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Abstract

This thesis project aims to calculate important color factors of processes medi-
ated by the strong interaction, which are visually represented by Feynman dia-
grams. These factors are relevant in the context of probability calculation of given
processes. To achieve this goal, it is essential to understand the properties of
the strong interaction and to develop the appropriate tools to describe it. This
includes the mathematical framework of quantum field theory, specifically non-
abelian gauge theories, and the algebra of the color group SU(3). Color Feynman
rules for quantum chromodynamics are derived and then applied to calculate color
factors of different processes, ultimately providing a qualitative argument for the
color-singlet nature of quarks bound states.

Questo progetto di tesi ha come obiettivo il calcolo di importanti fattori di colore
relativi a processi mediati dall’interazione forte, visualmente rappresentati da di-
agrammi di Feynman. Per raggiungere questo obiettivo, è necessario comprendere
le proprietà di questa interazione fondamentale e sviluppare i metodi adeguati
per descriverla. Questi includono la struttura matematica delle teorie di campo
quantistiche, in particolare le teorie di gauge non abeliane, e l’algebra del gruppo
di colore SU(3). Le regole di colore di Feynman per la cromodinamica quantis-
tica vengono derivate e successivamente utilizzate per calcolare fattori di colore di
altri processi, fornendo supporto qualitativo alla spiegazione del fenomeno della
neutralità di colore degli stati legati di quark.
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Chapter 1

Introduction

Physics is the natural science that seeks to explain natural phenomena. Through-
out history, humanity’s understanding of the universe has continuously deepened
and become more sophisticated. Despite the significant progress that has been
made, it is astonishing that a human being can conceive of scenarios such as an
object falling into a black hole or a particle colliding with a nucleus, and, through
the application of mathematical and physical laws, not only describe that phe-
nomenon but also gain a deeper understanding of it and possibly obtain experi-
mental evidences.

One of the main areas of science that has been proliferating in the past century
is the study of quantum mechanics, particularly its modified version to include
special relativity, known as Quantum Field Theory (QFT). QFT is a powerful
mathematical framework that describes three out of the four fundamental interac-
tions: the electromagnetic force, the weak force, and the strong force. It notably
lacks a description of the gravitational force, which is not described by QFTs at
higher energies. The three QFTs that describe these interactions form the larger
framework of the Standard Model (SM), which accounts for almost all phenomena
occurring at the quantum level or at high energy scales.

Although these three interactions are all described by QFTs, they exhibit differ-
ent characteristics. For example, depending on the energy scale of a given process,
one interaction may be more dominant than the others. Specifically, the strong
interaction dominates at the nuclear and subnuclear levels, or generally speaking,
at high energy scales accessible to current experiments. This implies that a deep
understanding of such interaction is necessary to describe phenomena at these
scales, where other interactions also play a role.

One of the most intriguing aspects of the strong force is the concept of color,
which is analogous to the electric charge in the context of the electromagnetic
interaction. Particles that have color can interact via the strong force. However,
unlike the electric charge, color is not a simple scalar value, it is represented
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by the SU(3) group, which is the symmetry group at the hearth of Quantum
Chromodynamics (QCD), the QFT describing the strong force. The introduction
of color will be further explained later in the thesis and linked to the physical
properties of the strong force.

As all theoretical models, QFT is required to accurately describe physical phe-
nomena. This is achieved by developing theoretical ideas that can be experimen-
tally tested. Usually, in experiments involving particles collisions or accelerations,
observables are linked to the probability of a given process. Depending on the
interaction responsible for the process, different factors contribute to this proba-
bility. Specifically, if one considers processes mediated by the strong interaction,
then color is a fundamental factor. It is possible to calculate the color structure of
a certain process represented by a Feynman diagram, that is a critical component
in determining the process’s probability.

This thesis addresses the reasons that led to the development of QFTs and
explains the methods used to construct them, providing examples along the way.
The primary objective is to calculate important color factors for processes medi-
ated by the strong interaction and demonstrate how they can be used to explain
certain physical phenomena related to the strong force.

The structure of the thesis is as follows: the second chapter provides an
overview of classical field theory, explaining the concept of field and the Lagrangian
formalism before taking into account quantum mechanics and thus culminate into
quantum field theory. The third chapter discusses the importance of gauge trans-
formations in electromagnetism and quantum mechanics, these are then combined
with local U(1) transformations to build a scalar QFT for the electromagnetic
interaction. The fourth chapter focuses on Lie groups and SU(N) algebra, devel-
oping the mathematical tools necessary for later sections. In the fifth chapter, an
outline of the strong force is presented, including the significance of color, before
deriving the mathematical framework needed to explain this interaction through
non-abelian gauge theories. Finally, in the sixth chapter, the algebra developed in
chapter 4 is used to calculate color factors of several QCD processes represented
by Feynman diagrams.
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Chapter 2

Classical and quantum field
theory

In this chapter, I will be giving an overview of classical field theory and the La-
grangian formalism, before diving into QFT, as it is necessary to recall basic
concepts and ideas that will become helpful later on. What follows is inspired by
[1], [2], [3] and [4].

2.1 Classical field theory

A field ϕ is a quantity that is defined in every point in space and time, hence
ϕ(x⃗, t). The nature of a field can mainly be of four different types depending
on the quantity or the spin (s) of the particle it describes, in the case of QFT.
There are real and complex fields that can be scalar fields (s = 0), spinor fields
(fermions fields for instance, s = 1

2
), vector fields (s = 1), or tensor fields. The

difference between standard mechanics and classical field theory is that the latter
is just a mechanical system with a continuous set of degrees of freedom. That is
because instead of having a finite number of generalized coordinated qa(t) indexed
by a label a, in a field theory, different points in space and time are considered
individuals degrees of freedom, hence they are labels. The dynamics of a field is
governed by a Lagrangian or an Hamiltonian that are written as integrals over all
space of Hamiltonian and Lagrangian densities:

H =

∫
d3xH L =

∫
d3x L. (2.1)

However, the weird shaped letters are usually referred to as Hamiltonian and
Lagrangian, losing the word ”density”. The Hamiltonian of a system is defined
as a functional of fields and their first derivative, H[ϕ, π], while the Lagrangian is
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defined as the Legendre transform of the Hamiltonian. Formally:

L[ϕ, ϕ̇] = π[ϕ, ϕ̇]ϕ̇−H[ϕ, π[ϕ, ϕ̇]], (2.2)

where ϕ̇ = ∂ϕ
∂t

and π[ϕ, ϕ̇] is the conjugate momentum of the field, defined by one of

Hamilton’s equations ∂H[ϕ,π]
∂π

= ϕ̇. The inverse transform gives us the Hamiltonian
density:

H[ϕ, π] = πϕ̇[ϕ, π]− L[ϕ, ϕ̇[ϕ, π]]. (2.3)

For example, let us consider the following Lagrangian:

L =
1

2
(∂µϕ)(∂µϕ)− V [ϕ] = 1

2
(ϕ̇)2 − 1

2
(∇⃗ϕ)2 − V [ϕ], (2.4)

where V [ϕ] is the potential (density). Then one can notice that π = ϕ̇ and there-
fore:

H =
1

2
ϕ̇2 +

1

2
(∇⃗ϕ)2 + V [ϕ]. (2.5)

This shows that the Hamiltonian (density) is the sum of kinetic and potential
energy, while the Lagrangian (density) is the difference of the two. Therefore,
the Hamiltonian corresponds to a quantity that is conserved, the total energy,
while the Lagrangian does not. However, when dealing with field theories and
especially quantum field theories, Lorentz invariance is fundamental to achieve a
theory that accurately describes natural phenomena, since it must be compatible
with special relativity. The total energy of a system is the temporal component
of a 4-vector, namely the 4-momentum vector P µ = (E

c
, p⃗), and the Hamiltonian

density often coincides with the 00 component of the so called energy-momentum
tensor T µν , whose four components are the conserved currents arising from trans-
lational invariance of a Lagrangian. Therefore they are not manifestly Lorentz
invariant. This is the reason why Lagrangians are used in field theories instead of
Hamiltonians. Furthermore, Lagrangians depend only on the fields and their first
derivatives, because higher order derivative terms have led to absurd theories that
do not describe the physical world we live in. In addition, an explicit dependence
on the coordinates xµ will result in a theory that is not translational invariant,
that is absurd since space is homogeneous. Moreover, in field theory one usually
refers to kinetic energy as kinetic terms and potential energy as interactions. Ki-
netic terms are bilinear, meaning they contain 2 fields, such as the first term of
eq. (2.4), while interaction terms have three or more fields, such as λϕ3, and these
can be grouped into a single Lagrangian describing the interactions between the
fields, Lint.
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2.1.1 Euler-Lagrange equations

The dynamic of a Lagrangian system is determined by using the principle of least
action. The action of a field is defined as the integral over time of the Lagrangian:

S =

∫
dt L =

∫
Ω

d4x L(ϕ, ∂µϕ). (2.6)

The principle of least action states that the true configuration of the field is the
one that makes the action an extreme, that is the action is stationary with respect
to a small arbitrary variation of the fields δϕ, meaning δS

δϕ
= 0 . If we consider

a small arbitrary variation of the fields, ϕ −→ ϕ + δϕ, where this small variation
vanishes at the boundary of the hyper-volume Ω, ∂Ω, which means that the fields
vanish at spacial and temporal infinity, then the variation of the action is:

δS =

∫
Ω

d4x

[
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ(∂µϕ)

]
= (2.7)

=

∫
Ω

d4x

{[
∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)

]
δϕ+ ∂µ

[
∂L

∂(∂µϕ)
δϕ

]}
, (2.8)

where we have used the fact that δ(∂µϕ) = ∂µ(ϕ+ δϕ)− ∂µϕ = ∂µδϕ thus allowing
us to write the derivative of a product and then perform integration by parts.
Now, the last term is a total derivative, and therefore, by using Gauss’s theorem
in 4 dimensions we can write it as∫

∂Ω

dσµ

[
∂L

∂(∂µϕ)
δϕ

]
,

where dσµ is the infinitesimal element of the oriented hyper-surface enclosing the
volume Ω. However, the variation of the fields vanish on the boundary of the
volume Ω. Therefore, this last term can be discarded and we are left with the
following:

δS =

∫
Ω

d4x

[
∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)

]
δϕ. (2.9)

Now applying the least action principle suggests that the integral is zero, but since
the variation δϕ is arbitrary it must hold for every possible variation, therefore,
we are left with Euler-Lagrange equations:

∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
= 0. (2.10)

These provide the equations of motion for a field described by a given Lagrangian.
The simplest example can be discussed considering the Lagrangian in eq. (2.4).
By applying Euler-Lagrange equations we have:

∂µ∂
µϕ = 2ϕ = −dV

dϕ
. (2.11)
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If the potential has the form V [ϕ] = 1
2
m2ϕ2, then the equations of motion become:

(2+m2)ϕ = 0, (2.12)

This is the Klein-Gordon equation, that describes the dynamic of a free scalar
field.

An important step in the derivation of Euler-Lagrange equations involves dis-
carding a term containing a total derivative. This is actually a general property of
Lagrangian systems that is worth pointing out. Indeed, the equations of motion
arising from a given Lagrangian are invariant under the addition to the latter of
a total derivative of a field-depending function. Consider a Lagrangian L and the
corresponding action S. Then if:

L −→ L′ = L+ ∂µΛ
µ(ϕ), (2.13)

where Λµ(ϕ) is a field, the action changes as follows:

S −→ S ′ =

∫
Ω

d4x[L+ ∂µΛ
µ(ϕ)] = S +

∫
Ω

d4x ∂µΛ
µ(ϕ). (2.14)

Then by applying Gauss’s theorem in 4 dimensions:

S ′ = S +

∫
∂Ω

dσµΛ
µ(ϕ). (2.15)

Since the variation of the field vanishes on the hyper surface ∂Ω, then:

δ

∫
∂Ω

dσµΛ
µ(ϕ) = 0, (2.16)

and therefore:
δS = 0 =⇒ δS ′ = 0, (2.17)

which implies that the equations of motion obtained from the principle of least
action on S are the same as those coming form S ′.

2.1.2 Noether’s theorem

One of the most important theorems in mechanics and field theory is Noether’s
theorem, which states that for every continuous symmetry of a system of a given
number of fields there exists one or more conserved currents or integrals of motion.
A conserved current Jµ(x) satisfies the following continuity equation:

∂µJ
µ = 0 −→ 1

c

∂J0

∂t
+ ∇⃗ · J⃗ = 0. (2.18)
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However, this also implies that a certain quantity is conserved. Indeed, if we
consider the quantity Q defined as:

Q =

∫
d3x J0, (2.19)

given that eq. (2.18) holds, we have:

∂tQ =

∫
d3x ∂tJ

0 = −
∫
d3x ∇⃗ · J⃗ = 0, (2.20)

where in the last step we have used Gauss’s theorem and assumed that J⃗ vanishes
at spacial infinity, that is reasonable since by assumption there is nothing leaving
the boundary. Therefore, the quantity Q is constant and thus conserved. For
example, this is the total charge if the current comes from a Lagrangian containing
complex fields.

To prove Noether’s theorem it is necessary to work infinitesimally, hence the
reason why the symmetry must be continuous. Noether’s theorem does not work
for discrete symmetries.

Proof. First, let us define what we mean by continuous symmetry. A transforma-
tion of the fields δϕ(x) = X(ϕ) is a symmetry if the Lagrangian changes by a total
derivative:

δL = ∂µF
µ(ϕ), (2.21)

for some function F µ(ϕ). Consider now a small transformation of the fields, then
the Lagrangian transforms as follows:

δL =
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
∂µ(δϕ) =

[
∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)

]
δϕ+ ∂µ

(
∂L

∂(∂µϕ)
δϕ

)
. (2.22)

If the equations of motion are satisfied, that is the fields are on-shell, the term
between square brackets is zero. Therefore, we have:

δL = ∂µ

(
∂L

∂(∂µϕ)
δϕ

)
. (2.23)

However, if the transformation of the fields is a continuous symmetry for the
Lagrangian, eq. (2.21) holds, hence:

∂µ

(
∂L

∂(∂µϕ)
δϕ− F µ(ϕ)

)
= 0 =⇒ ∂µJ

µ = 0, (2.24)

where Jµ is the conserved current, called Noether current.
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This result can be generalized for an arbitrary number of fields:

Jµ =
∑
n

∂L
∂(∂µϕn)

δϕn. (2.25)

For example, consider the following Lagrangian for a complex field ϕ:

L = (∂µϕ)(∂
µϕ∗)−m2ϕϕ∗. (2.26)

The equations of motion can be easily found to be:

(2+m2)ϕ = 0 (2+m2)ϕ∗ = 0. (2.27)

It can be noticed that there is a continuous symmetry since the Lagrangian is
invariant (δL = 0) under the following transformation of the fields:

ϕ −→ ϕeia ϕ∗ −→ ϕ∗e−ia, (2.28)

where a is a real number. This is just a phase redefinition of the fields, precisely
a global U(1) transformation, since a is not a function of space and time. The
infinitesimal variation of the fields is:

δϕ = iaϕ δϕ∗ = −iaϕ∗, (2.29)

Therefore, the conserved current is:

Jµ =
∂L

∂(∂µϕ)
δϕ+

∂L
∂(∂µϕ∗)

δϕ∗ = ia(ϕ∂µϕ∗ − ϕ∗∂µϕ). (2.30)

This satisfies the continuity equation when the fields are on-shell because:

∂µJ
µ = ia(ϕ2ϕ∗ − ϕ∗2ϕ) = −ia(ϕm2ϕ∗ − ϕ∗m2ϕ) = 0, (2.31)

and the corresponding conserved quantity is the total charge Q.

2.2 Quantum field theory

In this section, I shall explain some of the reasons why QFTs have been developed
and how they describe some of the main phenomena. The focus will be on the
fundamental principles of these theories rather than the technical details, which
are beyond the scope of this thesis.

First of all, the concept of field was introduced in classical mechanics to remove
the ”spooky action at a distance” that characterizes Newton’s and Coulomb’s law.
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Their theories were improved by Maxwell and Einstein by introducing the concept
of the electromagnetic and gravitational fields. This also underlies an important
aspects of physical laws, that is locality [2]. The laws of physics are local, meaning
that physical objects are influenced by their immediate surroundings, not by dis-
tant bodies instantaneously. Given that special relativity dictates that the speed
of light in the vacuum is the maximum speed at which information can travel,
this results in a causal structure of space time. Therefore, the principle of locality
ensures the agreement of any physical laws with special relativity. In addition, spe-
cial relativity is by nature incompatible with standard quantum mechanics. This is
due to the fact that the combination of the two implies that particle number is not
conserved. It has been experimentally proven that there exist natural processes
that create and annihilate particles. Therefore, it is reasonable to conclude that
conservation of particle number is not a fundamental principle of physics. How-
ever, standard quantum mechanics does not provide the tools required to deal with
systems whose particle number is not conserved. If one tries to write a relativistic
Schrodinger equation, the consequences are negative probabilities and non-sense
energy levels. Hence, a new mathematical framework is needed: that is QFT.

Another important argument in support of the need for a QFT is that all
particles of the same type are the same. A proton produced in the core of a
star and a proton produced at the Large Hadron Collider (LHC) in Geneva are
the same in terms of mass, charge and spin. This may seem normal but these
two protons have been produced in different ways and yet they have the same
physical properties. QFT provides an explanation to this phenomena and many
others. The basic procedure of QFT is the quantization of a classical field, as the
name suggests. In ordinary quantum mechanics, classical degrees of freedom are
promoted to operator’s acting on an infinite dimensional Hilbert space. In QFT
the same is true, but since we have fields, there are an infinite numbers of degrees
of freedom.

To summarize how a QFT works, consider the Klein-Gordon equation (2.12),
then by taking the Fourier transform of the field ϕ(x⃗, t), we have [3]:

ϕ(x⃗, t) =

∫
d3p

(2π)3
eip⃗·x⃗ϕ(p⃗, t). (2.32)

Since the box operator has a temporal and spacial component, substituting this
expression in the Klein-Gordon equation gives us the following:

(∂2t + (p⃗ 2 +m2))ϕ(p⃗, t) = 0. (2.33)

This is the equation of a harmonic oscillator that vibrates at a frequency ωp⃗ =

+
√
p⃗ 2 +m2. Therefore, the free scalar field described by the Klein-Gordon equa-

tion has a general solution consisting of a linear superposition of independent har-
monic oscillators vibrating at different frequency linked to a different value of p⃗.
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To quantize the field it is necessary to quantize this infinite collection of harmonic
oscillators, that is known from standard quantum mechanics. The main idea is
that when the oscillators are all in their non trivial ground state, the field is said
to be in the vacuum configuration and there are no particles. Excitations from
the ground state are interpreted as particles of mass m and momentum p⃗ and it
can also be seen that in this case the particle has no internal angular momentum.
Therefore, the quantization of a free scalar field gives rise to a spin 0 particle.
This can be done for spinor and vector fields, giving particles with spin 1

2
such as

fermions like quarks, and spin 1, such as mediators of interactions like gluons or
protons. Hence, in QFT every particle is associated to a field that permeates the
universe, for example the electronic field corresponds to electrons. Excitations of
these fields result in the particles we observe. This provides an explanation to one
of the problems stated before. All particle of the same type are identical in terms
of mass, spin and charge because they are excitations of the same field, that is the
same across the entire universe.

An important factor when discussing QFTs and how to build them is symme-
try, specifically gauge symmetry. In section 2.1.2, I have outlined how Noether’s
theorem connects conserved currents and quantities to global continuous symme-
tries. However, the symmetry under gauge transformation that was first noticed in
Maxwell’s equations of electromagnetism is a different type of symmetry, meaning
that it is local instead of global. This leads to a very different interpretation of
the symmetry and its consequences. This gauge symmetry will be the subject of
the next chapter.
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Chapter 3

Gauge invariance and local
symmetry

In this chapter, I shall introduce the concept of gauge symmetry in standard
electromagnetism [1], explore its consequences when taking into account quantum
mechanics [5] and how it can be used as a principle to derive a scalar version of
the QFT used to describe the electromagnetic interaction, that is scalar Quantum
Electrodynamics or simply scalar QED [4].

3.1 Gauge invariance in electromagnetism

Maxwell’s equations of electromagnetism are usually written in terms of the electric
and magnetic fields, E⃗(x⃗, t) and B⃗(x⃗, t). In Heaviside-Lorentz units, these are
known to take the following form [6]:

∇⃗ · E⃗(x⃗, t) = ρ(x⃗, t) ∇⃗ × E⃗(x⃗, t) +
1

c

∂B⃗(x⃗, t)

∂t
= 0 (3.1)

∇⃗ · B⃗(x⃗, t) = 0 ∇⃗ × B⃗(x⃗, t)− 1

c

∂E⃗(x⃗, t)

∂t
=

1

c
J⃗(x⃗, t), (3.2)

where J⃗(x⃗, t) and ρ(x⃗, t) are the current density and charge density, respectively.
However, by looking at the homogeneous equations one can see that the magnetic
field can be written as the curl of another vector field, since the divergence of a
curl is always zero. Hence the equation still holds. Precisely:

B⃗(x⃗, t) = ∇⃗ × A⃗(x⃗, t), (3.3)

where A⃗ is called vector potential. Substituting this new expression of the magnetic
field into the other homogeneous equation, we find that (the dependence of space
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and time is implied):

∇⃗ ×
(
E⃗ +

1

c

∂A⃗

∂t

)
= 0. (3.4)

Therefore, the field between brackets is irrotational and it can be written as the
gradient of a scalar field, since the curl of a gradient is always zero. Hence:

E⃗ +
1

c

∂A⃗

∂t
= −∇⃗ϕ =⇒ E⃗ = −∇⃗ϕ− 1

c

∂A⃗

∂t
. (3.5)

Thus, the electric and magnetic fields can be written in terms of two other fields
A⃗(x⃗, t) and ϕ(x⃗, t), that are called vector and scalar potential, respectively. In this
way, one can rewrite Maxwell’s equations using these potentials, that by defini-
tion automatically satisfy the homogeneous equations. The in-homogeneous ones
become:

∇⃗2ϕ+
1

c

∂(∇⃗ · A⃗)
∂t

= −ρ 1

c2
∂2A⃗

∂t2
− ∇⃗2A⃗+ ∇⃗

[
∇⃗ · A⃗+

1

c

∂ϕ

∂t

]
=

1

c
J⃗ . (3.6)

It can be noticed that the expressions of the electric and magnetic fields in terms
of the potentials are invariant under a transformation of these last. Specifically, if
the scalar and vector potential transform as follows:

A⃗ −→ A⃗′ = A⃗+ ∇⃗χ ϕ −→ ϕ′ = ϕ− 1

c

∂χ

∂t
, (3.7)

where χ = χ(x⃗, t) is an arbitrary scalar function of space and time, the transformed
electric and magnetic fields are invariant. This is called a gauge transformation of
the potentials and Maxwell’s equations are invariant under such transformation.
Using the covariant formalism of special relativity, which is the natural language
of QFT, all of this can be written by considering the electromagnetic field strength
F µν , that is a (2, 0)-rank tensor that replaces the electric and magnetic fields in
Maxwell’s equations. These can be written as follows:

∂µF
µν =

1

c
Jν ∂µ(F

µν)∗ = 0, (3.8)

where (F µν)∗ = 1
2
ϵµναβFαβ is the dual tensor and Jν = (cρ, J⃗) is the 4-current.

The homogeneous equations have a solution provided by Poincare’s lemma, that
is with F µν = ∂µAν − ∂νAµ, where Aµ is a 4-vector and it can be proven that
its temporal component is the scalar potential ϕ, while its spacial components are
the three components of the vector potential A⃗. Hence, this 4-vector is called the
four-potential, Aµ = (ϕ, A⃗). Since the gauge transformation acts on the potentials,
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in this new formalism it becomes a single transformation that acts on the four-
potential, that is:

Aµ −→ A′µ = Aµ − ∂µχ, (3.9)

where χ = χ(x⃗, t) is the arbitrary function of space and time. Since the field
strength F µν contains the electric and magnetic fields, that are invariant under a
gauge transformation, it is reasonable to expect that F µν is also invariant under
such transformation. Indeed:

F ′µν = ∂µA′ν − ∂νA′µ =

= ∂µ(Aν − ∂νχ)− ∂ν(Aµ − ∂µχ) =

= ∂µAν − ∂µ∂νχ− ∂νAµ + ∂ν∂µχ = ∂µAν − ∂νAµ = F µν ,

where it was used the fact that the 4-gradients commute, so ∂µ∂ν = ∂ν∂µ. This
gauge invariance may seem like a simple mathematical transformation, but it has
several physical implications that reflect the massless nature of the photon and
thus properties of electromagnetic waves. However, delving into this is beyond the
scope of the thesis. Instead, I will focus on how this gauge invariance impacts the
quantum world.

3.2 Gauge invariance in quantum mechanics

The invariance under gauge transformation of Maxwell’s equations has a direct
implication when considering the Schrodinger equation for a charged particle in
an electromagnetic field. The classic Hamiltonian for such particle is given by:

H =
1

2m

[
p⃗− q

c
A⃗
]2

+ qϕ, (3.10)

where A⃗ is the vector potential, ϕ is the scalar potential and q is the charge of the
particle. In quantum mechanics, this becomes the Hamiltonian operator acting on
the wave function according to the Schrodinger equation, with the substitution of
p⃗ with the corresponding momentum operator −iℏ∇⃗. The Schrodinger equation
thus becomes the following:

1

2m

[
−iℏ∇⃗ − q

c
A⃗
]2

Ψ+ qϕΨ = iℏ
∂Ψ

∂t
. (3.11)

This equation can be written in an easier way recalling the structure of the
Schrodinger equation for a free particle, introducing two operators that basically
generalize the space and time derivatives (using c = 1):

D̂ = −ℏ∇⃗+ iqA⃗ D̂0 = ℏ
∂

∂t
+ iqϕ.
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The equation then becomes:

1

2m
(iD̂)2Ψ = iD̂0Ψ. (3.12)

It can be observed that under a gauge transformation of the potentials eq. (3.11)
is not invariant. This is theoretical problem because from electromagnetism it is
known that Maxwell’s equations are invariant under such transformation and it has
important consequences regarding the physical degrees of freedom of the theory.
Hence, it is reasonable to expect that it should also hold at the quantum level and,
therefore, that the quantum theory of a charged particle in an electromagnetic field
should have this invariance or symmetry. The only way for the above equation
to be invariant under a gauge transformation of the potentials is that while the
potentials are subject to this transformation, the wave function must transform
in some way to maintain the equation unchanged. It can be shown that the
wave function transformation is a local phase redefinition, precisely a U(1) local
transformation, that is:

Ψ −→ Ψ′ = eiqχ(x⃗,t)Ψ. (3.13)

Given that the function χ is a function of space and time, the derivative op-
erators act on it, thus leading to the invariance of the Schrodinger equation as
requested. The process just shown can also be reversed, meaning we firstly con-
sider the Schrodinger equation for a free particle, and secondly we perform a local
U(1) transformation. By requiring the invariance of the equation, we need to in-
clude two fields that have special transformations: these will be the known gauge
transformation of the vector and scalar potential. Furthermore, the introduction
of these fields will result in a theory that doesn’t describe a free particle, but in-
stead a particle interacting with these fields, which in the case shown above is the
electromagnetic field. This procedure can be generalized to what is called a gauge
principle, and it is a key component of QFT. Since these theories are based on
gauge transformations, they are called gauge theories. The principle can be sum-
marized as follows: first, it is necessary to analyze the theory for a free particle; if
this theory has a global symmetry we can try to promote that symmetry to a local
one, introducing a certain number of gauge fields with special transformations.
This will eventually result in the theory of a particle interacting with such gauge
fields.

In the next paragraph, I shall demonstrate how this can be used to derive the
scalar QED Lagrangian from a local symmetry without using Maxwell’s equations.
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3.3 Scalar QED Lagrangian

The Lagrangian describing the electromagnetic interaction requires a QFT for
charged fermions, since the basic electromagnetic processes involve electrons and
photons. However, electrons are fermions, spin 1

2
particles, and are mathematically

described by spinors, that have a specific algebra which is somewhat complicated.
To avoid dealing with this, I show how a simplified version of QED can be built:
QED with spin 0 particles, known as scalar QED or sQED for short. This theory
actually describes particles that can be observed, such as pions.

Let us consider a complex scalar field ϕ described by the complex Klein-Gordon
Lagrangian in eq. (2.26). I have already obtained the equation of motion for both
degrees of freedom and also noticed how there is a global U(1) symmetry that leads
to the conservation of electric charge. It can immediately be said that since these
fields are their respective complex conjugate, this kind of theory describes particle
anti-particle pairs, with same mass and opposite charge. Since they are charged,
it is reasonable to assume that there will be an electromagnetic interaction among
them. Thus, it is necessary to introduce it somehow. This can be done by applying
the gauge principle outlined in the previous section. The first step is verified, a
U(1) global symmetry is present. Let us try and promote this to a local U(1)
symmetry. This leads to the following transformation of the fields:

ϕ −→ ϕ′ = ϕeigα(x) ϕ∗ −→ ϕ′∗ = ϕ∗e−igα(x), (3.14)

where α(x) = α(x⃗, t) is a function of space and time and g is just a constant for
now. Under this transformation, the mass term in the Lagrangian is invariant,
since there are no derivatives. However, the kinetic terms does change since the
derivatives transform as follows:

∂µϕ −→ ∂µϕ
′ = ∂µ(ϕe

igα(x)) = eigα(x)∂µϕ+ ig(∂µα)e
igα(x)ϕ (3.15)

∂µϕ∗ −→ ∂µϕ′∗ = ∂µ(ϕ∗e−igα(x)) = e−igα(x)∂µϕ∗ − ig(∂µα)e−igα(x)ϕ∗, (3.16)

Therefore, the kinetic term becomes:

(∂µϕ
′)(∂µϕ′∗) = (∂µϕ)(∂

µϕ∗) + ig(ϕ∂µϕ
∗ − ϕ∗∂µϕ)∂

µα + g2∂µα∂
µαϕϕ∗. (3.17)

This was expected since derivatives, by definition, involve the difference between
functions valued at two different points in space, and these transform differently
under a local transformation. It is then obvious that something needs to be mod-
ified in order to have a U(1) local symmetry, specifically in the derivative term.
This motivates the introduction of a new field W (x, y), called a Wilson line, that
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is a scalar bi-local field, meaning it depends on two points of space and time. The
important thing is that under a local transformation it transform as follows:

W (x, y) −→ W (x, y)′ = eiα(x)W (x, y)e−iα(y), (3.18)

so that:

W (x, y)ϕ(y)− ϕ(x) −→ W (x, y)′ϕ′(y)− ϕ′(x) = (3.19)

= eiα(x)W (x, y)e−iα(y)eiα(y)ϕ(y)− eiα(x)ϕ(x) = (3.20)

= eiα(x)[W (x, y)ϕ(y)− ϕ(x)]. (3.21)

In this way, the difference in square brackets is independent of the chosen local
phase convention. Thus, the Wilson line compensates the difference in local trans-
formations of fields at different points in space. In addition, if the coordinate y
is close to x, that is yµ = xµ + δxµ, if we divide by δxµ and then let δxµ −→ 0, it
becomes a derivative:

Dµϕ(x) = lim
δxµ→0

1

δxµ
[W (x, x+ δx)ϕ(x+ δx)− ϕ(x)], (3.22)

and since eq. (3.19) holds, under a local U(1) transformation it transform as
follows:

Dµϕ(x) −→ (Dµϕ(x))′ −→ eiα(x)Dµϕ(x). (3.23)

This property allows us to rewrite the kinetic term in the Lagrangian using this
new derivative operator, called a covariant gauge derivative. The Lagrangian thus
becomes:

L0 = (Dµϕ)(D
µϕ)∗ −m2ϕϕ∗, (3.24)

which under a U(1) local transformation turns into:

L′
0 = (Dµϕ)

′(Dµϕ)′∗ −m2ϕ′ϕ′∗ = (3.25)

= eiα(x)(Dµϕ)e
−iα(x)(Dµϕ)∗ −m2ϕϕ∗ = (3.26)

= (Dµϕ)(D
µϕ)∗ −m2ϕϕ∗ = L0, (3.27)

and it is therefore invariant. It is also required that W (x, x) = 1 since there is
nothing to compensate in this case. Since a U(1) transformation is basically a
multiplication by an imaginary exponential, the Wilson line can be written as:

W (x, y) = eiϕ(x,y), (3.28)

where ϕ(x, x) = 0 and such that ∂ϕ(x,y)
∂yµ

∣∣∣
x=y

= gAµ, where Aµ is a vector field and

g is the coupling constant for such vector field. If δxµ is small enough, the Wilson
line can be expanded as:

W (x, x+ δx) = 1− igδxµAµ(x) +O(δx2) (3.29)
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Then, it follows from eq. (3.18) that under a local U(1) transformation the field
transforms as:

Aµ(x) −→ A′
µ(x) = Aµ(x) +

1

g
∂µα(x), (3.30)

which leads to the following expression of the covariant derivative through its
definition (3.22):

Dµϕ(x) = lim
δxµ→0

1

δxµ
[(1− igδxµAµ(x))ϕ(x+ δx)− ϕ(x)] (3.31)

Dµϕ(x) = lim
δxµ→0

1

δxµ
[ϕ(x+ δx)− ϕ(x)]− igAµ(x)ϕ(x) (3.32)

=⇒ Dµϕ = ∂µϕ− igAµϕ. (3.33)

In this way, the vector field Aµ is introduced as a connection, allowing us to
compare fields at different points in space, despite their different phase. This
is called a gauge field. It is worth noticing that since the action of the covariant
derivative on the field has a nice transformation, so will haveDµDνϕ(x). Therefore,
we can compute the action of the commutator of Dµ and Dν on the field as follows:

[Dµ, Dν ]ϕ = [∂µ − igAµ, ∂ν − igAν ]ϕ = (3.34)

= [∂µ, ∂ν ]ϕ− g2[Aµ, Aν ]ϕ− ig([∂µ, Aν ] + [Aµ, ∂ν ])ϕ = (3.35)

= −ig(∂µ(Aνϕ)− Aν∂µϕ+ Aµ∂νϕ− ∂ν(Aµϕ)) = (3.36)

= −ig(∂µAν − ∂νAµ)ϕ = −igFµνϕ, (3.37)

where Fµν = ∂µAν − ∂νAµ is the field strength and it is just a function, not an
operator. Therefore, the field strength for QED (g = e) can be defined as :

Fµν =
i

e
[Dµ, Dν ]. (3.38)

This leads to a geometric interpretation: the electromagnetic field strength is
the difference between applying DµDν (which compares the values of the fields
separated in the ν direction and then in the µ direction) and the reverse order.
Equivalently, it represents the result of comparing the fields around an infinitesi-
mal closed loop in the µ− ν plane. Going back to the Lagrangian where we have
substituted the standard derivatives with covariant derivatives, there is now the
new gauge field. Therefore, we need to include a kinetic term describing its dy-
namics, which should also be invariant under local U(1) transformation. Indeed,
we can use the field strength to build such term, since the combination F µνFµν is
invariant. Including this new term in the Lagrangian gives us:

L = (Dµϕ)(D
µϕ)∗ −m2ϕϕ∗ − 1

4
F µνFµν , (3.39)
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where the constant 1
4
is introduced for normalization. This can be written in

another form, recalling the expression of the covariant derivatives:

L = (Dµϕ)(D
µϕ)∗ −m2ϕϕ∗ − 1

4
F µνFµν = (3.40)

= (∂µ − ieAµ)ϕ(∂
µ + ieAµ)ϕ∗ −m2ϕϕ∗ − 1

4
F µνFµν = (3.41)

= (∂µϕ)(∂
µϕ∗)−m2ϕϕ∗ − ieAµ(ϕ∂µϕ

∗ − ϕ∗∂µϕ) + e2AµA
µϕϕ∗ − 1

4
F µνFµν =

(3.42)

= L0 + Lint + LM , (3.43)

where we have divided the Lagrangian in three terms: L0 describes the free scalar
fields, Lint = −AµJµ + e2AµA

µϕϕ∗, with Jµ = ie(ϕ∂µϕ
∗ −ϕ∗∂µϕ) the Noether cur-

rent associated with U(1) global symmetry. This part describes the interactions
of the fields ϕ and ϕ∗ with the gauge field. Lastly, LM is Maxwell’s Lagrangian for
the vector field Aµ, describing the dynamics of this gauge field. By carrying out
the quantization procedure of these fields, it can be seen that the theory describes
a particle and anti-particle pair, coupled to a spin 1 particle, that is the gauge
field. The existence of antiparticles is automatically implied by this coupling.

To summarize, starting from a Lagrangian with a global U(1) symmetry, the
requirement of a U(1) local symmetry led to the introduction of a new vector
field with a particular transformation law, that introduced interactions between
particles and the field. Finally, it worth noticing that, in this case, the symmetry
group was U(1), an abelian group, and for this reason this type of theories are
called abelian gauge theories. However, the general case may involve a non-abelian
symmetry group, and these gauge theories are thus generalized to what are called
non-abelian gauge theories or Yang-Mills theories that are heavily based on groups
properties and algebra, which will be the subject of the next chapter.
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Chapter 4

Lie groups

A very important concept when discussing QFT is the concept of groups, and
more specifically Lie groups. In this chapter, I shall review some of the basic
notions about groups [1], outline Lie groups and their properties, focusing on
representations and useful results of algebra [4] that will be useful later on when
computing color factors of Feynman diagrams in chapter 6.

4.1 General properties

First, recall that a group is a set that has a internal composition law denoted by the
symbol ·, that is often called product or multiplication. It has four fundamental
properties:

1. Closure: ∀g1, g2 ∈ G, g1 · g2 ∈ G;

2. Associativity : ∀g1, g2, g3 ∈ G, g1 · (g2 · g3) = (g1 · g2) · g3;

3. Existence of neutral element : ∀g ∈ G,∃I s.t. g · I = I · g = g;

4. Existence of inverse element : ∀g ∈ G,∃g−1 s.t. g · g−1 = g−1 · g = I.

In addition, if ∀g1, g2 ∈ G, g1 · g2 = g2 · g1, the group is said abelian, if not it is
said non-abelian.

If one looks at an infinitesimal group transformation, the corresponding oper-
ators are called the generators of the group. They are called generators because
all the other elements of the group can be written in terms of these generators,
specifically for any group G, an element g can be written as g = exp (icgiλi), where
the cgi are real numbers and the λi are the group generators.

Lie groups are a class of groups that have an infinite number of elements, but
a finite number of generators. The number of generators is given by the number
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of independent parameters of a general group transformation. The elements of the
group are also differentiable manifolds. The commutation relations between the
group generators form the so called Lie algebra, which is important to understand-
ing QFTs. The SM is based on three important Lie groups that are the symmetry
groups at the hearth of the three QFTs describing the three fundamental interac-
tions, these are U(1), SU(2), and SU(3). The important fact about Lie groups is
that any group element connected to the identity can be written as:

U = exp(iαaT a) · I, (4.1)

where αa are numbers parametrizing the group elements (i.e. the three components
of the velocity and the three Euler’s angle for the Lorentz group) and T a are the
group generators. The Lie algebra is defined by the commutation relations of the
generators:

[T a, T b] = ifabcT c, (4.2)

where fabc are the structure constants of the group and these are independent of the
representation. It follows then that a Lie group is abelian if fabc = 0, non-abelian
otherwise. For example, the structure constants for SU(2) are fabc = ϵabc, hence it
is not an abelian group. From now on I will focus on the SU(N) group in general,
that is usually represented as the group ofN×N special hermitian matrices, special
meaning with determinant equals to 1. The number of independent parameters is
N2 − 1, hence there are N2 − 1 generators for SU(N). This is because initially
there are N2 complex parameters in an N × N hermitian matrix, and so 2N2

real parameters. However, the unitary condition, U †U = I, imposes N2 real
constrains while the special condition imposes one additional constrain, hence
2N2 − N2 − 1 = N2 − 1. Furthermore, the special condition implies that the
generators are traceless, that is:

tr(T a) = 0 ∀a = 1, 2, ..., N2 − 1. (4.3)

4.2 Representations

A representation is a particular embedding of the elements of the group in opera-
tors acting on a vector space. The dimension of this vector space is said to be the
dimension of the representation, which can be infinite or finite dimensional. The
two most important representations of a group are the fundamental and adjoint
representation.

The fundamental representation is the smallest non trivial representation of
the Lie algebra. For SU(N) this is the set of N × N hermitian matrices with
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determinant equal to 1. Consider a set of N fields denoted by ϕi that transform in
this representation, under an infinitesimal group transformation they become:

ϕi −→ ϕ′
i = ϕi + iαa(T a

fund)ijϕj, (4.4)

where αa are real numbers. This is obtained from the Taylor expansion of the gen-
eral expression of an element of the group. Similarly, the complex conjugate fields
transform in the anti-fundamental representation, where T a

anti−fund = −(T a
fund)

∗,
hence:

ϕ∗
i −→ ϕ′∗

i = ϕ∗
i + iαa(T a

anti−fund)ijϕ
∗
j = ϕ∗

i − iαaϕ∗
j(T

a
fund)ij, (4.5)

where we used the fact that T a
fund is hermitian for SU(N). The algebra can be

found by expanding a basis of group elements near I. In this way, the generators
also can be found. For SU(2), the generators in the fundamental representation
are the Pauli matrices σa divided by 2, for the normalization convention:

T a = τa ≡ σa

2
. (4.6)

They satisfy the well known commutation relation [σ
a

2
, σ

b

2
] = iϵabc σ

c

2
. For SU(3),

there are 8 generators, that in this representation are known as the Gell-Mann
matrices divided by 2: T a = λa

2
. In physics, usually the structure constants are

normalized by imposing the following normalization condition:∑
c,d

facdf bcd = Nδab. (4.7)

This implies that the SU(N) generators in the fundamental representation are
normalized so that:

tr(T aT b) =
1

2
δab. (4.8)

One can observe that this relation implies that the product of two generators is
well defined, but in reality in a Lie algebra only the commutator of them is defined.

The adjoint representation consists instead of operators that act directly on
the vector space spanned by the generators themselves, basically the Lie algebra.
Since for SU(N) there are N2 − 1 generators, this representation has dimension
N2 − 1 The matrices representing the adjoint generators are given by (T a

adj)
bc =

−ifabc. For SU(2), these are 3×3 traceless hermitian matrices, since the structure
constants are given by the anti-symmetric 3 × 3 tensor ϵabc. Similarly, for SU(3)
these will be 8 × 8 matrices. The commutation relations still hold, as this is
independent of the representation. The physical relevance of this representation is
related to the transformation of gauge fields.
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Another important notion to define is Casimir operators or simply Casimir.
These are operators that commute with all other elements of the group. AS a
result, the representation can be characterized in a basis-independent way. For
instance, in SU(2) it is known that the operator Ĵ2 =

∑
a T

aT a is a Casimir
operator with eigenvalue j(j + 1) where j is denoted as spin. In general, the
quadratic Casimir C2(R) is defined by∑

a

T aT a = C2(R)I. (4.9)

This will always be proportional to the unit operator because of Schur’s lemma
which states that a group element commuting with all other elements in any irre-
ducible representation must be proportional to I. Since in a Lie group the elements
can be obtained from the generators, it is sufficient to show that the quadratic
Casimir commutes with these. Indeed, implying the sum over a using Einstein’s
convention, we have:

[T a
RT

a
R, T

b
R] = T a

R[T
a
R, T

b
R] + [T a

R, T
b
R]T

a
R = ifabc(T a

RT
c
R + T c

RT
a
R) = 0,

where Leibniz’s rule was used for the first step and the antisymmetry of the struc-
ture constants in the last one. It is convenient to define an inner product on
the generators in order to evaluate the quadratic Casimir. The generators can be
chosen so that:

tr(T a
RT

b
R) = T (R)δab, (4.10)

where T (R) (or sometimes C(R)) is denoted as the index of the representation
R. The convention set for the fundamental representation, eq. (4.8) implies that
T (Fund) =⇒ TF = 1

2
. While in the adjoint representation T (adj) =⇒ TA = N .

To determine the quadratic Casimir we can set a = b in the above equation,
obtaining the definition of C2(R):

tr(T a
RT

a
R) = T (R)δaa = C2(R)I (4.11)

This can be written as:
d(R)C2(R) = T (R)d(G), (4.12)

where d(R) is the dimension of the representation and d(G) is the dimension of the
group. The dimension of SU(N) is N2−1, while in the fundamental representation
we have d(F ) = N and in the adjoint representation d(A) = N2 − 1. Therefore:

C2(F ) = CF =
N2 − 1

2N
C2(A) = CA = N, (4.13)
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Then, for SU(2) we have CF = 3
4
and CA = 2, while for SU(3) we have CF = 4

3

and CA = 3. Furthermore, in any representation one can write:

tr([T a
R, T

b
R]T

c
R) = ifabdtr(T d

RT
c
R) = ifabdT (R)δdc = ifabcT (R). (4.14)

It follows that the structure constants can be always written in terms of the com-
mutator of generators or products of them:

fabc = − i

T (R)
tr([T a

R, T
b
R]T

c
R). (4.15)

This property has important implication in the context of gluon scattering. An-
other important identity that follows from the properties of the generators is the
Fierz identity:

T a
ijT

a
kl =

1

2
(δilδkj −

1

N
δijδkl), (4.16)

where the indices i, j, k and l take value from 1,2,.. N . This identity is derived in
appendix A and it will be fundamental when calculating color factors of Feynman
diagrams. Relations (4.7), (4.10), (4.13), and (4.16) are constantly used when do-
ing calculations in QCD, especially regarding color factors in transition amplitudes.
This is the end goal of the thesis and will be discussed in the next chapters.
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Chapter 5

Non-abelian gauge theories

In this chapter, I aim at explaining some of the basic properties of the strong
interaction and how it is mathematically described by a specific type of QFT
based on a gauge transformation of a non-abelian group and, therefore, called
non-abelian gauge theory.

5.1 Quantum chromodynamics

In the following section, I shall provide an overview of the basics facts that char-
acterize the strong interaction and that eventually lead to the formulation of the
QFT that describes it, Quantum Chromodynamics or simply QCD. These notions
are taken from [7] and [8].

The strong interaction, as the name suggests, is really strong. Among the
four fundamental forces of nature, it is ranked as the strongest one at the nuclear
and sub-nuclear level, or generally speaking at the high energy scales reached by
current experiments. Particles that interact via the strong force are called hadrons,
which are divided in two categories: baryons and mesons, with half-integer spin
and integer spin. There are mainly two types of particles in QCD: fermions called
quarks, and massless spin 1 gauge bosons called gluons, that are the mediators of
the interaction. It is useful to compare these characteristics with those of QED.
In this analogy, gluons play the same role of photons. However, gluons have
a charge in the context of the strong force, meaning they can directly interact
with each other through the strong interaction, unlike photons that are known
to be neutral in terms of electric charge and thus there is no possible direct self
interaction among them. Only at the quantum level photons can interact indirectly
via charged virtual fermions that only exists for a brief time interval. Throughout
the years, a total of six quarks have been discovered: they are fermions with
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fractional charge and whose masses are some of the only free parameters of the
SM. These six different types of quarks are usually denoted as flavours, and they
are up (u),down (d), charm (c), strange (s), top (t), and bottom (b). Masses and
charges of these quarks are listed in the table below.

u d c s t b
Mass (MeV ) 2.15 4.70 1270 93.5 163000 4180
Charge (e) 2/3 -1/3 2/3 -1/3 2/3 -1/3

Table 5.1: Masses and charges of quarks [4].

One of the key aspects of QCD is color, that is the charge of QCD, meaning that
particles that have a color charge can interact via the strong interaction. Again,
comparing between QCD and QED, this is analogous to the electric charge, as it
is known that particles with electric charge different from zero can interact via
the electromagnetic force. However, this new charge characterizing the strong
interaction is quite peculiar.

Color was introduced because some observations of the hadrons spectrum,
that consisted of the various particles observed to be interacting via the strong
force, seemed to be inconsistent with Pauli exclusion principle. It was known that
baryons were composed of three quarks, but some of them were observed to have
three quarks of the same flavour, and with total spin 3

2
. For example, the baryons

∆++ = uuu and Ω− = sss. Assuming that the baryons are in a state where the
total orbital angular momentum vanishes, such value of the total spin implied that
the three quarks have their spin aligned and therefore the total wave function of
the baryon is symmetric under the exchange of two of the three equal quarks.
Since quarks are fermions, this violated Pauli exclusion principle which states that
the total wave function of a system composed of two or more fermions must be
anti-symmetric under the exchange of any two fermions. To fix this problem, a new
quantum number, called color, was introduced. In this way, if the three quarks in
the hadron have the same flavour but different color, then the total wave function
can be anti-symmetric as requested by the spin-statistics theorem. However, when
researchers tried to find experimental evidence of the color of a hadron, no results
were obtained, that is no hadron had a specific color. This lead to the confinement
law, stating that all free particles are color singlet, or equivalently, colored particles
must be bound into color-less states. Since in SU(2) there is no way of making a
singlet with three particles, which is like trying to make a spin 0 state when adding
three spin 1/2 particles, and since some hadrons were made up of three quarks,
the simplest hypothesis is to consider the SU(3) group. This has been experimen-
tally validated and thus color is mathematically described by the symmetry group
SU(3). Therefore, in the fundamental representation of SU(3), we can identify a
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basis of 3 color states that are conventionally called red (R), green (G), and blue
(B). Since quarks are electrically charged, there are also anti-quarks, that have
the respective anti-color: anti-red (R), anti-blue (B), and anti-green (G). Color
singlets can be formed by building invariants under the action of the color group
SU(3). These have the following form:

Ψb =
∑

i,j,k∈R,G,B

ϵijkqiq
′
jq

′′
k Ψm =

∑
j∈R,G,B

qj q̄
′

j , (5.1)

where qi identifies a quark with i, j, and k color indexes and flavour q ∈ {u, d, c, s, t, b}.
These two configurations represent baryons and mesons and, since quarks have spin
1/2, we conclude that baryons have half-integer spin while mesons have integer
spin.

Since color is responsible for the property of confinement, which is one of the
main features and characteristics of the strong interaction, understanding color is
the key to comprehend the strong interaction. Therefore, one can derive QCD
through a local SU(3) color symmetry, much like scalar QED was derived from
a U(1) local symmetry in section 3.3. However, while U(1) is an abelian group,
SU(3) is non-abelian, therefore we need to develop the adequate tools to describe
such symmetry, which shall be the discussion of the next chapter.

5.2 Yang-Mills theories

Yang-Mills theories are a generalization of QED, meaning they are theories that
describe massless spin-1 particles that have the property of interacting among
themselves. This is the main characteristic of the strong interaction that results
in weird phenomena, such as asymptotic freedom. These theories are based on
a generalization of the gauge symmetry that was used to derive scalar QED in
section 3.3, that is called non-abelian gauge symmetry, and for this reason these
theories are also known as non-abelian gauge theories [4].

Consider two complex fields ϕ1 and ϕ2. The kinetic Lagrangian describing the
fields is then:

Lkin = (∂µϕ
∗
1)(∂

µϕ1) + (∂µϕ
∗
2)(∂

µϕ2) = (∂µϕ⃗)
†(∂µϕ⃗), (5.2)

where ϕ⃗ = (ϕ1, ϕ2)
T , and it is invariant under a global SU(2) transformation that

can be expressed as ϕ⃗ −→ ϕ⃗′ = Uϕ⃗, where U is a special 2 × 2 unitary matrix.
Recalling section 4.1, any element can be written as eq. (4.1), where in this
case the T a are the SU(2) generators, that are the Pauli matrices σa divided by
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2, T a = τa = σa

2
. Considering an infinitesimal group transformation, the fields

transform as:
ϕ⃗ −→ ϕ⃗′ = ϕ⃗+ iαaT aϕ⃗, (5.3)

where αa are real numbers. The application of the gauge principle involves promot-
ing the global SU(2) symmetry to a local one, that can be done by promoting the
αa from real numbers to real functions of space and time, αa(x), where x = (x⃗, t)
denotes spacial and time coordinates. This clearly has implications on the La-
grangian, since it contains derivatives that are now acting on αa(x). Hence:

∂µϕ1 −→ ∂µϕ′
1 = ∂µϕ1(1 + iαa(x)τa) + i∂µαa(x)τaϕ1 (5.4)

∂µϕ
∗
1 −→ ∂µϕ

∗′
1 = ∂µϕ

∗
1(1− iαa(x)τa)− i∂µα

a(x)τaϕ∗
1. (5.5)

Therefore, the Lagrangian is clearly not invariant under such transformation. To
solve this problem, we can proceed as in section 3.3, by substituting the ordinary
derivative with a covariant derivative defined as follows:

Dµϕ⃗ = ∂µϕ⃗− igAa
µτ

aϕ⃗, (5.6)

where g is a constant representing the strength of the force described and Aa
µ is a

set of three gauge fields, since a = 1, 2, 3 in SU(2), while with U(1) there was only
a vector field. By recalling the definition of covariant derivatives, eq. (3.22), it
can be seen that under a local SU(2) transformation each one of the three gauge
fields transform as follows:

Aa
µ(x) −→ Aa

µ(x)
′ = Aa

µ(x) +
1

g
∂µα

a(x)− fabcαb(x)Ac
µ(x), (5.7)

where fabc = ϵabc are the structure constants for SU(2). The non-abelian nature
of SU(2) is highlighted in this transformation law, which differs from eq.(3.30) for
the presence of the term containing the structure constants. Again, as previously
done when addressing the local U(1) symmetry, it is now necessary to include a
term describing the dynamic of these three gauge fields in the Lagrangian, and it
can be proven that the only gauge-invariant kinetic term for these fields is:

LYM = −1

4
F aµνF a

µν = −1

4

∑
a

(∂µA
a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν)

2. (5.8)

This kinetic term, also known as Yang-Mills Lagrangian, is crucial to understand
the physics of Yang-Mills theories, because it induces renormalizable interactions
among the three gauge fields of SU(2), which are the mediators of the weak interac-
tions. This has very important consequences, for example virtual gauge bosons can
interact among themselves producing a vacuum polarization effect that behaves

29



in the opposite way to that of QED. That is, while in QED the coupling constant
becomes logarithmically weaker at larger distances, here it becomes stronger at
larger distances or low energies. This means that at high energies or shorter dis-
tances, the strong force is weak. This property is known as asymptotic freedom
and it is one of the peculiarities of the strong interaction. However, at the high
energy scales reached by current experiments the strong force is typically ten times
stronger than the other interactions. The kinetic term representing the dynamics
of the three gauge fields can also be derived from a geometrical point of view, that
shall be the discussion of the next paragraph.

5.3 Geometrical derivation of Y-M Lagrangian

In section 3.3, the Wilson line was introduced to allows us to compare fields valued
at different points in space, without worrying about their possible different phase
convention. In that case, the required symmetry was a local U(1), however the
general case involves more than a simple phase rotation and it will be explored in
this section [4].

The end goal in the non-abelian case remains unchanged: we want to compare
fields valued at different points in space. Hence the procedure is the same, except
the definition of the Wilson line will change since the transformation on the fields
changes too. For SU(N), a local transformation is defined as

ϕ⃗ −→ ϕ⃗′ = ϕeiα
a(x)Ta

, (5.9)

where T a are the group generators, αa(x) are real functions of space and time, and
a = 1, ..., N2 − 1. Therefore, the Wilson line is required to transform as:

W (x, y) −→ W (x, y)′ = eiα
a(x)Ta

W (x, y)e−iαa(y)Ta†
= (5.10)

= eiα
a(x)Ta

W (x, y)e−iαa(y)Ta

, (5.11)

where it was used the fact that T a† = T a for SU(N). In the non-abelian case, it is
convenient to represent the gauge field as a Lie algebra-valued field, that is instead
of assigning a real number for each point of space and time as for a standard field,
here it is assigned an element of the Lie algebra associated with a given Lie group,
in this case SU(N). Explicitly, the gauge fields are written as:

A⃗µ ≡ Aa
µ(x)T

a, (5.12)

where Aa
µ(x) are the components of the fields valued on the Lie algebra. The

infinitesimal expansion of the Wilson line can be found as in the abelian case by
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writing W (x, y) = eiϕ
a(x,y)Ta

, where ∂ϕa(x,y)
∂yµ

∣∣∣
x=y

= gAa
µ, with Aa

µ a set of N2 − 1

gauge fields and g a constant. Then, if yµ is sufficiently near to xµ, that is yµ =
xµ + δxµ, we can expand the Wilson line as follows:

W (xµ, xµ + δxµ) = I− igA⃗µδx
µ. (5.13)

In order to derive the transformation law of the gauge fields, it is convenient to
consider the transformation of the covariant derivative, that must be the same of
the original fields, instead of expanding the transformation of the Wilson line, as
was done in section 3.3. Following this, it is known that the fields under a SU(N)
local transformation change as follow:

ψ⃗(x) −→ ψ⃗′(x) = U(x)ψ⃗(x), (5.14)

where U(x) = eiα
a(x)Ta ∈ SU(N) is the group element for the transformation at

point x. Then, the covariant derivative must transform as the fields:

Dµψ⃗(x) −→ D′
µψ⃗(x)

′ = U(x)Dµψ⃗(x). (5.15)

Therefore, by using the definition of the covariant derivative we have:

(∂µ − igA⃗′
µ)U(x)ψ⃗(x) = U(x)(∂µ − igA⃗µ)ψ⃗(x) (5.16)

∂µ(Uψ⃗)− igA⃗′
µUψ⃗ = U∂µψ⃗ − igUA⃗µψ⃗ (5.17)

=⇒ ∂µU − igA⃗′
µU = −igUA⃗µ, (5.18)

and thus we have:

A⃗′
µ = UA⃗µU

−1 − i

g
(∂µU)U

−1, (5.19)

which the infinitesimal version, where U(x) ≈ I+iαa(x)T a, in terms of components
becomes:

Aa
µ(x) −→ A′a

µ (x) = (I+ iαa(x)T a)Ab
µT

b(I− iαa(x)T a)− (5.20)

− i

g
(i∂µ(α

a(x))T a)(I+ iαb(x)T b) = (5.21)

= Ab
µT

b + iαaAb
µ(T

aT b − T bT a) +
1

g
∂µ(α

a)T a+ (5.22)

+O(α2(x)) = (5.23)

= Ab
µT

b +
1

g
∂µ(α

a)T a − fabcαa(x)Ab
µT

c (5.24)

=⇒ A′a
µ = Aa

µ(x) +
1

g
∂µα

a(x)− fabcαb(x)Ac
µ(x). (5.25)
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This is precisely eq. (5.7). Again, the difference between this transformation of the
gauge fields and eq. (3.30) is the last term, that contains the structure constants of
SU(N), which differ from zero due to the non-abelian nature of the group. Finally,
we can also calculate the action of the commutator of covariant derivatives on the
field as follows:

[Dµ, Dν ]ψ⃗(x) = [∂µ − igA⃗µ, ∂ν − igA⃗ν ]ψ⃗ = (5.26)

= [∂µ, ∂ν ]ψ⃗ − g2[A⃗µ, A⃗ν ]ψ⃗ − ig([A⃗µ, ∂ν ] + [∂µ, A⃗ν ])ψ⃗ = (5.27)

= (−ig(∂µA⃗ν − ∂νA⃗µ)− g2[A⃗µ, A⃗ν ])ψ⃗(x). (5.28)

Therefore, as in the abelian case, this is just a function, since there are no deriva-
tives acting on the field. Furthermore, the natural field strength for the non abelian
case can be written as:

F⃗µν =
i

g
[Dµ, Dν ] = (∂µA⃗ν − ∂νA⃗µ)− ig[A⃗µ, A⃗ν ], (5.29)

which in terms of components becomes F⃗µν = F a
µνT

a, where F a
µν is the following:

F a
µνT

a = (∂µA
b
νT

b − ∂νA
b
µT

b)− ig(Ab
µT

bAc
νT

c − Ac
νT

cAb
µT

b) = (5.30)

= (∂µA
b
ν − ∂νA

b
µ)T

b − igAb
µA

c
ν(T

bT c − T cT b) = (5.31)

= (∂µA
b
ν − ∂νA

b
µ)T

b + gAb
µA

c
νf

bcdT d (5.32)

=⇒ F a
µν = (∂µA

a
ν − ∂νA

a
µ) + gfabcAb

µA
c
ν , (5.33)

where we have used the commutation relation (4.2), renamed the contracted indices
and used the antisymmetry of fabc. The square of this term is precisely the kinetic
term introduced in eq. (5.8). Once again, I would like to highlight the difference
from the natural field strength in the abelian case is the last term, that contains the
structure constants. Interestingly, under a global or local SU(N) transformation,
the field strength transforms covariantly as it contains gauge fields, that is:

F⃗ ′
µν = U(x)F⃗µνU

−1(x). (5.34)

This ensures that quantities derived from LYM are gauge invariant, and thus rep-
resent physical degrees of freedom. That said, by considering the infinitesimal
representation of the group elements, U(x) = eiα

a(x)Ta ≈ I + iαa(x)T a, the com-
ponents of the field strength transform as follows:

F a
µνT

a −→ F ′a
µνT

a = (I+ iαa(x)T a)F b
µνT

b(I− iαa(x)T a) = (5.35)

= F b
µνT

b + iαa(x)(T aT b − T bT a)F b
µν +O(α2(x)) = (5.36)

= F b
µνT

b − fabcαa(x)F b
µνT

c (5.37)

=⇒ F ′a
µν = F a

µν − fabcαb(x)F c
µν (5.38)
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which is the same for both α global or α(x) local because there are no derivatives
involved. Since this transformation doesn’t involve the generators, it implies that
the kinetic term depends only on the fields F a

µν that transform in the adjoint

representation, while initially F⃗µν transformed in the fundamental representation.
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Chapter 6

Color factors calculation

In this chapter, I want to demonstrate how the algebra developed in chapter 4 can
be used to calculate important color factors of some Feynman diagrams represent-
ing basic QCD processes, leading to the color Feynman rules for QCD. For this
reason, it is necessary to briefly introduce the concept of Feynman diagrams and
how they are connected to probability through a transition amplitude.

6.1 Feynman diagrams and probability

Feynman diagrams are a visual representation of complex mathematical formula
describing physical processes between particles interacting in space time. Each
process has a certain probability of happening and, from quantum mechanics, it
is known that probabilities are linked to the square modulus of an amplitude, a
matrix element. In QFT, the same holds true, and the amplitude in question,
usually denoted as M, is proportional to the square of an element of the S matrix
[4], that encodes the various ways given initial states turn into given final states.
Mathematically:

prob ∝ |M|2 ∝ |⟨i|S|f⟩|2,
where i and f denote the initial and final states.

Each of the terms in the expansion of the S matrix can be represented as a
Feynman diagram. The rules needed to derive the formula behind the diagrams are
called Feynman rules, and they can be obtained in various contexts using different
approaches. The transition amplitude M is a scalar function that contains all dy-
namical information about the process [9]. It usually depends on the momenta of
the interacting particles, but it also contains color factors if the particles interact
via the strong interaction. The last point is what I want to focus on, that is cal-
culating the color factor of some Feynman diagrams representing QCD processes.
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First, I shall remind some basic Feynman diagrams notation and properties [10].

Particles are represented by lines. Due to crossing symmetry, particles in di-
agrams going from point A to point B are equivalent to anti-particles going from
B to A. Fermions are represented by straight lines, photons by wiggly lines, and
gluons by curly lines or two straight lines with arrows in opposite direction. Angles
are basically useless, meaning a loop can be represented by a circle or a square
without changing its physical meaning. Unless specified otherwise, diagrams will
be drawn with time going from left to right. See Fig. 6.1 for reference.

6.2 Color Feynman rules for QCD

fermion

gluon

γ

Figure 6.1: Representation of
different particles in Feynman di-
agrams.

In order to calculate color factors, it is neces-
sary to represent color properties of quark and
gluons via Feynman diagrams. A useful way
of doing that is to think about quarks as ob-
jects having 3 possible states, one for each color,
while gluons carry all possible combination of
color anti-color pair, without the neutral one
that would be formed by the sum over all equal
color anti-color pairs [10]. This leads to the
double line formalism, where a fermion-gluon
vertex has the following visual representation:

1√
2
( −1

3 )

Figure 6.2: Fermion-gluon vertex representation.

Mathematically, this corresponds to a generator of the SU(3) group, T a. The
physical interpretation is that the first term represents the interaction of the quark
with the gluon, hence I shall refer to it as interaction term. Instead, in the second
term there is no interaction as the fermion line is not altered by the gluon, thus
it will be referred to as non-interaction term. This means that in the first term
the color of the quark changed from initial to final state, while in the second term
color is unchanged.

As explained in section 5.2, gluons are charged and therefore they can interact
among themselves. Thus, 3 or 4-gluon vertexes must be accounted for. In the
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double line formalism, the 3-gluon vertex is represented by the following:

Figure 6.3: 3-gluon vertex (fabc). Image taken from [11].

This corresponds to the structure constants of SU(3), since these interactions
exist due to the non-abelian nature of the group. Fig. 6.2 and Fig. 6.3 constitute
the fundamental blocks of the color Feynman rules for QCD, where the 1√

2
factor

present in both figures is to ensure the right normalization constant set to 1
2
for TF

as in eq.(4.10). These rules can be combined with SU(3) color algebra and then
applied to calculate color factors for several diagrams.

In these representations, contraction over color indices is implied by connecting
the respective color or anti-color line. A close loop gives a factor N = 3 since it
is the trace of the unit matrix in SU(3) [11]. With this knowledge, one is able
to compute the color factors of almost all QCD processes. As a first example,
consider the quark self-energy diagram shown below:

Figure 6.4: Quark self-energy Feynman diagram. A virtual gluon is emitted and
re-absorbed by the quark that changes color. Image taken from [11].

For reason that will be clear in a moment, it is useful to add a color index for
the fermion line in the middle, say k. Computing the color factor using section
4.2 algebra, involves considering that each fermion-gluon vertex is a generator T a.
Thus, since the diagram above has two of these vertexes, we have the product of
two generators, T a

jkT
b
ki, where the indices are written backwards by convention.

However, since the virtual gluon is re-absorbed by the quark, we need to add a δab

factor. Hence, there is an implicit sum over a:

T a
jkδ

abT b
ki = T a

jkT
a
ki =

∑
a

(T aT a)ji. (6.1)
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This is the left hand side of the Fierz identity, eq. (4.16), with i −→ j, j −→ k,
l −→ i. Therefore:

T a
jkT

a
ki =

1

2
(δjiδkk −

1

N
δjkδki) = (6.2)

=
1

2
δji(N − 1

N
) = (6.3)

= δji(
N2 − 1

2N
). (6.4)

However, by eq.(4.9) we also have:∑
a

(T aT a)ji = CF δji. (6.5)

Thus, by comparing these two equations, the value of CF in the fundamental
representation can be found to be:

CF =
N2 − 1

2N
=

4

3
(6.6)

This can also be obtained using visual representations of the fermion-gluon vertex.
Since there are two such vertices, the product of two Fig. 6.2 representations is
needed. The visual calculation proceeds as follows:

Figure 6.5: Color factor calculation of a quark self-energy Feynman diagram using
visual representation of fermion-gluon vertexes. Image taken from [11].

The product of the two quark-gluon interaction terms gives the first diagram
in the second line. It basically is a loop, thus giving a factor N , and a fermion line
giving δij. The second term in the second line is the product of the interaction
term for the Tjk vertex, and the non-interaction term for the Tki. The third term
is the opposite. These are essentially fermion lines, therefore, each one of these
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gives a factor δij. Finally, the fourth term is the product of both non-interaction
terms, that produces a loop giving a factor N and a fermion line giving δij. Thus,
the calculation proceeds as follows:

1

2
(Nδij − 2

N
δij +

1

N
δij) = δij

N2 − 1

2N
. (6.7)

Hence, using this double line formalism the same result is obtained.
As another example, consider the diagram below:

γ γ

Figure 6.6: Feynman diagram representing a photon creating a quark anti-quark
(qq̄) pair that subsequently annihilates into another photon.

The color factor of this diagram can easily be found by observing that the pho-
ton is color free, meaning it is transparent with respect to the strong interaction.
Therefore, the diagram reduces to a simple loop, that gives a factor N = 3.

An interesting variation of the diagram shown above is the following:

T a

i

j γ

Figure 6.7: Feynman diagram representing a gluon creating a qq̄ pair that subse-
quently annihilates into another photon.

As shown in the previous example, the photon can be neglected because it is
color free. Therefore, the diagram becomes a gluon creating a qq̄ pair that closes
into a loop. Since a color line is connected, there will be a δij factor:

T a
jiδij = T a

ii = 0, (6.8)

using the fact that SU(N) generators are traceless. The color factor of this diagram
is 0, therefore, the probability that this process occurs is also zero. This reflects
the fact that color must be conserved because initially, the gluon has a certain
color. Since the color line of the two quarks is connected, it implies that they are a
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color anti-color pair. However, this would result in the gluon being a color singlet,
which is absurd.

The same result can be obtained using the visual representation, since there is
basically a single quark-gluon vertex. Hence:

Figure 6.8: Visual representation of the color factor calculation of the Feynman
diagram shown in Fig. 6.7. Image taken from [10].

This is basically the same as Fig. 6.2, except that it is sideways since the gluon
creating the qq̄ pair is coming from left to right, and the quark lines are closed
since the quarks make a loop in the original diagram. The loop in the second term
gives a N = 3 factor that cancels out the 1

3
. Therefore, we are left with the gluon

line that is equivalent to the first term. Hence, they cancel out, giving a total color
factor of 0, as expected.

Finally, to complete the color Feynman rules for QCD, let us consider the
following diagram:

γ

j i

γ

ij

Figure 6.9: Feynman diagram representing a photon creating a qq̄ pair that sub-
sequently exchanges a gluon and then annihilates into another photon.

Again, the photons are irrelevant in computing color factors. Thus, we are
left with the central loop, but now there is an exchanged gluon. This creates two
fermion-gluon vertexes. Therefore, the calculation is very similar to that shown in
Fig. 6.5, with the difference that in this case the quark lines are connected. This
produces the following visual calculation:
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Figure 6.10: Visual calculation of the color factor of Fig.6.9 Feynman diagram.
Image taken from [10].

The first and fourth term have 2 closed loops, thus each one of them results
in a N2 factor. The first one represents both quarks interacting with the gluon,
while the fourth term represents both of them not interacting. Instead, the second
term represents the top quark interacting and the bottom quark not interacting,
while the third term is the opposite. These both give a factor N as they are closed
loops. Thus, the color factor is:

1

2
(N2 − 2

3
N +

N2

9
) =

1

2
(9− 2 + 1) = 4. (6.9)

The same result can be obtain using the group algebra, recalling that each fermion-
gluon vertex is a group generator. Here we have two vertexes with the same gluon,
thus:

T a
ijT

b
jiδ

ab = T a
ijT

a
ji =

1

2
(δiiδjj −

1

N
δijδji) = (6.10)

=
1

2
(N2 − 1) = 4, (6.11)

where Fierz identity was used, with k −→ j, and l −→ i.

6.3 Physical relevance of color factors

In order to show the physical relevance of these calculations, it is interesting to
evaluate the color factor for the one-loop interaction vertex with a photon and
with a gluon. These diagrams will have a different color factor that leads to a
very interesting conclusion and provides a qualitative argument in support of the
physical phenomenon that involves quark bound states to be color-singlets.

First, consider the photon interaction vertex. It is basically a photon creating a
qq̄ pair, that subsequently exchanges a gluon. This is represented by the following
diagram:
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Figure 6.11: Visual calculation of the color factor of the one-loop interaction vertex
with photon. Time going downward. Image taken from [11].

The process to obtain the right hand side of the above figure is the following:
the photon is negligible as in diagrams shown before, therefore, we are left with
a fermion line exchanging a gluon. However, since angles are irrelevant, one can
imagine to move the quark lines so that they make a 180◦ angle. The new diagram
resembles that of Fig. 6.4. Indeed, there are 2 fermion-gluon vertexes, thus,
the calculation is the same as in Fig. 6.5, except that the lines have a different
orientation, hence the triangles. That said, the first term contains a closed triangle,
that is a loop, which gives a factor N , leaving a fermion line with a δij factor. The
same is true for the second term, except the loop. Therefore:

1

2
(Nδij −

1

N
δij) =

N2 − 1

2N
δij = CF δij. (6.12)

This can also be obtained from the product of two generators using Fierz identity
exactly as in Fig. 6.4. Notice how the color factor is positive.

A variation of this diagram is the one-loop interaction vertex with a gluon,
shown below:

=

lj

ki ×lj

j

i

l

k

Figure 6.12: Feynman diagram representing a one-loop interaction vertex with
a gluon decomposed into the product of two other diagrams. Time direction is
downward.

The substitution of the photon with a gluon creates an additional fermion-gluon
vertex that needs to be accounted for and it cannot be neglected as the photon was.
The calculation can be broken into a product of two factors or diagrams as outlined
in Fig. 6.12. The first one can be derived by neglecting the gluon exchanged in
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the middle, leaving a diagram representing a gluon creating a qq̄ pair. Instead, the
second diagram can be obtained by neglecting the vertical gluon, thus leaving the
quark lines not connected. The second term is basically a qq̄ scattering, qq̄ −→ qq̄,
that can be represented by the following diagram:

Figure 6.13: Feynman diagram representing a qq̄ scattering on the left hand side
and corresponding visual calculation on the right hand side. Time direction is
downward. Image taken from [11].

The diagram has 2 fermion-gluon vertexes, therefore ,it can be broken down into
the product of two diagrams similar to those in Fig. 6.2, with the lines following
the original directions. This product gives four terms representing the possible
combinations of which quark is interacting and which is not. The ones where only
one of the two quarks is interacting are equals, but with opposite sign and therefore
cancel out. Thus, the remaining terms are the one where both quarks interact,
that is the first diagram on the right hand side of the above figure, and the one
where both are not interacting, that is the term multiplied by 1

N
. Algebraically,

this corresponds exactly to the following Fierz identity:

T a
ijT

a
lk =

1

2
(δikδlj −

1

N
δijδlk), (6.13)

since two fermion-gluon vertexes correspond to the product of two generators.
Then, going back to Fig. 6.12, the product of the two diagrams visually be-

comes:
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Figure 6.14: Visual calculation of the color factor of the Fig. 6.12 Feynman dia-
gram. Original image without labels taken from [11].

The diagram containing A1 and A2 in the first line is a simple fermion-gluon
vertex, where the lines follow the orientation of the initial diagram. The term
containing B1 and B2, instead, comes from Fig. 6.13, as claimed before. The
product of A2 with B1 produces the A2B1 term in the second line. Connecting
the lines results in a loop, thus giving a factor N that cancels out the 1

N
, leaving

basically a diagram equivalent to A1B1. Therefore, these two cancel out, leaving
only the third and fourth term in the second line. It can be factored out a − 1

2N
,

leading to the fourth line, where it can be noticed that the two diagrams left are
the interacting term and non-interacting term for a simple fermion-gluon vertex,
hence the result.

This can also be derived using the SU(3) color algebra. Keeping in mind
that the original diagram can be broken down into the product of two diagrams,
as shown in Fig. 6.12, it is necessary to multiply their corresponding algebraic
factors. This is a Fierz identity for the qq̄ scattering, as there are two fermion-
gluon vertexes, and a single generator for the other fermion-gluon vertex. Thus:

T a
jl ·

1

2
(δikδlj −

1

N
δijδlk) =

1

2
(T a

jjδik −
1

N
T a
ik) = − 1

2N
T a
ik, (6.14)

where it was used T a
jj = 0. Since a generator corresponds to a fermion-gluon vertex

by Fig. 6.2, the result is obtained.
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It is worth noticing that the color factor here has a negative sign. Indeed, in
the one loop interaction vertex with a photon, the gluon exchange between quarks
resulted in a positive factor, CF to be precise. This reflects an attraction between
the quarks, that initially were in a color singlet state, since they were created by
a photon, that is a color singlet. Meanwhile, in the one loop interaction vertex
with a gluon, the gluon exchange between quarks led to a negative factor, − 1

2N
.

This represents a repulsion between the qq̄ pair, that initially were in a color-octet
state, since they were created by the gluon, which is not a color singlet. Because
of this, it can be concluded that the force between a qq̄ pair is attractive if the pair
is a color singlet, and repulsive if it is in a color-octet state. This is qualitative
evidence as for the reason why no bound qq̄ pair observed is in a color-octet state,
they simply repel [11].

To summarize, the calculation of color factors for QCD processes has been
demonstrated, leading to the derivation of the color Feynman rules for QCD.
These rules were then applied to more interesting diagrams, providing a qualitative
argument in support of an important physical phenomenon, which is the color-
singlet nature of quarks bound states, else known as confinement.
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Chapter 7

Conclusion

In conclusion, this thesis set out to calculate important color factors of QCD pro-
cesses visually represented by Feynman diagrams. These color factors appear in
transition amplitudes and, consequently, are essential for calculating probabilities
in quantum processes. Achieving this, required a deep understanding of the strong
interaction and its main properties that spurred the formulation of the adequate
tools required to describe the pertinent physical phenomena. Namely, the mathe-
matical framework of QFT.

It was explained why these new theories were necessary, showing how they
combine quantum mechanics with classical field theory. Furthermore, the key role
of gauge transformations was highlighted, beginning from their relevance in the
context of standard electromagnetism and extending into the quantum mechanical
world. The combination of such transformations with local U(1) transformations
led to abelian gauge theories, with scalar QED provided as an example. Instead,
when local SU(N) transformations were considered, this combination led to the
development of non-abelian gauge theories or Yang-Mills theories, which intro-
duced the concept of direct self interactions among gauge bosons as a result of the
non-abelian nature of the group.

Lastly, using the results of SU(3) color algebra, I was able to calculate color
factors of some basic QCD processes and derive the color Feynman rules for QCD,
that were later applied to more complex diagrams. This provided qualitative
arguments supporting the color-singlet nature of quarks bound states, showing a
significant physical application of these calculations.

This thesis serves as an introduction to these theories and the mathematical
framework used to describe fundamental interactions. Much more could be said,
such as the relevance of color factors in processes like gluon scattering, but doing
so would require a deeper mathematical understanding of QFTs that I have yet
to acquire.

In summary, this thesis provided an overview of the methods used to describe
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fundamental interactions, specifically QFT with a focus on QCD and the calcula-
tion of color factors for processes represented by Feynman diagrams.
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Appendix A

Fierz identity for SU(N)

Here, following the work in [12], a derivation of the Fierz identity in the general
SU(N) case is provided. That is:

T a
ijT

a
kl =

1

2
(δilδkj −

1

N
δijδkl), (A.1)

where the indices i, j, k and l take values from 1,2...N .

Proof. Any N × N complex matrix M can be expanded in a basis of SU(N)
elements consisting of the unit matrix I and the remaining N2 − 1 generators T a,
where a = 1, 2, ..., N2 − 1. Hence:

M = α0I+ αaT
a, (A.2)

where α0 and αa are coefficients that can be determined as follows. By tracing the
above equation, we have:

tr(M) = α0tr(I) + αatr(T
a).

Using the fact that tr(I) = N and that SU(N) generators are traceless, tr(T a) = 0,
because of the special condition, it follows that:

α0 =
1

N
tr(M). (A.3)

To determine αa instead, we can multiply eq. (A.2) by a generator T b. Tracing
the obtained equation then one finds:

tr(MT b) = α0tr(T
b) + αatr(T

aT b). (A.4)

Using the normalization condition of the generators, eq. (4.8), it follows that:

αa = 2tr(MT a). (A.5)
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Therefore, rewriting eq. (A.2) with the new expressions for the coefficients it
becomes:

M =
1

N
tr(M)I+ 2tr(MT a)T a, (A.6)

which can be written in terms of the matrix elements:

Mij =
1

N
Mkkδij + 2MlkT

a
klT

a
ij. (A.7)

This can be written as:

δilδjkMlk =
1

N
δijδklMlk + 2MlkT

a
klT

a
ij = (

1

N
δijδkl + 2T a

klT
a
ij)Mlk, (A.8)

and it follows that:

[T a
klT

a
ij −

1

2
(δilδjk −

1

N
δijδkl)]Mlk = 0. (A.9)

Since Mlk are the elements of an arbitrary N ×N complex matrix, this equation
must hold for every Mlk. Therefore, the expression between square brackets must
vanish, thus leading to the Fierz identity as requested.

48



Bibliography
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