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Abstract

In questi ultimi decenni la computazione quantistica è stato uno dei settori maggior-
mente in via di sviluppo, nonostante ad oggi pochi siano stati i risultati ottenuti per
quanto riguarda la realizzazione di grandi computer quantistici in grado di risolvere
problemi complessi. Ad oggi l’azienda D-Wave è la prima ed unica che permette agli
utenti di interagire direttamente con un computer quantistico, così da rendere accessi-
bile la computazione quantistica a chiunque voglia risolvere determinati problemi. É da
questa possibilità che nasce l’idea di QUnfold, un software che si prefigge l’obiettivo di
implementare una nuova tecnica di Unfolding (un problema standard della fisica delle
particelle) utilizzando i vantaggi quantistici ottenuti grazie a D-Wave. Questa tesi si
prefigge l’obiettivo di testare ed analizzare i limiti ed i punti di forza di questo approc-
cio rispetto a quelli classici comunemente usati. Per fare ciò, sono stati utilizzati dati
ottenuti dal decadimento di quark t, e su questi sono stati girati i vari algoritmi di
Unfolding, così da poter comparare i risultati ottenuti.



Abstract

In recent years, quantum computing has emerged as a rapidly advancing field, though
practical achievements remain limited due to significant technical challenges in construct-
ing large-scale quantum computers. D-Wave currently stands as the only company offer-
ing a commercially accessible quantum annealer, enabling users to perform specific com-
putations more efficiently. Leveraging this technology, we introduce QUnfold, a software
designed to implement a novel unfolding technique (a key problem in particle physics)
by harnessing the advantages of quantum computing. This work aims to evaluate the
performance and limitations of this quantum-based approach compared to traditional
methods. The evaluation is based on data from t quark decays, with various unfolding
algorithms applied and the results compared.



Contents

Introduction 1

1 Quantum Annealing 3
1.1 Mathematical description . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Quantum Adiabatic Theorem . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Ising and QUBO formulation . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Quantum Annealing process . . . . . . . . . . . . . . . . . . . . . 6

1.2 D-Wave samplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Hybrid sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Quantum Annealer . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Unfolding in High Energy Physics 14
2.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Unfolding classical algorithms . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Matrix inversion method . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Iterative Bayesian method . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Tikhonov regularisation . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 RooUnfold example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 The tt pair production 24
3.1 Standard model of particle physics . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Particles of SM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Forces of SM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 The ATLAS detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 ATLAS experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 tt distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 The top quark particle . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 tt production process . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.3 tt decay process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1



CONTENTS 2

4 Analysis Strategy 35
4.1 QUnfold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Unfolding as a QA problem . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Binarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.3 Overview of the Python package . . . . . . . . . . . . . . . . . . . 38

4.2 Data visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.1 Parton level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Particle level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Response matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Unfolding results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.1 Quantum annealing . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Conclusions 52



Introduction

Quantum Mechanics, together with Einstein’s Theory of Relativity, is the most revolu-
tionary theory of the XX century. Despite it was developed over a century ago, at the
moment we have just started to explore all of its possibilities and consequences.

Among all of the new fields born following quantum mechanics, Quantum Computa-
tion is the one that in recent years has evolved rapidly, offering computational advantages
that are still being uncovered. The concept of a quantum computer was first proposed
by Richard Feynman in 1982, when he observed that there seemed to be essential diffi-
culties in simulating quantum mechanical systems on classical computers. He suggested
that building computers based on the principles of quantum mechanics would allow us to
avoid those problems. However, building such computers up to now has been a difficult
challenge and today we have not still managed to fully exceed such problems. In fact at
the moment the only few quantum computers can be used freely by the user is the one
offered by D-Wave’s company. Despite this clearly is a very important achievement, it
has to be understood that this does not represent Universal Computation, which means
that not every kind of problem can be solved by the quantum computer current available.
In particular this computer is called a Quantum Annealer and it is able to solve different
kind of optimization problems. We will see that the only form of mathematical problems
that can be implemented is called the QUBO form. On the other hand Universal Com-
puters are being developed, as they represent the real goal of quantum computation, but
nowadays they are apparently not as powerful as D-Wave’s quantum annealer.

In this thesis we will analyse the advantages given by this quantum computer in
the High Energy Physics field, in particular on the solution of the Unfolding problem.
The Unfolding is a very common procedure in particle physics, as it deals with the
distortions that arises when carrying out a measurement due to all the detector’s effects.
Therefore what we measure can be distorted with respect to the the real phenomena,
implying we cannot compare the observed data with the theoretical ones. The unfolding
technique enables us to correct this distortions and to obtain the "real" data. The
starting point of this thesis is realizing that it is possible to see the unfolding as a quantum
annealing problem. This means that once having done this we could theoretically solve
the unfolding problem through D-Wave’s quantum annealer. Unfortunately, this is not
as easy as it seams. There are a lot of problems and challenges in trying to implement
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an algorithm able to solve this kind of problem.
QUnfold is a Python package that implements this new method of solving the unfold-

ing. This package enables the user to directly send his unfolding problem to D-Wave and
to solve it via quantum annealing. However, this is still a work in progress project, and
the aim of this thesis is to test it analyzing its strengths and its critical points. To do so
we have taken data from an high energy physics experiment about quantum properties
of particles. In this work they present a great quantity of data and they need to unfold
them. We have therefore taken this data and have tested QUnfold methods comparing
them to the classical ones.

To sum up, this work is divided in four main chapters:

• Chapter 1: here Quantum Annealing is presented throughout its mathematical
description and how it has been implemented in D-Wave’s quantum computers.

• Chapter 2: the Unfolding is described and some classical algorithms are presented.
In order to better understand this procedure, at the end of the chapter an example
is provided.

• Chapter 3: in order to be aware of the analysis used to test the unfolding via
quantum annealing, here is presented an introduction to the HEP detector (in
particular ATLAS) and to the Standard Model of particle physics, with a Section
concerning the process on which we are studying the problem.

• Chapter 4: this is the core of this work. It explains how the analysis has been
carried out presenting its results.



Chapter 1

Quantum Annealing

The aim of this first chapter is to present the central problem of this thesis: Quantum
Annealing (QA). This technique has been studied throughout these last years, as it is one
of the first quantum computational problems we are able today to solve very efficiently.
This chapter is divided in two main Section. In the first we present a mathematical
description of the problem, analyzing the theorems that gave birth to quantum annealing
and all the mathematics behind it. In Section 1.2 we present the first quantum annealer
(i.e. a computer able to perform quantum annealing) of the world, that is the one
provided by D-Wave system. We give a brief description of the Annealer and then
we focus our attention in understanding the three main annealing method provided by
D-Wave.

1.1 Mathematical description
In the last decades, and in particular these last years, quantum computation has spread
across the industry with a lot of possibility of technological applications. In fact, following
the idea of R. Feynman proposed back in the 1980s [1], quantum computers are believed
to being able to solve certain problems more efficiently than classical ones.

Today there are two different kind of quantum computers: gate model and quan-
tum annealing. The first one implements the algorithm with quantum gates, and are
studied and implemented by IBM and PASQUAL. It represents the so called universal
computation, which means that these kind of quantum computers can ideally solve any
n-qubit operation. At the end of the process the system is measured and collapses in a
classical state. Quantum annealers work in a total different way by taking advantage of
the Schrodinger equation evolution. The idea was firstly introduced by Kadowasi and
Nishimori in 1998 [2]. They are based on the quantum adiabatic theorem (better ex-
plained in Sec. 1.1.1) which states that if the equation parameters evolve slowly enough
over time, the system will remain in the ground state. In contrast of the quantum gate
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1.1. MATHEMATICAL DESCRIPTION 4

based computers, quantum annealers are very efficient in solving optimization problems,
but they are not universal, which means that there are some problems they cannot solve.

1.1.1 Quantum Adiabatic Theorem

The quantum adiabatic theorem, proposed by Max Born and Vladimir Fock in 1928,
states that:
A physical system remains in its instantaneous eigenstate if a given perturbation is acting
on it slowly enough and if there is a gap between the eigenvalue and the rest of the
Hamiltonian’s spectrum[3].

Its implication in quantum mechanics are quite evident. Suppose we have a quantum
mechanical systemH starting at time t0, prepared in its ground state denoted by |ψ0(t0)⟩.
Suppose then that the spectrum is discrete, so that there is always a gap between the
eigenvalues. If we evolve the system under a slow perturbation according to the theorem
it will remain in the ground state. In particular, at t1 >> t0, the system will be in
the ground state of the modified Hamiltonian, denoted by ⟨ψf (t1)|. Basically Quantum
Annealing uses this property to find the final state of the system which, as we will see
in Section 1.1.2, describes the optimal solution of the problem we want to solve.

To have an idea of what it means "slowly enough", the condition our evolution must
respect is [4]

max[⟨ψf (t)| dH(t)
dt

|ψ0(t)⟩]
min[Ef (t)− E0(t)]

≪ 1 (1.1)

In this condition, Ef and E0 are the eigenstates corresponding respectively to ψf and
ψ0, and the denominator is the so called minimum gap, which is the minimum difference
throughout time of the two eigenstates. Is it clear now why we need to change the
Hamiltonian as slowly as we can, so that we can decrease its derivative over time and
respect the condition.

By these, we can finally introduce a brief description of adiabatic quantum computa-
tion, which is the technique quantum annealing uses. In optimization problems, one has
an Hamiltonian where its ground state represents the solution. More specifically, this is
often referred to as the final Hamiltonian. A simpler Hamiltonian, known as the initial
Hamiltonian, is prepared on a quantum system with its initial configuration being the
ground state. The quantum system adiabatically evolves this Hamiltonian towards the
configuration of the final Hamiltonian. Following the theorem, at the end the system will
be in the modified ground state, corresponding to the solution to the initial problem.

1.1.2 Ising and QUBO formulation

Despite in adiabatic quantum computation there are a lot of possible Hamiltonians that
can be used, the Ising Hamiltonian is the most common Hamiltonian supported and
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studied in this field. The Ising model is a mathematical representation commonly used
in statistical mechanics. It is based on variables that describe moments of magnetic
dipoles called "spin up"(|↑⟩) and "spin down"(|↓⟩), corresponding respectively to +1
and -1 values. In the spin basis we therefore have this computational basis:

|↑⟩ =
(
1
0

)
≡ |0⟩ |↓⟩ =

(
0
1

)
≡ |1⟩ (1.2)

According to the Ising model, the possible relationship between the spins, which are
represented by couplings, are clearly only correlation or anti-correlation. We can then
write the function expressed by the Ising model as:

Hising =
N∑
i=1

hisi +
∑
i<j

Jijsisj (1.3)

where si are the spin of of the i-th qubit (having therefore si = ±1), hi are the biases of
each qubit (i.e. the magnetic field applied on the qubit) and Jij represent the couplings.
We now need to understand why this kind of Hamiltonian is very useful in Quantum
Annealing.

In order to translate the input problem we want to solve in a form that the quantum
computer is able to read, we need the so-called QUBO form (Quadratic Unconstrained
Binary Optimization form). That is the only type of problem a quantum annealer can
solve. In this QUBO formulation of the problem, the purpose is to minimize a quadratic
function of binary variables (i.e. only 0 for False and 1 for True), that can be expressed
as:

f(x) = xTQx (1.4)

where Q is a N×N square matrix which defines the function, and x is a vector of binary
variables. We can therefore express:

f(x) =
N∑
i=1

Qiixixi +
∑
i<j

Qijxixj (1.5)

We have in this way separated the diagonal term with the off-diagonal terms. It is
important to underline that QUBO problems are not constrained, meaning that there
are no constraints on the variables other than those expressed in Q.

It is slightly evident that there is a similarity between these two models, in particular
between eq. 1.3 and 1.5. It can be in fact shown that these two formulations are
equivalent, meaning we can translate one into the other [5].

To sum up what we have discussed so far, we can say that if we are able to formulate
our problem through an Hamiltonian which follows the Ising model, we are sure that we
can translate it into the QUBO form, meaning we can solve the starting problem via
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Quantum Annealing. Despite that, as we will see later in Section 4.1.1, this is one of the
main difficulties faced when trying to solve optimization problems. In fact, as it seems
quite immediate the correlation between the Ising model and the QUBO one, doing it in
practice may create some issues.

1.1.3 Quantum Annealing process

Now that we have seen the main features of Quantum Annealing, it is time to understand
how it effectively operates.

Following what we have said before, we consider an Ising model with its Hamiltonian
HP , where P denotes the "problem Hamiltonian". The aim of annealing is to find the
ground state of HP , which expresses the solution of the starting problem. Following the
Ising model presented in Section 1.1.2, each element can be in two different states called
spin up and spin down.

We assume that HP is a classical many-body Ising Hamiltonian, that can be de-
scribed in terms of the z components of the Pauli operator σz

j . In particular, in quantum
annealing we have

HP =
∑
i

hiσ
z
i +

∑
i<j

Jijσ
z
i σ

z
j (1.6)

where σz
i are Pauli-z matrices associated with the i-th spin, hi represents the interaction

between the local magnetic field and the i-th spin and Jij defines the strength of the
interactions between the two spins. This Hamiltonian clearly follows the one in eq. 1.3.

We now introduce a driver Hamiltonian HD which does not commute with HP and
has the trivial ground state. This represents the starting hamiltionian of the process.
Usually a common choice for HD is the transverse field HD = −

∑
j σ

x
j , so that the non

commutativity is satisfied. We can define the total Hamiltonian as:

H(t) = A(t)HD +B(t)HP (1.7)

A(t) and B(t) are some time-dependent functions satisfying at the initial time A(ti) ≫
B(ti) and at the final time A(tf ) ≪ B(tf ). By substituting HP and HD we can obtain:

H(t) = −A(t)
2

(
∑
i

σx
i ) +

B(t)

2
(
∑
i

hiσ
z
i +

∑
i<j

Jijσ
z
i σ

z
j ) (1.8)

At ti we only have the driver Hamiltonian HD.The initial state is set at the ground
state of HD, which is known a priori. In fact, the lowest energy state of this term is when
all the qubits are in a superposition of the states |0⟩ and |1⟩; in particular as we will
see in Section 1.2 in a D-Wave quantum computer we will always have that the starting
situation is with all the qubits in the |+⟩ state, which corresponds to:

|+⟩ = 1√
2
|0⟩+ 1√

2
|1⟩
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Instead, at tf we will have just the problem Hamiltonian HP . This term is the
Hamiltonian that contains our problem, encoded through the values of the biases hi
and the coupling strengths Jij. The lowest energy state of this term is the answer to
the problem we are trying to solve. Note that the final state of our system is always a
classical state and depending in which classical state the system ends we have a different
solution for our problem.

The idea of QA is that according to the quantum adiabatic theorem if H(t) changes
"sufficiently" slowly with t, the spin state evolves adiabatically and it remains in the
ground state of the instantaneous Hamiltonian, passing form the ground state of HD to
the one of HP . In this way at the end of the process it will arrive at the ground state of
HP , giving us the result we were seeking.

Unfortunately in practice it is impossible to have a perfect adiabatic evolution, which
means that the final result may be slightly different from the ground state. This implies
that it is very important in QA to repeat the process several times.

1.2 D-Wave samplers
A Quantum Annealer is a quantum computer designed to solve optimization prob-
lems through QA. As explained before, it operates through the slow evolution of the
Schrodinger equation of the quantum system.

The D-Wave system, founded in 1999, is a pioneering company in quantum com-
puting, focusing on developing efficient techniques to realize Quantum Annealing [6].
D-Wave system implements this technique using a single quantum algorithm, being able
to realize QPU (quantum processing units) with more than 5000 physical qubits (quan-
tum bits), much more than the ones that gate-based quantum computers have reached
so far.

As said before, in order to satisfy the conditions of the adiabatic theorem, one of the
key points in D-Wave’s QPU is that it must be kept in an environment isolated from the
outside, with a temperature below 20°mK. This is because it is the only way to ensure
that the system behaves quantum mechanically. In Fig. 1.1 we can see the D-Wave
quantum computer.

Another important aspect of D-Wave is that users interact directly with the D-Wave
quantum computer through a web user interface (UI), and through open-source tools
that communicate with the Solver API (SAPI). In this way users are able to submit
their problems to D-Wave, having three different solving methods:

• Simulated Annealing : that is the classsical counterpart of Quantum Annealing,
and so does not uese D-Wave’s QPU.

• Hybrid solver : it is an annealing methods that divides the problem in two
subproblem. One will be solved by the QPU and the other one by a classical CPU.
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Figure 1.1: This picture shows the D-Wave Quantum Computer

• Quantum Annealing : that is the method we have discussed so far. The main
problem with this approach is that at this moment total quantum machines are
not able to solve very complex problems.

1.2.1 Simulated Annealing

Simulated Annealing (SA) is the classical counterpart of Quantum Annealing. It was
firstly introduced by Kirkpatrick et al [7] to solve optimization problems and now it has
become a very used and studied technique. In mathematical optimization, simulated
annealing is used to find an approximate global minimum of a function E(x). It is
therefore evident the first main difference with quantum annealing. In the latter, indeed,
the optimal solution represented by the ground state is precise, as it is an eigenstate
of the Hamiltonian. In SA we can obtain only an approximation of that, which can be
more or less accurate. It becomes more efficient if it is used in a solution space that has
discrete solutions, so that these intrinsic uncertainties are reduced.

Therefore, as for QA, our goal is to find the minimum of a given function expressing
the problem, which plays the role of the energy of the system. SA algorithm starts with
an initial solution x0 and a starting temperature of T0. At each iteration, the simulated
annealing considers some neighboring state x′ of the current state x, and evaluates the
∆E = E(x′) − E(x). If ∆E ≤ 0 the new solution is accepted, because it means that



1.2. D-WAVE SAMPLERS 9

the new state has a minor energy. Otherwise, if ∆E > 0, x′ is accepted only with the
probability of

P (x, x′, T ) = exp

{
−∆E

T

}
(1.9)

where T is the current temperature. This probability is necessary to escape from a local
minimum by accepting worst solutions. In fact otherwise the algorithm would get stuck
in a local minimum being enable to get out. Obviously sometimes this problem persists,
as for high energy barrier it is still difficult to escape from a non global minimum.

Another important aspect of SA, is that at each iteration the temperature is reduced.
According to this probability starting from high temperatures means accepting all the
solutions, as the exponential will be big. In this way at the beginning of the process, the
system has the same probability to stay in any possible solution state. At each step, T is
therefore reduced following the annealing schedule. The choice of the cooling schedule is
critical for the performance of the algorithm. As it turns out, under certain conditions it
can be shown that the algorithm converges to the global minimum with probability 1 as
the number of iterations approaches infinity, provided the cooling schedule is sufficiently
slow [8].

To compare this method to the quantum annealing, we can identify from eq. 1.9
the escape rate of SA being e−

h
kBT , with kB and T respectively the Boltzmann constant

and the temperature, while h is the height of the barrier. We assume that h is propor-
tional to the system size N , which means that to reach the global minimum we need an
exponentially long time in N . (h ∼ O(N))

The advantage given by QA is that according to Quantum Theory the tunneling
probability is e−

√
hw
g , [9] whit w the width of the barrier and g the strength of quantum

fluctuations.
Consequently, as we know that h ∼ O(N) and w ∼ O(N

1
2 ), the time necessary to

escape from a local minimum is subexponential in N. This is schematically shown in Fig.
1.2. Several numerical and experimental studies have provided evidences for such an
advantage of QA over SA in some specific models [4].

It is important to underline the fact that despite QA advantages, SA nowadays is
much more useful. That is because though D-Wave quantum annealers are improving
both in the number of qubits and in topology 1, they are still not able to solve complex
problems. SA is then a very useful tool to solve them. That is why D-Wave gives the
user the possibility to also run Simulated Annealing.

1The topology of a QPU is the scheme by which the qubits are realted to each other. Currently
D-Wave is working at the Zephyr topology, but we are still very far to being able to have all qubits
connected to each other. [6]
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Figure 1. Schematic picture of the thermal fluctuation and quantum tunneling in a system with local energy minima

separated by an energy barrier with the height h and the width w.

for optimization, which induces the thermal (Arhenius) jump from a local energy minimum to
another separated by an energy barrier. The escape rate from a local minimum over the energy
barrier with height h is given by e−h/kBT , where kB and T denote the Boltzmann constant and
the temperature. Assuming that h is proportional to the system size N , this suggests that an
exponentially long time in N is necessary to reach the global energy minimum by SA.

In contrast to SA, quantum tunneling induces an escape from a local minimum through an
energy barrier as shown schematically in Fig. 1. The tunneling probability is approximately given

by e−
√
hw/g [14,15], where g denotes the strength of quantum fluctuation which corresponds to

the transverse field Γ in transverse Ising models. Therefore, assuming the height h∼O(N) and
the width w<O(N1/2), the time necessary to escape from a local minimum due to quantum
tunneling is subexponential in N . For such a system, quantum tunneling helps the system to
equilibrate even though the system is glassy, i.e., non-ergodic in the absence of the quantum
fluctuation, leading to a potential advantage of QA over SA in glassy systems. This role of
quantum tunneling was first discussed by Ray et al., in 1989 [16] (see discussions in [17]) in this
regard) in the context of the restoration of the replica symmetry or ergodicity due to quantum
fluctuation in the quantum version of the Sherrington-Kirkpatrick model [18], which is detailed
in the next section. Although the existence of an energy landscape with thin and high barriers
in specific models is still an issue of debate, it must be a foundation for the speedup of QA over
SA [17,19]. In addition, several numerical and experimental studies have provided evidences for
such an advantage of QA over SA in some specific models as shown in Secs. 1(b)i and 2. We show
a brief time-line for the development of QA in Fig. 2.

The review is organized in the following fashion: Having discussed the basic idea behind the
QA scheme and the results for various models in the context of annealing and defect generation
especially for annealing across a quantum critical point in Sec. 1, we move to discuss various
implementations of annealing protocols in Sec. 2. In Sec. 3. , we probe how does coupling to an
external environment influence the QA process. In Sec. 4, we again refer to the close systems and
discuss possible ways to speed QA processes especially in the context of avoiding discontinuous
phase transitions. Some recent applications are discussed in Sec. 5.

(a) Quantum phase transition and quantum annealing
The minimum gap min[∆(t)] appearing in Eq. (1.3) often decreases with increasing the number
of spins. In general the energy gap vanishes at a quantum phase transition (QPT) because a QPT
separates disordered and ordered phases and the ground state is degenerate at a transition. Let
us consider the transverse Ising Hamiltonian introduced in Eq. (1.2). The initial state, for Γ � J ,

Figure 1.2: Schematic picture of the thermal fluctuation and quantum tunneling in a
system with local energy minima separated by an energy barrier with the height h and
the width w.

1.2.2 Hybrid sampler

Due to the problems expressed in the last part of Section 1.2.1, an immediate way to
overtake them is to use both QA and SA simultaneously. The hybrid solver of D-Wave
Systems integrates classical and quantum annealing techniques to solve very complex
problems. In this way the advantage of quantum annealing, provided by D-Wave’s
quantum processing unit (QPU), and of classical algorithms are combined to find very
precise solutions. The hybrid solver can therefore studies problems that purely quantum
or simulated annealing fail to solve [10].

D-Wave’s Hybrid Solver divides therefore the problem in many parts. The QPU
analyze the parts of the problem where quantum annealing can give a great advantage,
while the CPU studies the rest. This dynamic allocation is managed by a complex
system that decides which parts of the problem are best solved by QA and which ones
are best for SA. In this way, the solver can resolve larger and more complex problems
than a purely quantum or classical approach could solve. It also improves the quality of
the solution, as the classical annealing can refine the results obtained from the quantum
annealer.

To sum up, D-Wave’s hybrid solver uses the advantages given by quantum computing
and combined them with the possibilty of solve big problems given by classical algorithms.
In this way it is able to give superior results in solving real-world optimization problems.
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1.2.3 Quantum Annealer

We have already discussed about quantum annealing techniques and how they works.
But how it is implemented in D-Wave system?
The lowest energy states of the superconducting loops that form the D-Wave QPU are
the qubits. They have a circulating current with its corresponding magnetic field, that
can be |↑⟩ = |1⟩ or |↓⟩ = |0⟩ or any superposition of these two. As explained previously,
at the end of the quantum annealing process each qubit collapses from a superposition
state into a classical state, that can be either |0⟩ or |1⟩.

Figure 1.3: This image shows the three main phases of a quantum annealing process.
Firstly, the qubit is in superposition, then the two states are separated by an energetic
barrier. In the end, this barrier is raised and shaped using biases.

The physics of the process described formally in Section 1.1, is shown better in Fig.
1.3. In this example at the beginning the system is prepared in a superposition state
(a), so that the probability of observing 0 or 1 during a measurement is equal. Then
the Hamiltonian slightly changes and forms two identical valleys (b), separating the two
states. A change in the magnetic field corresponds to an increase or decrease of the
barrier. The quantity that controls the external magnetic field is called a bias (we have
already encountered this term in the Hamiltonian 1.8). If there is a bias, the qubit
minimizes its energy going in the new ground state (c). Together with this quantity,
there is also another term that is typical of quantum computation. The qubits can in
fact influence each other, through the phenomenon of the entanglement. It can make
two qubits tend to end up in the same state or in the opposite state. We then have, for
example,

|q1⟩+ |q2⟩ −→ α |00⟩+ β |11⟩ (1.10)

Note the coefficient can be set trough this coupling term, with a device called coupler.
During the anneal, the qubit states are delocalized in the energy diagram. When a
problem is formulated, i.e. the Hamiltonian HP is defined, the strength of the couplers
and the biases are set by the machine, so that the problem’s energy landscape is shaped.

In Fig. 1.4(a) we can see an example of a landscape associated with a certain problem
of two qubits. Following the algorithm of QA, the quantum annealer then finds the energy
minimum, giving back the classical state that represents the minimum of all the possible
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Figure 1.4: (a) shows an example of an energy landscape, pointing out the best answer,
while (b) shows how over time the energy levels change. In particular it underlines the
point in which the first excited state approaches the ground state, giving the system a
possibility to escape from the g.s.

Figure 1.5: Fig. (a) shows the changing over time of A(s) and B(s), where s = t
tf

. Note
that they are both expressed in units of Joules. Fig.(b) shows how H changes over time,
with the system starting from the g.s of HD and finishing at the ground state of HP

ones. A way to better visualize what happens during quantum annealing in D-Wave
system is to visualize the energy landscape and how it changes over time. The process
starts whit the system in the ground state of the Hamiltonian HD, well separated from
the other energy levels. As the problem Hamiltonian HP is slowly introduced, some
eigenvalues could get closer to the ground state. As they get closer, the probability that
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the system jumps into an higher energy state increases. As shown in Fig. 1.4(b), there
is a point in which the first exited state comes closer to the ground state and then goes
away. That point is called the minimum gap.

Because of this approach, the system could jump into a different state from the lower
one. To limit this fact the thermal fluctuations must be controlled, and that is achieved
by bringing the system to very low temperatures.

We now draw the graph of the total Hamiltonian 1.7 in function of the parameters
A(t) and B(t). Usually an anneal has A(t) ∝ t

tf
and B(t) ∝ (1 − t

tf
) with tf the total

annealing time. In particular, in D-Wave they follow the graph in Fig. 1.5(a)
This implies the changing in the total Hamiltonian over time, obtaining for example

the situation described in Fig. 1.5(b) If the D-Wave’s quantum annealing works correctly,
the system should stay in the ground state throughout all the process and in particular
at the end of it.

However, at the moment D-Wave’s QPU is not fully evolved. In fact, despite its
5000 physical qubits, these are not fully connected, meaning that too complex problems
cannot be embedded. That is why D-Wave is currently developing a new topology for
its QPU.



Chapter 2

Unfolding in High Energy Physics

This second chapter concerns the Unfolding problem, which occurs very often in high
energy physics. In fact it happens frequently that due to the limited resolutions of the
measuring device the distributions are subjected to distortions and random fluctuations.
The unfolding is the procedure of correcting these distortions. In Section 2.1 we define the
problem, giving a mathematical description of it. Then, in Section 2.2 we present three
main classical method of unfolding, in particular the ones we will use in our analysis.
In the end an unfolding example is presented, in order to better visualize what we have
previously discussed.

2.1 Problem definition
In particle physics, as well as in medical physics and other disciplines, a frequent issue
involves the distortion of physical observable distributions. This distortion arises during
the measurement process due to the limited resolution of the instruments. Therefore,
physicists cannot compare the observed data with the theoretical ones.

The Unfolding technique (also called deconvolution or restoration) is the process of
correcting these alterations. As we are going to see, this process can be complex and
scientists when it is possible try to avoid it. For example, if the goal is to compare the
result with the prediction of an existing theory, one can simply modify the prediction
to include the distortions of the detector, and this can be directly compared with the
measurement. This is way simpler than unfolding. However, without unfolding the
measurement cannot be compared with the results of other experiments, in which the
effects of resolution will in general be different. In that case it is necessary to unfold,
and that is why we are now focusing on it.

Consider a variable x of which we want to determine the distribution f(x). Dur-
ing the experimental measurements, one came inevitably across some distortions that
changes the shape of the measured f(x). This is mainly due to the finite resolution in

14
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the measurement and the detection efficiency, ϵ(y), being less than 100%.
These phenomenons, together with the background noise, leads to migration and

distortion effects in the measured distribution.
Each observed event is therefore characterized by two quantities: a true value x,

which is unknown, and an observed value y, which is the one we measured. Consequently
we can define g(y) ≡ gM(y) as the measured distribution and f(x) ≡ fT (x) as the truth.
The goal of the unfolding is hence to find fT (x) knowing gM(y).

The mathematical foundations of unfolding are related to the descriptions of the
inverse problem given by Fredholm integral equation of the first type [11]:

gM(y) =
∫
K(y,x)fT (x)dx (2.1)

where as explained before fT (x) is the true distribution of the variable x = (x1, x2, ..., xJ)
and gM(y) is the measured distribution for the variable L-dimensional y = (y1, ..., xL).
These two distributions are related to each other by the convolution with the Kernel
function K(y,x), which is known in the unfolding case as the smearing function as it
describes all the detector effects on the measurement.

In particle physics usually the distributions are one-dimensional, which means that
they can be described by histograms representing the expected number of counts of the
variable for a given interval. So now the goal is to find a more accurate relationship of
this kind specifically for histograms.

Suppose there is an experiment in which occurs a certain number of events mtot

described by the vector m, and assume they follow a certain fT (x). It is clear that the
probability to find the true value x in bin j is

pj =

∫
binj

fT (x)dx (2.2)

We will consider now the expectation value of the total number of real events µtot,
which is different from mtot as the first represents the physics we expect the system to
follow, while the latter is the real physics of the events. Usually µtot is obtained through
Monte Carlo simulations. In the unfolding problem, our goal is therefore to estimate mi

with µi, as the real distribution is impossible to know. Because of that, mi does not even
enter the present formulation of the problem. Instead, we will construct our relations
directly using µi.

By using 2.2, we can then express the expected number of events in the j-th bin as:

µj = µtot pj (2.3)

It can be written as µ = (µ1, ..., µM) and it is called the ’true histogram’. In analogy to
what we have said now we can describe how we expect the measured value to be due to
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the detector effects. We can then define the probability to observe a certain value y in
bin i to be

p′i =

∫
bini

gM(y)dy (2.4)

As said before, it is important to notice the difference between the measured value ni

and the one we expect to be measured νi. It is then useful to define also the ’measured
histogram’ n = (n1, ..., nN). This is the N-bin histogram filled with the observed values
of the variable x. Note that in general, N ̸= M. Following the same reasoning established
previously, in this formulation we will start by using the expected value νi, which are
the ones we can know given the gM(y), i.e. the expected distribution of the measured
data. Note that the relationship between the real values and the expected ones will be
much more clear in the example presented in Section 2.3.

By using the law of total probability[12] the expectation values νi can be also ex-
pressed as

νi = µtot P(event observed in bin i)

= µtot

∫
dy P(observed in i | true value y and detected) ϵ(y)fT (y)

= µtot

∫
bini

dx

∫
dy s(x|y) ϵ(y) fT (y) (2.5)

Here s(x|y) is the conditional p.d.f. for the measured value x given that the true value
was y. We will call

r(x|y) = m(x|y) ϵ(y) (2.6)

the response function, and m(x|y) the migration function. Tthe difference between
these two is that the response contains also the information about the efficiency, while
the migration tells only how the true value y changes in x (i.e. "migrates" from y to x).
The efficiency is a quantity representing how the detector is good at detecting events.
As we will see in Chapter 4, it is the ratio between the number of true events that were
successfully detected and reconstructed in each bin ρi and the number of events that
truly occurred in each bin µi. This means:

ϵi =
ρi
µi

(2.7)
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If we write 2.5 by breaking the integral over y into a sum over bins, we can then write

νi =
M∑
j=1

∫
bini

dx
∫
binj

dy m(x|y) ϵ(y) fT (y)
µj/µtot

µj

=
M∑
j=1

Rijµj (2.8)

where we have defined the response matrix R by

Rij =

∫
bini

dx
∫
binj

dy m(x|y) ϵ(y) fT (y)∫
binj

dy fT (y)

=
P(observed in bin i and true value in j)

P(true value in bin j)
(2.9)

obtained by substituting the relation 2.3 into 2.8. In addition to the effects studied
above, i.e. limited resolution and efficiency of the detector, it is necessary to include the
noise caused by some background process. If we consider βi as the expectation value
for the number of events originated from background process, the relation 2.8 can be
modified as

νi =
M∑
j=1

Rijµj + βi (2.10)

It is important to understand that β includes not only the background process, but
also all the fakes measurements, which means all the detected signals created by the
detector which do not correspond to real events. We will see better this in Chapter 4.

To sum up what we have said above, we have the following vectors:

• m = (m1, ...,mM), which describes the real distribution, i.e. the one we want to
find with the unfolding procedure.

• µ = (µ1, ..., µM), that represents the expected value of the real distribution. It is
known also as the truth.

• n = (n1, ..., nN), that is the real number of the entries observed, i.e. the measured
values. It is also called the reco distribution.

• ν = (ν1, ..., νN), the expectation values for the observed number of entries.

• R, the response matrix. As seen from eq. 2.9, it contains all the information
about the conditional probability that an event will be found with measured value
x in bin i given that the true value y was in bin j. To sum up, it tells how the
distribution is altered during the measuring phase.

The goal is to find µ assuming that the other quantities in eq. 2.10, that is the response
matrix and the background effects, are known.
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2.2 Unfolding classical algorithms
Throughout the years a lot of unfolding algorithms have been developed, especially with
the establishment of machine learning methods. In this chapter we will focus on three
classical methods commonly used in high energy physics. The unfolding methods that
will be discussed here are the ones that we will use for the analysis. In particular, we are
interested in two main methods: matrix inversion (MI), iterative bayesan unfold-
ing (IBU). In the end of the Section, another method is presented, the regularisation
method, which will not be directly used in our analysis but it will be the starting point
in order to express the unfolding in terms of a quantum annealing problem.

2.2.1 Matrix inversion method

We begin by examining the first one. The MI method is the first one that comes to
mind when trying to solve equation 2.10. This, however, often leads to an unacceptable
solution, as we will see. Consider the case where the response matrix can be inverted and
where the number of bins in the true and in the observed histograms are equal, M = N .
We obtain

µi =
M∑
j=1

R−1
ij (νj − βj) (2.11)

As explain above we cannot know exactly ν, so an obvious choice for his estimators
can be given by the corresponding data values n. We can then rewrite 2.11 as

µi =
M∑
j=1

R−1
ij (nj − βj) (2.12)

This relation can also be derived formally from the principle of maximum likelihood.
In this thesis we deal with counting experiments, so it is fairly general to assume that the
data in each bin are independent Poisson observations. We can define then the likelihood
function as

L = νni
i

e−νi

ni!
(2.13)

Consequently the maximum likelihood estimator for ν can be obtained by maximizing
L or, more conveniently, the log(L) :

∂logL(µi)

∂µi

= 0 ∀i (2.14)

that can be easily solved obtaining exactly ν = n, and consequently equation 2.12.
Unfortunately, this simple solution is not always working.
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What is happening? The main reason for the failure arises from the fact that we do
not have the expectation values ν, we only have the data n, which are subject to statistical
fluctuations. As a consequence, R views these fluctuations as effects of smearing by the
detector (and not of statistical origins) and uses this input to reconstruct µ. This process
magnifies the fluctuations back into the result, and this leads to an unacceptable solution.
This is strictly related to the fact that MI is a ill-conditioned problem , which means
that small changes in the input parameters could lead to big changes in the output. This
is evident in 2.3. Despite of its problems, MI gives a general idea of how unfolding works
and provides a good starting point for other methods.

2.2.2 Iterative Bayesian method

It is in fact evident from the discussion made in 2.1 that there is the need to incorporate
prior knowledge of the distribution. This suggests that a possible solution could be given
by a Bayesian approach [13].

That is the main idea behind the Iterative Bayesan Unfolding method. This
procedure can be described as a "cause and effect" model following the Bayes theorem.
We can indeed identify the cause Ci as the number of events in bin i of the true histogram,
while the effect Ej as the events in the i-th bin of the measured histrogram. It is therefore
clear that the effect Ej is known, while the exact cause Ci is impossible to determine.
However, thanks to some knowledge about the migration, efficiency and resolution, we
can estimate the probability that a certain event belongs to a defined cause P (Ej|Ci).
(which means we can determine the number of events observed based on the true values.)
This implies that the number of events νi in the measured histogram can be expressed
as the sum over all the possible causes that give that effect divided by the efficiency that
the cause i has an effect. (That efficiency can be expressed as the sum of all the effect’s
probability caused by a fixed Ci.)

νi =
1

ϵi

∑
j

P (Ej|Ci)µj (2.15)

If we equals this relation to 2.8, we have that

Rij =
P (Ej|Ci)

ϵi
(2.16)

This means that by knowing the response matrix, we know also this combined prob-
ability. Following a similar reasoning, it is clear that the number of events in the real
histogram can be seen as

µj =
∑

R−1
ij νi =

1

ϵi

∑
j

P (Ci|Ej)νi (2.17)
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This means that R−1
ij = P (Ci|Ej)/ϵi

We have then find a way to calculate the inverse of the response matrix by estimating
this probability. Using Bayes theorem, we have that

R−1
ij =

P (ci|Ej)

ϵi
=
P (Ej|Ci) P0(Ci)

P (Ej) ϵi

=
P (Ej|Ci)P0(Ci)

ϵi
∑ncause

k=1 P (Ej|Ck) P0(Ck)
=

=
P (Ej|Ci) P0(Ci)

[
∑neffects

k=1 P (Ek|Ci)] [
∑ncause

k=1 P (Ej|Ck) P0(Ck)]
(2.18)

where P (Ej|Ci) is determined by 2.1, and P0(Ci) is the a priori probability of the cause
Ci, i.e. the probability of the truth distribution. This is usually taken by Monte Carlo
simulations or by using a simple constant distribution.

Once that we have find R−1
ij , we can calculate the a posteriori probability of the cause

Ci,

P1(Ci) =
µi∑
j µj

=

∑
j R

−1
ij νj∑

j µj

(2.19)

that is a better estimator for the real distribution than the Monte Carlo simulation
by which we have found P0 before. It is clear that now we can put 2.19 inside 2.18, and
find a new R−1, that can be used to find P2(Ci).

By using this method iteratively we will obtain improved estimation of the real dis-
tribution, until the algorithm reaches a certain stability. To have an idea, in most of the
commons practical applications 4 iterations are sufficient.

2.2.3 Tikhonov regularisation

Although this methods are very useful and gives quite good results as we shall see in 2.3,
it is important for the seek of this thesis to discuss another unfolding method, that will
be used later in Section 4.1.1. This alternative approach is to impose a certain value rep-
resenting the smoothness of the real histogram µ. This is also known as regularisation
of the unfolded distribution. When explaining the MI method we have introduced the
likelihood function as 2.13. We can then follow the idea that µ maximize the value of
L, as explained before. It is clear that we can obtain a similar result by minimizing the
chi-square function. In this way, we ensure that the reconstructed data fits the observed
data as closely as possible. We can therefore express the chi square relation as

χ2 =
∑
i

νi − (Rµ)i
σ2
i

(2.20)
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where the notation is the one defined earlier and σi represent the standard deviation. If
we write this relation in matrix form, we obtain

χ2 = (ν −Rµ)TW (ν −Rµ) = ||ν −Rµ||W (2.21)

where we have written W as the covariance matrix. For clarity, we will omit from now
the subscript W .

In addition to this term, which represent the acceptability of the solution, we need
to define a measure of its smoothness by introducing an arbitrary function S(µ) called
the regularization function. In Tikhonov regularisation, this function is define as

S(fT (y)) = −
∫

(
dkfT (y)

dyk
)2 = −||Dµ||2 (2.22)

Here we have used the fact that our fT are discrete, so that we can go from integration to
sum. We have then used D as the Laplacian operator. That is because usually a common
choice for the derivative is k = 2, in order that S(µ) is related to the curvature. We can
now minimize using the method of the Lagrangian multipliers with a free parameter λ
and we obtain:

y = ||ν −Rµ||+ λ||Dµ|| (2.23)

That is the function that we want to minimize in function of µ. Note that in practice
as for the Matrix Inversion method we will use n instead of ν.

2.3 RooUnfold example
In particle physics, one of the most commonly used framework for performing the un-
folding is RooUnfold [14]. In this Section we have used it to show an example of the
unfolding process in order to give a visual explanation of how it works. This would be
very useful to better understand Chapter 4.

We consider a double-picked distribution of 10000 samples, generated from Monte
Carlo simulation by two gaussians with expected value respectively of x = 3.3 and
x = 6.4, and with standard deviation of σ1 = 0.9 and σ2 = 1.2, having 20 bins equally
spaced. This distribution corresponds to our truth distribution. We now simulate a
measurement, by introducing the detectors parameters. For this simulation we choose
constant values for the efficiency ϵ = 0.6, while the smearing function is a gaussian with
mean smear b = −0.13 (bias) and standard deviation s = 0.21 (smear). We do not
consider background effects which would give us fake data. These enable us to generate
the measured through a loop over all the events. Fig. 2.2 shows these two distributions.

The response matrix is generated separately with a Fill or Miss process, inside an
identical loop of the distributions generation. The choice to use an identical loop but not
the same to generate the response is necessary to have statistical fluctuations. Otherwise
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Figure 2.1: This figure shows the response matrix having the truth histogram on the
top and the measured on the right. It is important to understand that these are not the
truth and the measured that we unfold, but come from another Monte Carlo generation.
Following the notation, these are µ and ν, while we are unfolding n.

the unfolding would be without sense, because we would already know everything. We
cannot generate the response with the same distributions that we want to unfold, but
they have to be slightly different. The response basically is a model that tells how the
distribution changes, but it has to be applied to slightly different distributions, otherwise
the unfolding result would be perfect bu with no meaning.

If an event is both generated and detected, it means that it is present both in the
truth and in the measured distributions, and so it fills the response. If it is only generated
instead it fills just the truth, not the measured. That is why it is called a Miss event.
Thanks to this process we obtain the response in Fig.2.1.

Having the truth, the measured and the response enable us to use RooUnfold methods
to compute the unfolding and calculate the chi square. In particular, we are interested
in Matrix Inversion and IBU methods. Fig. 2.3(a) shows the result.

An interesting aspect is to see what happens if we change some parameters. We have
already seen that Matrix inversion is quite a good way to unfold, except from the fact
that small changes in the initial conditions could lead to big unfolding differences. If for
example we take the same distribution as before and we just change the smearing value
from s = 0.21 to s′ = 0.4, which does not change significantly the measured, we clearly
see that MI collapses while IBU, which is more stable and regular, remains valid. We
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see that in Fig. 2.3(b)

Bins 

Figure 2.2: These are the truth and the measured distribution of a double picked gaussian
distribution. The data are generated through Monte Carlo simulations, and has no
physical meaning.

Bins 

(a)

Bins 

(b)

Figure 2.3: (a) shows the unfolding result comparing the two methods presented, giving
optimal final chi square. Figure (b) shows that with a simple changing in the smearing
parameter s from 0.21 to 0.4 (resulting in a little distortion on the measured) MI method
inevitably fail, while IBU remains stable.



Chapter 3

The tt pair production

This chapter is about a brief introduction to particle physics. As the goal of this thesis
is to use the quantum annealing unfolding to high energy physics distributions. First
the Standard Model of particle physics is presented, describing what we currently know
about all the particles and the forces of the universe. We then give a presentation of the
particle physics detectors at CERN, in particular ATLAS, which is the one used in the
analysis. In the last Section of this chapter we give an overview of the pair of quarks tt
studied in the analysis of this thesis. It is explained their production and their decay,
focusing on the decay channel we will study in Chapter 4.

3.1 Standard model of particle physics
The standard model of particle physics (SM) is a theory that describes the fundamental
particles and how they interact. It was developed throughout the latter half of the 20th
century, and it integrates how the three interaction forces (electromagnetic, strong and
weak forces, not including gravity) influences elementary particles, such as quarks and
leptons. Despite recently studies have proved some holes in the theory, it is presently
one of the best models to interpret the world.

It is based on three gauge groups, associated respectively to the strong interaction
and to the electroweak force:

SU(3)c ⊗ SU(2)L ⊗ U(1)Y (3.1)

3.1.1 Particles of SM

The elementary particles of the SM are divided in two main groups: fermions and
bosons. The first ones have semi-integer spin, while the latters have only integer values
[15].
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The fundamental "matter" particles are all fermions. They are divided in 6 leptons
and 6 quarks. The main difference between them is that leptons don’t feel the strong
force, while both interact with the electro-weak interaction. For each one of these it
exists a corresponding anti-particle with same mass, but opposite quantum numbers,
such as charge. Fermions are organized in three different generations, each formed by
two leptons and two quarks, listed in Table 3.1.

Quarks Charge Spin Leptons Charge Spin
u
d

2/3
−1/3

1/2
1/2

e
νe

-1
0

1/2
1/2

c
s

2/3
−1/3

1/2
1/2

µ
νµ

-1
0

1/2
1/2

t
b

2/3
−1/3

1/2
1/2

τ
ντ

-1
0

1/2
1/2

Table 3.1: The fundamental fermions in the Standard Model organized by generation.
The table shows some fundamental properties of the fermions, such as charge and spin.

The 6 quarks have 3 possible colors (red, green, blue) with their corresponding quan-
tum numbers. Leptons, conversely, have the leptonic number L, which needs to be
conserved during interactions. Then, to sum up, we have 6 leptons and 6 × 3 bosons,
with the respective anti-particles, for a total of 48 fermions. On the other hand, particles
are subjected to forces. In order to not violate relativity principles, these interactions
are necessarily mediate by other particles, which have integer spin and are so bosons.
They are presented in Table 3.2, where we we note that we have 12 bosons (13 with the
H boson).[16]

Boson Spin Charge Force Mediated
Photon (γ) 1 0 Electromagnetic

W+ 1 1 Weak
W− 1 -1 Weak
Z0 1 0 Weak

Gluon (g) 0 1 Strong
Higgs (H) 0 0 -

Table 3.2: The bosons of the Standard Model, their spin, and the forces they mediate.
Note that according to QCD, we need 8 different type of gluons, which are all identified
by g. Another important aspect not shown in the table is that they are all massless
except for W and Z bosons.

While γ is massless, which means that its interaction has an infinite range, W and
Z are massive and have a finite range of action. Note that despite also g are massless
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Figure 3.1: Fundamental particles of SM grouped depending on their interactions

they also have a finite range, due to a phenomenon called quark confinement [17]. An-
other important boson for the SM theory is the Higgs boson H, which is the cause of
fundamental particles having mass. The total of 48+ 12+ 1 = 61 particles that we have
discussed above, can be sum up in Fig. 3.1.

3.1.2 Forces of SM

As said previously in 3.1.1, the SM provides an explanation for three fundamental inter-
actions: electromagnetic (EM), weak and strong [17].

EM interaction is the only one that has also a classical description. Maxwell’s equa-
tions imply that two bodies electrically charged interact between each other through a
photon γ. According to quantum field theory, in particular Quantum Electrodynam-
ics (QED), γ is a massless boson, which means as explained before it has an infinite
range of interaction. QED, first introduced by Feynman [18], is described by a gauge
group U(1)EM . This implies that when two fermions electrically charged interact with
each other, they simply exchange photons, so that one fermion emits γ while the other
absorbs it. An example of this is shown in Fig. 3.2(a).

From the vertex of this interaction we can evaluate the fine structure constant α,
which is an adimensional constant representing the strength of the EM force. Its value
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depends on the energy scale used, but usually its common value is:

α ≃ 1

137
(3.2)

Secondly, the Standard Model explains the weak interaction through the Quantum
Flavourdynamics (QFD). In this interaction, particles change the quantum numbers
associated to their flavours. Therefore, diagrams as the one in Fig. 3.2(b) are permitted.
The force is mediated by three bosons: two electrically charged (W±), which is present
in charged currents interaction, and a neutral one (Z), for neutral currents. As for QED,
also QFD has its adimensional constant indicating the strength G, which is:[16]

G =
√
2
g2W
8m2

W

(3.3)

There are two main difference with EM interactions. Firstly, the weak interaction violates
two symmetries: parity (P) and charge (C). In addition, as it is a non Abelian gauge
theory, it allows to have vertices in absence of fermions. EM theory does not allow this.

To better understand these two phenomenons, the SM in reality provides a single
theory called Electroweak interaction. According to this, EM and weak interaction
are seen as two different aspects of a single electroweak interaction. In particular, while
at the beginning of the universe (En ≃ 250GeV ) these two interactions were combined,
at lower energies their differences emerged. To have just one group able to bring a
massless boson γ and three massive bosons W±, Z, the simplest is defined as:

SU(2)L ⊗ U(1)Y (3.4)

where Y is the hypercharge Q = I3+Y/2, Q the elecrtic charge and I3 the third component
of the weak isospin, which is one of the always conserved quantum numbers. Note that
in order to be verified, this theory must include the Higgs meccanism to give masses to
the bosons, otherwise (as it is at high energies) they all four would be massless.

In the end, the third force described by SM is the strong interaction. According to
Quantum Chromodinamics theory (QCD), this last interaction involves only quarks
and their color quantum numbers. It is therefore related to the SU(3)C gauge group. It
is important to know that in this interaction, the energy scale varies significantly with
the numbers of quark flavors, so for convention it is used the value of 250MeV (the
energy needed to confine two quarks in a pion.) According to QCD, there are 8 different
mediators massless called gluons. Obviously then, the 6 quarks presented previously in
Sec. 3.1.1 all are triplets of colour. As for the weak interaction, QCD is a non-Abelian
gauge group, so 3 or 4 gluons vertices are permitted. An example of an allowed diagram
is shown in Fig. 3.2(c)

To sum up all the various charges discussed above, absolutely conserved quantum
numbers in the Standard Model are: electric charge (Q), weak isospin (I3) and leptonic
number (L).1

1There is also the baryonic number B, which we have not introduced because it concerns system of
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(a) Bhabha scattering
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νµW+

(b) π+ (ud) decay via weak
force
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t̄

(c) Production of tt̄ via qq̄
annihilation

Figure 3.2: Feynman diagrams representing the three fundamental forces. (a) shows an
EM interaction between an electorn and a positron, (b) shows the decay of a pion, com-
posed by two quarks, into a doublet lepton-neutrino while (c) represents the production
of tt trough qq annihilation via strong force.

3.2 The ATLAS detector
The European Organization for Nuclear Research, commonly known as CERN, [19] is one
of the world’s largest and most respected centers for scientific research. It was established
in 1954 by 12 European nations with the aim of exploring fundamental questions about
the universe thanks to the study of particle physics. Throughout the years many particle
accelerators have been built with this goal, and the current LHC accelerators is CERN’s
most significant and ambitious project.

3.2.1 LHC

The Large Hadron Collider (LHC) is the world’s most powerful particle accelerator,
located at CERN. It consists of a 27-kilometer ring of superconducting magnets and
detectors buried underground, with a medium depth of 100m. The aim of this accelerator
is to bring protons to very high energies (with velocity near c) and collide them with
each other. It was built with an ideal energy of 14 TeV , which we are very close to
reaching.[16]

The collider consists of two parallel beam pipes, separated by 194 mm, through which
beams circulate in opposite directions. These pipes intersect at only four interaction
points, where four different big experiments have been set up, as shown in Fig. 3.3:

• ATLAS (A Toroidal LHC ApparatuS): a general-purpose detector investigating a
wide range of physics

• CMS (Compact Muon Solenoid): designed for purposes similar to ATLAS, but uses
a different technical solutions

quarks and anti quarks. Here we work only with single quarks.
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• LHCb (Large Hadron Collider beauty): specialized in investigating the slight dif-
ferences between matter and antimatter by studying the b quark

• ALICE (A Large Ion Collider Experiment): dedicated to heavy-ion physic and
designed to study the physics of strongly interacting matter at extreme energy
densities

.

Figure 3.3: A view of the complete structure of the LHC facility at CERN. We can see
the 4 main experiments (ATLAS, CMS, LHCb, ALICE) and the small accelerators that
inject the protons inside the collider.

LHC is made by superconductive magnets that enable us to control and direct the
particle beam and by 8 superconductive cavities that accelerate it. As the magnet
are superconductive, they specifically need very low temperatures to work properly, in
particular below 2 K. This enables the passage of circulating currents of the order of
35 kA producing magnetic field above 8 T . It is important to underline the fact that
protons, thanks to a system of acceleration outside LHC, are injected at energy up to
450GeV .

In an accelerator, a very important parameter is the luminosity. The instantaneous
luminosity L is defined as the ratio between R, the rate of produced events, and the
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cross-section of the process σ

L =
R

σ
(3.5)

This parameter depends on beam properties, such as the number of protons N , the
revolution frequency f , the relativistic factor γ, the normalized beam emittance η, the
beam beta function β and the luminosity reduction factor F . It depends also on the
number of bunches per beam kB, that are the groups of particles that are packed together
inside the accelerator and travel as a single unit. Usually the bunches are of about 1011

protons. Therefore the total equation is:

L =
γfkBN

2

4πσ
F (3.6)

LHC at ATLAS is able to reach peaks of L = 1034 cm−2s−1, which corresponds to to
about 1 billion proton-proton collisions per second at a rate of 40 MHz.

3.2.2 ATLAS experiment

In Section 3.2.1 we have seen how LHC hosts 4 main big experiments, including ATLAS.
ATLAS is a cylindrical detector that spans 44 meters in length and 25 meters in diameter,
weighing around 7,000 tons. Its size and sophisticated technology enable it to capture
and analyze a wide range of particle interactions resulting from LHC collisions. As
explained before, it is able to collect events coming from proton-proton collision at an
energy up to 13 TeV and about 1023 cm−2s−1 of luminosity, with bunches of up to 1011

protons colliding 40 million times per second.
Key features of the ATLAS detector include the inner traking system, the electro-

magnetic (EM) and hadronic calorimeters (HAD) and the muon spectometer. Fig. 3.4
presents a schematic view of ATLAS detector.

The inner detector has a crucial role on tracking particles and measuring their mo-
mentum. It is formed by three sub-detectors, all contained within a cylindrical envelope
and surrounded by a 2 T magnetic field. In the center there is the Pixel Detector, which
is the closest to the collision point and provides very high spatial resolution. There is
then the SemiConductor Tracker SCT, made of silicon strip detectors and able to track
precisely over a larger area. Outside these two, there is the Transition Radiation Tracker
TRT, which uses gas-filled straw tubes to provide additional tracking and electron iden-
tification.

The main purpose of the two calorimeters is to absorb particles (respectively photons
and electron for EM and hadrons for HAD) and converting their energy to detectable
signals, both of liquid Argon (LAr) type. In particular, the hadronic calorimeter is
provided by a scintillator-tile calorimeter, which is separated into a large barrel and two
smaller extended barrel cylinders, one on either side of the central barrel.
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Figure 3.4: A schematic view of the ATLAS detector and its main components: Inner
tracking systems (Pixel detector, SCT and TRT trackers), calorimeters and muon spec-
tometers.

They are then surrounded by the muon spectrometer, which gives good muon identi-
fication and their momentum. It is also able to determine unambiguously the charge of
high transverse momentum muons.

In the end, all the collected data are passed to a very high efficient trigger system,
which reduces the data rate to a manageable level for storage and analysis. Schematically,
it is made up by two levels. The first one is the Level-one Trigger, which uses a subset of
total detector information to select potentially interesting events reducing the data rate
from 40 MHz to about 100 kHz. There is then the High Level Trigger, a software-based
system that further reduces the rate to about 1 kHz for storage.

3.3 tt distribution
Up until now, we have generally discussed the Standard Model and high-energy physics
accelerators. Now we must study more specifically the quarks and the distribution we
are going to analyse in Chapter 4. We are dealing with top quarks, the which we have
already introduced. In this Section we will firstly present the particle and its properties,
and then we will see how the distribution of tt can be produced and how it can decays.
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3.3.1 The top quark particle

According to the SM, as seen in Section 3.1.1, the top quark is an elementary particle
belonging to the third generation of quarks. Its existence was postulated in 1973 by
Makoto Kobayashi [20] and Toshihide Maskawa to explain the observed CP violations
in kaon decay, and was discovered in 1995 by the Collider Detector and D0 experiments
at Fermilab. It is one of the most particular elementary particle observed so far having
very singular properties that let him to behave in a completely different way in respect
to the lightest elementary components. In the Standard Model of particle physics, it is
the strongest coupling at the scale of the weak interactions and above.

Like all other quarks, the top quark is a fermion with spin spin 1/2 and participates
in all four fundamental interactions:

• electromagnetism, having electric charge of Q/e = +2/3

• weak interactions, as it is part of the weak isospin doublet, with I3 = 1/2

• strong interactions, having colour charge

• gravitation, which however is not explained in SM

Among all the elementary particles, the top quark is the most massive with a mass of ≃
173 GeV. According to the SM, due to this it has a very short lifetime of τ ≃ 0.5×10−24s,
which is smaller than the typical tome scale of hadronization.[21] Differently from all the
others quarks, due to this rapidity t decays semi-weakly into a real W boson and a b
quark before it can hadronize, without forming mesons or baryons with other quarks:

t −→ Wb (3.7)

In fact, unlike the other quarks, it has never been observed a bounded state involving
this quark. This gives physicists a unique opportunity to study a bare quark alone, i.e.
not combined to form hadrons, and can only be observed as such. Following 3.7, the W
boson decays as well, giving three different decay channels:

W −→ lνl

W −→ qq′ −→ jj (3.8)

where l is a lepton and νl its corresponding neutrino. q and q′ are then quarks and j
their corresponding jets. 2 This will be better understood later in Section 3.3.3.

2A jet of quarks is a phenomenon which occurs when a quark or gluon is ejected at high speeds. Due
to the property of color confinement in QCD, quarks and gluons cannot exist freely and independently.
As a result, they quickly hadronize, forming a stream or "jet" of particles that includes hadrons
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3.3.2 tt production process

There are multiple processes that can lead to the production of top quarks. we can
divide them into two categories: top quark-antiquark (tt) pair production, which hap-
pens through strong interactions, and single top quark production (t), through weak
interactions. At the LHC, the top quark is produced mainly through gluon-gluon fusion,
giving tt pair. Sometimes it can happen that it is produced singly, with an associated
W boson and a b quark. However, this second case is very rare than the other one. At
the moment, the top quark is studied in ATLAS and CMS experiments at CERN.

As said before, there are two main way of production of t. For what concerns tt
production, we can link it to two main processes. At LHC the dominant mechanism is
the gluon-gluon fusion, where two gluons collide with each other and decay into the tt
pair. The second process, which prevailed at Tevatron (the accelerator where the top
quark was discovered) but is less present at today accelerators, is the annihilation of a
quark with its anti-quark, producing a gluon that originates the pair. For having an idea
of the relative contributions for the top production at the LHC, we have:

B(qq −→ tt) < 20%

B(gg −→ tt) > 80% (3.9)

In addition to the tt production, which as discussed above uses the strong force, the
top quark can be also produced via the weak interactions. In this process, however, only
one top quark is produced, and this method is called "single top quark production". To
this reason we will not go into detail for this production, as it is not the goal of this
thesis. Indeed in this work, as we will see in Chapter 4, we are dealing with correlation
between a top and an anti-top quark.

3.3.3 tt decay process

As discussed previously in Section 3.3.1, the top quark decays before hadronization and
it does not form bound state with other quarks. This implies that is the only quark we
can "observe" alone.

Top quark decays almost 100% of the time into a W boson and a b-quark, having the
decay fraction as

RWb =
BR(t −→ Wb)

BR(t −→ Wq)
=

|Vtb|2

|Vtb|2 + |Vts|2 + |Vtd|2
(3.10)

Here, |Vtb|2, |Vts|2, |Vtd|2 are the coefficient of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix responsible for the t −→ q transitions. They contains the information of the
strength of the decays. Thus, this implies that |Vtb|2 is much grater in magnitude than
the others. As it is for the laws of the conservation of the charge, if it is a top quark we
will obtain W+ and a b quark while if we have t we will have W− and a b quark.
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Since also W is instable, depending on how it decays we will have three different
channels. Experimentally it decays into hadronic final states qq′ with a branching fraction
of approximately 2/3 and into a charged lepton l and its corresponding neutrino ν with
a decay fraction of approximately 1/9. This implies the following distinctions for the tt
decay channels:

• Dilepton channel, in which both W bosons decay into a lepton-neutrino couple:

tt −→ W+bW−b −→ l+νlb l
′−νl′b (3.11)

usually we have l = e or µ.

• Semileptonic channel, where only one W decays into a doublet lepton-neutrino and
the other became a couple of quark-antiquark.

tt −→ W+bW−b −→ l+νlb qq
′b (3.12)

or
tt −→ W+bW−b −→ qq′b l−νlb (3.13)

It has very low background but as there are undetected neutrinos it cannot be
solved kinematically.

• All hadronic channel, in which both W decay hadronically

tt −→ W+bW−b −→ qq′b qq′b (3.14)

In our Unfolding analysis, we will consider the semi-leptonic channel, as we will see
in the next Section. This is shown in Fig. 3.5.
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b̄

ℓ+

ν
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q

Figure 3.5: Semi-leptonic decay of tt̄, that is the channel used in our unfolding analysis



Chapter 4

Analysis Strategy

This chapter fulfil the aim of this thesis. Up to now I have studied Quantum Annealing,
Unfolding and a brief introduction of top quark physics. It is now time to combine all
of this by understanding how I can translate the unfolding into a quantum annealing
problem, and using this result to analyze data from a tt experiment. In the analysis
carried out in this last chapter I want to know if this new unfolding technique could
be better than the classical ones already introduced. My goal is also to explore the
limitation of this process, by examining all of the three annealing methods provided by
D-Wave system. To do this in Section 4.1 I first study how I can write the unfolding
in the QUBO form, necessary for QA process. Then I give an overview of the Qunfold
Pyhton package, explaining how it works and all the features that characterize it. Section
4.2 presents the data studied, providing all the information about the variables which
I am going to unfold, showing all the distributions. In the end, Section 4.3 is the real
study of the data. Here, all the unfolding techniques are used and compared to each
other so that I can analyze and see the results. Clearly, it is the most important part of
this work.

4.1 QUnfold
This Section deals with the introduction of QUnfold, a new and innovative Python pack-
age born to perform the Unfolding through Quantum Annealing techniques by using the
public D-Wave systems’s quantum annealer. The origin of the idea behind this framework
traces back to a paper written by Di Sipio et al. in 2019 [22] where they analyzed and
dephined the mathematical concept, proving that their approach was possible. However,
they didn’t go any further, as in their analysis they implemented a code that worked
specifically for their data.

QUnfold was developed by three Ph.D students (G. Bianco, S. Gasperini, M. Lorusso)
from the idea to transform this previous work into a functional and accessible tool [23].

35
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The package starts with Di Sipio’s idea, bringing it to life, and then creates an indipen-
dent software program that uses the advantages of quantum annealing to solve unfolding
problems.

In this chapter then I will explore the development of QUnfold, starting from the
theoretical foundations and then moving to the main problems QUnfold’s developers have
faced. In particular, I examine the binarization problem and the three main unfolding
methods developed by this software.

More precisely, in this Section I will study in detail how I can reconduct the Unfolding
problem to a Quantum Annealing problem by using the QUBO formulation. I will then
see that this problem is strictly connected to the one of binarization, which will be
discussed in detail in Section 4.1.2. In the end I will discuss generally about the most
significant implementations and functionalities of this program.

4.1.1 Unfolding as a QA problem

It is clear from the discussion made in Chapter 2 that each unfolding method implies
matrix operations. To translate them to the quantum computing world, I need to take
an intermediate step: I need to express them through binary optimizations, so that I can
implement it on a quantum annealer. In particular, as explained before, the problem can
be optimized by the quantum annealer machine using the quadratic unconstrained binary
optimization (QUBO) formulation. The objective function associated with a QUBO can
be formulated as

H(x) =
∑
i

∑
j

Hijxixj (4.1)

I now take into consideration the fact that xi are binary variable, so that x2i = xi. I can
then separate 4.1 as

H(x) =
∑
i

aixi +
∑
i<j

bijxixj xi ∈ {0, 1} (4.2)

That is the function I want now to minimize, with ai and bij the constrains. The goal
now is then to derive the QUBO formulation of the unfolding problem, expressed by
equation 2.10. I start by considering the Tikhonov regularization, i.e. equation 2.23. To
convert this equation into QUBO form (eq. 4.2), I start by using index notation, i.e.:

Ax −→ Aijxj

AB −→ AijBjk (4.3)
ABT −→ AijBik
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In this notation a summation over repeated indices is implicit. Thus, rewriting eq. 2.23,
I have [22]:

H(µ) = (νi −Rijµj)(νi −Rikµk) + λ(DijµjDikµk)

= (RijRik + λDijDik)µjµk − 2Rijµjνi + νiνj (4.4)

I can ignore the last term, since it is a simple constant that goes away when minimizing.
Note that if I multiply each term, I have obtained the QUBO form. I thus have:

H(µ) = riµi + µjQjkµk (4.5)

I have now found the starting point in order to determine the QUBO weights, but in
this notation µi and νi are still float, while I need binary variables.

The first thing that comes to mind is to use the standard and simplest n-bit integer
encoding:

µi =
n−1∑
j=0

2jxn×i+j xi ∈ {0, 1} (4.6)

However, this is a bit limiting for two main reason: first of all, I can encode only integer
number, while I usually deal with float ones, and secondly current quantum computer
hardware requires the bit encoding to be small. Another important motive can be also
the one of optimization. I want in fact to find an encoding method that runs faster and
better. Is is then necessary to use some non-standard encoding. That is one of the main
problem faced when developing the unfolding as a quantum annealing problem, as I will
see in the next Section.

4.1.2 Binarization

It is now time to study how the binarization can be implemented into the code. When Di
Sipio faced this problem, as it was not his goal to implement an user-friendly software,
decided to use an heuristic way to build this binarization. In their paper, each µi is
encoded with n bits, using an offset and a scaling parameter so that:

µi = αi + βi

n−1∑
j=0

2jxn×i+j (4.7)

The values of these parameters were fixed, but they were chosen by attempt, so they fit
very well their problem, but couldn’t be extended to other cases. It is therefore evident
that the main problem with this approach is given by the free parameters αi and βi,
which are inevitably different for every λ, every i and every unfolding problem. I cannot
derive a universal way to binarize the Tykhonov function.
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The approach used in QUnfold is a bit different [24]. I reconsider now equation 2.23,
that is the function I want to minimize. I have shown that it can be represented in the
QUBO form, but I want to write it in binary. I need then a method of approximating
each real variable by b binary variable.

To fulfill this I introduce, given a real number x, xb to express that number in binary
notation. I then denote by p the precision vector, that is a vector so that:

x = p · xb (4.8)

In this way, if I have a symmetric matrix Q, the QUBO form µTQµ can be rewrite

µTQµ = µT
b P

TQPµb (4.9)

where the P matrix is a diagonal matrix having the precision vector p on the diagonal.
Fully general, I can define p = (−1, 1

2
, ..., 1

2b−1 ) of length b. From this, the set of
integer multiples of 1

2b−1 in the interval [−1, 1− 1
2b
] is the set formed by

C1,b := {p · µb|µb ∈ 0, 1b} (4.10)

If I deal with vector of n-size then„ I cam express it by simply

Cn,b := {(In ⊗ p) · µb|µb ∈ 0, 1b} (4.11)

whit In the identity matrix. In this way, starting from a QUBO form to be minimized
of eq. 4.5, I can minimize it by writing:

min
µ∈[−1,1]n

(rTµ+ µTQµ)

= min
µb∈[0,1]m

(rT (Im ⊗ p)µb + µT
b (Q⊗ P )µb) (4.12)

where I finally have written the QUBO form in binary terms. It is important to
underline that in QUnfold package I have vectors representing the entries of an histogram.
This means that I have to binarize µ ∈ [−δ, δ]n. This is simply obtained by multiplying
δ · p in 4.12.

4.1.3 Overview of the Python package

QUnfold Python package offers a user-friendly framework able to perform the Unfolding
through the Quantum Annealing. The way it works is quite simple. As it is based
on Numpy library [25], the first things that are needed are the Numpy arrays of the
response matrix and of the observed distribution that needs to be unfolded, known as
the sample. Having these two, one can build the QUBO form of its unfolding. This
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is obtained through the class QUnfolder, which takes as parameters these two arrays
and the free parameter λ. This is the parameter introduced in eq. 2.23. This class
enable us to express the Unfolding problem in the QUBO form necessary for the QA
formulation, as seen in Section 4.1.1. To actually construct the QUBO matrix in the
binary formulation the function initialize_qubo_model() of the QUnfolder class must be
called. Once I have then constructed the Hamiltonian, the only thing that is left to use
is to solve the optimization problem using the annealing. QUnfold package has three
unfolding methods corresponding to the three different annealing techniques, i.e. the one
presented in Section 1.2.

One of the most important feature of this package is the ability to run Toys Monte
Carlo simulations. That is an important aspect in HEP analysis. Monte Carlo methods
involving Toys are stochastic techniques used to model complex systems by generating
random samples and analyzing statistical properties. In other word starting from the
reco distribution, I smear it with a Poisson distribution to simulate the statistic uncer-
tainty. I then solve the QUBO problem with this new reco, giving in return a slightly
different solution from the one obtained without that smearing. The main idea is that by
"running" N toys , i.e. N simulations or "fake experiments", I am sampling the possible
statistical fluctuations of the solution. However, this process is quite complex and it is
still a work in progress in QUnfold package, and I will not use it in the analysis.

The feature that I will use and study instead is the possibility to repeat the same
unfolding N times (without smearing or other effects). This is necessary as the annealing
is a probabilistic technique, which means that repeating the process several times could
give different solutions at each run of the process. Therefore, it is evident that increasing
N implies a better view of all the possible solutions. This number N can be set by the
user thanks to the parameter num_reads. But how can I choose among these N different
solutions?

Imagine I have the N solutions (µ1, ...,µN) sorted so that H(µi) ≤ H(µi+1). It
is evident that µ1 can be considered the best approximation to the real solution. De-
spite that, an approach that can give great benefits in practice is to consider a linear
combination of all the solutions as a better approximation of the real value:

minH(µ) ≃ 1

N

N∑
i=1

e−β(H(µi)−H(µ1))µi (4.13)

Here, β is a parameter, that in QUnfold is set to be β = 100, representing a good value[4].
The function that provides this method of choosing the best solution is implemented in
the function _post_process_sampleset().

Another fundamental aspect of QUnfold is the possibility to calculate the chi square
χ2 of the unfolded distribution. Obviously to have this data one must also have the truth
distribution. By knowing that, and calling u the unfolded distribution, the chi square is



4.2. DATA VISUALISATION 40

calculated through the relation [12]:

χ2 =
∑
i

(ui −mi)
2

mi

(4.14)

As I am interested in particular in the reduced chi square, I need to divide it by the
degree of freedom, represented by the number of bins.

If the user of QUnfold works in the High Energy Physics (HEP) field, he probably
has to deal with the classical unfolding C + + package RooUnfold. This means that he
does not have Numpy arrays, but he has measured histogram stored as TH1 objects and
the response as a RooUnfoldResponse object. A very good implementation of QUnfold
concerns the compatibility of itself with RooUnfold, providing functions able to convert
those objects in standard Numpy arrays. In the end, QUnfold is able to perform several
classical Unfolding methods. For the analysis in this thesis I will focus ourselves in these
techinques:

• RooUnfold framework

– Matrix inversion (MI)

– Iterative Bayesan Unfolding (IBU)

• QUnfold framework

– D-Wave Simulated Annealing

– D-Wave Hybrid solver

– D-Wave Quantum Annealing

These three D-Wave methods are the ones explained in Section 1.2.

4.2 Data visualisation
It is now time to use the new unfolding method given by the quantum annealing to
unfold real variables.

In this thesis, I use data generated from a research about quantum entanglement and
Bell violation at LHC [26]. In this work physicists have generated a tt pair, which has
decayed as explained in Section 3.7, in particular in Fig. 3.5. They have generated ∝ 108

samples of this decays, and have calculated some variables which could demonstrate
the entanglement. To be more precise, they wanted to find a correlation between the
directions of the decay products of t and t so they could calculate the spin density
matrix, essential to see the entanglement. They consider the two angles representing
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the angular space (θ, ϕ) and used them to describe the direction of the decay product
of interest thanks to the the three-vector Ωi = (cosϕsinθ, cosθ, sinϕsinθ). Here, θ is
the polar angle and ϕ is the azimuthal angle with respect to a reference direction. To
better visualize this, see Fig. 4.1. I have used the helicity basis {r̂, k̂, n̂}, with the plane

ATLAS

r

k n

ΩiTΩi

N

LHC
CMS

ALICE

LHCb

ϕ

θ

Figure 4.1: This figure shows the helicity basis {r̂, k̂, n̂} in the LHC frame of reference
and how a general vector Ωi can be decomposed in this basis. Note that in the ATLAS
experiment the plane formed by n̂ and k̂ (and parametrized by ϕ) is the plane of the
detector, while the direction of k̂ is the direction of the beam, which is perpendicular to
the plane.

rn being the detector plane, and k the transverse direction. As I have a two body decay,
it is very useful to write θA to indicate that is the polar angle of the momentum of the
decay product of particle A, and so with ϕ. In particular, following the goal of the paper
from the which the data have been taken, I construct two main variables cos(θP ) and
ϕP .1 From Fig. 3.5, I consider the angles θt and ϕt formed by the lepton l in the top
quark rest frame, and θt and ϕt the ones of the quark q in the rest frame of the anti-top
quark. In this frame of reference, as k̂ represent the transverse axis of the detector, it has
the same direction of the incident beam pt (or pt, i.e. the momentum of the particle that
decays. Fig. 4.2 shows better this angles. Using these four variables, I can construct
following the paper [26] cos(θP ) =

∑
iΩ

t
i Ω

t
i and ϕP = f(ϕt, ϕt), where f is a certain

function and ΩA
i the variable already introduced for the decay of particle A. Cos(θ) is

the variables I am unfolding. Although it is not relevant in the paper, I also want to
unfold the mass distribution of the tt system, as for its peculiar shape it is an important
tool to test the unfolding method.

1In [26], these two variables were useful to calculate the Bell operator that indicate entanglement.
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Figure 4.2: These two figures shows the two frame of reference used, by denoting that k̂
(k̂′) correspond to the direction of the incident beam and the vector pl (pq) is the one of
the decay product. Note that in the rest frame of tt k̂ and k̂′ are anti-parallel vectors.

As explained, I used data about the decay process of the Semi-Leptonic channel:

tt −→ l−l+ ν ν b b (4.15)

The data used in this thesis do not rely on actual experimental measurements from par-
ticle colliders like the LHC but rather on simulated data based on theoretical models.
Events are computer generated involving tools commonly used in particle physics, such
as Monte Carlo methods, to model the decay processes and analyze the quantum corre-
lations. I can divide the generation process in two parts. Firstly, according to the SM
theory, the tt distribution decays, and the Semi-leptonic channel is selected. These is
called the parton level of the generation, representing the theoretical and ideal process.
This data are then processed through Rivet (Robust Independent Validation of Exper-
iment and Theory) [27], which is a system able to simulate the measurements effects.
Thanks to it, quarks became jets and neutrinos became MET (Missing Transverse En-
ergy) 2 It is then able also to simulate the geometrical acceptance of, in this case, ATLAS
detector. The data processed in this way formed the particle level, which corresponds
to the measured events in a real experiment.

4.2.1 Parton level

In HEP the term "parton level" of the analysis refers to the study of the fundamental
interactions between particles according to the theoretical models. Parton-level calcula-
tions are then essential for making predictions about the outcomes of high-energy exper-
iments and for understanding the structure of hadrons at a fundamental level. Therefore

2This concept of Missing Energy is usually applied in hadron colliders. MET is the measure of the
difference between the total energy that is expected to be observed and what is actually measured in
the transverse plane. Indeed, as neutrinos cannot be detected, there would be some energy missing, and
that is what in a real experiments would be observed.



4.2. DATA VISUALISATION 43

in this level the focus is only on the theoretical models, forgetting about all the mea-
surement problems. It is clear that the distributions at parton level corresponds to the
truth distributions described in Chapter 2.

To build the parton (or truth) histogram I start from the ROOT TTree file containing
all the experiments generated data. Here the data are collected in various branches, where
each ones represents a variable. These branches are associated with a set of data entries,
each entry corresponding to a single event.

In this case I focus on two branches: cos(θP ) and m. I decide not to consider the
variable ϕP because as it is the angle on the detector plane it is isotropic, meaning its
distribution would be plane. I create a loop so that for each event of every branch the
relative histogram is filled. I obtain the following truth histos:

(a) Truth-Parton histo cos(θ) (b) Truth-Parton histo mass

Figure 4.3: I have on the left the histogram Truth-Parton of cos(θ) distribution and on
the right the one of the mass expressed in GeV/c2. I see that I have bin of the order of
108 samples.

4.2.2 Particle level

In the "particle level" the focus shifts to what I measure. While the parton predicts
how the particles should behave, this level tells how this behaviour are influenced by
the measurements effect. In other words, the event observed in the particle level are
those that would be detected in a real experiment. The transition from parton-level to
particle-level is then crucial to simulate a real experiment and to compare the result with
the real ones. That is the reason why it is in this level that neutrinos are transformed
in MET and quarks in jets, as it is what I would really observe.

To compare this distributions to what I know about the Unfolding, the particle level
clearly represents the truth distribution. To build those histograms, as I have said for
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the parton level, I loop for each branch I am interested in and fill the histo if the value
of the event is inside a certain range.

As for the branches choosen in the parton level, I obtain as measured distributions
the following in Fig. 4.4

(a) Measured-Particle histo cos(θ) (b) Measured-Particle histo mass

Figure 4.4: Comparing these with the Parton, I immediatly see the difference on the
shapes. Another important aspect is the number of samples for each bin. They are an
order of magnitude lower compared to the truth bins.

When I compare the truth and the measured, I note that these distributions are quite
different, both in term of shape and of numbers of events. Therefore, this means that
because of detector effects an event in the TTree file could be for example True in parton
level and False in the particle. By this, I can build the following histograms:

• The miss histo: this is the distribution of events that are theoretically generated,
i.e. they are present in the truth histogram, but they were not detected in the
measurement phase, being lost. That is why they are called "Missed events". I
will call it l.

• The fake histo: this is filled by the events that were not generated, so do not
comparable with the truth, but were incorrectly reconstructed by the detector. I
will refer at it as f .

As for the other histograms, I loop over all the events for each branch and fill these two
new histos. The results are grouped in Fig. 4.6 to Fig. 4.9. Thanks to these, I am able
to calculate an important variable of the Unfolding problem, the efficiency. Following
eq. 2.7, I can identify the histogram of the true events successfully reconstructed as the
difference between the truth distribution and the miss one. Therefore I have:

ϵi =
µi − li
µi

(4.16)
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The efficiency histograms are plotted in Fig. 4.10 and 4.11.

4.2.3 Response matrices

One of the key element of the unfolding is the response matrix. This matrix contains all
the information about smearing, efficiency etc... and basically tells us all the effects that
the truth distribution has undergone. In order to build it from the ROOT TTree file, I
need to loop over all the events and fill the matrix only if the event is both generated and
detected. In this way I cancel out all the fakes and the misses. However, this matrix is
not yet the response. By simply filling it in this way, I only simulate the smearing effect,
but I do not consider the efficiency effect. This means that I now have the Migration
matrix. As in eq. 2.6, to find R I need to multiply with the efficiency in eq. 4.16. Fig.
4.5 shows the Migration matrices
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Figure 4.5: Here are shown the two Migration matrices. I have not plot the Response
so that I can visually separate the effects of migration from the ones of the efficiency in
Fig. 4.12
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Figure 4.6: Miss histo of cos(θ) Figure 4.7: Miss histo of mass

Figure 4.8: Fake histo of cos(θ) Figure 4.9: Fake histo of mass

Figure 4.10: Efficiency histo of cos(θ) Figure 4.11: Efficeincy histo of mass

Figure 4.12: I have plot in this page all the histos of the effects to which the truth
distribution is subjected during the measurement phase. These histos are necessary to
the unfolding procedure
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4.3 Unfolding results
To unfold using both RooUnfold and QUnfold methods, I need first to understand what
kind of data I have. In Fig. 4.3 I have the truth distribution. That is what I want to
obtain, i.e. the goal of the unfolding. Fig. 4.4 shows instead the measured distribution,
obtained after the effects of the Miss, the Fake and the Efficiency. Following eq. 2.11 I
understand that I need to pass to the unfolder constructor not the measured (νj in the
equation) but the measured without all the fakes (νj−βj). Then, as I have the Migration
and not the Response, I need to multiply M with the efficiency. By passing these two
new object, I can safely call the unfolder (RooUnfoldBayes() for IBU and QUnfolder()
for QUnfold). Note that I have not mentioned Matrix inversion (MI). In fact, in this
analysis MI is meaningless, as the response is generated with the same generation of the
other distributions. As explained before, this is not the general case of the unfolding as
the truth generally is unknown, and this fact implies that MI is perfect without errors
or uncertainties (χ2 = 0). That is why I will not compare it to the others.

I need to underline another important aspect of this analysis. The data distributions
are highly populated, and the technique offered by QUnfold using D-Wave is still in phase
of development. This means that the problem is properly defined and the binarization
works correctly, but there are still some problems with the dependency on statistical
fluctuations. That is why to perform the unfolding of all this data I use QUnfold only to
transform the unfolding problem in a QUBO problem, and then I compute the calcula-
tions with a classical solver. In order to have results more reliable at this developement
stage I compare IBU with the unfolding via QUBO problem. However, in order to rep-
resent the unfolding in the QUBO form I need to choose λ, following what I have learnt
in Section 4.1.1. As a good choice of this improves the results, I should theoretically run
the unfolding several times each of it with a different value. In this way I obtain Fig.
4.13. I then choose for the unfolding the values of λ presented in Table 4.1. With this

cos(θ) mass
λ 0.0 0.0
χ2 0.01759 0.00351

Table 4.1: From this table I notice that both for cos(θ) and mass, the best regularization
parameter is 0, which means zero regularisation.

choices, I can run the two methods and compare them. I obtain the results shown in
Fig. 4.14 and 4.15.

As said before, QUnfold is not yet able to give consistent results when facing complex
problems. That is why to run the Simulated and the Hybrid Annealing I will consider
just the cos(θ) variable. However, I need to reduce the quantity of data. To do this,
I simply cut through the mass. I choose to consider only the data that were given by
particles having a mass bigger than 1100GeV/c2.
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(a) Chi square for cos(θ)
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(b) Chi square for mass

Figure 4.13: This picture shows the value of the chi square in function of the regularisa-
tion parameter λ. By these I can easily see that the best for each distribution is λ = 0.

I can now start the analysis via SA and HA. I know that the annealing is a statistical
method. This means that every time I run it I could obtain a different solution. That
is the reason why it is very important to choose a valid number of reads, changing the
parameter num_reads = NR in the QUnfolder object. In this way I can repeat the
unfolding and choose the best solution, as previously explained in Section 4.1.3. To
better visualize this process, I run Simulated Annealing in function of NR and calculate
the chi square for each iteration. I imagine that by using small NR the result should
fluctuate much more despite running it with a big num_reads. In other words, an
increased NR correlates with a broader range of potential solutions to select from. To
calculate the error on the χ2 then I run each unfolding with all the parameters fixed
n = 10 times, and calculate it as

∆χ2 =
σχ2√
n

(4.17)

In this way I am able to obtain the graph in Fig. 4.16. By these I clearly see that
increasing the reads implies a lower chi square. However it is still quite far from the one
obtained via the classical solver of the QUBO problem. I therefore imagine that only
with an infinite number of reads the χ2 would tend to that value. Obviously this aspect
of QUnfold needs to be improved both in precision of the solution and in compiling time,
as using thousands of reads takes some time.

An important difference between Simulated Annealing and the Hybrid Solver is that
I have much more control on the first one. In fact, the Hybrid Annealing is internally
managed by D-Wave, and I can not set the parameter num_reads.
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Figure 4.14: Here the comparison between the unfolding obtained through the QUBO
form and the results of IBU method is shown. From the χ2 I see that for this variable
IBU is slightly better.
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Figure 4.15: Here the second result of this analysis is presented. This is the cmparison
between QUBO and IBU, showing that the first is much more precise than the Bayesian
method
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Figure 4.16: This graph shows how the chi square decreases with the number of reads.
Obviously having these values for the χ2 is still not sufficient to be compared with the
classical methods, but I imagine that by having n_reads−→ ∞ I would reach the χ2

given by the classical solver of the QUBO form.
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Figure 4.17: Here is presented the comparison between IBU, SA (with NR = 7000) and
HYB. It is evident that IBU is much more stable and precise, but SA visually still gets
the unfolding, despite its chi square. The hybrid method however inevitably fails, as I
cannot control it as the others but it is internally managed by D-Wave’s.
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This means I am not able to plot Fig. 4.16 for HA, I can only unfold. Once I have
chosen for SA the best value of NR, I can finally plot the annealing results, and compare
them with IBU. The results are shown in Fig. 4.17

An important aspect to notice is that despite the SA chi square is consistently different
from IBU ones, visually the unfolding does not represent a failure. Different is the
situation for the Hybrid sampler, as the impossibility to increase the number of reads
makes impossible for us to improve the solution, which remains inconsistent.

4.3.1 Quantum annealing

It would be interesting to see if Quantum Annealing could provide a solution, but the
complexity of the problem prevents embedding it into D-Wave’s QPU. In theory, as I did
with simulated annealing, I could simplify the data by cutting down the energy. However,
this approach would essentially invalidate the analysis, as it would require reducing the
data by at least four orders of magnitude. Note that reducing the data does not imply
reducing the complexity. In fact, simply cutting down the energy means losing control
over the data, having response matrices very far from being diagonal.

That is why in this Section I just present an unfolding example with Monte Carlo
generated data. To do so, I consider he same generation used in Section 2.3, but I have
reduced the number of bins to 8 and also the number of samples has been decreased sig-
nificantly. I am now able in Fig. 4.18 to compute both Hybrid and Quantum Annealing,
and to compare them with IBU and matrix inversion.
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Figure 4.18: This is at the moment the best I can obtain with the total quantum an-
nealing, for all the reasons previously explained. I note that the two quantum methods
are better than the classical ones.



Conclusions

In this work we presented a new way of solving the Unfolding problem based on the
Quantum Annealing technique. We have then introduced QUnfold, a Python package
that implements three annealing methods to solve the unfolding: Simulated, Hybrid
and Quantum Annealing. These methods rely on the popular quantum computer freely
accessible to users: D-Wave’s Quantum Annealer. However, despite in these last years
significant progress have been made, the total quantum annealing is not able to solve
complex optimization problems yet. Therefore, the aim of this work is to test these
three methods provided by QUnfold thanks to D-Wave’s systems in order to see the
advantages given by this new approach to the unfolding problem, and to see also the
current limitation of this framework. From the analysis carried out in Chapter 4, we
have obtained the following results:

• the unfolding problem can be correctly written in terms of a QUBO problem, the
only category solvable by QA. In fact, once having found the best regularization
parameter λ for the problem, in our case λ = 0, we find values for the χ2 consistent
with the ones of the classical methods. To be more precise the values are reported
in the Table

Distribution IBU χ2 QUBO χ2

Cos(θ) 0.00065 0.01759
Mass 4.06894 0.00351

• The solution to the Simulate Annealing, i.e. the classical implementation of the
annealing, provided by QUnfold still have some problems. The approach is correct
and visually the unfolding works correctly, but there are some statistical fluctuation
dependencies that increase the chi square value and the error of the unfolded dis-
tribution. Despite that we see that increasing the parameter NR decreases the χ2,
slowly approaching the value given by the classical solver of the QUBO problem.
This suggest that by working on the stability of the method Qunfold developer
could improve a lot the solution.

52
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• The hybrid solver, which combines the advantages of quantum and classical an-
nealing algorithms, has another kind of limitation. In fact it is internally managed
by D-Wave, and the user cannot control the number of reads. While the simulated
annealing with its limitation gives a consistent solution, with a χ2 = 46.09381, the
Hybrid solver finds a wrong unfolding solution, as it is clear from the χ2 of over
19000 and the visual solution of Fig. 4.17.

• In the end we have tested also the quantum annealing method. As we could not
perform it with the data of the tt̄ distribution for their complexity, we have run a
Monte Carlo simulation of 2500 samples and 8 bins. The unfolding did not work
precisely because of the small quantity of data, but comparing the chi square we
see that HYB and QA method works better than the classical IBU and MI. We
report this data in the Table.

Unfolding method χ2

Matrix inversion 3.31568
Iterative Bayesian Unfolding 3.29572

Hybrid Annealing 2.79875
Quantum Annealing 2.16764

By these result, we can conclude that the QUBO formulation of the unfolding prob-
lems gives better result than the other classical method commonly used to solve the
unfolding. However, the current implementations for the annealing (i.e. SA, HYB, QA)
needs to be improved. They have too much dependency on statistical fluctuation and
are not able to give for complex problems reliable solutions. In particular, QA cannot
deal with complex problems due to the limitedness of the D-Wave machine.

This work has been of great importance to improve the development of QUfold tool,
underling limits, possible issues and points to be improved. My work has been performed
in close and continuous contact with the developers that are working on the code. Possi-
ble developments of my work could be the improvement of the statistical stability and of
the code efficiency, also on sight of the continuous improvements of the D-Wave system
that will allow in the future to handle a greater quantity of data and reading sample,
improving the process presented here and making it a more challenging.
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