for the other term in the exponent of the unitary at odd
position, obtaining:

L/2∑
j=1

c†2jc2j−1 =
∑
p,q

e−i 2π
L
q 1

L

L/2∑
j=1

e−i 2π
L
(p−q)2jc†pcq =

1

2

∑
p,q

e−i 2π
L
q(δp,q + δp,q+L/2)c

†
pcq

=
1

2

∑
p

(e−i 2π
L
pc†pcp + e−i 2π

L
(p−L

2
)c†pcp−L/2)

=
1

2

∑
p

(e−i 2π
L
pc†pcp − e−i 2π

L
pc†pcp−L/2).

(3.41)

We can now put together the last two equations, in order to get the exponent of Uo in
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Eq. (3.36). To do so we set α = α∗, i.e. we take α real. We obtain that

α

L/2∑
j=1

(c†2j−1c2j + c†2jc2j−1) = α
∑
p

[ei 2πL p + e−i 2π
L
p

2
c†pcp +

ei
2π
L
p − e−i 2π

L
p

2
c†pcp−L/2

]
= α

∑
p

[
cos

(2π
L
p
)
c†pcp + i sin

(2π
L
p
)
c†pcp−L/2

]
.

(3.42)

This is not manifestly Hermitian. Therefore we restrict p = 0, 1, . . . , L/2 − 1. Doing
so, the values of p ∈ [L/2, L − 1] get shifted as p → p − L/2. Here we notice that
p − L/2 → p − L = p, because of the periodic boundary conditions. Doing this shift
also brings cos(2πp/L) → −cos(2πp/L) and sin(2πp/L) → −sin(2πp/L). Therefore Eq.
(3.42) becomes

α

L/2−1∑
p=0

[
cos

(2π
L
p
)
c†pcp + i sin

(2π
L
p
)
c†pcp−L/2

− i sin
(2π
L
p
)
c†p−L/2cp − cos

(2π
L
p
)
c†p−L/2cp−L/2

]
.

(3.43)

Doing the same for the evolution operator on even sites we get

α

L/2−1∑
p=0

[
cos

(2π
L
p
)
c†pcp − i sin

(2π
L
p
)
c†pcp−L/2

+ i sin
(2π
L
p
)
c†p−L/2cp − cos

(2π
L
p
)
c†p−L/2cp−L/2

]
.

(3.44)

We can now write Uo(τ) and Ue(τ) as

Ue(τ) = exp
[L/2−1∑

p=0

(
c†p c†p−L/2

)
A

(
cp

cp−L/2

)]
(3.45)

Ue(τ) = exp
[L/2−1∑

p=0

(
c†p c†p−L/2

)
B

(
cp

cp−L/2

)]
, (3.46)

where

A = −iατ

 cos
(

2π
L
p
)

i sin
(

2π
L
p
)

−i sin
(

2π
L
p
)

− cos
(

2π
L
p
) = −iατ

(
cos

(2π
L
p
)
σz − sin

(2π
L
p
)
σy

)
, (3.47)

B = −iατ

 cos
(

2π
L
p
)

−i sin
(

2π
L
p
)

i sin
(

2π
L
p
)

− cos
(

2π
L
p
) = −iατ

(
cos

(2π
L
p
)
σz + sin

(2π
L
p
)
σy

)
. (3.48)
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Now we wish to find the matrix C such that eAeB = eC , thus finding the operator
U(τ) = Uo(τ)Ue(τ). To do so we can rewrite A and B in terms of Pauli matrices, thus
allowing us to exploit the properties of SU(2) algebra. Indeed calculating eAeB = eC

requires the usage of Baker–Campbell–Hausdorff formula, but this formula has a close
form in SU(2), i.e

eian̂·σ⃗eibm̂·σ⃗ = I(cos a cos b− n̂ · m̂ sin a sin b)

+ i(n̂ sin a cos b+ m̂ sin b cos a− n̂× m̂ sin a sin b) · σ⃗.
(3.49)

a = b = −ατ, (3.50)

n̂ = (0,− sin(2πp/L), cos(2πp/L))T , (3.51)

m̂ = (0, sin(2πp/L), cos(2πp/L))T . (3.52)

Doing the direct calculations we find that

eC = eAeB =
(
cos2(ατ)− cos

(4π
L
p
)
sin2(ατ)

)
I

+ i sin2(ατ) sin
(4π
L
p
)
σx + i sin(2ατ) cos

(2π
L
p
)
σz.

(3.53)

We rewrite this in the following way:

eC = aI + ibσx + idσz, (3.54)

where

a = cos2(ατ)− cos
(4π
L
p
)
sin2(ατ) (3.55)

b = sin2(ατ) sin
(4π
L
p
)

(3.56)

d = sin(2ατ) cos
(2π
L
p
)
. (3.57)

Now any exponential of Pauli matrices can be written as

eiϵ(n̂·σ⃗) = cos(ϵ)I + i sin(ϵ)n̂ · σ⃗. (3.58)

Therefore, comparing it to Eq. (3.54) and after normalizing the vector which multiplies
σ⃗, we have that

a = cos(ϵ), (3.59)
√
b2 + d2 = sin(ϵ), (3.60)( b√
b2 + d2

, 0,
d√

b2 + d2

)T

= n̂. (3.61)
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Moreover, given the fact that the n̂ is a normalized vector, we can rename the two
non-zero components sin(ϕ) = b/

√
b2 + d2, cos(ϕ) = d

√
b2 + d2, thus having

ϕp = arctan
( b
d

)
. (3.62)

Exploiting the identity

e−i θ
2
σy

σzei
θ
2
σy

= cos(θ)σz + sin(θ)σx, (3.63)

we have that
n̂ · σ⃗ = e−iϕ

2
σy

σzei
ϕ
2
σy

. (3.64)

Thus, putting everything together, we get that

C = iϵpe
−i

ϕp
2
σy

σzei
ϕp
2
σy

, (3.65)

where

ϵp = arctan

√
b2 + d2

a
. (3.66)

Therefore we have that

U(τ) = exp

L/2−1∑
p=0

(c†pc
†
p−L

2

)C

(
cp

cp−L
2
.

)

= exp
[L/2−1∑

p=0

iϵp[cos(ϕp)(c
†
p − c†

p−L
2

) + sin(ϕp)(c
†
pcp−L

2
+ c†

p−L
2

cp)]
]
.

(3.67)

Now the exponent of U(τ) is the Hamiltonian that drives the evolution on odd and even
sites, which is diagonalized by the Bogoliubov transformation(

bp
bp−L

2

)
= ei

ϕp
2
σy

(
cp
cp−L

2

)
, (3.68)

yielding

U(τ) = exp
[
i

L/2−1∑
p=0

ϵp(b
†
pbp − b†

p−L
2

bp−L
2
)
]
. (3.69)

Now we can extend the sum from p = −L/2 + 1, . . . L/2− 1, obtaining

U(τ) = exp
[
i

L/2−1∑
p=−L/2+1

ϵpb
†
pbp

]
(3.70)
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and then we can take the thermodynamic limit L → ∞, getting 2πp/L → k, thus
yielding

U(τ) = exp
[
i

π∑
k=−π

ϵkb
†
kbk

]
. (3.71)

From here we can find the quasiparticle velocity deriving the dispersion. However the
continuous evolution is given by exp(−iHt), but in the above equation the time variable
is not explicit. Therefore we rewrite the above equation as

U(τ) = exp
[
i

π/2∑
k=−π/2

τ ϵ̃kb
†
kbk

]
(3.72)

where ϵ̃k = ϵk/τ .
5

Introducing the variables

a(k) = cos2(ατ)− cos(2k) sin2(ατ) (3.73)

b(k) = sin2(ατ) sin(2k) (3.74)

d(k) = sin(2ατ) cos(k), (3.75)

we have that

ϵk = arctan

√
b(k)2 + d(k)2

a(k)
, (3.76)

which, upon derivation with respect to k, yields

vk =
dϵk
dk

=
a(k)(b(k)2 + d(k)2)′ − 2(b(k)2 + d(k)2)a(k)′

2
√
b(k)2 + d(k)2(a(k)2 + b(k)2 + d(k)2)

, (3.77)

where

a(k)′ = 2 sin(2k) sin2(ατ) (3.78)

(b(k)2 + d(k)2)′ = 2 sin4(ατ) sin(4k)− sin2(2ατ) sin(2k). (3.79)

We must notice that in our final form of the evolution operator (Eq. (3.72)), we have
a rescaled dispersion ϵ̃k. Therefore, in the formula for the entanglement entropy (Eq.
(3.18)), we will have to use

ṽk =
vk
τ
. (3.80)

5In Appendix E, there is a comparison between the dispersion in the continuous case and in the
brickwork case, where the limit τ → 0 is taken to show that, in this limit, the brickwork evolution is
equivalent to the continuous one.
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Entropy Density The next problem to tackle is the entropy density. We saw in the
previous section that this corresponds to Eq. (3.24), thus we need to find the value of
the density ⟨b†kbk⟩. To do so we first use the Bogoliubov transformation to relate this
density with the correlation matrix in momentum space:

⟨b†pbp⟩ = cos2
ϕp

2
⟨c†pcp⟩+ sin2 ϕp

2
⟨c†p−L/2cp−L/2⟩+ cos

ϕp

2
sin

ϕp

2
(⟨c†pcp−L/2⟩+ ⟨c†p−L/2cp⟩)

= cos2
ϕp

2
Γp,p + sin2 ϕp

2
Γp−L/2,p−L/2 + cos

ϕp

2
sin

ϕp

2
(Γp,p−L/2 + Γp−L/2,p).

(3.81)

Then we use the fact that for the brickwork circuit the delta condition is δp,q+kL
2
, we

have that the elements of the correlation matrix in the above expression (3.81) are all
equal to 1/2, thus

⟨b†pbp⟩ =
1

2
+

1

2
sin(ϕp). (3.82)

Therefore, in the thermodynamic limit, we have obtained the Yang Yang entropy ([58]

H(nk) = −
(1
2
+

1

2
sin(ϕk)

)
log

(1
2
+

1

2
sin(ϕk)

)
−

(1
2
− 1

2
sin(ϕk)

)
log

(1
2
− 1

2
sin(ϕk)

)
.

(3.83)

Entanglement Entropy Now we have all the ingredients to compute the entangle-
ment entropy from Eq. (3.18), which for the brickwork evolution, upon taking the
thermodynamic limit, takes the form:

Sl(t) = 2t

∫
2|ṽk|t<l

dk

2π
|ṽk|H(nk) + l

∫
2|ṽk|t>l

dk

2π
H(nk), (3.84)

where H(nk) is the Yang Yang entropy from Eq. (3.83), and ṽk is the quasiparticle
velocity of Eq. (3.80). This integral can be evaluated numerically. In Fig. 3.9, we
present the entanglement entropy computed with the trotterization of a brickwork circuit
and the entanglement entropy computed with the quasiparticle picture for a system with
L = 70, l = 5, m ∈ {20, 40, 60}. It can be noticed that the quasiparticle picture provides
a good estimation of the entanglement entropy also in the case of a brickwork circuit,
even though it slightly underestimates it. This is due to finite size effects, indeed the
quasiparticle picture is valid in the thermodynamic limit, i.e. L, l → ∞, and we had
verified that, increasing their values, the accordance between the entanglement entropies
computed with the two different techniques gets better. Another feature of the trend of
the entanglement entropy computed from the correlation matrix evolution, is its “zig-
zag” shape. This is due to the alternating application of Uo(τ) and Ue(τ) and this
behaviour fades out in the limit M → ∞.
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Figure 3.9: Comparison between the entanglement entropy computed with the trotteriza-
tion of a brickwork circuit and the entanglement entropy computed with the quasiparticle
picture for a system with L = 70, l = 5, m ∈ {20, 40, 60}.
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Chapter 4

Measurements in the Dynamics

In this chapter we will introduce measurements in the free-fermionic dynamics. In this
context, the measurements have to preserve the gaussianity of the state of the systems
we will analyze, in order to keep simulating large systems on classical computers. First
of all we will introduce local projective measurements of the density nj (Sec. 4.1) [24].
Here we will see how the entanglement entropy behaves under different measurement
rates. The research conducted by Alberton and al. ([59]) showed the presence of the
MIEPT in a free-fermionic model evolving under a hopping Hamiltonian and subject to
continuous monitoring of the local density. However, recent papers ([25], [60]) showed,
via analytical and numerical means, that such transition is not there, instead it is a
crossover. Indeed the volume low phase is not stable, since as soon as we introduce
measurements, the entanglement entropy ceases to follow the volume-law. Therefore we
moved on and studied two other models, to see if in them a phase transition is present.

The first model (Sec. 4.2), inspired by the work of O’Dea et al. ([61]), introduces an
absorbing state dynamics to see if there is an entanglement and a absorbing-state phase
transition. However, as it will be thoroughly explained in Sec. 4.2, this is not the case.

Finally, in Sec.4.3, we force a non linear measurement procedure into the hopping
dynamics, to investigate if we can make the volume law phase more stable.

4.1 Entanglement Entropy Dynamics Under Local

Projective Measurements

In the previous sections we evaluated the evolution of entanglement entropy over time.
This evolution was unitary. Now we will perturb this unitarity inserting local projective
measurements during the evolution. To do so, we take each single space-localized Hilbert
spaceHj (j = 1, . . . , L) and couple it randomly with the environment for a short period of

time. In this time a local observable is measured via a local observable Ôj =
∑K

k=1 okP̂
(k)
j ,
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where ok is a possible outcome and P̂
(k)
j is the projector on its eigenspace (

∑K
k=1 P̂

(k)
j =

1̂j). We take time steps dt and a characteristic rate of measurement p = 1/τ . More
precisely we take each time step dt = 1 in order to keep a discretized evolution and avoid
the continuous limit (dt→ 0). In each time step of this kind, each single local degree of
freedom is monitored independently. If such a measurement takes place, the many-body
state |Ψ⟩ is projected according to the Born rule:

|Ψ⟩ →
P

(k)
j |Ψ⟩
√
pk

, (4.1)

where pk = ⟨Ψ|P (k)
j |Ψ⟩. In practice, this can be seen as an extraction of a random number

p ∈ ], 0, 1], and a projection onto the k-th subspace is performed if
∑k−1

l=1 pl < p <
∑k

l=1 pl.
This will be exploited for the simulation of such evolution, as we will explain in a little
while. Taking into account this dynamics, the evolution of the many body state |Ψ(t)⟩
is conditioned by the set of measurement and their outcomes. We must remark that, if
|Ψ(0)⟩ is a pure state, following this protocol, it will remain pure.

As already seen in Chap. 1 and 2, depending on the placing of the random measure-
ments and on the outcome of these measurements, the state changes, therefore we will
measure averages over quantum trajectories.

4.1.1 The Procedure

We now focus on the hopping Hamiltonian of Eq. (A.8). We already saw that, since the
total number operator commutes with the Hamiltonian, an initial Gaussian state will
remain Gaussian and thus we can use, as previously done, the formalism of correlation
matrices.

Furthermore we focus on the measurement of the local occupation numbers, namely
n̂j = c†jcj. The measurement could, in principle, destroy the gaussianity of the state,
however, for this type of measurement, this is not the case [24].

Claim 4.1.0.1. Measuring the local occupation number n̂j = c†jcj, which is quadratic in
the fermions operators, does not destroy the gaussianity of the state.

Proof. If a state is Gaussian, by definition, ρ ∝ e
∑

i,j Hi,jc
†
i cj , where H is the matrix

of coefficients described in Eq. (1.64). We have the spectral decomposition n̂j = 1 ·
P̂

(1)
j + 0 · P̂ (0)

j . Also 1̂j = P̂
(1)
j + P̂

(0)
j . What we have just proved is that n̂j = P̂

(1)
j

and 1̂j − n̂j = P̂
(0)
j , namely each local number operator is itself a projector. Now we

can prove that these projectros can be written as limits of Gaussian operators. First of
all, exploiting the fact that the local fermionic number operator has the property that
n̂l
j = n̂j ∀ l = 1, . . . ,∞, we have that

lim
α→∞

eαn̂j

eα − 1
= lim

α→∞

[ 1̂j
eα − 1

+
(eα − 1)n̂j

eα − 1

]
= n̂j.
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Moreover
lim
α→∞

e−αn̂j = lim
α→∞

[
1̂j + (e−α − 1)n̂j

]
= 1̂j − n̂j.

Then, finally, since when a measurement is performed the density matrix transforms as
ρ̂→

∑K
k=1 P̂

(k)
j ρ̂P̂

(k)
j , we have

e±αn̂je
∑

i,j Hi,jc
†
i cje±αn̂j = e

∑
i,j K

(±)
i,j c†jcj ,

where K(±) is a new matrix, whose elements are given by the Baker-Campbell-Hausdorff
formula. Therefore the Gaussianity is preserved.

An important fact, that will be exploited in the following, is that local number
operators on different sites commute, thus the projecting procedure can be applied in
any order. If at time t a measurement occurs on the k-th site, the post-measurement
states will be

|Ψ(t)⟩ → nk |Ψ⟩√
⟨Ψ(t)|nk|Ψ(t)⟩

if outcome is 1 (4.2)

|Ψ(t)⟩ → (1− nk) |Ψ⟩√
⟨Ψ(t)|1− nk|Ψ(t)⟩

if outcome is 0 (4.3)

To implement this random measurement procedure we use the following recipe [24]:
for each time step dt and each lattice site k we take a random number pk ∈]0, 1] and only
if pk ≤ dt/τ we take the measurement of the occupation number nk. In such case, we
take another random number qk ∈]0, 1]: if qk ≤ Γkk(t), simulating outcome 1, the post
measurement correlation matrix will be

Γij(t) → δikδjk + Γij(t)−
Γik(t)Γkj(t)

Γkk(t)
, (4.4)

otherwise, if qk(t) > Γkk(t), simulating result 0, the post-measurement correlation matrix
will be

Γij(t) → −δikδjk + Γij(t) +
(δik − Γik(t))(δkj − Γkj(t))

Γkk(t)
, (4.5)

where we have exploited Wick’s theorem to find these expressions, whose proofs are in
Appendix D.

4.1.2 Entanglement Entropy Dynamics

The bipartite entanglement entropy is affected by the random projective measurement.
We already saw how to extract the entanglement entropy from Gaussian states in Sec.
1.3. In this section we will take into account combinations of L and l such that the
finite-system size effects are negligible, in order to look at the limit of an infinite system.
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What we will now explore is what happens when we change the measurement rate
1/τ . The first trivial case is when τ → 0, which means that pk ≤ 1/τ always. In such
case, measurements take place everywhere at every time step, thus leaving the many-
body state completely factorized, yielding a vanishing entanglement entropy. This is now
as quantum Zeno effect [13].

Figure 4.1: Plot of the entanglement entropy for a system with L = 70, l = 8, when the
system is not monitored and monitored everywhere at every time step.

Next we can inspect the opposite limit, namely τ → ∞. In this case the intuition
suggests that the evolution of the entanglement entropy should be equivalent to the
unitary one. However in [24] it was proven that for any finite measurement rate, the
volume-law is destroyed. Therefore, the volume-law phase of the unitary evolution is
recovered just when no measurements occur. To ensure this some evaluations have to
be done. With a system size of L, at each time step we extract L random numbers pk.
If we let the system evolve for T time steps, in order to have no measurements, it must
hold that τ > LT .

To verify this hypothesis we do a simulation on a chain of L = 70 fermions and
measure the entanglement entropy with a subsystem of l = 8 with an evolution time T =
30. This values are taken in order to avoid the revivals of the entanglement entropy, as
explained in Sec. 3.2.1. Furthermore, we do an average over 200 quantum trajectories in
order to plot the entanglement entropy for the evolution with measurements. The result
is shown in Fig. 4.1, where the entanglement entropy from the unitary evolution and
the entanglement entropy from an evolution subjected to local projective measurements,
with τ = 0.1 and τ = 1 × 109 are compared. Since the measurements are very unlikely
to happen for τ = 1× 109, the plot of the entanglement entropy from unitary evolution
and from very weak monitoring overlap, as expected. Moreover, in Fig. 4.1, also the
entanglement entropy of a system where the local density is measured everywhere at

63



Figure 4.2: Entanglement entropy for a system of L = 70 and l = 8, monitored with
different rates 1/τ .

every time step is plotted (τ = 0.1, meaning that dt/τ > 1, thus making impossible
to have pk < dt/τ). As anticipated, the entanglement does not spread, namely the
state of the system remains completely factorized, and the entanglement entropy is zero
throughout the evolution.

We now move away from the two limiting cases and look at what happens for inter-
mediate values of τ . To do so we simulate a system with L = 70 and l = 8, for a time
T = 30, changing the value of τ ∈ {5, 20, 50, 100}. The result is displayed in Fig. 4.2,
where we can see how the entropy saturates at a different value with respect to the one
of the unitary evolution. Indeed, for the unitary evolution, Sl(t) ≈ l for large enough
times in the limit L→ ∞, but introducing measurements during the evolution makes the
saturation value of the entropy change. Indeed, the linear growth of the entanglement
entropy displayed by the unitary evolution is substituted by a slower growth, namely a
logarithmic growth Sl(t) = aτ ln t + bτ [24]. Thus we can say that introducing measure-
ments during the unitary evolution allows for lower entanglement entropy, namely the
two subsystems are less entangled.

We now go on analyzing what happens when we fix a value of τ and compere the
entanglement entropy for different values of l, since the area law phase is featured by
the fact that the entanglement entropy reaches a constant value, independent of the
subsystem size.

For high enough values of τ , the entanglement entropy saturates to different values,
depending on l as can be seen in Fig. 4.3a, where the entanglement entropy for τ = 20
(measurement rate is 0.05) is showed.

Instead for small enough values of τ , independently from the subsystem size l, for
t > l/2 the entanglement entropy reaches a constant value, indicating that the system
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(a) Entanglement entropy for a system
monitored with a rate 1/τ = 1/20.

(b) Entanglement entropy for a system
monitored with τ = 1.5.

Figure 4.3: Time evolution of the entanglement entropy for L = 70 and l = 5, 10, 15, 20,
monitored with τ = 20 (4.3a) and τ = 1.5 (4.3b.

is in the area-law phase. In Fig. 4.3b the entanglement entropy for various subsystem
sizes is displayed for τ = 1.5 (measurement rate 0.6̄). Here we can clearly see how,
independently from l, the entanglement entropy saturates to a constant value. To be
more precise, in Fig. 4.3b, the entanglement entropy is not stable. This is due to the fact
that the plots for the various ls are the result of an average over 200 quantum trajectories.
Indeed, for such a high measurement rate, the trajectories can be very different from one
another, therefore yielding the plots of Fig. 4.3b1.

Finally we here mention that in [24] it has been proven that the volume-law phase is
destroyed for any finite value of the measurement rate p = 1/τ . Moreover, for every size
L, a critical value of τ cL separating the area-law and the logarithmic-law phase has been
estimated, thus showing that in the limit L→ ∞ there is only the area-law phase.

4.2 Entanglement Entropy Dynamics in a Model

with an Absorbing State

In [61], an interactive quantum dynamics with unitary evolution and measurements on
a brickwork circuit has been studied. In particular the dynamics is stirred towards a
target state. This is done applying the X Pauli matrix to a qubit, depending on the
measurement outcome on it (this procedure is called feedback operation). The dynamics
has been studied under two varying parameters, which are the measurement rate pm and
the rate of measurements followed by a feedback operation pf . O’Dea at al. have shown

1Such plot can be improved by increasing the number of quantum trajectories of which we take the
average. However this is computationally costly and, since this model was already studied in [24], we
refer to this work for more precise plots.
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that the phase diagram is divided into three separate phases, namely a non-absorbing
volume-law phase, a non-absorbing area-law phase and an absorbing area-law phase.

To see if a free-fermionic model with random measurements, together with an evolu-
tion that drives the system towards a target state, could display a MIEPT, we considered
a new model, in which we introduced a mechanism to stir the evolution of the system
towards the target state |00 . . . 0⟩.

4.2.1 The Procedure

The new model just described consists in a fermionic chain HS, initialized in the Néel
state, flanked by an ancillary fermionic chain HS′ , initialized in the state |00 . . . 0⟩. The
evolution follows the steps explained below:

1. Let the system HS evolve under the hopping Hamiltonian.

2. We iterate along the sites of the ancillary chain and, for each site, extract a random
number pk ∈]0, 1]. Introducing a measurement rate 1/τ , if pk ≤ 1/τ , we perform:

(a) a hopping between HS and HS′ , namely we apply the unitary

e−iβ(c†kck′+c†
k′ck), (4.6)

where the primed indexes are for the sites on the ancillary system;

(b) a measurement of the density on the ancillary system.

3. Measure the entanglement entropy on the system HS.

4. Reset the state of the ancillary system to |00 . . . 0⟩.

Now some remarks need to be done. First of all, we notice that in this model, the number
of fermions in the system HS can only decrease, because, given the fact that the ancillary
state is reset to |00 . . . 0⟩, fermions can only hop from HS to HS′ . This tells us that there
cannot be an absorbing-state transition, since there is no competitive mechanism to the
destruction of fermions in HS. Indeed, to observe such a transition, we should introduce
a mechanism that also creates fermions in HS.

Moreover we notice that to do the evolution we can use the same techniques already
developed. Indeed the only difference here is that the system HS ⊗HS′ is described by
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a 2L× 2L correlation matrix of the kind:

Γ =



⟨c†1c1⟩ . . . ⟨c†1cL⟩ ⟨c†1c1′⟩ . . . ⟨c†1cL′⟩
...

. . .
...

...
. . .

...

⟨c†Lc1⟩ . . . ⟨c†LcL⟩ ⟨c†Lc1′⟩ . . . ⟨c†LcL′⟩

⟨c†1′c1⟩ . . . ⟨c†1′cL⟩ ⟨c†1′c1′⟩ . . . ⟨c†1′cL′⟩
...

. . .
...

...
. . .

...

⟨c†L′c1⟩ . . . ⟨c†L′cL⟩ ⟨c†L′c1′⟩ . . . ⟨c†L′cL′⟩


. (4.7)

Therefore the hopping between HS and HS′ of point 2 is represented by a 2L×2L matrix
with all zeros, except for the the elements Γk,k′ , Γk′,k, which are equal to β.

Furthermore, performing a projective measurement on the ancillary system modifies
the correlation matrix above following the same rules of Eq. (4.4) and Eq. (4.5), where
now the index k is substituted with the index k′. Then, once the post-measurement cor-
relation matrix is computed, the entanglement entropy is calculated taking the reduced
correlation matrix, namely taking just the first l rows and columns.

Finally, resetting the ancillary state to the state |00 . . . 0⟩ is done replacing the entries
Γi,j′ , Γi′,j, Γi′,j′ (∀ i′, j′ ∈ [1′, L′]) with zeros. Before going into the discussion of the
results, a remark needs to be done.

Remark. For projective measurements we let the system evolve for time t ≈ L/2, since
at this value if t the entanglement entropy has saturated and the finite-size effects are
still negligible. For the model introduced in this section, the setting of the evolution time
requires more thought. Indeed, if we let the system evolve for very long times, even for
a small coupling β between the system and the ancilla, eventually the the system will
be in the state |ψS⟩ = |00 . . . 0⟩, since even for small measurement rates all the fermions
will eventually hop onto the ancilla and be destroyed. This will yield an entanglement
entropy equal to zero, in the long time limit, independently of the subsystem size, even
for small measurement rates. Therefore we cannot talk about a saturation value of the
entanglement entropy, strictly speaking, however we can fix the evolution time and take
the entanglement entropy at that time and consider it its saturation value. The value
of t depends on what we want to observe and in the following it will be mentioned and
discussed for the different simulations.

4.2.2 Results: Entanglement Entropy and Density Dynamics

As for projective measurements, we first compare the evolution of the entanglement
entropy for different values of τ . However, in this model, one can also tune the coupling
strength β between HS and HS′ (Eq. (4.6)).
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(a) Time evolution of the entangle-
ment entropy for some values of τ .

(b) Time evolution of the density for
some values of τ .

Figure 4.4: Time evolution of the entanglement entropy and the density for L = 70,
l = 8, and β = 0.5, monitored with τ ∈ {5, 10, 20, 50, 100}.

(a) Time evolution of the entangle-
ment entropy for some values of τ .

(b) Time evolution of the density for
some values of τ .

Figure 4.5: Time evolution of the entanglement entropy and the density for L = 70,
l = 8, and β = 1, monitored with τ ∈ {5, 10, 20, 50, 100}.

In Fig. 4.4 and 4.5 the time evolution of the entanglement entropy and the density
in a system with β = 0.5 and β = 1, respectively, are displayed. First of all, as one can
intuitively expect, the densities, at a fixed time, are lower for a higher value of β. This
reflects on the saturation value of the entanglement entropy, since the hopping between
the system and the ancilla coincides with a measurement, as explained in the previous
subsection. In both cases one can see how the entanglement entropy, for low enough
values of τ , bends towards the zero-value, corresponding to the target state |00 . . . 0⟩, as
discussed at the end of the previous subsection.

From Fig. 4.4a and 4.5a we can see how, depending on the measurement rate, the
system displays different behaviours of the entanglement entropy. However the absence
of a stable volume-law phase is obvious. Indeed, no matter the measurement rate, in
the long-time limit the entanglement entropy will be zero for any subsystem size, since
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the state of the system will be |00 . . . 0⟩. Therefore there is no measurement induced
entanglement phase transition in this model.

We now turn to a detailed analysis of the dependence of the dynamics on the subsys-
tem size. To do so, we take a system with L = 30, since we expect no finite-size effects.
Indeed, for small enough values of τ , the system will be dominated by the absorbing
dynamics. Therefore we take smaller values of L, and consequently of l, since this is
computationally advantageous in terms of the time required to carry out a simulation.

In Fig. 4.6a the time evolution of the entanglement entropy for different values of l
is displayed and it is clear how, independently of l, the entanglement entropy saturates
to a constant value, proving the existence of an area-law phase. Moreover this area-
law phase is trivial. Indeed in the long-time limit the value at which the entanglement
entropy saturates is 0, since the absorbing dynamics brings the system to the product
state |00 . . . 0⟩.

Since we have already proven the absence of an entanglement phase transition in this
model, we do not analyze any further the entanglement entropy, instead we move to the
discussion on the absence of an absorbing state transition.

(a) Time evolution of the entanglement
entropy for some values of l.

(b) Time evolution of the density for
some values of l2.

Figure 4.6: Time evolution of the entanglement entropy and the density for L = 30,
τ = 2, β = 1 and l = 4, 8, 12.

Results: Absence of an absorbing state transition As already mentioned in
the beginning of the present section, we do not expect an absorbing state transition
,since there is no mechanism that contrasts the destruction of fermionic modes. In this
paragraph we prove numerically our hypothesis.

An absorbing state transition is suggested by a discontinuity in the density when
plotted in function of the measurement rate p = 1/τ [61]. Indeed, at a critical measure-
ment rate, the density should go abruptly to zero. Moreover the critical point should
be size independent. In Fig. 4.7 a plot of the asymptotic density as a function of L is
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Figure 4.7: Asymptotic density as a function of the measurement rate for different system
sizes L. The system features a coupling strength of β = 1.

displayed for different values of L. As one can see, the density goes to zero continuously,
showing no signs of an absorbing state transition, as expected. To conlcude we remark
that in this case the asymptotic density is taken at different times t = L, because for
this value and the chosen range of p the density reaches zero.

4.3 Free-Fermionic Model with Non-Linear

Weak Measurements

Given the results in Sec. 4.1 (as proven in [24]) and in Sec. 4.2, it is clear that there
is no MIEPT in free-fermionic models, as proven in [25]. This is due to the fact that
for any finite measurement rate, the system exits the volume-law phase and enters in a
logarithmic phase.

Therefore we looked for a measurement procedure, to be inserted into a hopping
evolution, that could make the volume law more stable. Such procedure, with the relative
results, is discussed in this section.
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4.3.1 Measurement Operators

For this model we use weak measurements, which were introduced in Sec. 1.4.2. We take
as measurement operators3:

V
(k)
1 =

e−ϵ/2√
2 cosh(ϵ)

eϵc
†
kck , (4.8)

V
(k)
2 =

eϵ/2√
2 cosh(ϵ)

e−ϵc†kck . (4.9)

It is manifest how the strength of these operators is given by the parameter ϵ. For
instance, for ϵ = 0, V1 and V2 are proportional to the identity, thus not disturbing the
state they are measuring.

Furthermore, the parameter ϵ is the means by which we introduce a non-linearity in
the evolution. Indeed we will take

ϵ→ ϵk = J
(1
2
− nk

)
, (4.10)

where nk = ⟨ψ|n̂k|ψ⟩ is the local density and J is a coupling strength. We choose such
formula for ϵ, because, as explained in Chap. 3, the density is 1/2 when the entanglement
entropy saturates to a value approximately equal to l. Therefore in this scenario, ϵk will
become very small, leading to very weak measurements that could make the volume-law
more stable.

Remark. By non-linearity we mean that there is a non-linearity, with respect to the
density matrix, in the measurement outcomes. Indeed, for traditional generalized mea-
surements, the probability of a measurement outcome is given by Eq. (1.101), which is
linear in ρ. Instead, in the present case, we have that the measurement operators are
M = M(ρ), given the dependency of ϵk on the local density. Therefore the probability
of a measurement outcome is non-linear in ρ.

We also mention that the experimental realization of such measurements is non trivial,
given the fact that, before performing a measurement (described in Eq. (4.8), (4.9)), one
also has to measure the local density.

4.3.2 QR-Decomposition

For projective measurements, we worked with the correlation matrix formalism. Namely
its unitary evolution is given by Eq. (1.81) and the post-measurement state of the system
is described by the correlation matrix of Eq. (4.4), (4.5).

For the type of weak measurements we have now introduced we employ a different
technique, i.e. the QR-decomposition, which was first suggested in [18] and also used

3In appendix we show that they follow the completeness rule of Eq.(1.100).
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in [25]. This approach presents some subtleties. First of all this technique works if
the initial state is a domain wall (DW) state, namely, for a chain with L sites, with L
even, the domain wall state is filled up to the site L/2, i.e. |ψDW⟩ = |11 . . . 100 . . . 0⟩.
However we are considering a system whose initial state is a Néel state. Therefore we
need a matrix that brings the DW state into the Néel state. This can be done by a
“permutation” unitary U0. Therefore

|ψDW(0)⟩ = U0 |ψNéel(0)⟩ . (4.11)

Given this fact we have that to go from the correlation matrix for the DW to the
correlation matrix of the Néel state, we have to perform a change of basis, namely

ΓDW(0) = U−1
0 ΓNéel(0)U0 = diag(1, . . . , 1, 0, . . . , 0), (4.12)

where the ones are until the diagonal element indexed by L/2. With this approach, the
initial state is represented by the unitary U0 and the state evolved under a Hamiltonian
H is represented by U(t) = U(t)U0

4. Therefore, to get the evolved correlation matrix,
from which we can extract the entanglement entropy we do the change of basis Γ(t) =
U(t)ΓDW(0)U(t)−1.

Following what proved in [25], the evolution of the correlation matrix under a mea-
surement operator such as the ones in Eq. (4.8), (4.9), is done via the QR decomposition.
More precisely, given a pure state |ψ⟩, which is the evolution of an initial DW state, the
post-measurement state |ψ′⟩ = V |ψ⟩ is given by

|ψ′⟩ = Q |ψ⟩ , (4.13)

where Q is the matrix Q from the QR-decomposition of the matrix VU , namely VU =
QR. We notice that Q is a unitary matrix and R is an upper triangular matrix5.

As for the unitary evolution, at a time t, the state of the system is represented by
the matrix Ũ(t) = Q(t)U0. Therefore, to get the correlation matrix at time t, we do the
change of basis Γ(t) = Ũ(t)ΓDW(0)Ũ(t)−1 6.

4.3.3 Measurement Procedure

Having formalized the QR decomposition, we can now describe how to simulate the
measurement on a classical computer. Similarly to what we have done in Sec. 4.1, we
iterate on the sites of the fermionic chain. We always measure the system, after a unitary

4In this section we use capital letters for the matrices representing the states and calligraphic letters
for the matrices representing operators on the many-body space.

5The QR decomposition is unique only if R has all positive entries on the diagonal.
6The entanglement entropy extracted from the procedure outlined in Sec. 4.3.2 has been compered

to the one described in Sec. 1.3. The two approaches yield the same results.
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step, but we must decide whether to apply V
(k)
1 or V

(k)
2 . To do so we need to compute

the probabilities of outcome 1 and 2 (look at App. F for the details):

pk(1) = ⟨ψ|V (k)†
1 V

(k)
1 |ψ⟩ = e−ϵk

2 cosh(ϵk)

(
1 + (e2ϵk − 1)Γk,k

)
, (4.14)

pk(2) = ⟨ψ|V (k)†
2 V

(k)
2 |ψ⟩ = eϵk

2 cosh(ϵk)

(
1 + (e−2ϵk − 1)Γk,k

)
. (4.15)

Moreover we have that ϵk depends on the local density nk = Γk,k. Therefore, before
doing the measurement, we record the values of Γk,k ∀ k ∈ [1, L]. Then for each k we

extract a random number qk ∈ (0, 1]. If qk ≤ pk(1) we apply V
(k)
1 , otherwise we apply

V
(k)
2 , using the QR decomposition described in the previous subsection.

To be more precise, if qk ≤ pk(1) we apply the QR decomposition on V
(k)
1 U , where

V
(k)
1 is a diagonal matrix with entries equal to e−ϵ/2/

√
2 cosh(ϵ), except for the k-th

diagonal element, which is equal to e−ϵ/2ϵ/
√

2 cosh(ϵ). This is due to the fact that the

matrix representation of c†kck is a matrix with all zeros expect for the k-th diagonal
element.

4.3.4 Results

For this model with non-linear weak measurements we will analyze the time evolution
of the entanglement entropy, looking for a measurement induced entanglement phase
transition. More precisely we will be looking for a stable volume-law phase. To do so we
stress the fact that the control parameter for the hypothetical entanglement transition is
the parameter J in Eq. (4.10). Indeed the magnitude of this constant affects the strength
of the weak measurement. J is therefore the equivalent of the measurement rate p = 1/τ
of the previous two models. In analogy with those, is natural to ask ourselves if there is
a volume-law phase or mixed phase for small values of J and an area-law phase for big
enough values of J . To be more precise we expect to have an area-law phase, in analogy
to the weak monitoring regime of the previous analyzed models, but we are looking for
a more stable volume law for the model at hand.

First Qualitative Analysis To start to understand the behaviour of this non-linear
model, the first thing we do is to plot the time evolution of the entanglement entropy
for different values of J . As one can see in Fig. 4.8, for J ⪅ 0.1, the monitored
evolution seems to resemble the unitary one, whereas for grater values of J it does
not. Then, for 1 ⪅ J ⪅ 4, the entanglement entropy saturates at a value smaller than
the unitary case. Finally for J ⪆ 5 there is a similarity with the area-law behaviour
of the projective measurement case, namely the entanglement entropy peaks and then
decreases, saturating to a certain value.
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Figure 4.8: Time evolution of the entanglement entropy for a system with L = 70, l = 8
and a varying parameter J .

This preliminary discussion does not allow us to determine whether a transition exists.
Indeed, for a quantitative precise estimation, one should fix J and take the saturation
value of the entanglement entropy for every possible l, given a fixed (large enough) L.
Then one should extrapolate EE/l for l → ∞. Doing this ∀ J , one should then plot the
entanglement entropy over l, in the large l limit, as a function of J to extract the critical
value of J .

However finite size effects need to be considered. Indeed, having fixed L, one has
a limited choice for l. Indeed, as l increases, the time t at which a collapse of the
entanglement entropy shows up decreases. Moreover, in the volume-law phase, as l
increases, the entanglement entropy reaches a saturation value Sl(∞) ≈ αl (where α
is a constant). However, finite-size effect make this value lower for increasing ls if we
normalize the entanglement entropy with l.

To reduce finite-size effects, we should simulate a larger system than the ones we
have considered in this thesis, however our computational resources do not allow us to
reliably analyze the effect of finite sizes. Therefore we will do a qualitative analysis with
the data we can collect from the evolution, up to t = 30, of a system with L = 70 and
subsystem sized l = 2, 3, 4, 5. Indeed these are the dimensions of the subsystem and the
evolution time for which finite sizes are more negligible.

Small-J Regime The model discussed in the present section was introduce to see if
there is a type of measurement that gives a stable volume-law phase in non-interacting
fermionic. As explained above, to find if the measure we introduced yields a volume-law
phase we need to do an asymptotic analysis.

In this model we measure every fermionic mode at every time step and we measure
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(a) Asymptotic analysis of the entangle-
ment entropy for J = 0.05 (with stan-
dard deviation).

(b) Evolution of the entanglement en-
tropy for a system with L = 70, J =
0.05 and different values of the subsys-
tem size l.

Figure 4.9: Asymptotic analysis of the entanglement entropy and the entanglement en-
tropy evolution on a system with J = 0.05 and L = 70 for l = 2, 3, 4, 5.

V
(k)
1 or V

(k)
2 (Eq. (4.8), (4.9)) depending on a random number, as described in Sec. 4.3.3.

Therefore we need to do an average over quantum trajectories.
In Fig. 4.9a we plot the asymptotic value of the entanglement entropy in the unitary

case and in a weak monitoring non-linear dynamics with J = 0.05. We can here see
how the asymptotic value of the entanglement entropy in the monitored case overlaps
with the unitary one, thus suggesting a stable volume-law phase. Indeed, looking at Fig.
4.9b, one can see how the values of the entanglement entropy at time t = 30 are equally
spaced for different values of l, suggesting a volume law phase Sl(∞) ≈ αl, where α is a
constant7. This becomes more manifest if we compare this behaviour with the one of the
entanglement entropy of a system subjected to projective measurements. For instance,
in Fig. 4.3a we can clearly see how this constant spacing is not there and indeed, in
the case of projective measurements, the free-fermionic chain evolving under a hopping
Hamiltonian does not have a stable volume-law phase.

Large-J Regime As for the volume-law phase, a rigorous analysis is not possible due
to our computational resources. However we can still give evidence of the existence of
an area-law phase, at least in systems with finite sizes. Looking at the time evolution
entanglement entropy in a system with L = 70 for different subsystem sizes l = 2, 3, 4, 5
in a non-linear strong monitoring regime (Fig. 4.10), we can see how the entanglement
entropy saturates at a constant value, independently from l.

7To be precise, as l gets larger, Sl(∞)/l decreases, as one can see from Fig. 4.9a. This is due to
finite size effects, therefore what we are here saying is subject to this limitation, as already stressed.
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Figure 4.10: Time evolution of the entanglement entropy for J = 6 and l = 2, 3, 4, 5.

Remark. Fluctuations of the entanglement entropy: as one can see in Fig. 4.10, the
entanglement entropy fluctuates very much in the area-law regime. This is due to the
fact that the quantum trajectories can be very different from each other in this regime,
yielding very different averages.
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Conclusions and Outlook

The main results of this thesis are three and they are here listed.

1. In Sec. 3.9: the application of the quasiparticle picture on a brickwork circuit with
local unitaries that can be mapped onto free fermionic unitaries.

We indeed prove that we can find an effective Hamiltonian for the brickwork dy-
namics, which, once diagonalized (Eq. (3.72)), yields the values of the quasiparticle
velocity (Eq. (3.80)) and of the Yang-Yang entropy (Eq. (3.83) that. After putting
them together in the quasiparticle picture,they yield a prediction for the unitary
evolution of the entanglement entropy (Fig. 3.9).

2. In Sec. 4.2: the absence of a measurement induced phase transition in a free-
fermionic model with a dynamics that drives the system towards a target state
monitored with weak measurements.

Here we introduce an ancillary system on which, after a hopping between the
system and the ancilla, local projective measurements are performed, which is
equivalent to apply weak measurements on the system (Sec. 1.4.2). The hopping
brings the system towards an absorbing state, which is the state without fermionic
excitations. In this case we have that there is no absorbing state transition, given
the fact that there is no mechanism that contrasts the distruction of fermionic
excitations in the system. Moreover, the volume-law phase of the entanglement
entropy is proven to be unstable, thus there is no entanglement transition, as for
the projective measurement case.

3. In Sec. 4.3: the results here presented suggest the presence of a measurement
induced entanglement phase transition for a free fermionic model monitored with
weak measurements (Eq. (4.8), (4.9)), whose strength is given by a non-linear
parameter J (Eq. (4.10)).

Guided by the fact that the volume-law is unstable for free fermionic dynamics that
conserves the number of fermions, we introduced a measurement procedure that
could stabilize the volume-law. To do so we noticed that, when the entanglement
entropy saturates, the local density is 0.5 on all sites of the system. Therefore we
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draw up a local weak measurement, whose strength depends on the local density
(Eq. (4.10)), such that, the measurement is very weak when the density is close to
0.5, i.e. when the entanglement entropy saturates (Sec. 4.3.1).

As explained in Sec. 4.3.4, while we have simulated systems of L = 70, in order to
have more precise results one should simulate larger systems. This however proves to be
very time demanding for a regular personal computer. Therefore a first spin-off of this
thesis could be the simulation of larger systems on more powerful hardware, matched
with an optimization of the code used for the numerical results, that could also involve
parallelization techniques. This will allow to avoid finite-size effects and extrapolate the
critical value of J in the thermodynamic limit, where we could find a rigorous phase
diagram.

Besides, we could also map all the measurement procedures described in Chap. 4 onto
a brickwork circuit. Indeed, as done in Chap. 3, the continuous free-fermionic dynamics
is reproduced by a brickwork circuit, with appropriate gates. Therefore we could insert
the projective and weak measurements of Chap. 4 into this discretized evolution and
analyze the results.
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Appendix A

Fourier-Space for Fermions

We can investigate the time evolution of the correlation matrix also in Fourier space.
To do so we do a discrete Fourier transform of the fermionic creation and annihilation
operators:

bp =
1√
L

L∑
j=1

e−i 2π
L
pjcj, b†p =

1√
L

L∑
j=1

ei
2π
L
pjc†j. (A.1)

The inverse Fourier transform is:

cj =
1√
L

∑
p

ei
2π
L
pjbp, c†j =

1√
L

∑
p

e−i 2π
L
pjb†p. (A.2)

Now we set periodic boundary conditions, namely

cj = cj+N ⇒ p = 0, 1, . . . , L− 1. (A.3)

Therefore:

cj =
1√
L

L−1∑
p=0

ei
2π
L
pjbp, c†j =

1√
L

L−1∑
p=0

e−i 2π
L
pjb†p. (A.4)

Form now on, when we write the sums, the allowed values for the momenta are under-
stood.

From here, using the anticommutation rules for the fermionic creation and annihila-
tion operators, it is straightforward to see that:

{bp, bq} = 0 = {b†p, b†q} (A.5)

{bp, b†q} = δp,q. (A.6)

Looking at Eq. (1.77), we see that we need the expression of the creation and annihilation
operators in the Heisenberg picture. The Fourier transform of these is:

cj(t) =
1√
L

∑
p

ei
2π
L
pjbp(t), c†j(t) =

1√
L

∑
p

e−i 2π
L
pjb†p(t). (A.7)
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Hence we need to find the expression for bp(t), b
†
p(t). To do so we follow the same

procedure of Eq.(1.78). In order to be able to do that we must find the expression of the
Hamiltonian in terms of the Fourier transformed operators. In the following we will be
considering the Hopping Hamiltonian:

H = −1

2

L∑
j=1

(c†jcj+1 + c†j+1cj). (A.8)

By substituting the corresponding Fourier transforms of Dirac operators we find:

H = −1

2

N∑
j=1

[ 1
L

∑
p,q

e−i 2π
L
pjei

2π
L
q(j+1)b†pbq +

1

L

∑
p,q

e−i 2π
L
p(j+1)ei

2π
L
qjb†pbq

]
= −1

2

(∑
p,q

ei
2π
L
qb†pbq

1

L

N∑
j=1

ei
2π
L
j(q−p) +

∑
p,q

e−i 2π
L
pb†pbq

1

L

N∑
j=1

ei
2π
L
j(q−p)

)
= −1

2

(∑
p,q

ei
2π
L
qb†pbqδp,q +

∑
p,q

e−i 2π
L
pb†pbqδp,q

)
= −1

2

∑
p

(ei
2π
L
p + e−i 2π

L
p)b†pbp

= −
∑
p

cos
(2π
L
p
)
b†pbp.

(A.9)

The Hamiltonian is thus diagonal in momentum space and can be written as:

H =
∑
p

ϵpb
†
pbp, ϵp = − cos

(2π
L
p
)
. (A.10)

Now we can find the expression for bp(t) and b†p(t) following the same procedure of
Eq.(1.78), namely:

d

dt
bq(t) = −iU †(t)t

(
ϵp
∑
p

[bq, b
†
pbp]

)
U(t)

= −iU †(t)t
(
ϵp
∑
p

({bq, b†p}bp − b†p{bq, bp})
)
U(t)

= −iϵqtbq(t),

(A.11)

and solving the differential equation we get and (identical procedure for the hermitian
conjugate):

bp(t) = e−iϵptbp, b†p(t) = eiϵptb†p. (A.12)
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Thus we get

cj(t) =
1√
L

∑
p

ei
2π
L
pje−iϵptbp, (A.13)

c†j(t) =
1√
L

∑
p

e−i 2π
L
pjeiϵptb†p. (A.14)

We have now all the instruments to look at the correlation matrix. Let’s start from
the static case. From Eq.(A.4), we get that the matrix elements of the correlation matrix
can be written as:

Γj,k = ⟨c†jck⟩ = ⟨ 1
L

∑
p

e−i 2π
L
pjb†p

∑
q

ei
2π
L
qkbq⟩. (A.15)

Defining
Γp,q ≡ ⟨b†pbq⟩, (A.16)

we can write the correlation matrix elements as:

Γj,k =
1

L

∑
p,q

e−i 2π
L
(pj−qk)Γp,q. (A.17)

The time evolution of the correlation matrix can be found using the operators in
Eq.(A.14) we thus find:

Γj,k(t) =
1

L

∑
p,q

eit[ϵp−ϵq ]e−i 2π
L
(pj−qk)Γp,q. (A.18)

To be more explicit, we do the inverse fourier transform of Γp,q:

Γp,q =
1

L

L∑
m,n=1

ei
2π
L
(pm−qn)Γm,n. (A.19)

Therefore, putting this together with Eq.(A.17), we get that

Γj,k(t) =
L∑

m,n=1

1

L

L−1∑
p=0

ei
2π
L
p(m−j)eiϵptΓm,n

1

L

L−1∑
q=0

e−i 2π
L
q(n−k)e−iϵqt. (A.20)

Defining

Rk,n(t) ≡
1

L

L−1∑
q=0

e−i 2π
L
q(n−k)e−iϵqt (A.21)
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and thus

R∗
j,m =

1

L

L−1∑
p=0

ei
2π
L
p(m−j)eiϵpt, (A.22)

we get

Γj,k(t) =
L∑

m,n=1

R∗
j,mΓm,nRn,k = R∗

j,mΓm,nR
T
n,k, (A.23)

which is equivalent to Eq.(1.81).
What is left to do is to see if our code, which follows the evolution in Hilbert space,

is consistent. Therefore we compare the matrix elements of correlation matrices (at each
time step for a trotterized evolution) calculated with the formula for the Hilbert space
and with the fast Fourier transforms provided by Python. As one can see in Fig. A.1,
the two approaches are equivalent. Indeed there is no difference in the matrix elements
of the two approaches. by the way, the simulations are done on a system of size L = 6
and the matrix elements are chosen randomly. Moreover we plot the real part for Γ5,5

and the imaginary part for Γ4,5 because these are non-zero.

(a) Time evolution of the real part of the
matrix element Γ5,5 in the Fourier space
and in the Hilbert space.

(b) Time evolution of the imaginary part
of the matrix element Γ4,5 in the Fourier
space and in the Hilbert space.

Figure A.1: Time evolution of the real and imaginary parts of selected matrix elements
of the correlation matrix in the Fourier space and in the Hilbert space. The green line is
the maximum difference between corresponding matrix element (in that time step of the
evolution) calculated in Fourier space and in the Hilbert space.
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Appendix B

Entanglement Entropy from the
Quasiparticle Picture

Starting from Eq. (3.17), we have, first of all, to set the integration regions. We are
taking into account the whole real axis and we set the region A to be the segment of
length L such that x′ ∈ [0, L]. Now since we are looking at the whole real axis, the
contribution to the entanglement entropy from the sub-region of Ā to the left of A, is
equal to the one on the right, thus we have∫

x′∈A
dx′ →

∫ L

0

dx′,

∫
x′′∈Ā

dx′′ → 2

∫ +∞

L

dx′′. (B.1)

Thus, reordering the integrals, we have to calculate

SL(t) = 2

∫
dps(p)

∫ L

0

dx′
∫ +∞

L

dx′′
∫ +∞

−∞
dxδ(x′ − x− vpt)δ(x

′′ − x+ vpt)

= 2

∫
dps(p)

∫ L

0

dx′
∫ +∞

L

dx′′δ(x′′ − x′ + 2vpt).

(B.2)

Now we exploit the fact that the delta function is the derivative of the Heaviside step
function, getting

SL(t) = 2

∫
dps(p)

∫ L

0

dx′Θ(2vpt− L− x′). (B.3)

The step function is different from zero just when x′ < 2vpt− l. Now if 2vpt > L we have
the integration region from 0 to L, whereas if 2vpt < L the integration region is from 0
to 2vpt, thus giving the final result

SL(t) ≈ 2t

∫
2vpt<L

dps(p)2vp + 2l

∫
2vpt>L

dps(p). (B.4)
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Appendix C

Inverse Jordan-Wigner Mapping

Suppose we have a chain of L qubits as shown in Fig. 3.6, where we assume L to be
even and we assume periodic boundary conditions. We let the system evolve under local
unitaries of the kind

Uj,j+1 = e−iα(σ−
j σ+

j+1+σ−
j+1σ

+
j ). (C.1)

Our goal is to prove that this evolution, local in time and in space, can be mapped onto
the evolution of a fermionic chain under a hopping Hamiltonian, thus yielding to the
same behaviour of the entanglement entropy. To do so we map the spin operators to
fermionic operators using the JW transformation. We obtain, with a direct calculation:

σ−
j σ

+
j+1 = c†j(1− 2nj)cj+1 = c†jcj+1, (C.2)

because c†jnjcj+1 = c†jc
†
jcjcj+1 = 0 and

σ−
j+1σ

+
j = c†j+1(1− 2nj)cj = c†j+1cj, (C.3)

because c†j+1njcj = c†j+1 and c†jcjcj = 0.

C.1 Brickwork Evolution of the Correlation Matrix

Following the result in Eq. (1.58), adapted for discrete-time evolution, we find how the
correlation matrix evolves for a fixed j, then we can do it for all js in the system. We
showed in a previous sections that, in general, the correlation matrix evolves, for discrete
time steps, as:

Γ′
i,j = ⟨ψ0|eadiHc†icj|ψ0⟩ . (C.4)

In the present case we have a local evolution. Let’s look at the general case of the
evolution of Γa,b under Uj,j+1, i.e. we look at the effect of a local evolution on generic
indexes of the correlation matrix.

Γ′
a,b = ⟨ψ0|U †

j,j+1c
†
acbUj,j+1|ψ0⟩ . (C.5)
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We know that

eABe−A = B + [A,B] +
1

2
[A, [A,B]] + . . . (C.6)

where A = iα(c†jcj+1 + c†j+1cj) and B = c†acb. Using the anticommutation rules of the
fermionic operators we get:

[A,B] = iα(−δa,j+1c
†
jcb + δb,jc

†
acj+1 − δa,jc

†
j+1cb + δb,j+1c

†
acj) (C.7)

and [A, [A,B]] = 0 which makes all the other nested commutators equal to zero as well.
Therefore

eiα(c
†
jcj+1+c†j+1cj)c†acbe

−iα(c†jcj+1+c†j+1cj) = c†acb+

+ iα(−δa,j+1c
†
jcb + δb,jc

†
acj+1 − δa,jc

†
j+1cb + δb,j+1c

†
acj).

(C.8)

This yelds to the following correlation matrix evolution

Γ′
a,b = Γa,b − iαδa,j+1Γj,b + iαδb,jΓa,j+1 − iαδa,jΓj+1,b + iαδb,j+1Γa,j. (C.9)

Now we can iterate this for all j.

C.2 Delta Condition for a Fourier Transform on Half

Period

Looking at the last row of Eq. (3.38), we now need to see for which p, q we have that

1

L

L/2∑
j=1

e−i 4π
L
(p−q)j ̸= 0. (C.10)

For a geometric series
N∑
j=1

rj = r
1− rN

1− r
. (C.11)

In this case we have that r = exp(−i4π(p− q)/L) and N = L/2, then

L/2∑
j=1

e−i 4π
L
(p−q)j = e−i 4π

L
(p−q)1− e−i 4π

L
(p−q)L

2

1− e−i 4π
L
(p−q)

. (C.12)

From this expression we can find the delta condition. Indeed, imposing the denomi-
nator to be equal to zero, we find that

p− q = k
L

2
, (C.13)

where k is an integer.
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Appendix D

Correlation matrix after a local
measurement

If the outcome of the measurement is 1, the post-measurement state will be

nk |Ψ⟩√
⟨Ψ(t)|nk|Ψ(t)⟩

, (D.1)

therefore the correlation matrix, which is obtained by averaging over this state, will be:

Γi,j(t) =
⟨c†kckc

†
icjc

†
kck⟩

⟨c†kck⟩
. (D.2)

The denominator of this expression is simply the correlation matrix element Γk,k, whereas
the numerator can be evaluated using Wick’s theorem.

⟨c†kckc
†
icjc

†
kck⟩ = ⟨c†kckc

†
icjc

†
kck⟩+ ⟨c†kckc

†
icjc

†
kck⟩+ ⟨c†kckc

†
icjc

†
kck⟩

+ ⟨c†kckc
†
icjc

†
kck⟩+ ⟨c†kckc

†
icjc

†
kck⟩+ ⟨c†kckc

†
icjc

†
kck⟩.

(D.3)

Now we can evaluate all this contractions, keeping in mind that we are dealing with
fermionic operators and thus anti-commutation rules have to be taken into account:

1.

⟨c†kckc
†
icjc

†
kck⟩ = ⟨c†kck⟩⟨c

†
icj⟩⟨c

†
kck⟩ = Γ2

k,kΓi,j;
(D.4)

2.

⟨c†kckc
†
icjc

†
kck⟩ = (−1)6⟨c†kck⟩⟨ckc

†
k⟩⟨c

†
icj⟩ = Γk,k(1− ⟨c†kck⟩)Γk,k

= Γk,kΓi,j − Γ2
k,kΓi,j;

(D.5)
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3.

⟨c†kckc
†
icjc

†
kck⟩ = (−1)2⟨c†kcj⟩⟨ckc

†
i⟩⟨c

†
kck⟩ = Γk,j(δi,k−Γi,k

)Γk,k

= Γk,kΓk,jδi,k − Γk,kΓi,kΓk,j;
(D.6)

4.

⟨c†kckc
†
icjc

†
kck⟩ = (−1)2⟨c†kck⟩⟨c

†
ick⟩⟨cjc

†
k⟩ = Γk,kΓi,k(δj,k − Γk,j)

= Γk,kΓi,kδj,k − Γk,kΓi,kΓk,j;
(D.7)

5.

⟨c†kckc
†
icjc

†
kck⟩ = (−1)4⟨c†kck⟩⟨ckc

†
i⟩⟨cjc

†
k⟩ = Γk,k(δi,k − Γi,k)(δj,k − Γk,j)

= Γk,kδi,kδj,k + Γk,kΓi,kΓk,j − Γk,kΓi,kδj,k − Γk,kΓk,jδi,k;
(D.8)

6.

⟨c†kckc
†
icjc

†
kck⟩ = (−1)3⟨c†kcj⟩⟨ckc

†
k⟩⟨c

†
ick⟩ = −Γk, j(1− Γk,k)Γi,k

= −Γi,kΓk,j + Γk,kΓi,kΓk,j.
(D.9)

Thus

⟨c†kckc
†
icjc

†
kck⟩ = 1) + 2) + 3) + 4) + 5) + 6) = Γk,kΓi,j + Γk,kδi,kδj,k − Γi,kΓk,j. (D.10)

Plugging all just said in Eq. (D.2), we get the correlation matrix after the measurement,
if the outcome of the measurement is 1:

Γi,j(t) = δikδjk + Γij(t)−
Γik(t)Γkj(t)

Γkk(t)
. (D.11)

On the other hand, if the outcome of the measurement is 0, the post-measurement
state will be:

(1− nk) |Ψ(t)⟩√
⟨Ψ(t)|(1− nk)|Ψ(t)⟩

. (D.12)

Hence, the correlation matrix obtained averaging over this state will be:

Γi,j(t) =
⟨(1− c†kck)c

†
icj(1− c†kck)⟩

⟨1− c†kck⟩
. (D.13)

As before, the denominator is very straightforward: ⟨(1−c†kck)⟩ = 1−Γk,k. The numerator
can be written as:

⟨(1− c†kck)c
†
icj(1− c†kck)⟩ = ⟨c†icj⟩ − ⟨c†icjc

†
kck⟩ − ⟨c†kckc

†
icj⟩+ ⟨c†kckc

†
icjc

†
kck⟩. (D.14)

Here, the first term of the sum is trivial, and the last term is the one in Eq. (D.10). For
the other two terms we use Wick’s theorem:
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1.

⟨c†icjc
†
kck⟩ = ⟨c†icjc

†
kck⟩+ ⟨c†icjc

†
kck⟩

= (−1)2⟨c†ick⟩⟨cjc
†
k⟩+ ⟨c†icj⟩⟨c

†
kck⟩

= Γi,k(δj,k − Γk,j) + Γi,jΓk,k = Γi,kδj,k − Γi,kΓk,j + Γi,jΓk,k;

(D.15)

2.

⟨c†kckc
†
icj⟩ = ⟨c†kckc

†
icj⟩+ ⟨c†kckc

†
icj⟩

= ⟨c†kck⟩⟨c
†
icj⟩+ (−1)2⟨c†kcj⟩⟨ckc

†
i⟩

= Γk,kΓi,j + Γk,j(δi,k − Γi,k) = Γk,kΓi,j + Γk,jδi, k − Γk,jΓi,k.

(D.16)

Putting everything together we get

⟨(1−c†kck)c
†
icj(1−c

†
kck)⟩ = Γi,j−Γi,kδj,k−Γk,jδi,k+Γi,kΓk,j−Γk,kΓi,j+Γk,kδi,kδj,k. (D.17)

Adding and subtracting δi,kδj,k to this expression we get

⟨(1−c†kck)c
†
icj(1−c

†
kck)⟩ = (1−Γk,k)Γi,j−(1−Γk,k)δi,kδj,k+(δi,k−Γi,k)(δj,k−Γj,k). (D.18)

Therefore the correlation matrix if the outcome of the measurement is zero is:

Γi,j(t) = Γi,j(t)− δi,kδj,k +
(δi,k − Γi,k)(δj,k − Γk,j)

1− Γk,k

(D.19)
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Appendix E

Continuous limit of the Brickwork
Circuit

E.1 Dispersion and Quasiparticle Velocity

(a) Dispersion of the brickwork evolution
for τ ∈ {0.1, 1, 1.5} compared to the one
of a continuous evolution for t = 30.

(b) Quasiparticle velocity of the brick-
work evolution for τ ∈ {0.1, 1, 1.5} com-
pared to the one of a continuous evolution
for t = 30.

Figure E.1: Comparison between the dispersion and the quasiparticle velocity of the brick-
work evolution and the continuous evolution.

In Sec. 3.3 we have introduced the brickwork evolution. We then trotterized this
evolution (Eq. (3.35)) and proved that, in the limit of M → ∞, this is equivalent to the
Hamiltonian evolution in Sec. 3.2.

In Sec. 3.2.1 we introduced a semi-classical interpretation for the entanglement en-
tropy evolution, which proved itself to be a good instrument to estimate the entanglement
entropy. Therefore in Sec. 3.3.1 we tried to apply this interpretation also to the brick-
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work evolution. However this was not immediate. Indeed in the continuous evolution
we have an explicit Hamiltonian, which can be diagonalized to extract the quasiparticle
velocity. This is not true in the brickwork case, where the evolution is governed by the
evolution operators Eq. (3.37), (3.36). Hence we had to find a global evolution operator
(Eq. (3.70)) and reintroduce a time variable (Eq. (3.72)) in order to extract an effective
Hamiltonian to diagonalize and thus get the dispersion (Eq. (3.76)) and the quasipar-
ticle velocity (Eq.(3.77)). Since τ = t/M , if everything has been done correctly, in the
limit τ → 0, i.e. M → ∞, we have that ϵ̃k = ϵk/τ and ṽk = vk/τ should tend to their
counterparts of the continuous case (Eq. (A.10), (3.21)).

This is shown in Fig. E.1, where it is clear how for τ → 0 both the dispersion and
the quasiparitcle velocity tend to the one of the continuous case.

E.2 Yang-Yang Entorpy

In Sec. 3.2.1 we showed that the Yang-Yang entropy for the continuous case is H(nk) = 1
∀ k ∈ [−π, π], whereas in Sec. 3.3.1 we showed that this is not the case for the brickwork
evolution, where the Yang-Yang entropy takes is the one in Eq. (3.83). However this
quantity must converge to 1. τ appears in the Yang-Yang entropy via ϕp (Eq. (3.62)),
thus we study the limit τ → 0 for this quantity:

ϕp = arctan
sin2(ατ) sin(2k)

sin(2ατ) cos(k)
= arctan

( sin2(ατ)

2 sin(ατ) cos(ατ)

2 sin(k) cos(k)

cos(k)

)
= arctan

(
tan(ατ) sin(k)

)
τ→0−−→ arctan(0) = 0.

(E.1)

Thus Eq. (3.83) yields H(nk) = 1 ∀ k ∈ [−π, π] in the limit τ → 0.

E.3 Final Benchmark

Finally, to see that all is consistent, we compare the entanglement entropy with the
quasiparticle picture from the continuous and the brickwork case. If all has been done
well, for a large enough M , the two plots should overlap. This is done in a system with
L = 70, l = 5, setting α = 1/2. The result is displayed in Fig. E.2, showing how the
brickwork quasiparticle picture is consistent with the continuous one in the limit of large
M .
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Figure E.2: Comparison between the entanglement entropy computed with the quasipar-
ticle picture in the continuous and in the brickwork evolution, for M = 200.
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Appendix F

Measurement Operators

In this appendix we give the proofs of some formulas appearing in Sec. 4.3.

Completeness relation of the measurement operators We start with the proof
that V

(k)
1 and V

(k)
2 (Eq. (4.8),(4.9)) are good measurement operators, namely that

V
(k)†
1 V

(k)
1 + V

(k)†
2 V

(k)
2 = I. (F.1)

Proof. This is a direct computation (we omit the indexes k):

V †
1 V1 + V †

2 V2 =
e−ϵ

2 cosh(ϵ)
e2ϵc

†c +
eϵ

2 cosh(ϵ)
e−2ϵc†c.

We can now use the fact that the matrix representation of c†kck is an L × L matrix C,
where L is the number of sites in the chain, with all zero entries, except for the matrix
element Ck,k = 1. Since this matrix is diagonal, its exponential will also be diagonal,
with exp[±2ϵC] = diag(1, . . . , 1, e±2ϵ, 1, . . . , 1), where the diagonal element different from
one is in row k and column k. For the sake of readability, let’s assume k = 1, but the
following steps hold true ∀ k ∈ [1, L].

V †
1 V1 + V †

2 V2 =
e−ϵ

2 cosh(ϵ)


e2ϵ

1
. . .

1

+
eϵ

2 cosh(ϵ)


e−2ϵ

1
. . .

1



=
2

2(eϵ + e−ϵ)


eϵ + e−ϵ

eϵ + e−ϵ

. . .

eϵ + e−ϵ


= I
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Outcome probabilities Here we prove Eq. (4.14).

Proof. Following the measurement postulate Eq. (1.98), using the formal definition of
the exponential function and the fact that (c†c)n = c†c ∀ n ∈ [1,∞), we have that
(omitting the index k):

p(1) = ⟨ψ|V †
1 V1|ψ⟩ = ⟨ψ| e−ϵ

2 cosh(ϵ)
e2ϵc

†c|ψ⟩ = e−ϵ

2 cosh(ϵ)
⟨ψ|

∞∑
n=0

(2ϵc†c)n

n!
|ψ⟩

=
e−ϵ

2 cosh(ϵ)
⟨ψ|1 + (2ϵ)c†c+

(2ϵ)2

2!
c†c+ . . . |ψ⟩

=
e−ϵ

2 cosh(ϵ)
⟨ψ|1− c†c+ c†c+ (2ϵ)c†c+

(2ϵ)2

2!
c†c+ . . . |ψ⟩

=
e−ϵ

2 cosh(ϵ)
⟨ψ|1− c†c+

∞∑
n=0

(2ϵ)n

n!
c†c|ψ⟩

=
e−ϵ

2 cosh(ϵ)

(
⟨ψ|ψ⟩+ (e2ϵ − 1) ⟨ψ|c†c|ψ⟩

)
.

(F.2)

Reintroducing the index k we get:

pk(1) =
e−ϵ

2 cosh(ϵ)

(
1 + (e2ϵ − 1)Γk,k

)
. (F.3)

For the operator V
(k)
2 the calculations are analogous.
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