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4 Abstract 

Human motion analysis is becoming an increasingly used technology nowadays with the 

invention of smarter sensor technologies and with its applications in the field of health, 

ergonomics, sports, medicine, and so on. Turingsense EU Lab is one of the many companies 

around the globe working on this technology. The purpose of this thesis was to evaluate the 

SensorTile.Box PRO kit (one of the smart IoT devices which is available in the market with its 

possible applications in motion analysis) as a possible replacement of the standard 

Accelerometer/Gyroscope sensors that they use. The purpose of this possible replacement is 

the benefits that this box kit offers, allowing us to implement an A.I. based machine learning 

algorithm that could save both time and effort in the prediction of correct arm movements. 

The approach to investigate this evaluation was based on evaluating the performance of the 

box kit on predicting certain arm movements. This approach was based on first data collection, 

then training the decision-tree based ML algorithm by providing that data with their labels, and 

then finally testing the resulting configuration. By going through this process and modifying 

certain things along the way based on certain outcomes, the result was that the box kit was able 

to distinguish between the two different types of arm movements when it was attached to the 

wrist, and the accelerometer and the gyroscope data was used as the training data. 

Conclusions that were drawn from the series of these experiments were that the SensorTile.Box 

PRO kit is no doubt a very promising device with a lot of potential for applications in the field 

of movement analysis. However, particularly in this application for Turingsense EU Lab, its 

potentials are kind of limited as we do not have complete freedom in terms of what kind of 

training data we want to use, or what kind of ML algorithm we want to use. If these and other 

related issues can be resolved, then this box kit can come very handy to Turingsense EU Lab. 
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5 Introduction 

In the field of medicine, sports, and physiotherapy, human movement analysis, also known as 

motion analysis, has become an investigative and diagnostic tool. Movement analysis involves 

studying the movement patterns of humans, animals, and/or machines to understand the 

mechanics and dynamics involved. This field has applications in various domains including 

sports, medicine, ergonomics, animation, robotics, and so on. [1] [2] [3] [4] [5] 

Along these lines, lies the motivation of Turingsense EU LAB. Turingsense EU LAB is a US-

based startup, whose mission is to transform the way movement analysis is performed in sports 

and rehabilitation using wearable technologies to adapt to non-expert end-user scenarios. To 

achieve this mission, Turingsense EU LAB is guided by an innovative work plan for human 

motion capture that starts from the creation of easy-to-use hardware up to a customized 

application for the end user. Turingsense EU LAB works in close collaboration with its 

customers, from defining the specifications for the final application to designing a customized 

solution that includes specific biomechanical protocols, sensor fusion algorithms and the 

creation of software development platforms. 1 

 

5.1 Key Aspects of Movement Analysis 

Movement analysis has some key concepts that are necessary to understand to be able to 

implement it successfully. These include data collection, data processing, analysis techniques, 

and its applications. 

 

5.1.1 Data Collection 

Collecting data is the first important step in motion analysis. If the data collection is not carried 

out correctly, movement analysis will never succeed. There are multiple ways to collect the 

data for training the algorithms for movement analysis. 

• Optical Cameras: uses sensors or cameras to track movement. It works on technologies 

such as optical systems with markers, inertial sensors, and depth cameras. [1] [4] [5] 

 
1 https://www.turingsense.eu/ 
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• Video Analysis: records movement with standard or high-speed cameras and then 

analyzes the video. [1] [6] [7] [8] 

• Wearable devices: use accelerometers, gyroscopes, and magnetometers to gather data 

on movement. [3] [4] [7] [9] [10] [11] [12] [13] [14] [15] [16] 

 

5.1.2 Data Processing 

After data has been collected, it is also important to process it before using it for movement 

analysis. 

• Kinematics: Studying the geometry of motion without considering the forces. This 

includes analyzing position, velocity, and acceleration. [1] [3] [4] [6] [10] 

• Kinetics: Analyzing the forces and torques that cause motion, often using force plates 

or instrumented treadmills. [1] [3] [4] [6] [10] [17] 

• Biometrics: Measuring biological data such as heart rate, muscle activity (EMG), and 

oxygen consumption to correlate with movement. [1] [6] 

 

5.1.3 Analysis Techniques 

Analysis techniques include: 

• Qualitative Analysis: Visual assessment by experts to identify movement patterns and 

potential issues. [5] [7] [17] 

• Quantitative Analysis: Using mathematical and computational methods to objectively 

measure and analyze movement parameters. [1] [3] [6] [7] 

• Machine Learning: Applying algorithms to recognize patterns, classify movements, and 

predict outcomes based on the data. [9] 

 

5.1.4 Applications 

Some key applications of motion analysis include: 

• Sports: In sports, it can be used to improve players’ performance and to prevent injuries 

by analyzing the techniques of the players and their biomechanics. For injured players, 

it can also be used to guide rehabilitation programs. [1] [5] [7] [9] [12] [13] [19] 
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• Medicine: In medicine, it can be used to diagnose and treat movement disorders, to plan 

surgeries, and for patients’ rehabilitation with conditions like stroke or Parkinson’s 

disease. [1] [5] [9] [12] [18] 

• Ergonomics: Designing workplaces and tools to reduce the risk of injury and for 

increasing efficiency. [1] [2] [5] [9] [18] 

• Animation and Gaming: Creating realistic animations for films and video games by 

capturing and replicating exact human movements. [5] 

• Robotics: Developing robots that can move and interact with their environment in a 

human-like manner, and for industrial robots to improve efficiency and precision. [4] 

[6] 

• Research and Development: It is fundamental in studying the mechanics of biological 

systems, offering new insights and advancements in the field of kinesiology, 

orthopedics, and physical therapy. It also drives the development of new technologies 

such as advanced prosthetics, wearable sensors, and exoskeletons. [5] 

Movement analysis provides a scientific basis for understanding and optimizing human and 

machine movement. Its applications are diverse and impactful, ranging from improving athletic 

performance and enhancing patient care to driving innovations in technology and design. By 

leveraging advanced techniques and tools, movement analysis continues to play a pivotal role 

in advancing knowledge and improving outcomes across multiple disciplines. 

 

5.2 Example Workflow of Movement Analysis 

An example workflow of movement analysis is written below: 

1. Capture Movement: Use a motion capture system to record an athlete performing a 

specific activity. 

2. Process Data: Extract kinematic data such as joint angles, velocities and accelerations. 

3. Analyze Movement: Compare the data against normative values or the athlete’s past 

performances to identify inefficiencies or potential injury risks. 

4. Provide Feedback: Offer recommendations to improve technique, such as adjusting 

posture or altering training routines. 

5. Monitor Progress: Regularly repeat the analysis to track improvements and make 

ongoing adjustments. 
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5.3 Challenges and Considerations 

Movement analysis offers some challenges too and has some consideration that are listed 

below: 

• Accuracy and Precision: Ensuring that the data collected is accurate and that the 

analysis is reliable. [1] [2] [3] [5] [17] 

• Complexity: Human movement is highly complex and varies significantly between 

individuals, making standardization difficult. [1] [6] [19] 

• Huge amount of Data: Extending on the previous point, to standardize it, a huge amount 

of data is required, which is diverse, covering all possibilities. [9] 

• Integration: Combining data from various sources and sensors can be challenging but 

is often necessary for a comprehensive analysis. [1] [2] [10] 

• Ethical Considerations: Ensuring the privacy and consent of individuals being analyzed, 

especially in medical and sports settings. [1] [9] 

 

5.4 Movement Analysis at Turingsense EU LAB 

Turing Motion represents the new working paradigm in the field of human movement analysis 

and has been successfully applied to products for the mass market, allowing anyone to track 

their movements and verify their pose in any place. The new paradigm includes ingredients 

that, combined together, enable new applications in the research sector. The Turingsense 

platform is constantly expanding and customizing based on different applications. 2 

 

5.4.1 Turingsense Technology 

Thanks to more than 15 years of experience in the sector, Turingsense has developed 

proprietary algorithms for capturing human movement, completely based on inertial sensors, 

through solutions that do not use magnetometers, but which still allow continuous and 

prolonged recordings. The technology is called MAG-FREE TECHNOLOGY. 3 

 
2 https://www.turingsense.eu/turing-motion 
3 https://www.turingsense.eu/ 



16 
 

From a practical point of view, this means being able to capture human movement with the 

following advantages: 

1. No need to calibrate magnetic sensors at each recording (magnetic sensors are not used) 

2. No limitations in the type of environment within which the motion capture is 

performed: 

• Laboratory 

• Home 

• Physiotherapy room 

3. No limitation in the application scenario: 

• Gait analysis even in the presence of electrical structures nearby 

• I walk on platforms of strength 

• Prosthetic devices or orthopedic aids with metal supports 

• Ferromagnetic objects present in the surrounding environment. 

 

5.4.2 Smart Clothing 

The smart clothing at Turingsense is based on MEMS (Micro Electromechanical Systems) 

technology to meet requirements both in terms of accuracy in motion capture and in terms of 

end-user applications. Some important properties of these wearable smart clothing are: 3 

• Fully washable 

• Customizable fashion design 

• Different sizes 

• Wireless technology 

• Rechargeable via USB 

• Scientifically proven sensor positioning using ISEO and OUTWALK measurement 

protocols 

• 16 inertial units (3D Accelerometers, 3D Gyroscopes) 

• Customizable configuration (Upper Limb and Lower Limb) 

• No magnetometer used 
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5.4.3 Calibrations 

Turingsense offers motion capture by using the above-mentioned smart clothing that has 

sensors embedded within it. These sensors include 3D Accelerometers and 3D Gyroscopes. 

Before using the sensors directly for motion capture, it is important to calibrate the sensors 

with pre-defined body movements. One of these movements includes the movement of the arm 

along the sagittal plane, in which the arm is raised completely up and then back down. In this 

movement, the sensors are positioned on the biceps. To  achieve this, initially, the 

accelerometer and the gyroscope data are collected corresponding to this arm movement. And 

then an algorithm is trained on this data that should be able to detect this movement. 

Technically, the algorithm should be able to detect the movement no matter the placement of 

the sensor along the biceps (be it front, back, or sides). And it should discard any other arm 

movement and characterize it as an incorrect movement. 

Currently, the user calibrations and Motion A.I. developed at firmware level at Turingsense 

products are made with algorithms that are calibrated on some data taken from different people. 

The algorithms are refined, by providing additional data, to distinguish between a person 

standing straight and a person not standing straight. If the person is standing straight, then the 

algorithm tells if the calibration passes or not. These algorithms have the following 

assumptions and limitations:  

• It is assumed that the sensor is placed on a certain area on the body in a certain position.  

• It is currently impossible to distinguish the not straight condition if it is because of the 

person not standing straight or because of the sensor not placed straight.  

• It is therefore assumed that the sensors are placed upright correctly.  

• It is also impossible to distinguish between the straight state among different people 

who have different backs. If a person, for example, has a curved back but standing 

straight, the algorithm fails and considers it as if the person is not standing straight.  

• When the calibration fails, the algorithm cannot tell the reason why it failed. It could 

be because the user is not making the right movement, or the user is wearing the sensor 

wrongly, or the sensor is moving too much. But the algorithm cannot specify which of 

these situations. Its feedback is only to LOOK AT THE INSTRUCTIONS AGAIN and 

TRY AGAIN. 
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5.4.4 A.I. based on Machine Learning 

By using AI based on machine learning, the first task would be to recognize the user’s correct 

movement. Additionally, if the user’s movement is wrong, then it could suggest to the user 

something more than simply infinitely repeating a movement until he succeeds, but rather 

possible adjustments to make. With further intelligence, it is also possible to understand where 

the sensor is on the body, then give suggestions to the user accordingly, for example, if the 

sensor placement is wrong. 

 

5.4.5 SensorTile.Box PRO 

Based on previous statements, it was suggested to use STMicroelectronics’ SensorTile.Box 

PRO for the verification of correct user’s movement that is necessary for calibration. The 

STEVAL-MKBOXPRO (SensorTile.box PRO) is the new ready-to-use programmable 

wireless box kit for developing any IoT application based on remote data gathering and 

evaluation.4 But before making any decisions, it was necessary to evaluate this box kit and to 

see if it fits in this application. 

To evaluate the box kit, it is necessary to see how it performs in predicting the correct arm 

movement. The first step int this evaluation would be the data collection for training the ML 

algorithm. The data was collected corresponding to the calibration movements to provide input 

for the training of machine learning algorithms. This data could either be collected using 

SensorTile.Box PRO or the standalone accelerometer and gyroscope sensors. The second step 

would then be to use the collected data for the training of the decision tree - based ML algorithm 

using the tools provided by ST, such as, UNICO GUI. Then the third and final step would be 

to test the resulting algorithm to see if it can predict both the correct and incorrect arm 

movements. After the algorithm has been trained correctly, we can also use the LED and 

BUZZER functions that are available on the SensorTile.Box PRO kit to give feedback to the 

user, for example, on correct or incorrect movement during calibration. 

  

 
4 https://www.st.com/en/evaluation-tools/steval-mkboxpro.html 
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6 Methodology 

 

6.1 Exploring Hardware and Software Tools 

When moving towards implementation of detecting user’s correct arm movement on 

SensorTile.Box PRO, it was important to get familiar with necessary hardware and software 

tools, mostly from STMicroelectronics. 

 

6.1.1 STEVAL-MKBOXPRO 

STEVAL-MKBOXPRO (SensorTile.Box PRO) is a new ready-to-use programmable wireless 

box kit with multi-sensors and wireless connectivity for any intelligent IoT node. The box kit 

can be used according to three different modalities, based on the user’s level of expertise. 5 

• Entry Mode: In entry mode, a wide range of already embedded IoT applications can 

be run on the box. STBLESensor App can be downloaded on the smartphone and board 

can be programmed with any of the applications that have been specifically designed 

to work with the board sensors. Some practical applications include Compass, Free-fall 

detection, Pedometer, Barometer, Data Recorder, Human activity recognition, and so 

on. 

• Expert Mode: In expert mode, custom applications can be built through the 

STBLESensor App by selecting specific input data, functions/algorithms to be 

performed on that data, and then deciding how to display the data. 

• Pro Mode: In pro mode, the user can make their own IoT by taking advantage of 

STM32 Open Development Environment (ODE) and ST function pack libraries, 

including sensing AI function pack with neural network libraries, without the need to 

perform any coding activity. 

Detailed important features of the box kit are: 

o Ultra-low-power with FPU Arm-Cortex-M33 with TrustZone® microcontroller 

(STM32U585AI) 

o microSD™ card slot for standalone data logging applications 

 
5 https://www.st.com/en/evaluation-tools/steval-mkboxpro.html 
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o High precision sensors to gather high-quality data: 

• Low-voltage local digital temperature sensor (STTS22H) 

• Six-axis inertial measurement unit (LSM6DSV16X) 

• Three-axis low-power accelerometer (LIS2DU12) 

• 3-axis magnetometer (LIS2MDL) 

• Pressure sensor (LPS22DF) 

• Digital microphone/audio sensor (MP23DB01HP) 

o User Interface: 

• Hardware power switch 

• Green and orange system LED to display the power supply state 

• 4 programmable status LEDs (green, red, orange, blue) 

• 2 programmable push-buttons 

• Audio buzzer 

• Reset button 

• Qvar with electrodes for user interface experience 

• Interface J-Link/SWD debug-probe 

• Interface for extension board 

• Socket for DIL24 sensor adapters 

o Power and charging options: USB Type-C® charging and connecting, 5 W wireless 

charging and rechargeable long-life 480 mAh battery. 

o STBLESensor App on the smartphone (both on the Google Play and Apple Store) 

allows you to immediately connect to the box kit. 

o Firmware over-the-air (FOTA) upgrade 

In the context of this internship, this box kit was usually used in the Entry and the Expert modes. 

In the entry mode, it was used for data collection. In the expert mode, it was used to create 

custom applications that run on UNICO generated ML configurations. 
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Figure 1: SensorTile.Box PRO kit 

 

Figure 2: Inside view of STEVAL-MKBOXPRO 

 

6.1.2 STM32CubeIDE 

STM32CubeIDE is an Integrated Development Environment (IDE) for STM32. 

STM32CubeIDE is an advanced C/C++ development platform with peripheral configuration, 

code generation, code compilation, and debug features for STM32 microcontrollers and 

microprocessors. 6 

In the context of this internship, STM32CubeIDE was used to work on the Activity Recognition 

Algorithm project. It was used to make some modifications to the already existing project. The 

 
6 https://www.st.com/en/development-tools/stm32cubeide.html 
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modifications included blinking of some LEDs and a buzzer sound when certain conditions are 

met. 

 

 

Figure 3: STM32CubeIDE Example Screenshot 1 

 

 

Figure 4: STM32CubeIDE Example Screenshot 2 

 

6.1.3 STM32CubeProg 

STM32CubeProgrammer (STM32CubeProg) is a software tool for programming STM32 

products. It provides an easy-to-use and efficient environment for reading, writing and 
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verifying device memory through both the debug interface (JTAG and SWD) and the 

bootloader interface (UART, USB DFU, I2C, SPI, and CAN). 7 

In the context of this internship, STM32CubeProg was used to upload the binaries on the box 

kit in DFU mode. These binaries include the basic firmware binary of SensorTile.Box PRO kit 

and other binaries obtained after successfully compiling a project on STM32CubeIDE. 

 

 

Figure 5: STM32CubeProg Example Screenshot 

 

6.1.4 Unico-GUI 

Unico-GUI is a MEMS evaluation kit software package. It is a cross-platform graphical user 

interface interacting with STEVAL-MKI109V3 (Professional MEMS tool) which is the 

motherboard compatible with all ST MEMS adapter boards. It is also possible to run UNICO 

offline (without the motherboard) for generating configurations of advanced features like the 

Machine Learning Core, Finite State Machine, and pedometer. 8 

Examples of tools which support the advanced features are the following: Machine Learning 

Core tool that allows the user to configure a machine learning core starting from the 

management of data patterns and labeling to setting and generating the configuration file to run 

the algorithm. 

 
7 https://www.st.com/en/development-tools/stm32cubeprog.html 
8 https://www.st.com/en/development-tools/unico-gui.html 
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In the context of this internship, this is the most important software. It was used to create all 

the machine learning configurations that were eventually programmed on the box kit. The aim 

of this internship is to create a machine learning core able to distinguish the correct arm 

movements. Well, this is the tool to create that machine learning configuration. 

 

 

Figure 6: Unico-GUI Example Screenshot 

 

6.1.5 AlgoBuilder 

AlgoBuilder is a graphical design application to build and use algorithms. The application 

facilitates the process of implementing proof of concept using a graphical interface without 

writing the code. 9 

In the context of this internship, this software was used only a couple of times to get familiar 

with it by creating some very basic firmware with very basic building blocks. Later on, it was 

not used for the purpose of this internship. 

 

 
9 https://www.st.com/en/development-tools/algobuilder.html 
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Figure 7: AlgoBuilder Example Screenshot 

 

6.1.6 Unicleo-GUI 

Unicleo-GUI is a graphical user interface (GUI) to demonstrate the functionality of ST sensors 

and algorithms. Unicleo-GUI is able to cooperate with firmware created by AlgoBuilder 

application and display data coming from the running firmware. 10 

As this tool is mostly used to read the live sensor values, it was not used at all as it required a 

base motherboard to be connected in between the laptop and the sensors board to be able to 

read those sensor values. As we did not have that base motherboard, there was no point in using 

this software at all. 

 

 

Figure 8: Unicleo-GUI Example Screenshot 

 
10 https://www.st.com/en/development-tools/unicleo-gui.html 
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6.1.7 STBLESensor 

STBLESensor mobile application is used for connecting with the box kit via Bluetooth. It can 

then read the sensors data being sent by the box kit. It is also used to program the board in 

Expert mode. All the data received by the app can be logged into CSV files and exported by e-

mail. 11 

In the context of this internship, this mobile application was used to collect the training data 

using the SensorTile.Box PRO kit. It was also used to upload the machine learning 

configurations on the box kit and then used to test those configurations by creating new 

applications in the expert mode. 

 

 

Figure 9: STBLESensor App Example Screenshot 1 

 

 
11 https://www.st.com/en/embedded-software/stblesensor.html 
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Figure 10: STBLESensor App Example Screenshot 2 

 

6.1.8 LSM6DSV16X 

LSM6DSV16X is a 6-axis inertial measurement unit (IMU) and AI sensor with embedded 

sensor fusion. It is a high-performance, low-power 6-axis small IMU, featuring a 3-axis digital 

accelerometer and a 3-axis digital gyroscope, that offers the best IMU sensor. 12 

The LSM6DSV16X enables processes in edge computing, leveraging embedded advanced 

dedicated features such as a finite state machine (FSM) and a machine learning core (MLC) 

for IoT applications. 

This LSM6DSV16X IMU is embedded within the SensorTile.Box PRO kit. It is a very 

important hardware unit in the context of this internship as the MLC unit on it is responsible 

for implementing the algorithm that will be able to detect the correct arm movement. 

 

 
12 https://www.st.com/en/mems-and-sensors/lsm6dsv16x.html 
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6.1.9 Activity Recognition Algorithm 

After getting familiar with the above-mentioned hardware and software components, it was 

time to implement something using those tools, in order to get familiar with them. The first 

thing that was done was implementing the Activity Recognition MLC example project. This 

example project is available as an STM32CubeIDE project in STM32 ODE function pack. The 

project is directly built on STM32CubeIDE resulting in a binary file. This binary file can then 

be programmed on the board (STEVAL-MKBOXPRO) using STM32CubeProgrammer in the 

DFU mode, in which case, the board is directly connected to the PC via USB/Type-C cable. 

Alternatively, the board can be programmed by using the STM32CubeIDE debugger, in which 

case, the board is connected to the PC via STLINK-V3SET (The STLINK-V3SET is a modular 

debugging and programming probe for the STM8 and STM32 Microcontrollers). This activity 

recognition program is intended to work with ST BLE Sensor app. The activities recognized in 

this example are: Stationary, Walking, Jogging, Biking and Driving. After the board is 

connected with the app using Bluetooth, it is displayed on the app which of the activities the 

MLC recognizes. This was the standard unmodified version of the Activity Recognition 

program. 

 

6.2 Setting up Real-time Feedback 

Real-time feedback would be able to inform the user about its arm movement by means of 

audio and/or visual aids. For example, the box kit can produce a specific buzzer sound or blink 

a specific LED if the user’s arm movements are correct and some other sound or some other 

LED if the movements are incorrect. 

 

6.2.1 LED Blinking and Buzzer 

After implementing the standard Activity Recognition program on the box kit, some 

modifications were made to the program by using the STM32CubeIDE. In the project, the code 

was edited such that the box kit will blink some LEDs and will also produce a buzzer sound if 

the MLC recognizes any activity. This modification was successful and was also tested after 

compiling the project and uploading it on the board. 
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6.3 Workflow Setup 

After implementing the Activity Recognition Algorithm and then modifying it ourselves, it was 

time to create a general workflow setup for implementing our own “arm movement recognition” 

algorithm. The general workflow would first involve collecting the data, then analyzing it by 

plotting the data (preferably using python libraries), and then cleaning/filtering and processing 

it to use for training. This data would be then fed to STM’s Unico-GUI software which uses 

decision trees to create a Machine Learning Configuration (MLC) which can then be 

programmed on the box kit, and then later tested for the correct performance. This is a broad 

overview of the MLC pipeline implemented, whose detailed implementation is discussed in 

the sections to follow. 

 

6.3.1 MLC Configuration 

After the successful attempt with LEDs and buzzer, the focus was towards using the MLC to 

detect a particular arm movement which is necessary in calibrating the sensors for motion 

capture. In this case, the sensor is attached to the biceps on the arms. 

The first step towards this task was the data collection. Theoretically, the more the data, the 

better the MLC would be trained. The data was collected for 9 different combinations of sensor 

placements and arm movements for each of the arms. Practically, this data must be collected 

for as many people as possible in order to generalize the algorithm, so that it will be able to 

predict the movements of the unknown people. The MLC configuration generation process 

uses the decision-tree algorithm to match the datasets with the assigned labels. Several MLC 

configurations were created in which different labels were assigned to different datasets, to test 

the performance of the decision-tree generation process.  

This configuration is created by using Unico-GUI. The result of this UNICO step is a 

configuration file, which can then be used for programming the board in Expert mode. When 

programming the board, by selecting the Output ‘Stream to Bluetooth’, it is possible to observe 

the decision tree output on the STBLESensor app. 
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6.3.2 MLC Pipeline 

The whole MLC generation process can be broken down in three major steps. These steps are 

described below. 

 

6.3.2.1 Data Collection using ST BLE: 

The data was collected using the SensorTile.Box PRO kit. There are two ways to collect data. 

The first method writes the data to the csv files on the SD-card mounted on the kit. The second 

method writes it in the internal memory of the mobile phone.  

a) In the first method, the Data recorder example app was uploaded on the board using ST 

BLE Sensor Classic App as shown in the images below. 

 

 

Figure 11: ST BLE Sensor App Main Screen 
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Figure 12: ST BLE Sensor App Screenshot 2 

Select ‘Create a new Application’ -> Select the Board Type. 

 

Figure 13: ST BLE Sensor App Screenshot 3 
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Figure 14: ST BLE Sensor App Screenshot 4 

Select ‘Log’ -> Upload Data recorder app on the board. 

After the app is loaded successfully, connect to the device. Then, data logging can be done as 

shown in the images below. 

 

 

Figure 15: ST BLE Sensor App Screenshot 5 
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Figure 16: ST BLE Sensor App Screenshot 6 

Select Start Logging and Stop Logging option at the bottom right of the screen to start and stop 

logging the data. The data is saved in a csv file, which is stored on the SD card mounted on the 

kit and can be retrieved from there. 

 

b) In the second method, a new application was created using the ST BLE Sensor Classic 

app. 

 

Figure 17: ST BLE Sensor App Screenshot 7 
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Figure 18: ST BLE Sensor App Screenshot 8 

Select ‘Create a new Application’ -> Select the Board Type. 

 

 

Figure 19: ST BLE Sensor App Screenshot 9 
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Figure 20: ST BLE Sensor App Screenshot 10 

Press ‘EXPERT VIEW’ and then press ‘+ NEW APP’. 

 

 

Figure 21: ST BLE Sensor App Screenshot 11 



36 
 

  

Figure 22: ST BLE Sensor App Screenshot 12 

Select Input sources and Output. 

 

 

Figure 23: ST BLE Sensor App Screenshot 13 
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Figure 24: ST BLE Sensor App Screenshot 14 

Save app. Give it a suitable name and an optional description. Press Finish. 

 

Figure 25: ST BLE Sensor App Screenshot 15 

Upload app by pressing the upload symbol. 
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Figure 26: ST BLE Sensor App Screenshot 16 

Select the board. 

 

Figure 27: ST BLE Sensor App Screenshot 17 

Once the app is uploaded, Gyroscope and Accelerometer data (which were selected as inputs 

initially) can also be observed on the app. Press the three vertical dots icon at the top right of 

the screen to start and stop logging. 



39 
 

 

 

Figure 28: ST BLE Sensor App Screenshot 18 

  

Figure 29: ST BLE Sensor App Screenshot 19 

Start and Stop Logging accordingly. 
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Figure 30: ST BLE Sensor App Screenshot 20 

  

Figure 31: ST BLE Sensor App Screenshot 21 

 

Select OK to save the files internally. Files can be found in the device’s internal 

memory. 
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6.3.2.2 Generating UCF file for MLC using UNICO-GUI: 

 

 

Figure 32: UNICO GUI Main Screen 

Open UNICO-GUI. Select ‘iNemo Inertial Modules’ -> ‘STEVAL-MKI227KA 

(LSM6DSV16X)’. Unselect ‘Communication with the motherboard [Disabled]’ to use it 

offline. Click ‘Select Device’. 

 

 

Figure 33: UNICO GUI Screenshot 2 
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Select MLC option from the left panel. 

 

 

Figure 34: UNICO GUI Screenshot 3 

 

 

Figure 35: UNICO GUI Screenshot 4 

Browse csv files, assign labels, and load them. 
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Figure 36: UNICO GUI Screenshot 5 

Go to the ‘Configuration’ tab. 

 

 

Figure 37: UNICO GUI Screenshot 6 
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Select ‘Device’, ‘Machine Learning Core ODR’, and ‘Inputs’. Set the inputs’ Full scale and 

ODR. 

 

 

Figure 38: UNICO GUI Screenshot 7 

Set number of ‘Decision trees’, ‘Window length’, and ‘Filter configuration’. 

 

 

Figure 39: UNICO GUI Screenshot 8 
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Select ‘Features’ that you want for the decision tree(s). 

 

 

Figure 40: UNICO GUI Screenshot 9 

Save ARFF file. And then assign numerical values to the Decision tree Results. 

 

 

Figure 41: UNICO GUI Screenshot 10 
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Click ‘GENERATE’ to generate the decision tree. You can aslo set ‘Max number of nodes’, 

‘Confidence factor’, and ‘ Decision tree name’ before generating the decision tree. 

 

 

Figure 42: UNICO GUI Screenshot 11 

You can see the text file to see the decision tree generated. This info is also displayed on the 

GUI. 

 

 

Figure 43: UNICO GUI Screenshot 12 
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Assign ‘Meta classifier’. Finally, save the configuration file. 

 

 

Figure 44: UNICO GUI Screenshot 13 

Configuration file is created. 

 

6.3.2.3 Uploading Configuration file to the Board using ST BLE: 

 

 
Figure 45: ST BLE Sensor App Screenshot 22 
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Figure 46: ST BLE Sensor App Screenshot 23 

Open the ST BLE Sensor Classis app. Press ‘Create a new Application’, select the Board 

Type. 

 

 
Figure 47: ST BLE Sensor App Screenshot 24 
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Press ‘EXPERT VIEW’. 

 

 
Figure 48: ST BLE Sensor App Screenshot 25 

Press ‘+NEW APP’. 

 

 
Figure 49: ST BLE Sensor App Screenshot 26 
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Select ‘MLC Virtual Sensor’ from the Input sources. 

 

 
Figure 50: ST BLE Sensor App Screenshot 27 

Press the settings icon next to ‘MLC Virtual Sensor’. 

 

 
Figure 51: ST BLE Sensor App Screenshot 28 
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Select a ucf file. 

 

 
Figure 52: ST BLE Sensor App Screenshot 29 

Save Config after uploading the ucf file. 

 

 
Figure 53: ST BLE Sensor App Screenshot 30 
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Select ‘Stream to Bluetooth’ option in the Output tab and press Continue. 

 

 
Figure 54: ST BLE Sensor App Screenshot 31 

Save app. Give a name and an optional description and press Finish. 

 

 
Figure 55: ST BLE Sensor App Screenshot 32 
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Upload the app by pressing the upload option and selecting the board. 

 

 
Figure 56: ST BLE Sensor App Screenshot 33 

 

  
Figure 57: ST BLE Sensor App Screenshot 34 

You can observe the output changing on the ‘Decision Tree: 0’. 
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6.3.3 MLC Experiments 

Once the MLC pipeline was established, some MLC experiments were tried as a starting point. 

 

6.3.3.1 Data Collected 

The data was collected for 9 different combinations of sensor placement and arm movement (3 

different sensor positions times 3 different arm movements). For each combination, 3 data 

samples were collected. 

 

Sensor 

Position 

Arm 

Movement 

Sagittal Frontal 45º 

Sagittal 3 3 3 

Frontal 3 3 3 

Backward 3 3 3 

Table 1: Number of Data Samples 

This data corresponds to 27 samples. It is per hand per person. So, for one person, there will 

be 54 samples in total, 27 for the right hand and 27 for the left hand. 

Below is the image showing the different planes (sagittal, horizontal and frontal) for better 

understanding. 

 

Figure 58: Different planes 13 

 
13 https://www.teachpe.com/anatomy-physiology/planes-of-movement 
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Below are the images showing the sagittal sensor placement on both right and left hands. 

 

Figure 59: SensorTile.Box PRO kit mounted on the right arm 

   

Figure 60: SensorTile.Box PRO kit mounted on the left arm 
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6.3.3.2 Models Created 

There were several models created and tested. For simplicity and understanding, let’s assign 

simple variables to the data categories above. 

Sensor Positions: Sagittal = A, Frontal = B, Backward = C 

Arm Movements: Sagittal = D, Frontal = E, 45º = F 

So, for example, case AD would mean the data collected when sensor position was sagittal and 

arm movement was also sagittal. Case CE would mean the data collected when sensor position 

was backward, and the arm movement was frontal. 

1) In the first case of decision tree generation, the case AD was given ‘true’ label, and the 

rest of the cases (AE, AF, BD, BE, BF, CD, CE, and CF) were given ‘false’ labels. So, 

if the sensor is mounted in sagittal position and the arm moves along the sagittal plane, 

the model should identify it as a correct movement, otherwise, not. 

2) In the second case, AD, BD, and CD were given true labels, and the rest (AE, AF, BE, 

BF, CE, and CF) were given the false label. So, no matter the sensor placement, if the 

arm movement is sagittal, the model should identify it as a correct movement, otherwise, 

false. 

3) In the third case, AD was given the true label, and AE and AF were given the false 

labels. So, this case was restricted to only sagittal sensor placements. 

4) In the fourth case, two decision trees were generated in the configuration. One for 

identifying the correct movement of right arm, and another for the left arm. AD, BD, 

and CD were given true labels, and the rest (AE, AF, BE, BF, CE, and CF) were given 

the false label. Both for the right-hand and the left-hand datasets. 

5) In this case, again, two decision trees were generated in the configuration. One for 

identifying the correct movement of right arm, and another for the left arm. This time, 

AD was given the true label, and AE and AF were given the false labels. So, this case 

was restricted to only sagittal sensor placements, but for both hands. 

6) All the previous configurations were created based on just one person’s data and tested 

on the same person. In this case, the data for two people was used to create the 

configuration. AD was given the true label, and AE and AF were given the false labels. 

Then, it was tested on one person. 
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For each of these models, the following configuration settings were set when creating the 

MLC: 

• MLC Frequency: 30 Hz 

• Sensors Frequencies: 60 Hz 

• Window Length: 52 

• Feature: Mean 

More details about setting these parameters will come later. As of now, these values were set 

by default. 

6.3.3.3 Performance 

The performance was observed by testing the model against the cases for which it was created. 

None of the models were accurate enough to consider them good. There were some cases in 

which models were able to identify the correct movement, but most of the time they gave wrong 

predictions. 

Below is the summary of the models’ characteristics in tabular form. 

S.No. True Label False Label Hands No of people 

in the dataset 

1 AD AE, AF, BD, 

BE, BF, CD, 

CE, CF 

Right 1 

2 AD, BD, CD AE, AF, BE, 

BF, CE, CF 

Right 1 

3 AD AE, AF Right 1 

4 AD, BD, CD AE, AF, BE, 

BF, CE, CF 

Both 1 

5 AD AE, AF Both 1 

6 AD AE, AF Right 2 

7 AD AE Right 1 

Table 2: MLC models' characteristics 

In the last table entry, when nothing seemed to be working, it was decided to focus on just one 

arm right now (for example, right arm) and limit the True/False cases only to AD and AE 

initially, so that the resulting model will be very simple. Then after we have a working model 

that differentiates between the AD and AE cases, we can extend it with the remaining cases, 
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and for the left arm too. But even the simplest model was not giving any good results at this 

moment. 

Seeing the performance of the above models, it was noticed that using the accelerometer and 

the gyroscope data as it is might not be a good option in this case. One possible alternative was 

to use Quaternions / Euler Angles. 

 

6.4 Correcting the Input Data Type 

After noticing that the accelerometer and gyroscope data might not be sufficient to train the 

decision tree, it was time to look at the other possible options available within the box kit. It 

was the only restriction that we had when using the SensorTile.Box PRO kit that we can only 

use the resources available inside the kit and only the ST provided software (possibly some 

external software as well that makes working with ST devices possible). One of those 

possibilities was to use the Quaternion data belonging to the arm movements, which is possible 

thankfully with the help of ST BLE Sensor app. 

 

6.4.1 Using Quaternions instead of Accelerometer /Gyroscope Data 

The ST BLE Sensor Classic app offers a ‘Sensor Fusion – Quaternion’ application that uses 

the LSM6DSV16X iNemo 6-axis inertial measurement unit and the LIS2MDL 3-axis 

compensated magnetometer to show the orientation estimation of SensorTile.boxPRO in the 

3D space. The algorithm used in the sensor fusion algorithm (MotionFX library) embedded in 

the SensorTile.box MCU which uses the sensors data as inputs (9-axis) and calculates the 

quaternion coefficient describing the rotation of 3D cube model. The sensor fusion algorithm 

is basically a Kalman filter that minimizes the sensors’ inaccuracies based on peculiarities of 

other sensors; it includes gyroscope calibration and magnetometer calibration (to compensate 

for the magnetometer offset).  

The only problem with the Quaternion data is that it contains 4 data sequences. A quaternion 

is represented as q = a + bi + cj + dk, where a, b, c, and d are real numbers representing the 

components of the quaternion, and i, j, and k are the quaternion units. Here is what each 

component represents:  

• a: The real part of the quaternion  
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• b: The coefficient of the i unit, which is one of the imaginary units of the quaternion.  

• c: The coefficient of the j unit, another imaginary unit of the quaternion.  

• d: The coefficient of the k unit, third imaginary unit of the quaternion.  

Together, these components form a four-dimensional vector that represents a point in the space 

of quaternions. The real part (a) represents the scalar part of the quaternion, while the imaginary 

parts (b, c, d) represent the vector part. This combination allows quaternions to represent 

rotations and translations concisely and efficiently. [20] 

The problem with the four-dimensional quaternion data comes from a limitation of MLC 

(Machine Learning Core) training tool of Unico-GUI. It only expects a 3-dimensional data for 

each sensor data used in the training. It does not make sense to use 3 dimensions of the 4-

dimensional data for training as it would be inaccurate. So, we needed a way to convert this 4-

dimensional data into 3 dimensions.  

  

6.4.2 Euler Angles 

Thankfully, we have Euler angles, the solution to our previous problem. Euler angles are a set 

of three angles (usually called roll, pitch and yaw) used to represent the orientation of an object 

or coordinate system in three-dimensional space. The three angles typically represent rotations 

about the three principal axes of the coordinate system. There are several conventions for 

defining Euler angles, such as XYZ, ZYX, ZXY, XZY, XZX, YXY, and so on. In total, there 

are 12 of these conventions. Each convention specifies the order in which the rotations are 

applied, and about which axes. However, Euler angles have a very important limitation known 

as Gimbal lock, which occurs when two of the three angles align, leading to a loss of one degree 

of freedom. [20] [21] 

To counteract the Gimbal lock, if we apply the rotation sequence in which the first axis is the 

axis of rotation of the arm, we will never run into the problem of Gimbal lock. Applying the 

rotation sequence with the first axis as the axis of rotation of the arm helps counteract Gimbal 

lock by stabilizing the primary reference frame and preventing intermediate axis alignment 

issues. By following this step, the risk of intermediate steps leading to a loss of degree of 

freedom is minimized because the initial step already establishes a stable reference frame, thus 

preserving the necessary degrees of freedom and avoiding Gimbal lock. [20] 



60 
 

To convert quaternions into Euler angles, SciPy’s Spatial Transformations 

(scipy.satial.transform) package was used. This package contains a Rotation class 

(scipy.spatial.transform.Rotation) which provides the functionality to convert a 4-dimensional 

quaternion into a 3-dimensional Euler angle.14 When converting a quaternion into a Euler angle, 

a rotation sequence needs to be specified which tells along which axis the rotation was 

performed first. Only AD and AE cases are being considered right now to keep the resulting 

model as simple as possible, as explained before as well. AD data was converted using the 

ZXY sequence since the arm moves around the z-axis of the sensor (or it can be said along the 

x-y plane of the sensor) in the case of AD. And the AE data was converted using the XZY 

sequence since the arm moves around the x-axis of the sensor (or along the y-z plane of the 

sensor) in the case of AE. 

In the table below, different rotation sequences are mentioned for different scenarios. 

 

Sensor 

Position   

Movement 

Plane  

Forward  Lateral  45°  

Lateral  zxy  xzy  zxy  

Front  xzy  zxy  xzy  

Back  xzy  zxy  xzy  

Table 3: Different rotation sequences for different scenarios 

  

To get the Euler angles, first Quaternions data was collected. 11 measurements were taken for 

each case (AD and AE). So, 11 measurement files containing Quaternions for the AD case, and 

11 more measurement files containing Quaternions for the case of AE. After we have the 

Quaternions data, Euler angles were calculated according to their respective rotation sequences. 

After the Euler angles were calculated, the offsets were also removed from them for the data 

to make sense. So, for each arm movement, all three of the Euler angles were starting from 0 

degrees, and if the arm goes all the way up, one of the angles (depending on the sensor 

 
14 https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.html 
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orientation) can be seen changing from 0 degrees to 180 degrees. This offset removal step was 

done on all the collected data. 

After removing the offsets, the angles were plotted for the AD and AE cases to get the visual 

representation of the angles. All the 11 measurements were plotted on a single graph to see the 

consistency of those measurements. These plots are shown in the results section. After plotting 

these graphs, it was noticed that some of these measurements are not consistent with each other 

what was not expected. For example, we know that one of the angles should approach 180 

degrees during the arm movement, but it was not the case with some measurements. So, it was 

decided to discard those measurements and to not use them in the training of the decision tree, 

as they could be misleading and might affect the training step. These plots are shown in the 

results section under the Change of Data Type subsection. 

After discarding inconsistent measurements, the data columns were arranged in an order before 

using it for training. This is necessary because for different cases, different rotation sequences 

were applied when converting to Euler angles. So, the cases for which ZXY rotation sequence 

was used, their roll, pitch and yaw columns would be rearranged as pitch, yaw and roll. 

Similarly, for the cases, for which XZY rotation sequence was used, their roll, pitch and yaw 

columns would be rearranged as roll, yaw and pitch. This is to keep the column orders 

consistent in the order XYZ. 

In the case of AD, the ZXY rotation sequence was used to convert the Quaternions into Euler 

angles. So, in this case, roll corresponds to the rotation along Z-axis, pitch along the X-axis 

and yaw along the Y-axis. Whereas, in the case of AE, the XZY rotation sequence was used. 

Now in this case, the roll corresponds to rotation along the X-axis, pitch along the Z-axis and 

yaw along the Y-axis.  

Therefore, before using this data for training, it was necessary that the data columns of all the 

cases (AD and AE for right now) were in the same order. Therefore, the column order was 

changed such that they follow the XYZ order. Hence, in the case of AD, the roll-pitch-yaw 

order was changed to pitch-yaw-roll to follow the XYZ order. Similarly, in the case of AE, the 

roll-pitch-yaw order was changed to roll-yaw-pitch to follow the XYZ sequence. Now the data 

was ready for training. 
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6.5 Adapting Training to the Real Scenario 

The MLC was trained using the data obtained in the previous step to distinguish between the 

AD and AE movements. The AD movements were labeled as True, whereas the AE movements 

were labeled as False. After training the MLC, there was still no success. The MLC still could 

not differentiate between the AD and the AE movements, not 100% correctly. There would be 

instances in which the output would be correct, predicting the correct arm movement, but there 

will be other instances as well in which it would not predict accurately, or it would be stuck on 

just output (output not changing with any arm movement). So, it was very inconsistent and not 

reliable at all. 

After not getting any success, it was decided to do a little experiment. This experiment was 

limited to the AD movements only. For AD, those measurements whose roll values were going 

beyond 100 degrees were considered as True and the rest of them were considered false. This 

experiment, unfortunately, had no success either. It had the same effect on the output that it 

was most of the time stuck at one value and was not changing. The point of this experiment 

was to make the decision-making process as easy as possible, so that MLC should at least be 

able to predict this one correctly, but as usual, it failed. 

After these repeated failures, it was necessary to make sure that the machine was interpreting 

the live data the same way as the data it was trained on. Because when the machine was trained, 

it was not trained on the actual Quaternions data that was collected in the beginning. Those 

Quaternions were changed to Euler angles and then the offsets were removed as well. This was 

the data that was used for training, and it was important to make sure that the machine was also 

able to see the data the same way when it was making predictions. If the machine could not 

interpret the interpreted data, then how would it have made the correct predictions? So, we 

needed a way to first run the machine offline, where it could be provided with the interpreted 

data instead of the live data so that it could be seen if the trained algorithm was able to make 

the correct predictions on the interpreted data to verify the correctness of the algorithm. In this 

way, it could be confirmed that at least the machine was trained correctly. 

Fortunately, ST mentions about offline analysis in one of its documents to verify the 

classification performance of MLC. ST provides a python script that could be run to verify the 

performance. The script verifies the performance by making a comparison of the decision tree 

and the ARFF file. The script was run on the first ML configuration that was created for 

distinguishing between the AD and AE movements. After running this script, it gave 100% 



63 
 

accuracy on the model. Still, it was not the exact thing which was intended to be tried. The 

actual intention was to see if the model performs accurately on the new unseen data, but this 

python script from ST does not even use any training/testing data to test the model. It just 

compares the contents of ARFF file and decision tree file. Nevertheless, it still gave 100% 

accuracy for the model, which means that it is accurate, at least, according to ST criteria. 

 

6.6 Customizing Machine Learning Decision Parameters 

After these repeated failures, there were not a lot of things left to try. One of the things that 

were left was to customize some of the decision tree training parameters, such as ODR (Output 

Data Rate), window length, and feature selection. 

 

6.6.1 MLC and Sensor(s) ODR 

ODR is the output data rate. It is the sampling frequency at which the device runs and samples 

the readings. The MLC (Machine Learning Core) ODR and the sensors ODR are not too 

important, individually, but together their combination is important to understand. If the 

sensors’ ODR is twice as much as MLC’s ODR, then it implies that sensors are running at 

twice as speed as MLC. It means that MLC is sampling only every other reading (not all 

readings) available from the sensors, as its speed is exactly half as the sensors’ speed. So, for 

example, if there are 100 readings available from the sensors, MLC is only sampling 50 of 

them, ignoring one sample after reading each sample. On the other hand, if both the MLC ODR 

and sensors ODR are same, then they both are running at the same speed and MLC is reading 

every sample that is provided from the sensors. The sensors include the accelerometer and the 

gyroscope sensors. 

It is important to understand this in the context of window length, and how many readings there 

are available in a measurement file. If there are, for example, 150 readings available in a 

measurement file, and let’s say that the sensors ODR is twice as much as the MLC ODR, then 

there are exactly 75 readings (half of the actual number of readings) available to the MLC for 

the training. 
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6.6.2 Window Length 

One of the decision tree training parameters that could possibly affect the outcome by changing 

it was the window length. So, it was decided to test it by changing the window length parameter 

which is set before the model training. This parameter tells how many data values are going to 

be used in a window and then the selected feature is applied on those values in each window. 

So, for example, if a window length of 13 is selected, it will group the values in the dataset in 

multiple windows, with each window having 13 non-overlapping samples. And then, for 

example, if mean is selected as the feature, it will calculate the mean of the 13 values in the 

window for each window.  

Up until this point, the window length of 52 was selected which was a default setting from the 

ST. The results obtained so far were from this setting. So, it was decided to play around with 

this setting and see how it affects the outcome. Setting the window length to 13 had the most 

promising results so far, in which the sensor output was changing according to the expected 

arm movement, but it was still inconsistent and unreliable.  

13, 26, 39, 52, 65, 78 and 91 are the different window lengths that were tried, along with 

different combinations of features. Window lengths above 91 were unable to be tested because 

the software was unable to generate a decision tree for those scenarios as there were not enough 

samples in the measurement file. The detailed results of the outcomes of different window 

lengths are reported in the results section. 

 

6.6.3 Feature Selection 

This is another important parameter to test after the window length. This parameter applies, 

whatever feature that is selected, to the values in the window. Up until this point, only the mean 

values were used as feature (both in accelerometer/gyroscope case and the Euler angles case). 

There are other features that can be tried such as minimum, maximum, variance, energy, and 

many more. The best way to decide which feature to use is by plotting the data and observing 

which feature can better grasp the underlying data. The detailed results about the outcome of 

different features are reported in the results section. 
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6.7 Going Back to The Accelerometer/Gyroscope Data 

After getting repeated failures even when using Euler angles, and that too after trying different 

options, the only possibility left was to try the accelerometer and gyroscope data again, but this 

time with customizable machine learning parameters. Like before, the parameters that could 

be changed are window length, feature selection, and MLC and/or sensors ODR. 

As before, the focus was to have a working algorithm that can at least differentiate between the 

AD and AE movements. At some point, a third state was included as well other than AD and 

AE states, called the Idle state. Moreover, there were initially only 3 measurement files for 

each hand movement as described in the MLC Experiments section, but after some iterations, 

more measurement files were included to have more data for the better ML training. To identify 

which feature selection could be best in a particular case, the corresponding graphs were plotted 

of the accelerometer and the gyroscope data, which are shown in the results section. 

All the results, that were tried with different options and different configurations, are reported 

in the Accelerometer/Gyroscope Data with Tunable ML Parameters subsection under the 

Results section. 

 

6.8 Using Sensor on the Wrist instead of on the Arm 

When using the sensor on the arm did not give any promising results, even with customizable 

ML decision parameters, there was still one thing that could be tried. It was to use the sensor 

on the wrist instead of on the arm. The reason for doing it would be prominent after looking at 

the plots of accelerometer and gyroscope data. When using the sensor on the wrist, the AD and 

AE have more differentiable data as compared to the case when the sensor was on the arm. 

These plots are shown in the results section. 

Like the approach described in the previous Going Back to The Accelerometer/Gyroscope 

Data section, different options and configurations were tried in this case as well, such as 

different window lengths, different feature selections, and different MLC and/or sensors ODRs. 

The results for all these different configurations are reported in the Sensor on the wrist 

subsection under the results section. 
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7 Results 

All the different results from different subsections in the Methodology chapter are included 

in this chapter. 

 

7.1 MLC Experiments Performance 

In the MLC Experiments subsection under the Workflow Setup section, some MLC models 

were created to test different cases and distinguish between different arm movements. 

Unfortunately, this exercise was not successful at all as it was not able to recognize any 

movement correctly. Their performance is reported in the table below. 

 

S.No. True Label False Label Hands No of 

people in 

the 

dataset 

Performance 

1 AD AE, AF, BD, BE, 

BF, CD, CE, CF 

Right 1 Not able to distinguish 

between the true 

movements and the false 

movements. 

2 AD, BD, CD AE, AF, BE, BF, 

CE, CF 

Right 1 Not able to distinguish 

between the true 

movements and the false 

movements. 

3 AD AE, AF Right 1 Not able to distinguish 

between the true 

movements and the false 

movements. 

4 AD, BD, CD AE, AF, BE, BF, 

CE, CF 

Both 1 Not able to distinguish 

between the true 

movements and the false 

movements. 

5 AD AE, AF Both 1 Not able to distinguish 

between the true 
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movements and the false 

movements. 

6 AD AE, AF Right 2 Not able to distinguish 

between the true 

movements and the false 

movements. 

7 AD AE Right 1 Not able to distinguish 

between the true 

movements and the false 

movements. 

Table 4: MLC models' performance 

 

7.2 Change of Data Type 

In the section Correcting the Input Data Type, it is mentioned how the data type was changed 

from Accelerometer/Gyroscope to Quaternions and then eventually to Euler Angles. After 

calculating Euler angles, they were first plotted to get the visual representation of the data 

before using it in the training process. 

Below are the plots of the Euler angles of one of the 11 measurements for both the case of AD 

and AE.  

 

  

Euler angles in the case of AD  
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In the plot above, Euler angles are plotted in degrees (after removing the offsets) for the case 

of AD. It can be seen in the plot that the roll is crossing 150 degrees which satisfies the arm 

movement condition of AD that it should approach 180 degrees. 

  

  

Euler angles in the case of AE  

 

In the plot above, Euler angles are plotted in degrees (after removing the offsets) for the case 

of AE. It can be seen in the plot that the roll is crossing the -120 degrees which satisfies the 

arm movement condition of AE that it should approach -180 degrees. (It is negative because 

of the sensor orientation which is not important and can be ignored) 

To verify the integrity of the collected data, we calculated the min, max and range of all three 

Euler angles of all 11 measurements for each of the 9 cases. If these statistics are not consistent 

among the 11 measurements for any certain case, it means that the measurements that are 

inconsistent have some problems in the original data and therefore, it is better if these 

measurements should not be used in the MLC training because it could contribute towards the 

improper training of the MLC. Below are the statistics for both AD and AE cases. 
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7.2.1.1 AD 

Roll: 

Measurement 

File No. 

Roll 

Minimum 

Roll 

Maximum 

Roll Range Roll 

Average 

Roll 

Variance 

0 -4.489397 155.398591 159.887987 37.347883 3107.493016 

1 - 20.588897 144.516195 165.105092 38.225601 3585.076437 

2 - 34.780051 154.545851 189.325902 55.543096 3799.889076 

3 - 98.940774 76.011203 174.951977 - 12.627701 3603.296925 

4 - 4.578309 145.965063 150.543372 42.700858 3424.963224 

5 - 14.167902 149.444853 163.612756 46.647889 3919.386788 

6 - 77.015355 26.428775 103.444130 - 23.339770 1296.144546 

7 - 36.734936 35.850878 72.585814 1.289612 457.298503 

8 - 21.771149 25.128225 46.899374 0.203756 197.052888 

9 - 79.944679 51.072129 131.016808 - 2.042009 1589.107385 

10 - 79.068447 15.932596 95.001043 - 26.378531 1200.495868 

Table 5: Roll statistics for 11 measurement files in the case of AD 

Pitch: 

Measurement 

File No. 

Pitch 

Minimum 

Pitch 

Maximum 

Pitch Range Pitch 

Average 

Pitch 

Variance 

0 -69.984536 14.711747 84.696282 -9.002772 415.219902 

1 -60.697133 9.365794 70.062927 -8.550391 378.191783 

2 -74.414243 7.097643 81.511886 -13.501869 629.583228 
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3 -77.174331 1.850664 79.024995 -16.565927 552.212524 

4 -72.995200 9.860994 82.856194 -14.599861 533.831940 

5 -70.880741 4.695503 75.576244 -16.783718 535.537761 

6 -66.212732 1.364536 67.577269 -14.224223 465.278813 

7 -64.197848 0.367527 64.565374 -15.052183 443.078269 

8 -57.416693 4.654139 62.070832 -11.606306 410.368598 

9 -62.163317 0.800303 62.963620 -14.144839 393.196654 

10 -62.515554 5.888517 68.404071 -11.940338 467.782123 

Table 6: Pitch statistics for 11 measurement files in the case of AD 

Yaw: 

Measurement 

File No. 

Yaw 

Minimum 

Yaw 

Maximum 

Yaw Range Yaw 

Average 

Yaw 

Variance 

0 - 1.551632 36.309673 37.861305 9.405395 135.430361 

1 - 15.415170 71.718241 87.133411 8.808493 423.460539 

2 - 35.734448 115.701739 151.436187 16.233989 909.622705 

3 - 99.485431 42.153388 141.638820 - 48.055325 1371.263712 

4 -11.248516 34.104834 45.353349 4.398950 96.686227 

5 - 15.678918 92.645691 108.324609 7.549187 411.314338 

6 - 138.71615 12.884332 151.600484 - 62.390997 1617.369415 

7 - 131.01892 18.832076 149.850995 - 39.462012 1800.931919 

8 - 145.82738 9.474301 155.301679 - 40.671490 2401.546488 
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9 - 116.11692 28.973043 145.089964 - 42.172099 1436.294694 

10 - 149.8152 7.633346 157.448542 - 61.927365 2084.179049 

Table 7: Yaw statistics for 11 measurement files in the case of AD 

 

7.2.1.2 AE 

Roll: 

Measurement 

File No. 

Roll 

Minimum 

Roll 

Maximum 

Roll Range Roll 

Average 

Roll 

Variance 

0 - 170.32182 6.656484 176.978301 - 46.114114 4982.901961 

1 - 79.325571 265.600637 344.926208 62.945668 10040.190314 

2 - 196.29223 6.358872 202.651103 - 67.920153 7562.612526 

3 - 89.483829 254.964345 344.448174 70.484855 6403.271946 

4 - 129.77568 3.827288 133.602973 - 34.526037 2532.447607 

5 - 75.286624 281.932272 357.218896 41.658678 11481.381431 

6 - 117.52575 5.190158 122.715911 - 29.380059 2025.688585 

7 - 74.624606 283.377021 358.001626 31.754657 10455.056386 

8 - 79.773611 278.824877 358.598488 29.538770 10549.816496 

9 - 98.197295 6.792605 104.989900 - 23.598798 1476.584440 

10 - 79.150467 278.675478 357.825944 40.948097 1200.495868 

Table 8: Roll statistics for 11 measurement files in the case of AE 
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Pitch: 

Measurement 

File No. 

Pitch 

Minimum 

Pitch 

Maximum 

Pitch Range Pitch 

Average 

Pitch 

Variance 

0 - 51.139762 15.245324 66.385086 -13.405650 220.151933 

1 - 16.467538 37.406586 53.874124 9.503592 185.833718 

2 - 28.747716 37.213613 65.961329 - 0.004949 396.464597 

3 - 39.768946 26.414497 66.183443 1.567019 470.183698 

4 - 47.450739 8.259586 55.710325 - 15.358958 189.212408 

5 - 1.428872 56.641645 58.070517 19.021048 257.628909 

6 - 55.035261 0.321924 55.357185 - 18.341376 224.103538 

7 - 0.115809 55.128147 55.243956 21.090121 238.185647 

8 - 0.395301 63.779175 64.174475 26.028255 310.856466 

9 - 52.383915 2.981422 55.365337 - 15.127074 214.831610 

10 - 0.288509 58.580543 58.869052 18.726928 256.852659 

Table 9: Pitch statistics for 11 measurement files in the case of AE 

Yaw: 

Measurement 

File No. 

Yaw 

Minimum 

Yaw 

Maximum 

Yaw Range Yaw 

Average 

Yaw 

Variance 

0 - 109.77023 9.735430 119.505659 - 27.323833 1717.612344 

1 - 348.38225 9.560465 357.942714 - 108.09169 19937.414371 

2 - 141.15161 9.435283 150.586896 - 40.890038 2694.950905 

3 - 327.89875 15.928750 343.827505 - 104.09318 13353.762437 
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4 - 78.568890 3.193969 81.762859 - 24.739707 940.468884 

5 - 341.68708 15.648473 357.335553 - 95.726873 20171.592677 

6 - 80.347598 1.414416 81.762014 - 24.302663 1008.454505 

7 - 345.44622 13.385107 358.831325 - 119.19072 22687.186277 

8 - 347.07191 12.197960 359.269868 - 110.50293 21254.110404 

9 - 82.691795 3.077206 85.769000 - 25.484108 1024.065347 

10 - 346.22333 13.308520 359.531853 - 109.27046 21617.649393 

Table 10: Yaw statistics for 11 measurement files in the case of AE 

 

The roll, pitch and yaw were also plotted separately, but combinedly for the different 

measurements. In this way, it is easier to see the above-mentioned effect of inconsistency on 

each angle separately with respect to the different measurements. In this way, the roll values 

of all measurements for a specific case (for example AD) were plotted on one graph. Similarly, 

the pitch and yaw values were plotted separately for that specific case. In the case of AD, the 

roll values should approach 180 degrees for each measurement. But there were some 

measurements for which it was not even crossing 100 degrees. So, a 100-degree threshold was 

set, and the measurements that were not crossing this threshold were not used in the training. 

It was a similar situation in the case of AE. For AE, the roll values should approach –180 

degrees (negative because of sensor orientation). But for some measurements, it was not the 

case, so those measurements were discarded too.  

Below are the plots of the roll, pitch and yaw, plotted separately, but combinedly for all 11 

measurements, and for each case, AD and AE. The first case is AD.  
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Roll angles for 11 measurements of AD  

 

In the graph above, the roll angles are plotted for all 11 measurements for the case of AD. With 

the help of this graph, the consistency can be seen easily among different measurements with 

respect to one specific angle. It also helps to see which measurements are accurate and are 

approaching 180 degrees.  

  

  

Pitch angles for 11 measurements of AD  
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In the graph above, the pitch angles are plotted for all 11 measurements for the case of AD. 

But this plot is not as important as the roll one. Because roll is the angle that gives direct 

information about the arm movement/rotation in terms of angles in the direction we are 

interested in.  

  

Yaw angles for 11 measurements of AD  

  

In the graph above, the yaw angles are plotted for all 11 measurements for the case of AD. 

Similarly, this plot is not as important as the roll one because of the reason stated before.  

Now, below are the plots of the roll, pitch and yaw, plotted separately, but combinedly for all 

11 measurements, for the case of AE.  
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Roll angles for 11 measurements of AE  

  

In the graph above, the roll angles are plotted for all 11 measurements for the case of AE. With 

the help of this graph, the inconsistency can be seen easily among different measurements with 

respect to one specific angle. It also helps to see which measurements are accurate and are 

approaching -180 degrees.  

  

  

Pitch angles for 11 measurements of AE  
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In the graph above, the pitch angles are plotted for all 11 measurements for the case of AE. But 

this plot is not as important as the roll one. Because roll is the angle that gives direct information 

about the arm movement/rotation in terms of angles in the direction that we are interested in.  

  

  

Yaw angles for 11 measurements of AE  

  

In the graph above, the yaw angles are plotted for all 11 measurements for the case of AE. 

Similarly, this plot is not as important as the roll one because of the reason stated before.  

 

7.3 Real Scenario Training 

As discussed in the section Adapting Training to the Real Scenario, the decision tree training 

to distinguish between the AD and AE movements was no success. Below is the decision tree 

report for this trained MLC. 
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Figure 61: Decision Tree report for trained MLC to distinguish between AD and AE movements 

Although it can be seen in the report that the resulting decision tree has the 100% accuracy on 

the trained data, it was still unable to predict the correct movements. 

Then, the AD experiment was tried which was no success either. Its resulting decision tree 

report is shown below. 

 

Figure 62: Decision Tree report for AD experiment 
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In this case too, the resulting decision tree had 100% accuracy but still no success. 

Then, the ST provided offline analysis was performed to verify the classification performance 

of MLC. It gave 100% accuracy for the model which was trained to distinguish the AD and AE 

movements. Below is the test report for accuracy. 

 

 

Figure 63: Offline analysis report to test MLC accuracy 

 

 

7.4 ML Decision Parameters 

7.4.1 AD Experiment  

The ML parameters such as window length and feature selection were customized to improve 

the performance. It was initially tried on AD experiment which is mentioned in the section 

Adapting Training to the Real Scenario. The results are reported below.  

Below are the results of different window lengths and different features on AD experiment 

when the simple AD arm movement was performed after placing the sensor on the arm. In the 

AD experiment, the true cases are those cases for which roll value is greater than or equal to 

100 degrees. Whereas the rest of the cases are false. 
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Window 

Length 

Feature Mean Min Max 

13 Stuck at 0 (true) Not changing. Stuck at 

whatever the initial 

value was. 

Stuck at 0 (true) 

26 Stuck at 0 (true) Stuck at 0 (true) Stuck at 0 (true) 

39 Stuck at 0 (true) Stuck at 0 (true) Stuck at 4 (false) 

52 Stuck at 0 (true) Stuck at 0 (true) Stuck at 4 (false) 

65 Stuck at 0 (true) Stuck at 0 (true) Stuck at 4 (false) 

78 Stuck at 0 (true) Stuck at 0 (true) Stuck at 4 (false) 

91 Stuck at 4 (false) Stuck at 0 (true) Stuck at 4 (false) 

Table 11: Performance result of AD experiment with varying window lengths and features 

  

In the table above, it can be seen that the output was mostly stuck at just one value. For mean 

and minimum features, it is mostly stuck at true even though when half AD movement was 

performed in which case roll value should be less than 100 degrees. And in the maximum 

feature, it is mostly stuck at false. 

Below are the results of the different window lengths and different features on AD experiment 

when the sensor was randomly moved and rotated by holding it in hand. This was important to 

see if the sensor output was even changing or not when it was not changing in the typical AD 

movement. 

  

Window 

Length 

Feature Mean Min Max 

13 Stuck at 0 (true) Randomly changing 

between 0 (true) and 4 

(false). Not consistent. 

Stuck at 0 (true). 

Started at 4 (false) and 

then immediately 
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changed to 0 (true) and 

then stayed true. 

26 Stuck at 0 (true) Stuck at 0 (true) Stuck at 0 (true) 

39 Stuck at 0 (true) Stuck at 0 (true) Stuck at 4 (false) 

52 Stuck at 0 (true) Stuck at 0 (true) Randomly changing 

between 0 (true) and 4 

(false). 

65 Stuck at 0 (true) Stuck at 0 (true) Stuck at 4 (false) 

78 Stuck at 0 (true) Stuck at 0 (true) Stuck at 4 (false) 

91 Stuck at 4 (false) Stuck at 0 (true) Randomly changing 

between 0 (true) and 4 

(false). 

Table 12: Output of AD experiment when the sensor is randomly moved by hand 

  

In the above table, it can be seen that the sensor output was somewhat changing under the 

influence of random sensor movements by hand, which shows that at least there was some 

working algorithm down there, but it just did not seem to be working correctly. 

 

7.4.2 AD/AE Movements  

The effect of changing the ML parameters to distinguish the AD/AE movements are reported 

below. Note that the AD movements are labeled as true, whereas AE movements are labeled 

as false. In this subsection, the results belonging to the Customizing Machine Learning 

Decision Parameters section are reported, in which case the Euler angles were used as the 

training data. 

Below are the results of different window lengths and different features on the algorithm when 

the simple AD movement was performed after placing the sensor on the arm.  
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Window 

Length 

Feature Mean Min Max 

13 Stuck at 0 (false) Stuck at 4 (true) Stuck at 4 (true) 

26 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false) 

39 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false) 

52 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false) 

65 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false) 

78 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false) 

Table 13: Sensor outcome when performing simple AD movement 

  

Below are the results of different window lengths and different features on the algorithm when 

the simple AE movement was performed after placing the sensor on the arm. 

Window 

Length 

Feature Mean Min Max 

13 Stuck at 0 (false) Stuck at 4 (true) Stuck at 4 (true) 

26 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false) 

39 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false) 

52 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false) 

65 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false) 

78 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false) 

Table 14: Sensor outcome when performing simple AE movement 

  

It can be seen in both of the tables above that the sensor output was usually stuck at one value, 

which was not even correct. For mean and minimum features, it was mostly stuck at true 

regardless of the AD or AE movement. And for maximum feature, it was stuck at false. 
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Below are the results of the different window lengths and different features when the sensor 

was randomly moved and rotated by holding it in hand. Again, this was important to see if the 

sensor output was even changing or not when it did not change in the typical AD and AE 

movements.  

 

Window 

Length 

Feature Mean Min Max 

13 Stuck at 0 (false) Randomly changing 

between 4 (true) and 0 

(false). 

Stuck at 4 (true) 

26 Randomly changing 

between 4 (true) and 0 

(false) 

Stuck at 4 (true) Stuck at 0 (false) 

39 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false) 

52 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false) 

65 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false) 

78 Stuck at 4 (true) Stuck at 4 (true) Stuck at 0 (false) 

Table 15: Sensor output when rotating it randomly 

 

The above table shows the output was in fact changing, but only in a limited number of cases. It 

means that there was some underlying algorithm that was working somewhat (because of the 

changing output values), but it just did not seem to be working correctly. 

 

7.5 Accelerometer/Gyroscope Data with Tunable ML Parameters 

As discussed in the Going Back to the Accelerometer/Gyroscope Data section, when nothing 

seemed to be working, the only option left worth trying was to go back to the accelerometer 

and gyroscope data, and train the decision tree again but this time with varying ML parameters 

such as window length, feature selection, and MLC and/or sensors ODR. The focus was on 
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distinguishing between only the AD and AE movements, with AD movement labeled as true 

and AE as false. 

The first configuration that was tried as a starting point was with the following settings: 

Window Length: 13, Feature Selection: Mean, MLC ODR: 30 Hz, Sensors ODR: 60 Hz. The 

decision tree was trained to distinguish between the AD and AE movements. 

The result was that it seemed to be working as it was almost able to properly distinguish 

between the two movements. However, it was not consistent, like there were only a few 

instances in which it would predict the movements correctly. So, it still needed to be improved. 

The options for improvements were to different window lengths, or different feature selection, 

or different ODRs for MLC and sensors. Another possibility was to include a third state as 

well, called the Idle state in which the arm is just resting and not moving at all. 

 

7.5.1 Plots 

Before presenting any results, below are the plots of the accelerometer and the gyroscope data 

when the AD and AE movements were performed while the sensor was placed on the right 

bicep. 

7.5.1.1 AD 
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Figure 64: AD Accelerometer 

 

 

Figure 65: AD Gyroscope 

 

7.5.1.2 AE 

 

 

Figure 66: AE Accelerometer 
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Figure 67: AE Gyroscope 

 

7.5.2 ODR 

The first thing that was tried was changing the MLC and sensors ODRs. Whereas the window 

length and feature selection were kept constant at 13 and mean, respectively. In the first 

configuration, both MLC and sensors ODR was 30 Hz. In the second configuration, MLC ODR 

was 30 Hz and the sensors ODR was 120 Hz. In the third configuration, both MLC and sensors 

ODR was 60 Hz. And, in the fourth and final configuration, MLC ODR was 60 Hz and the 

sensors ODR was 120 Hz. The outcomes of these four configurations are reported in the table 

below.   

Configuration Result 

30-30 Output does not seem 

to be changing at all 

with the arm 

movement. 

30-120 Generally false at rest, 

but goes to true 

whenever hand is 
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raised, doesn't matter 

in which direction. 

60-60 Output doesn't seem to 

be changing at all. 

60-120 Output is changing too 

fast probably because 

of the high frequencies 

of MLC and sensors. It 

is difficult to see under 

what conditions the 

output is changing. 

Table 16: Outcome of trying different combination of ODR 

From the above table, it can be seen that changing the ODR did not seem to have any 

meaningful impact on the problem. Seeing that, it was noted that perhaps the best ODR 

combination is 30 Hz for the MLC and 60 Hz for the sensors. 

 

7.5.3 Idle state 

Observing no progress in trying multiple ODR, it was suggested that the problem could be 

defined better by defining a third state as well in addition to the AD and AE states. This third 

state was the idle state in which the arm is at rest and not moving at all. 

Now, the configuration was tried with this additional idle state and with window length 13, 

feature mean, MLC ODR 30 Hz, and sensors ODR 60 Hz. The result was that it was an 

improvement to the previous similar configuration without the idle state, but still it was not 

even near perfect and was very inconsistent as well with its output, especially with the AD and 

AE cases. 

 

7.5.4 More data 

To target the inconsistencies between the AD and AE states, it was decided to provide it with 

more training data for the AD and AE cases. Initially, there were only 3 measurement files for 
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each case, which was then increased to 11 files each by collecting more data. The resulting 

configuration gave the following outcome: 

Idle AD AE 

Stays at 4 (true) Changes to 8 (false) 

when hand goes up 

and then to 4 (true) 

when the hand is down 

back. 

Changes to 8 (false) 

when hand goes up 

and then to 4 (true) 

when the hand is down 

back. 

Table 17: Performance of MLC when provided with more data 

 

7.5.5 Window length 

The next thing that was tried to get better results was to play around with different window 

lengths. In these configurations, the MLC ODR, sensors ODR and the feature selection 

remained same (30 Hz, 60 Hz and mean, respectively). The window lengths that were tried are 

52, 91, 104, and 110. 

Result:   

Window 

Length 

Movement Idle AD AE 

52 Stays at 0 (idle). 

Though changes to 4 

(true) and 8 (false) 

with slight arm 

movement/rotation. 

Stays at 0 (idle) Stays at 0 (idle) 

91 Stays at 4 (true) Stays at 4 (true) Stays at 4 (true) 

104 Stays at 4 (true) Stays at 4 (true) Stays at 4 (true) 

110 Stays at 0 (idle) Stays at 0 (idle) Stays at 0 (idle) 

Table 18: Performance of different MLCs with different window lengths 
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There was still no good outcome even with trying with multiple window lengths. The best 

window length considered after this experiment was still 13. 

 

7.5.6 Feature Selection 

The next thing that was tried was different features other than just mean. The features that were 

tried are peak-to-peak, variance, energy, recursive, minimum, and maximum. In these 

configurations, the MLC ODR was 30 Hz, sensors ODR was 60 Hz, and the window length 

was 13. 

Result:   

Feature Movement Idle AD AE 

Mean Stays at 4 (true) Changes to 8 (false) 

when hand goes up 

and then to 4 (true) 

when the hand is down 

back. 

Changes to 8 (false) 

when hand goes up 

and then to 4 (true) 

when the hand is down 

back. 

Peak-to-peak Stays at 4 (true) Changes to 8 (false) 

when arm is going up 

and then to 4 (true) 

when the arm stays up. 

Changes to 8 (false) 

again when the arm is 

going down and then 

to 4 (true) when the 

arm is completely 

down. 

Changes to 8 (false) 

when arm is going up 

and then to 4 (true) 

when the arm stays up. 

Changes to 8 (false) 

again when the arm is 

going down and then 

to 4 (true) when the 

arm is completely 

down. 

Variance Not stable. 

Continuously changing 

between 0 (idle), 4 

(true) and 8 (false) 

Not stable. 

Continuously changing 

between 4 (true) and 8 

(false) 

Not stable. 

Continuously changing 

between 4 (true) and 8 

(false) 
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Energy Not stable. 

Continuously changing 

between 0 (idle), 4 

(true) and 8 (false) 

Not stable. 

Continuously changing 

between 4 (true) and 8 

(false). But stays at 8 

(false) when the arm is 

completely up. 

Not stable. 

Continuously changing 

between 4 (true) and 8 

(false). But stays at 8 

(false) when the arm is 

completely up. 

Recursive Not stable. 

Continuously changing 

between 4 (true) and 8 

(false) 

Not stable. 

Continuously changing 

between 4 (true) and 8 

(false) 

Not stable. 

Continuously changing 

between 4 (true) and 8 

(false) 

Minimum Stays at 4 (true) Changes to 0 (idle) 

and then to 4 (true) 

when the arm is back 

down. 

Changes to 0 (idle) 

and then to 4 (true) 

when the arm is back 

down. 

Maximum Stays at 4 (true) Changes to 0 (idle) 

and then to 4 (true) 

when the arm is back 

down. 

Changes to 0 (idle) 

and then to 4 (true) 

when the arm is back 

down. 

Table 19: Performance of different MLCs with different features selection 

It can be seen in the table above that even trying different features did not have a positive 

outcome on the output. 

In summary, we tried 

• Different MLC and sensors ODR 

• Additional Idle state 

• More training data 

• Different window lengths 

• Different features 

But none of it had a positive outcome. From here on, there was not much that can be tried 

within the box kit or ST tools. But there were some external things that could be tried, for 

example, changing the position of sensor placement. 
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7.6 Sensor on the Wrist 

As explained in the Using Sensor on the Wrist instead of on the Arm section, when nothing 

else worked, there was still this last thing that could be tried. It was to place the sensor on the 

wrist instead of on the biceps. By placing the sensor on the wrist, it was easier to differentiate 

between the AD and AE cases as compared to the case when the sensor was placed on the 

biceps, as can also be seen in the plots of Accelerometer and Gyroscope.  Like the previous 

section, different configurations were tried and tested with different ML decision parameters. 

 

7.6.1 Plots 

Before presenting any results, below are the plots of accelerometer and gyroscope data when 

AD and AE movements were performed by placing the sensor on the right wrist. 

7.6.1.1 AD 

 

 

Figure 68: AD Accelerometer Wrist 
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Figure 69: AD Gyroscope Wrist 

 

7.6.1.2 AE 

 

 

Figure 70: AE Accelerometer Wrist 
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Figure 71: AE Gyroscope Wrist 

 

7.6.2 Window length 

First, different window lengths were tried by keeping the other parameters constant. The MLC 

ODR was set at 30 Hz, sensors ODR at 60 Hz, and the feature was mean. 3 different window 

lengths were tried in this case: 13, 16, and 80. 

Result:   

Window 

Length 

Movement Idle AD AE 

13 Randomly changing 

between 4 (true) and 8 

(false) by slight hand 

rotation. 

Changes to 8 (false) 

when hand goes up 

and stays there for a 

while, but back to 4 

(true) as soon as the 

hand comes back 

down. 

Changes to 8 (false) 

when hand goes up 

and stays there for a 

while, but back to 4 

(true) as soon as the 

hand comes back 

down. 
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16 Randomly changing 

between 0 (idle), 4 

(true) and 8 (false) by 

slight hand rotation. 

Randomly changing 

between 4 (true) and 8 

(false). 

Randomly changing 

between 0 (idle), 4 

(true) and 8 (false). 

80 Stuck at 8 (false) Stuck at 8 (false) Stuck at 8 (false) 

Table 20: Performance of different MLCs with different window lengths when the sensor is on the wrist 

 

7.6.3 Single reading 

When it did not seem to be working, it was decided to set the window length in a way such that 

the whole data file would correspond to one single reading in the training. The configuration 

that was tried was with MLC ODR 30 Hz, sensors ODR 60 Hz and the window length 83. 

Since the sensors ODR is twice the MLC ODR, it would be seeing only half the number of 

actual readings in the file. As there were around 166 readings in the file, the window length 

was chosen as 83. Before trying this configuration, it was noted from the accelerometer and 

the gyroscope graphs that the peak-to-peak would be the best feature to capture the complete 

essence of the data. So, the feature that was selected was peak-to-peak. 

On the next iteration, the idle case was omitted from the experiment as it seemed to be 

misguiding the training process, and it was not even important to predict the idle case, it was 

just a nice to have feature if it could have been incorporated. So, it could be dropped if wanted. 

Result:   

Configuration Movement Idle AD AE 

With Idle Stays at 8 (false) Gives 4 (true) almost 

every time. 

Gives 8 (false) almost 

every time. 

Without Idle N/A Gives 0 (true) almost 

every time. 

Gives 4 (false) almost 

every time. 

Table 21: Performance comparison of two MLCs with and without idle case when the sensor is on the wrist 

Finally, it gave some meaningful results as can be seen in the table that it was able to predict 

both AD and AE movements correctly almost every time. 
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7.6.4 Single file 

Now that we had a working algorithm which was able to predict the correct arm movements. 

There was still one more thing that could be tried to see if it improves the algorithm. In the last 

algorithm, it was trained by using multiple measurement files. What if we train the algorithm 

by using single data file, one for AD and another one for AE. So, we began by using just a 

single file for the training. Different configurations were tried that are listed below in the table. 

In most of these configurations, the window length was set such that one file had just one 

reading. 

The configurations are written in aa-bb-cc-dd format in the table below where aa is the MLC 

frequency, bb is the sensors frequency, cc is the window length, and dd is the feature used.   

Result: 

Feature Movement Idle AD AE 

30-60-13-Mean Remains at 0 (idle) at a 

specific hand position, 

but changes to both 4 

(true) and 8 (false) at 

other positions with 

slight hand 

rotations. 

Gives 4 (true) when 

the arm is raised in a 

specific hand position, 

otherwise gives 8 

(false) as well. 

Gives 8 (false) when 

the arm is raised in a 

specific hand position, 

otherwise gives 4 

(true) as well. 

60-60-13-Mean Remains at 0 (idle) at a 

specific hand position, 

but changes to 8 

(false) at other 

positions with slight 

hand rotations. 

Gives both 4 (true) and 

8 (false). Very 

uncertain. 

Mostly gives 8 (false), 

but sometimes gives 4 

(true) as well. 

30-60-83-Mean (also 

single reading) 

Stays at 8 (false). Stays at 8 (false). Stays at 8 (false). 
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30-60-83-Peak (also 

single reading) 

Stays at 8 (false). Gives 4 (true) every 

time. 

Gives 8 (false) almost 

every time (once gave 

4 (true)). 

30-60-83-Peak Wo 

Idle (also single 

reading) 

N/A Gives 0 (true) every 

time. 

Gives 4 (false) almost 

every time. You just 

have to keep your 

wrist strict. 

60-60-168-Mean (also 

single reading) 

Stays at 8 (false) Stays at 8 (false) Stays at 8 (false) 

60-60-168-Peak (also 

single reading) 

Stays at 8 (false) Gives 4 (true) but not 

every time. 

Stays at 8 (false) 

almost every time. 

30-30-168-Peak (also 

single reading) 

Stays at 8 (false) Gives 4 (true) almost 

every time. Though 

the response is very 

delayed (perhaps 

because of low 

frequency?) 

Gives 8 (false) almost 

every time (once gave 

4 (true)). Its response 

is also delayed. 

Table 22: Performance comparison of different MLCs with different configurations when the sensor is on the wrist 

  

From the table, it can be seen clearly that peak-to-peak was the best feature to use when using 

window length such that there was just one reading in one measurement file. Then, the 

configuration in which sensors ODR is twice the MLC ODR was better than the configurations 

in which both ODRs are same. Then, with and without idle case did not have a much difference 

with respect to predicting AD and AE movements. However, with idle case, it was unable to 

predict the idle condition, rather it predicted it as either AD or AE conditions. 
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8 Conclusion and Future Work 

To conclude, setting up a decision-tree based Machine Learning for real-life human motion 

tracking based on STMicroelectronics’ STEVAL-MKBOXPRO (SensorTile.Box PRO) kit 

was not an easy task as one could have expected initially. The first step in getting started was 

to explore all the hardware and software tools provided by STM that could come handy in 

setting up this application, including SensorTile.Box PRO kit and several software such as 

STM32CubeIDE, Unico-GUI, etc., and STBLESensor mobile application. Learning those tools 

was not that difficult at all as STM provides detailed datasheets and application notes to get 

familiar with these tools. 

After this phase, all the focus of the internship was towards the generation and use of the MLC 

(Machine Learning Core). Getting to know the MLC generation process was easy and 

straightforward. This generation process also allows you to choose some ML training decision 

parameters. The first approach was to use the Accelerometer and the Gyroscope data while the 

sensor was mounted on the right arm on the biceps. But it was not any success when building 

the decision-tree based on those data. Forcing us to switch to other alternatives, leading to the 

use of Euler angles as the training data. 

Honestly speaking, using Euler angles for an application like this in which there are certain 

arm movements in different directions makes more sense than using the accelerometer and 

gyroscope data standalone. Because these arm movements are more well represented with 

Euler angles than accelerometer/gyroscope data. But again unfortunately, this step was not 

fruitful in setting up the well-running decision tree to predict the arm movements. 

I think that the problem behind this lies in the reason that Euler angles are not available to us 

directly from the sensors. They are the result of transformation from the Quaternions which 

itself is not available directly to us from the sensors. We obtain the Quaternions by using the 

sensor-fusion of accelerometer, gyroscope and magnetometer data. So, when we train the 

decision tree on the Euler angles, we provide it as external data as compared to providing it as 

internal data. When we were using accelerometer/gyroscope data in the previous step, we could 

tell the software that this is the accelerometer data and this is the gyroscope data, so when we 

run the resulting MLC, it knows how to make predictions on which sensors data. But in this 

case where Euler angles are given as external data, there is no way to tell during the training 

process that this data is the Euler angles data. It just treats it as external data without any label. 

I think that is the root problem for this not working, which seems to be a flaw in the STM’s 
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design. This issue has been communicated with the STM and together by discussing it with 

them, we should be able to identify the root cause of this problem. 

Nevertheless, this step made us familiar with the tunable training parameters that we decided 

to try also on the accelerometer/gyroscope data. Tuning those parameters gave some good signs 

of progress, so we knew that we were onto something. The limitation was that the resulting 

algorithm was not successfully able to distinguish between the AD and AE movements when 

the sensor was placed on the biceps, which is true as there was not much of a difference between 

the two movements from the sensors’ point of view as it was placed very close to the rotation 

axis. Therefore, when the sensor was placed instead on the wrist, it gave sensors a much better 

understanding of what was really happening. Resulting in better performance (almost perfect) 

in distinguishing the AD and the AE movements. 

From the point of view of Turingsense and their applications, typically they would have wanted 

their sensors to be placed on the biceps. As the point of this internship was to explore the 

functionalities that STM has to offer with its SensorTile.Box PRO kit and the possibility of 

using this box kit in Turingsense’s applications, we got to know that this box kit has some 

potential. And if Turingsense wants to use it, they would have to most likely place it on the 

wrist instead of the biceps for it to work, or to use a network of these sensors in which more 

than one sensor are placed at different positions, but it would only make it more complex. But 

using this box kit has some limitations too, such as, it does not give freedom to use any machine 

learning algorithm, we are bound to use only decision-tree algorithm. Then we are also limited 

by the data types that we can train the decision tree on, as explained earlier, which would not 

have been the case if they had their own hardware with their own firmware. Then they would 

be free to program it any way they like, and I believe that they can get good results with this 

approach. But, writing your own hardware/firmware from scratch is not easy at all, and it 

requires a team of experienced professionals to create something like this. So, both approaches 

have their own benefits and drawbacks. In the end, there is no free lunch. 

For future work, there are two ways to look at it. If they want to continue with 

STMicroelectronics, then it is probably better to work closely with STM engineers to better 

understand their limitations and to better communicate their requirements. With this 

collaboration, it is still possible to use the SensorTile.Box PRO kit in their applications by 

resolving the issues that were discovered during this internship. Another way to look at the 

future work is the possibility of finding other alternatives to SensorTile.Box PRO kit that might 
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be already available in the market and then accessing their working and performance for 

Turingsense’s applications. 
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