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Abstract

I metalli kagome sono una famiglia di materiali quantistici il cui studio ha suscitato
molto interesse negli ultimi anni a causa delle proprietà dovute al loro reticolo composto
da esagoni e triangoli, detto, appunto, reticolo kagome. Questo reticolo induce la pre-
senza di singolarità di Van Hove nelle strutture a bande di tali materiali, interessanti
in quanto correlate a forti interazioni elettroniche, con conseguente possibilità di stato
superconduttivo. Lo scopo di questa tesi è, tramite calcoli a principi primi, studiare le
proprietà elettroniche del metallo kagome CsV3Sb5 sotto effetto di drogaggio con stagno
(Sn) e tellurio (Te). Si partirà quindi con la spiegazione della Density Functional The-
ory (DFT), in particolare arrivando alla formulazione di Kohn e Sham e come questa
consenta di ottenere la struttura a bande del materiale studiato. Successivamente verrà
presentato il programma VASP (Vienna Ab initio Simulation Package), utilizzato per
implementare il problema. Infine saranno riportati i risultati ottenuti nell’esperienza,
mostrando sia che quelli ottenuti per CsV3Sb5 non drogato sono compatibili con quelli
di precedenti studi, sia come l’effetto del drogaggio influenzi le singolarità di Van Hove di
interesse, riuscendo, con entrambi i tipi di drogaggio, per livelli di drogaggio superiori al
5%, a portare allo spostamento di alcune di queste oltre il livello di Fermi, promuovendo
effetti dovuti alla forte interazione fra gli elettroni associati a queste singolarità.



Abstract

Kagome metals are a family of quantum materials whose study has raised interest in
recent years because of the properties related to their lattice made up of hexagons and
triangles, called, in fact, kagome lattice. This lattice induces Van Hove singularities
in the band structures of these materials, interesting since related to strong electronic
interactions, with consequent possibility of superconducting state. The aim of this thesis
is, through first principle calculations, to study the electronic properties of CsV3Sb5

kagome metal under doping with Tin (Sn) and Tellurium (Te). The starting point will
be the explanation of Density Functional Theory (DFT), in particular obtaining Kohn
and Sham formulation, and how this allows to derive the band structure of the material
studied. Then VASP (Vienna Ad initio Simulation Package), which is the program used
to implement the problem, will be introduced. Eventually the results of the experience
will be reported, simultaneously showing that the results obtained for CsV3Sb5 without
doping are compatible with those obtained by previous studies and that doping influences
the Van Hove singularities of interest, succeeding, for both the types of doping, for doping
levels greater that 5%, in shifting some of these singularities beyond the Fermi level,
enhancing effects due to the strong interaction between the electrons related to these
singularities.
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Chapter 1

Introduction

In order to understand the methods and the results obtained from the study of the elec-
tronic properties of CsV3Sb5 kagome metal under doping, the following chapter includes
some preliminary notions necessary for the comprehension of the work. These notions
include what band structures and Van Hove singularities are and what properties char-
acterizes superconductors, since many studies carried out on CsV3Sb5 had the aim of
studying properties such as its critical temperature and field and the interplay between
the superconducting state and the charge density wave state. Eventually a brief account
of these previous studies and their results is reported, in order to show what has been
studied so far and what are the properties that have been observed.

1.1 Band structures

An isolated atom shows a discrete set of energy levels, which tend to become continuous
by increasing the distance of the electrons from the nucleus. Bringing two atoms close to
each other will make the orbitals of the single atoms merge to create molecular orbitals.
Keeping on adding atoms more and more molecular orbitals will be created, with energies
close to each other (Fig. 1.1).

Figure 1.1: Energy levels as a function of the distance between atoms. For high distances
the system behaves as a gas and the levels are discrete, while when decreasing the distance
the energy levels change into energy bands with continuous levels. Keeping on lowering
the distance the energy levels split into two bands, the conduction band and the valence
band, separated by a gap of forbidden energy levels. The amplitude of this gap allows to
divide materials into insulators (as Carbon in Figure), semiconductors (as Silicon and
Germanium in Figure) and conductors (as Lead in Figure).
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Chapter 1 – Introduction

For a periodic system the number of atoms becomes infinite and one can define a unit
cell with a known number of atoms which is repeated in space. These kinds of systems
will thus have translational symmetries and the Hamiltonian will include a periodic
potential V (r⃗) = V (r⃗ + a⃗), where a⃗ is the lattice step. Because of this potential also
the Hamiltonian will be periodical with the same periodicity and from Bloch theorem
wavefunctions will be of the form:

Ψ(r⃗) = eik⃗·r⃗u(r⃗) (1.1)

where k⃗ is the wavevector of a single electron in the first Brillouin Zone and u(r⃗) is a
function with the same periodicity of the lattice and depends on the orbitals considered.
It is easy to prove that for this Bloch wavefunction a translation of a lattice vector a⃗
implies a modulation of the wavefunction only by a phase factor:

Ψ(r⃗ + a⃗) = eik⃗·⃗aΨ(r⃗) (1.2)

Energy bands graphs plot the energy levels of the electrons as functions of the
wavevector k⃗, in the reciprocal space1. Considering, for example, s orbitals for a one-
dimensional Hydrogen chain of step a, the point k = 0, called Γ, corresponds, from eq.
1.2, to a configuration where Ψ(r + a) = Ψ(r) and all the orbitals have the same phase.
This corresponds to a configuration of minimal energy, because of the absence of nodes.
Moving in the reciprocal space at ka = π the wavefunction becomes Ψ(r + a) = −Ψ(r),
which means that, in this configuration, atoms close to each other have opposite phases
leading to an increase in the energy eigenvalues. The graph E(k), named band structure,
for this example is shown in Fig. 1.2.

Figure 1.2: Band structure of a chain of Hydrogen atoms with step a.

Similar considerations can be done for other kinds of orbitals.
The energy eigenstates at a certain value of k⃗ with a certain energy have contributions
that come from different orbitals. This means that different orbitals of each atom will
contribute differently to these eigenstates. Considering CsV3Sb5 as an example, the Cs
atom will have s orbitals, which are located close to the nucleus and will contribute
only to high energy eigenvalues2, while V will contribute with d orbitals and Sb with p

1For the uncertainty principle, assigning an exact wavevector to an electron means that the electron
is considered delocalized in the whole real space.

2Cs has a mainly structural contribution and is needed in order to have null valence.
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Chapter 1 – Introduction

orbitals. Since there are 5 different types of 3d orbitals (dxy, dxz, dyz, dx2−y2 , dz2) and 3
of 5p orbitals (px, py, pz) and the unit cell includes 3 V atoms and 5 Sb atoms, the low
energy physics will have contributions from 15 orbitals for each element.

In a crystal electrons are located in different energy bands separated by energy regions
where there are no orbitals allowed (energy gaps). These structures make it possible to
divide materials into 3 different categories, based on the occupation of these bands ([1],
pg. 163):

• Insulators and semiconductors: all energy bands are either full or empty;

• Conductors: one or more bands are partially full or empty;

1.2 Van Hove singularities

Van Hove singularities (VHs) are singularities in the density of states of crystals, where
the density of states diverges logarithmically.
The density of states g(E) = dN/dE represents the number of energy states allowed in
the range [E,E + dE].

The density of states for a crystal lattice can be expressed as (see [2]):

g(E) =

∫
BZ

d3k

(2π)3
δ[E(k⃗)− E] (1.3)

where the integral is extended to the first Brillouin Zone.
It is known that for Dirac delta function holds:

b∫
a

g(x)δ[f(x)]dx =
∑
x0

g(x0)

∣∣∣∣ dfdx
∣∣∣∣−1

x=x0

where x0 is a zero of f(x) in the interval ]a, b[.
This allows to rewrite eq. 1.3 as:

g(E) =
1

(2π)3

∫
E(k⃗)=E

dS

|∇k⃗E(k⃗)|

where dS is an element of the surface in the k − space where E(k⃗) = E.

This result shows that the singularities in g(E) originate from the critical points of E(k⃗).
Its behaviour is different depending on the kind of critical point that is being considered
and can be found expanding E(k⃗) in Taylor series near the critical point E0. Kagome
materials have 2D structures and the behaviour of the density of states of these lattices
in proximity of a saddle point of an energy band was described by Van Hove L. [3]:

g(E) ∝ ln

∣∣∣∣1− E

E0

∣∣∣∣
and shows a logarithmic divergence.

It can be proved that the effective masses of the electrons for a given k-point of the
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Chapter 1 – Introduction

energy bands are proportional to the inverse of the second derivative of the band at that
point (see [4]). Since VHs correspond to the saddle points of the energy bands, where
the second derivative of the band is 0, electrons in such points will behave as if they have
an infinite effective mass, which results in very slow electrons, enhancing their possibility
of interacting with each other.

1.3 Superconductivity

1.3.1 Phenomenological observations

The superconducting state is a state of matter observed at very low temperatures where
the electrical resistivity is zero, which means that the flow of electrical current in such
materials is allowed without attenuation. Indeed persistent electrical currents have been
observed to flow without attenuation in superconducting rings for more than a year [1].
This particular property is shown under a critical temperature TC together with other
phenomenological observations, such as the Meissner effect, which is the expulsion of B⃗
lines in a superconductor cooled below TC in a magnetic field, so that the superconduc-
tor behaves as if B⃗ = 0⃗ inside it. In order to screen an external magnetic field B⃗a the
magnetization M⃗ inside the superconductor must satisfy: B⃗ = B⃗a + 4πM⃗ = 0⃗.
From Ohm’s law : E⃗ = ρ⃗j, which leads to E⃗ = 0⃗ for ρ = 0, and, from Faraday-
Neummann-Lenz’s law : ∇ ∧ E⃗ = −∂B⃗/∂t, which implies ∂B⃗/∂t = 0⃗, but not B⃗ = 0⃗.
This means that perfect diamagnetism is an essential property of the superconducting
state.
In addition to this, a sufficiently strong magnetic field HC(T ) (which depends on the
temperature), will destroy the superconducting state. For this magnetic field holds:
HC(TC) = 0.
These properties divide superconductors in two categories:

• Type I superconductors: pure specimens of materials, with low values of TC and
HC ;

• Type II superconductors: alloys or transition metals, for which TC is generally
higher and the Meissner effect holds till a critical field HC1. This type of super-
conductors still show superconducting properties until a second magnetic field HC2

is reached, but with a magnetic field flux different from 0 inside the material (this
region is called vortex state).

The differences between the two types of superconductors are shown in Fig. 1.3.

Figure 1.3: Behaviour of the two different types of superconductors under an external
magnetic field Ba. Image taken from [1].

6



Chapter 1 – Introduction

In all superconductors entropy decreases markedly on cooling down below TC , which
means that the superconducting state is more ordered than the normal state, so the
electrons thermally exited in the normal state are more ordered in the superconducting
state. This means that only a small fraction of the conduction electrons participates in
the transition to the ordered superconducting state.

1.3.2 BCS theory of superconductivity

The quantum theory of superconductivity was developed by Bardeen, Cooper and Schriefler.
This theory is based on the electron-lattice-electron interaction, which leads to an indi-
rect interaction between two electrons. The crystal lattice can be described as positive
ions in well-defined positions, whose behaviour can be described by quantum harmonic
oscillators. During its motion in the lattice the first electron will provoke a displacement
of some of the ions in the lattice due to its negative charge. This displacement will cause
a local positive charge density accumulation in the nearby of these ions, which will last
for a certain time since the positive ions will take some time in order to return to their
original positions. This positive charge density may attract the second electron, which
will thus follow the first one, forming the so called Cooper pair.

The ground state of a gas of free electrons is given by the Fermi-Dirac distribution,
which for T = 0 leads to a state where only the states under the Fermi level EF are occu-
pied by electrons. One can imagine to raise one electron above EF and, for an appropriate
attractive interaction between electrons, the new ground state will be superconducting
and separated by a finite energy Eg from the previous one (Fig. 1.4).

Figure 1.4: Comparison between the ground state of the non-interacting electron gas (left)
and the BCS ground state (right), which differs from the Fermi state in a region of width
of the order of the energy gap Eg. Both curves are for absolute zero. Image taken from
[1].

The main feature of the BCS theory is the Cooper pair, described by a singlet two-
particle wavefunction formed by a spin up electron with wavevector k⃗ and a spin down
electron with wavevector −k⃗. Cooper pairs have total spin 0 and as such behave as
bosons.

The attractive interaction between the electrons in the cooper pair is mediated by a
particle named phonon, which allows the two electrons to exchange energy and momen-
tum. In order to obtain this, one can consider the Hamiltonian of a 1 dimensional crystal
lattice of step a as the Hamiltonian of a system of harmonic oscillators with periodic
boundary conditions:
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Ĥ =
∑
i

p2i
2m

+
1

2
mω2

∑
i

(xi − xi+1)
2

The periodic boundary conditions allow to express the position and momentum oper-
ators as Fourier series (see [5]). Working now in the k−space the creation and destruction
operators can be defined as:

ak =
(mωk

2ℏ

)1/2(
xk +

i

mωk

p−k

)

a†k =
(mωk

2ℏ

)1/2(
xk −

i

mωk

p−k

)
where ωk = 2ω| sin (ka/2)| and xk and pk are the Fourier transforms of xi and pi.

Substituting these in the Hamiltonian of the system gives:

Ĥ =
∑
k

ℏωk

(
a†kak +

1

2

)
(1.4)

This shows that the system is described by an independent harmonic quantum oscil-
lator for each value of k so that the interaction is mediated by particles called phonons
which allow the exchange of momentum and are described by creation and destruction
operators which act on states with different values of k.
Considering now a system of both electrons with wavevectors labelled by k⃗ and phonons
with wavevectors labelled by q⃗, the Hamiltonian of the system will include both the
Hamiltonians of the free electrons and of the free phonons (eq. 1.4) and an interaction
term:

Ĥ =
∑
k,σ

ℏ2k2

2m
c†k,σck,σ +

∑
q,λ

ℏωq,λ

(
a†q,λaq,λ +

1

2

)
+

1

V

∑
k,σ

∑
q,λ

gq,λc
†
k+q,σck,σ(aq,λ + a†−q,λ)

where the first term is the free electron Hamiltonian, the second one is the free phonon
Hamiltonian given by eq. 1.4 and the last one is the interaction term, where gq,λ is the
coupling strength of the electron-phonon interaction. The index λ represents the phonon
possible polarizations and allows to pass from the 1-dimensional system considered in
order to obtain Hamiltonian 1.4 to a three dimensional system, while σ represents the
spin dependence.

The BCS ground state will thus be a phase coherent superposition of Cooper pairs
of electrons with momenta (k,−k) [6]:

|ΨBCS⟩ =
∏
k

(uk + vkc
†
kc

†
−k) |0⟩

where |0⟩ is the empty state and vk and uk are coefficients whose square moduli rep-

resent the probability that a pair with one electron with momentum k⃗ and the other
one with momentum −k⃗ exists or not and are such that |uk|2 + |vk|2 = 1. These coeffi-
cients must minimize the expectation value of ⟨ΨBCS| Ĥ |ΨBCS⟩, where the Hamiltonian
is given by [6]:

Ĥ =
∑
kσ

ϵkc
†
kσckσ +

1

N

∑
kk′

Ukk′c
†
kc

†
−kc−k′ck′
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where ϵk = Ek − EF is the energy with respect to the Fermi level and Ukk′ is the
potential responsible for a transition from an initial state (k,−k) to a final state (k′,−k′)
and depends on the attractive potential that allows the formation of the Cooper pairs.
This potential will be active only for electrons with energies in the range [EF , EF +ℏωD],
where ωD is the Debye frequency of the material. Usually, EF ∼ 1eV and ℏωD ∼ 1meV .
The binding energy of the Cooper pair is proportional to ωD and strongly suppressed by
an exponential factor which depends on the inverse of the product of the electron-phonon
coupling energy and the density of states at the Fermi level of the metal. This means
that, as long as the density of states is finite, the configuration of the Cooper pair is
more convenient, even for low values of the coupling energy. The form of Ukk′ depends
on the type of superconductor considered.
The wavefunction obtained by solving this variational principle and this Hamiltonian
can be used to describe many of the properties observed for superconductors.

1.4 Kagome materials

Kagome materials are quantum materials characterized by a 2D atomic lattice con-
structed by regular hexagons surrounded by corner-sharing triangles, which resembles
the kagome pattern in Japanese basket-weaving, from which they take their name (Fig.
1.5b). Because of this triangular arrangement, kagome lattices, combined with a spin
degree-of-freedom, exhibit a frustrated behaviour. Indeed, since spin has 2 degrees of
freedom (↑ and ↓), given the spin configuration for two of the three vertices, the third one
is undefined and the ground state of the system is a linear combination of two different
states (Fig. 1.5a).

?
(a) (b)

Figure 1.5: a)Visual representation of a frustrated triangular system. Chosen the direc-
tion of two spins, constrained to be collinear, the third one is undefined, since it would
either be aligned with one of the others, which are at the same distance from it.b) Ex-
ample of an ideal kagome lattice. Image taken from [7].

The first kagome studied were actually insulators. Examples of such materials are
herberthsmithite and kapellasite [8]. These materials are characterized by the presence
of copper, whose 3d orbitals are close to the nucleus, with consequent presence of strong
Coulomb interactions between electrons in this orbital and the nucleus. In these kind of
systems non-collinear magnetism can be observed [8].
In 2018, with FeSn and Fe3Sn2, the first cases of kagome with metallic features were
observed.
AV3Sb5 kagomes, where A is an alkaline metal, has been studied since 2020. In the case
studied in this thesis the alkaline metal will be Cs. In this kind of kagomes the kagome
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lattice is made by the vanadium atoms, which still has 3d orbitals. The V-Sb covalent
network is intercalated by a triangular network of alkali metal ions (Fig. 1.6b) and there
are two distinct sublattices of Antimony, where the Sb atom sitting within the kagome
network occupies a different Wyckoff position compared to the Sb atoms above/below
the kagome plane [9] (Fig. 1.6a). These kagomes have a quasi-two dimensional structure
both chemically and electronically, as it will be shown and discussed in the next sections.

(a) Unit cell of CsV3Sb5 (b) Kagome network in CsV3Sb5

Figure 1.6: Lattice structure of CsV3Sb5: cyan spheres represent the Cs atoms, red
spheres shows the kagome network made by V atoms each coordinated by an octahedra
of Sb atoms depicted as bronze spheres.

The kagome sheets are well isolated, resulting in a quasi-two dimensional structure,
which allows single crystals to be highly exfoliable [9]. In addition to this, AV3Sb5 family
is highly tolerant of air, water, and common solvents [9], increasing the overall accessi-
bility of experiments using single crystals.

The kagome network in the AsV3Sb5 family can lead to interference effects whose
details depend on the position of the Fermi level relative to singularities in the electronic
band structure. Specifically the kagome network generates bands with saddle points at
electron fillings f = 5/12 and f = 3/12 (Fig. 1.7) where long-range Coulomb interactions
can be promoted due to sublattice interference effects, due to the fact that not only the
eigenvalues that generate the band at that point are important, but also the eigenvectors
associated to them.

Figure 1.7: Band structure of kagome metals of the family AV3Sb5 determined with
density functional theory calculations, with highlight on the two saddle points with V
orbital character just below EF at the M-point and the mixed (V,Sb) character saddle
point above EF at the M-point. On the right the BZ is illustrated, with the location of
high-symmetry points labelled. Image taken from [9].
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These VHs generate a logarithmic divergence in the density of states at the M-points
of the BZ, which occur in different flavours. The VHs at f = 5/12 is called pure type or
p-type VHs and its wavefunctions derives from a single V atom. The one at f = 3/12,
instead, is called mixed type or m-type VHs and its wavefunction derive from both the
other two V atoms (Fig. 1.8).

Figure 1.8: Two different types of VHs in the band structure of a prototypical kagome
lattice and Fermi surface of the kagome lattice at the two considered VHs. The three
different colors represent the different contributions of the 3 atoms. Image taken from
[10].

Fig. 1.8 also shows that the three M points of the BZ are inequivalent, from the point
of view of the eigenstates, since the contribution to the VHs for each of them comes from
different V atoms (labelled in Fig. 1.8 with A, B and C), so that the eigenstate of each
of them will be different.

Due to structural instabilities the previously shown configuration of the AV3Sb5 com-
pounds (also named “Pristine”) can exhibit two structural distortions of the V sublattice,
which maps them into energetically favored modes of the kagome plane. This distortions
are accompanied by modulations in the local density of states. These configurations are
known as: “Star of David”, where the 3 V atoms move away from each other, and “In-
verse star of David” (Fig. 1.9). Both of them are energetically more convenient and can
be reached lowering the temperature, but the “Inverse Star of David” is energetically
more convenient than the “Star of David”. This modulation of the plane leads to the
breaking of rotational symmetry.

Figure 1.9: Comparison of the two configurations of the kagome network in AV3Sb5
compounds. The “Pristine” configuration is shown in the middle, while the “Inverse
Star of David” is shown on the left and the “Star of David” on the right. Image taken
from [11].

The change in the configuration from “Pristine” to “Inverse Star of David” (or “Star
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of David”) can be described by Landau theory of phase transitions. In this theory the
free energy of the system is a function of temperature and an order parameter ∆, which
is a thermodynamic variable that is zero on one side of the transition and non-zero on
the other one: F = F (∆, T ). For superconductors or superfluids the order parameter
is the amplitude of the superconducting wavefunction |Ψ|2 and F can be expanded in
Taylor series of this order parameter, including only terms allowed by symmetry:

F = α|Ψ|2 + β

2
|Ψ|4

where α and β are T -dependent coefficients. Assuming β = const > 0, for α > 0 F
has a single minimum at |Ψ| = 0, while for α < 0 it has a local maximum for |Ψ| = 0
and two minima symmetric with respect to the vertical axis and of the same amplitude.
Expanding α at leading order in T : α = a(T − TC), where a > 0. This means that the
phase transition from the configuration with one minimum, to the one with two minima
occurs when passing from T > TC to T < TC (Fig. 1.10a). The description of this
phase transition for kagome materials includes some complications and, for symmetry
considerations due to their crystal lattice, the free energy, for T < TC , shows two minima
with different amplitudes. The minimum with the lower energy will correspond to the
“Inverse star of David” and the other one to the “Star of David”, while the point
corresponding to |Ψ| = 0 will correspond to the “Pristine” configuration (Fig. 1.10b).

(a) Behaviour of the free energy during
the phase transition in Landau Theory

(b) Free energy during the phase
transition for kagome materials.

Figure 1.10: Behaviour of the free energy as a function of the order parameter. The red
graph corresponds to the configuration for T > TC, while the black graph for T > TC.
In the graph on the right, for kagome materials, the origin of the axis corresponds to
the “Pristine” configuration, the lower minimum to the “Inverse Star of David” and the
other one to the “Star of David”.

1.5 Electronic properties of CsV3Sb5

1.5.1 Band structure and Van Hove singularities

The diverging density of states of the VHs at the M-point near the Fermi level might be
the driving force of charge order and superconductivity in CsV3Sb5.

Once the filling corresponding to a VHs is reached, nesting between the three inequiv-
alent M-points across the Fermi surface is predicted to promote a number of charge/spin
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density wave and superconducting instabilities. The band structure of CsV3Sb5 is shown
in Fig. 1.11.

Bands at the Fermi level are dominated by states arising from the kagome nets of
Vanadium d-states. These are multi-orbital materials with dxy, dyz and dxz derived
bands forming a series of m-type and p-type VHs at the M-points of the BZ at energies
reasonably close to EF. In CsV3Sb5, states that are identified with the m-type dxz,
dyz VHs are nearly perfectly nested. Optical conductivity data resolve the partial gap
that opens below the CDW transition to be ∆CDW ≈ 78meV , with TCDW = 94K [9].
Additional states at EF originating from Sb p-orbitals likely also play a role. The large
electron pocket at the Γ-point is generated by p-orbitals from the Sb sites in the kagome
plane (in the centers of the hexagons of the kagome nets), and an M-point VHs of mixed
Sb/V character that appears slightly above EF derives from a mixture of V-states with
out-of-plane Sb p-state.

Figure 1.11: Theoretical electronic structure of CsV3Sb5 from Density Functional Theory.
The Fermi level was set to 0.0eV. Some of the VHs near the Fermi level are highlighted.
The VHs highlighted in pink is of p-type, while the one at point M slightly above the
Fermi level highlighted in red is of m-type. Image taken from [10].

The type of the VHs is critical to understand the unconventional many-body phases
emerging from the kagome lattice as it determines the momentum dependence of the
bare susceptibility (a detailed expression for this dependence and its explanation can be
found in the supplementary materials of [12]) and the electron-electron (electron-hole)
pairing symmetries, which is the symmetry of the wavefunction of the Cooper pairs in
the k-space, of the superconducting (charge ordered) state (for detailed info see [12]).
The m-type VHs from the odd parity dxz/dyz kagome band contributes to the formation
of charge order by promoting Fermi surface nesting, while the p-type VHs from the
dxy/dx2−y2 kagome band contributes via higher-order VHs (with power-law diverging
density of states) and enhanced density of states.
For the Inverse star of David configuration charge order is shown below TCO = 78 ∼ 102K
and superconductivity below TC = 0.92 ∼ 2.5K. CsV3Sb5 seemingly possesses mixture
of the two configurations layered relative to one another.
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CsV3Sb5 hosts superconducting transition within the Charge Density Wave state,
with TC = 2.5K. Different types of superconductivity are predicted to emerge due to
nested VHs in the kagome band structure.

1.5.2 Phase diagram

High pressure is a clean method to tune the electronic properties without introducing any
impurities, and pressure is often used as a control parameter to tune superconductivity
and charge density wave state. Maximum Tc of 8K is observed at P2 ≈ 2GPa when
charge density wave is completely suppressed. Strikingly, an unusual suppression of
superconductivity is observed between P1 ≈ 0.7GPa and P2 ≈ 2GPa. These results
indicate an unexpected competition between charge density wave and superconductivity
in this region. The behaviour of this competition is shown in Fig. 1.12.

Figure 1.12: a) Phase Diagram of CsV3Sb5 with temperature against pressure; b) Pres-
sure dependence of superconducting transition temperature; c) Pressure dependence of
upper critical field at zero temperature. Image taken from [13].

The charge density wave transition temperature gradually decreases while increasing
the pressure, while the superconducting transition temperature increases with increasing
the pressure below P1, then decreases suddenly and becomes sharp again at P2, showing
the highest TC ≈ 8K. After this it is again suppressed for increasing pressure.
The upper critical field HC2 shows a similar behaviour (Fig 1.12c).

Perturbing the charge density wave state via external pressure or chemical doping
can have a dramatic effect on the superconducting phase, indeed the competition be-
tween charge density wave state and superconductivity is usual since the gap opening at
charge density wave state reduces the density of states at Fermi surfaces, leading to the
suppression of superconductivity [13]. TC is enhanced as the charge density wave state is
suppressed and frees up a greater density of states for the superconducting condensate.
This suppression of charge density wave state terminates with the maximization of TC .
Pressure acts like a perturbation that leads to the suppression of charge density wave
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state, affecting the VHs near the Fermi level and thus enhancing the superconducting
state.

Doping CsV3Sb5 is another kind of perturbation which may have effects on the po-
sition of the VHs with respect to EF . This is the case studied in this thesis, where,
in particular, Sb atoms have been replaced with Te and Sn atoms at different levels of
doping.
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Chapter 2

The many-electron problem

Studying the quantum properties of a material means studying its Schrödinger equa-
tion, which means that the starting point of the study developed in this thesis will be
a many-body Schrödinger equation. However the solution of this problem will be too
computationally demanding. For this reason the following chapter shows some approxi-
mations that can be introduced in order to reduce this computational demand, reaching
eventually the Hartree-Fock equations, which will be the starting point for the develop-
ment of the Khon and Sham formulation of Density Functional Theory.

2.1 Many-body Schrödinger equation

At the atomic scale materials are agglomerations of electrons and nuclei, bounded to-
gether by the attractive and repulsive forces between them. To describe a quantum
system composed by N electrons and M nuclei one will need to introduce a many-body
Schrödinger equation: Ψ = Ψ(r⃗1, ..., r⃗N ; R⃗1, ..., R⃗M), where r⃗i, with i = 1, ..., N represent

the positions of the electrons, while R⃗I , with I = 1, ...,M represent the positions of the
nuclei. It is thus possible to obtain the kinetic energy and the potential energies of the
system, which will be included in the Schrödinger equation:

• Kinetic energy: T̂ = −
N∑
i=1

ℏ2
2me

∇2
i −

M∑
I=1

ℏ2
2MI

∇2
I

• Repulsive potential between the electrons: V̂ee =
1
2

∑
i ̸=j

e2

4πϵ0
1

|r⃗i−r⃗j |

• Repulsive potential between the nuclei: V̂nn = 1
2

∑
I ̸=J

e2

4πϵ0

ZIZJ

|R⃗I−R⃗J |

• Attractive potential between nuclei and electrons: V̂ne = −
∑
i,I

e2

4πϵ0

ZI

|r⃗i−R⃗I |

where ZI and ZJ represent the atomic numbers of the different elements which com-
pose the material studied.
Their sum will yield the Hamiltonian of the system, through which one can write the
eigenvalue equation of the problem:

ĤΨ = [T̂ + V̂ee + V̂nn + V̂ne]Ψ = EtotΨ (2.1)

It is more convenient to write this Hamiltonian using atomic units:
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Ĥ = −
∑
i

∇2
i

2
−
∑
I

∇2
I

2MI

+
1

2

∑
i ̸=j

1

|r⃗i − r⃗j|
+

1

2

∑
I ̸=J

ZIZJ

|R⃗I − R⃗J |
−
∑
i,I

ZI

|r⃗i − R⃗I |
(2.2)

The dimension of this problem can be esteemed even taking into account a system
made up of a single iron atom. One can imagine to solve the single body Schrödinger
problem for every electron of the system (which is an underestimation of the problem,
since correlation is being ignored) and store the wavefunctions in three dimensional arrays
with 10 points along each spacial direction. For a single electron one will thus have 103

points, and for the iron atom one would have 26 · 103 points. However, in reality, when
considering all the 26 electrons of the iron atom, also the interactions and correlations
of every electron with all the others need to be included. This means that every electron
will provide 3 spatial dimensions to the problem for a total of 103·26 = 1078 data points.
This is much more than any computer could store.
The aim of Density Functional Theory (DFT) will thus be reducing the dimensionality
of this problem.

2.1.1 Born-Oppenheimer approximation

One first approximation that can be done in order to simplify the problem is considering
that nuclei in a solid material typically remain near certain positions, so that they can
be assumed clamped near these positions1. This way the masses of the nuclei can be
considered MI = ∞, which means that the contribution of the nuclei to the kinetic term
can be considered 0 and, since RI do not change, the potential energy between the nuclei
becomes a constant, which can be subtracted to the total energy of the system, in order
to obtain an energy E:

E = Etot −
1

2

∑
I ̸=J

ZIZJ

|R⃗I − R⃗J |

This way the Hamiltonian 2.2 can be simplified, and the eigenvalue problem becomes:

−
∑
i

∇2
i

2
+

1

2

∑
i ̸=j

1

|r⃗i − r⃗j|
−
∑
i,I

ZI

|r⃗i − R⃗I |
= EΨ (2.3)

It can thus be noticed that the last term of the Hamiltonian represent the sum of the
Coulomb potentials experienced by every single electron:

V̂n(r⃗) = −
∑
I

ZI

|r⃗ − R⃗I |

The Hamiltonian of this system can be separated in the sum of the potential en-
ergy due to the interactions between the electrons and the sum of N single electrons
Hamiltonians H0:

Ĥ0(r⃗i) = −∇2
i

2
− V̂n(r⃗i) (2.4)

so that the Hamiltonian can be written as:

1The uncertainty principle actually prevents nuclei from being perfectly immobile, since the uncer-
tainties in momentum and position must satisfy: ∆px∆x ≥ ℏ
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Ĥ(r⃗1, ..., r⃗N) =
∑
i

Ĥ0(r⃗i) +
1

2

∑
i ̸=j

1

|r⃗i − r⃗j|
(2.5)

Since the nuclei are now clamped, Ĥ, and thus also Ψ, are now functions only of the
positions of the electrons. This approximation, that allowed to treat nuclei and electrons
separately, is known as Born-Oppenheimer approximation.

2.1.2 Independent electrons approximation

A first approximation in order to obtain the wavefunction Ψ is to consider the electrons
independent from each other and thus ignoring the last term in the Hamiltonian 2.5,
which will reduce the problem to∑

i

Ĥ0(r⃗i)Ψ = EΨ =
∑
i

ϵiΨ

for which the wavefunction Ψ is given by the product of N single electron wavefunc-
tions ϕi(r⃗i):

Ψ(r⃗1, ..., r⃗N) = ϕ1(r⃗1)ϕ2(r2)...ϕN(r⃗N)

Each of the ϕi solves the single body Schrödinger problem:

Ĥ0(ri)ϕi(r⃗i) = ϵiϕi(r⃗i)

and the total energy E of the system is given by the sum of the energies ϵi of these
Schrödinger problems.

This approximation leads to inaccurate results, since the interaction between electrons
and the effects of Pauli exclusion principle are not negligible compared to the other terms
in the equation, but it is a good starting point because of its simplicity and will later be
modified in order to improve results.

2.1.3 Mean field approximation

Taking into account the interaction between the electrons, one can consider every single
electron experiencing a potential field VH (Hartree potential) which represent the mean
potential field generated by the charge distribution of all the other electrons. From
classical electrostatic Poisson’s equation must hold:

∇2VH(r⃗) = −4πn(r⃗)

where n(r⃗) is the electronic charge density, which can be expressed as the probability
of finding any electron at position r⃗ and for independent electrons can be expressed as:

n(r⃗) =
∑
j

|ϕj(r⃗)|2 (2.6)

The formal solution of Poisson’s equation gives the potential acting on every electron:

VH(r⃗i) =

∫
dr⃗j

n(r⃗j)

|r⃗j − r⃗i|
=
∑
j ̸=i

∫
dr⃗j

|ϕj(r⃗j)|2

|r⃗j − r⃗i|
(2.7)
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2.2 Hartree-Fock equations

2.2.1 The variational principle

Assuming to know the exact many-body wavefunction Ψ(r⃗1, ..., r⃗n) the energy of the
ground sate of the system can be obtained as:

E[Ψ] =
⟨Ψ| Ĥ |Ψ⟩
⟨Ψ|Ψ⟩

where E[Ψ] is a functional. For a generic wavefunction, different from the exact
one, the formula still holds, but it will not yield anymore the ground-state energy E0,
but an energy E[Ψ] ≥ E0. This means that one can choose the parameters in order to
minimize this functional, so, combining this variational principle with the hypothesis of
independent electrons, the minimum condition is given by the functional derivative:

δ ⟨Ψ| Ĥ |Ψ⟩
δϕi

=
δE

δϕi

= 0 (2.8)

This derivative can be computed taking into account that the ϕi must be orthonormal,
which acts as a constrain and the procedure leads to N integro-differential equations,
the Hartree equations:[

−1

2
∇2

i + V̂n(r⃗i) + V̂H(r⃗i)

]
ϕi(r⃗i) = ϵiϕi(r⃗i)

This equation is self consistent; indeed, the Hartree term 2.7 explicitly depends on
the orbitals ϕj, which are the solutions of the other Hartree equations.
A typical strategy to solve this system of equations consist in an iterative solution. An
initial guess is chosen for the orbital in order to construct the Hartree operator and solve
the single particle Hartree equations. This solutions are then used again to construct
the Hartree operator and the procedure is repeated till convergence is reached.

2.2.2 Slater determinant and exchange term

The wavefunction Ψ considered so far, however, does not include nor the effects of the
exchange of the electrons nor their correlation. Indeed, due to the fermionic nature of
electrons, Ψ must be anti-symmetric with respect to particles exchange:

Ψ(r⃗1, ..., r⃗i, ..., r⃗j, ..., r⃗N) = −Ψ(r⃗1, ..., r⃗j, ..., r⃗i, ..., r⃗N)

In order to include the effect of this exchange, Fock expressed the wavefunction as a
Slater determinant of the single electron wavefunctions:

Ψ =
1√
n!

∣∣∣∣∣∣∣∣
ϕ1(r⃗1) ϕ2(r⃗1) ... ϕN(r⃗1)
ϕ1(r⃗2) ϕ2(r⃗2) ... ϕN(r⃗2)
... ... ... ...

ϕ1(r⃗N) ϕ2(r⃗N) ... ϕN(r⃗N)

∣∣∣∣∣∣∣∣
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which satisfies the Pauli principle due the properties of the determinant of a matrix
(notice that, despite this, correlation is still being ignored).
Using wavefunctions given by a Slater determinant in variational principle 2.8 the new
set of differential equations becomes:[

1

2
∇2

i + Vn(r⃗)

]
ϕi(r⃗i) +

[∑
j

∫
ϕ∗
j(r⃗j)

1

|r⃗j − r⃗i|
ϕj(r⃗j)dr⃗j

]
ϕi(r⃗i)+

∑
j

[∫
ϕ∗
j(r⃗j)

1

|r⃗j − r⃗i|
ϕi(r⃗j)dr⃗j

]
ϕj(r⃗i) = ϵϕi(r⃗i)

(2.9)

where the second term is still an Hartree term with similar meaning to the one in
equation 2.7, but where the sum is extended to all electrons, so that each one of them
experiences a Coulomb interaction also with itself (i = j). This self interaction will be
removed from the new term which comes out in this equation, the exchange potential,
which comes from purely quantum-mechanical properties of particles.

With an experimental measurement one can obtain the exact value of the energy
Eexact, which will in general be smaller than the energy obtained with the Hartree-Fock
method, since correlations are being ignored so far: EHF ≥ Eexact. By definition the
difference between these two energies is called correlation energy:

Ecorrelation = EHF − Eexact

2.3 Kohn-Sham equation

Eq. 2.9 can be written in a simpler form as ([14], pg. 35):[
−∇2

i

2
+ V̂n(r⃗i) + V̂H(r⃗i) + V̂X(r⃗i)

]
ϕi(r⃗i) = ϵiϕi(r⃗i) (2.10)

where VX represents the exchange term obtained previously. This equation still ig-
nores correlation between electrons. In order to understand how this correlation works
one can consider a space region where the probability of finding an electron is high. This
means that the probability of finding another electron in the same space region is reduced
because of Coulombian repulsion, which means that |Ψ(r⃗1, r⃗2)|2 < |ϕ1(r⃗1)ϕ2(r⃗2)|2 for a
system of two electrons. In order to include correlation another term can be added to
eq. 2.10: the correlation term V̂c. Eq 2.10 then becomes:[

−∇2
i

2
+ V̂n(r⃗i) + V̂H(r⃗i) + V̂X(r⃗i) + V̂c(r⃗i)

]
ϕi(r⃗i) = ϵiϕi(r⃗i) (2.11)

An equation of this form is called Kohn-Sham equation. Today the exact form of the
potential Vc is still not known, but convenient approximations have been developed.
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Density Functional Theory

The Hartree Fock method exposed in the previous chapter considers the energy of the
ground state as a functional of the wavefunction Ψ, which means that it depends on
the dimension of the Ĥ considered and could diverge in some situations. It is thus
useful considering some global properties of the wavefunction, in order to reduce the
dimensionality of the problem. The one introduced in this chapter is the electronic
charge density, which is the starting point for developing Density Functional Theory
(DFT), which will be the main topic of this chapter.

3.1 Electronic charge density

As stated in section 2.1.3 the electronic charge density n(r⃗) represents the probability
of finding an electron at position r⃗. In quantum mechanic the probability of finding an
electron of a system labelled by i at position r⃗ is given by:

P (r⃗i = r⃗) =

∫
|Ψ(r⃗1, ... ⃗ri−1, r⃗, ⃗ri+1, ...r⃗N)|2dr⃗1...d ⃗ri−1d ⃗ri+1...dr⃗N

The electronic charge density will thus be given by:

n(r⃗) = P (r⃗1 = r⃗) + ...+ P (r⃗N = r⃗)

and since electrons are indistinguishable particles: P (r⃗i = r⃗) = P (r⃗j = r⃗) ∀ i, j ∈
[1, ..., N ], which leads to:

n(r⃗) = N

∫
|Ψ(r⃗, r⃗2, ...r⃗N)|2dr⃗2...dr⃗N

where N represents the number of electrons in the system. Since n(r⃗) is the electronic
charge density its integral must give the total number of electrons:∫

n(r⃗)dr⃗ = N (3.1)

Moving from the wavefunction Ψ(r⃗1, ..., r⃗N) to the density n(r⃗) reduces the dimen-
sionality of the problem, since the wavefunction is a function of 3N variables, the three
components of the position vector for each of the N electrons of the system, while the
charge density is a function of only 3 variables.
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3.2 Hohenberg-Kohn theorems

The “shape” of the Schrödinger equation is given by the external potential V and the
number of electrons N . The aim of the two Hohenberg-Kohn theorems is to relate these
quantities.

Theorem 1. The external potential of a system of interacting electrons is a unique
functional of the electronic charge density of the ground state n(r⃗).

Proof. Supposing two different potentials V and Ṽ exist, with respective ground states
Ψ and Ψ̃, both of them will have to lead to the same charge density n(r⃗). Assuming
these ground states have non degenerate energies E and Ẽ one can take Ψ̃ as the trial
solution for the Hamiltonian Ĥ of the system with ground state Ψ and, consequently,
for the energy E of the ground state Ψ, must hold:

E < ⟨Ψ̃| Ĥ |Ψ̃⟩ = ⟨Ψ̃| Ĥ + ˆ̃H − ˆ̃H |Ψ̃⟩ = ⟨Ψ̃| ˆ̃H |Ψ̃⟩+ ⟨Ψ̃| Ĥ − ˆ̃H |Ψ̃⟩

The first term is the ground state energy Ẽ, while, for the second one, the kinetic term

of both Ĥ and ˆ̃H is the same, since they represent the same system, which means that
the difference between the two Hamiltonians is the difference between the two potential
terms. Remembering then, that Ψ̃

∗
Ψ̃ = Ψ

∗
Ψ = n(r⃗):

E < Ẽ +

∫
n(r⃗)

[
V (r⃗)− Ṽ (r⃗)

]
dr⃗

with the consequent result:

E − Ẽ <

∫
n(r⃗)

[
V (r⃗)− Ṽ (r⃗)

]
dr⃗

The same procedure can be followed in order to find the expectation value of Ψ with

respect to ˆ̃H and considering Ẽ as the ground state energy of ˆ̃H, leading to the result:

E − Ẽ >

∫
n(r⃗)

[
V (r⃗)− Ṽ (r⃗)

]
dr⃗

This result is, obviously, a contradiction, which means that the two potentials V and
Ṽ can not be different, and thus implying a biunivocal correlation between n(r⃗) and the
external potential Vext(r⃗).

Consequently the non degenerate energy of the ground state is a functional of the
charge density of the ground state n0(r⃗) only: E0 = ⟨Ψ0| Ĥ |Ψ0⟩ = E0[n0(r⃗)]. This means
that the same property will hold for the different components of the energy (which come
from the different terms of the Hamiltonian):

E0[n0(r⃗)] = T [n0(r⃗)] + Eee[n0(r⃗)] + Eext[n0(r⃗)]

where the last term Eext is specific of the problem and could be, for example, the
electrons-nuclei interaction, while the first two terms are a universal part and do not de-
pend on the specific problem studied. This universal part can be collected in a functional
known as the Hohenberg-Kohn functional:
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FHK [n0(r⃗)] = T [n0(r⃗)] + Eee[n0(r⃗)] = ⟨Ψ0| T̂ + V̂ee |Ψ0⟩ (3.2)

This leads to the final expression for the energy of the ground state:

E0[n0(r⃗)] =

∫
n0(r⃗)Vext(r⃗)dr⃗ + FHK [n0(r⃗)]

The functional FHK [n] could thus be used in order to find the exact solution of the
Schrödinger problem, and being universal it would also be system independent. However
the form of this functional in unknown, since it would require to be able to introduce
exchange and correlation properties. Despite this, useful approximations have been de-
veloped, using, for example, the homogeneous electron gas model, for which these prop-
erties are known, as local approximation.

The next step is to determine a way to obtain n0(r⃗) and E0, which is the aim of the
second Hohenberg-Kohn theorem:

Theorem 2. If the energy E0[n(r⃗)] of a certain ground state |Ψ0⟩ is non-degenerate and
can be expressed as a functional of a density n(r⃗), then the real density n0(r⃗) of the
system is the one that minimizes the energy functional E0, and consequently: E0[n(r⃗)] ≥
E0[n0(r⃗)].

Proof. Since for the first Hohenberg-Kohn theorem the external potential is uniquely
specified by the charge density n0(r⃗) any other charge density n(r⃗) will be related to a
different potential, and will thus correspond the a ground state |Ψ⟩ of a different Hamil-
tonian, which will be different from the ground state |Ψ0⟩ of the considered Hamiltonian
Ĥ:

E0[n(r⃗)] = ⟨Ψ| Ĥ |Ψ⟩ ≥ ⟨Ψ0| Ĥ |Ψ0⟩ = E0[n0(r⃗)]

Taking into account that the number N of electrons in the system is a constrain (eq.
3.1) the minimization problem can be written using Lagrange multipliers as:

δ
[
E0[n(r⃗)]− µ

(∫
dr⃗n(r⃗)−N

)]
δn(r⃗)

= 0

where µ (the Lagrange multiplier) is the chemical potential, since the ground state
is considered at T = 0K.

Using functional 3.2 the second theorem can be written as:

⟨Ψ| Ĥ |Ψ⟩ = ⟨Ψ| T̂ + V̂ee + V̂ext |Ψ⟩ = FHK [n(r⃗)] +

∫
Vext(r⃗)n(r⃗)dr⃗ ≥ E0

However these theorems only guarantee the uniqueness of such functional, but there
is no way to know if a certain density can be obtained from an Hamiltonian with a
suitable external potential. In such cases the density is said to be “V-representable”.
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3.3 Kohn-Sham equations

The starting point of the procedure developed by Kohn and Sham is based on the as-
sumption of the Hartree-Fock problem and thus considers a ground state built from a
Slater determinant, which means that the electrons are considered non-interacting. Such
electrons are embedded in an effective external potential which ensures that their ground
state charge density is the same of the equivalent interacting system.
The ground state |Ψ0⟩ of the system can be expressed as the Slater determinant of the
orthonormal single particle states ψi(r⃗, σ), where σ represents the spin dependence of the
wavefunctions. With these states, the electronic charge density for the non interacting
system is given by 2.6:

n(r⃗) =
∑
i,σ

|ψi(r⃗, σ)|2 (3.3)

Considering now functional 3.2 the kinetic term for a non interacting system is well
defined as a functional of n1 and is the sum of the kinetic energies of the single particles.
For what concerns the energy due to the interaction between electrons, also the Hartree
term is well defined since, from 2.7:

EH [n(r⃗)] =
1

2

∫
n(r⃗)VH(r⃗)dr⃗ =

1

2

∫ ∫
n(r⃗)n(r⃗′)

|r⃗ − r⃗′|
dr⃗dr⃗′ (3.4)

where the 1/2 factor is added in order to avoid double counting, since the two charge
densities implies two sums on the same indexes from eq. 3.3.

Everything that is still unknown (the exchange and correlation terms) is put together
in an only term, the exchange-correlation energy :

F [n(r⃗)] = T [n(r⃗)] + EH [n(r⃗)] + Exc[n(r⃗)]

The total energy of the ground state |Ψ0⟩ of the system, considering it expressed as
the Slater determinant of the ψi, can thus be expressed as:

E[n(r⃗)] = ⟨Ψ0| Ĥ |Ψ0⟩ =

=
∑
i,σ

[
−1

2

∫
ψ∗
i (r⃗, σ)∇2ψi(r⃗, σ)dr⃗

]
+ EH [n(r⃗)] + Exc[n(r⃗)] +

∫
Vext(r⃗)n(r⃗)dr⃗

(3.5)

The minimization of the previous functional with respect to the ψi(r⃗, σ) with the
constrain that the ψi(r⃗, σ) must be normalized leads to the equations:

ĤKSψi(r⃗, σ) = ϵi,σψi(r⃗, σ) (3.6)

where:

ĤKS = −1

2
∇2 + V̂H(r⃗) + V̂xc(r⃗) + V̂ext(r⃗) (3.7)

which are equations of the form 2.11 and are thus Kohn-Sham equations. In this last
one Vxc(r⃗) is called exchange and correlation potential and is given by:

1This kinetic energy represents the energy of the non-interacting system, which is, in general, different
from the one of the exact ground state wavefunction.
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Vxc(r⃗) =
δExc[n]

δn

∣∣∣∣
n(r⃗)

Equations 3.6 imply that it must exist a functional Exc[n(r⃗)] which, through a self
consistent calculation, allows to obtain the energy of the ground state of the system.
However the expression of this functional is not known, but some useful approximations
can be used in order to obtain significant results.

3.4 Local Density Approximation

The Local Density Approximation (LDA) allows to obtain an approximation of the ex-
change and correlation energy using the simple model of the Homogeneous Electron Gas,
where the potential of the nuclei and the charge density n(r⃗) are assumed to be constant
[14] [15].
For this model the charge density is known and is equal to: n = k3F/3π

2 ([14], pg. 41),
where kF is the modulus of the Fermi wavevector, which corresponds to the one for
which: EF = ℏ2k2F/2m. It is then possible to obtain an expression for the exchange and
correlation energy.
The charge density of the system can be considered as the density of an homogeneous
electron gas in the nearby of every point and thus, at every point, the exchange and
correlation energy can be constructed using the one of the electron gas.
This way the meaningful property that is interesting to compute is the energy over
the volume unit considered: ϵHEG[n] = EHEG[n]/V . This energy density can then be
decomposed in a kinetic part, an exchange part and a correlation part:

ϵHEG = ϵHEG
kin + ϵHEG

x + ϵHEG
c

where the kinetic and exchange terms are known:

ϵHEG
kin =

(3π2n)5/3

10π2
ϵHEG
x =

(3π2n)4/3

4π3

while the correlation term does not have an analytical form, but can be obtained
with stochastic numerical methods ([14], pg. 43).
Eventually the exchange and correlation energy can be obtained integrating the energy
density of the homogeneous electron gas evaluated at the density at each point r⃗ over
the entire system:

ELDA
xc =

∫
dr⃗ϵHEG

xc [n(r⃗)]

where ϵHEG
xc = ϵHEG

x + ϵHEG
c .

This approximation is fairly good for several applications, but can be inaccurate for some
chemical applications.

In order to overcome some of the inaccuracies of this theory an improvement that
can be done is considering the exchange and correlation energy density not only as a
functional of n(r⃗) at a specific point in space, but also of its gradient at that point:

EGGA
xc =

∫
dr⃗ϵxc[n(r⃗),∇n(r⃗)]

This approximation is known as General Gradient Approximation (GGA) [14] [15].
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3.5 Self consistent calculations

3.5.1 The eigenvalue problem

In DFT calculations the aim is to solve a Schrödinger problem of the form Ĥ |ψ⟩ =
E |ψ⟩,where, in the Kohn and Sham formulation, the Hamiltonian is given by 3.7 and
the Hartree term and the exchange and correlation term introduce non-linear parts in
the problem.
The starting point is to expand the wavefunction in a basis:

|ψ⟩ =
N∑
i=1

ci |ϕi⟩ (3.8)

where the coefficients ci, can be, in general, complex numbers and N can also be
infinite.
Projecting now the eigenvalue equation on each basis element:

⟨ϕi| Ĥ |ψ⟩ = E ⟨ϕi|ψ⟩

Using now expansion 3.8 for the wavefunction:∑
j

cj ⟨ϕi| Ĥ |ϕj⟩ = E
∑
j

cj ⟨ϕi|ϕj⟩ = E
∑
j

cjδij = Eci

The left hand side of the equation represents the matrix elements of the Hamiltonian
Hij, so that the problem can be written, using Einstein notation, as:

Hijcj = Eδijcj

leading to an equation of the form:

(Hij − Eδij)cj = 0

This is a linear algebra problem where the solution for the eigenvalues E can be
obtained from the condition:

det(Hij − Eδij) = 0

which leads to an N th degree polynomial equation, whose N solutions will be the
energy eigenvalues.
The goal is now finding a good basis in order to expand the wavefunction as in eq. 3.8.

3.5.2 The iterative procedure

It has been shown that equations 3.6 can be reduced to eigenvalue problems, whose
solutions lead to the eigenvalues ϵi,σ and the eigenfunctions ψi of the single particles
problems. In order to solve these problems one need to know all the potential terms in
Hamiltonian 3.7. The complication here is that V̂H and V̂xc depend on the charge density
n, which depends itself on the unknown eigenfunctions as in equation 3.3. This means
that every solution ψi depends on all the other solutions ψj, which makes the problem
self-consistent.

The practical procedure for solving the Kohn-Sham equations consists in:
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1. Specifying the nuclei coordinates in order to obtain the external potential (this
information is typically available from crystallography data);

2. Choosing a starting guess of the electronic density n(r⃗) in order to obtain V̂H
and V̂xc. A useful starting approximation consists in considering it as the sum of
the densities of completely isolated atoms arranged in the atomic positions of the
material considered;

3. Estimating the total potential and proceed to the numeric solution of the Kohn-
Sham equations ;

4. Constructing a better density with the new eigenfunctions;

5. Using the new density instead of the previous guess in point 2 and repeating the
procedure.

This series of steps is followed till the density obtained in step 4 matches the one
used in step 2 within a certain specified convergence criteria.

With the density just obtained it is possible to calculate the total energy of the system
from equation 3.5. This ground state total energy can then be used in order to calculate
many properties of the material.

3.6 Applications of DFT

3.6.1 Equilibrium structure for materials

One important assumption made in section 2.1.1 is that the positions of the nuclei do
not change. This is true when the total force acting on them vanishes, which means that,
for a given structure, it is important to be able to calculate the total force acting on the
nuclei and find the nuclear coordinates for which these forces are identically zero.
Reintroducing the nuclei motion means that the starting point of this theory will, again,
be equation 2.1 and the eigenfunctions will depend on both the electrons and nuclei
positions.
A first useful approximation comes from the consideration that the potential felt by an
electron in the middle of an interatomic bond or by a nucleus around its equilibrium
position can be approximated as the one of an harmonic oscillator. This means that
their wavefunctions can be approximated by those of the harmonic oscillator, which, for
the ground state, are Gaussians with standard deviations that scales with the particles
masses as: σ ∼ M−1/4. This means that the wavefunction of the electrons is much
more spreaded in space than the nuclei one and, consequently, the motion of the nuclei
will be much smaller that the one of the electrons and one could first determine the
electrons wavefunction for a set of fixed nuclear positions, and then allow the nuclei to
move according to their quantum-mechanical wavefunction, which will not change much
and thus not affect too much the electronic wavefunction.
The formal consequence of this effect is that the wavefunction of both the electrons and
nuclei positions can be separated into the product of two wavefunctions, each of which
will depend only on one of the two sets of coordinates:

Ψ(r⃗1, ..., r⃗N , R⃗1, ..., R⃗M) = ψ
(e)

R⃗
(r⃗1, ..., r⃗N)ψ

(n)(R⃗1, ..., R⃗M)
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where the electronic part depends parametrically on the set of nuclei positions. Since
the electrons and the nuclei are now being treated separately this approximation is still
a Born-Oppenheimer approximation, as the one introduced in section 2.1.1.
This way, for the electronic wavefunction, a Schrödinger equation of the form 2.3 will
still hold, which means that equation 2.1 can be rewritten as:

Eψ
(e)

R⃗
ψ(n) +

[
−
∑
I

∇2
I

2MI

+
1

2

∑
I ̸=J

ZIZJ

|R⃗I − R⃗J |

]
ψ

(e)

R⃗
ψ(n) = Etotψ

(e)

R⃗
ψ(n)

finally, multiplying both sides by the complex conjugate of ψe
R⃗
, integrating over the

positions of the electrons and taking into account that the total wavefunction Ψ must
be normalized, this equation becomes [14]:[

−
∑
I

∇2
I

2MI

+
1

2

∑
I ̸=J

ZIZJ

|R⃗I − R⃗J |
+ E(R⃗1, ..., R⃗M)

]
ψ(n) = Etotψ

(n) (3.9)

where the electronic contribution is all included in the energy E(R⃗1, ..., R⃗M), which
depends on the positions of the nuclei and acts as an effective potential on them.
An important assumption that is being considered in this procedure is that when the
nuclear coordinates change the electrons evolve from the ground state associated with
the initial configuration to the one of the final configuration, which means that nuclei
moves so slowly that electrons have enough time to adjust their positions in order to re-
main in their lower energy state. As a consequence of this assumption electrons are not
exchanging energy with the nuclei and the evolution of the system is adiabatic, indeed,
this approximation that allowed to separate the electronic part of the wavefunction from
the nuclear one, is also called Adiabatic approximation.

From eq. 3.9 the Hamiltonian acting on the nuclei is of the form:

Ĥ(n) = −
∑
I

∇2
I

2MI

+ Û(R⃗1, ..., R⃗M)

where the total potential U is given by the sum of the one due to the interaction
between the nuclei and the total energy of the electrons.
As it has been stated before, given the same energy profile, the nuclear wavefunction
is much more compact than the electronic one, which means that in comparison with
the electrons, nuclei can be considered as point like particles, and thus obey the laws of
classical mechanic as a first approximation.
From the classical Hamiltonian dependent on the set of conjugate canonical variables
(R⃗I , P⃗I), with I = 1, ...,M , one can obtain the force acting on each nucleus starting from
the second law of Newton:

F⃗I =MI
¨⃗
RI =MI

d

dt
˙⃗
RI =MI

d

dt

∂H(n)

∂P⃗I

=MI
d

dt

∂

∂P⃗I

[∑
J

P⃗J

2

2MJ

+ U(R⃗1, ..., R⃗M)

]
=

=MI
d

dt

P⃗I

MI

=
˙⃗
PI = −∂H

(n)

∂R⃗I

= − ∂U

∂R⃗I

(3.10)
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where the canonical relations
˙⃗
RI = ∂H(n)/∂P⃗I and

˙⃗
PI = −∂H(n)/∂R⃗I have been

used. This result shows that equilibrium structures correspond to stationary points of
the function U(R⃗1, .., R⃗M).
Note that all these considerations hold for materials at T = 0K, but in many cases the
structural properties at ambient temperature are the same as those at T = 0K.
However the minimization of the potential energy U with respect to the 3M degrees of
freedom would be too computationally expensive. It is thus useful taking into account
the following Hellmann-Feynman theorem:

Theorem. Given a system described by an Hamiltonian which depends on a parameter
λ (in this case λ is the internuclear separation) and whose eigenvalue with respect to its
normalized eigenstate |ψλ⟩ is Eλ:

∂Eλ

∂λ
=

〈
ψλ

∣∣∣∣∣∂Ĥλ

∂λ

∣∣∣∣∣ψλ

〉

Proof. The proof follows considering the Leibniz rule and that Ĥλ |ψλ⟩ = Eλ |ψλ⟩:

∂Eλ

∂λ
=

∂

∂λ
⟨ψλ| Ĥλ |ψλ⟩ =

〈
∂ψλ

∂λ

∣∣∣∣Ĥλ

∣∣∣∣ψλ

〉
+

〈
ψλ

∣∣∣∣∣∂Ĥλ

∂λ

∣∣∣∣∣ψλ

〉
+

〈
ψλ

∣∣∣∣Ĥλ

∣∣∣∣∂ψλ

∂λ

〉
=

= Eλ

〈
∂ψλ

∂λ

∣∣∣∣ψλ

〉
+ Eλ

〈
ψλ

∣∣∣∣∂ψλ

∂λ

〉
+

〈
ψλ

∣∣∣∣∣∂Ĥλ

∂λ

∣∣∣∣∣ψλ

〉
=

= Eλ
∂

∂λ
⟨ψλ|ψλ⟩+

〈
ψλ

∣∣∣∣∣∂Ĥλ

∂λ

∣∣∣∣∣ψλ

〉
= Eλ

∂

∂λ
1 +

〈
ψλ

∣∣∣∣∣∂Ĥλ

∂λ

∣∣∣∣∣ψλ

〉
=

=

〈
ψλ

∣∣∣∣∣∂Ĥλ

∂λ

∣∣∣∣∣ψλ

〉

This allows to pass from 3M parameters to only one parameter, reducing drastically
the complexity of the problem.
From this the calculation of the forces for all the nuclei in the system can be performed
using the electron density of one set of nuclear coordinates, which can be obtained using
DFT.
This method allows to research the minimum of the potential energy surface U(R⃗1, ..., R⃗M).
A particle left free to move in a position different from the equilibrium position will end
up oscillating around a minimum. The effect to reproduce in order to lead the particle on
the minimum is the same one that would be included by the friction term proportional to
the velocity of the particle in the equation to describe the motion of a body in a viscous
fluid.
Practically, after finding the charge density and the total energy with DFT and the total
force acting on the system for a given nuclear configuration using Hellmann-Feynman
theorem, eq. 3.10 with the addition of the friction term is solved numerically discretizing
the time variable and approximating the time derivatives with finite differences formulas
(Verlet’s algorithm), leading to an equation that can be used in order to express the
new positions as functions of the previous ones. This procedure is then repeated with
the new positions found, leading to a series of configurations that will converge to the
minimum of the potential surface.
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3.6.2 Band structures

Band structures allow to give an interpretation to the eigenvalues of the Kohn-Sham
equations.
Starting from eq. 3.5 and substituting expression 3.3 for the charge density yields (ig-
noring the spin dependence) the result:

E =
∑
i

fi

∫
dr⃗ψ∗

i (r⃗)

[
−∇2

2
+ Vext(r⃗) +

1

2

∫
dr⃗′

n(r⃗′)

|r⃗ − r⃗′|

]
ψi(r⃗) + Exc[n]

where fi is the occupation function and is equal to 1 if state ψi is occupied and 0
otherwise.
The integral inside the square brackets corresponds to the Hartree potential from equa-
tion 2.7 and adding and subtracting VH/2+Vxc allows to reconstruct the total potential
Vtot = VH + Vxc + Vext:

E =
∑
i

fi

∫
ψ∗
i (r⃗)

[
−∇2

2
+ Vtot(r⃗)

]
ψi(r⃗)−

∫
dr⃗n(r⃗)

[
VH
2

+ Vxc

]
+ Exc[n]

The first integral is equivalent to ⟨ψi| ĤKS |ψi⟩ and from equation 3.6 yields the Kohn
and Sham eigenvalues while in the second term the integral of the Hartree potential yields
the Hartree energy from equation 3.4, leading to the final expression:

E =
∑
i

fiϵi −
[
EH +

∫
dr⃗Vxcn(r⃗)− Exc[n]

]
(3.11)

The first term on the left on the right side of this equation is the sum of the energies of
all the occupied states and is referred as band structure energy while the second one is
needed in order to avoid double counting of contributions in the total energy.
Taking the derivative of the total energy with respect to the occupation fi yields:

∂E

∂fi
= ϵi

From this, one can see that adding an electron to a system of N electrons in a
previously unoccupied state ψi yields a change in the total energy:

EN+1,i − EN =

∫ 1

0

dfi
∂E

∂fi
=

∫ 1

0

dfiϵi

This means that a change in the occupation fi will lead to a change in the energy
eigenvalue ϵi, due to the fact that the new electron will modify the electron density and
thus the total potential Vtot. However, in a solid, the change in the number of electrons
would be so small for a single electron that the change in the charge density can be
considered negligible, so, as a first approximation, the eigenvalue ϵi can be considered
independent from the occupancy fi:

EN+1,i − EN ≃ ϵi

so that the change in the total energy is, approximately, the Kohn-Sham eigenvalue
of the new electron and similarly for the removal of an electron. This means that each
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electron carries an energy corresponding to the Kohn-Sham eigenvalue of the state that
it occupies.

The calculation of the band structure for a crystal starts from Bloch Theorem and
eq. 1.1, which can be rewritten in this case as:

ψi,⃗k(r⃗) = eik⃗·r⃗ui,⃗k(r⃗) (3.12)

where the parametric dependence of both the wavefunction and u on the wavevector k⃗
has been marked. Substituting this one in the Kohn-Sham equation 3.6 and multiplying

both sides by e−ik⃗·r⃗ yields the result:[
−1

2
(∇+ i⃗k)2 + V̂tot

]
ui,⃗k(r⃗) = ϵi,⃗kui,⃗k(r⃗) (3.13)

which is a Schrödinger problem which allows to determine the periodic function
ui,⃗k(r⃗), which are considered normalized inside the unit cell of the crystal.
This problem needs to be solved only inside one unit cell, since the solution in any other
cell of the crystal can be obtained applying the periodic boundary condition and is iden-
tical to the one obtained for the first one. Practically the numerical solution of eq. 3.13
will require the description of ui,⃗k on a discrete mesh of points spanning only one unit
cell. The periodicity of the crystal allows to restrict the range of wavevectors to consider
for the solution to the first Brillouin Zone.
The solution of the Kohn and Sham equation in a crystal (eq. 3.13) allows then to con-
struct the electronic charge density using wavefunctions given by 3.12, which will need
also an integration over the wavevectors inside the first Brillouin zone:

n(r⃗) =
∑
i

∫
BZ

dk⃗

ΩBZ

fik⃗|ui,⃗k(r⃗)|
2 (3.14)

Because of the periodicity of ui,⃗k also n(r⃗) will be the same in every unit cell.
Eq. 3.11 can then be rewritten for the particular case of a crystal solid:

E =
∑
i

∫
BZ

dk⃗

ΩBZ

fi,⃗kϵi,⃗k −
[
EH +

∫
dr⃗Vxcn(r⃗)− Exc[n]

]
(3.15)

considering all quantities as energies per unit cell. The ground state of the system
is obtained filling all the electrons states starting from the lowest-energy one, satisfying
the constrain that the the charge density integrated over the unit cell must yield the
number of electrons per unit cell N . The total energy is minimized when all the states
under the Fermi level are occupied and all the above ones are empty.

Practical DFT calculations proceed in a similar way to the one shown in section 3.5.2,
but using eq. 3.13 as Kohn-Sham equations and eq. 3.14 for the charge density. In this
case the integral over the BZ is evaluated numerically by considering a discrete mesh of
wavevectors k⃗ spanning the whole BZ.

31



Chapter 4

VASP and the implementation of
the problem

The Vienna Ab initio Simulation Package (VASP) [16] is a program which allows to
perform first principles calculations for the properties of materials at the atomic scale
following the method explained in the previous chapters and is the one that was used
to perform the calculations in this thesis. The following chapter explains how VASP
implements some of the details previously explained in order to perform calculations and
how its user interface works.

4.1 Plane waves representation

The solution of the Schrödinger problem for a periodic lattice has the form 3.12 and, since
ui,⃗k(r⃗) is periodic in space with the same periodicity of the lattice, it can be expanded
in terms of a set of plane waves:

ui,⃗k(r⃗) =
∑
G⃗

ci,G⃗e
iG⃗·r⃗

where G⃗ is a reciprocal lattice vector defined by:

G⃗ = m1b⃗1 +m2b⃗2 +m3b⃗3

with b⃗1, b⃗2, b⃗3 primitive vectors of the reciprocal lattice, and m1,m2,m3 ∈ Z, which
implies an infinite sum over an infinite number of possible values of G⃗.
This allows to rewrite eq. 3.12 as:

ψi,⃗k(r⃗) =
∑
G⃗

ci,⃗k+G⃗e
i(k⃗+G⃗)·r⃗ (4.1)

which is a possible basis choice for the expansion 3.8.
Equations of the form 4.1 are solutions of the Schrödinger equation with energy

eigenvalues:

ϵi =
ℏ2

2m
|⃗k + G⃗|2
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Solutions with lower energies are generally more important than solutions with higher
energies, which means that the sum can be truncated including only solutions with
energies lower than the value:

Ecut =
ℏ2

2m
G2

cut (4.2)

which means that the plane waves considered will be of the form:

ψi,⃗k(r⃗) ≈
∑

|⃗k+G⃗|<Gcut

ci,⃗k+G⃗e
i(k⃗+G⃗)·r⃗ (4.3)

The cutoff value influences both the precision of the result and the computational
time needed for the calculation. For the ENCUT command VASP includes a default
cutoff value for each atom, and, if not set, the used one is the highest Ecut between those
of the atoms considered in the problem.
This plane waves representation is the one used by VASP for the basis 3.8.

4.2 Pseudopotentials

4.2.1 General properties

In molecules and solids not all the electrons are bounded to the nuclei in the same way
and the study of different properties does not always require to take into account all the
electrons. In particular chemical bonding and other physical characteristics of materials
are dominated by the less tightly bounded valence electrons. This fact is a great com-
putational advantage, since, from eq. 4.3, in order to include plane waves that oscillate
on short length scales in the real space, such as the one needed for orbitals close to the
nucleus, a large energy cutoff would be needed.
The fact that core electrons are not described by the set of plane waves chosen means
that their screening effect on the potential of the nucleus felt by the valence electrons
must be included through a pseudopotential. The pseudopotential must be created in
such a way that when valence electrons are placed in its field their energy is exactly the
same one they would have had if they felt the full electronic configuration. In addition
to this it must be such that the wavefunctions outside the effective core (made by the
nucleus and the tight bounded electrons) are the correct ones (Fig. 4.1).

Figure 4.1: Comparison between the pseudopotential and the real potential and their
respective wavefunctions. The effective core radius is denoted by rc.
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Ideally, a pseudopotential is developed by considering an isolated atom of one element.
The resulting pseudopotential can then be used for calculations that place this atom in
more complicated structures without adjustments. This desirable property is referred to
as the transferability of the pseudopotential.

4.2.2 Projected Augmented Wave method

The Projected Augmented Wave method, or PAW method, used by VASP, considers core
electrons fixed at their positions as the nuclei and experiencing a modified potential,
while valence electrons are considered subject to a potential which behaves as the real
one.
The starting point of the PAW method is the Augmented Plane Wave method (APW),
where the space is divided into spheres centered on each nucleus site. This spheres do
not overlap, so that some space is left free (interstitial region), but almost fill all the
allowed space. This implies two different Schrödinger problems: inside the spheres, with
a spherically symmetric potential, and in the interstitial region, where the solutions will
still be plane waves:

ϕG⃗(k⃗, r⃗) =


ei(k⃗+G⃗)·r⃗ interstitial region

∑
l,m

aα,G⃗l,m (k⃗)ul(r⃗α, E)Yl,m(r⃗α) inside the spheres

where ul satisfies the radial Schrödinger equation, Yl,m are the spherical harmonics,
α enumerates the spheres, r⃗α is the position inside sphere α with respect to its center

and the coefficients aα,G⃗l,m are determined requiring that the wavefunctions are continuous
at the boundary of the spheres.
With this basis the single particle wavefunctions become:

ψi,⃗k(r⃗) =
∑

|⃗k+G⃗|<Gcut

cG⃗
i,⃗k
ϕG⃗(k⃗, r⃗)

The augmentation effect is given by the fact that each plane wave, inside the spheres,
is augmented by a linear combination of: ul(r⃗α, E)Yl,m(r⃗α).
Negative aspects of this basis are that ul depends also on the band energy, which leads
to a non-linear problem, hard to compute, and that, for some energy values, the spheres

boundaries become very small, leading to almost infinite coefficients aα,G⃗l,m .
To avoid these problems the Linearized APW method (LAPW) propose to replace the
ul with their Taylor series truncated to the first order around an energy parameter El:
ul(E) = ul(El) + (E − El)u̇l(El) + O(E − El)

2, where the error on the wavefunctions is
quadratic in E − El:

ϕG⃗(k⃗, r⃗) =


ei(k⃗+G⃗)·r⃗

∑
l,m

[aα,G⃗l,m (k⃗)ul(r⃗α, El) + bα,G⃗l,m (k⃗)(E − El)u̇l(r⃗α, El)]Yl,m(r⃗α)

where a and b are still determined with the continuity condition on the boundary of
the spheres.
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The final improvement is given by the Full-potential LAPW method, where a non spher-
ical term inside the spheres is combined with a non constant potential in the interstitial
region:

V (r⃗) =


∑⃗
G

VG⃗e
iG⃗·r⃗ interstitial region

∑
l,m

Vl,m(r)Yl,m(r⃗) inside the spheres

The PAW method is a generalization of the LAPW method. The computationally hard
part to describe is the one inside the spheres, since there the wavefunctions oscillate very
rapidly.
Assuming that T̂ is a linear transformation that relates the true Kohn-Sham single
particles wavefunctions |ψ⟩ to their “pseudopotential” version |ψ̃⟩:

|ψ⟩ = T̂ |ψ̃⟩

With this the expectation value of an observable Ô is given by:

⟨Ô⟩ = ⟨ψ| Ô |ψ⟩ = ⟨ψ̃| T̂ †ÔT̂ |ψ̃⟩ = ⟨ψ̃| ˆ̃O |ψ̃⟩

Since the wavefunctions outside the spheres must agree with the real ones the trans-
formation T̂ differs from the identity only for a sum of atom centered contributions:

T̂ = 1̂ +
∑
R⃗

T̂R⃗ (4.4)

where T̂R⃗ acts on a specific spherical region ΩR, so that the transformation inside
these acts on the basis elements within ΩR as:

|ϕi⟩ = (1̂ + T̂R⃗) |ϕ̃i⟩ (4.5)

and thus the single particles wavefunctions become:

|ψ⟩ =
∑
i

ci |ϕi⟩ =
∑
i

ci(1 + T̂R⃗,i) |ϕ̃i⟩ = T̂
∑
i

ci |ϕ̃i⟩ = T̂ |ψ̃i⟩

where the dependence on i of T̂R⃗,i specifies which sphere is considered for each ϕi in

expression 4.5 and allows to obtain expression 4.4 for T̂ .
Coefficients ci are the same for both |ψ⟩ and |ψ̃⟩ and can be obtained using the orthogonal
projection functions ⟨pi| and ⟨p̃i|, for which completeness and orthogonality relations
hold:

ci = ⟨pi|ψ⟩ = ⟨p̃i|ψ̃⟩

With these functions the wavefunctions inside the spheres become:

|ψ̃⟩ =
∑
i

|ϕ̃i⟩ ⟨p̃i|ψ̃⟩

35



Chapter 4 – VASP and the implementation of the problem

For the basis wavefunctions inside the spheres hold: ⟨p̃i|ϕ̃j⟩ = δi,j, while the projec-
tion of the part of the wavefunction |ψ⟩ outside the spheres is null.
The transformation operator T̂ can be written as:

T̂ = 1̂ +
∑
i

(|ϕi⟩ − |ϕ̃i⟩) ⟨p̃i|

indeed, applying it to a ket |ψ̃⟩:

T̂ |ψ̃⟩ =

(
1̂ +

∑
i

(|ϕi⟩ − |ϕ̃i⟩) ⟨p̃i|

)(∑
j

cj |ϕ̃j⟩

)
=

=
∑
j

cj |ϕ̃j⟩+
∑
i,j

|ϕi⟩ cj ⟨p̃i|ϕ̃j⟩ −
∑
i,j

|ϕ̃i⟩ cj ⟨p̃i|ϕ̃j⟩ =
∑
j

cj |ϕj⟩ = |ψ⟩

since ⟨p̃i|ϕ̃j⟩ = δi,j. Finally the wavefunctions |ψ⟩ can be written as:

|ψ⟩ = T̂ |ψ̃⟩ = |ψ̃⟩+
∑
i

(|ϕi⟩ − |ϕ̃i⟩) ⟨p̃i|ψ̃⟩ (4.6)

where it is shown that the real wavefunction is made by a first term that considers
the pseudo-wavefunction all over the space, a second term which adds the real wavefunc-
tions for the electrons close to the nuclei and a third term that removes the spherical
part close to the nuclei of the pseudo-wavefunctions in order to avoid double counting.
These pseudo-wavefunctions have no physical meaning inside the effective core radius.
VASP uses pseudopotentials of type PAW and the exchange and correlation potential is
obtained with a particular type of GGA called Perdew-Burke-Ernzerhof (PBE).

4.3 VASP input and output files

In order to perform the self consistent calculations VASP needs four input files:

• POSCAR: Defines the structure of the crystal. First are specified the basis vectors
of the unit cell of the crystal in Angstrom units, then all the elements in the unit
cell with their positions inside the cell. These positions can both be expressed in
direct coordinates (as fractions of the basis vectors) or in Cartesian coordinates.
The POSCAR file used for the calculations of CsV3Sb5 is shown in Fig. 4.2a;

• KPOINTS: Specifies the k-points grid used to perform calculations of quantities
such as the one in eq. 3.14. The one used in this thesis was a grid 12x12x12;

• POTCAR: Includes the pseudopotentials of the atomic species specified in the
POSCAR file. These pseudopotentials are known for the single atoms and need
to be concatenated in the same order in which the elements are defined in the
POSCAR file;

• INCAR: Includes the necessary instructions for performing the calculations. The
commands used, with their explanations are shown in Fig. 4.2b.
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(a) POSCAR file used (b) INCAR file used

Figure 4.2: In the INCAR file ENCUT specifies the cutoff energy from expression 4.2 in
eV, ISMEAR=0 sets a Gaussian “noise” with standard deviation indicated by SIGMA
which allows to make the occupation of the Kohn-Sham states continuous inside the
first BZ, EDIFF specifies the highest difference in the total energies of two consecutive
iterations, in eV, in order to consider convergence reached.

The self-consistent calculations will produce different output files. The most impor-
tant are: the OUTCAR file, which includes every iteration of the self-consistent cycle,
including total energy, Fermi energy and energy eigenvalues, and the CHGCAR file,
which stores the charge density and the PAW one-center occupancies.

For structural relaxation calculations the input files are basically the same, but some
more commands needs to be included in the INCAR file:

• NSW: Specifies the highest number of ionic steps for relaxation, which was chosen
to be set to 100;

• EDIFFG: specifies the convergence criteria for the relaxation procedure and can
be greater than zero, for a convergence criteria on the total energy (eV) or lower
than zero, for a convergence criteria on the total force (eV/Å). This was set to
−10−3eV/Å.

• IBRION=2: specifies the algorithm used for the relaxation procedure, in this case
conjugate gradient algorithm;

• ISIF=3: specifies that not only the atomic positions need to be relaxed, but also
the volume of the unit cell, implying that the relaxation procedure will also modify
the basis vectors.

After a relaxation procedure the new coordinates are shown in a file named CON-
TCAR and the OUTCAR file will also include the total forces on the atoms at each
iteration. In some cases the relaxation procedure is not able to reach convergence after
the first calculation, so a new calculation need to be performed with the obtained CON-
TCAR file as the new POSCAR.

For band structures calculations one more input file is needed, which is the CHGCAR
file produced with the self consistent calculation. In order to specify that the charge
density must be read from this file and not calculated, the INCAR file must include the
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command ICHARG=11. In addition to this also the number of energy bands that are
required to be calculated can be specified with the command NBANDS, which was set
to 58 for the case studied. Also the KPOINTS file needs to be modified and needs to
specify the path followed in the BZ to perform the calculations and the number of points
for each band (Fig. 4.3). After this the bands points to plot were obtained with the
software vaspkit.1.3.5 [17].

Figure 4.3: KPOINTS file used for the calculations of energy bands (left). 128 is the
number of points for band and the positions of the k-points indicated in the KPOINTS
file as fractions of the basis vectors are shown inside the BZ on the right.

4.4 Doping implementation

4.4.1 Linear interpolation of equilibrium positions

Doping a material means introducing impurities of other elements in some percentages.
In particular, in the cases studied, the Sb atoms were substituted with Sn atoms, which
have one less valence electron (hole doping) and Te atoms, which have one more valence
electron (electron doping).
The 5 Sb atoms in CsV3Sb5 are symmetrically distinct, indeed one can distinguish the
Sb atom within the kagome plane from the 4 above and below the kagome plane. This
two different Wyckoff positions of the Sb atoms are not equally replaced by the doping
atoms as shown in the work of Yuzuki M. Oey et al. [18]. In this thesis the dopants
were treated as if they replaced only the 4 Sb atoms above and below the kagome plane,
since these four atoms are all associated to the same Wyckoff position, which means
that their substitution has a more significant effect with respect to what one would
observe substituting only the Sb atom within the kagome plane (the doping analysis
could be continued even considering uniform doping which influences also the other
Wyckoff Position).
When changing the chemical species inside a crystal also the forces acting on each nuclear
site changes, since the number of electrons is changing. In order to obtain a more
accurate POSCAR, a linear interpolation of equilibrium positions was performed . This
means that, starting from the relaxed unit cell of CsV3Sb5, where the positions of atoms
can be labeled by r⃗i, the unit cells of the crystals with a doping percentage of 100%
(CsV3SbSn4 and CsV3SbTe4) were considered and structural relaxation was performed
on them, obtaining new position r⃗f (Fig. 4.4).
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Figure 4.4: Changes in the unit cell of CsV3Sb5 after hole doping with Sn atoms (repre-
sented by silver spheres) and electron doping with Te (represented by gold spheres). α is
the doping percentage, and for CsV3SbSn4 and CsV3SbTe4 corresponds to 100%.

The new equilibrium positions obtained with this procedure are shown in Fig 4.5.

(a) CsV3SbSn4 (b) CsV3SbTe4

Figure 4.5: Equilibrium positions of the kagome unit cell with 100% doping of Sn and
Te.

After this the positions in the unit cell with doping percentage indicated by α (in the
cases studied: α = 1%, 2%, 5%, 10% for both Sn and Te) can be approximated by the
linear relation:

r⃗α = (r⃗f − r⃗i)α + r⃗i

where the positions must be in Cartesian coordinates.
In this procedure also the volume of the unit cell was allowed to be modified (command
ISIF=3 in the INCAR file).

4.4.2 Virtual Crystal Approximation

The two most used methods in order to reproduce impurities in materials are the super-
cell method and the Virtual Crystal Approximation (VCA).
The supercell method consists in reproducing the impurity studying not the single unit
cell of the material, but a bigger cell composed by more unit cells. Substitutions are
then performed in just some single cells of this agglomeration of cells, in order to mimic
the distributions of the impurities. The supercell is then repeated periodically in space,
so that the impurities become a periodical property of the crystal. However this method
can be computationally demanding and, in addition to this, increasing the size of the
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unit cell considered in the calculations reduces the size of the BZ, which means that the
bands obtained will be folded.

VCA was chosen as the method to introduce doping in this thesis because of its
effectiveness [19][20] and its reasonable computational demand. This method consists in
studying a crystal with the same periodicity of the one without impurities, but composed
of fictitious “virtual” atoms that interpolate between the behaviour of the original atoms
and the impurity atoms.
The application of VCA is related to the use of pseudopotentials. Indeed, for local
pseudopotentials, considering a crystal made of two elements A and B, with an atom
C substituted to atom B with an impurity percentage x, the VCA pseudopotential is
obtained averaging the potentials of the AB and AC compounds:

VV CA(r⃗) = (1− x)VAB(r⃗) + xVAC(r⃗)

In practice this is usually done in Fourier space by averaging VAB(G⃗) and VAC(G⃗).
The total energy of the system is given by eq. 3.5, where Vext is given, in terms of the
pseudopotentials V I

ps, as:

Vext(r⃗) =
∑
I

V I
ps(r⃗ − R⃗I)

For the pseudopotential of the element substituted by the impurity the VCA pseu-
dopotential is obtained as:

V I
ps(r⃗) = (1− x)V B

ps (r⃗) + xV C
ps (r⃗)

while, for the element unaffected by the impurities the pseudopotential remains:

V I
ps(r⃗) = V A

ps(r⃗)

With these considerations Vext for VCA becomes:

Vext(r⃗) =
∑
I

∑
α

wI
αV

α
ps(r⃗ − R⃗i,α)

where wI
α are the weights which specifies the statistical composition of site I and, in

the previous example, would be 1 for specie A, (1− x) for specie B and x for specie C.
One can thus think of the new crystal as composed by the normal atoms that are not
substituted by the impurities and some “ghost” atoms which are the impurities elements
and the original ones, which share the same lattice positions, with weights x and (1−x).
For CsV3Sb5 the doped unit cell exposed in the previous section would thus include 1
Cs atom, 3 V atoms, 5 Sb atoms (1 “standard” and 4 “ghosts”) and 4 doping “ghost”
atoms (Sn or Te), which would share the same positions of the 4 Sb atoms above and
below the kagome plane with weights x and (1 − x) where x is the doping percentage.
The changes in the POSCAR file in order to introduce this behaviour are shown in Fig.
4.6 for 1% doping of Sn, while in order to practically introduce this behaviour with a
POTCAR file one needs to include the pseudopotentials of each “standard” atom and
of each “ghost” atom (this means that, for the case studied, the pseudopotential of Sb
needed to be included twice, once for the Sb atoms in the kagome plane and a second
time for the other four Sb atoms).
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With this method also the valence of the sites with impurities changes and becomes, for
site I:

Z̄I =
∑
α

wI
αZα

So the implementation of VCA requires to substitute this valence and remove the
infinities on site interaction terms due to the Coulomb repulsion between two “ghost”
atoms which share the same site.

Figure 4.6: Changes introduced in the POSCAR file for the 1% doping percentage of
Sn in order to use VCA, with positions obtained with the procedure explained in section
4.4.1.

This method allowed to study different doping levels without further changes to the
POSCAR and the POTCAR files, but only specifying the different doping percentages
wI in the INCAR file with the command VCA (Fig. 4.7).

Figure 4.7: Command used in the INCAR file in order to introduce the 1% level of doping.
The five numbers represent the weights of the different atomic species and are, in order
Cs, V and the Sb atom in the kagome plane, which are unchanged by VCA, Sb and the
Sn (or Te) atoms, which are the “ghost” atoms with weights different from 1.

It is important to notice that the order in which the elements are considered in the
POSCAR, POTCAR and INCAR (for the VCA command) files is important and needs
to be same in all of them, as it can be seen comparing Fig. 4.6 and Fig. 4.7.
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Results

5.1 Results for CsV3Sb5

5.1.1 Energy bands

Fig. 5.1 shows the bands obtained with VASP for CsV3Sb5. These bands results com-
patible with those reported in Fig. 1.11 obtained by [10]. The important features that
can be observed are the VHs at the M point and the Dirac crossings at the K and H
points, as well as the Dirac cones between the K and Γ points and between the H and
A points and the electron pocket at the Γ point. The DFT calculations performed were
thus able to reproduce the properties obtained by other studies [9] [10], summarized in
Chapter 1.

Figure 5.1: DFT result for the energy bands of CsV3Sb5 obtained with VASP. The red
horizontal line marks the Fermi level, which was shifted in order to coincide with the
0.0eV of the vertical axis. On the horizontal axis the high symmetry points of the BZ are
marked and are the same shown in Fig. 4.3.
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Further analysis can be done considering the contributions of the three elements of
the crystal (Cs, V and Sb) to the energy bands, shown in Fig. 5.2. The behaviour is the
expected one and is compatible with what was shown in Fig. 1.7.

Figure 5.2: Contribution of the different elements of CsV3Sb5 to the energy bands. Red
dots mark the contribution of V, green dots of Sb and blue dots of Cs while grey lines
are the energy bands of CsV3Sb5 shown in Fig. 5.1. The larger are the dots of a specific
element at a certain point the greater is its contribution to that specific part of that band.

The electron pocket at the Γ point is generated by the Sb p− orbitals, the VHs that
appears slightly above the Fermi level is derived from a mixture of the V d−orbitals and
Sb p− orbitals, while the one below the Fermi level is mainly due to the contribution of
V d − orbitals, all features reported also by [9] and [10]. The role of Cs, instead, is, as
one would expect, negligible with respect to the other elements, since its role is mainly
structural, and contributes significantly only to high-energy bands, which do not play a
role in the properties that are considered of interest of CsV3Sb5.

5.1.2 Density of States

Considering now the graph obtained for the Density of States, shown in Fig. 5.3, one
can notice that this has two peaks in proximity of the Fermi level, which correspond to
the expected logarithmic divergence of the Density of States at the two VHs above and
below the Fermi level1 which can be observed in Fig. 5.1.

1The VHs in the density of states behave as peaks and not logarithmic singularities since this
behaviour is expected for exactly bi-dimensional materials, while the crystal studied is actually 3-
dimensional, so that it does not have the logarithmic divergence of the density of states at the saddle
points [2] and behaves as bi-dimensional only as a first approximation.
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Figure 5.3: DFT result for the density of states of CsV3Sb5 obtained with VASP. The
red vertical line marks the Fermi level, which was shifted in order to coincide with the
0.0eV of the horizontal axis.

5.2 Doping results

Fig. 5.4 shows the behaviour of the energy bands under the effect of Sn (green bands)
and Te (blue bands) doping, implemented as explained in section 4.4. As one would
expect the effect of hole-doping (Sn) moves the energy bands upwards with respect to
the original bands of CsV3Sb5, while electron-doping (Te) has the opposite effect.

Figure 5.4: DFT result for the energy bands of CsV3Sb5 with different doping levels
obtained with VASP. The red horizontal line marks the Fermi level, which was shifted in
order to coincide with the 0.0eV of the vertical axis. Different colors mark the different
types of doping, with Sn doping shown by green bands and Te doping by blue bands, while
the bands for CsV3Sb5 without doping are shown in grey for comparison. For both the
types of doping the bands colors get darker increasing the doping percentage.
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Considering the VHs of m-type at the M point slightly above the Fermi level, one
can notice that Te doping moves the VHs towards EF , which is reached for a doping
percentage of 5% and crossed for a doping percentage of 10%. A similar behaviour is
shown by the VHs at the L point, which, under Sn doping, gets closer to EF , crossing
it for doping percentages greater than 5%. The effect of Sn doping on CsV3Sb5 has
already been studied by Yuzuki M. Oey et al. [18] and has been observed to lead to a
suppression of Charge Density Wave state and a modulation of the critical temperature
with a double dome behaviour.

Fig. 5.5 shows highlights on the two doping percentages previously mentioned, in
order to visualize better the displacement of the two VHs considered.

Figure 5.5: Highlights of the effects of the highest doping percentages of Te and Sn. The
red horizontal line marks the Fermi level, which was shifted in order to coincide with the
0.0eV of the vertical axis. Te doping is shown in blue on the left, while Sn doping is
shown in green on the right.

Since in the procedure shown in section 4.4.1 for relaxation also the volume of the
unit cell was allowed to change also the reciprocal lattice vectors will have changed for
the different levels of doping, since they depend on the real lattice vectors. This shift
of the k-points with respect to those of CsV3Sb5 was quantified for the different levels

of doping, with a highest observed displacement of ∼ 0.015Å
−1

for the A point of the
10% doping of Te, while, for the M and L points of the two VHs previously considered

this shift was of ∼ 0.0033Å
−1

and ∼ 0.0098Å
−1

respectively (always referred to the 10%
doping of Te, which was associated to the greatest shifts for all the k-points). These
amounts are negligible to be represented in the graphs, since they do not affect much
the positions of the VHs considered on the horizontal axis. Because of this the k-points
labeled in the graphs are always referred to the k-points of CsV3Sb5 without doping.

In order to verify that these effects are actually related to doping and not to the
structural modulation explained in section 4.4.1 (since changes in the unit cell and in
the positions of the atoms also have a role in the modulation of the energy bands)
a comparison graph with the bands of CsV3Sb5 without doping, but with the atomic
positions and the unit cells of the different doping levels was realised. This allowed to
consider the displacement of the energy bands due only to the structural modulation and
not to the doping and is shown in Fig. 5.6.
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Figure 5.6: DFT result for the energy bands of CsV3Sb5 without doping but with the
different dimensions of the unit cell and the different positions of the atoms obtained
in section 4.4.1 for the different doping levels obtained with VASP. The red horizontal
line marks the Fermi level, which was shifted in order to coincide with the 0.0eV of the
vertical axis. Different colors mark which doping percentage is represented by the different
positions used and the colors used are the same used in Fig. 5.4, with Sn doping positions
shown by green bands and Te doping positions by blue bands, while the bands for CsV3Sb5
with the original positions are shown in grey for comparison.

Fig. 5.6 shows that the displacement due only to the structural modulation is much
less intense than the one observed before and is not enough for the bands to reach EF

for both the VHs previously considered, proving that the effect is mainly due to doping.

Moving the VHs toward the Fermi level might have an effect on the interplay between
the Charge Density Wave state and the superconducting state in CsV3Sb5, but, since
DFT only allows to study the modulation of the energy bands, but not the effect that
these modulations have on the many-body properties of materials, further studies need
to be carried out, with different theoretical or experimental methods.
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Conclusions

The work carried out in this thesis effectively succeeded in reproducing results ob-
tained by other studies which have already encountered experimental evidence [9] [10] for
kagome metal CsV3Sb5. In particular the obtained band structure correctly shows the
expected VHs and other properties such as the Dirac cones and crossings. Also analyz-
ing the different contributions of the different elements of the material and their orbitals
yielded results already obtained in the previously mentioned studies. These results show
that VASP and Density Functional Theory are effective tools for studying this kind of
materials with first principle calculations, allowing to make predictions for some of their
properties.
As far as doping is concerned, the results obtained show that electron doping, for doping
percentages above 5%, succeeds in shifting below the Fermi level the VHs at the M point
of the band structure slightly above the Fermi level, while hole doping, always for doping
percentages greater that 5%, succeeds in shifting above the Fermi level the VHs at the
L point. These effects were also proved to be mainly due to the actual change in the
number of the electrons related to doping rather than to the modulation of the atomic
positions due to the substitution of the atomic species, whose effect was proved to be
negligible for the interesting points. These results take part in an open field of study and
might have a role in the interplay between charge density wave and superconductivity in
this material. The effect that these shifts of the energy bands will have on the many-body
properties of the material requires more specific studies, with theoretical tools that can
use beyond DFT methods or experimental approaches. In addition to this, experimental
evidence or confutation of these results could also help understanding the effectiveness
of VCA for this kind of studies and if it is actually a reliable tool for the implementation
of doping effects.
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