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Abstract

La fusione nucleare rappresenta una promettente soluzione alla crescente domanda di energia
del mondo, o�rendo una fonte energetica pulita e virtualmente illimitata. Questa tesi si
concentra sulla fusione a confinamento magnetico nei tokamak, ovvero dispositivi che utilizzano
forti campi magnetici per confinare il plasma caldo in una forma toroidale. Il design del
tokamak è particolarmente e�cace poiché consente di creare un ambiente di plasma stabile in
cui possono avvenire le reazioni di fusione. La fusione tra deuterio e trizio (fusione D-T) è la
reazione attualmente più fattibile e studiata e produce una quantità significativa di energia.
Nella reazione di fusione D-T, i nuclei di deuterio e trizio si combinano per formare un nucleo
di elio (detto anche particella alfa) e un neutrone ad alta energia. Le particelle alfa, che data
la loro energia sono ioni veloci, svolgono un ruolo cruciale nel riscaldamento del plasma e
nel mantenimento della sua temperatura. Queste particelle, prodotte durante le reazioni di
fusione, devono essere confinate in modo e�cace per trasferire la loro energia nel plasma,
mantenendo così le alte temperature necessarie per le reazioni di fusione. La capacità di
confinare le particelle alfa è essenziale per ottenere una reazione di fusione autosu�ciente, nota
come “ignition” (accensione), in cui l’energia generata dalle reazioni di fusione è su�ciente a
sostenere il plasma senza riscaldamento esterno.

Oltre alle particelle alfa prodotte direttamente dalle reazioni di fusione, gli ioni veloci sono
generati anche da sistemi di riscaldamento esterni, come il Neutral Beam Injection (NBI),
che utilizza l’iniezione di fasci di neutri o l’ Ion Cyclotron Resonance Heating (ICRH), che
utilizza la risonanza ciclotrononica degli ioni. Questi sistemi iniettano ioni ad alta energia
nel plasma per contribuire a raggiungere e sostenere le temperature estremamente elevate
necessarie per le reazioni di fusione. Il comportamento di questi ioni veloci è fondamentale
per l’e�cienza e la stabilità del plasma, in quanto forniscono il necessario riscaldamento e le
correnti di pilotaggio all’interno del plasma. Tuttavia, l’interazione tra gli ioni veloci e le onde
del plasma, come gli Alfvén eigenmode, può portare a instabilità che rappresentano una sfida
significativa per mantenere il confinamento del plasma e ottenere reazioni di fusione continue.

Le onde di Alfvén sono oscillazioni a bassa frequenza in un plasma magnetizzato, dove ioni
e campi magnetici interagiscono, propagandosi lungo le linee del campo magnetico e spinte
dalla tensione del campo magnetico, proprio come le onde su una corda tesa. Gli Alfvén
Eignemodes sono modelli di oscillazione naturali (eignemode) delle onde di Alfvén all’interno di
un sistema di plasma confinato, come un tokamak, che rappresentano stati oscillatori specifici
e stabili del plasma, determinati dalla geometria del sistema e dalla configurazione del campo
magnetico. Gli Alfvén Eignemodes indotti dalla toroidicità (Toroidal Alfvèn Eignemode-
TAE) sono un sottoinsieme di autovalori di Alfvén che nascono specificamente a causa della
geometria toroidale dei tokamak; la curvatura e la diversa intensità del campo magnetico
attorno al toro modificano le onde di Alfvén, creando questi autovalori distinti. I TAE sono
importanti perché possono entrare in risonanza con gli ioni veloci, portando potenzialmente a
instabilità che possono influenzare il confinamento e le prestazioni del plasma. Lo studio di
queste interazioni è fondamentale per prevedere e mitigare i loro e�etti negativi nei dispositivi
di fusione.
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Il codice GYSELA, utilizzato in questo lavoro, è un codice avanzato di simulazione semi-
lagrangiana girocinetica specificamente progettato per modellare la dinamica del plasma
nei tokamak. Utilizza tecniche numeriche sofisticate per simulare il comportamento delle
particelle di plasma e le loro interazioni con i campi elettromagnetici all’interno di geometrie
simili a quelle dei tokamak. Le capacità di GYSELA si estendono allo studio della stabilità,
del confinamento e delle proprietà di trasporto del plasma, cruciali per l’ottimizzazione dei
futuri reattori a fusione. Le sue simulazioni forniscono una visione dettagliata della complessa
fisica dei plasmi ad alta temperatura, contribuendo allo sviluppo di tecnologie energetiche di
fusione più e�cienti e a�dabili. GYSELA o�re quindi un potente strumento di simulazione
per studiare la dinamica non lineare dei TAE e le loro interazioni con gli ioni veloci nei plasmi
toroidali.

Il primo passo è stato quello di caratterizzare gli autovalori di Alfvén in una configurazione
cilindrica per studiare questi fenomeni. Questo modello semplificato ha permesso di compren-
dere nel dettaglio le proprietà fondamentali e il comportamento degli Alfvén Eignemodes senza
l’aggiunta della complessità della geometria toroidale. Analizzando a fondo questi modi in
una configurazione cilindrica, sono state acquisite conoscenze essenziali sulla loro eccitazione
e interazione con gli ioni veloci, costituendo una base per simulazioni più complesse.

Successivamente, sono state e�ettuate analisi in una configurazione toroidale, più realistica,
per esaminare i TAEs. Per studiare l’interazione tra ioni veloci e TAE è stata utilizzata
un’antenna elettrostatica per perturbare il plasma. Questo metodo consente un’eccitazione
controllata dei TAE, permettendo di esaminare come gli ioni veloci influenzano questi modi.
L’uso di un’antenna elettrostatica è fondamentale perché fornisce un mezzo riproducibile
e regolabile per eccitare modi specifici all’interno del plasma, facilitando misure precise ed
esperimenti controllati. Integrando questa tecnica nelle simulazioni di GYSELA, lo studio
fornisce un’analisi preliminare dei meccanismi attraverso i quali gli ioni veloci destabilizzano i
TAE e il conseguente impatto sulla stabilità e sul confinamento del plasma.
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Abstract

Nuclear fusion stands as a promising solution to the world’s growing energy demands, o�ering
a clean and virtually limitless energy source. This thesis focuses on magnetic confinement
fusion in tokamak devices, which use strong magnetic fields to confine hot plasma in a toroidal
shape. The tokamak design is particularly e�ective because it allows for the creation of a stable
plasma environment where fusion reactions can occur. The fusion of deuterium and tritium
(D-T fusion) is the most feasible reaction for current fusion research, producing a significant
amount of energy. In a D-T fusion reaction, the nuclei of deuterium and tritium combine
to form a helium nucleus (alpha particle) and a high-energy neutron. The alpha particles,
which are fast ions, play a crucial role in heating the plasma and maintaining its temperature.
These particles, produced during the fusion reactions, must be e�ectively confined to transfer
their energy back into the plasma, thereby maintaining the high temperatures necessary for
ongoing fusion reactions. The ability to confine alpha particles is essential for achieving a
self-sustaining fusion reaction, known as ignition, where the energy generated from the fusion
reactions is su�cient to sustain the plasma without external heating.

In addition to alpha particles produced directly from the fusion reactions, fast ions are
also generated by external heating systems, such as neutral beam injection (NBI) and ion
cyclotron resonance heating (ICRH). These systems inject high-energy ions into the plasma to
help achieve and sustain the extremely high temperatures required for fusion reactions. The
behaviour of these fast ions is critical for the e�ciency and stability of the plasma, as they
provide the necessary heating and drive currents within the plasma. However, the interaction
between fast ions and plasma waves, such as Alfvén eigenmodes, can lead to instabilities
that pose significant challenges for maintaining plasma confinement and achieving continuous
fusion reactions.

Alfvén waves are low-frequency oscillations in a magnetized plasma, where ions and
magnetic fields interact, propagating along the magnetic field lines and driven by the tension
in the magnetic field, much like waves on a stretched string. Alfvén eigenmodes are natural
oscillation patterns (eigenmodes) of Alfvén waves within a confined plasma system, such as
a tokamak, representing specific, stable oscillatory states of the plasma, determined by the
system’s geometry and magnetic field configuration. Toroidicity-induced Alfvén Eigenmodes
(TAEs) are a subset of Alfvén eigenmodes that arise specifically due to the toroidal geometry
of tokamak devices; the curvature and the varying magnetic field strength around the torus
modify the Alfvén waves, creating these distinct eigenmodes. TAEs are significant because
they can resonate with the fast ions, potentially leading to instabilities that can a�ect the
plasma confinement and performance. Studying these interactions is vital for predicting and
mitigating their adverse e�ects in fusion devices.

The GYSELA code, utilized in this work, is an advanced gyrokinetic semi-Lagrangian
simulation code specifically designed to model toroidal plasma dynamics. It utilizes sophistica-
ted numerical techniques to simulate the behaviour of plasma particles and their interactions
with electromagnetic fields within tokamak-like geometries. GYSELA’s capabilities extend to
studying the stability, confinement, and transport properties of plasma, crucial for optimizing
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fusion reactor performance. Its simulations provide detailed insights into the complex physics
of high-temperature plasmas, contributing to the development of more e�cient and reliable
fusion energy technologies. Thus GYSELA o�ers a powerful simulation tool for investigating
the nonlinear dynamics of TAEs and their interactions with fast ions in toroidal plasmas.

The first step involved characterizing Alfvén eigenmodes in a cylindrical configuration to
study these phenomena. This simplified model allowed for a detailed understanding of the
fundamental properties and behaviour of Alfvén eigenmodes without the added complexity
of toroidal geometry. By thoroughly analyzing these modes in a cylindrical setup, essential
insights were gained into their excitation and interaction with fast ions, forming a foundation
for more complex simulations.

Subsequently, analyses were carried out in a more realistic toroidal configuration to examine
the TAEs. To investigate the interaction between fast ions and TAEs an electrostatic antenna
was used to perturb the plasma. This method allows for a controlled excitation of TAEs,
enabling an examination of how fast ions influence these modes. The use of an electrostatic
antenna is crucial because it provides a reproducible and adjustable means of exciting specific
modes within the plasma, facilitating precise measurements and controlled experiments. By
integrating this technique within the GYSELA simulations, the study provides a preliminary
analysis of the mechanisms through which fast ions destabilize TAEs and the resulting impact
on plasma stability and confinement.
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Chapter 1

Inroduction to Plasma Physics

This chapter presents an overview of nuclear fusion, the reaction involved, the magnetically
confined plasma, the motion of charged particles in a magnetic field and some models to
describe the plasma. It focuses in particular on the gyrokinetic theory, which is the one that
is used in GYSELA, the numerical code for plasma core simulation has been used in this work.
Finally, it briefly introduces the instabilities in a tokamak, with a more detailed investigation
on the Alfvén Waves in fusion plasmas, which are the main focus of this thesis.
This thesis was carried out during the internship at the Institute de la Recherche sure la
Fusion par confinment Magnetiqué, an institute of CEA, the French Alternatives Energies
and Atomic Energy Commission, located in the CEA Cadarache center located in the south
of France.

1.1 Nuclear fusion

One of the greatest challenges facing our society today is the energy transition. To achieve this,
it is crucial to find sustainable, carbon-free sources of energy. With this in mind, magnetically
controlled thermonuclear fusion is an ideal candidate for reaching this goal. This energy
source relies on the nuclear fusion reaction between light atom nuclei to release energy.

A nuclei with atomic mass A has Z protons and N neutrons kept together by a binding
Energy �. The higher the ratio �/A is, the more stable is the nucleus. Figure 1.1 represents
the binding energy of nucleons in atom nuclei and it is possible to observe that the most
stable element, the one with the highest ratio �/A, is Iron with atomic mass A of 56. When
nuclear reactions lead to the production of nuclei that are more stable than the initial ones
they release energy and are considered exothermic. In such reactions, the total mass of the
reactants is higher than that of the products and the energy released during the process is
equivalent to the mass defect associated with the reaction.

It can be observed that for elements with an atomic number lower than the Iron one, it is
energetically convenient to initiate fusion processes, whereas, for those with a higher atomic
number, it is energetically favourable to initiate fission processes.
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Lorenzo Bramucci

Figure 1.1: Binding energy per nucleons, expressed in MeV as a function of atomic mass number
nuclei, from Ref. [1].

Another important parameter to consider is the cross-section of a given reaction X1 + X2 æ
X3 + X4, denoted as ‡X1X2 and usually expressed in barns (1 barn = 10≠28m2). It is defined
as the ratio of the number of reacting nuclei X1 per time unit to the number of impacting
nuclei X1 per time unit and surface unit. It depends solely on the relative velocity of nuclei
X1 and X2. The rate coe�cient È‡(v)vÍ is defined as the average of the cross-section ‡X1X2
over the di�erent velocities of all particles in an ensemble. As it can be seen in figure 1.2, the
Deuterium-Tritium reaction is the most promising to be used in nuclear fusion power plants
due to its higher rate coe�cient È‡vÍ at relatively low energy. Note that the temperature are
expressed in keV. In fact, in nuclear fusion, the term "temperature" commonly refers to the
thermal energies (in K) multiplied by the Boltzmann constant kB = 8.61733326 ◊ 10≠5 eV/K.
In standard unit, they should be expressed in Joule. 1 eV correspond to approximately
11 600K.
The D-T reaction fuse together 2 hydrogen isotopes into a 4

He nucleus (also called – particles)
and a free nuetron:

2
1D + 3

1T =∆ 4
2He (3.5 MeV ) + 1

0n (14.1 MeV ) (1.1)

A total energy of 17.6 MeV is released, split between the – particle and the neutron according
to momentum conservation.

For the fusion reaction to happen, nuclei must be in close proximity, but their positive charges
cause them to repel each other, so the charged particles have to overcome the Coulomb
electrostatic barrier. In a classical world, the energy required is very high, but thanks to
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Chapter 1. Inroduction to Plasma Physics

Figure 1.2: Rate coe�cient of easiest fusion reactions in function of temperature, expressed in
keV. D-T reaction has a higher rate coe�cient at low temperatures than other nuclear
reactions. From [2].

quantum tunnelling the temperatures required are of the orders of 10 keV (≥ 108
K).At

this temperature the matter is in a plasma state, where atoms are ionized and electrons are
detached from their nuclei, creating a quasi-neutral fluid that can conduct electricity and
interact with electromagnetic fields.
The energy balance of the controlled thermonuclear fusion reaction is given by the total power
generated by the fusion reaction PF and the injected power PH . To be a source of energy
this di�erence should be positive. An important parameter that is used for measuring the
performance of the fusion reaction is the amplification factor Q:

Q = PF

PH

(1.2)

When Q = 1 the fusion power equals to the injected power and it is called the break-even.
While for Q = 5 the heating by – particles balances external heating. In addition, Q does not
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encompass the whole question of the energy e�ciency of a fusion reactor. Since all additional
losses due to the reactor components must be taken into account (i.e. the energy required by
the pumps to circulate the coolant, ...), the value of Q necessary for "engineering breakeven"
is in the order of 30 to 40.
The ignition regime corresponds to Q æ Œ, which is when the entire heating of the D-T
fuel is provided by fusion born – particles. A fundamental quantity to achieve the ignition of
a fusion reaction is the Lawson criterion or Triple product:

n · Ti · ·E Ø 3 ◊ 1021 keV s

m3 (1.3)

Where n is the plasma density, Ti is the temperature of the reacting ions and ·E is the
confinement time of the plasma. ·E is defined as the ratio between the overall thermal plasma
energy W over the energy losses PL: ·E = W/PL and is the physical quantity that estimates
the confinement capability of a tokamak. After the plasma heating sources are switched o�,
the energy in the plasma volume decreases exponentially. ·E is the time needed for the energy
to decrease by a factor of e. The longer the confinement time, the better the confinement
in the tokamak. ·E should not be mistaken for the discharge duration, which can be much
longer, lasting up to several minutes.
In stars, fusion occurs naturally due to the force of gravity, which counteracts the plasma’s
tendency to disperse and cool down. However, gravitational confinement is impossible on
Earth and for very hot plasma (Ti ≥ 10 keV ) alternative strategies must be employed. Two
types of plasma confinement are mainly studied:

• Inertial confinement: that involves the use of high-power laser beams to concentrate
extremely dense plasma (n ≥ 1031

m
≠3) for a brief confinement period (·E ≥ 10≠11

s).

• Magnetic confinement: that aims to achieve energy confinement times of around one
second (·E ≥ 1 s) in low-density plasma (n ≥ 1020

m
≠3) using strong magnetic fields.

Despite inertial confinement fusion has achieved promising results in recent years [3], the
concept of magnetic confinement thermonuclear fusion remains the most promising for a clean,
carbon-free, reliable and economically feasible energy source.

This work focuses on magnetically confined plasma, which is the methodology studied at the
IRFM. The following sections of this chapter provide further details on the physical principles
underlying the research carried out during this thesis.

1.1.1 Magnetically confined plasma

As mentioned above, to achieve the ignition conditions, very high plasma temperatures
(T ≥ 10keV ≥ 108

K) must be reached and no material currently available can withstand
these temperatures. Hence, strong magnetic fields are used to confine the plasma and
prevent it from coming into contact with the walls. That is possible because, as said before,
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Chapter 1. Inroduction to Plasma Physics

plasma is a quasi-neutral mixture of charged particles so it is possible, thanks to the Lorentz
force, to let charged particles follow the intense magnetic field lines by avoiding the plasma
touching the wall’s surface. In the lates decades, various magnetic configurations have been
explored, with a focus on those that establish magnetic flux surfaces, e�ectively guiding
magnetic field lines along bounded surfaces. Notable configurations are stellarators and
tokamaks, both highly studied solutions. For example, the tokamak that aims to validate the
feasibility of magnetically confined plasmas as a potential source of energy is the International
Thermonuclear Experimental Reactor (ITER), which is under construction in Cadarache, in
the south of France. This thesis focuses primarily on the study of tokamak plasmas in light
of their importance in fusion research.

In tokamaks, the overall magnetic confinement results from the combination of two components:
the toroidal magnetic field BÏ and the poloidal magnetic field B◊. The former derives from a
current flowing through external coils surrounding the toroidal chamber, while the latter is
induced by the toroidal plasma current IP inside the chamber. The poloidal magnetic field
plays a key role in counteracting the pressure forces exerted by the confined plasma. To
generate the plasma current, the transformer principle is used: the plasma acts as a secondary
circuit while the magnetic flux in the central solenoid is modulated. The superposition of these
two magnetic fields results in helical magnetic field lines. In addition to these components,
current tokamaks, including ITER, incorporate additional coils with the task of adjusting
the shape and position of the plasma. A representation of a tokamak device is shown in
figure 1.3, in which the vertical coils are used to generate an additional vertical magnetic field
component to control the plasma position and shape.

In the nuclear research center of Cadarache, the IRFM, the WEST or Tungsten (chemical
symbol "W") Environment in Steady-state Tokamak, (formerly Tore Supra) is currently in
operation. The original name came from the words torus and superconductor, as Tore Supra
was for a long time the only tokamak of this size (namely major radius of 2.5m and minor
radius of 0.5m) with superconducting toroidal magnets, allowing the creation of a strong
permanent toroidal magnetic field. However, ITER requires an essential component: the
divertor, which receives most of the heat fluxes and particles from the central plasma during
experiments. To test this component, a major upgrade to install tungsten walls and a divertor
was done in Tore supra, leading to a modification to the magnetic configuration from its
circular form to a distorted lens shape to obtain plasmas with characteristics similar to those
of ITER. So the WEST tokamak enables researchers to conduct a relevant scientific program
focusing on preparing experiments for ITER.

1.2 Basic introduction to tokamak plasma description

This section provides the physical fundamentals necessary to describe the behaviour of particles
in tokamak plasma. For more comprehensive details on the following models and equations,
refer to manuals on magnetized plasma physics and tokamak devices, such as [4], [5] and [6].
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Figure 1.3: Schematic view of a tokamak device. The inner torus represents the plasma, where
the plasma current (IP ) generates the toroidal component of the magnetic field (B◊).
Surrounding the vacuum vessel are poloidal coils that generate the poloidal component
of the magnetic field (BÏ). Additional coils produce the vertical component, which
is essential for controlling the plasma’s position. The resulting magnetic field lines,
shown in their helical form, illustrate this complex magnetic configuration. Source:
EUROfusion website

1.2.1 Magnetic equilibrium in tokamaks

Various models can be used to represent plasma dynamics, each with a di�erent level of
description accuracy. As mentioned above, strong magnetic fields are used inside the tokakams
to confine the plasma. For this reason, it is important to consider the interaction between
charged particles that compose the plasma and electromagnetic fields. As presented earlier,
these fields are a combination of external fields generated by the coils and those produced by
the plasma itself.

This section introduces the concept of magnetic field equilibrium in a tokamak device and the
coordinates used to define it. In a tokamak, the magnetic field is a continuous vector field,
allowing the determination of tangent vectors known as magnetic field lines. For the charged
particles in the plasma to be confined by these field lines, the lines must lie on closed surfaces,
referred to as magnetic or flux surfaces. Due to the geometry of the tokamak, these magnetic
surfaces are topologically toroidal, making toroidal coordinates x = (fl, ◊, Ï) convenient for
describing this geometry. Here, fl is the radial coordinates, while ◊ and Ï represent the
poloidal and toroidal (axisymmetric) angles, respectively. Two radii characterise a torus: the
major radius R0, the radius between the center of the axis of symmetry and the center of the
poloidal section, and the minor radius a, the radius of the inner circle (the poloidal section).
Two fundamental parameters to describe the tokamak are the ratio between these two radii

6



Chapter 1. Inroduction to Plasma Physics

called the aspect ratio:
A = R0/a (1.4)

and its inverse named the inverse aspect ratio

‘ = 1/A = a/R0 (1.5)

As a first approximation, a tokamak can be imagined as a straight cylinder (implying an infinite
aspect ratio, A æ Œ) whose ends are joined together to form a torus, thereby achieving a
finite aspect ratio. The aspect ratio is a critical parameter in tokamak design. Early tokamaks
were characterized by large aspect ratios, meaning the plasma cross-section was relatively
narrow compared to the overall size of the device. However, modern tokamak designs, such as
the ITER, are moving towards configurations with lower aspect ratios. ITER, for instance, will
have an aspect ratio of approximately 3, which helps to optimize the plasma confinement and
stability while making the device more compact and e�cient. Additionally, new configurations
such as spherical tokamaks, which have an aspect ratio of less than 2, are being studied.
These devices, which resemble a cored apple more than a traditional doughnut, o�er potential
advantages in terms of higher plasma pressure and better confinement properties, which could
lead to more e�cient and cost-e�ective fusion reactors.

Figure 1.4 illustrates a schematic representation of a circular cross-section toroidal geometry.

Figure 1.4: Schematic view of the coordinate system for a tokamak device.

In a constant magnetic field with straight field lines, charged particles are confined in the
plane perpendicular to the magnetic field (transverse plane) but are free to move along the
direction of the magnetic field (parallel direction). To achieve confinement in the parallel
dimension, the field lines can be closed on themselves, forming circular loops. However, any
inhomogeneity in the magnetic field, such as changes in its direction, results in a velocity
drift perpendicular to both the magnetic field and its curvature or gradient. For horizontal
circular field lines, this drift occurs vertically. To counteract the vertical drift caused by the
circular field lines, a solution is to introduce a third periodic direction to the particle motion,
confining their trajectory within a finite volume. This can be accomplished by generating
a poloidal magnetic field, B◊, which is aligned with the poloidal angle ◊. In the presence of
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poloidal and toroidal components of the magnetic field, the magnetic field lines, which are
always tangent to the magnetic field B, form helical paths winding around toroidal surfaces.
These surfaces are known as magnetic field surfaces. The helicity of the magnetic field lines
at each flux surface can be quantified by the safety factor q, which is defined as:

q(fltor) = Beq · ÒÏ

Beq · Ò◊
(1.6)

where Beq is the equilibrium magnetic field and fltor is the normalized square root of the
toroidal magnetic flux fltor =

Ò
�tor/B0 with �tor is the toroidal magnetic flux. Essentially,

the q parameter quantifies the ratio of toroidal to poloidal revolutions made by a magnetic
field line, varying with each flux surface. If q is a rational number, the magnetic field line
closes upon itself. However, if q is irrational, the magnetic field line spans the entire flux
surface. Hence, it is possible to calculate the value of q for each flux surface, constructing the
q-profile. Another relevant parameter related to the radial derivative of the safety factor is
the magnetic shear:

ŝ(fltor) = fltor

q

dq

dfltor

(1.7)

All the relationships provided above remain valid regardless of the shape of the magnetic flux
surfaces. However, for the sake of simplicity, Figure 1.4 illustrates a toroidal configuration of
the magnetic field with circular and concentric flux surfaces.
This configuration with a circular poloidal section is the simplest, however di�erent configura-
tions in which magnetic topology of the flux surfaces exhibits substantial di�erences will be
used in ITER, such as an axy-symmetrical X-point. Double null configurations are also being
investigated. We will not analyse these configurations as only circular and concentric flux
surfaces were utilised in this work.

1.2.2 Single particle motion

As discussed above, plasma is composed of charged particles that interact with the electro-
magnetic field present inside the tokamak. To describe the behavior of the plasma with the
electromagnetic field we begin by discussing the interactions that a single particle has with the
electromagnetic field. The simplest case that can be analyzed is that of a particle subjected
only to a uniform magnetic field B, thus with electric field E = 0. In this case, the particle
will rotate around the magnetic field lines as shown in figure 1.5).
The Larmor radius rL (Eq. 1.8), or gyroradius, is the radius of the rotation of the charged
particle around the magnetic field line. It is influenced by the values of the charge of the
particle q, the mass m, the magnitude of B and the component of the particle’s velocity that
is perpendicular to the magnetic field lines v‹.

rL = v‹ m

|q|B (1.8)
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From relation 1.8 it can be seen that the larger is B the closer the particle is to the magnetic
field line. In the case where a Cartesian coordinate system S = (x, y, z) is considered
and the magnetic field lines are exclusively aligned with the z-axis, the transverse plane’s
perpendicular velocity v‹ at time t for the particle located at position (x, y) is:

v‹ =
Ò

v2
x

+ v2
y

(1.9)

Each particle revolves around a central point known as the guiding center. The angle of
rotation of the particle around this center is typically identified as � or gyroangle. The
frequency at which the particle rotates around its guiding center is the Larmor frequency or
cyclotron frequency:

ÊC0 = |q|B
m

= v‹

rL

(1.10)

The direction in which the particle rotates around the guiding center is determined by the
signs of its charge q (i.e. clockwise for negatively charged particles and anticlockwise for
positively charged particles as it can be seen in fig. 1.5). Important not to confuse this q,
which refers to the particle charge, with the safety factor q (Eq. 1.6) described above.

Figure 1.5: Directions of rotation, in the transverse plane, of positively and negatively charged
particles when magnetic field B are entering the page.

The magnetic Lorentz force acts perpendicular to the magnetic field, so it does not impact
the motion parallel to the field in the first approximation. In a uniform magnetic field and
without any other forces present, a charged particle will rotate around the magnetic field lines
based on the perpendicular component of its velocity. At the same time, it will move along
the magnetic field lines according to its initial parallel velocity, resulting in a helical path (fig.
1.6).

If an electric field E is also taken into account, the particle will experience a drift (called
E ◊ B drift). If we have opposite charges they go in the same directions, but rotate in
opposite directions (fig. 1.7a).
If the magnetic field B is inhomogeneous and the gradient of B is perpendicular to B
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Figure 1.6: Helical motion of a positively charged particle subject to a magnetic field B (from [7]).

(ÒB ‹ B) there is the so-called grad-B drift. The gradient in |B| causes the Larmor radius
to be larger at the bottom of the orbit than at the top. This leads to a drift, in opposite
direction for ions and electrons, perpendicular to B and ÒB (fig 1.7b).
Due to the shape of the torus, the magnetic field is curvature, thus leading to the so-called
curvature drift. The particles that moved along the magnetic field line felt a centrifugal
force. That leads to the particles drifting out of the torus, no matter how one juggles the
temperatures and magnetic field (fig. 1.7c).

Figure 1.7: Representatrion of the: E ◊ B drift (a), ÒB drift (b) and curvature drift (c). From [8]

1.2.3 Equation of motion of charged particles

Since plasma is composed of charged particles, it can interact with electromagnetic fields due
to its nature. The most direct approach to describe plasma utilizes the equations of motion
for each particle:

m
dv
dt

= e(E + v ◊ B) (1.11)

where m is the mass of the particle, e is the charge of the electron and v the velocity of the
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particles. To take into account the collective e�ects of the particles on the electromagnetic
fields, these equations are to be coupled with Maxwell equations in a medium:

Ò · D = fl

Ò · B = 0

Ò ◊ E = ≠ˆB
ˆt

Ò ◊ H = j + ˆD
ˆt

D = ‘E + P
B = µB + M

(1.12)

with D is the displacement electric field, B is the magnetic induction, fl the charge density,
E the electric field, H the magnetic field, j is the current density, ‘ the pemittivity, µ the
permeability, P the polarization field and M the magnetization field. For simplicity, the
magnetic field H will be intentionally confused with the magnetic induction B throughout
the remainder of the thesis.
Solving these equations enables to determine the precise position r(t) and velocity v(t) of
each particle in the system at any given time t. Although the equations involved are relatively
straightforward, particularly when considering simplified cases, the number of vectorial
equations and particles must be equal. Since the density of the plasma can be as high as
1020

particles/m
3, this poses a great problem such as computational complexity, di�culties

in analytical resolution and numerical stability problems, and therefore di�erent approaches
are used that tend to reduce the number of independent variables of the system.

1.2.4 Kinetic description

One approach to study plasmas is through statistical mechanics: it implies the derivation of
kinetic equations from the equations of motion of individual particles, typically in Hamiltonian
form. The distribution function, denoted as F (x, v, t), is a commonly used solution to
describe the plasma, representing the expected number of particles with position [r + dr] and
velocity [v + dv] at a given time. While kinetic equations can provide more interpretable
results than other methods, they can still be challenging for computers to handle due to
the seven variables involved in F (x, v, t), 3 for the position x, 3 for the velocity v plus
the time. However, distribution functions can be used to obtain useful quantities such as
plasma temperature and density. In the absence of particle interactions, such as collisions,
the Liouville theorem states that the distribution function F remains constant along the
paths traced by the total phase space. In other words, as a particle moves along its path
in phase space, the value of F does not change. As a result, the density of the total phase
space remains conserved during the time interval �t. This means that if a fixed volume in
phase space is considered, the total number of particles within this volume remains constant
over time if there are no collisions. Therefore, in the absence of collisions, the probability
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distribution function for the particle trajectory across the entirety of the phase space, denoted
as P = (x, v, t), remains constant. This means that the probability of finding a particle at
a given position x with a given velocity v at time t does not change as the particle moves.
This relation is expressed through the Vlasov or kinetic equation:

dF

dP
= ˆF

ˆt
+ v · ÒF + eZ

m
(E + v ◊ B) · ÒvF = 0 (1.13)

The time derivative ˆF/ˆt represents the time rate of change of the distribution function F

at a fixed point in phase space. It accounts for how the distribution function evolves over
time. The term v · ÒF is the advection in real space and it represents the spatial transport of
particles, that is the movement of particles through physical space due to their velocities. Here,
ÒF is the spatial gradient of the distribution function. This term describes how particles
move through space. The term eZ

m
(E + v ◊ B) · ÒvF is the advection in velocity space

and it describes the influence of external electromagnetic fields on the particle distribution
function. v ◊ B gives the magnetic force on the particle and E + v ◊ B is the Lorentz force,
which is the total electromagnetic force acting on a charged particle. ÒvF is the gradient of
the distribution function with respect to velocity. This term describes how the distribution
function changes in velocity space due to the electromagnetic force. In equation 1.13, only
the plasma’s system collective e�ects, produced by the particle ensemble, are considered.
In the plasma inside a tokamak, the collision frequency is negligible compared to the collective
e�ects, however, collisions play an important role in transport phenomena, changing the
particle phase space and leading to possible instabilities. The Vlasov equation to which a
collisional term is added is called the Fokker -Plank equation:

ˆF

ˆt
+ v · ÒF + eZ

m
(E + v ◊ B) · ÒvF =

A
ˆF

ˆt

B

c

(1.14)

where the term (ˆF/ˆt)c is added to take into account collisions, defining a collective be-
haviour, since it is considered the whole distribution function F . A statistically self-consistent
representation of the plasma system, encompassing both particle and field dynamics, is
obtained by combining the Maxwell equations 1.12 and the Fokker-Plank equation 1.14.

1.2.5 Overview of wave-particle interaction

The interaction between waves and particles can excite kinetic instabilities in a magnetized
plasma. In addition, some external heating systems use wave-particle interactions to delib-
erately deposit energy on the ions (Ion Cyclotron Resonance Heating, or ICRH), electrons
(Electron Cyclotron Resonance Heating, or ECRH and Lower Hybrid Current Drive, or
LHCD). This is a fundamental aspect that will be described later in this thesis.
A kinetic approach is necessary to describe this interaction since the movement of charged
particles in magnetized plasma results in the generation of waves, which can then interact with
the particles under specific resonant conditions in the velocity phase space. The exact solution
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of the Vlasov equation (1.13) helps describing the wave-particle interaction phenomena. To
simplify the solution, it is possible to use an approach called ”f -splitting, which consists of
separating the static background of the distribuction function F0 from its perturbed part
”f , thus obtaining the relation F = F0 + f (where ÈfÍ = 0 and f π F0). Neglecting the
magnetic field (B = 0), writing the electric field E = ≠ˆ„/ˆx (were „ is the electrostatic
potential) and using the ”f -splitting, the Vlasov equation is linearized:

ˆf

ˆt
v ·

A
ˆF0
ˆx + ˆf

ˆx

B

+ eZ

m
· ˆ„

ˆx · ˆF0
ˆv = 0 (1.15)

Once linearizing the Vlasov equation, it becomes feasible to find the eigenvectors associated
with the perturbed distribution function and the electrostatic potential „. These eigenvectors
manifest as plane waves characterized by the expression Âe

i(k·x≠Êt), where k denotes the
wavevector and Ê represents the frequency. By replacing the eigenvector in 1.15 it is possible
to obtain the exact solution that describes the fluctuation of the particle distribution function:

f̂ = ≠
eZ

m
„̂k · ˆF0

ˆv + v · ˆF0
ˆx

Ê ≠ k · v (1.16)

By coupling this relationship with the Poisson equation, we obtain a relationship through
which the interaction between particle dynamics and electromagnetic field fluctuations is
described:

Ò2
„̂ = ≠eZ

⁄
f̂ dv (+ non-resonant terms) (1.17)

That relation is written only for one species in the system, which is consistent with the
assumption of non-overlapping dynamics between di�erent species, such as electrons and ions.
The essence of wave-particle interaction is encapsulated in the denominator of relation 1.16:
in the terms Ê ≠ k · v, which establish a connection between the wave parameters Ê and k
and the particle dynamics (expressed by particle velocity v). It is crucial to emphasize that
for e�ective wave-particle interaction, the condition Ê ≥ k · v needs to be satisfied, rather
than an exact equality of Ê = k · v. This is because when Ê = k · v precisely, the wave
moves at the same velocity as the particles, so it cannot give or receive energy to the particles
themselves.
In the numerator of relationship 1.16, are present two key parameters that determined the
wave-particle resonant condition: the gradient in velocity phase space ˆF0/ˆv and the spatial
gradient ˆF0/ˆx, these gradients dictate the direction of net energy transfer between waves
and particles. Taking ˆxF0 as an example, it reflects the radial temperature gradient of the
particle distribution, typically negative from the core to the plasma edge. In a localized
plasma region near the flux surface of interaction, the higher-temperature particles outnumber
their lower-temperature counterparts due to the negative slope of the distribution (ˆxF0 < 0 ).
Consequently, there is a positive net energy transfer from particles to waves, causing possible
instability. Conversely, a positive slope of the radial distribution (ˆxF0 > 0) results in energy
transfer from waves to particles, thus the waves are damped. Shifting the focus to ˆvF0, the
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scenario reverses: a positive slope in velocity space (ˆvF0 > 0 )leads to more particles giving
energy to the wave than receiving it, driving instability through the positive gradient of the
equilibrium distribution in the velocity space.

1.2.6 Gyrokinetic theory

As previously mentioned, the statistical kinetic depiction of particle trajectories in a magnetized
plasma demands significant computational resources. Despite these challenges, it is imperative
to consider resonant mechanisms occurring in the velocity space to capture essential physics
when examining the tokamak plasma core. A well-established theoretical framework to reduce
the 6-dimensional system of equations inherent in the kinetic approach to more manageable 5
dimensions is the gyrokinetic approach. In this thesis, we will not go through the detailed
mathematical steps leading to this reduction(for further details see [9] and [10]). Instead, our
emphasis will be on highlighting the advantages gained by employing this approach.
The gyrokinetic approximation ensures that any characteristic frequency retained is indeed
much lower than the cyclotron frequency (Eq. 1.10) and the spatial scales associated with the
described phenomena are much larger than the Larmor radius (Eq. 1.8). In this framework,
transitioning from a 6-dimensional representation to a 5-dimensional one involves a shift
from particle position to the guiding-center set of coordinates (figure 1.8). The coordinates
of the guiding centre (xg))(the position of the centre of the cyclotronic trajectory, visible
in figure 1.5) are used to describe the motion of the particles. The equations of motion for
the guiding centre are derived by applying the cyclotronic average (a time average of the
rapid cyclotronic motion) to the equations governing the motion. As a result, the distribution
function is no longer dependent on the full particle phase space (x, v, t), but is now denoted
as F̄ (X, vÎ, µ, t), where F̄ indicates the gyro averaged distribution function, X is the guiding
center position in space, vÎ is the parallel velocity along the magnetic field line and µ is the
magnetic moment of the particle:

µ = mv
2
‹

2B
(1.18)

where v‹ is the velocity of the particle in its cyclotron motion. The gyro-center reduction
hinges on the conservation of the magnetic moment µ of the cyclotron loop, which is linked
to its radius. The preservation of the magnetic moment enables a further simplification of the
model. This is because the kinetic dynamics for di�erent values of µ become independent,
contributing to a more streamlined and manageable representation. In terms of simulation
cost, this last point is convenient because µ plays the role of a parameter. This means that
the problem to treat is not a true 5D problem but rather a 4D problem parametrized by
µ. Note that µ loses its invariance property in the presence of collisions. Such a numerical
drawback can be overcome by considering reduced collision operators acting in the vÎ space
only, while still recovering the results of the neoclassical theory [11].
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Figure 1.8: Example of the gyro-center transform of a particle trajectory used in the gyrokinetic
description (from [12]).

1.3 Instabilities driven by fast ions in tokamaks

A significant factor to be taken into account to successfully confine the plasma and thus use
nuclear fusion as an alternative energy source is the establishment of instabilities, which can
cause what is known as turbulent transport in a non-linear regime. This turbulent transport
surpasses neoclassical (collisional) transport [13] by more than an order of magnitude, signifi-
cantly limiting the confinement performance of current fusion devices. However, instabilities
are nearly inevitable in a magnetized fusion plasma, given its out-of-equilibrium nature. Even
a slight perturbation in the electromagnetic field can result in fluctuations in the particle
distribution function, as demonstrated in relation 1.16. Specifically, when steep gradients exist
in both spatial x and velocity v phase spaces of the particle distribution function, the initial
perturbation can grow unstable, the gradients ˆvF0 and ˆxF0 act as reservoirs of free energy
for these growing instabilities [14]. Although instabilities in a magnetized plasma can manifest
in diverse forms, the focus in the remainder of this thesis will primarily be on high-frequency
fast-ion-driven instabilities. These macroscopic instabilities have a broad-reaching impact,
a�ecting a substantial portion of the entire plasma volume.

While the plasma in thermodynamic equilibrium is accurately characterized by the isotropic
Maxwellian distribution function, decreasing at higher particle energies, the impact of fast
ions (or energetic ions) on plasma stability is anticipated to be marginal. However, in
both current and future fusion devices, the presence of fast ions, possessing much higher
energy than the bulk particles, is unavoidable. Notably, alpha particles with an energy
of 3.5 MeV are inherent products of the total fusion reaction and play a crucial role in
sustaining the overall process by transferring their energy to the thermal part of the plasma
through Coulomb collisional interactions. Additionally, externally generated fast ions serve the
purpose of heating the bulk particles. The main external fast-ion sources are the Ion Cyclotron
Resonance Heating (ICRH) and the Neutral Beam Injection (NBI). Both fusion-born alpha
particles and externally generated fast ions alter the tail of the ion distribution function. In
the case where the distribution function is non-monotonic, the primary driver of instabilities
is the bump generated in the velocity phase space. A schematic representation of such a
bump is illustrated in Figure 1.9.
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Figure 1.9: Illustration of a non-monotonic ion distribution function in velocity space, with indi-
cations of the sign of the gradient in this space. This emphasises the mechanism of
excitation of instabilities in plasmas through wave-particle resonance (from [14]).

As depicted in Relation 1.16 and discussed in section 1.2.5, the contribution to the desta-
bilization of fast-ion-driven instabilities can arise from spatial gradients of the equilibrium
distribution, specifically radial gradients, as well as gradients in the velocity phase space.
Particularly, the wave-particle interaction is significantly influenced by the terms ˆxF0 and
ˆvF0, which dictate the direction of energy transfer: when ˆxF0 < 0 and ˆvF0 > 0, the
energy transfer is from the particle to the wave and it can be associated to excitation mech-
anism. Conversely, if ˆxF0 > 0 and ˆvF0 < 0, the energy transfer occurs from the wave to
the particle, leading to damping phenomena. Hence, the presence of steep, monotonically
decreasing radial gradients and the generation of a bump in the ion distribution function
can initiate fast-ion-driven instabilities independently. These instabilities, in turn, can have
adverse e�ects on plasma stability. Fast ions, while transferring their energy to the wave,
are consequently transported from the hotter central region of the plasma to the cooler edge,
where lower temperatures prevail. Only one type of instability is presented in this article; for
a comprehensive overview of all these instabilities refer to [15], [16], [17] and [18]

1.3.1 Shear Alfvén Waves

The instability examined is the Shear Alfvén Waves (SAW). Alfvén waves are transverse
low-frequency electromagnetic waves, in particular, they are waves propagating in the parallel
direction with respect to the magnetic field lines due to perpendicular perturbation of the
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equilibrium magnetic field B [19] that propagates with Alfvén velocity vA = B0/(Ôµ0fld),
with fld the plasma mass density. This velocity falls within the range of motion dynamics for
fast ions in tokamak plasmas. Consequently, interactions between the waves and particles
can take place. The subsequent section provides a fundamental overview of the physical
framework surrounding SAW excitation, commencing with an introduction to Alfvén waves.

Alfvén waves always exist in a conducting fluid, such as plasma, immersed in an external
magnetic field, regardless of the system’s geometry. When considering tokamak plasmas, the
bending of magnetic field lines and the introduction of magnetic shear (Eq. 1.7) become
relevant factors, as viewed in section 1.2.1. Considering this, the velocity of Alfvén waves
varies radially within the plasma region. Due to this radial dependency, the Alfvén waves in
tokamaks are specifically referred to as Shear Alfvén Waves.
When the wave frequency Ê is small compared to the ion cyclotron frequency ÊC0 (Eq. 1.10)
and when kinetic e�ects are unimportant [17], the dispersion relation in a uniform field for
the Shear Alfvén waves, derived under the incompressible ideal MHD limit (i.e., for EÎ = 0 )
and in a cylindrical configuration (namely with great value of aspect ratio A (Eq. 1.4) or
inverse aspect ratio ‘ π 1 (Eq. 1.5)), is expressed as:

Ê
2
SAW

= k
2
Î(r) · vA(r)2 (1.19)

where kÎ = (m ≠ nq)/(qR0) is the parallel wave vector of the magnetic field and q is the
safety factor (Eq. 1.6) that usually is a function of radius. This implies that the dispersion
relation 1.19 is a function of radius in a sheared magnetic field [17]. Collectively, these
solutions constitute the Alfvén continuum for various values of kÎ. An illustration of the
Alfvén continua is presented in Figure 1.10, considering a constant toroidal number n and
successive poloidal mode numbers m.

However, in a realistic tokamak, going from a cylindrical to a toroidal configuration, the
value of the inverse aspect ratio (Eq. 1.5) is not close to 0 and so the aspect ratio (Eq.
1.4) is not great anymore (i.e. in ITER the aspect ratio A = 3). This leads to a coupling
between neighbouring poloidal harmonics with mode numbers m and m + 1. Consequently,
the dispersion relation for the two coupled branches can be expressed as [20]:

Ê
2
T AE

=
k

2
Î,m

v
2
A

+ k
2
Î,m+1v

2
A

±
Ò

(k2
Î,m
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2
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2
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2
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)2 + 4‘2r2k2
Î,m

v
2
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2
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2
A

2(1 ≠ ‘2r2)2 (1.20)

where the two branches can be referred as Ê
+
T AE

and Ê
≠
T AE

. As illustrated in figure 1.11 this
coupling leads to a gap in the continuum spectrum in the overlapping point, where the two
branches open a gap. As a result, Alfvén waves remain undamped by phase mixing e�ects
within this gap, facilitating their unstable growth. The undamped eigenfunctions residing in
this gap, brought about by the toroidicity of the plasma system, are termed Toroidal Alfvén
Eigenmodes (TAEs).
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Figure 1.10: Shear Alfvén Waves (SAW) continuum in cylindrical configuration produced by plotting
relation 1.19 as a function of normalised radial direction r/a for n = 2 and m =
[≠13, ≠10].

Figure 1.11: Shear Alfvén waves spectra (solid curves) in toroidal configuration produced by plotting
relation 1.20 as a function of normalised radial direction r/a for n = 2 and m = ≠11
and m+1 = ≠10. The red and blue dashed curves represent the continua in cylindrical
geometry
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Frequency gaps are important because radially extended and the mode are not subject
to continuum damping. So undamped eigenfunctions can exist in these gaps [17]. This
toroidicity-induced gap is centred at:

Ê = vA

4fiqR
(1.21)

that varies with the radius, since va/q varies with the radius, moving to lower frequencies
with increasing radius. The width of the gap depends on the variations in the field strength
since the gap is proportional to �B = B0 ≠ B(r). That means that the width of the gap
increases with radius because �B increases as r/R increases [17].

There are additional types of instability related to Alfvén waves in tokamaks:

• Ellipticity-induced Alfvén Eigenmodes (EAEs): These instabilities occur due to
the ellipticity of the plasma, meaning the deviation from cylindrical symmetry of the
plasma within the tokamak.

• Beta-induced Alfvén Eigenmodes (BAEs): caused by the e�ect of plasma pressure
(beta) on Alfvén waves. Beta represents the ratio of plasma pressure to magnetic
pressure.

• Alfvén Cascades (ACs): These instabilities are characterized by a cascading spectral
structure and are observed during the current ramp-up phase in tokamaks.

• Kinetic Alfvén Waves (KAWs): These waves occur when kinetic e�ects, such as the
non-thermal distribution of particles, become significant.

• Global Alfvén Eigenmodes (GAEs): GAEs are global instabilities that extend over
a large part of the plasma and are influenced by the overall geometry of the tokamak.

• Compressional Alfvén Eigenmodes (CAEs): These instabilities involve compres-
sions of the magnetic field and field lines, in addition to the normal transverse oscillations
of Alfvén waves.

All these types of Alfvén instabilities can significantly a�ect the confinement and stability of
the plasma in tokamaks, making their study crucial for the advancement of controlled nuclear
fusion. However, we will not go into these in detail as this work focuses solely on the study of
TAEs. For a more in-depth analysis of the phenomenology of Alfvén eigenmodes refer to [21]
and [22].

1.3.2 Alfvén eigenmode and fast ions

In the previous paragraphs, it has been observed that Alfvén Eigenmodes (AEs), can persist
undamped within an open gap in the Alfvén continuum. These modes can interact with
the motion of fast ions, resulting in the excitation of instabilities. This happens when
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the fast ion contribution exceeds a specific threshold, usually when the fast ion pressure
matches the thermal pressure, and the phase mixing e�ects fail to damp the propagating
wave su�ciently. As a result, the wave can become unstable and absorb energy from the fast
particles. The frequencies of the AEs are determined by the gaps in the continuum, which
in turn are influenced by the characteristics of the plasma background. Consequently, the
various AEs can only span a limited range of frequencies, wherein resonant conditions between
the undamped eigenmodes and the characteristics of fast-ion motion prevail.

Figure 1.12: Fourier spectrogram of an in-vessel magnetic pickup coil (b) and from probes measuring
the fast-ion losses (a) taken in the tokamak ASDEX upgrade. (from [23]). It is possible
to see the correlation between the instabilities due to the TAE and the loss of fast ion.

The correlation between the continuum and fast ion losses is an experimentally observed
phenomenon [23]. Figure 1.12b and 1.12a show respectively the Fourier spectrogram for a
magnetic fluctuation signal measured by an in-vessel magnetic pick-up coil and for a soft
x-ray (SXR) signal that measure the loss of fast ion. Several coherent MHD fluctuations are
visible around 110 kHz up to 170 kHz. They correspond to TAEs with di�erent toroidal mode
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numbers n’s (n = 3, 4, 5). As can be seen, there is a clear correlation between the gaps in the
continuum and the loss of fast ions. This loss of fast ion leads to a loss of performance, as
shown in section 1.2.5.

1.4 Thesis outline

This chapter introduced the basics of controlled thermonuclear fusion, the basic principles of
magnetic confinement of plasmas in tokamaks, and various models to describe its behaviour.
Finally, a brief introduction to instabilities in tokamaks has been made, focusing on the
instabilities driven by fast ions and in particular the Alfvén Eigenmodes, as they are the main
focus of this thesis.
Chapter 2 will provide a presentation and brief introduction to the numerical code (GYSELA)
I used during this work, in particular the focus will be on the underlying gyrokinetic model
and how the Poisson equation is solved, a useful step in understanding the implementations
in the code that I made later on. Chapter 3 will present the results of numerical simulations
we performed to understand the Alfvén eigenmode phenomenon within the GYSELA code.
This thesis aims to understand how the destabilisation mechanism of TAEs works within
GYSELA, so Chapter 4 will discuss and expose the modifications I made within the code to
pursue this goal. Finally, the results of these implementations will be presented.
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Chapter 2

GYSELA code

As explained in Chapter 1.2, plasmas within the tokamak core exhibit low collisionality, so
fluid models show limitations in describing them appropriately, preferring kinetic descriptions.
The kinetic formalism is necessary to take the wave-particle interaction into account. In
this approximation, the evolution of the 6-dimensional distribution function is solved for
each species via the Vlasov or Fokker-Plank equation (eq. 1.14) by coupling it to the self-
consistent equations for electromagnetic fields (the well-known Maxwell equations 1.12). Since
turbulent fluctuations develop at much lower frequencies compared to the high-frequency
cyclotron motion, it is possible to reduce the phase space by eliminating gyroscopic motion
and other high-frequency dynamics (such as ideal MHD modes, electrostatic high-frequency
waves and fast microscopic e�ect), thus moving from a 6D to a 5D problem. This model,
called gyrokinetic, allows the distribution function to evolve into a 5-dimensional phase space,
generated by four slow variables and an adiabatic invariant (µ, eq. 1.18) Given the complexity
of this phenomenon, gyrokinetic codes developed for this purpose rely heavily on massively
parallel supercomputers and state-of-the-art high-performance computing (HPC) [24].

For the study of TAE, it has been used the Gyrokinetic code GYSELA, developed at IRFM
with the aim to analyse in detail what happens inside the plasma core. In this chapter, a
brief description of GYSELA will be given. This part is mainly based on [24] and [25].

2.1 GYSELA characteristics

GYSELA is a semi-Lagrangian non-linear global flux-driven full-f electrostatic gyro-kinetic
code for tokamak turbulence simulations (GYSELA stands for GYrokinetik SEmi-LAgrangian
code).

• Backward semi-Lagrangian:
the semi-Lagrangian method combines elements of both the Lagrangian and Eulerian
approaches to provide an accurate description of phase space, particularly in regions of
low density, while also enhancing numerical stability. This method capitalizes on the
precision o�ered by solving convection (or advection) hyperbolic Partial Di�erential
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Equations (PDEs) using their characteristics, along which the distribution function
remains constant. Key features of the semi-Lagrangian method include:

– conservation of a fixed phase-space mesh grid over time (Eulerian method),
– integration of the Vlasov equation along trajectories (Lagrangian method), ex-

ploiting the invariance of the distribution function along these trajectories. When
considering each arrival phase space position

1
X, vÎ, µ

2
, the scheme calculates the

particle’s trajectory in reverse, determining its position at an earlier time. The
distribution function at the arrival time is then derived by interpolating the earlier
distribution at the particle’s initial position.

This allows to take advantage of both methods, to achieve limited numerical dissipation
with limited numerical noise.

• Non-linear:
the trajectories of the particles encompass the entire E ◊ B drift without any separation
between equilibrium flow and perturbations.

• Global:
the code simulates the entire plasma core, from the central region to the boundary.

• Flux-driven:
to better mimic the experimental setup, where all the quantities evolve on equal footing,
the dynamics are driven by a heat source near the core, allowing them to be transported,
and any excess is removed at the edge. Consequently, the properties adapt to the
transport and they are not fixed, evolving self-consistetnly.

• Full-f :
the code simulates the complete distribution function.

• Electromagnetic:
the code calculates both the evolution of the electrostatic potential � and electromagnetic
potential A, in particular, the magnetic fluctuations are carried by the parallel component
of the magnetic vector potential AÎ = b · ”A, where b is the vector along the magnetic
field line at the guiding-center position.

Given the accurate and complete description of the phenomena occurring within the plasma
core, the simulations performed with GYSELA cost 2 million CPU hours for approximately 1
millisecond in real-time [25]. The code is developed in Fortran 90, with some input/output
routine written in C (47k lines of Fortran 90 and 2.3 lines of C code) [24].

2.2 Brief overview of full-f gyrokinetic Vlasov equation
in GYSELA

In those paragraphs, an overview of the equations that are used in GYSELA is presented. It
must be taken into account that the electromagnetic part of the code was developed quite
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recently thanks to Gillot’s work [25] and is still being studied by Bigue’s work [26] in his
ongoing PhD thesis.
In GYSELA the magnetic topology is fixed and consists of concentrical toroidal magnetic
surfaces with circular poloidal cross-sections. the current is decoupled from the field and
the magnetic field is assumed to satisfy the Ampère equation, but not the force balance
equation. Consider the gyro-center coordinate system (xG, vGÎ, µs) where xG represent the 3D
space coordinates, (i.e. the set of coordinates (x1

, x
2
, x

3) is equal to (r, ◊, Ï)), vGÎ the velocity
parallel to the magnetic field line and µs the magnetic moment µs = msv

2
G‹/(2B), here ms the

mass of the species s taken into account. These are the same variables described in paragraph
1.2.6 with a notation changed to be consistent with the one used in GYSELA equation of [24].
Denote with Fs the particle distribution function and with F̄s the one associated with the
guiding-center. GYSELA models for each species s the time evolution of the guiding-center
distribution function F̄s, without separating the equilibrium and perturbation and this is the
full-f treatment. GYSELA solves a set of gyrokinetic equations:

i) one collisional gyrokinetic equation that describes the non-linear time evolution of F̄s

for each ion species in the 4D phase space parametrized by the adiabatic invariant µ:

B
ú
Îs

ˆF̄s

ˆt
+ Ò ·

A

B
ú
Îs

dxG

dt
F̄s

B

+ ˆ

ˆvGÎ

A

B
ú
Îs

dvGÎ

dt
F̄s

B

= Rhs

1
F̄s

2
(2.1)

that equation is known as the Boltzmann equation, where B
ú
Îs

= Bú
Îs

· b corresponds to
the volume element in guiding center velocity, with Bú

Îs
© B + ms

qs
vgÎÒ ◊ b and Rhs is

the right-hand side:

Rhs

1
F̄s

2
= B

ú
Îs

1
Dr

1
F̄s

2
+ Kr

1
F̄s

2
+ Cr

1
F̄s

2
+ S

2
(2.2)

where Dr is the di�usion term that represents the process by which particles spread
out in space or velocity space due to random motion, often resulting from collisions or
other interactions. Kr is the Krook operator that is a simplified model for collisions that
approximates the e�ect of collisions by driving the distribution function F towards a
Maxwellian equilibrium distribution over time. Cr is the collision operator that describes
the detailed e�ect of collisions between particles, modifying the distribution function
based on interactions like scattering, energy exchange, and momentum transfer. S is
the source term, that accounts for any external sources of particles, such as injection,
ionization, or other processes that add particles to the distribution function F .
In GYSELA, we are limited to 3 distribution functions, one describing electrons, so it
is only possible to depict two other ions. Which can be deuterium and tritium or a
main species plus an impurity of various types, which can be intrinsic (i.e. those coming
from within the plasma core such as helium) or extrinsic (that come from the materials
of the tokamak and inevitably enter the plasma through various mechanisms, such as
erosion of the tokamak walls and internal components, such as tungsten).
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ii) Set of four coupled ordinary di�erential equations (ODE) for the trajectories:

dx
i

G

dt
= vGÎbú

s
· Òx

i

G
+ vE◊Bs · Òx

i

G
+ vDs · Òx

i

G
(2.3)

ms

dvGÎ

dt
= ≠µsbú

s
· ÒB ≠ qsbú

s
· Ò�̄ + msvGÎ

B
vE◊Bs · ÒB (2.4)

where bú
s

= B
B

ú
Îs

+ msvGÎ
qsB

ú
Îs

B
Ò ◊ B.

It is possible to split 2.3 by components:

- the ith contravariant component of bú
s

is:

bú
s

· Òx
i

G
= búi

s
= B · Òx

i

B
ú
Îs

+ msvGÎ

qsB
ú
Îs

µ0J · Òx
i

G

B
(2.5)

where J is the current,
- the ith controvariant component of the ÕE ◊ BÕ drift are given by:

vE◊Bs · Òx
i

G
= vi

E◊Bs
= 1

B
ú
Îs

Ë
�̄, x

i

G

È
(2.6)

where [F, G] = b · (ÒF ◊ ÒG) are the Poisson bracket,
- and the ith contravariant components of the ’grad-B’ and ’curvature’ drifts are:

vDs · Òx
i

G
= v

i

Ds
=

Q

a
msv

2
GÎ + µsB

qsB
ú
Îs

B

R

b
Ë
B, x

i

G

È
(2.7)

iii) a 3D integro-di�erential equations for the field know as quasi-neutrality or Poisson
equation:

≠ 1
ne0

ÿ

s

ZsÒ‹ ·
3

ns0
B0�S

Ò‹�
4

+ e

A
� ≠ È�ÍF S

Te

B

= 1
ne0

ÿ

s

Zs (nGs ≠ nGs,eq) (2.8)

where ne0 is the initial electron density, Z is the atomic number, ns0 is the initial radial
density profile„ B0 is the initial magnetic field, �s = qsB0/ms is the cyclotron frequency
(it is the corresponding of eq 1.10, but generalized for all the species), Ò‹ =

1
”r,

1
r
”◊

2
,

È�ÍF S represent the flux surface average, Te is the electron temperature, nGs is the
gyro-center density of species s and nGs,eq is the gyro-center density for F̄ = F̄s,eq.
The right hand side of 2.8 is the charge density of the guiding-center fl and is described
by:

fl(x, t) = 1
ne0

ÿ

s

Zs

⁄
dµJµ ·

5⁄
JV dvGÎ

1
F̄ ≠ F̄s,eq

26
(2.9)

where J is the gyro-average operator and JV stand for the Jacobian in the velocity
space.

iv) and the Ampere equation:

≠ 1
µ0

Ò2
‹AÎ +

ÿ

s

noe
2

ms

AÎ =
ÿ

s

u�̄
Ë
F̄B

ú
Î

È
dudµ ≠

ÿ

s

e

⁄
µ�̄

Ë
F̄B

ú
Î

È
(2.10)
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2.2.1 Poisson solver in GYSELA

In this section is presented a brief introduction to how the Poisson equation 2.8 is solved
within GYSELA; this introduction will be useful in the continuation of this work. To solve
the Poisson equation let define the Poisson solving operator Q̃ that denotes symbolically four
steps [24]:

i) Computing the right-hand side of the quasi-neutrality equation 2.8 using 2.9,

ii) solving the quasi-neurality equation 2.8 to deduce the electrostatic potential �,

iii) compute the gyro-averaged electric potential �̄ = Jµ�

iv) compute the electric field E = Ò�̄

Inside the GYSELA algorithm, the Poisson solver Q̃ is inside a subroutine named: QN_solver
_solve, that is called at each time step for computing the electrostatic potential �tn+1. There
are 3 models available in GYSELA to describe the behaviour of electrons: adiabatic, trapped-
kinetic and full kinetic. In the first case, all electrons are treated by assuming that their
responses are rapid with respect to fluctuations in the electromagnetic field and that they
adapt instantaneously to changes in potential. This model o�ers a significant simplification for
rapid analysis. In the second case, passing electrons are treated as adiabatic, while trapped
electrons (i.e. those that do not make a complete revolution around the magnetic field line
and instead oscillate between two reflection points) require a more detailed kinetic treatment.
In the latter case, both trapped and passing electrons are treated as fully kinetic. This
approach makes no distinction between the di�erent electron motion regimes and o�ers a
more complete and accurate description. For each of these, there is a di�erent Poisson_solver
subroutine. Without going into the details of the mathematical and numerical descriptions of
the 3 models, during this work, we will use the Poisson solver for the full-kinetic description.

GYSELA’s global algorithm, in particular the coupling between the Vlasov, Poisson and
Ampere solving is shown in figure 2.1, for more detail about that refer to [24].

For a brief introduction to the variables involved, let us denote the number of ion species
by Nspecies and the number of µ values by Nµ (Since the magnetic moment µ is an adiabatic
invariant, it acts as a parameter). Consequently, for each species, we need to solve Nµ

independent Boltzmann equations (Equation 2.1). Let Nr, N◊, N„, and NvGÎ represent the
number of points in the r, ◊, „, and vGÎ directions, respectively. The GYSELA code uses
large data structures, including 5D data of size Nr ◊ N◊ ◊ N„ ◊ NvGÎ ◊ Nµ for distribution
functions and 3D data of size Nr ◊ N◊ ◊ N„ for the electrostatic potential �, its derivatives
and the parallel component of the vector potential AÎ, as well as for the first moments of the
distribution function. These quantities and data are saved so that they can be studied by
specially developed post-process diagnostics. Diagnostics written in Python were used during
this work, and other diagnostics were developed for more detailed studies.
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Figure 2.1: Schematic view of the coupling between the Vlasov, Poisson and Ampere solvers in
GYSELA, adapted from [24].
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Chapter 3

Alfvén eigenmodes in GYSELA

The linear calculation of fast particle-driven TAE dynamics has been well studied, analysed
and benchmarked in various code [27] but never using a semi-Lagrangian non-linear global
and full-f gyro-kinetic code (like GYSELA). To study the dynamics of TAEs in GYSELA,
this work follows the studies that Zhang et al. [28] had done with global gyrokinetic toroidal
cote GTC and what Biancalani et al. [29] and Sadr et al. [30] had done using the global
gyrokinetic particle-in-cell code ORB5.
GTC, as the name indicates, is a global gyrokinetic code, is a code based on the Particle-in-cell
(PIC) approach and uses a ”f configuration [31]. ORB5 is also a gyrokinetic code that uses a
particle-in-cell PIC approach, and for the study of Alfvén Eigenmodes uses a ” ≠ f approach,
(although it is possible to use the code as a full ≠ f) [32].

In this chapter is introduced the work that has been carried out on GYSELA. It will begin by
presenting the results obtained using a cylindrical configuration to reproduce the continuum,
and then move on to a more realistic toroidal configuration to try to observe the opening in
the gap in the continuum (see section 1.3).
This work is in continuity with studies carried out by David Zarzoso Fernandez (a researcher
a Centre Nationale de la Recherche Scientifique - CNRS in Marseille) on the same topic.

3.1 Continuum spectrum in a cylinder

In this section, we present the outcomes of GYSELA tests focusing on the simplest plasma
confinement configuration: the cylindrical geometry. This is accomplished by selecting
analytical magnetic equilibria characterized by a very big aspect ratio: A = 100 (eq. 1.4).
Numerical simulations are conducted featuring flat q profiles (eq. 1.6). Establishing an initial
perturbation, let evolve the plasma over time and measure the SAW oscillation frequency
across various values of q, electron mass and electron beta — = µ0pe/B

2. This frequency
represents the inherent oscillation frequency of the plasma and is referred to as the continuous
spectrum, or simply continuum [8].

For this study, is chosen an analytical equilibrium with a value of — = 2 ◊ 10≠4 and
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fl
ú = fls/a = 1/50, with fls = cs/ÊC0 being the sound gyroradius, cs =

Ò
Te/mi being the

sound speed and ÊC0 the ion cyclotron frequency [eq. 1.10]. A flat temperature and density
profile was selected with the ratio of electron to ion temperature · = 1 (for all simulations
presented in this work). The time step dt = 1Êc0 of the simulation was and the spatial
resolution (Nr, N◊, NÏ) = (64, 64, 32), that is the same spatial resolution used by Biancalani et
al. [29] to study this phenomenon and a typical spatial resolution of simulation with fl

ú = 1/50
in GYSELA.
For all the simulations carried out, it was decided to study the collisionless case without
any density or temperature gradients. Gradients are set to zero to avoid the formation of
turbulence and micro-tearing modes. The collisionless approach is justified since GYSELA’s
electron-ion collision operator has not been benchmarked with the actual mass ratio [26], as
is done in some of the simulations for this internship.

Note that normalisation in GYSELA is done by the ion cyclotron frequency, so the time and
the time-step �t is expressed as the inverse of this frequency (�t = Ê

≠1
c0 ). The Alfvén velocity

normalised according to the ion cyclotron frequency is: vA = fl
ú
R

A

Ô
—

and consequently equation
1.19 normalised according to GYSELA normalization becomes:

Ê
2
SAW

= fl
ú2

—A2 · (m ≠ nq)2

q2 [Êc0] (3.1)

It should be noted that in comparison to the GTC code [28] [33] and ORB5 [30], the —e (or
simply — in the remainder of this thesis) value in GYSELA is defined di�erently, in GTC
and ORB5 —e = 8fineTe

B
2
0

, while in GYSELA —e = 4fineTe
B

2
0

, this leads to discrepancies in the
normalisation according to Êc0. In fact, during the simulations carried out by GYSELA, a —

value was used which does not correspond to the — value of the ITPA refernece case.

3.1.1 Alfvén continuum

To study the Alfvén continuum were conducted simulations for non-axisymmetric perturbations.
The same magnetic equilibrium profile, plasma temperature, and density as described in Sec.
3.1 are considered. Namely the simulations were carried out with — = 2 ◊ 10≠4, fl = 50 and
mass ratio mi/me = 2000. Multiple simulations are performed, each with a di�erent value of
q and a flat q profile. A perturbation is initialized with amplitude 10≠3 with toroidal mode
number n = 2 and poloidal mode number m = 4 and after with n = 2 and m = 5. The
simulations are evolved in time (note that only the poloidal mode n = 2 is evolved) and
the evolution of the mode in the middle of the radial domain (r/a = 0.5) is analyzed. From
the timetrace of the parallel component of the magnetic vector potential AÎ, an oscillation in
the amplitude signal is observed (see Fig. 3.1) and, through a Fourier analysis on time, it is
calculated the frequency of this oscillation.

Several simulations with di�erent values of q are carried out and the scan in frequency is
compared with the ideal MHD prediction (1.20). A good match is observed for both modes
m = 4 and m = 5, in the cylindrical limit (1.19) as reported in figure 3.2.
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Figure 3.1: Timetrace of the real and imaginary part of the mode n = 2 and m = 4 of parallel
component of the magnetic vector potential AÎ for q = 2.3. An oscillatory damping
trend is observed. The frequency of this oscillation is calculated.

Figure 3.2: Frequency (normalized to the ion cyclotron frequency ÊC0) dependency on q for di�erent
simulations with flat q profiles and with the evolution in time of only one poloidal
component (m = 4 or m = 5) and toroidal mode number n = 2. In this analysis, the
cylinder limit (A = 100) is considered. A good match with the MHD theory is observed.
Note that for q = 2.25 the frequency obtained from the simulations for the mode m = 4
and m = 5 are the same.

As anticipated in Sec. 1.3.1, within this cylindrical limit, no gap in the continuum spectrum
attributable to toroidicity is observed at the intersection of the two branches. However, the
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introduction of toroidal curvature, achieved by decreasing the aspect ratio A, leads to the
formation of a gap (as can be clearly seen in figure 1.11 above).
The following section performs simulations with considerable toroidal curvature (that cannot
be neglected in equation 1.20).

3.2 Toroidicity-induced Alfvén eigenmode

In this section, we examine a more realistic scenario by considering a smaller value of the aspect
ratio, thereby introducing greater toroidal curvature. Consequently, in this configuration, as
explained in section 1.3.1, a gap in the continuous spectrum emerges at the intersection of two
adjacent cylinder branches, denoted as m and m + 1 (figure 3.3). Moreover, it may induce
a global eigenmode with a frequency lying within the continuum gap (the TAE previously
explained).

Figure 3.3: Plot of the continuum spectra (eq.1.20 for n = 2 and m = 4 and m = 5 normalized to
va/R for various aspect ratios (A = 100, 50, 20, 10). The parameters are the one of
our simulations (flú = 1/50, — = 2 ◊ 10≠4). Note that as the aspect ratio A decreases,
there is an increase in the gap in the continuum. For A = 100 and A = 50, this
gap is negligible, as the gap corresponds to frequencies in the order of 10≠5Êc0. Which
become in the order of 10≠4Êc0 for A = 20 and in the order of 10≠3Êc0 for A = 10,
the same order of magnitude of the SAW frequency, thus no longer neglectable.

In the toroidal configuration, we performed the same analyses as in the cylindrical configuration:
initialize a perturbation with amplitude 10≠3 with toroidal mode number n = 2 and poloidal
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mode number m = 4 and after with n = 2 and m = 5, let evolve on time the simulation
and analyze the evolution of the mode with n = 2 and m = 4 and subsequently with same
n = 2 and m = 5 in the middle of the radial domain (r/a = 0.5). The same parameters
used are flat profiles for q, density, and temperature, fl

ú = 1/50 and — = 2 ◊ 10≠4. From
studying the parallel component of the magnetic vector potential AÎ for the mode n = 2
and m = 4, it can be seen in figure 3.4 that as the aspect ratio decreases (gradually going
from A = 100 to A = 10), there is no longer a clear dominant oscillatory structure and a
dominant damping frequency.

Figure 3.4: Plot of the timetrace (up) and the corresponding Fourier spectra (down) for the mode
n = 2 and m = 4 of the parallel component of the magnetic potential AÎ for
q = 2.25. From the Fourier spectra (down) result evident the absence of a clear
dominating damping frequency with the decreasing of the aspect ratio.
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From the analysis of a poloidal section (figure 3.5) (taken at the position Ï = 0) of AÎ in the
case with aspect ratio A = 10, it is evident the predominance of the mode m = 4 and
m = 5 over the others. At t = 5000Ê

≠1
C0 the mode m = 5 is predominant in the outer

region and in the center of the section. At t = 10000Ê
≠1
c0 the predominant one is the mode

m = 4 located near the boundary.

Figure 3.5: Poloidal section, taken at position Ï = 0 of AÎ for aspect ratio A = 10 at time
t = 5000/Ê≠1

C0 (left) and t = 10000/Ê≠1
C0 (right). It is evident the predominance of the

mode m = 4 and m = 5 over the others and the presence of higher-intensity modes
near the edges of the domain.

The presence of higher-intensity modes near the edges of the domain is a potential indicator
of problems. This is because in GYSELA the Dirichlet condition is applied at the edge of
the radial domain, in particular, the electrostatic potential � is forced to zero at the most
extreme point of the radial domain: �(r = Nr, ◊, Ï) = 0. This can lead, close to the edge, to
artificially induced phenomena of this imposition and not inherent plasma ones.

In order to solve this problem, the first step we took was to enlarge the domain to allow the
modes space to grow. This is achieved by decreasing the value of fl

ú, then increasing the
minor radius a. In GYSELA, the minor radius is expressed in Larmor radius value, which
means that the increase of a means means increasing the number of Larmor radii in our radial
domain. In order to actually study a wider domain, we must also enlarge the resolution,
namely the number of grid points (Nr, N◊, NÏ). This was done taking into account that
the simulations presented above were carried out using a fairly large fl

ú value (flú = 1/50),
whereas the international cross-code reference test case ’ITPA-TAE’ [27] utilises parameters
that correspond to a value of fl

ú = 1/927 in toroidal configuration. There are two main
problems with the increase of the radial domain. The first one is the increased computational
costs required as using a larger mesh means processing more points, thus requiring more
computational time to achieve the same plasma time. The second is a problem concerning
frequencies. As mentioned earlier, normalisation in GYSELA is performed using the cyclotron
frequency, resulting in the eq. 3.1 for the frequency of the SAW. In Eq. 3.1, fl

ú is at the
numerator, so a decrease of the value of fl

ú involve a consequent decrease in the oscillation
frequency of the modes we want to analyse. This leads to longer simulations having to be
carried out in order to detect these frequencies, which further increases the computational
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cost.
In particular, analyses were carried out with fl

ú = 1/150 with a resolution of size (Nr, N◊, NÏ) =
(256, 256, 64). During the analysis, it was noted that the number of radial points was excessive
in relation to the value of fl

ú, so, for computational reason, it was decided to decrease the
number of mesh points by increasing fl

ú, performing simulations with fl
ú = 1/400 with

resolution of (Nr, N◊, NÏ) = (128, 128, 32). In the latter case, the simulation ran for more
than 150000Ê

≠1
c0 . In none of these simulations was observed a significant improvement in the

results, and no clear structure with a dominant damping frequency as in the figures was ever
notice.

In the paper of Biancalani et al. [29] moving from a cylindrical to a toroidal configuration
(A = 10), a mass ratio mi/meof 200 is used instead of 2000. This mass ratio value is also used
in the reference paper for TAEs [27] and in [30], so we perform simulations with mi/meof
200, with fl

ú = 1/50 and resolution of (Nr, N◊, NÏ) = (64, 64, 32) and fl
ú = 1/150 with

(Nr, N◊, NÏ) = (256, 128, 32).In [27], in [29] and [30], a parabolic q profile is used in the case of
simulations in a toroidal configuration, and not a flat one as in the simulations in a cylindrical
case. The q profile is q(r) = 2.2 + 0.2(r/a)2. With this q profile, we have that the value of
q corresponding to the intersection between the two branches of the continuum that couple
(n = 2 with m = 4 and m = 5 that give rise to the gap in the continuum is q = 2.25 and
it is in the middle of the radial domain. We performed a simulation with this parabolic q
profile in the case with fl

ú = 1/400. Also with these parameters, no improvements were noted.

As a further improvement, we used the same parameters as in the reference test case [27],
where the q profile is profile q(r) = 1.71 + 0.16(r/a)2 and in the middle of the radial domain
q = 1.75. Using this profile, there is a toroidal Alfvén eigenmode with toroidal mode n = 6
and poloidal mode number m = ≠10 and m = ≠11. In addition, with this q profile there is
another TAE gap mode with n = 2 and m = ≠3 and m = ≠4. (see Fig. 3.6). In this case
we have — = 9.1 ◊ 10≠4 and parameters corresponding to fl

ú = 1/927. The resolution chosen
to study this case in our code was (Nr, N◊, NÏ) = (256, 256, 64). With these parameters, the
TAE frequency for the ITPA case, normalised to the cyclotron frequency was found to be
Êgap = 0.280995ÊA = 0.001532Êc0, requiring a simulation time of at least 105

Ê
≠1
c0 . This

factor together with the large resolution and domain made this simulation computationally
very heavy. We were therefore only able to run it for 10000Ê

≠
c01, but even in this case, no

oscillatory trend with a clear damping frequency was observed.

Despite these various attempts with di�erent parameters and configurations, we were not
able to identify the gap in the continuum through GYSELA. This may be due to various
factors: the gap may be hidden by other phenomena (which we have not studied) that are
generated as the toroidicity increases; it may be that we have not found the right set-up
for the numerical parameters to allow the detection of this phenomenon; or it might be due
to other elements that we have not considered. We also noticed that no codes in similar
configurations (i.e. global gyrokinetic codes) [27], [29], [30], and [33] show the gap in the
continuum, so we decided to move on to the next step: exciting the modes in the gap of the
continuum
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Figure 3.6: Alfvén continua of ITPA case for n = 0,1,2,6 and seven toroidal mode numbers. It is
possible to see the TAE gap due to the coupling between the mode with n = 2 with m
= -3 and m = -4 and the one due to the coupling between the mode with n = 6 and
m = - 10 and m = - 11. Note that here the normalization for the frequency is done
using the Alfvén frequency, not the ion cyclotron frequency so it is independent from
the choice of the simulation parameters. From [30]
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Destabilization of Toroidal Alfvén
eigenmode in GYSELA through an
external antenna

In this chapter, we are going to illustrate the approach chosen to excite the modes in the gap
in the continuum.

As explained in section 1.3, the Alfvén velocity is in the same order of magnitude as the
characteristic velocities of fast ions. So fast ions can interact with Alfvèn waves and this can
lead to an energy transfer and the excitation of instabilities. In particular, it was explained
that perturbations with frequencies within the gap of the continuum are not damped. To
study this phenomenon in GYSELA, the first option that was considered was to introduce
fast ions into the code. Doing that means introducing a new species with the same mass of
the thermal ions in GYSELA but at di�erent (higher in this case) energies. However, this
poses a huge problem in the energy grid, because normalisation in GYSELA is done through
the scalar · =

Ò
Tr/ms, where Tr is the reference temperature for each species and ms is

the mass of the species. Thus introducing a species with the same mass would have implied
writing · as a vector, which would have implied implementing very deep and structural
changes in the code. Hence an alternative option was chosen: to excite the modes in the
continuum gap through an antenna. This choice is well tested and benchmarked in other
codes, notably in GTC in the work done by Zhang et al.[28] and by Aslanyan et al. [33].
In particular, in that work was imposed a perturbation in the electrostatic potential �ant

that is added to the plasma electrostatic potential �plasma resulting in: � = �plasma + �ant.
In ORB5, Sadr et al. [30] introduces an electromagnetic antenna that perturbs both the
electrostatic potential (� = �plasma + �ant) and parallel component of the magnetic vector
potential (AÎ = AÎ,plasma + AÎ,ant). For now, as a first approach to the code and to the
problem, it was decided to implement the antenna as a perturbation only in the electrostatic
field in GYSELA.

The idea of inserting an antenna that perturbs the plasma has been investigated both through
numerical simulations and also during experimental studies conducted within tokamaks. For
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example, in the Joint Europen Tokamak (JET), there is a diagnostic dedicated to the study of
Alfvén eigenmode: the Alfvén Eigenmode Active Diagnostic (AEAD) system [34] [35] [36]. In
the JET, eight in-vessel antennas (marked with the red box in figure 4.1 in the left panel) were
installed to actively investigate stable Alfvén Eigenmodes (AEs) with frequencies between 25
and 250 kHz and toroidal mode numbers |n| < 20 [36]. The destabilisation occurs by using
variable frequency waves generated by these antennas that perturb the plasma. This system
uses magnetic probes that provide a real-time spectrogram of the plasma’s response to the
induced perturbation. A perturbation is damped everywhere except when a gap is present in
the continuum. So if a perturbation has frequency in the gap, an increase in intensity will be
observed in the signal measured by the magnetic probes. The objective is therefore to vary
the frequency of the perturbations generated by the antenna in the range where there are
present gaps in the continuum and, when the magnetic probes detect an increase in intensity,
an attempt is made to follow this perturbation with the perturbation imposed by the antenna.
A stable AE was tracked in real-time during the high-heating power phase when both the
Ion Cyclotron Resonance Heating (ICRH) and the Neutral Beam Injection (NBI) were active.
This can be seen in the Fourier decomposition of magnetic signals in figure 4.1 in the right
panel. The triangular waveform is the scanning AEAD frequency, (with frequencyf between
125 and 250 kHz. Around t = 11s, a stable AE is detected by the AEAD at f0 ≥ 245kHz

(highlighted with the orange box), and the real-time monitoring system quickly changes the
scan direction to track the mode until t ≥ 12s [36].
Various examples of TAE destabilisation by an external antenna are given in the literature
([34], [35] and [36])

Figure 4.1: View of one assembly of 4 antennas, as installed on the low-field-side wall of the
JET vessel [34]. Spectrogram of Fourier decomposition of magnetics data from the
Alfvén Eigenmode Active Diagnostic (left-bottom quadrant) with toroidal mode number
analysis (Right side). In the orange box at the top right, you can see the antenna’s
attempt to follow the increase in intensity detected by the magnetic probes. From [36]
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4.1 Electrostatic antenna

As explained above, the aim of this thesis is to excite the modes in the continuum gap via an
electrostatic antenna. This antenna imposes a perturbation �ant that adds to the electrostatic
plasma potential �plasma, resulting in a total electrostatic potential: � = �plasma + �ant.
To excite the TAE mode, in all the analysed papers ([29], [30] and [28]), the electrostatic
antenna simultaneously excites the 2 coupled modes that lead to the formation of the gap.
The only reference in which the antenna equation is written explicitly is the one on ORB5
by Sadr et al. [30]. An analogous electrostatic antenna potential equation will be used for
the tests in this work. As explained in Section 3.2 and seen in Figure 3.6, in the ITPA case
there, for that particular frequencies there are two overlapping gaps in the continuum, one
due to the coupling between modes with n = 6 and m = ≠10 and m = ≠11 and the one
with n = 2 and m = ≠3 and m = ≠4. During this thesis, for computational and time
reasons, as a first approach to the problem only the TAE due to the coupling with n = 2
and m = ≠3 and m = ≠4 was excited.

Hence we consider an antenna with · = {(n1, m1), (n2, m2)} = {(2, ≠4), (2, ≠3)} and a
gaussian radial profile:

hj(r) = aje

≠(r≠r0,j )2

”2
i for i = 1, 2 (4.1)

where:

a1 = a2 = 0.1, r0,1 = r0,2 = 0.5, ”1 = ”2 = 0.1 (4.2)

where ai is the amplitude of the Gaussian radial profile, ri its mean and ”i its variance.
The equation of the electrostatic potential of the antenna is:

�ant (r, ◊, Ï, t) = Ÿ
S

U
2ÿ

j=1
hj(r)ei(mj◊+nÏ)eiÊantt

T

V (4.3)

with Êant the frequency of the antenna.
A representation of the poloidal and toroidal cross-section of the electrostatic antenna for the
mode n = 2 with m = ≠3 and m = ≠4 is shown in figure 4.2.

Before examining how the equations are implemented in the code, it is possible to rewrite the
equation 4.3 in the form:
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Figure 4.2: Poloidal (left) and toroidal (right) cross-section of the electrostatic antenna �ant at
t = 0. To note the overlap between the modes m = ≠3 and m = ≠4, and how the
antenna is centred in the middle of the radial domain.

�ant (r, ◊, Ï, t) =
S

U
2ÿ

j=1
hj(r) cos(mj◊ + nÏ)

T

V

¸ ˚˙ ˝
:= Sant,1(r,◊,Ï)

· cos(Êantt)

+
S

U
2ÿ

j=1
hj(r) cos(mj◊ + nÏ + fi

2 )
T

V

¸ ˚˙ ˝
:= Sant,2(r,◊,Ï)

· sin(Êantt)
(4.4)

By doing this, we have decomposed the equation into four parts: two spatial parts Sant,1 and
Sant,2, dependent only on (r, ◊, Ï), and two time-dependent parts. This allows for a simpler
and more computationally e�ective implementation within the code, as the two spatial parts
can be computed only once at the beginning of the simulation and called up later at each
time step when calculating the total antenna electrostatic potential.

4.2 Implementation of the antenna in GYSELA

Referring to what is expressed in paragraph 2.2.1, the operator solving the Poisson equation
(eq.2.8) consists of 4 steps. The antenna is inserted between step ii) and step iii), namely
after the code has calculated the electrostatic potential of the plasma and before performing
the gyro-averaged operation (fig. 4.3).
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Figure 4.3: Schematic view of antenna integration inside GYSELA, adapted from [24]
.

4.2.1 Implementations in the code

The insertion of the antenna required modifications inside the routine that solve the Poisson
equation: QN_solver_solve. As mentioned in paragraph 2.2.1 only the Poisson Solver for
the full-kinetic electron is modified (in particular the routine QN_FKE_solve inside the file
QN_fullkin_elec.F90). In this section, we will present all the modified files and routines
to implement the antenna inside GYSELA. Note that within the GYSELA source code, the
electrostatic potential � is denoted by the letter U .

In GYSELA all the routines used to solve equations related to the Poisson solver are inside the
file QN_tools.F90. Hence, 2 subroutines were added within this file: compute_U_antenna_spatial

and QN_tools_Compute_U_antenna_and_plasma. The first calculates the spatial components
of the antenna (Sant,1 and Sant,2 in eq. 4.4), and is called only once on the first iteration,
saving Sant,1 and Sant,2 as global variables. The second subroutine calculates the total an-
tenna potential (eq. 4.4) and adds it to the plasma potential. This subroutine is called at
each timestep after the code has calculated, via the routine QN_tools_solve_3Dsys, the
electrostatic potential of the plasma (so immediately after the step ii) of the Poisson solver
explained in sec 2.2.1). Note that the parts of the code that are modified are written in
Fortran F90. Here, inside the boxes, are presented all the parts of the code that have been
added for integrating the antenna into the code.

In the file qn_fullkin_elec.F90, inside the subroutine QN_FKE_solve, is called the subroutine
QN_tools_Compute_U_antenna_and_plasma which compute the Antenna electrostatic poten-
tial and add that to the electrostatic potential of the plasma. To switch the antenna on or o�,
no control is currently created within the input file, so line 327 must be commented out within
the qn_fullkin_elec.F90 file: call call QN_tools_Compute_U_antenna_and_plasma(

self%commons, & timings, Phi). This solution needs to be improved and a command
needs to be inserted into the input file to switch the antenna on and o�.
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file: qn_fullkin_elec.F90

line 226:

use QN_tools_class, only : QN_tools_Compute_U_antenna_and_plasma

line 327:

call QN_tools_Compute_U_antenna_and_plasma(self%commons, &

timings, Phi)

The declaration of the variables for the antenna is done inside the file QN_tools_types.F90.
Here are declared both the spatial parts Sant,1 and Sant,2, the total electrostatic potential of
the antenna Uant and the antenna frequency Êant.

file: QN_tools_types.F90

line 116:

real(F64), dimension(:,:,:), allocatable :: S1_antenna

real(F64), dimension(:,:,:), allocatable :: S2_antenna

real(F64), dimension(:,:,:), allocatable :: U_antenna

real(kind=8), dimension(1) :: antenna_frequency

Inside the file QN_tools.F90 are defined the subroutine QN_tools_Compute_U_antenna_spatial,
that calculates the spatial part of the antenna (previously declared in file QN_tools_types.F90),
and the subroutine compute_U_antenna_and_plasma that calculate the potential of the an-
tenna and add it to the one of the plasma, giving the total electrostatic potential �.

file: QN_tools.F90

line 41:

Public:: QN_tools_Compute_U_antenna_and_plasma

line 167 (inside the subroutine QN_tools_init):

call QN_tools_Compute_U_antenna_spatial(self)

line 1908:

subroutine QN_tools_Compute_U_antenna_spatial(self)

use geometry_types

use MPIutils_mod, only : gstart_Gmapphi, gend_Gmapphi, &

Gmapping_phi

use globals, only : Nr, Ntheta, Nphi, minor_radius

type(QN_tools_t) , intent(inout) :: self
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type(geometry_t), pointer :: geom

! Declare and initialize arrays for the Antenna Parameters

integer, parameter :: number_of_mode = 2

real(F64), dimension(1) :: n = [2.0d0]

real(F64), dimension(0:number_of_mode-1) :: m_values =

[3.0d0, 4.0d0]

real(F64), dimension(0:number_of_mode-1) :: a_values =

[0.1d0, 0.1d0]

real(F64), dimension(0:number_of_mode-1) :: delta_values =

[0.1d0, 0.1d0]

real(F64), dimension(0:number_of_mode-1) :: s0_values =

[0.5d0, 0.5d0]

! Parameter for the construction of the spatial part of the antenna

integer :: ir, itheta, iphi, m_index

real(F64), dimension(self%geom_%Nr) :: h_antenna, s

real(F64) :: angle1, angle2

real(F64) :: pi_greco

geom => self%geom_

MTM_ALLOC_3_ALLOCATABLE( self%S1_antenna, &

0, geom%Nr-1, 0, geom%Ntheta-1, 0, geom%Nphi-1, 3 )

self%antenna_frequency = [0.01894d0]

pi_greco = acos(-1.0d0)

self%S1_antenna = 0._F64

self%S2_antenna = 0._F64

! Constructing the s array: array from 0 to 1

do ir = 0, geom%Nr - 1

s(ir) = geom%rg(ir) / minor_radius

end do

if (gstart_Gmapphi.ne. -1 ) then

! Do loop for constucting the spatial part of the antenna

do m_index = 0, number_of_mode-1

do iphi = gstart_Gmapphi, gend_Gmapphi

do itheta = 0, geom%Ntheta-1

do ir = 0, geom%Nr -2

h_antenna(ir) = a_values(m_index) * exp(-(s(ir) - &
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s0_values(m_index))**2 /

(delta_values(m_index)**2))

angle1 = sum(cos(m_values(m_index) *

geom%thetag(itheta) + &

n * geom%phig(iphi)))

self%S1_antenna(ir, itheta, iphi) = &

self%S1_antenna(ir, itheta, iphi) &

+ h_antenna(ir) * angle1

angle2 = sum(cos(m_values(m_index) *

geom%thetag(itheta) + &

n * geom%phig(iphi) + pi_GRECO/2.0))

self%S2_antenna(ir, itheta, iphi) = &

self%S2_antenna(ir, itheta,iphi) &

+ h_antenna(ir) * angle2

end do

end do

end do

end do

end if

end subroutine QN_tools_Compute_U_antenna_spatial

!*********************************************************

subroutine QN_tools_Compute_U_antenna_and_plasma(self, &

timings, Phi, Siter_time )

use geometry_types

use QN_timers_mod, only : QNT_sect_end

use globals, only : deltat, Nr, Ntheta, Nphi

use MPIutils_mod, only : gstart_Gmapphi, gend_Gmapphi, &

Gmapping_phi

type(QN_tools_t) , intent(inout) :: self

type(QN_timers_t), intent(inout) :: timings

real(F64) , intent(inout) :: Phi(0:,0:,gstart_Gmapphi:)

real(F64) , intent(in) :: Siter_time

type(geometry_t), pointer :: geom
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integer :: ir, itheta, iphi

real(F64), dimension(:,:,:), allocatable :: time_S1_antenna

real(F64), dimension(:,:,:), allocatable :: time_S2_antenna

geom => self%geom_

MTM_ALLOC_3_ALLOCATABLE( self%U_antenna, &

0, geom%Nr-1, 0, geom%Ntheta-1, 0, geom%Nphi-1, 3 )

MTM_ALLOC_3_ALLOCATABLE( time_S1_antenna, &

0, geom%Nr-1, 0, geom%Ntheta-1, 0, geom%Nphi-1, 3 )

MTM_ALLOC_3_ALLOCATABLE( time_S2_antenna, &

0, geom%Nr-1, 0, geom%Ntheta-1, 0, geom%Nphi-1, 3 )

time_S1_antenna = 0._F64

time_S2_antenna = 0._F64

!Do loop for constructing the spatial part of the antenna

!and add to the potential of the plasma

if ( gstart_Gmapphi .ne. -1 ) then

do iphi = gstart_Gmapphi, gend_Gmapphi

do itheta = 0, geom%Ntheta-1

do ir = 0, geom%Nr -2

time_S1_antenna(ir, itheta, iphi) =

self%S1_antenna(ir, itheta, iphi) &

* sum(cos(self%antenna_frequency *

Siter_time * deltat))

time_S2_antenna(ir, itheta, iphi) =

self%S1_antenna(ir, itheta, iphi) &

* sum(sin(self%antenna_frequency *

Siter_time * deltat))

self%U_antenna(ir, itheta, iphi) = &

time_S1_antenna(ir, itheta, iphi) + &

time_S2_antenna(ir, itheta, iphi)

Phi(ir, itheta, iphi) = Phi(ir, itheta, iphi) + &

self%U_antenna(ir, itheta, iphi)

end do
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end do

end do

end if

end subroutine QN_tools_Compute_U_antenna_and_plasma

The parameters that can be changed to modify the antenna are:

• antenna_frequency: the frequency of the antenna Êant,

• n: the toroidal mode excited by the antenna,

• number_of_mode: the number of modes excited by the antenna (in our case is two),

• m_values: the poloidal mode mj excited by the antenna,

• a_values: the amplitude of the perturbation aj (eq. 4.2),

• delta_values: the variance ”j of the radial gaussian profile (eq. 4.2),

• s0_values: the mean of the Gaussian radial profile r0,j (eq. 4.2).

In view of future developments, these parameters should be placed in the input file of GYSELA,
so that they can be changed without modifying the code.
As can be seen from the equation 4.4, the electrostatic potential of the antenna needs the
time variable t. In GYSELA, the teration is provided by the variable Siter_time defined
in the file vlasov/boltzmann_solving.F90 in the subroutine BLZ_predcorr. The time t

to be inserted within the equation (and thus within the code) is obtained by multiplying
Siter_time by the timestep dt. In order to insert the variable Siter_time within the
subroutine QN_tools_Compute_U_antenna_and_plasma, the following changes, highlighted
in red, were made within various files:
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Modification for adding the time of the iteration

• File gysela.F90:
line 234:
call BLZ_predcorr_step0( boltz, iter_time, em_field3D, pfnp1,

fequil4d, potential, magnetic_potential )

• File valsov/boltzmann_solving.F90:
line 288:
subroutine BLZ_predcorr_step0( self, Siter_time, em_field3D, fnp1,

fequil4d, potential, magnetic_potential )

– line 300:
real(F64), intent(in) :: Siter_time

– line 388:
call QN_solver_solve( poiss, J0, fnp1, fequil4d, potential,

Siter_time )

– line 600:
call QN_solver_solve( poiss, J0, fnp1, fequil4d, potential,

Siter_time)

• File poisson/qn_solver.F90:
line 223:
subroutine QN_solver_solve( self, J0, f, fequil4d, potential,

Siter_time )

– line 242:
real(F64) , intent(in) :: Siter_time

– line 259: call QN_FKE_solve( self, J0, f, fequil4d, potential,

Siter_time )

• File poisson/ qn_fullkin_elec.F90:
line 255:
subroutine QN_FKE_solve( self, J0, f, fequil4d, potential,

Siter_time )

– line 279:
real(F64) , intent(in) :: Siter_time

– line 281:
call QN_tools_Compute_U_antenna_and_plasma(self%commons,

timings, Phi, Siter_time)

All these changes were saved in GYSELA’s GitHub, in the branch: "LB_electorstatic_

antenna"

Before studying the e�ects the antenna has on the plasma, preliminary studies were carried
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out to see if the antenna was implemented correctly within the code. As can be seen
by comparing the figure 4.2 obtained by plotting the theoretical equation and the figure
4.4 obtained by post-processing analysis with the script of python routines available in
GYSELA, the antenna was implemented correctly. Furthermore, inside the subroutine
QN_tools_Compute_U_antenna_spatial were changed the antenna parameters (i.e. r0,j, ”j

and aj from eq. 4.2), thus changing the shape of the antenna. The theoretical results were
compared with the output obtained by post-processing the GYSELA data, finding a variation
as predicted. More specifically, changing the mean of the Gaussian r0,j resulted in a di�erent
centering of the radial peak, changing the variance ”j resulted in a change in the width of the
distribution, and changing the amplitude aj resulted in a change in the amplitude from the
output data of the electrostatic potential computed by GYSELA.

Figure 4.4: Poloidal (left) and toroidal (right) cross-section of the electrostatic antenna �ant at
t = 0 obtained after the implementation in GYSELA. To note that is the same as the
theoretical prediction shown in fig. 4.2, hence the antenna is correctly implemented
within GYSELA.

4.3 E�ects of the antenna on the plasma

After testing the correct implementation of the antenna within the code, the e�ects that this
antenna has on the behaviour of the plasma were analysed. It is important to emphasise that
all these results are preliminary and further studies need to be performed to fully understand
how the interaction between the antenna and the plasma takes place.

4.3.1 Simulations parameters

For all the simulations in which the antenna is implemented, it was used a flat profile for
density and temperature, a mass ratio mi/me = 200, — = 9.1 ◊ 10≠4, fl

ú = 1/50, a spatial
resolution (Nr, N◊, NÏ) = (64, 64, 32) and time step dt = 1Ê

≠1
c0 . The q profile used for the
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simulation is the same as the reference case ’ITPA-TAE’ [27]: q = 1.71 + 0.16r
2. With these

parameters, the frequency of the TAE is ÊT AE gap = 1.894 ◊ 10≠2
Êc0. Figure 4.5 represents

the Alfvén continua resulting from the parameters used in these simulations.

Figure 4.5: Alfvén continua of the simulations where the antenna is implemented for n = 2 and
m = ≠3 and m = ≠4. It is possible to see the TAE gap due to the coupling between
this mode. In blue, it highlights the frequency of the center of the gap, referred as
ÊT AE gap

GYSELA exploits the invariance of µ (described in section 1.2.6), thus µ thus assumes the
role of a parameter. In particular, within the code, for each species, the Boltzmann equations
are calculated independently for each value of µ. The values of calculated µ are defined
in the input file by the parameters mumin, Lmu and Nproc_mu, these are respectively the
minimum value of µ (set to zero in these simulations), the maximum value of µ (= 32 in these
simulations) and the number of processors used to compute µ. The latter in particular refers
to the number of µ values that are calculated. In these simulations (as in all simulations
involving magnetic e�ects in GYSELA) Nproc_mu = 32. This means that the dynamics are
evaluated for 32 values of µ. This value is very important because changing the value of
Nproc_mu gives very di�erent results. This leads to a large increase in the computational cost
since at least 32 nodes need to be used for each simulation. That is a constraint that concerns
only simulations carried out with electromagnetic e�ects.

In the following part of this chapter, we are going to present some results obtained by
implementing the antenna in GYSELA.
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4.3.2 Results of the simulations with the antenna

As a first study, the antenna was inserted from the beginning of the simulation (so at t = 0)
with a frequency equal to that of the center of the gap (Ê = 1.894 ◊ 10≠2

Êc0 see fig. 4.5) with
amplitude a = 0.1, the same used by Sadr et al. [30].

Figure 4.6 shows the 8 modes with greater amplitude for the electrostatic potential �(top
panel) and for the parallel component of the magnetic vector potential AÎ (bottom panel).
This analysis consider the 8 most energetic modes at a given time (in all the results presented
here, the time chosen is the time at the end of the analysis, i.e. in figure 4.6, the 8 most
energetic modes are calculated at t = 10000/Êc0) and plots the absolute value of � and
AÎ for these modes over time. As can be seen, although the antenna was only inserted in
the electrostatic potential, there are also e�ects in the magnetic part. In more details, it is
possible to observe how there is an initial damping of the perturbed modes (m = ≠3 and
m = ≠4, in blue and red respectively for � and vice-versa for AÎ), reaching a saturation
value of � ≥ 10≠2 and AÎ ≥ 10≠4. The modes perturbed by the antenna have energy one
order of magnitude higher than all the others, both in � and in AÎ. Analyzing the poloidal
section (figure 4.7) it is evident that the antenna is the dominant part in both � (left) and
AÎ (right), as can be seen by the peak of greatest amplitude centred in the middle of the
radial domain. Furthermore, there is a radial redistribution of energy, particularly evident in
�, where perturbations can be observed both internally and externally to the central peak.

Figure 4.6: Eight most energetic modes of � (above) and AÎ (belove) in the case where the antenna
is inserted from the beginning of the simulation (at t = 0). The perturbed modes
(m = ≠3 and m = ≠4 are in blue and red respectively for � and vice-versa for AÎ. It
is clear that these 2 modes have an initial damping and saturation values one order of
magnitude higher than the other modes.
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Figure 4.7: Poloidal section of � (left) and AÎ (right) in the case where the antenna is inserted
from the beginning of the simulation (at t = 0). The central peak due to the antenna
is clearly visible and a radial redistribution of energy is observed.

Some preliminary studies on the distribution function were also carried out. In these simu-
lations, only the 2D distribution function of hydrogen was saved and analysed, dependent
only on v‹ and vÎ, calculated at r/a = 0.5, ◊ = 0, Ï = 0. These values were not chosen
but are the ones GYSELA uses when saving the 2D distribution function. Figure 4.8 shows
the distribution function for values of v‹/vth = 0, i.e. for µ = 0, at the beginning of the
simulation (t = 0/Êc0) (top pannel) and at time t = 10000/Êc0 (bottom panel). vth is the
thermal velocity of the ions and is used as the normalization velocity in GYSELA. It can
be seen that, following the introduction of the antenna, a perturbation appears at higher
energies (highlighted by the grey circles). This is a positive indication, as we are going
to insert a perturbation that interacts in a similar way as fast ions. However, to gain a
clearer understanding of the phenomenon, further studies are needed, also analysing the 5D
distribution function. In GYSELA it is possible to save the outputs of the 5D distribution
function, but such analysis was not carried out due to lack of time.
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Figure 4.8: 2D distribution function of hydrogen at t = 0/Êc0 (above) and at t = 10000/Êc0 (belove)
in the simulation with the antenna inserted since the beginning. It is possible to observe
the presence of a peak at higher energies (highlighted by the grey circles) following the
introduction of the antenna.

Amplitude and frequency studies were carried out to understand better the plasma response
in this configuration. In particular, simulations were done with the same frequency of the
antenna and amplitude 10 times smaller (a = 0.01) and 100 times smaller (a =0.001) than
the case just shown. In both of these cases, di�erences were observed in the amplitude of
the oscillations, as expected as the parameter was changed, but no substantial di�erences in
frequencies and patterns with respect to the previous one. Regarding the frequency studies,
were performed simulations with frequency 10 times smaller (Êant = 1.894 ◊ 10≠3

Êc0) and
10 times larger (Êant = 1.894 ◊ 10≠1

Êc0) with respect to the one of the center of the gap.
Regarding the first one, a di�erence in the frequencies of the oscillations was observed, but
the behaviour was the same as in the case with the same frequency as the centre gap. This
contrasts with theoretical predictions, since by placing a perturbation with frequency crossing
the continuum, this should be damped. However, this is not observed. In the latter, there was
a problem regarding the saving of the data. The timestep used has always been dt = 1Ê

≠1
c0 ,

but data were saved every 10 timesteps for computational reasons, (both to save data less
frequently and to have lighter and more manageable output files to analyze). This allows
frequencies up to 10≠1

Êc0 to be studied. In all the previous cases, all phenomena studied
had lower frequencies, so they could be studied since more data for each period are saved,
and thus available for the post-process analysis. Going to study frequencies in the order of
10≠1

Êc0, saving data every 10 timesteps is no longer suitable and one needs to save data
more frequently. So the results obtained with this frequency were not useful for the analysis.
To better understand the behaviour of the plasma as the antenna frequency varies, further
studies need to be carried out by modifying the antenna frequency and analysing the plasma
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response.

For further studies, the antenna and simulation parameters were left unchanged, but the
antenna was inserted at t = 68000/Êc0 and not from the beginning of the simulation. Clear
di�erences were observed between these two simulations. In figure 4.9 the 8 modes are shown
with greater amplitude of �. As can be seen, Immediately after the introduction of the
antenna, there is a simultaneous growth of all modes and, once the saturation regime is
reached, all modes have about the same energy (≥ 1) which is one order of magnitude higher
than in the case where the antenna was inserted from the beginning. The presence of multiple
modes with the same energy can be observed clearly in the poloidal section of the electrostatic
potential shown in figure 4.10. From these, it is not possible to observe the presence of a clear
predominant mode over the others. Also, peaks are observed near the edges of the domain,
this is a potential indicator of problems due to boundary conditions in GYSELA (as explained
in section 3.2).
The di�erence between these two simulations must be studied, as such diverse behaviour was
not predicted by inserting the perturbation at the beginning or during the simulation. A
di�erence can be expected when the antenna is introduced, but once saturation is reached,
the amplitude and characteristics of the various modes should be the same

Figure 4.9: Eight modes with greater amplitude of �, with the antenna turned ON during the
simulation. Simultaneous growth of all modes is observed once the antenna is inserted
and once saturation is reached all modes have the same energy.
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Figure 4.10: Poloidal section at t = 72000/Êc0, thus after the plasma has reached the saturation
level, in the case where the antenna is inserted during the simulation. It is not
possible to observe the presence of a clear predominant mode over the others. Note
the di�erence with the case where the antenna was inserted at the beginning of the
simulation (fig. 4.7).

These preliminary results di�er from the results presented in the reference case ’ITPA-TAE’
[27] and in [30]. Moreover, we expect the perturbed modes to grow more and to have higher
energy than the non-perturbed modes. This latter point is clearly visible in the case where
we insert the antenna from the beginning (fig. 4.7). However, we have a damping of the
perturbed modes (fig. 4.6) and not a growth as observed in the literature. In the case in
which we insert the antenna once the simulation is already started, we have a growth of the
modes that are more similar to the phenomenon present in literature. However, all the modes
grow simultaneously at the same rate (fig. 4.9), without observing any di�erence between the
perturbed and non-perturbed modes.
To further understand the phenomenon, studies on the growth rate must be carried out to
see if the growth is comparable with the one observed in the literature.
In addition, it must be studied in more detail why these di�erences are present. These, in
part, may also be due to how the electromagnetic part is implemented in GYSELA. Being a
newly implemented part, it is also necessary to understand the right parameters to use for a
more in-depth and detailed study of this phenomenon.

An additional simulation was carried out exciting through the antenna the m = ≠1 and
m = ≠2 modes, thus perturbing the modes for which the gap in the continuum is close. All
other parameters, of the antenna and the simulation, were left unchanged. The frequency
of the antenna was also not changed (Êant = 1.894 ◊ 10≠2) and the antenna is inserted at
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the beginning of the simulation (at t = 0). In figure 4.11 the continuum for the simulation
parameters is shown. It can be seen that the m = ≠1 and m = ≠2 modes do not overlap
and open these gap in the continuum, so we will expect that such a perturbation will be
damped by the continuum. However, from observing the 8 modes with greater amplitude of �
(fig. 4.12) there are no substantial di�erences from the case in which the antenna excited the
modes m = ≠3 and m = ≠4 with the same frequency (fig. 4.6). In particular, an initial
damping of the excited modes is also observed in this case, and once stabilized these modes
have a value of � = 10≠1 and have more energy than the others.

Figure 4.11: Alfvén continua of the case where the antenna was implemented for n = 2 and
m = ≠1, ≠2, ≠3, ≠4.

55



Lorenzo Bramucci

Figure 4.12: Eight most energetic modes of � in the case where the antenna is inserted from the
beginning of the simulation (at t = 0). The perturbed modes (m = ≠1 and m = ≠2
are in blue and red respectively. These 2 modes have initial damping and saturation
values one order of magnitude higher than the other modes. No substantial di�erence
is observed from the case where the antenna perturbs the modes (m = ≠3 and m = ≠4
(fig. 4.6).

In this section, it has been shown that the plasma reacts, both for the electrostatic and
electromagnetic parts, to an electrostatic antenna. The antenna we inserted is intended to
excite the modes within the gap in the continuum, thus not subject to damping, so a growth
of the perturbed modes was expected. This was not always observed because initial damping
was observed in simulations where the antenna was inserted from the beginning. Further
studies are needed to understand what this damping is due to. In addition, inserting the
antenna while the simulation has already started results in a di�erent plasma response, with
a growth of all the modes. So we have shown that the plasma reacts to the insertion of the
antenna, even if it is still unclear whether we are observing the excitation of TAEs.
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Conclusion

This work pursued the goal of studying the phenomena of the interaction between the Alfvén
waves and the plasma using GYSELA.

The initial part of the work has been devoted to study the Alfvén Eigenmode in a cylindrical
configuration. Specifically, a perturbation was initialized with a defined value of poloidal
mode number m and a toroidal mode number n. These simulations were carried out using
a flat q profile and performing a scan through various values of the safety factor q. We
measured the frequency of the oscillation of the electrostatic potential � and of the parallel
component of the vector potential AÎ through a Fourier analysis. We observed what was
expected from the theory: a clear damping with the dominant frequency which was the same
as that predicted for Shear Alfvén waves. So, we conclude that GYSELA can contemplate
the continuum existence.

After having performed studies in a cylindrical configuration, a more realistic toroidal configu-
ration was analysed, using the same parameters of the cylindrical configuration, but changing
the aspect ratio. With the decreasing of the aspect ratio, we could not observe anymore a
clear dominant structure and there was no dominating damping frequency. An analysis of the
poloidal section of � revealed the presence of the predominant modes near the boundaries,
which can be an indicator of the boundary issues: the electrostatic potential in the outer
boundary satisfies Dirichlet’s conditions, so it is set equal to zero. This choice (studied
and well-established in the code) may a�ect the plasma in the immediate proximity of this
boundary. Furthermore, simulations were performed with increasing the domain, resolution
and change of the q profile, using a parabolic q profile and investigating perturbations on
di�erent modes. Even with these changes, it was not possible to observe the gap present in
the continuum.

Thus, after investigating the behaviour of the plasma following an initial perturbation, we
proceeded to excite the modes present in the continuum gap through an external electrostatic
antenna. After having implemented the electrostatic antenna inside GYSELA, simulations
were carried out to ensure the robustness and consistency of these modifications. Once it
was confirmed that the antenna behaved as expected, the analysis proceeded to examine the
plasma’s response to this antenna perturbation. To do this, analyses were done on varying
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di�erent parameters such as frequency, amplitude and modes excited by the antenna. It was
observed how the plasma changes its response as a result of the modification of the parameters.
The obtained results di�ear from the predicted theoretical results and also exhibit di�erences
depending on whether the antenna is inserted from the beginning or during the simulation.
This should not happen since di�erences can be expected as soon as the antenna is introduced,
but once at a steady state, the plasma behaviour is expected to be the same. These di�erences
need to be the subject of further and more in-depth studies.

The results obtained are only preliminary and further studies are needed to gain a physical
and numerical understanding of the phenomenon in GYSELA. Further studies can be done by
tuning and scanning the parameters to identify the best one to operate in GYSELA. Studies
can also be carried out by analyzing the distribution function and finally adding the antenna
to the magnetic part to have a better understanding of this phenomenon.

In conclusion, the thesis showed interesting results in the study of TAEs in GYSELA and laid
the foundation for the study of the interaction between TAEs and turbulence with GYSELA,
a topic of fundamental importance in view of future fusion reactors.
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