
1

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

DIPARTIMENTO di

INGEGNERIA DELL’ENERGIA ELETTRICA E DELL’INFORMAZIONE

“Guglielmo Marconi”

DEI

CORSO DI LAUREA MAGISTRALE IN

0934 – INGEGNERIA ELETTRONICA: Electronics for Intelligent Systems, IoT and Big-Data

TESI DI LAUREA

in

Lab of Electronic Circuit Design

SETUP AND APPLICATION OF A DECISION TREE

MACHINE LEARNING IN A REAL HUMAN MOTION

TRACKING SCENARIO

CANDIDATO RELATORE

 Rohan Khan Chiar.mo Prof. Luca De Marchi

 CORRELATORE/I

 Pietro Garofalo

Anno Accademico

2023/2024

Sessione

I

2

I would like to dedicate this thesis to my project supervisor, honorable faculty, my

respectable parents, friends and loved ones who have been the constant source of inspiration

for me. Without their continuous support and counselling, I would not have been able to

complete the project successfully.

3

ACKNOWLEDGEMENTS

First of all, a huge thanks to both of my supervisors (Pietro Garofalo and Professor Luca De

Marchi) for their continuous guidance and support throughout this internship and thesis process.

I was lucky to have you both as my mentor and counselor that allowed me to demonstrate my

work in the best possible manner.

Thank you to my parents Shehnaz and Khurram, and my sister Hijab for all the support that

you provided. Special thanks to my two cute little nephews Yahya and Abdur Rehman for just

existing.

Thanks to Ahsan, Muneeb and Ubaid for being here with me and for your emotional support

not only during my whole degree, but also way back before it all started. Thanks to Maryam

and Eesha as well. Thanks to the friends that I made in Norway during my exchange. Especially

Mudasir and Faisal.

Thanks to all my other friends for just being there with me.

4

1 Table of Contents

2 List of Tables ... 7

3 List of Figures .. 8

4 Abstract .. 11

5 Introduction .. 12

5.1 Key Aspects of Movement Analysis.. 12

5.1.1 Data Collection .. 12

5.1.2 Data Processing .. 13

5.1.3 Analysis Techniques .. 13

5.1.4 Applications ... 13

5.2 Example Workflow of Movement Analysis .. 14

5.3 Challenges and Considerations .. 15

5.4 Movement Analysis at Turingsense EU LAB ... 15

5.4.1 Turingsense Technology .. 15

5.4.2 Smart Clothing ... 16

5.4.3 Calibrations .. 17

5.4.4 A.I. based on Machine Learning .. 18

5.4.5 SensorTile.Box PRO .. 18

6 Methodology .. 19

6.1 Exploring Hardware and Software Tools .. 19

6.1.1 STEVAL-MKBOXPRO .. 19

6.1.2 STM32CubeIDE .. 21

6.1.3 STM32CubeProg ... 22

6.1.4 Unico-GUI ... 23

6.1.5 AlgoBuilder.. 24

6.1.6 Unicleo-GUI .. 25

6.1.7 STBLESensor .. 26

5

6.1.8 LSM6DSV16X .. 27

6.1.9 Activity Recognition Algorithm .. 28

6.2 Setting up Real-time Feedback .. 28

6.2.1 LED Blinking and Buzzer .. 28

6.3 Workflow Setup ... 29

6.3.1 MLC Configuration ... 29

6.3.2 MLC Pipeline ... 30

6.3.3 MLC Experiments .. 54

6.4 Correcting the Input Data Type ... 58

6.4.1 Using Quaternions instead of Accelerometer /Gyroscope Data 58

6.4.2 Euler Angles... 59

6.5 Adapting Training to the Real Scenario... 62

6.6 Customizing Machine Learning Decision Parameters ... 63

6.6.1 MLC and Sensor(s) ODR... 63

6.6.2 Window Length ... 64

6.6.3 Feature Selection .. 64

6.7 Going Back to The Accelerometer/Gyroscope Data ... 65

6.8 Using Sensor on the Wrist instead of on the Arm ... 65

7 Results .. 66

7.1 MLC Experiments Performance .. 66

7.2 Change of Data Type ... 67

7.3 Real Scenario Training .. 77

7.4 ML Decision Parameters.. 79

7.4.1 AD Experiment .. 79

7.4.2 AD/AE Movements ... 81

7.5 Accelerometer/Gyroscope Data with Tunable ML Parameters 83

7.5.1 Plots.. 84

6

7.5.2 ODR ... 86

7.5.3 Idle state ... 87

7.5.4 More data ... 87

7.5.5 Window length ... 88

7.5.6 Feature Selection .. 89

7.6 Sensor on the Wrist .. 91

7.6.1 Plots.. 91

7.6.2 Window length ... 93

7.6.3 Single reading .. 94

7.6.4 Single file ... 95

8 Conclusion and Future Work ... 97

9 Bibliography .. 100

7

2 List of Tables

Table 1: Number of Data Samples ... 54

Table 2: MLC models' characteristics ... 57

Table 3: Different rotation sequences for different scenarios .. 60

Table 4: MLC models' performance .. 67

Table 5: Roll statistics for 11 measurement files in the case of AD .. 69

Table 6: Pitch statistics for 11 measurement files in the case of AD 70

Table 7: Yaw statistics for 11 measurement files in the case of AD 71

Table 8: Roll statistics for 11 measurement files in the case of AE .. 71

Table 9: Pitch statistics for 11 measurement files in the case of AE 72

Table 10: Yaw statistics for 11 measurement files in the case of AE 73

Table 11: Performance result of AD experiment with varying window lengths and features . 80

Table 12: Output of AD experiment when the sensor is randomly moved by hand 81

Table 13: Sensor outcome when performing simple AD movement 82

Table 14: Sensor outcome when performing simple AE movement 82

Table 15: Sensor output when rotating it randomly... 83

Table 16: Outcome of trying different combination of ODR .. 87

Table 17: Performance of MLC when provided with more data ... 88

Table 18: Performance of different MLCs with different window lengths 88

Table 19: Performance of different MLCs with different features selection 90

Table 20: Performance of different MLCs with different window lengths when the sensor is

on the wrist ... 94

Table 21: Performance comparison of two MLCs with and without idle case when the sensor

is on the wrist ... 94

Table 22: Performance comparison of different MLCs with different configurations when the

sensor is on the wrist .. 96

8

3 List of Figures

Figure 1: SensorTile.Box PRO kit ... 21

Figure 2: Inside view of STEVAL-MKBOXPRO ... 21

Figure 3: STM32CubeIDE Example Screenshot 1 .. 22

Figure 4: STM32CubeIDE Example Screenshot 2 .. 22

Figure 5: STM32CubeProg Example Screenshot .. 23

Figure 6: Unico-GUI Example Screenshot .. 24

Figure 7: AlgoBuilder Example Screenshot .. 25

Figure 8: Unicleo-GUI Example Screenshot ... 25

Figure 9: STBLESensor App Example Screenshot 1 .. 26

Figure 10: STBLESensor App Example Screenshot 2 .. 27

Figure 11: ST BLE Sensor App Main Screen .. 30

Figure 12: ST BLE Sensor App Screenshot 2 ... 31

Figure 13: ST BLE Sensor App Screenshot 3 ... 31

Figure 14: ST BLE Sensor App Screenshot 4 ... 32

Figure 15: ST BLE Sensor App Screenshot 5 ... 32

Figure 16: ST BLE Sensor App Screenshot 6 ... 33

Figure 17: ST BLE Sensor App Screenshot 7 ... 33

Figure 18: ST BLE Sensor App Screenshot 8 ... 34

Figure 19: ST BLE Sensor App Screenshot 9 ... 34

Figure 20: ST BLE Sensor App Screenshot 10 ... 35

Figure 21: ST BLE Sensor App Screenshot 11 ... 35

Figure 22: ST BLE Sensor App Screenshot 12 ... 36

Figure 23: ST BLE Sensor App Screenshot 13 ... 36

Figure 24: ST BLE Sensor App Screenshot 14 ... 37

Figure 25: ST BLE Sensor App Screenshot 15 ... 37

Figure 26: ST BLE Sensor App Screenshot 16 ... 38

Figure 27: ST BLE Sensor App Screenshot 17 ... 38

Figure 28: ST BLE Sensor App Screenshot 18 ... 39

Figure 29: ST BLE Sensor App Screenshot 19 ... 39

Figure 30: ST BLE Sensor App Screenshot 20 ... 40

Figure 31: ST BLE Sensor App Screenshot 21 ... 40

Figure 32: UNICO GUI Main Screen .. 41

9

Figure 33: UNICO GUI Screenshot 2 .. 41

Figure 34: UNICO GUI Screenshot 3 .. 42

Figure 35: UNICO GUI Screenshot 4 .. 42

Figure 36: UNICO GUI Screenshot 5 .. 43

Figure 37: UNICO GUI Screenshot 6 .. 43

Figure 38: UNICO GUI Screenshot 7 .. 44

Figure 39: UNICO GUI Screenshot 8 .. 44

Figure 40: UNICO GUI Screenshot 9 .. 45

Figure 41: UNICO GUI Screenshot 10 .. 45

Figure 42: UNICO GUI Screenshot 11 .. 46

Figure 43: UNICO GUI Screenshot 12 .. 46

Figure 44: UNICO GUI Screenshot 13 .. 47

Figure 45: ST BLE Sensor App Screenshot 22 ... 47

Figure 46: ST BLE Sensor App Screenshot 23 ... 48

Figure 47: ST BLE Sensor App Screenshot 24 ... 48

Figure 48: ST BLE Sensor App Screenshot 25 ... 49

Figure 49: ST BLE Sensor App Screenshot 26 ... 49

Figure 50: ST BLE Sensor App Screenshot 27 ... 50

Figure 51: ST BLE Sensor App Screenshot 28 ... 50

Figure 52: ST BLE Sensor App Screenshot 29 ... 51

Figure 53: ST BLE Sensor App Screenshot 30 ... 51

Figure 54: ST BLE Sensor App Screenshot 31 ... 52

Figure 55: ST BLE Sensor App Screenshot 32 ... 52

Figure 56: ST BLE Sensor App Screenshot 33 ... 53

Figure 57: ST BLE Sensor App Screenshot 34 ... 53

Figure 58: SensorTile.Box PRO kit mounted on the right arm ... 55

Figure 59: SensorTile.Box PRO kit mounted on the left arm.. 55

Figure 60: Different planes ... 54

Figure 61: Decision Tree report for trained MLC to distinguish between AD and AE

movements ... 78

Figure 62: Decision Tree report for AD experiment ... 78

Figure 63: Offline analysis report to test MLC accuracy .. 79

Figure 64: AD Accelerometer .. 85

Figure 65: AD Gyroscope .. 85

10

Figure 66: AE Accelerometer .. 85

Figure 67: AE Gyroscope .. 86

Figure 68: AD Accelerometer Wrist .. 91

Figure 69: AD Gyroscope Wrist .. 92

Figure 70: AE Accelerometer Wrist .. 92

Figure 71: AE Gyroscope Wrist .. 93

11

4 Abstract

Human motion analysis is becoming an increasingly used technology nowadays with the

invention of smarter sensor technologies and with its applications in the field of health,

ergonomics, sports, medicine, and so on. Turingsense EU Lab is one of the many companies

around the globe working on this technology. The purpose of this thesis was to evaluate the

SensorTile.Box PRO kit (one of the smart IoT devices which is available in the market with its

possible applications in motion analysis) as a possible replacement of the standard

Accelerometer/Gyroscope sensors that they use. The purpose of this possible replacement is

the benefits that this box kit offers, allowing us to implement an A.I. based machine learning

algorithm that could save both time and effort in the prediction of correct arm movements.

The approach to investigate this evaluation was based on evaluating the performance of the

box kit on predicting certain arm movements. This approach was based on first data collection,

then training the decision-tree based ML algorithm by providing that data with their labels, and

then finally testing the resulting configuration. By going through this process and modifying

certain things along the way based on certain outcomes, the result was that the box kit was able

to distinguish between the two different types of arm movements when it was attached to the

wrist, and the accelerometer and the gyroscope data was used as the training data.

Conclusions that were drawn from the series of these experiments were that the SensorTile.Box

PRO kit is no doubt a very promising device with a lot of potential for applications in the field

of movement analysis. However, particularly in this application for Turingsense EU Lab, its

potentials are kind of limited as we do not have complete freedom in terms of what kind of

training data we want to use, or what kind of ML algorithm we want to use. If these and other

related issues can be resolved, then this box kit can come very handy to Turingsense EU Lab.

12

5 Introduction

In the field of medicine, sports, and physiotherapy, human movement analysis, also known as

motion analysis, has become an investigative and diagnostic tool. Movement analysis involves

studying the movement patterns of humans, animals, and/or machines to understand the

mechanics and dynamics involved. This field has applications in various domains including

sports, medicine, ergonomics, animation, robotics, and so on. [1] [2] [3] [4] [5]

Along these lines, lies the motivation of Turingsense EU LAB. Turingsense EU LAB is a US-

based startup, whose mission is to transform the way movement analysis is performed in sports

and rehabilitation using wearable technologies to adapt to non-expert end-user scenarios. To

achieve this mission, Turingsense EU LAB is guided by an innovative work plan for human

motion capture that starts from the creation of easy-to-use hardware up to a customized

application for the end user. Turingsense EU LAB works in close collaboration with its

customers, from defining the specifications for the final application to designing a customized

solution that includes specific biomechanical protocols, sensor fusion algorithms and the

creation of software development platforms. 1

5.1 Key Aspects of Movement Analysis

Movement analysis has some key concepts that are necessary to understand to be able to

implement it successfully. These include data collection, data processing, analysis techniques,

and its applications.

5.1.1 Data Collection

Collecting data is the first important step in motion analysis. If the data collection is not carried

out correctly, movement analysis will never succeed. There are multiple ways to collect the

data for training the algorithms for movement analysis.

• Optical Cameras: uses sensors or cameras to track movement. It works on technologies

such as optical systems with markers, inertial sensors, and depth cameras. [1] [4] [5]

1 https://www.turingsense.eu/

13

• Video Analysis: records movement with standard or high-speed cameras and then

analyzes the video. [1] [6] [7] [8]

• Wearable devices: use accelerometers, gyroscopes, and magnetometers to gather data

on movement. [3] [4] [7] [9] [10] [11] [12] [13] [14] [15] [16]

5.1.2 Data Processing

After data has been collected, it is also important to process it before using it for movement

analysis.

• Kinematics: Studying the geometry of motion without considering the forces. This

includes analyzing position, velocity, and acceleration. [1] [3] [4] [6] [10]

• Kinetics: Analyzing the forces and torques that cause motion, often using force plates

or instrumented treadmills. [1] [3] [4] [6] [10] [17]

• Biometrics: Measuring biological data such as heart rate, muscle activity (EMG), and

oxygen consumption to correlate with movement. [1] [6]

5.1.3 Analysis Techniques

Analysis techniques include:

• Qualitative Analysis: Visual assessment by experts to identify movement patterns and

potential issues. [5] [7] [17]

• Quantitative Analysis: Using mathematical and computational methods to objectively

measure and analyze movement parameters. [1] [3] [6] [7]

• Machine Learning: Applying algorithms to recognize patterns, classify movements, and

predict outcomes based on the data. [9]

5.1.4 Applications

Some key applications of motion analysis include:

• Sports: In sports, it can be used to improve players’ performance and to prevent injuries

by analyzing the techniques of the players and their biomechanics. For injured players,

it can also be used to guide rehabilitation programs. [1] [5] [7] [9] [12] [13] [19]

14

• Medicine: In medicine, it can be used to diagnose and treat movement disorders, to plan

surgeries, and for patients’ rehabilitation with conditions like stroke or Parkinson’s

disease. [1] [5] [9] [12] [18]

• Ergonomics: Designing workplaces and tools to reduce the risk of injury and for

increasing efficiency. [1] [2] [5] [9] [18]

• Animation and Gaming: Creating realistic animations for films and video games by

capturing and replicating exact human movements. [5]

• Robotics: Developing robots that can move and interact with their environment in a

human-like manner, and for industrial robots to improve efficiency and precision. [4]

[6]

• Research and Development: It is fundamental in studying the mechanics of biological

systems, offering new insights and advancements in the field of kinesiology,

orthopedics, and physical therapy. It also drives the development of new technologies

such as advanced prosthetics, wearable sensors, and exoskeletons. [5]

Movement analysis provides a scientific basis for understanding and optimizing human and

machine movement. Its applications are diverse and impactful, ranging from improving athletic

performance and enhancing patient care to driving innovations in technology and design. By

leveraging advanced techniques and tools, movement analysis continues to play a pivotal role

in advancing knowledge and improving outcomes across multiple disciplines.

5.2 Example Workflow of Movement Analysis

An example workflow of movement analysis is written below:

1. Capture Movement: Use a motion capture system to record an athlete performing a

specific activity.

2. Process Data: Extract kinematic data such as joint angles, velocities and accelerations.

3. Analyze Movement: Compare the data against normative values or the athlete’s past

performances to identify inefficiencies or potential injury risks.

4. Provide Feedback: Offer recommendations to improve technique, such as adjusting

posture or altering training routines.

5. Monitor Progress: Regularly repeat the analysis to track improvements and make

ongoing adjustments.

15

5.3 Challenges and Considerations

Movement analysis offers some challenges too and has some consideration that are listed

below:

• Accuracy and Precision: Ensuring that the data collected is accurate and that the

analysis is reliable. [1] [2] [3] [5] [17]

• Complexity: Human movement is highly complex and varies significantly between

individuals, making standardization difficult. [1] [6] [19]

• Huge amount of Data: Extending on the previous point, to standardize it, a huge amount

of data is required, which is diverse, covering all possibilities. [9]

• Integration: Combining data from various sources and sensors can be challenging but

is often necessary for a comprehensive analysis. [1] [2] [10]

• Ethical Considerations: Ensuring the privacy and consent of individuals being analyzed,

especially in medical and sports settings. [1] [9]

5.4 Movement Analysis at Turingsense EU LAB

Turing Motion represents the new working paradigm in the field of human movement analysis

and has been successfully applied to products for the mass market, allowing anyone to track

their movements and verify their pose in any place. The new paradigm includes ingredients

that, combined together, enable new applications in the research sector. The Turingsense

platform is constantly expanding and customizing based on different applications. 2

5.4.1 Turingsense Technology

Thanks to more than 15 years of experience in the sector, Turingsense has developed

proprietary algorithms for capturing human movement, completely based on inertial sensors,

through solutions that do not use magnetometers, but which still allow continuous and

prolonged recordings. The technology is called MAG-FREE TECHNOLOGY. 3

2 https://www.turingsense.eu/turing-motion
3 https://www.turingsense.eu/

16

From a practical point of view, this means being able to capture human movement with the

following advantages:

1. No need to calibrate magnetic sensors at each recording (magnetic sensors are not used)

2. No limitations in the type of environment within which the motion capture is

performed:

• Laboratory

• Home

• Physiotherapy room

3. No limitation in the application scenario:

• Gait analysis even in the presence of electrical structures nearby

• I walk on platforms of strength

• Prosthetic devices or orthopedic aids with metal supports

• Ferromagnetic objects present in the surrounding environment.

5.4.2 Smart Clothing

The smart clothing at Turingsense is based on MEMS (Micro Electromechanical Systems)

technology to meet requirements both in terms of accuracy in motion capture and in terms of

end-user applications. Some important properties of these wearable smart clothing are: 3

• Fully washable

• Customizable fashion design

• Different sizes

• Wireless technology

• Rechargeable via USB

• Scientifically proven sensor positioning using ISEO and OUTWALK measurement

protocols

• 16 inertial units (3D Accelerometers, 3D Gyroscopes)

• Customizable configuration (Upper Limb and Lower Limb)

• No magnetometer used

17

5.4.3 Calibrations

Turingsense offers motion capture by using the above-mentioned smart clothing that has

sensors embedded within it. These sensors include 3D Accelerometers and 3D Gyroscopes.

Before using the sensors directly for motion capture, it is important to calibrate the sensors

with pre-defined body movements. One of these movements includes the movement of the arm

along the sagittal plane, in which the arm is raised completely up and then back down. In this

movement, the sensors are positioned on the biceps. To achieve this, initially, the

accelerometer and the gyroscope data are collected corresponding to this arm movement. And

then an algorithm is trained on this data that should be able to detect this movement.

Technically, the algorithm should be able to detect the movement no matter the placement of

the sensor along the biceps (be it front, back, or sides). And it should discard any other arm

movement and characterize it as an incorrect movement.

Currently, the user calibrations and Motion A.I. developed at firmware level at Turingsense

products are made with algorithms that are calibrated on some data taken from different people.

The algorithms are refined, by providing additional data, to distinguish between a person

standing straight and a person not standing straight. If the person is standing straight, then the

algorithm tells if the calibration passes or not. These algorithms have the following

assumptions and limitations:

• It is assumed that the sensor is placed on a certain area on the body in a certain position.

• It is currently impossible to distinguish the not straight condition if it is because of the

person not standing straight or because of the sensor not placed straight.

• It is therefore assumed that the sensors are placed upright correctly.

• It is also impossible to distinguish between the straight state among different people

who have different backs. If a person, for example, has a curved back but standing

straight, the algorithm fails and considers it as if the person is not standing straight.

• When the calibration fails, the algorithm cannot tell the reason why it failed. It could

be because the user is not making the right movement, or the user is wearing the sensor

wrongly, or the sensor is moving too much. But the algorithm cannot specify which of

these situations. Its feedback is only to LOOK AT THE INSTRUCTIONS AGAIN and

TRY AGAIN.

18

5.4.4 A.I. based on Machine Learning

By using AI based on machine learning, the first task would be to recognize the user’s correct

movement. Additionally, if the user’s movement is wrong, then it could suggest to the user

something more than simply infinitely repeating a movement until he succeeds, but rather

possible adjustments to make. With further intelligence, it is also possible to understand where

the sensor is on the body, then give suggestions to the user accordingly, for example, if the

sensor placement is wrong.

5.4.5 SensorTile.Box PRO

Based on previous statements, it was suggested to use STMicroelectronics’ SensorTile.Box

PRO for the verification of correct user’s movement that is necessary for calibration. The

STEVAL-MKBOXPRO (SensorTile.box PRO) is the new ready-to-use programmable

wireless box kit for developing any IoT application based on remote data gathering and

evaluation.4 But before making any decisions, it was necessary to evaluate this box kit and to

see if it fits in this application.

To evaluate the box kit, it is necessary to see how it performs in predicting the correct arm

movement. The first step int this evaluation would be the data collection for training the ML

algorithm. The data was collected corresponding to the calibration movements to provide input

for the training of machine learning algorithms. This data could either be collected using

SensorTile.Box PRO or the standalone accelerometer and gyroscope sensors. The second step

would then be to use the collected data for the training of the decision tree - based ML algorithm

using the tools provided by ST, such as, UNICO GUI. Then the third and final step would be

to test the resulting algorithm to see if it can predict both the correct and incorrect arm

movements. After the algorithm has been trained correctly, we can also use the LED and

BUZZER functions that are available on the SensorTile.Box PRO kit to give feedback to the

user, for example, on correct or incorrect movement during calibration.

4 https://www.st.com/en/evaluation-tools/steval-mkboxpro.html

19

6 Methodology

6.1 Exploring Hardware and Software Tools

When moving towards implementation of detecting user’s correct arm movement on

SensorTile.Box PRO, it was important to get familiar with necessary hardware and software

tools, mostly from STMicroelectronics.

6.1.1 STEVAL-MKBOXPRO

STEVAL-MKBOXPRO (SensorTile.Box PRO) is a new ready-to-use programmable wireless

box kit with multi-sensors and wireless connectivity for any intelligent IoT node. The box kit

can be used according to three different modalities, based on the user’s level of expertise. 5

• Entry Mode: In entry mode, a wide range of already embedded IoT applications can

be run on the box. STBLESensor App can be downloaded on the smartphone and board

can be programmed with any of the applications that have been specifically designed

to work with the board sensors. Some practical applications include Compass, Free-fall

detection, Pedometer, Barometer, Data Recorder, Human activity recognition, and so

on.

• Expert Mode: In expert mode, custom applications can be built through the

STBLESensor App by selecting specific input data, functions/algorithms to be

performed on that data, and then deciding how to display the data.

• Pro Mode: In pro mode, the user can make their own IoT by taking advantage of

STM32 Open Development Environment (ODE) and ST function pack libraries,

including sensing AI function pack with neural network libraries, without the need to

perform any coding activity.

Detailed important features of the box kit are:

o Ultra-low-power with FPU Arm-Cortex-M33 with TrustZone® microcontroller

(STM32U585AI)

o microSD™ card slot for standalone data logging applications

5 https://www.st.com/en/evaluation-tools/steval-mkboxpro.html

20

o High precision sensors to gather high-quality data:

• Low-voltage local digital temperature sensor (STTS22H)

• Six-axis inertial measurement unit (LSM6DSV16X)

• Three-axis low-power accelerometer (LIS2DU12)

• 3-axis magnetometer (LIS2MDL)

• Pressure sensor (LPS22DF)

• Digital microphone/audio sensor (MP23DB01HP)

o User Interface:

• Hardware power switch

• Green and orange system LED to display the power supply state

• 4 programmable status LEDs (green, red, orange, blue)

• 2 programmable push-buttons

• Audio buzzer

• Reset button

• Qvar with electrodes for user interface experience

• Interface J-Link/SWD debug-probe

• Interface for extension board

• Socket for DIL24 sensor adapters

o Power and charging options: USB Type-C® charging and connecting, 5 W wireless

charging and rechargeable long-life 480 mAh battery.

o STBLESensor App on the smartphone (both on the Google Play and Apple Store)

allows you to immediately connect to the box kit.

o Firmware over-the-air (FOTA) upgrade

In the context of this internship, this box kit was usually used in the Entry and the Expert modes.

In the entry mode, it was used for data collection. In the expert mode, it was used to create

custom applications that run on UNICO generated ML configurations.

21

Figure 1: SensorTile.Box PRO kit

Figure 2: Inside view of STEVAL-MKBOXPRO

6.1.2 STM32CubeIDE

STM32CubeIDE is an Integrated Development Environment (IDE) for STM32.

STM32CubeIDE is an advanced C/C++ development platform with peripheral configuration,

code generation, code compilation, and debug features for STM32 microcontrollers and

microprocessors. 6

In the context of this internship, STM32CubeIDE was used to work on the Activity Recognition

Algorithm project. It was used to make some modifications to the already existing project. The

6 https://www.st.com/en/development-tools/stm32cubeide.html

22

modifications included blinking of some LEDs and a buzzer sound when certain conditions are

met.

Figure 3: STM32CubeIDE Example Screenshot 1

Figure 4: STM32CubeIDE Example Screenshot 2

6.1.3 STM32CubeProg

STM32CubeProgrammer (STM32CubeProg) is a software tool for programming STM32

products. It provides an easy-to-use and efficient environment for reading, writing and

23

verifying device memory through both the debug interface (JTAG and SWD) and the

bootloader interface (UART, USB DFU, I2C, SPI, and CAN). 7

In the context of this internship, STM32CubeProg was used to upload the binaries on the box

kit in DFU mode. These binaries include the basic firmware binary of SensorTile.Box PRO kit

and other binaries obtained after successfully compiling a project on STM32CubeIDE.

Figure 5: STM32CubeProg Example Screenshot

6.1.4 Unico-GUI

Unico-GUI is a MEMS evaluation kit software package. It is a cross-platform graphical user

interface interacting with STEVAL-MKI109V3 (Professional MEMS tool) which is the

motherboard compatible with all ST MEMS adapter boards. It is also possible to run UNICO

offline (without the motherboard) for generating configurations of advanced features like the

Machine Learning Core, Finite State Machine, and pedometer. 8

Examples of tools which support the advanced features are the following: Machine Learning

Core tool that allows the user to configure a machine learning core starting from the

management of data patterns and labeling to setting and generating the configuration file to run

the algorithm.

7 https://www.st.com/en/development-tools/stm32cubeprog.html
8 https://www.st.com/en/development-tools/unico-gui.html

24

In the context of this internship, this is the most important software. It was used to create all

the machine learning configurations that were eventually programmed on the box kit. The aim

of this internship is to create a machine learning core able to distinguish the correct arm

movements. Well, this is the tool to create that machine learning configuration.

Figure 6: Unico-GUI Example Screenshot

6.1.5 AlgoBuilder

AlgoBuilder is a graphical design application to build and use algorithms. The application

facilitates the process of implementing proof of concept using a graphical interface without

writing the code. 9

In the context of this internship, this software was used only a couple of times to get familiar

with it by creating some very basic firmware with very basic building blocks. Later on, it was

not used for the purpose of this internship.

9 https://www.st.com/en/development-tools/algobuilder.html

25

Figure 7: AlgoBuilder Example Screenshot

6.1.6 Unicleo-GUI

Unicleo-GUI is a graphical user interface (GUI) to demonstrate the functionality of ST sensors

and algorithms. Unicleo-GUI is able to cooperate with firmware created by AlgoBuilder

application and display data coming from the running firmware. 10

As this tool is mostly used to read the live sensor values, it was not used at all as it required a

base motherboard to be connected in between the laptop and the sensors board to be able to

read those sensor values. As we did not have that base motherboard, there was no point in using

this software at all.

Figure 8: Unicleo-GUI Example Screenshot

10 https://www.st.com/en/development-tools/unicleo-gui.html

26

6.1.7 STBLESensor

STBLESensor mobile application is used for connecting with the box kit via Bluetooth. It can

then read the sensors data being sent by the box kit. It is also used to program the board in

Expert mode. All the data received by the app can be logged into CSV files and exported by e-

mail. 11

In the context of this internship, this mobile application was used to collect the training data

using the SensorTile.Box PRO kit. It was also used to upload the machine learning

configurations on the box kit and then used to test those configurations by creating new

applications in the expert mode.

Figure 9: STBLESensor App Example Screenshot 1

11 https://www.st.com/en/embedded-software/stblesensor.html

27

Figure 10: STBLESensor App Example Screenshot 2

6.1.8 LSM6DSV16X

LSM6DSV16X is a 6-axis inertial measurement unit (IMU) and AI sensor with embedded

sensor fusion. It is a high-performance, low-power 6-axis small IMU, featuring a 3-axis digital

accelerometer and a 3-axis digital gyroscope, that offers the best IMU sensor. 12

The LSM6DSV16X enables processes in edge computing, leveraging embedded advanced

dedicated features such as a finite state machine (FSM) and a machine learning core (MLC)

for IoT applications.

This LSM6DSV16X IMU is embedded within the SensorTile.Box PRO kit. It is a very

important hardware unit in the context of this internship as the MLC unit on it is responsible

for implementing the algorithm that will be able to detect the correct arm movement.

12 https://www.st.com/en/mems-and-sensors/lsm6dsv16x.html

28

6.1.9 Activity Recognition Algorithm

After getting familiar with the above-mentioned hardware and software components, it was

time to implement something using those tools, in order to get familiar with them. The first

thing that was done was implementing the Activity Recognition MLC example project. This

example project is available as an STM32CubeIDE project in STM32 ODE function pack. The

project is directly built on STM32CubeIDE resulting in a binary file. This binary file can then

be programmed on the board (STEVAL-MKBOXPRO) using STM32CubeProgrammer in the

DFU mode, in which case, the board is directly connected to the PC via USB/Type-C cable.

Alternatively, the board can be programmed by using the STM32CubeIDE debugger, in which

case, the board is connected to the PC via STLINK-V3SET (The STLINK-V3SET is a modular

debugging and programming probe for the STM8 and STM32 Microcontrollers). This activity

recognition program is intended to work with ST BLE Sensor app. The activities recognized in

this example are: Stationary, Walking, Jogging, Biking and Driving. After the board is

connected with the app using Bluetooth, it is displayed on the app which of the activities the

MLC recognizes. This was the standard unmodified version of the Activity Recognition

program.

6.2 Setting up Real-time Feedback

Real-time feedback would be able to inform the user about its arm movement by means of

audio and/or visual aids. For example, the box kit can produce a specific buzzer sound or blink

a specific LED if the user’s arm movements are correct and some other sound or some other

LED if the movements are incorrect.

6.2.1 LED Blinking and Buzzer

After implementing the standard Activity Recognition program on the box kit, some

modifications were made to the program by using the STM32CubeIDE. In the project, the code

was edited such that the box kit will blink some LEDs and will also produce a buzzer sound if

the MLC recognizes any activity. This modification was successful and was also tested after

compiling the project and uploading it on the board.

29

6.3 Workflow Setup

After implementing the Activity Recognition Algorithm and then modifying it ourselves, it was

time to create a general workflow setup for implementing our own “arm movement recognition”

algorithm. The general workflow would first involve collecting the data, then analyzing it by

plotting the data (preferably using python libraries), and then cleaning/filtering and processing

it to use for training. This data would be then fed to STM’s Unico-GUI software which uses

decision trees to create a Machine Learning Configuration (MLC) which can then be

programmed on the box kit, and then later tested for the correct performance. This is a broad

overview of the MLC pipeline implemented, whose detailed implementation is discussed in

the sections to follow.

6.3.1 MLC Configuration

After the successful attempt with LEDs and buzzer, the focus was towards using the MLC to

detect a particular arm movement which is necessary in calibrating the sensors for motion

capture. In this case, the sensor is attached to the biceps on the arms.

The first step towards this task was the data collection. Theoretically, the more the data, the

better the MLC would be trained. The data was collected for 9 different combinations of sensor

placements and arm movements for each of the arms. Practically, this data must be collected

for as many people as possible in order to generalize the algorithm, so that it will be able to

predict the movements of the unknown people. The MLC configuration generation process

uses the decision-tree algorithm to match the datasets with the assigned labels. Several MLC

configurations were created in which different labels were assigned to different datasets, to test

the performance of the decision-tree generation process.

This configuration is created by using Unico-GUI. The result of this UNICO step is a

configuration file, which can then be used for programming the board in Expert mode. When

programming the board, by selecting the Output ‘Stream to Bluetooth’, it is possible to observe

the decision tree output on the STBLESensor app.

30

6.3.2 MLC Pipeline

The whole MLC generation process can be broken down in three major steps. These steps are

described below.

6.3.2.1 Data Collection using ST BLE:

The data was collected using the SensorTile.Box PRO kit. There are two ways to collect data.

The first method writes the data to the csv files on the SD-card mounted on the kit. The second

method writes it in the internal memory of the mobile phone.

a) In the first method, the Data recorder example app was uploaded on the board using ST

BLE Sensor Classic App as shown in the images below.

Figure 11: ST BLE Sensor App Main Screen

31

Figure 12: ST BLE Sensor App Screenshot 2

Select ‘Create a new Application’ -> Select the Board Type.

Figure 13: ST BLE Sensor App Screenshot 3

32

Figure 14: ST BLE Sensor App Screenshot 4

Select ‘Log’ -> Upload Data recorder app on the board.

After the app is loaded successfully, connect to the device. Then, data logging can be done as

shown in the images below.

Figure 15: ST BLE Sensor App Screenshot 5

33

Figure 16: ST BLE Sensor App Screenshot 6

Select Start Logging and Stop Logging option at the bottom right of the screen to start and stop

logging the data. The data is saved in a csv file, which is stored on the SD card mounted on the

kit and can be retrieved from there.

b) In the second method, a new application was created using the ST BLE Sensor Classic

app.

Figure 17: ST BLE Sensor App Screenshot 7

34

Figure 18: ST BLE Sensor App Screenshot 8

Select ‘Create a new Application’ -> Select the Board Type.

Figure 19: ST BLE Sensor App Screenshot 9

35

Figure 20: ST BLE Sensor App Screenshot 10

Press ‘EXPERT VIEW’ and then press ‘+ NEW APP’.

Figure 21: ST BLE Sensor App Screenshot 11

36

Figure 22: ST BLE Sensor App Screenshot 12

Select Input sources and Output.

Figure 23: ST BLE Sensor App Screenshot 13

37

Figure 24: ST BLE Sensor App Screenshot 14

Save app. Give it a suitable name and an optional description. Press Finish.

Figure 25: ST BLE Sensor App Screenshot 15

Upload app by pressing the upload symbol.

38

Figure 26: ST BLE Sensor App Screenshot 16

Select the board.

Figure 27: ST BLE Sensor App Screenshot 17

Once the app is uploaded, Gyroscope and Accelerometer data (which were selected as inputs

initially) can also be observed on the app. Press the three vertical dots icon at the top right of

the screen to start and stop logging.

39

Figure 28: ST BLE Sensor App Screenshot 18

Figure 29: ST BLE Sensor App Screenshot 19

Start and Stop Logging accordingly.

40

Figure 30: ST BLE Sensor App Screenshot 20

Figure 31: ST BLE Sensor App Screenshot 21

Select OK to save the files internally. Files can be found in the device’s internal

memory.

41

6.3.2.2 Generating UCF file for MLC using UNICO-GUI:

Figure 32: UNICO GUI Main Screen

Open UNICO-GUI. Select ‘iNemo Inertial Modules’ -> ‘STEVAL-MKI227KA

(LSM6DSV16X)’. Unselect ‘Communication with the motherboard [Disabled]’ to use it

offline. Click ‘Select Device’.

Figure 33: UNICO GUI Screenshot 2

42

Select MLC option from the left panel.

Figure 34: UNICO GUI Screenshot 3

Figure 35: UNICO GUI Screenshot 4

Browse csv files, assign labels, and load them.

43

Figure 36: UNICO GUI Screenshot 5

Go to the ‘Configuration’ tab.

Figure 37: UNICO GUI Screenshot 6

44

Select ‘Device’, ‘Machine Learning Core ODR’, and ‘Inputs’. Set the inputs’ Full scale and

ODR.

Figure 38: UNICO GUI Screenshot 7

Set number of ‘Decision trees’, ‘Window length’, and ‘Filter configuration’.

Figure 39: UNICO GUI Screenshot 8

45

Select ‘Features’ that you want for the decision tree(s).

Figure 40: UNICO GUI Screenshot 9

Save ARFF file. And then assign numerical values to the Decision tree Results.

Figure 41: UNICO GUI Screenshot 10

46

Click ‘GENERATE’ to generate the decision tree. You can aslo set ‘Max number of nodes’,

‘Confidence factor’, and ‘ Decision tree name’ before generating the decision tree.

Figure 42: UNICO GUI Screenshot 11

You can see the text file to see the decision tree generated. This info is also displayed on the

GUI.

Figure 43: UNICO GUI Screenshot 12

47

Assign ‘Meta classifier’. Finally, save the configuration file.

Figure 44: UNICO GUI Screenshot 13

Configuration file is created.

6.3.2.3 Uploading Configuration file to the Board using ST BLE:

Figure 45: ST BLE Sensor App Screenshot 22

48

Figure 46: ST BLE Sensor App Screenshot 23

Open the ST BLE Sensor Classis app. Press ‘Create a new Application’, select the Board

Type.

Figure 47: ST BLE Sensor App Screenshot 24

49

Press ‘EXPERT VIEW’.

Figure 48: ST BLE Sensor App Screenshot 25

Press ‘+NEW APP’.

Figure 49: ST BLE Sensor App Screenshot 26

50

Select ‘MLC Virtual Sensor’ from the Input sources.

Figure 50: ST BLE Sensor App Screenshot 27

Press the settings icon next to ‘MLC Virtual Sensor’.

Figure 51: ST BLE Sensor App Screenshot 28

51

Select a ucf file.

Figure 52: ST BLE Sensor App Screenshot 29

Save Config after uploading the ucf file.

Figure 53: ST BLE Sensor App Screenshot 30

52

Select ‘Stream to Bluetooth’ option in the Output tab and press Continue.

Figure 54: ST BLE Sensor App Screenshot 31

Save app. Give a name and an optional description and press Finish.

Figure 55: ST BLE Sensor App Screenshot 32

53

Upload the app by pressing the upload option and selecting the board.

Figure 56: ST BLE Sensor App Screenshot 33

Figure 57: ST BLE Sensor App Screenshot 34

You can observe the output changing on the ‘Decision Tree: 0’.

54

6.3.3 MLC Experiments

Once the MLC pipeline was established, some MLC experiments were tried as a starting point.

6.3.3.1 Data Collected

The data was collected for 9 different combinations of sensor placement and arm movement (3

different sensor positions times 3 different arm movements). For each combination, 3 data

samples were collected.

Sensor

Position

Arm

Movement

Sagittal Frontal 45º

Sagittal 3 3 3

Frontal 3 3 3

Backward 3 3 3

Table 1: Number of Data Samples

This data corresponds to 27 samples. It is per hand per person. So, for one person, there will

be 54 samples in total, 27 for the right hand and 27 for the left hand.

Below is the image showing the different planes (sagittal, horizontal and frontal) for better

understanding.

Figure 58: Different planes 13

13 https://www.teachpe.com/anatomy-physiology/planes-of-movement

55

Below are the images showing the sagittal sensor placement on both right and left hands.

Figure 59: SensorTile.Box PRO kit mounted on the right arm

Figure 60: SensorTile.Box PRO kit mounted on the left arm

56

6.3.3.2 Models Created

There were several models created and tested. For simplicity and understanding, let’s assign

simple variables to the data categories above.

Sensor Positions: Sagittal = A, Frontal = B, Backward = C

Arm Movements: Sagittal = D, Frontal = E, 45º = F

So, for example, case AD would mean the data collected when sensor position was sagittal and

arm movement was also sagittal. Case CE would mean the data collected when sensor position

was backward, and the arm movement was frontal.

1) In the first case of decision tree generation, the case AD was given ‘true’ label, and the

rest of the cases (AE, AF, BD, BE, BF, CD, CE, and CF) were given ‘false’ labels. So,

if the sensor is mounted in sagittal position and the arm moves along the sagittal plane,

the model should identify it as a correct movement, otherwise, not.

2) In the second case, AD, BD, and CD were given true labels, and the rest (AE, AF, BE,

BF, CE, and CF) were given the false label. So, no matter the sensor placement, if the

arm movement is sagittal, the model should identify it as a correct movement, otherwise,

false.

3) In the third case, AD was given the true label, and AE and AF were given the false

labels. So, this case was restricted to only sagittal sensor placements.

4) In the fourth case, two decision trees were generated in the configuration. One for

identifying the correct movement of right arm, and another for the left arm. AD, BD,

and CD were given true labels, and the rest (AE, AF, BE, BF, CE, and CF) were given

the false label. Both for the right-hand and the left-hand datasets.

5) In this case, again, two decision trees were generated in the configuration. One for

identifying the correct movement of right arm, and another for the left arm. This time,

AD was given the true label, and AE and AF were given the false labels. So, this case

was restricted to only sagittal sensor placements, but for both hands.

6) All the previous configurations were created based on just one person’s data and tested

on the same person. In this case, the data for two people was used to create the

configuration. AD was given the true label, and AE and AF were given the false labels.

Then, it was tested on one person.

57

For each of these models, the following configuration settings were set when creating the

MLC:

• MLC Frequency: 30 Hz

• Sensors Frequencies: 60 Hz

• Window Length: 52

• Feature: Mean

More details about setting these parameters will come later. As of now, these values were set

by default.

6.3.3.3 Performance

The performance was observed by testing the model against the cases for which it was created.

None of the models were accurate enough to consider them good. There were some cases in

which models were able to identify the correct movement, but most of the time they gave wrong

predictions.

Below is the summary of the models’ characteristics in tabular form.

S.No. True Label False Label Hands No of people

in the dataset

1 AD AE, AF, BD,

BE, BF, CD,

CE, CF

Right 1

2 AD, BD, CD AE, AF, BE,

BF, CE, CF

Right 1

3 AD AE, AF Right 1

4 AD, BD, CD AE, AF, BE,

BF, CE, CF

Both 1

5 AD AE, AF Both 1

6 AD AE, AF Right 2

7 AD AE Right 1

Table 2: MLC models' characteristics

In the last table entry, when nothing seemed to be working, it was decided to focus on just one

arm right now (for example, right arm) and limit the True/False cases only to AD and AE

initially, so that the resulting model will be very simple. Then after we have a working model

that differentiates between the AD and AE cases, we can extend it with the remaining cases,

58

and for the left arm too. But even the simplest model was not giving any good results at this

moment.

Seeing the performance of the above models, it was noticed that using the accelerometer and

the gyroscope data as it is might not be a good option in this case. One possible alternative was

to use Quaternions / Euler Angles.

6.4 Correcting the Input Data Type

After noticing that the accelerometer and gyroscope data might not be sufficient to train the

decision tree, it was time to look at the other possible options available within the box kit. It

was the only restriction that we had when using the SensorTile.Box PRO kit that we can only

use the resources available inside the kit and only the ST provided software (possibly some

external software as well that makes working with ST devices possible). One of those

possibilities was to use the Quaternion data belonging to the arm movements, which is possible

thankfully with the help of ST BLE Sensor app.

6.4.1 Using Quaternions instead of Accelerometer /Gyroscope Data

The ST BLE Sensor Classic app offers a ‘Sensor Fusion – Quaternion’ application that uses

the LSM6DSV16X iNemo 6-axis inertial measurement unit and the LIS2MDL 3-axis

compensated magnetometer to show the orientation estimation of SensorTile.boxPRO in the

3D space. The algorithm used in the sensor fusion algorithm (MotionFX library) embedded in

the SensorTile.box MCU which uses the sensors data as inputs (9-axis) and calculates the

quaternion coefficient describing the rotation of 3D cube model. The sensor fusion algorithm

is basically a Kalman filter that minimizes the sensors’ inaccuracies based on peculiarities of

other sensors; it includes gyroscope calibration and magnetometer calibration (to compensate

for the magnetometer offset).

The only problem with the Quaternion data is that it contains 4 data sequences. A quaternion

is represented as q = a + bi + cj + dk, where a, b, c, and d are real numbers representing the

components of the quaternion, and i, j, and k are the quaternion units. Here is what each

component represents:

• a: The real part of the quaternion

59

• b: The coefficient of the i unit, which is one of the imaginary units of the quaternion.

• c: The coefficient of the j unit, another imaginary unit of the quaternion.

• d: The coefficient of the k unit, third imaginary unit of the quaternion.

Together, these components form a four-dimensional vector that represents a point in the space

of quaternions. The real part (a) represents the scalar part of the quaternion, while the imaginary

parts (b, c, d) represent the vector part. This combination allows quaternions to represent

rotations and translations concisely and efficiently. [20]

The problem with the four-dimensional quaternion data comes from a limitation of MLC

(Machine Learning Core) training tool of Unico-GUI. It only expects a 3-dimensional data for

each sensor data used in the training. It does not make sense to use 3 dimensions of the 4-

dimensional data for training as it would be inaccurate. So, we needed a way to convert this 4-

dimensional data into 3 dimensions.

6.4.2 Euler Angles

Thankfully, we have Euler angles, the solution to our previous problem. Euler angles are a set

of three angles (usually called roll, pitch and yaw) used to represent the orientation of an object

or coordinate system in three-dimensional space. The three angles typically represent rotations

about the three principal axes of the coordinate system. There are several conventions for

defining Euler angles, such as XYZ, ZYX, ZXY, XZY, XZX, YXY, and so on. In total, there

are 12 of these conventions. Each convention specifies the order in which the rotations are

applied, and about which axes. However, Euler angles have a very important limitation known

as Gimbal lock, which occurs when two of the three angles align, leading to a loss of one degree

of freedom. [20] [21]

To counteract the Gimbal lock, if we apply the rotation sequence in which the first axis is the

axis of rotation of the arm, we will never run into the problem of Gimbal lock. Applying the

rotation sequence with the first axis as the axis of rotation of the arm helps counteract Gimbal

lock by stabilizing the primary reference frame and preventing intermediate axis alignment

issues. By following this step, the risk of intermediate steps leading to a loss of degree of

freedom is minimized because the initial step already establishes a stable reference frame, thus

preserving the necessary degrees of freedom and avoiding Gimbal lock. [20]

60

To convert quaternions into Euler angles, SciPy’s Spatial Transformations

(scipy.satial.transform) package was used. This package contains a Rotation class

(scipy.spatial.transform.Rotation) which provides the functionality to convert a 4-dimensional

quaternion into a 3-dimensional Euler angle.14 When converting a quaternion into a Euler angle,

a rotation sequence needs to be specified which tells along which axis the rotation was

performed first. Only AD and AE cases are being considered right now to keep the resulting

model as simple as possible, as explained before as well. AD data was converted using the

ZXY sequence since the arm moves around the z-axis of the sensor (or it can be said along the

x-y plane of the sensor) in the case of AD. And the AE data was converted using the XZY

sequence since the arm moves around the x-axis of the sensor (or along the y-z plane of the

sensor) in the case of AE.

In the table below, different rotation sequences are mentioned for different scenarios.

Sensor

Position

Movement

Plane

Forward Lateral 45°

Lateral zxy xzy zxy

Front xzy zxy xzy

Back xzy zxy xzy

Table 3: Different rotation sequences for different scenarios

To get the Euler angles, first Quaternions data was collected. 11 measurements were taken for

each case (AD and AE). So, 11 measurement files containing Quaternions for the AD case, and

11 more measurement files containing Quaternions for the case of AE. After we have the

Quaternions data, Euler angles were calculated according to their respective rotation sequences.

After the Euler angles were calculated, the offsets were also removed from them for the data

to make sense. So, for each arm movement, all three of the Euler angles were starting from 0

degrees, and if the arm goes all the way up, one of the angles (depending on the sensor

14 https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.html

61

orientation) can be seen changing from 0 degrees to 180 degrees. This offset removal step was

done on all the collected data.

After removing the offsets, the angles were plotted for the AD and AE cases to get the visual

representation of the angles. All the 11 measurements were plotted on a single graph to see the

consistency of those measurements. These plots are shown in the results section. After plotting

these graphs, it was noticed that some of these measurements are not consistent with each other

what was not expected. For example, we know that one of the angles should approach 180

degrees during the arm movement, but it was not the case with some measurements. So, it was

decided to discard those measurements and to not use them in the training of the decision tree,

as they could be misleading and might affect the training step. These plots are shown in the

results section under the Change of Data Type subsection.

After discarding inconsistent measurements, the data columns were arranged in an order before

using it for training. This is necessary because for different cases, different rotation sequences

were applied when converting to Euler angles. So, the cases for which ZXY rotation sequence

was used, their roll, pitch and yaw columns would be rearranged as pitch, yaw and roll.

Similarly, for the cases, for which XZY rotation sequence was used, their roll, pitch and yaw

columns would be rearranged as roll, yaw and pitch. This is to keep the column orders

consistent in the order XYZ.

In the case of AD, the ZXY rotation sequence was used to convert the Quaternions into Euler

angles. So, in this case, roll corresponds to the rotation along Z-axis, pitch along the X-axis

and yaw along the Y-axis. Whereas, in the case of AE, the XZY rotation sequence was used.

Now in this case, the roll corresponds to rotation along the X-axis, pitch along the Z-axis and

yaw along the Y-axis.

Therefore, before using this data for training, it was necessary that the data columns of all the

cases (AD and AE for right now) were in the same order. Therefore, the column order was

changed such that they follow the XYZ order. Hence, in the case of AD, the roll-pitch-yaw

order was changed to pitch-yaw-roll to follow the XYZ order. Similarly, in the case of AE, the

roll-pitch-yaw order was changed to roll-yaw-pitch to follow the XYZ sequence. Now the data

was ready for training.

62

6.5 Adapting Training to the Real Scenario

The MLC was trained using the data obtained in the previous step to distinguish between the

AD and AE movements. The AD movements were labeled as True, whereas the AE movements

were labeled as False. After training the MLC, there was still no success. The MLC still could

not differentiate between the AD and the AE movements, not 100% correctly. There would be

instances in which the output would be correct, predicting the correct arm movement, but there

will be other instances as well in which it would not predict accurately, or it would be stuck on

just output (output not changing with any arm movement). So, it was very inconsistent and not

reliable at all.

After not getting any success, it was decided to do a little experiment. This experiment was

limited to the AD movements only. For AD, those measurements whose roll values were going

beyond 100 degrees were considered as True and the rest of them were considered false. This

experiment, unfortunately, had no success either. It had the same effect on the output that it

was most of the time stuck at one value and was not changing. The point of this experiment

was to make the decision-making process as easy as possible, so that MLC should at least be

able to predict this one correctly, but as usual, it failed.

After these repeated failures, it was necessary to make sure that the machine was interpreting

the live data the same way as the data it was trained on. Because when the machine was trained,

it was not trained on the actual Quaternions data that was collected in the beginning. Those

Quaternions were changed to Euler angles and then the offsets were removed as well. This was

the data that was used for training, and it was important to make sure that the machine was also

able to see the data the same way when it was making predictions. If the machine could not

interpret the interpreted data, then how would it have made the correct predictions? So, we

needed a way to first run the machine offline, where it could be provided with the interpreted

data instead of the live data so that it could be seen if the trained algorithm was able to make

the correct predictions on the interpreted data to verify the correctness of the algorithm. In this

way, it could be confirmed that at least the machine was trained correctly.

Fortunately, ST mentions about offline analysis in one of its documents to verify the

classification performance of MLC. ST provides a python script that could be run to verify the

performance. The script verifies the performance by making a comparison of the decision tree

and the ARFF file. The script was run on the first ML configuration that was created for

distinguishing between the AD and AE movements. After running this script, it gave 100%

63

accuracy on the model. Still, it was not the exact thing which was intended to be tried. The

actual intention was to see if the model performs accurately on the new unseen data, but this

python script from ST does not even use any training/testing data to test the model. It just

compares the contents of ARFF file and decision tree file. Nevertheless, it still gave 100%

accuracy for the model, which means that it is accurate, at least, according to ST criteria.

6.6 Customizing Machine Learning Decision Parameters

After these repeated failures, there were not a lot of things left to try. One of the things that

were left was to customize some of the decision tree training parameters, such as ODR (Output

Data Rate), window length, and feature selection.

6.6.1 MLC and Sensor(s) ODR

ODR is the output data rate. It is the sampling frequency at which the device runs and samples

the readings. The MLC (Machine Learning Core) ODR and the sensors ODR are not too

important, individually, but together their combination is important to understand. If the

sensors’ ODR is twice as much as MLC’s ODR, then it implies that sensors are running at

twice as speed as MLC. It means that MLC is sampling only every other reading (not all

readings) available from the sensors, as its speed is exactly half as the sensors’ speed. So, for

example, if there are 100 readings available from the sensors, MLC is only sampling 50 of

them, ignoring one sample after reading each sample. On the other hand, if both the MLC ODR

and sensors ODR are same, then they both are running at the same speed and MLC is reading

every sample that is provided from the sensors. The sensors include the accelerometer and the

gyroscope sensors.

It is important to understand this in the context of window length, and how many readings there

are available in a measurement file. If there are, for example, 150 readings available in a

measurement file, and let’s say that the sensors ODR is twice as much as the MLC ODR, then

there are exactly 75 readings (half of the actual number of readings) available to the MLC for

the training.

64

6.6.2 Window Length

One of the decision tree training parameters that could possibly affect the outcome by changing

it was the window length. So, it was decided to test it by changing the window length parameter

which is set before the model training. This parameter tells how many data values are going to

be used in a window and then the selected feature is applied on those values in each window.

So, for example, if a window length of 13 is selected, it will group the values in the dataset in

multiple windows, with each window having 13 non-overlapping samples. And then, for

example, if mean is selected as the feature, it will calculate the mean of the 13 values in the

window for each window.

Up until this point, the window length of 52 was selected which was a default setting from the

ST. The results obtained so far were from this setting. So, it was decided to play around with

this setting and see how it affects the outcome. Setting the window length to 13 had the most

promising results so far, in which the sensor output was changing according to the expected

arm movement, but it was still inconsistent and unreliable.

13, 26, 39, 52, 65, 78 and 91 are the different window lengths that were tried, along with

different combinations of features. Window lengths above 91 were unable to be tested because

the software was unable to generate a decision tree for those scenarios as there were not enough

samples in the measurement file. The detailed results of the outcomes of different window

lengths are reported in the results section.

6.6.3 Feature Selection

This is another important parameter to test after the window length. This parameter applies,

whatever feature that is selected, to the values in the window. Up until this point, only the mean

values were used as feature (both in accelerometer/gyroscope case and the Euler angles case).

There are other features that can be tried such as minimum, maximum, variance, energy, and

many more. The best way to decide which feature to use is by plotting the data and observing

which feature can better grasp the underlying data. The detailed results about the outcome of

different features are reported in the results section.

65

6.7 Going Back to The Accelerometer/Gyroscope Data

After getting repeated failures even when using Euler angles, and that too after trying different

options, the only possibility left was to try the accelerometer and gyroscope data again, but this

time with customizable machine learning parameters. Like before, the parameters that could

be changed are window length, feature selection, and MLC and/or sensors ODR.

As before, the focus was to have a working algorithm that can at least differentiate between the

AD and AE movements. At some point, a third state was included as well other than AD and

AE states, called the Idle state. Moreover, there were initially only 3 measurement files for

each hand movement as described in the MLC Experiments section, but after some iterations,

more measurement files were included to have more data for the better ML training. To identify

which feature selection could be best in a particular case, the corresponding graphs were plotted

of the accelerometer and the gyroscope data, which are shown in the results section.

All the results, that were tried with different options and different configurations, are reported

in the Accelerometer/Gyroscope Data with Tunable ML Parameters subsection under the

Results section.

6.8 Using Sensor on the Wrist instead of on the Arm

When using the sensor on the arm did not give any promising results, even with customizable

ML decision parameters, there was still one thing that could be tried. It was to use the sensor

on the wrist instead of on the arm. The reason for doing it would be prominent after looking at

the plots of accelerometer and gyroscope data. When using the sensor on the wrist, the AD and

AE have more differentiable data as compared to the case when the sensor was on the arm.

These plots are shown in the results section.

Like the approach described in the previous Going Back to The Accelerometer/Gyroscope

Data section, different options and configurations were tried in this case as well, such as

different window lengths, different feature selections, and different MLC and/or sensors ODRs.

The results for all these different configurations are reported in the Sensor on the wrist

subsection under the results section.

66

7 Results

All the different results from different subsections in the Methodology chapter are included

in this chapter.

7.1 MLC Experiments Performance

In the MLC Experiments subsection under the Workflow Setup section, some MLC models

were created to test different cases and distinguish between different arm movements.

Unfortunately, this exercise was not successful at all as it was not able to recognize any

movement correctly. Their performance is reported in the table below.

S.No. True Label False Label Hands No of

people in

the

dataset

Performance

1 AD AE, AF, BD, BE,

BF, CD, CE, CF

Right 1 Not able to distinguish

between the true

movements and the false

movements.

2 AD, BD, CD AE, AF, BE, BF,

CE, CF

Right 1 Not able to distinguish

between the true

movements and the false

movements.

3 AD AE, AF Right 1 Not able to distinguish

between the true

movements and the false

movements.

4 AD, BD, CD AE, AF, BE, BF,

CE, CF

Both 1 Not able to distinguish

between the true

movements and the false

movements.

5 AD AE, AF Both 1 Not able to distinguish

between the true

67

movements and the false

movements.

6 AD AE, AF Right 2 Not able to distinguish

between the true

movements and the false

movements.

7 AD AE Right 1 Not able to distinguish

between the true

movements and the false

movements.

Table 4: MLC models' performance

7.2 Change of Data Type

In the section Correcting the Input Data Type, it is mentioned how the data type was changed

from Accelerometer/Gyroscope to Quaternions and then eventually to Euler Angles. After

calculating Euler angles, they were first plotted to get the visual representation of the data

before using it in the training process.

Below are the plots of the Euler angles of one of the 11 measurements for both the case of AD

and AE.

Euler angles in the case of AD

68

In the plot above, Euler angles are plotted in degrees (after removing the offsets) for the case

of AD. It can be seen in the plot that the roll is crossing 150 degrees which satisfies the arm

movement condition of AD that it should approach 180 degrees.

Euler angles in the case of AE

In the plot above, Euler angles are plotted in degrees (after removing the offsets) for the case

of AE. It can be seen in the plot that the roll is crossing the -120 degrees which satisfies the

arm movement condition of AE that it should approach -180 degrees. (It is negative because

of the sensor orientation which is not important and can be ignored)

To verify the integrity of the collected data, we calculated the min, max and range of all three

Euler angles of all 11 measurements for each of the 9 cases. If these statistics are not consistent

among the 11 measurements for any certain case, it means that the measurements that are

inconsistent have some problems in the original data and therefore, it is better if these

measurements should not be used in the MLC training because it could contribute towards the

improper training of the MLC. Below are the statistics for both AD and AE cases.

69

7.2.1.1 AD

Roll:

Measurement

File No.

Roll

Minimum

Roll

Maximum

Roll Range Roll

Average

Roll

Variance

0 -4.489397 155.398591 159.887987 37.347883 3107.493016

1 - 20.588897 144.516195 165.105092 38.225601 3585.076437

2 - 34.780051 154.545851 189.325902 55.543096 3799.889076

3 - 98.940774 76.011203 174.951977 - 12.627701 3603.296925

4 - 4.578309 145.965063 150.543372 42.700858 3424.963224

5 - 14.167902 149.444853 163.612756 46.647889 3919.386788

6 - 77.015355 26.428775 103.444130 - 23.339770 1296.144546

7 - 36.734936 35.850878 72.585814 1.289612 457.298503

8 - 21.771149 25.128225 46.899374 0.203756 197.052888

9 - 79.944679 51.072129 131.016808 - 2.042009 1589.107385

10 - 79.068447 15.932596 95.001043 - 26.378531 1200.495868

Table 5: Roll statistics for 11 measurement files in the case of AD

Pitch:

Measurement

File No.

Pitch

Minimum

Pitch

Maximum

Pitch Range Pitch

Average

Pitch

Variance

0 -69.984536 14.711747 84.696282 -9.002772 415.219902

1 -60.697133 9.365794 70.062927 -8.550391 378.191783

2 -74.414243 7.097643 81.511886 -13.501869 629.583228

70

3 -77.174331 1.850664 79.024995 -16.565927 552.212524

4 -72.995200 9.860994 82.856194 -14.599861 533.831940

5 -70.880741 4.695503 75.576244 -16.783718 535.537761

6 -66.212732 1.364536 67.577269 -14.224223 465.278813

7 -64.197848 0.367527 64.565374 -15.052183 443.078269

8 -57.416693 4.654139 62.070832 -11.606306 410.368598

9 -62.163317 0.800303 62.963620 -14.144839 393.196654

10 -62.515554 5.888517 68.404071 -11.940338 467.782123

Table 6: Pitch statistics for 11 measurement files in the case of AD

Yaw:

Measurement

File No.

Yaw

Minimum

Yaw

Maximum

Yaw Range Yaw

Average

Yaw

Variance

0 - 1.551632 36.309673 37.861305 9.405395 135.430361

1 - 15.415170 71.718241 87.133411 8.808493 423.460539

2 - 35.734448 115.701739 151.436187 16.233989 909.622705

3 - 99.485431 42.153388 141.638820 - 48.055325 1371.263712

4 -11.248516 34.104834 45.353349 4.398950 96.686227

5 - 15.678918 92.645691 108.324609 7.549187 411.314338

6 - 138.71615 12.884332 151.600484 - 62.390997 1617.369415

7 - 131.01892 18.832076 149.850995 - 39.462012 1800.931919

8 - 145.82738 9.474301 155.301679 - 40.671490 2401.546488

71

9 - 116.11692 28.973043 145.089964 - 42.172099 1436.294694

10 - 149.8152 7.633346 157.448542 - 61.927365 2084.179049

Table 7: Yaw statistics for 11 measurement files in the case of AD

7.2.1.2 AE

Roll:

Measurement

File No.

Roll

Minimum

Roll

Maximum

Roll Range Roll

Average

Roll

Variance

0 - 170.32182 6.656484 176.978301 - 46.114114 4982.901961

1 - 79.325571 265.600637 344.926208 62.945668 10040.190314

2 - 196.29223 6.358872 202.651103 - 67.920153 7562.612526

3 - 89.483829 254.964345 344.448174 70.484855 6403.271946

4 - 129.77568 3.827288 133.602973 - 34.526037 2532.447607

5 - 75.286624 281.932272 357.218896 41.658678 11481.381431

6 - 117.52575 5.190158 122.715911 - 29.380059 2025.688585

7 - 74.624606 283.377021 358.001626 31.754657 10455.056386

8 - 79.773611 278.824877 358.598488 29.538770 10549.816496

9 - 98.197295 6.792605 104.989900 - 23.598798 1476.584440

10 - 79.150467 278.675478 357.825944 40.948097 1200.495868

Table 8: Roll statistics for 11 measurement files in the case of AE

72

Pitch:

Measurement

File No.

Pitch

Minimum

Pitch

Maximum

Pitch Range Pitch

Average

Pitch

Variance

0 - 51.139762 15.245324 66.385086 -13.405650 220.151933

1 - 16.467538 37.406586 53.874124 9.503592 185.833718

2 - 28.747716 37.213613 65.961329 - 0.004949 396.464597

3 - 39.768946 26.414497 66.183443 1.567019 470.183698

4 - 47.450739 8.259586 55.710325 - 15.358958 189.212408

5 - 1.428872 56.641645 58.070517 19.021048 257.628909

6 - 55.035261 0.321924 55.357185 - 18.341376 224.103538

7 - 0.115809 55.128147 55.243956 21.090121 238.185647

8 - 0.395301 63.779175 64.174475 26.028255 310.856466

9 - 52.383915 2.981422 55.365337 - 15.127074 214.831610

10 - 0.288509 58.580543 58.869052 18.726928 256.852659

Table 9: Pitch statistics for 11 measurement files in the case of AE

Yaw:

Measurement

File No.

Yaw

Minimum

Yaw

Maximum

Yaw Range Yaw

Average

Yaw

Variance

0 - 109.77023 9.735430 119.505659 - 27.323833 1717.612344

1 - 348.38225 9.560465 357.942714 - 108.09169 19937.414371

2 - 141.15161 9.435283 150.586896 - 40.890038 2694.950905

3 - 327.89875 15.928750 343.827505 - 104.09318 13353.762437

73

4 - 78.568890 3.193969 81.762859 - 24.739707 940.468884

5 - 341.68708 15.648473 357.335553 - 95.726873 20171.592677

6 - 80.347598 1.414416 81.762014 - 24.302663 1008.454505

7 - 345.44622 13.385107 358.831325 - 119.19072 22687.186277

8 - 347.07191 12.197960 359.269868 - 110.50293 21254.110404

9 - 82.691795 3.077206 85.769000 - 25.484108 1024.065347

10 - 346.22333 13.308520 359.531853 - 109.27046 21617.649393

Table 10: Yaw statistics for 11 measurement files in the case of AE

The roll, pitch and yaw were also plotted separately, but combinedly for the different

measurements. In this way, it is easier to see the above-mentioned effect of inconsistency on

each angle separately with respect to the different measurements. In this way, the roll values

of all measurements for a specific case (for example AD) were plotted on one graph. Similarly,

the pitch and yaw values were plotted separately for that specific case. In the case of AD, the

roll values should approach 180 degrees for each measurement. But there were some

measurements for which it was not even crossing 100 degrees. So, a 100-degree threshold was

set, and the measurements that were not crossing this threshold were not used in the training.

It was a similar situation in the case of AE. For AE, the roll values should approach –180

degrees (negative because of sensor orientation). But for some measurements, it was not the

case, so those measurements were discarded too.

Below are the plots of the roll, pitch and yaw, plotted separately, but combinedly for all 11

measurements, and for each case, AD and AE. The first case is AD.

74

Roll angles for 11 measurements of AD

In the graph above, the roll angles are plotted for all 11 measurements for the case of AD. With

the help of this graph, the consistency can be seen easily among different measurements with

respect to one specific angle. It also helps to see which measurements are accurate and are

approaching 180 degrees.

Pitch angles for 11 measurements of AD

75

In the graph above, the pitch angles are plotted for all 11 measurements for the case of AD.

But this plot is not as important as the roll one. Because roll is the angle that gives direct

information about the arm movement/rotation in terms of angles in the direction we are

interested in.

Yaw angles for 11 measurements of AD

In the graph above, the yaw angles are plotted for all 11 measurements for the case of AD.

Similarly, this plot is not as important as the roll one because of the reason stated before.

Now, below are the plots of the roll, pitch and yaw, plotted separately, but combinedly for all

11 measurements, for the case of AE.

76

Roll angles for 11 measurements of AE

In the graph above, the roll angles are plotted for all 11 measurements for the case of AE. With

the help of this graph, the inconsistency can be seen easily among different measurements with

respect to one specific angle. It also helps to see which measurements are accurate and are

approaching -180 degrees.

Pitch angles for 11 measurements of AE

77

In the graph above, the pitch angles are plotted for all 11 measurements for the case of AE. But

this plot is not as important as the roll one. Because roll is the angle that gives direct information

about the arm movement/rotation in terms of angles in the direction that we are interested in.

Yaw angles for 11 measurements of AE

In the graph above, the yaw angles are plotted for all 11 measurements for the case of AE.

Similarly, this plot is not as important as the roll one because of the reason stated before.

7.3 Real Scenario Training

As discussed in the section Adapting Training to the Real Scenario, the decision tree training

to distinguish between the AD and AE movements was no success. Below is the decision tree

report for this trained MLC.

78

Figure 61: Decision Tree report for trained MLC to distinguish between AD and AE movements

Although it can be seen in the report that the resulting decision tree has the 100% accuracy on

the trained data, it was still unable to predict the correct movements.

Then, the AD experiment was tried which was no success either. Its resulting decision tree

report is shown below.

Figure 62: Decision Tree report for AD experiment

79

In this case too, the resulting decision tree had 100% accuracy but still no success.

Then, the ST provided offline analysis was performed to verify the classification performance

of MLC. It gave 100% accuracy for the model which was trained to distinguish the AD and AE

movements. Below is the test report for accuracy.

Figure 63: Offline analysis report to test MLC accuracy

7.4 ML Decision Parameters

7.4.1 AD Experiment

The ML parameters such as window length and feature selection were customized to improve

the performance. It was initially tried on AD experiment which is mentioned in the section

Adapting Training to the Real Scenario. The results are reported below.

Below are the results of different window lengths and different features on AD experiment

when the simple AD arm movement was performed after placing the sensor on the arm. In the

AD experiment, the true cases are those cases for which roll value is greater than or equal to

100 degrees. Whereas the rest of the cases are false.

80

Window

Length

Feature Mean Min Max

13 Stuck at 0 (true) Not changing. Stuck at

whatever the initial

value was.

Stuck at 0 (true)

26 Stuck at 0 (true) Stuck at 0 (true) Stuck at 0 (true)

39 Stuck at 0 (true) Stuck at 0 (true) Stuck at 4 (false)

52 Stuck at 0 (true) Stuck at 0 (true) Stuck at 4 (false)

65 Stuck at 0 (true) Stuck at 0 (true) Stuck at 4 (false)

78 Stuck at 0 (true) Stuck at 0 (true) Stuck at 4 (false)

91 Stuck at 4 (false) Stuck at 0 (true) Stuck at 4 (false)

Table 11: Performance result of AD experiment with varying window lengths and features

In the table above, it can be seen that the output was mostly stuck at just one value. For mean

and minimum features, it is mostly stuck at true even though when half AD movement was

performed in which case roll value should be less than 100 degrees. And in the maximum

feature, it is mostly stuck at false.

Below are the results of the different window lengths and different features on AD experiment

when the sensor was randomly moved and rotated by holding it in hand. This was important to

see if the sensor output was even changing or not when it was not changing in the typical AD

movement.

Window

Length

Feature Mean Min Max

13 Stuck at 0 (true) Randomly changing

between 0 (true) and 4

(false). Not consistent.

Stuck at 0 (true).

Started at 4 (false) and

then immediately

81

changed to 0 (true) and

then stayed true.

26 Stuck at 0 (true) Stuck at 0 (true) Stuck at 0 (true)

39 Stuck at 0 (true) Stuck at 0 (true) Stuck at 4 (false)

52 Stuck at 0 (true) Stuck at 0 (true) Randomly changing

between 0 (true) and 4

(false).

65 Stuck at 0 (true) Stuck at 0 (true) Stuck at 4 (false)

78 Stuck at 0 (true) Stuck at 0 (true) Stuck at 4 (false)

91 Stuck at 4 (false) Stuck at 0 (true) Randomly changing

between 0 (true) and 4

(false).

Table 12: Output of AD experiment when the sensor is randomly moved by hand

In the above table, it can be seen that the sensor output was somewhat changing under the

influence of random sensor movements by hand, which shows that at least there was some

working algorithm down there, but it just did not seem to be working correctly.

7.4.2 AD/AE Movements

The effect of changing the ML parameters to distinguish the AD/AE movements are reported

below. Note that the AD movements are labeled as true, whereas AE movements are labeled

as false. In this subsection, the results belonging to the Customizing Machine Learning

Decision Parameters section are reported, in which case the Euler angles were used as the

training data.

Below are the results of different window lengths and different features on the algorithm when

the simple AD movement was performed after placing the sensor on the arm.

82

Window

Length

Feature Mean Min Max

13 Stuck at 0 (false) Stuck at 4 (true) Stuck at 4 (true)

26 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false)

39 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false)

52 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false)

65 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false)

78 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false)

Table 13: Sensor outcome when performing simple AD movement

Below are the results of different window lengths and different features on the algorithm when

the simple AE movement was performed after placing the sensor on the arm.

Window

Length

Feature Mean Min Max

13 Stuck at 0 (false) Stuck at 4 (true) Stuck at 4 (true)

26 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false)

39 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false)

52 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false)

65 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false)

78 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false)

Table 14: Sensor outcome when performing simple AE movement

It can be seen in both of the tables above that the sensor output was usually stuck at one value,

which was not even correct. For mean and minimum features, it was mostly stuck at true

regardless of the AD or AE movement. And for maximum feature, it was stuck at false.

83

Below are the results of the different window lengths and different features when the sensor

was randomly moved and rotated by holding it in hand. Again, this was important to see if the

sensor output was even changing or not when it did not change in the typical AD and AE

movements.

Window

Length

Feature Mean Min Max

13 Stuck at 0 (false) Randomly changing

between 4 (true) and 0

(false).

Stuck at 4 (true)

26 Randomly changing

between 4 (true) and 0

(false)

Stuck at 4 (true) Stuck at 0 (false)

39 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false)

52 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false)

65 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false)

78 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false)

Table 15: Sensor output when rotating it randomly

The above table shows the output was in fact changing, but only in a limited number of cases. It

means that there was some underlying algorithm that was working somewhat (because of the

changing output values), but it just did not seem to be working correctly.

7.5 Accelerometer/Gyroscope Data with Tunable ML Parameters

As discussed in the Going Back to the Accelerometer/Gyroscope Data section, when nothing

seemed to be working, the only option left worth trying was to go back to the accelerometer

and gyroscope data, and train the decision tree again but this time with varying ML parameters

such as window length, feature selection, and MLC and/or sensors ODR. The focus was on

84

distinguishing between only the AD and AE movements, with AD movement labeled as true

and AE as false.

The first configuration that was tried as a starting point was with the following settings:

Window Length: 13, Feature Selection: Mean, MLC ODR: 30 Hz, Sensors ODR: 60 Hz. The

decision tree was trained to distinguish between the AD and AE movements.

The result was that it seemed to be working as it was almost able to properly distinguish

between the two movements. However, it was not consistent, like there were only a few

instances in which it would predict the movements correctly. So, it still needed to be improved.

The options for improvements were to different window lengths, or different feature selection,

or different ODRs for MLC and sensors. Another possibility was to include a third state as

well, called the Idle state in which the arm is just resting and not moving at all.

7.5.1 Plots

Before presenting any results, below are the plots of the accelerometer and the gyroscope data

when the AD and AE movements were performed while the sensor was placed on the right

bicep.

7.5.1.1 AD

85

Figure 64: AD Accelerometer

Figure 65: AD Gyroscope

7.5.1.2 AE

Figure 66: AE Accelerometer

86

Figure 67: AE Gyroscope

7.5.2 ODR

The first thing that was tried was changing the MLC and sensors ODRs. Whereas the window

length and feature selection were kept constant at 13 and mean, respectively. In the first

configuration, both MLC and sensors ODR was 30 Hz. In the second configuration, MLC ODR

was 30 Hz and the sensors ODR was 120 Hz. In the third configuration, both MLC and sensors

ODR was 60 Hz. And, in the fourth and final configuration, MLC ODR was 60 Hz and the

sensors ODR was 120 Hz. The outcomes of these four configurations are reported in the table

below.

Configuration Result

30-30 Output does not seem

to be changing at all

with the arm

movement.

30-120 Generally false at rest,

but goes to true

whenever hand is

87

raised, doesn't matter

in which direction.

60-60 Output doesn't seem to

be changing at all.

60-120 Output is changing too

fast probably because

of the high frequencies

of MLC and sensors. It

is difficult to see under

what conditions the

output is changing.

Table 16: Outcome of trying different combination of ODR

From the above table, it can be seen that changing the ODR did not seem to have any

meaningful impact on the problem. Seeing that, it was noted that perhaps the best ODR

combination is 30 Hz for the MLC and 60 Hz for the sensors.

7.5.3 Idle state

Observing no progress in trying multiple ODR, it was suggested that the problem could be

defined better by defining a third state as well in addition to the AD and AE states. This third

state was the idle state in which the arm is at rest and not moving at all.

Now, the configuration was tried with this additional idle state and with window length 13,

feature mean, MLC ODR 30 Hz, and sensors ODR 60 Hz. The result was that it was an

improvement to the previous similar configuration without the idle state, but still it was not

even near perfect and was very inconsistent as well with its output, especially with the AD and

AE cases.

7.5.4 More data

To target the inconsistencies between the AD and AE states, it was decided to provide it with

more training data for the AD and AE cases. Initially, there were only 3 measurement files for

88

each case, which was then increased to 11 files each by collecting more data. The resulting

configuration gave the following outcome:

Idle AD AE

Stays at 4 (true) Changes to 8 (false)

when hand goes up

and then to 4 (true)

when the hand is down

back.

Changes to 8 (false)

when hand goes up

and then to 4 (true)

when the hand is down

back.

Table 17: Performance of MLC when provided with more data

7.5.5 Window length

The next thing that was tried to get better results was to play around with different window

lengths. In these configurations, the MLC ODR, sensors ODR and the feature selection

remained same (30 Hz, 60 Hz and mean, respectively). The window lengths that were tried are

52, 91, 104, and 110.

Result:

Window

Length

Movement Idle AD AE

52 Stays at 0 (idle).

Though changes to 4

(true) and 8 (false)

with slight arm

movement/rotation.

Stays at 0 (idle) Stays at 0 (idle)

91 Stays at 4 (true) Stays at 4 (true) Stays at 4 (true)

104 Stays at 4 (true) Stays at 4 (true) Stays at 4 (true)

110 Stays at 0 (idle) Stays at 0 (idle) Stays at 0 (idle)

Table 18: Performance of different MLCs with different window lengths

89

There was still no good outcome even with trying with multiple window lengths. The best

window length considered after this experiment was still 13.

7.5.6 Feature Selection

The next thing that was tried was different features other than just mean. The features that were

tried are peak-to-peak, variance, energy, recursive, minimum, and maximum. In these

configurations, the MLC ODR was 30 Hz, sensors ODR was 60 Hz, and the window length

was 13.

Result:

Feature Movement Idle AD AE

Mean Stays at 4 (true) Changes to 8 (false)

when hand goes up

and then to 4 (true)

when the hand is down

back.

Changes to 8 (false)

when hand goes up

and then to 4 (true)

when the hand is down

back.

Peak-to-peak Stays at 4 (true) Changes to 8 (false)

when arm is going up

and then to 4 (true)

when the arm stays up.

Changes to 8 (false)

again when the arm is

going down and then

to 4 (true) when the

arm is completely

down.

Changes to 8 (false)

when arm is going up

and then to 4 (true)

when the arm stays up.

Changes to 8 (false)

again when the arm is

going down and then

to 4 (true) when the

arm is completely

down.

Variance Not stable.

Continuously changing

between 0 (idle), 4

(true) and 8 (false)

Not stable.

Continuously changing

between 4 (true) and 8

(false)

Not stable.

Continuously changing

between 4 (true) and 8

(false)

90

Energy Not stable.

Continuously changing

between 0 (idle), 4

(true) and 8 (false)

Not stable.

Continuously changing

between 4 (true) and 8

(false). But stays at 8

(false) when the arm is

completely up.

Not stable.

Continuously changing

between 4 (true) and 8

(false). But stays at 8

(false) when the arm is

completely up.

Recursive Not stable.

Continuously changing

between 4 (true) and 8

(false)

Not stable.

Continuously changing

between 4 (true) and 8

(false)

Not stable.

Continuously changing

between 4 (true) and 8

(false)

Minimum Stays at 4 (true) Changes to 0 (idle)

and then to 4 (true)

when the arm is back

down.

Changes to 0 (idle)

and then to 4 (true)

when the arm is back

down.

Maximum Stays at 4 (true) Changes to 0 (idle)

and then to 4 (true)

when the arm is back

down.

Changes to 0 (idle)

and then to 4 (true)

when the arm is back

down.

Table 19: Performance of different MLCs with different features selection

It can be seen in the table above that even trying different features did not have a positive

outcome on the output.

In summary, we tried

• Different MLC and sensors ODR

• Additional Idle state

• More training data

• Different window lengths

• Different features

But none of it had a positive outcome. From here on, there was not much that can be tried

within the box kit or ST tools. But there were some external things that could be tried, for

example, changing the position of sensor placement.

91

7.6 Sensor on the Wrist

As explained in the Using Sensor on the Wrist instead of on the Arm section, when nothing

else worked, there was still this last thing that could be tried. It was to place the sensor on the

wrist instead of on the biceps. By placing the sensor on the wrist, it was easier to differentiate

between the AD and AE cases as compared to the case when the sensor was placed on the

biceps, as can also be seen in the plots of Accelerometer and Gyroscope. Like the previous

section, different configurations were tried and tested with different ML decision parameters.

7.6.1 Plots

Before presenting any results, below are the plots of accelerometer and gyroscope data when

AD and AE movements were performed by placing the sensor on the right wrist.

7.6.1.1 AD

Figure 68: AD Accelerometer Wrist

92

Figure 69: AD Gyroscope Wrist

7.6.1.2 AE

Figure 70: AE Accelerometer Wrist

93

Figure 71: AE Gyroscope Wrist

7.6.2 Window length

First, different window lengths were tried by keeping the other parameters constant. The MLC

ODR was set at 30 Hz, sensors ODR at 60 Hz, and the feature was mean. 3 different window

lengths were tried in this case: 13, 16, and 80.

Result:

Window

Length

Movement Idle AD AE

13 Randomly changing

between 4 (true) and 8

(false) by slight hand

rotation.

Changes to 8 (false)

when hand goes up

and stays there for a

while, but back to 4

(true) as soon as the

hand comes back

down.

Changes to 8 (false)

when hand goes up

and stays there for a

while, but back to 4

(true) as soon as the

hand comes back

down.

94

16 Randomly changing

between 0 (idle), 4

(true) and 8 (false) by

slight hand rotation.

Randomly changing

between 4 (true) and 8

(false).

Randomly changing

between 0 (idle), 4

(true) and 8 (false).

80 Stuck at 8 (false) Stuck at 8 (false) Stuck at 8 (false)

Table 20: Performance of different MLCs with different window lengths when the sensor is on the wrist

7.6.3 Single reading

When it did not seem to be working, it was decided to set the window length in a way such that

the whole data file would correspond to one single reading in the training. The configuration

that was tried was with MLC ODR 30 Hz, sensors ODR 60 Hz and the window length 83.

Since the sensors ODR is twice the MLC ODR, it would be seeing only half the number of

actual readings in the file. As there were around 166 readings in the file, the window length

was chosen as 83. Before trying this configuration, it was noted from the accelerometer and

the gyroscope graphs that the peak-to-peak would be the best feature to capture the complete

essence of the data. So, the feature that was selected was peak-to-peak.

On the next iteration, the idle case was omitted from the experiment as it seemed to be

misguiding the training process, and it was not even important to predict the idle case, it was

just a nice to have feature if it could have been incorporated. So, it could be dropped if wanted.

Result:

Configuration Movement Idle AD AE

With Idle Stays at 8 (false) Gives 4 (true) almost

every time.

Gives 8 (false) almost

every time.

Without Idle N/A Gives 0 (true) almost

every time.

Gives 4 (false) almost

every time.

Table 21: Performance comparison of two MLCs with and without idle case when the sensor is on the wrist

Finally, it gave some meaningful results as can be seen in the table that it was able to predict

both AD and AE movements correctly almost every time.

95

7.6.4 Single file

Now that we had a working algorithm which was able to predict the correct arm movements.

There was still one more thing that could be tried to see if it improves the algorithm. In the last

algorithm, it was trained by using multiple measurement files. What if we train the algorithm

by using single data file, one for AD and another one for AE. So, we began by using just a

single file for the training. Different configurations were tried that are listed below in the table.

In most of these configurations, the window length was set such that one file had just one

reading.

The configurations are written in aa-bb-cc-dd format in the table below where aa is the MLC

frequency, bb is the sensors frequency, cc is the window length, and dd is the feature used.

Result:

Feature Movement Idle AD AE

30-60-13-Mean Remains at 0 (idle) at a

specific hand position,

but changes to both 4

(true) and 8 (false) at

other positions with

slight hand

rotations.

Gives 4 (true) when

the arm is raised in a

specific hand position,

otherwise gives 8

(false) as well.

Gives 8 (false) when

the arm is raised in a

specific hand position,

otherwise gives 4

(true) as well.

60-60-13-Mean Remains at 0 (idle) at a

specific hand position,

but changes to 8

(false) at other

positions with slight

hand rotations.

Gives both 4 (true) and

8 (false). Very

uncertain.

Mostly gives 8 (false),

but sometimes gives 4

(true) as well.

30-60-83-Mean (also

single reading)

Stays at 8 (false). Stays at 8 (false). Stays at 8 (false).

96

30-60-83-Peak (also

single reading)

Stays at 8 (false). Gives 4 (true) every

time.

Gives 8 (false) almost

every time (once gave

4 (true)).

30-60-83-Peak Wo

Idle (also single

reading)

N/A Gives 0 (true) every

time.

Gives 4 (false) almost

every time. You just

have to keep your

wrist strict.

60-60-168-Mean (also

single reading)

Stays at 8 (false) Stays at 8 (false) Stays at 8 (false)

60-60-168-Peak (also

single reading)

Stays at 8 (false) Gives 4 (true) but not

every time.

Stays at 8 (false)

almost every time.

30-30-168-Peak (also

single reading)

Stays at 8 (false) Gives 4 (true) almost

every time. Though

the response is very

delayed (perhaps

because of low

frequency?)

Gives 8 (false) almost

every time (once gave

4 (true)). Its response

is also delayed.

Table 22: Performance comparison of different MLCs with different configurations when the sensor is on the wrist

From the table, it can be seen clearly that peak-to-peak was the best feature to use when using

window length such that there was just one reading in one measurement file. Then, the

configuration in which sensors ODR is twice the MLC ODR was better than the configurations

in which both ODRs are same. Then, with and without idle case did not have a much difference

with respect to predicting AD and AE movements. However, with idle case, it was unable to

predict the idle condition, rather it predicted it as either AD or AE conditions.

97

8 Conclusion and Future Work

To conclude, setting up a decision-tree based Machine Learning for real-life human motion

tracking based on STMicroelectronics’ STEVAL-MKBOXPRO (SensorTile.Box PRO) kit

was not an easy task as one could have expected initially. The first step in getting started was

to explore all the hardware and software tools provided by STM that could come handy in

setting up this application, including SensorTile.Box PRO kit and several software such as

STM32CubeIDE, Unico-GUI, etc., and STBLESensor mobile application. Learning those tools

was not that difficult at all as STM provides detailed datasheets and application notes to get

familiar with these tools.

After this phase, all the focus of the internship was towards the generation and use of the MLC

(Machine Learning Core). Getting to know the MLC generation process was easy and

straightforward. This generation process also allows you to choose some ML training decision

parameters. The first approach was to use the Accelerometer and the Gyroscope data while the

sensor was mounted on the right arm on the biceps. But it was not any success when building

the decision-tree based on those data. Forcing us to switch to other alternatives, leading to the

use of Euler angles as the training data.

Honestly speaking, using Euler angles for an application like this in which there are certain

arm movements in different directions makes more sense than using the accelerometer and

gyroscope data standalone. Because these arm movements are more well represented with

Euler angles than accelerometer/gyroscope data. But again unfortunately, this step was not

fruitful in setting up the well-running decision tree to predict the arm movements.

I think that the problem behind this lies in the reason that Euler angles are not available to us

directly from the sensors. They are the result of transformation from the Quaternions which

itself is not available directly to us from the sensors. We obtain the Quaternions by using the

sensor-fusion of accelerometer, gyroscope and magnetometer data. So, when we train the

decision tree on the Euler angles, we provide it as external data as compared to providing it as

internal data. When we were using accelerometer/gyroscope data in the previous step, we could

tell the software that this is the accelerometer data and this is the gyroscope data, so when we

run the resulting MLC, it knows how to make predictions on which sensors data. But in this

case where Euler angles are given as external data, there is no way to tell during the training

process that this data is the Euler angles data. It just treats it as external data without any label.

I think that is the root problem for this not working, which seems to be a flaw in the STM’s

98

design. This issue has been communicated with the STM and together by discussing it with

them, we should be able to identify the root cause of this problem.

Nevertheless, this step made us familiar with the tunable training parameters that we decided

to try also on the accelerometer/gyroscope data. Tuning those parameters gave some good signs

of progress, so we knew that we were onto something. The limitation was that the resulting

algorithm was not successfully able to distinguish between the AD and AE movements when

the sensor was placed on the biceps, which is true as there was not much of a difference between

the two movements from the sensors’ point of view as it was placed very close to the rotation

axis. Therefore, when the sensor was placed instead on the wrist, it gave sensors a much better

understanding of what was really happening. Resulting in better performance (almost perfect)

in distinguishing the AD and the AE movements.

From the point of view of Turingsense and their applications, typically they would have wanted

their sensors to be placed on the biceps. As the point of this internship was to explore the

functionalities that STM has to offer with its SensorTile.Box PRO kit and the possibility of

using this box kit in Turingsense’s applications, we got to know that this box kit has some

potential. And if Turingsense wants to use it, they would have to most likely place it on the

wrist instead of the biceps for it to work, or to use a network of these sensors in which more

than one sensor are placed at different positions, but it would only make it more complex. But

using this box kit has some limitations too, such as, it does not give freedom to use any machine

learning algorithm, we are bound to use only decision-tree algorithm. Then we are also limited

by the data types that we can train the decision tree on, as explained earlier, which would not

have been the case if they had their own hardware with their own firmware. Then they would

be free to program it any way they like, and I believe that they can get good results with this

approach. But, writing your own hardware/firmware from scratch is not easy at all, and it

requires a team of experienced professionals to create something like this. So, both approaches

have their own benefits and drawbacks. In the end, there is no free lunch.

For future work, there are two ways to look at it. If they want to continue with

STMicroelectronics, then it is probably better to work closely with STM engineers to better

understand their limitations and to better communicate their requirements. With this

collaboration, it is still possible to use the SensorTile.Box PRO kit in their applications by

resolving the issues that were discovered during this internship. Another way to look at the

future work is the possibility of finding other alternatives to SensorTile.Box PRO kit that might

99

be already available in the market and then accessing their working and performance for

Turingsense’s applications.

100

9 Bibliography

1. Lu, Tung-Wu, and Chu-Fen Chang. "Biomechanics of human movement and its

clinical applications." The Kaohsiung journal of medical sciences 28.2 (2012): S13-

S25.

2. Bortolini, Marco, et al. "Motion Analysis System (MAS) for production and

ergonomics assessment in the manufacturing processes." Computers & Industrial

Engineering 139 (2020): 105485.

3. Kavanagh, Justin J., and Hylton B. Menz. "Accelerometry: a technique for

quantifying movement patterns during walking." Gait & posture 28.1 (2008): 1-15.

4. Field, Matthew, et al. "Human motion capture sensors and analysis in robotics."

Industrial Robot: An International Journal 38.2 (2011): 163-171.

5. Petrosyan, Tigran, Arayik Dunoyan, and Hasmik Mkrtchyan. "Application of motion

capture systems in ergonomic analysis." Armenian journal of special education 4.2

(2020): 107-117.

6. Kulić, Dana, et al. "Anthropomorphic movement analysis and synthesis: A survey of

methods and applications." IEEE Transactions on Robotics 32.4 (2016): 776-795.

7. Ortega, Basilio Pueo, and José M. Jiménez Olmedo. "Application of motion capture

technology for sport performance analysis." Retos: nuevas tendencias en educación

física, deporte y recreación 32 (2017): 241-247.

8. Hsieh, Jun-Wei, et al. "Video-based human movement analysis and its application to

surveillance systems." IEEE Transactions on Multimedia 10.3 (2008): 372-384.

9. Zago, Matteo, Ana Francisca Rozin Kleiner, and Peter Andreas Federolf. "Machine

learning approaches to human movement analysis." Frontiers in bioengineering and

biotechnology 8 (2021): 638793.

10. Iosa, Marco, et al. "Wearable inertial sensors for human movement analysis." Expert

review of medical devices 13.7 (2016): 641-659.

11. Di Nardo, Francesco, and Sandro Fioretti, eds. "Recent Advances in Motion

Analysis." (2021).

12. Meng, Zhaozong, et al. "Recent progress in sensing and computing techniques for

human activity recognition and motion analysis." Electronics 9.9 (2020): 1357.

101

13. Worsey, Matthew TO, et al. "A systematic review of performance analysis in rowing

using inertial sensors." Electronics 8.11 (2019): 1304.

14. Kim, Byong Hun, et al. "Measurement of ankle joint movements using IMUs during

running." Sensors 21.12 (2021): 4240.

15. Pau, Massimiliano, et al. "Smoothness of gait in healthy and cognitively impaired

individuals: a study on Italian elderly using wearable inertial sensor." Sensors 20.12

(2020): 3577.

16. Filippeschi, Alessandro, et al. "Survey of motion tracking methods based on inertial

sensors: A focus on upper limb human motion." Sensors 17.6 (2017): 1257.

17. Wong, Wai Yin, Man Sang Wong, and Kam Ho Lo. "Clinical applications of sensors

for human posture and movement analysis: a review." Prosthetics and orthotics

international 31.1 (2007): 62-75.

18. Duffy, Vincent G., ed. Digital Human Modeling and Applications in Health, Safety,

Ergonomics and Risk Management. Anthropometry, Human Behavior, and

Communication: 13th International Conference, DHM 2022, Held as Part of the 24th

HCI International Conference, HCII 2022, Virtual Event, June 26–July 1, 2022,

Proceedings, Part I. Vol. 13319. Springer Nature, 2022.

19. Stanescu, Monica, and Marius Stoicescu. "New Competencies for Physical Education

Teachers: Software for Movement Analysis." The International Scientific Conference

eLearning and Software for Education. Vol. 1. " Carol I" National Defence

University, 2012.

20. Dunn, Fletcher. 3D math primer for graphics and game development. CRC Press,

2011.

21. Henderson, D. M. Shuttle Program. Euler angles, quaternions, and transformation

matrices working relationships. No. NASA-TM-74839. 1977.

