
ALMAMATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Machine Learning for Computer Vision

MIXING PRUNING AND DISTILLATION FOR
LIGHTER DIFFUSION MODELS

CANDIDATE SUPERVISOR

Domenico Dell’Olio Prof. Samuele Salti

CO-SUPERVISORS

Prof. Akihiro Sugimoto

Ph.D. Minh-Duc Vo

Academic year 2023-2024

Session 1st

To the indomitable human spirit.

ii

Abstract

Diffusion Models (DMs) represent the state-of-the-art in image generation

tasks in terms of training stability and sample quality, but their sampling pro-

cedure is highly resource-intensive. This thesis addresses the efficiency prob-

lem of DMs by proposing a novel method combining Progressive Distillation

with structured pruning, to reduce the computational and memory overhead

without severely compromising image quality.

The Progressive Distillation method, introduced in Progressive Distilla-

tion for Fast Sampling of Diffusion Models by Salimans and Ho, reduces the

number of required sampling steps by iteratively training a student DM to

match the teacher model’s output in half the steps. However, this method

requires the student to retain the same network architecture as the teacher,

limiting further compression. For this reason, we introduce a structured prun-

ing technique during the distillation process, incorporating concepts such as

pruning ratio differentiation based on the layer location and normalization-

layer-lead pruning. We also introduce Flexible Group Normalization (FGN),

a variation to the Group Normalization layer, to handle uneven channel groups

post-pruning.

We validate our method with experiments on the CIFAR-10 dataset, con-

ducting pruning sensitivity and weight magnitude variation analyses, and com-

paring different pruning scoring criteria to refine our approach. Though sacri-

ficing some sample quality and not particularly optimized, the pruned models

achieve significant reductions in computational requirements, with the best

quality/compression trade-offs observed in 8-step and 4-step models. Our

method provides a possible solution for DM efficiency and gives cues for

further research exploring this family of combined complexity-reduction tech-

niques.

Contents

1 Introduction 1

2 Background 5

2.1 Diffusion Models . 5

2.2 Progressive Distillation . 9

2.3 Model Pruning . 12

3 Proposed Method 17

3.1 Introducing pruning to Progressive Distillation 17

3.2 Network structure and Pruning criteria 19

3.3 Flexible Group Normalization 24

4 Results and ablations 28

4.1 Training recipe and sensitiviy analysis 29

4.2 Pruning scoring function . 33

4.3 Flexible Group Normalization effectiveness 35

4.4 Final method results . 36

5 Conclusions 41

Appendices 46

A Further experiments on gamma and longer training 46

B Additonal samples 49

i

Bibliography 56

Acknowledgements 61

ii

List of Figures

2.1 Representation of the forward (in red) and reverse (in green)

diffusion process. 6

3.1 Representation of an instance of the employed U-Net. Each

rectangle represents a ResNet (brighter color) or Residual At-

tention block (darker color). Each level is marked with a dif-

ferent color. Boxes with ↑ and ↓ are respectively upsampling

and downsampling blocks, while those marked with ”c” and

”n” are 2D convolutional layers or Group Norm layers. 19

3.2 Detailed representation of the blocks employed in the U-Net. . 20

3.3 Representation of the pruning propagation throughmasks. This

procedure ensures signal consistency and enables ”greedy” prun-

ing. 21

3.4 Graphical representation of the attention block pruning. Neu-

ronswith the same colors (purple, red) are scored together(refer

to Fig. 3.2b for details). Gray neurons are removed as a con-

sequence of pruning mask propagation. 23

3.5 Illustration of the group shifting problem. 26

3.6 Implementation of the Flexible Group Normalization Layer.

Z−1
g is equal to |G′

g| · |Am|. 27

4.1 Results of the pruning sensitivity analysis on the 32-steps model. 30

4.2 Samples obtained with three different seeds after each round

of pruning during sensitivity analysis. 31

iii

4.3 Weight variation analysis plot. 32

4.4 Selected samples from a batch of 16 generated images. Each

batch was generated with the same noise seed (0). 39

B.1 Additional samples from the 32-steps models. 50

B.2 Additional samples from the 16-steps models. 51

B.3 Additional samples from the 8-steps models. 52

B.4 Additional samples from the 4-steps models. 53

B.5 Additional samples from the 2-steps models. 54

B.6 Additional samples from the 1-step models. 55

iv

List of Tables

4.1 Pruning ratio for each macro-block and distillation iteration,

with expected final pruning ratio and actual one (1-step model). 33

4.2 FID comparison for different pruning score function. (Lower

is better) . 34

4.3 FID comparison for Flexible Group Normalization variants.

(Lower is better) . 36

4.4 FID comparison between pruned and unprunedmodels (Lower

is better) . 37

4.5 Weights and FLOPs comparison between pruned and unpruned

models (Lower is better) . 38

A.1 FID scores of further experiments fixing the value of γ. (Lower

is better) . 47

A.2 FID results and percentage of removed params of the defini-

tive score function adaptations with longer training time. (Lower

is better) . 47

v

Chapter 1

Introduction

Generative AI has drawn a lot of the research community and public atten-

tion recently due to the development and deployment of new models capa-

ble of creating content of remarkably high quality. In the context of image

generation, that is the generation of an image starting from a given dataset,

a seed, and eventually a description (conditioned generation), or related im-

age manipulation tasks (image inpainting, style transfer, super-resolution) an

example is provided by the famous products by Stability AI [28], which ex-

ploit a state-of-the-art architecture to generate or manipulate images, usually

starting from a text-prompt or another image. Said architectures are based

on Diffusion Models (DM), which briefly after their introduction on this task

largely outperformed the Generative Adversarial Networks (GAN) [7], which

were traditionally used for generative tasks. In GAN-based methods, the net-

work is trained to generate samples able to fool a discriminator network, which

suffers from hard convergence problems as the so-called mode collapse [36].

Differently, the way DMs model the generative process can be seen as a series

of network (generally U-Net [31] variants) evaluations that progressively de-

noise the starting seed to generate the image [16]. From a mathematical point

of view, they learn a Markovian process, also named ”reverse process” as it

is opposed to the ”forward” diffusion process adding (gaussian) noise to the

image. This process is more stable to learn when compared with GANs and

Introduction 2

returns samples of higher quality. However, the generation process is highly

inefficient as a single sample may require hundreds to thousands of network

passes [5].

The DM sampling speed acceleration is a highly active branch of research,

as obtaining faster and lighter models to execute would make them accessible

to users with consumer-level hardware, would enable large real-time appli-

cations (e.g. video/3D/Audio generation extensions) and cut down energetic

and, consequently, environmental costs for their usage. In this context, this

work focuses on the refinement of a sample acceleration method for Diffusion

Models, known as Progressive Distillation. It was developed by Salimans

and Ho in [32] and it proposes to ”distill” a diffusion model in a student one

requiring half of its sampling steps. This is done forcing its one-step output

to match the results of two steps of the teacher. Said distillation is ”progres-

sive”, i.e. once the student is trained it becomes the new teacher, and the

process continues until a 1-step model is reached. This method yields tremen-

dous speed-ups in the sampling procedure, but the authors limit its application

to a setting where every distilled model employs the same architecture. This

choice allows student models to be initialized with the weights of their teacher,

which intuitively accelerates training convergence. Thus, this thesis proposes

a method that can bypass this restriction and bring further compression to the

model by also reducing its memory footprint. The main concept is to mix a

process of progressive structured pruning to the Progressive Distillation, with

the aim of producing lighter and faster DMs that can be used with standard

hardware and libraries (i.e. not employing sparse computation). The pruning

procedure [2] removes groups of weights that are found to be less ”important”

or ”informative” by an aggregated scoring criterion. In the case at hand, it

is applied in four ”equally-spaced in time” steps for each distillation iteration,

which avoids further fine-tuning. It is based on concepts taken from the liter-

ature on pruning as keeping the signal and channel consistency when pruning

filters [22], giving more importance and propagating pruning masks starting

Introduction 3

from Normalization Layers [24][18] and differentiate the pruning aggressiv-

ity depending on the position of the layer within the U-Net [19]. The method

also introduces a variant to the Group Normalization Layer [40](GN) which

is employed in the architecture. This variant is required as the vanilla GN per-

forms normalization on channels, after splitting them into equal-sized groups.

When one of the channels is removed, it is replaced by the immediately succes-

sive remaining channel, forcing the network to drastically change the learned

weights and pre-computed statistics for that group. In addition, the vanilla GN

requires that either groups are fully removed or that the group size is changed

depending on the number of remaining channels. Our variant avoids these

problems and restrictions by normalizing channels divided into groups with

flexible dimension (Hence its name, Flexible Group Normalization or FGN)

and empirically favoring the method convergence.

To validate themethod, we conducted different experiments on the CIFAR-

10 dataset [20] (60’000 32x32 color images) using the class-unconditional

architecture (3 level U-Net), the jax [3] code base as well as the checkpoints

of the 64 to 1 step models made available by the authors of [32]. Firstly, it was

necessary to produce some preliminary results to establish the pruning method

hyperparameters. Among them, we include the pruning ratio and the way it

should be differentiated based on the networkmacro-blocks and the distillation

iteration. To this end, a per-macro-block pruning sensitivity analysis as done

in [19] was performed, where each macro-block is pruned in isolation and

after that, the FID score of the networkwas computed. Also, a weight variation

analysis was performed, comparing the difference between the student and the

teacher model at each distillation iteration. Other experiments were required

to select the pruning scoring function for the weights between the traditionally

used L1 Norm [22], one based on the Taylor expansion of the disruption loss

presented in [9] (which evaluates the deterioration of the loss if a weight is

removed) and an adaptation of the latter on our specific case. This adaptation

dynamically mixes the student disruption loss with the teacher one, which

Introduction 4

is intuitively deemed to be more reliable at the beginning of the distillation

iteration. Finally, we also validate the efficacy of the FGN. We follow the

results of these experiments to decide the method parameters and choices and

we propose its final results, compared with the unpruned models in terms of

FLOPs required from the diffusion process, number of weights and sample

quality, using the FID score [14].

The thesis is organized as follows: Chapter 2 exhibits an exhaustive de-

scription of diffusion models with their advantages and disadvantages, as well

as an excursus on the twomain techniques employed in this work - Knowledge

Distillation and Model Pruning. In Chapter 3 the alteration of the Progressive

Distillation method, the employed network architecture, and the explanation

of the reasons and implementation of the FGN are presented in detail. In Chap-

ter 4 we report the results of our experiments. Finally, the conclusion on the

experiments and final conclusions on the work are presented in Chapter 5.

Chapter 2

Background

2.1 Diffusion Models

Diffusion Models (DMs) represent the state-of-the-art for Generative AI (Im-

ages, Audio, Video) as well as powerful tools for Reinforcement Learning

(RL), Bioinformatics and Black Box Optimization [5]. They were first pre-

sented in the seminal work by Sohl-Dickstein et al. [33], where taking an idea

first applied in thermodynamics, they describe a way to create probabilistic

models that are both flexible and easily evaluable. In particular, Diffusion

Models aim to learn a reversal function that converts samples from a known

and tractable distribution (e.g. 2D Gaussian noise) to those of a target com-

plex data distribution (e.g. the dataset image distribution). This is achieved

by modeling two Markovian processes (Fig. 2.1) [16][32] :

• The forward process. It is a fixed process that adds noise to a datapoint

x0 sampled from the target distribution q. In this way, the latter is per-

turbed to an analytically tractable (usually Gaussian) distribution p(xT):

q (x1:T |x0) :=
T∏

t=1
q (xt|xt−1) ,

q (xt|xt−1) = N
(
xt; (αt/αt−1) xt−1, σ2

t|t−1I
) (2.1)

2.1 Diffusion Models 6

where t indicates the ”time-step” of the process, σ2
t|t−1 equals to(

1− eλt−λt−1
)

σ2
t and αt, σt are differentiable functions such that the

log signal-to-noise ratio λt = log (α2
t /σ2

t) is monotonically decreasing

with t increasing. The definition is usually given in continuous time (i.e.

t ∈ [0, 1]), but can be easily adapted to the discrete formulation, which

is fitting for the actual implementation.

• The reverse process. As the name suggests, this process ”reverts” the

previous one by sampling data from the tractable Gaussian p(xT) and

then repeatedly ”denoising” it to obtain a point in the q(x0) distribution:

p (x0:T) := p (xT)
T∏

t=1
p(xt−1|xt),

p(xt−1|xt) := N (xt−1; µ (xt, t) , Σ (xt, t))
(2.2)

Figure 2.1: Representation of the forward (in red) and reverse (in green) dif-
fusion process.

Since p(xt−1|xt) cannot be analytically obtained, it is estimated using a

neural network with parameters θ. The main objective of this network is to

learn the score function of the unknown data distribution q(x), which is de-

fined as∇x log q(x) or, equivalently, of the perturbation kernel q(xt|x0) as in

the so-called Denoising score matching [38]. The latter allows the computa-

tion of the network training objective without explicitly using the ground truth

value of the score function (which is, as its reference distribution, unknown),

exploiting finite samples. The corresponding loss function is a re-weighted

2.1 Diffusion Models 7

variant of the Evidence Lower Bound (ELBO) [35] (in discrete formulation):

θ∗ = argmin
θ

T∑
t=1

w(t)Eq(x)Eq(xt|x0)
[
∥∇xt log q(xt|x0)− sθ (xt, t)∥2

2

]
(2.3)

where w(t) is a weighting function (usually proportional to the SNR). Since

q(xt|x0) is Gaussian, then the score admits an analytical form [5][38]:

∇xt log q(xt|x0) = −xt − αtx0

1− α2
t

(2.4)

Moreover, we can see how the score value corresponds to the noise added to

the image [5]. Thus the network practically tries to predict either the noise ϵ

added to the original image up to a certain timestep or a denoised version of

the image, given a noisy one, after t steps of forward process. In the latter

case, the loss is re-written as [32]:

Lθ = |ϵ− ϵθ(xt, t)| = α2
t

σ2
t

|x0 − x̂θ(xt, t)| (2.5)

The network can be trained also with conditioning, to obtain samples that re-

flect some specific properties (text-based generation, image inpainting, style

transfer) [30]. This is usually done by incorporating class information into

normalization layers [7] or cross-attention modules [30], and the quality of

these samples can be improved by adding guidance from a classifier [7] or

adaptive weights [17]. However, we will focus on unconditional models, thus

further details on this topic are out of the scope of the work.

After the network is trained, it is then possible to sample new data in q(x)

by first sampling a point xt from p(x) = N (0, I) and then applying ancestral

sampling [32][35]. This technique considers that the forward process can be

written in ”reverse form” as:

q(xt−1|xt, x0) = N (xt−1; µ̃t−1|t(xt, x0), σ̃2
t−1|tI) (2.6)

2.1 Diffusion Models 8

where:

σ̃2
t−1|t = (1− eλt−λt−1)σ2

t−1

µ̃t−1|t(xt, x0) = eλt−λt−1(αt−1

αt

)xt + (1− eλt−λt−1)αt−1x0

(2.7)

From this observation, the rule for ancestral sampling is then defined as fol-

lows:

xt−1 = µ̃t−1|t(xt, x̂θ(xt)) + ϵ
√

(σ̃2
t−1|t)1−γ(σ2

t|t−1)γ

= eλt−λt−1(αt−1

αt

)xt + (1− eλt−λt−1)αt−1x̂θ(xt, t) + ϵ
√

(σ̃2
t−1|t)1−γ(σ2

t|t−1)γ

(2.8)

where ϵ is Gaussian noise, γ is a hyperparameter controlling the quantity

of noise added during sampling. This is the basic way to obtain samples

from the network, but there exist improved methods. Some examples are

the DPM-Solver++ [25] and DEIS [42] which focus on reducing the number

of sampling timesteps by improving the way Ordinary/Stochastic Differen-

tial Equations (ODE/SDE) associated to the diffusion process are solved. An-

other important method is the one presented in [34], which is also employed

in this contribution. Song et al. extended the concept of Denoising Diffu-

sion Probabilistic Models (DDPMs) from the Markovian reverse process to a

non-Markovian one without changing the objective function used to train the

model. In this way, any DDPM can be treated as Denoising Diffusion Implicit

Model (DDIM) and allows to adopt a deterministic sampling procedure that

produces better samples at a faster rate by simply modifying the variance pa-

rameter σ̃2
t−1|t for the reverse process. In fact, the definition provided in Eq.

2.6 and taken from [32] is already extended to describe also non-Markovian

distributions, as each xt−1 depends both on xt and x0. Since the variance is

set as shown in Eq. 2.7, the process is rendered Markovian [34], but if it is set

to 0 for all t, we obtain the deterministic sampling process as adapted in [32]

2.2 Progressive Distillation 9

from [34]:

xt−1 = αt−1x̂θ(xt, t) + σt−1
xt − αtx̂θ(xt, t)

σt

= e(λt−λt−1)/2(αt−1

αt

)xt + (1− e(λt−λt−1)/2)αt−1x̂θ(xt, t)
(2.9)

The way this technique accelerates sampling resides in the possibility of con-

sidering a generative process that does not approximate all the steps of the

reverse process (and, so, of the forward one), as it is not required anymore by

its non-Markovian nature (the strict dependency of a state to its previous one

is lost). Moreover, since the sampling process does not include the addition

of random noise ϵ, the result of every step is determined given the sample at

a previous time-step. Thus, the generating process takes the form of a deter-

mined ”sampling trajectory” [34] which may span over a subset of the T steps

of the corresponding forward process. Whenever this subset is much smaller

than T , we then obtain an acceleration of the generation process.

These are a few examples of how in the DMs research field most of the ef-

forts are put toward improving the efficiency and speed of sampling. DMs sur-

passed GANs considering the sample quality and the relatively higher training

stability [7] but still fall behind if one considers inference speed due to the iter-

ative nature of their sampling method. Thus, to the best of our knowledge, to

reduce the number of timesteps required without affecting quality past works

have either tried to develop new sampling techniques (which is difficult, con-

sidering that the theory around DMs is limited and complex [5]) or to apply

alternative approaches, such as distillation over the timesteps as in [32].

2.2 Progressive Distillation

Model Distillation or Knowledge Distillation (KD) was introduced by Hinton

et al. in [15] as a mean to ”condense” the knowledge from a resource-intensive

”teacher” model or ensemble to a smaller ”student” model. In the context of

2.2 Progressive Distillation 10

classification, the student model is trained by optimizing the cross-entropy

loss between its output and both the ground truth and the output of the teacher

model. Moreover, the term of the loss dealing with the latter employs high-

temperature softmax to turn the teacher output distribution into ”soft labels”.

These allow the student model to learn subtle differences in the class distribu-

tions that are not present in the GT. For example, if a picture contains both a

cat and a dog but is labeled only as a picture of a cat, the teacher model would

return a less certain probability distribution. Typically, this leads to improved

outcomes in the student model, along with a more compact and efficient struc-

ture.

In the field of DiffusionModels, the KD has beenmostly applied as amean

to obtain networks with higher sampling speed. To the best of our knowledge,

the first kind of this contribution is the one by Luhman & Luhman [26], where

a pre-trainedDM is distilled into a single-step student network. This technique

involves initializing the latter with the weights of the teacher (which speeds up

convergence and favors knowledge transfer) then, for each xT sampled point

to be used as input for the training, the teacher model is fully run on xT to

produce Fteacher(xT) with DDIM sampling, which is deterministic. Then, the

student network is trained with the usual loss (Eq. 2.5) but forcing its output

after a single pass to match the many-step result Fteacher(xT). The results

show that the student yields competitive results to some other SOTA model

with comparable or considerably increased sampling speed.

Another independently developed work by Salimans & Ho, on which this

work heavily relies, proposes a similar approach that yields better results and

reduces some possible scalability issues of Luhman & Luhman’s one. Said

method is named Progressive Distillation [32], as it requires the student to

compress two teacher’s DDIM timesteps in a single one and, once it is trained,

it becomes the teacher for a new student, allowing a process that progressively

halves (starting from 1024) the number of required sampling steps by each

network.

2.2 Progressive Distillation 11

The algorithm can be summarized as follows [32]:

Algorithm 1 Progressive Distillation algorithm
Require: Trained teacher model x̂η(xt), Dataset D, Loss weight function

w(), noise scheduling functions α and σ, student sampling steps N

for K iterations do
θ ← η ▷ Initialize student with teacher η
while not converged do

x ∼ D
t← i/N, i ∼ Cat [1, 2, . . . , N]
ϵ ∼ N(0, I)
xt ← αtx + σtϵ ▷ Add random noise to initial sample

t′ ← t− 0.5/N, t′′ ← t− 1/N ▷ 2 DDIM steps with teacher η
xt′ ← αt′x̂η(xt) + σt′

σt
(xt − αtx̂η(xt))

xt′′ ← αt′′x̂η(xt′) + σt′′
σt′

(xt′ − αt′x̂η(xt′))
x̃← xt′′ −(σt′′ /σt)xt

αt′′ −(σt′′ /σt)αt
▷ Build target for student

λt ← log [α2
t /σ2

t]
Lθ ← w(λt)|x̃− x̂θ(xt)|22
θ ← θ − γ∇θLθ

end while
η ← θ ▷ Update teacher with student
N ← N/2 ▷ Halve sampling steps

end for

It is important to note that, differently from Luhman & Luhman’s ap-

proach, this algorithm never requires to run the teacher model for its total

number of sampling steps. In this way, fewer resources are required to run

this process. Another difference resides in the student model being trained

to produce either x̂θ(xT) or the ”velocity” vector v = αtϵ − σtx, which sta-

bilize and ensure convergence at fewer time-steps. Moreover, Progressive

Distillation allows control of the tradeoff between sample quality and model

efficiency. The method generally allows a speed-up of 64x with almost no

loss in sample quality across different datasets, but from the 8-step model to

the single step one, the quality remarkably decreases. Progressive Distillation

2.3 Model Pruning 12

was also extended to Latent DiffusionModels, classifier-free guided DMs and

to employ a stochastic sampling technique in [27]. There is, however, a con-

stant element in all these works, that is: the student model is always initialized

with the weights of the teacher, thus forcing the former to have the same archi-

tecture as the latter. This excludes the possibility of reducing the dimension

of the architecture to further gain efficiency in terms of FLOPs and sampling

time. So, the primary goal of this contribution is to explore ways to bypass or

dampen this restriction and investigate the impact on performances.

2.3 Model Pruning

With ”Model Pruning” we refer to a class of techniques developed to optimize

neural networks. As the name suggests, they entail the removal or ”pruning”

of unnecessary components (usually weights) according to a chosen criterion

to ”slim” the network. The number of weights to remove is usually indicated

with the pruning ratio, a relative measure computed as the ratio between the

number of removed weights and the original number of weights of the net-

work. The foundations on which pruning is based are the empirical observa-

tions suggesting that large models enclose some degree of redundancy. So,

it is possible to exploit this aspect to make the model more resource-efficient

while maintaining or improving performances, thanks to the generalization

power contained in the removal of too specialized weights. These techniques

can have a lot of differences among them, depending on the application con-

text and the specific task objective. This leads to a very complex taxonomy,

as well as to a lack of standardized datasets, metrics, and experimental prac-

tices [2]. To give an overview of these methods, it is important to remark that

they can exhibit differences along two orthogonal directions: ”how” to apply

the pruning and ”when” to apply it. Regarding ”how” to apply pruning, the

techniques could be distinguished by:

2.3 Model Pruning 13

• Structure and granularity. Pruning can be performed at different de-

grees of granularity, starting from the atomic unit of the weights up to

filters, layers, or modules. When it is sparsely applied only on weights,

it is referred to as unstructured pruning. An example is given in [21],

where each parameter is associated with a saliency score based on the

hessian of the loss function w.r.t. a perturbed version of the parame-

ter (i.e. emulating its removal) . The network is iteratively trained and

pruned by setting to 0 and freezing parameters with low scores. Differ-

ently, methods focusing on more complex substructures are referred to

as structured methods. An example is given by Li et al. [22], where

they propose a technique to remove full convolutional filters with a low

sum of the L1 Norm of their kernel weights. They also underline the

advantages of structured pruning over unstructured techniques. If un-

structured pruning can precisely locate and remove redundant weights,

thus possibly yielding better performances, it still requires ad hoc hard-

ware or libraries dealing with sparse calculus to effectively reduce in-

ference time on more complex structures like convolutional layers. On

the contrary, structured pruning allows the removal of entire filters or

blocks such that the gain in performances can be achieved with standard

Neural Network frameworks like pytorch or tensorflow, but posing

new challenges on how to aggregate or compute scores for the networks

sub-structures.

• Scope and uniformity. Methods may differ in the way different sec-

tions of the network are scored and pruned. Each parameter could be

scored locally or globally, i.e. one can decide to remove a fraction of

the weights with the lowest importance score w.r.t. other weights within

a sub-structure (layer, block...) or within the whole network [2]. This

entails that architectures may be pruned unevenly or also with hetero-

geneous pruning ratios across the model sub-structures. Kim et al. [19]

2.3 Model Pruning 14

exploit this possibility to maximize pruning on a U-Net [31]. First, they

conduct a sensitivity analysis to verify how the performance deterio-

rates when each structure is pruned in isolation. Then, when trimming

the whole network, each block is pruned with a ratio that is proportional

to its ”insensitivity”. In this way, they achieve an overall higher weight

reduction and better retain the performances when compared to uniform

pruning.

• Pruning criterion. Every method requires some kind of criterion to se-

lect the weights to be removed. These rules may take the form of a fixed

function or can be learned. In the first kind, we may find the random

pruning heuristic which randomly shuts down a fraction of the weights

and might be used as a baseline or debugging indicator [5]. Another ex-

ample ismagnitude pruning, where each weight/filter is associated with

a score equal to its L1 norm (or L2), as in [22] or [19]. This allows the

removal of weaker weights which produce low activation values that, in

turn, loosely influence the inference process. Because of this, the norm

function is sometimes computed only on the weights of the normaliza-

tion layers [24], since among their purposes they learn a scaling factor

γ to be applied on the activation map. Finally, within the fixed criteria,

we may find the gradient-based ones (as in [21] or [9]), which try to

minimize the loss disruption brought by the reduction of the network

capacity. In the case of criteria requiring learning, the most common

choices are either to add a learned scaling parameter to each channel,

such that, at the end of the training phase, the channels with the lowest

associated parameter can be safely removed (e.g. [39]) or to perform

Neural Architecture Search via Reinforcement Learning [13], or genetic

search algorithms [23]. Generally, these kinds of rules allow an elegant

end-to-end process to obtain a pruned model but, when compared with

fixed criteria, are less general and more computationally demanding as

2.3 Model Pruning 15

they require training a network with a specific architecture from scratch.

While the aspects to consider about the ”when” to apply pruning are:

• Scheduling. Network compression may be performed in multiple steps

during the training process or in a single step at its end or even beginning.

Some efforts were put into researching the possibility of pruning neural

networks at initialization or particularly early in the training. A famous

example is the lottery ticket hypotesis by Frankle and Carbin [10], that

states that ”A randomly-initialized, dense neural network contains a sub-

network (the ”winning pruning lottery ticket”) that is initialized such

that —when trained in isolation— it can match the test accuracy of the

original network after training for at most the same number of iterations,

based on the idea that an untrained architecture already encloses in itself

optimal sub-structures”. So their work focuses on training the network

for a few epochs, performing magnitude pruning and then restarting

training with the initial weights. Similarly, Renda et al. [29] propose

learning rate rewinding which restarts the learning rate schedule after

pruning instead of re-initializing the weights. These, as many other tech-

niques, bring good results with a little to no overhead on the training but

are still beaten by ”after-training” techniques [11].

• Fine-tuning requirement. Some methods may require additional fine-

tuning after the removal of weights to recover some of the lost perfor-

mance. These techniques are usually more general as they could be also

applied to pre-trained foundational models, even if they require some

training overhead. Other methods may propose a training process that

allows pruning by design. Some examples are the works implementing

a learned criterion like in [39] or introducing some regularization dur-

ing training like CentripetalSGD [8]. In the first case, the values of the

activation maps in unimportant channels are already dampened by the

learned scaling factor during training so they can be safely removed. In

2.3 Model Pruning 16

the second one, SGD is modified allowing to learn groups of redundant

filters where, at the end of training, only one is preserved from each

group.

Network Pruning can be a powerful tool to use to increase the efficiency

of a model and it works ’orthogonally’ w.r.t distillation techniques. Aghli et

al. [1] proposed a method to compress deep convolutional networks which

consists of pruning a pre-trained network using the Average Percentage of Ze-

ros (percentage of zero activations of a neuron after the ReLU) saliency score,

fine-tuning it and then distilling it in a smaller student network to further re-

duce the dimension of the model. We also already briefly mentioned the work

by Vo et al. [39] where a GAN network is progressively pruned during train-

ing, while simultaneously transferring knowledge from a considerably bigger

teacher to better preserve performances. The positive results of both these

works show that it is possible to mix pruning and distillation to further exploit

their strengths.

Chapter 3

Proposed Method

3.1 Introducing pruning toProgressiveDistillation

Our proposedmethod extends the seminal work by Salimans&Ho onProgres-

sive Distillation [32]. In particular, we try to explore the possibility, expressed

as possible future work in the paper, to adapt the distillation framework to al-

low student network with a different architecture w.r.t the teacher network. In

particular, we try to obtain a smaller and, thus, more efficient student. The

main obstacle to this is the fact that using the same architecture helps con-

vergence, which is central for the training of complex networks as Diffusion

Models. To work around this problem, we tried to integrate a simple mag-

nitude pruning in the distillation process to reach our goal. So we modified

Algorithm 1 as shown in Algorithm 2.

We introduce a pruning ratio to be achieved by the end of each distilla-

tion iteration. This ratio is further divided and applied in smaller steps as to

introduce a progressive pruning phase within each diffusion step. This was

inspired by works such as [39] and [18] since not only does one-shot prun-

ing require fine-tuning and may be too aggressive, but also has been proven

ineffective when applied to other generative models such as GANs [39]. Fur-

thermore, it is important to notice that the pruning ratio rp is a hyperparameter

which can be chosen a priori, allowing to control the compression vs. quality

3.1 Introducing pruning to Progressive Distillation 18

Algorithm 2 Progressive Distillation w/ pruning algorithm
Require: Trained teacher model x̂η(xt), Dataset D, Distillation iterations K,
Training steps S, Loss weight function w(), noise scheduling functions α
and σ, student sampling steps N , pruning function fp(), iteration pruning
ratio(s) rp, train steps between pruning stp, pruning steps sp

for K iterations do
θ ← η ▷ Initialize student with teacher η
for S training steps do

x ∼ D
t← i/N, i ∼ Cat [1, 2, . . . , N]
ϵ ∼ N(0, I)
xt ← αtx + σtϵ ▷ Add random noise to initial sample

t′ ← t− 0.5/N, t′′ ← t− 1/N ▷ 2 DDIM steps with teacher η
xt′ ← αt′x̂η(xt) + σt′

σt
(xt − αtx̂η(xt))

xt′′ ← αt′′x̂η(xt′) + σt′′
σt′

(xt′ − αt′x̂η(xt′))
x̃← xt′′ −(σt′′ /σt)xt

αt′′ −(σt′′ /σt)αt
▷ Build target for student

λt ← log [α2
t /σ2

t]
Lθ ← w(λt)|x̃− x̂θ(xt)|22
θ ← θ − γ∇θLθ

if (current training step % stp) = 0 then
θ ← fp(θ, rp/sp)

end if
end for
η ← θ ▷ Update teacher with student
N ← N/2 ▷ Halve sampling steps

end for

3.2 Network structure and Pruning criteria 19

and the compression vs. distillation tradeoffs, depending on the task. We ex-

ploited this possibility in our experiments to decrease the compression ratio

once the distillation process reaches the last iterations, where the model is put

under maximum compression stress. Moreover, since the pruning method is

applied post hoc, we can leverage pre-distilled models as starting teachers. In

fact, from [32] we can see that the chain of teacher/student models tends to

retain the original model quality up to 64 and 32-steps models. Consequently,

the method can be applied also stating from these models, further reducing

training and time resources requirements.

3.2 Network structure and Pruning criteria

Figure 3.1: Representation of an instance of the employed U-Net. Each rect-
angle represents a ResNet (brighter color) or Residual Attention block (darker
color). Each level is marked with a different color. Boxes with ↑ and ↓ are
respectively upsampling and downsampling blocks, while those marked with
”c” and ”n” are 2D convolutional layers or Group Norm layers.

The pruningmethodwe introduce is rule-based and structured, so to obtain

performance gains without employing specific software or hardware for sparse

computation. Although it was tailored around the network architecture used

in the reference paper, it can still be generalized and adapted to other variants

or structures. Said structure is a U-Net [31] as the one used in [32] and [16]. It

is composed of different levels, each of them made of alternating ResNet [12]

3.2 Network structure and Pruning criteria 20

blocks and self-attention [37] residual attention blocks. At the end of each

level, the resolution is halved (downward path) or doubled (upward path) using

a resampling ResNet block as in [4]. An example of the architecture as well

as the detailed composition of the blocks are presented in Figures 3.1 and 3.2.

(a) ResNet Block. The layers/operations in
square brackets are either optional (dropout)
or used in specific blocks (resample for re-
sampling blocks, shortcut and concatenation
for up-path blocks)

(b) Residual Attention Block. Ac-
tivation maps are flattened for at-
tention computation.

Figure 3.2: Detailed representation of the blocks employed in the U-Net.

Considering this network structure, we can list the rules applied to prune

the network by the function fp (Alg. 2):

• Pruning is performed following theMagnitude pruning paradigm, where

3.2 Network structure and Pruning criteria 21

every filter or neutron is associated with a saliency score through a scor-

ing function s. In fact, a filter or neuron K is pruned if the score:

s (K) =
∑

Wk∈K
|Wk| (3.1)

(where Wk are its weights) is among the lowest when compared with

the scores of the other sub-structures belonging to the same layer. The

scope of the scoring function s is restricted to the layer so that the ones

in the same macro-block have the same pruning ratio applied to them.

• The removal of the sub-structures is not performed in a single step,

but one layer at a time, starting from the input one and following the

main signal path. The scoring is performed ”greedily”, meaning that

neurons/filters in a given layer are scored after the elimination of neu-

rons/filters in the previous structure. In fact, after pruning a layer, a

pruning mask is propagated to the immediately next layer(s) to prune

its input channels (Figure 3.3). This criterion was shown to be more

effective than cutting and scoring layers in isolation in [22]. Moreover,

it also allows the layers closer to the input to be pruned with more ”in-

dependence” w.r.t. the others, which intuitively helps preserving qual-

ity. This happens because the perturbations added to the signal at the

Figure 3.3: Representation of the pruning propagation through masks. This
procedure ensures signal consistency and enables ”greedy” pruning.

3.2 Network structure and Pruning criteria 22

beginning of the network pass are the most impacting ones on the per-

formance, so its crucial to perform correct, precise and unconditioned

choices when removing information in this stage.

• For obvious reasons, input and output channels are not pruned in order

to avoid heavy damage to the input signal and obtain well formed color

images;

• A pruning mask is propagated also through skip connections within a

ResNet block and between networks macro-blocks. In the latter case,

the initial pruning mask for the ResNet block is obtained by concatenat-

ing the one propagated from the down-branch and the one yielded by

the immediately previous block.

• If the pruning ratio is different between structures where a mask is be-

ing propagated, the latter is either filled or further cut. Activation maps

are expanded with zero-channels or compressed accordingly during in-

ference. This allows to keep consistence between the activation maps

dimensions.

• When removing the filters from the first convolutions (2DConv 1) and

the dense timestep embedding layer in a ResNet block (Fig. 3.2a), their

saliency scores are not obtained by aggregating the scores of their ker-

nel weights or neurons. Instead, they are assigned the score of the cor-

responding neurons of the second Group Normalization layer (Group

Norm 2), following the works on Norm-based pruning [24][18]. So, for

example, if one considers the convolutional filter responsible for the

computation of the nth output channel, the saliency score associated to

it will be computed from the learned parameters for the nth channel of

the Group Normalization Layer. The same will happen for the nth and

the k + nth neurons (where k is equal to half of the output dimension of

the layer) of the dense timestep embedding layer.

3.2 Network structure and Pruning criteria 23

• The attention blocks are pruned by scoring together and removing triplets

of corresponding neurons used for k, q, and v computation. Also, each

head is independently pruned (Fig. 3.4).

Figure 3.4: Graphical representation of the attention block pruning. Neurons
with the same colors (purple, red) are scored together(refer to Fig. 3.2b for
details). Gray neurons are removed as a consequence of pruning mask propa-
gation.

The pruning ratio is not applied uniformly to the whole network, but fol-

lowing [19], we perform a sensitivity analysis to detect which macro-blocks

are less or more sensible to pruning. In order to do so, each block is pruned

independently and in isolation w.r.t. the others with different pruning ratios,

the network performances are compared with the unpruned network consid-

ering the FID score [14], without performing fine-tuning. Thus, considering

the sensitivity of each macro-block and the desired network dimension, the

pruning ratios rp can be determined.

Finally, the weight scoring function used at the beginning of the devel-

opment and for the sensitivity analysis was the L1 Norm, as it is commonly

used for its simplicity for magnitude pruning. In a secondmoment, the scoring

function proposed by Fang et al. in [9], was adopted as it produced empirically

better results. Said function falls in the gradient-based category, as it tries to

3.3 Flexible Group Normalization 24

individuate those structures that, when removed, minimize the loss disruption:

min
θ′
|Lθ′ − Lθ| , s.t. ∥θ′∥0 ≤ 1− rpg (3.2)

where rpg is the global pruning ratio. By exploiting the Taylor expansion

to approximate the loss disruption, they find the following score for the sub-

structure K:

s (K, x) =
∑

Wk∈K

∣∣∣∣∣Wk ·
∑

t

∇Wk
Lt (θ, x)

∣∣∣∣∣ , s.t.Lt/Lmax ≥ T (3.3)

So, at each pruning round, the network is run on the input x in order to accu-

mulate gradients over different timesteps. However, not all of the latter are

exploited as the accumulation is stopped once the ratio between a given step

loss and the maximum recorded step loss falls under a threshold T . This is

done to avoid considering noisy and redundant gradients that can be found to-

ward the end of the generation process [9]. Moreover, some experiments were

run to try mixing information coming from both the student and the teacher

network in a dynamic manner during a single distillation step. The intuition

behind it was to consider more reliable information coming from the teacher

network at the beginning of the pruning since it had a more ”stable” archi-

tecture and slowly transferred importance to the student network once it was

reaching its final form. These experiments yielded worse results, so the infor-

mation is strictly taken from the student model only.

3.3 Flexible Group Normalization

During the development and testing of the method, another important chal-

lenge emerged. It is linked to the presence ofGroup Normalization layers [40]

in the network, which are more stable and batch-size-independent when com-

pared to ”plain” batch normalization. In fact, normalization statistics are com-

puted within fixed-sized groups of channels. In mathematical terms, given a

3.3 Flexible Group Normalization 25

feature xijc belonging to the cth channel of an activation map, it normalizes it:

x̃ijc = 1
σg

(xijc− µg), g = ⌊ c

|G|
⌋ (3.4)

where σg and µg are the standard deviation and the mean of the gth group of

channels and |G| is the group size. In more detail, σg and µg are computed as

follows:

µg = 1
|G| · |Am|

g·|G|+|G|∑
k=g·|G|

∑
i,j

xijk (3.5)

σg =

√√√√√ 1
|G| · |Am|

g·|G|+|G|∑
k=g·|G|

∑
i,j

(xijk − µg)2 + ϵ (3.6)

where |Am| is the spatial dimension of the activation map to which the xijk be-

longs to (height × width) and ϵ is a small constant added for numerical stabil-

ity. Then, as the other normalization technique, the layer learns a per-channel

pair of weights γ and β to apply a linear transformation that can compensate

a possible loss of representational ability [40]:

yijc = γcx̃ijc + βc (3.7)

The application of pruning on architectures employing this type of normaliza-

tion entails that the removal of some channels may cause the others to shift

into different groups from the original one (Fig. 3.5). Also, due to implemen-

tation restrictions the number of remaining channels had to be a multiple of the

group size or the group size had to be changed in order to fit this requirement.

This problem was initially avoided by executing tests on a sparse model,

i.e. the pruned weights were frozen and set to 0. But, once the first tests were

run on a compact model with restrictions on the pruning strategy, the reported

results were comparably worse. So, the normalization layer was modified in

order to accept variable-sized groups, based on the idea that moving channels

3.3 Flexible Group Normalization 26

Figure 3.5: Illustration of the group shifting problem.

across different groups would highly destabilize the network. This also avoids

adding more constraints to the pruning procedure. We name this variation as

Flexible Group Normalization. From the point of view of its mathematical de-

scription, we modified the assigment of the normalization statistics to a given

channel (Eq. 3.4) and their computation (Eqs. 3.5-3.6) in the following way:

x̃ijc = 1
σg

(xijc− µg), c ∈ G′
g (3.8)

µg = 1
|G′

g| · |Am|
∑

k∈G′
g

∑
i,j

xijk (3.9)

σg =
√√√√ 1
|G′

g| · |Am|
∑

k∈G′
g

∑
i,j

(xijk − µg)2 + ϵ (3.10)

Where G′
g is gth group after applying pruning. This modification was imple-

mented by re-using some parts of the already existing Group Normalization

layer and adding a mask initialized as a C×C block diagonal matrix (C is the

number of channels of the activation map), with each block being a matrix of

ones of dimension |G|×|G|. This mask is used to correctly aggregate channels

(the k ∈ G′
g condition in Eq. 3.5 and 3.6) to compute the inter-group mean

µg and standard deviation σg. In fact, at every pruning step, when a channel

is removed from the normalization layer, the corresponding row and column

3.3 Flexible Group Normalization 27

are discarded, so that the activation map values are then aggregated for each

group only within the remaining channels (Fig. 3.6).

Figure 3.6: Implementation of the Flexible Group Normalization Layer. Z−1
g

is equal to |G′
g| · |Am|.

Empirically we report slightly better results to those obtained with the

sparse model, so we adopted it in the final models. We suppose that its success

is due to:

• Reduction of the de-stabilization of theweights and normalization caused

by channel shifting between groups;

• Retention of the previous weights and statistics as ”warm start” for the

newly pruned model;

• Execution of the activation map normalization in a proper way, without

considering zeroed channels in the equation.

Chapter 4

Results and ablations

In this Chapter we present the results of the experiments, starting from pre-

liminary results and then presenting our final findings. We implemented the

framework starting from the code base provided by the authors of [32] and

modified where needed. Said code is mostly based on Jax [3], Flax (wrap-

per for deep learning) and Optim libraries. Most of the experiments were

performed on a desktop equipped with two Nvidia RTX 2080 Ti GPUs with

11GB VRAM each (which Jax can exploit in parallel), Intel Xeon 3.9GHz

W-2123 CPU, 64GB of RAM, and Ubuntu 20 as OS. Some of the latest ex-

periments employed a cluster equipped with a Ryzen 9 3900X (3.8 GHz x 12

cores), 128 GB of RAM, two Nvidia RTX 3090 Ti, and Ubuntu 20 as OS. A

full training required about two to three days in both settings. Moreover, some

side tasks as sample generation were performed using a pro subscription on

Google Colab with the TPU runtime option.

The reference paper on diffusion ditillation reports experiments on dif-

ferent popular datasets (ImageNet [6], LSUN [41]), but due to time require-

ments and available training resources, our experiments employed the CIFAR-

10 [20] dataset, which is a ”Tiny Images” dataset subset with 60’000 indepen-

dently labeled examples of 32x32 color images. For the same reasons, our

contribution considers only unconditional image generation and the distilla-

tion procedure for the preliminary experiments was often truncated after 4 to

4.1 Training recipe and sensitiviy analysis 29

5 iterations, also due to their explorative nature (missing results are reported

with an hyphen in the tables).

We evaluate the quality of our models with the Frechèt Inception Dis-

tance [14] generally computed on 30k samples (unless otherwise stated) and

their efficiency considering the number of FLOPs per network pass and the

number of weights in the architecture.

4.1 Training recipe and sensitiviy analysis

The training recipe and hyperparameter are drawn from those used in [32] for

the distillation process. The number of channels for the activations in each

level is kept at 256 and the attention blocks have a single head each. We

employ Adam as optimizer with a learning rate set to 5e-5, gradient clipping

to 1, and without weight or EMA decay. The noise schedule is set to the cosine

one αt = cos(0.5πt), the loss is computed on a ”x-prediction” model and its

reweighting is performed with the ”truncated SNR” [32] function:

Lθ = max
(

α2
t

σ2
t

, 1
)
∥x̃− x̂θ(xt)∥2

2 (4.1)

The only two hyperparameters that are tweaked tomeet our available resources

and time requirements are the batch size, which is set to 128, and the number

of training epochs per distillation step set to 50’000 for all the distillation iter-

ations. It is the maximum number of parameter update employed in the paper,

except for the 2 and 1 step models where they employ 100’000 epochs.

Our method introduces two new hyperparameters to set: the number of

pruning steps per distillation iteration and the pruning ratio for each pruning

step. Both were set in order to achieve a pre-determined pruning ratio in the

last distillation step and to maximize performance. In order to do so, a coarse

sensitivity analysis similar to the one in [19], was performed. Each of the

4.1 Training recipe and sensitiviy analysis 30

Figure 4.1: Results of the pruning sensitivity analysis on the 32-steps model.

network macro-blocks (marked with ”I/D#/U#/O” in Figure 3.1) was inde-

pendently pruned with 25%, 50% and 75% pruning ratio and considering L1

Norm as pruning score. In this stage the network was kept sparse and attention

blocks weren’t pruned. Also, after zeroing the weights, the model is run with-

out applying any finetuning. For these reasons, the FID scores computed to

test the macro-block sensitivity are notably very high. These scores were com-

puted on around 20k samples and the results were plotted on a graph, shown

in Figure 4.1.

As expected, and as also noted in [19], the middle section of the U-Net is

more insensitive to pruning, as we assume it containsmore redundant channels.

To further validate this assumption, we also produced a sample for each pruned

model and show the results in Figure 4.2.

As we can observe from the samples, the first interesting aspect is that in-

dependently of which part is being pruned and its pruning ratio, once the seed

for the generation is fixed, the model always returns a sample with generally

the same content (red truck, horse on grass, gray car). What does change de-

pending on the damage brought to the network is the quality of the content.

We can notice that any damage brought to the middle section of the network

4.1 Training recipe and sensitiviy analysis 31

Figure 4.2: Samples obtained with three different seeds after each round of
pruning during sensitivity analysis.

(M1-M2) yields samples that are almost indistinguishable (given also the im-

ages’ modest dimension) from the original ones. We can also see that if any

of the ”down-path” macro-blocks is damaged, the shape and pose of the ob-

ject are affected, while if the ”up-path” macro-blocks are damaged, not only

the shape but also the texture is deeply affected. This is especially evident

when U0 is damaged. Finally, we can highlight the importance of avoiding

heavy perturbations on the input, since any pruning in the input convolution

layer and dense timestep embedding layer leads the model to produce only

noise. This also further validates the modus operandi of our pruning proce-

dure, where the pruning masks are propagated starting from the input layer in

order to consistently keep important parts of the input signal.

Another analysis was also performed in order to see if there was a pattern

in the way the weights evolved during distillation. It consisted of a quick test

computing the L1 Norm on the difference of corresponding weights on the

4.1 Training recipe and sensitiviy analysis 32

Figure 4.3: Weight variation analysis plot.

unpruned models at the end of two successive distillation iterations. This dis-

tance is normalized on the number of weights of the layer, grouped by macro-

block, and then normalized again on the number of layers within the block.

We report the relative plot in Figure 4.3. As we can see, we cannot distinguish

clear patterns from the graph, but we notice that in the last three distillation

steps, the model tends to change more and more unpredictably. This may be

due to the fact that the model needs to increasingly compress information in

the available structure.

Considering these preliminary results we decided to set the number of

pruning steps per iteration to 4, which are equispaced in time (one step af-

ter 10’000 epochs), and the pruning ratio for each macro-block is set to obtain

a final 1-step model with a specific compression ratio w.r.t. of the number of

the original weights that allows the removal of a number of neurons that is

consistent and coherent at each pruning step. Also, we set the ratios to start

more aggressively in the first half of the distillation process and later reduced

in the second section. The pruning ratios per macro-block, together with the

expected final pruning ratio and the actual one are listed in Table 4.1. The

last two are different as the unit of the pruning function is the layer, so de-

pending on their number and dimension in a block, the number of removed

4.2 Pruning scoring function 33

I D0 D1 D2 M1 M2 U2 U1 U0 O

32/16/8
steps models 4.6875% 4.6875% 9.375% 15.625% 15.625% 15.625% 9.375% 9.375% 4.6875% 4.6875%

4/2/1
steps models 3.125% 3.125% 7.8125% 9.375% 9.375% 9.375% 7.8125% 7.8125% 3.125% 3.125%

Final expected
pruning ratio

23.4375%
(25%)

23.4375%
(25%)

51.5625%
(50%) 75% 75% 75% 51.5625%

(50%)
51.5625%
(50%)

23.4375%
(25%)

23.4375%
(25%)

Final actual
pruning ratio 37.69% 41.36% 72.74% 90.28% 90.28% 89.76% 73.87% 73.56% 41.50% 23.42%

Table 4.1: Pruning ratio for each macro-block and distillation iteration, with
expected final pruning ratio and actual one (1-step model).

neurons may be higher than expected. Even if this difference is quite large,

we decided to keep the ones reported in Table 4.1 as the overall compression

achieved by the networks, which is later presented in Section 4.4, was deemed

to be appropriate and not exceedingly aggressive.

4.2 Pruning scoring function

Most of the initial experiments were run considering a simpleMagnitude Prun-

ing approach, employing the L1 Norm as weight saliency scoring function.

During the execution of experiments the work by Fang et al. [9] was published,

introducing their criterion based on the Taylor-expansion of the loss distrup-

tion (to which we refer to as simply ”Taylor-based”). Thus, we decided to

exploit and test their results for our task. Other than directly applying their

method, we also tried to adapt it to our task at hand by following an intuition.

The idea stemmed from the observation that the score highly depends on the

gradients generated by the student model and, since it quickly changes during

the distillation iteration, they would be less precise or informative. Therefore,

we propose to mix the gradient information from the teacher model, which

is very similar to the student model at the beginning of the distillation itera-

tion and doesn’t change throughout it. It follows that the mixture is treated

dynamically, by giving more importance to the teacher at the beginning of the

distillation iteration and transferring it to the student at the end of the step by

means of a parameter that we named γ, linearly changing in [0, 1].

4.2 Pruning scoring function 34

The scoring function is the following:

I(θi,x)=
∑

k

∣∣∣∣θik·
(

γ·
∑

LTt
LTmax

>T
∇θik

LTt(θ,x)+(1−γ)·
∑

LSt
LSmax

>T
∇θik

LSt(θ,x)
)∣∣∣∣ (4.2)

where LT is the loss from the teacher model and LS is the loss on the stu-

dent model. Moreover, the original Taylor-based criterion employs the loss

computed on the ϵ-prediction of the model, while the model was trained using

a loss on the x-prediction with a reweighting function (”Truncated-SNR”) to

prevent mathematical problems arising when evaluating the loss at low SNRs.

So, we also adapt the objective functions LS and LT to follow the training

one. Some experiments were carried out, and their results are reported in Ta-

ble 4.2. It’s important to notice that the pruning is performed with a slightly

different technique from the final one, attention blocks are kept unpruned and

the models are sparse in this exploratory stage of the experimentation.

32-steps 16-steps 8-steps 4-steps 2-steps

Unpruned
model 2.69 2.73 2.83 3.23 4.86

L1 Norm 3.27 4.38 5.98 - -
Taylor-based 3.16 3.61 4.80 6.87 -
Taylor (adapted) 2.94 3.73 5.06 7.20 12.69

Removed params ∼15% ∼28% ∼40% ∼45% ∼55%

Table 4.2: FID comparison for different pruning score function. (Lower is
better)

As expected, the Taylor-based criterion outperforms the L1 Norm one. Un-

fortunately, it outperforms also our adaptation which reports slightly worse

results, suggesting that our intuition was not entirely correct and that probably

the student and teacher model diverge faster than what we expected within the

distillation iteration. Also, we can notice that the adaptation actually reports

comparable results in the first two steps and later its performance tends to drop.

4.3 Flexible Group Normalization effectiveness 35

This follows from one of the observations resulting from the sensitivity anal-

ysis, which showed that the teacher and student model tends to change more

and more unpredictably as the distillation process continues (Fig. 4.3). There-

fore, the gradients obtained from the teacher are increasingly less informative

for the student architecture. Moreover, we used the same threshold T = 0.05

to filter the noisy timesteps (suggested by the reference paper) and due to the

difference in magnitudes and variation between the ϵ-loss and the weighted

x-loss, the timesteps weren’t filtered in our adaptation. However, we didn’t

explore this hyperparameter since the ”plain” Taylor criterion performed bet-

ter, even when compared with intermediate forms of our adaptation (different

γ ranges, loss on ϵ...) that are not reported in the table but can be found in

Appendix A. Together with these adaptations, we also report some tests with

more training epochswhich improve the FID score on the network but partially

sacrifice the higher training efficiency brought by pruning. In conclusion, the

adaptation was discarded from the final method. Finally, we can notice, even

if these results are not the definitive ones, the trend of the quality dropping

in a quicker way when compared with unpruned distillation results due to the

effects of pruning. Further discussion of these aspects will be presented in the

following chapters.

4.3 Flexible Group Normalization effectiveness

The last preliminary results are the tests on the Flexible Group Normalization.

As explained, this repurposing of the Group Normalization Layer [40] was re-

quired to effectively compress the model and keep the consistency between

groups of channels. We tested two variants: the first performs normaliza-

tion considering the removed channel as effectively present but ”zeroed-out”,

while the second one doesn’t. This translates into the fact that the former

considers the pre-pruning group dimension (8) in the normalization constant,

while the second one considers the actual post-pruning one. The results of

4.4 Final method results 36

these ablations are presented in Table 4.3. In these runs, the attention blocks

were pruned together with the rest of the network and the chosen scoring cri-

terion was the ”plain” Taylor-based one.

32-steps 16-steps 8-steps 4-steps 2-steps 1-step

Unpruned
Model 2.69 2.73 2.83 3.23 4.86 9.43

Sparse Model 3.36 4.38 6.10 8.98 - -
”Zeroed” FGN 3.36 4.59 6.56 9.30 15.33 24.57
”Proper” FGN 3.06 3.60 4.90 7.31 14.31 24.79

Removed params ∼16% ∼31% ∼43% ∼52% ∼60% ∼67%

Table 4.3: FID comparison for Flexible Group Normalization variants.
(Lower is better)

The zeroed-channel variant reports results that are comparable with the

uncompressed model. This is expected as they theoretically work in the same

way. The variant performing proper normalization returns non-negligible im-

provements instead. This may be interpreted considering that even if ”unim-

portant” channels do not heavily influence the pre-computed statistics when

removed, they still cannot be considered present as they do not allow a correct

normalization of the remaining ones, generating worse results.

4.4 Final method results

Finally, we present the results of our definitive method. Differently from the

results produced in the previous paragraphs, a last tweak was introduced in

the pruning method, that is the pruning mask propagation in the ResNet block

(penultimate bullet point in Section 3.2). In fact, among the last experiments,

we noticed that propagating the masks following the path 2Dconv 1→ norm 2

→ 2Dconv 2 yielded slightly worse performances than generating the masks

from the second norm layer and then propagating them to the adjacent con-

volutional layers. Moreover, we also tested a longer training schedule, using

4.4 Final method results 37

32-steps 16-steps 8-steps 4-steps 2-steps 1-step

Pruned (50k) 2.97 3.65 5.25 7.31 13.09 22.40
Pruned (100k) 3.15 3.78 5.02 6.94 11.30 19.49
Unpruned 2.69 2.73 2.83 3.23 4.86 9.43

Table 4.4: FID comparison between pruned and unpruned models (Lower is
better)

100’000 epochs per distillation iteration. This number was used for 2 and

1 step models in [32], while we applied it to all the models and performed

pruning every 20’000 steps. The FID results, compared with the scores of the

unpruned model, are in Table 4.4. We also report the comparisons in terms of

parameters and FLOPs in Table 4.5. We point out that the FLOPs requirement

was computed directly with the tools available within the flax library.

As we can point out in the previous preliminary results, the removal of

weights yields a quick drop in the quality of samples when compared with the

same drop yielded from the distillation process. In fact, the unpruned model

maintains almost the same quality in the first three distillation steps and then

gets worse in the last models. This entails that intensive pruning does not

reach its full potential as a compression method as it does for classification

models, where the same technique may even improve performances. Also,

the longer training schedule does not remarkably help the recovery of the mod-

els, except for the 2-steps and the 1-step model, where we measure a gain of

2/3 FID points. This pattern confirms the choice made in [32] to train these

two last models for longer. However this improvement, even if positive, may

still appear poor if one considers that it is obtained by doubling the training

resources consumption. We thus consider the results obtained with the 50k

training epochs as our reference ones.

Differently, the drop in parameter numbers and FLOPs is consistent, even

if the two are not directly related. In fact, the implementation of the Flexible

Group Normalization, with an equal number of groups and channels, requires

more operations when compared with the vanilla Group Normalization, as it

4.4 Final method results 38

32-steps 16-steps 8-steps 4-steps 2-steps 1-step

#Weights

Pruned 50M 42M 34M 29M 24M 20M
Unpruned 60M

FLOPs single pass/full diffusion

Pruned 110M/3.52G 101M/1.62G 92M/734M 85M/341M 79M/158M 73M
Unpruned 120M/3.84G 120M/1.92G 120M/960M 120M/480M 120M/240M 120M

Table 4.5: Weights and FLOPs comparison between pruned and unpruned
models (Lower is better)

is not optimized. For the same reason, coupled with the presence of some

functions within the network that remove or add zero channels whenever the

pruning ratio changes between different macro-blocks, the wall-clock time

for generation is generally a bunch of seconds longer for compressed models

(this is not noticed during training time, as usually the model becomes faster

to train with the increase in pruning). This, of course, leaves some necessary

room for optimization in order to obtain practical speed-ups, which could be

done by finding an optimal form for the FGN that does not exploit matrix

multiplication or add ”transition layers” (1x1 convolution) between macro-

blocks to automatically adapt the channel dimensions (similarly to the ones

used in [39]). However, the latter would require learning a model from scratch

with the given layers and cutting them accordingly later, as some experiments

were performed to add these layers to the pre-trained models, but yielded very

high FID results which are not worth reporting. Despite all of this, we can

observe how the gain in terms of flops is still equivalent to the removal of 3

to 1 sample steps of the unpruned counterpart, while contemporarily having a

network architecture with a smaller memory footprint.

Considering the full collection of distilled models, the 8 and 4-steps ones

propose the best tradeoff between original quality preservation and compres-

sion rate. Both have acceptable FID scores and a gain in terms of FLOPs equal

to the removal of two and one unpruned sampling steps each, rendering them

roughly equivalent to a 6-steps and 3-steps unpruned model. Moreover, the

4.4 Final method results 39

8-step model is the most comparable one in terms of pruning ratio and FID

score to the results in [9]. In this work, they employ a smaller U-Net (half

of the weights of the one we and [32] use) and reach an FID of 5.29 with a

pruning ratio of around 45%. Their model is still 15M parameters smaller

but requires more than twice the FLOPs employed by our 8-step model since

their sampling process requires 100 DDIM steps. Moreover, our reference re-

sults have been produced with half of the fine-tuning steps required for their

network (100k). This underlines the potential behind the mixture of pruning

and distillation that we are proposing.

Figure 4.4: Selected samples from a batch of 16 generated images. Each batch
was generated with the same noise seed (0).

Finally, in Figure 4.4 we report some selected samples from both the pruned

and unpruned models. The proposed generated images give a visual valida-

tion for the FID results in the previous table. All the unpruned models pro-

duce same-quality samples up until the 2 and 1-step models, while the pruned

models show samples with degraded quality already around the 4-steps model,

confirming our previous statement. Also, as observed, it’s interesting to no-

tice that pruning does not completely twist the diffusion trajectory, but that the

general content, shape, texture, and color of the image are preserved. There is

at most some slight change in subject, where, for example, in the first image

4.4 Final method results 40

the truck is converted to a boat, and in the third image, the bus turns into a

car. A similar phenomenon can be observed, even if it’s less obvious, also

on the model where only the distillation is applied. As a matter of fact, if one

focuses on the fourth sample, it initially represents something vaguely remem-

bering a long-haired dog and then slowly turns into a white horse. The network

seems, thus, to retain some kind of semantic field information even if it is a

class-unconditional generative model, since the change in subject is usually

around the same concept (vehicle, animal...). For the sake of completeness,

we present other randomly generated samples in Appendix B.

Chapter 5

Conclusions

In this work, we focused on an efficiency problem of the state-of-the-art mod-

els in image generation. Lately, they are represented by Diffusion Models [5],

which allow the generation of images employing a neural network (generally

a U-Net) that models a Markovian process iteratively ”de-noising” an image

(initially represented by pure noise) and returning a ”clean” counterpart. Their

related sampling method requires multiple network passes and is, therefore,

highly resource-intensive. Current literature focuses either on improving the

efficiency of samplers or on reducing the number of sampling steps required

for a high-quality image. In the latter category we find the work by Salimans

& Ho [32], where they introduce a method to progressively distill a DM into

a student that requires half the number of sampling steps. The student is, how-

ever, forced to preserve the same network architecture. This prevents the pos-

sibility of yielding a network with a smaller memory footprint which could, in

turn, return a further improvement in resource usage efficiency. We decided

to refine this method and tried to bypass this limitation by mixing progressive

distillation with a progressive structured pruning method. The procedure was

conceived by incorporating different concepts found in the topic literature as:

keeping the activation maps channels consistent and cut the network ”greed-

ily” (progressively following the signal path) [22], giving more importance to

weight saliency scores and pruning masks generated from the Normalization

Conclusions 42

layers [24][18], apply pruning during training [39], differentiate the pruning

ratio depending on the level where the layer is placed in the U-Net [19]. Fur-

ther refinements are backed up by experiments. In particular, we performed

some preliminary tests to choose the additional hyperparameters imposed by

the method (pruning ratio values and their variation per block and distillation

step) by performing macro-block sensitivity analysis (following [19]), weight

variation analysis during distillation and tests on different pruning scoring

function. Finally, we tested our variation of the Group Normalization Layer,

namedFlexible Group Normalization. Said variation allows the normalization

between groups with an uneven number of channels and was required due to

theway channels are removed by our pruningmethod. To execute these experi-

ments we employed the class-unconditional Net architectures and checkpoints

(from 64 to 1 steps) provided by [32] and we used CIFAR-10 [20] as training

dataset. The results, entail that:

• We pruned each macro-block (listed in Figure 3.1) in isolation with

a fixed pruning ratio and computed the FID without fine-tuning. We

found results similar to the ones in [19], where the innermost blocks of

the U-Net are more insensible to pruning. From this, we choose three

final pruning ratios we want to achieve (25%, 50%, 75%) per macro-

block depending on their sensitivity, and distribute them in the 6 distil-

lation steps, further divided into 4 pruning sub-steps. We also noticed

that the ”down-path” blocks are mostly focused on rendering the ob-

ject’s shape and pose, while the ”up-path” blocks are involved in texture

rendering. Finally, as similarly shown in [9], we observe that, given a

fixed seed, pruning does not completely corrupt or twist the generated

sample, which preserves the general content and color.

• By computing the L1 Norm of the difference of the weights of two con-

sequent distilled models, normalized by layer and macro-block dimen-

sions, we show that the last three distillation steps are the most critical

Conclusions 43

ones when it comes to information compression. Because of this, we

choose to reduce the pruning ratio, and consequently the ”stress” posed

on the model, in the last iterations of the distillation.

• We compared the commonly used L1 Norm with a scoring criterion

based on the Taylor expansion of the loss distruption, proposed in [9]

and an adapted variant as pruning score functions. The variant we pro-

pose tries to dynamically mix the gradient information from the student

with the same information taken from the teacher, based on the intuition

that it could be more reliable in the first phases of the distillation steps.

The results show that the plain criterion returns better quality samples,

especially on lower step models, so we adopt it ”as is” for our method.

• The idea behind the FGN is to avoid the network to re-train the weights

and re-compute the normalization statistics whenever a channel is re-

moved from a group (”Group shifting problem”). We tested two vari-

ations: the first one implements the normalization by considering the

removed channels as present but ”zeroed-out” (as it happens in a sparse

model), and the second performs ”proper” normalization by considering

the post-pruning group cardinality. We see that the latter represents the

better alternative as, even if the removed channels are deemed ”unimpor-

tant”, their magnitude is non-negligible when applying normalization.

After these preliminary results, we adopt the techniques returning the best

results (differentiated pruning based on sensibility and information compres-

sion, Taylor-expansion-based scoring function, ”proper” FGN) and perform

some last tweaks to obtain our final models. We reported the results and the

comparisons with the unpruned models in terms of quality (FID score) and

gain in efficiency (number of weights and FLOPs), from which we observe

that:

• The quality tends to drop faster when adding pruning instead of con-

sidering only the distilled model, reaching a 1-step model with more

Conclusions 44

than twice the FID of the uncompressed model, even with a compara-

ble training schedule. This indicates, as noticed in [9], that intensive

pruning does reach its full potential as a compression method for DMs,

where the weight removal brings a fast degradation of the quality of the

samples, differently from simpler networks and tasks (as classification)

where pruningmay even improve the performances of amodel [2]. Also,

only the most compressed models (2 and 1 step) benefit from longer

training schedules to an extent that may not justify the higher resource

consumption.

• The achieved compression ratios are remarkable, and even with the im-

plementation being not optimized due to the presence of time-consuming

operations of channel removal or zero-channels addition when there is a

change in pruning ratio or the matrix multiplication employed in FGN,

each model has a gain in terms of FLOPs equal to 3 to 1 sampling steps

of the unpruned model. This, depending on the model employed, may

represent a fourth (8-step, 4-step) or even half of the required FLOPs

for the full unpruned sampling.

Following these observations, the 8 and 4 steps models (50k epochs) are the

ones presenting the best tradeoff between compression (∼56% and ∼48% of

the original dimension respectively) and sample quality (FID 5.25 and 7.31

respectively) when compared with the models in [9] or [26] and surpass them

by either considering the number of FLOPs required for the full diffusion pro-

cess or sample quality.

In conclusion, we can state that the presented method reaches its proposed task

of obtaining a lighter Diffusion Model for image generation, which requires

fewer training resources given the smaller architecture, by sacrificing some

sample quality. It also offers, thanks to the Progressive Distillation method

used as its core, the possibility to choose which model best fits the available re-

sources and/or the quality requirements. We think that most of the importance

Conclusions 45

in this work resides in its explorative value, as it is, to the best of our knowl-

edge, one of the few works studying the possibility of time and space compres-

sion for neural networks and especially for Diffusion Models. It opens, thus,

multiple possibilities for future works and extensions. One may focus on op-

timizing the proposed FGN layer or the network architecture (e.g. by adding

and training from scratch transition layers that guarantee channel consistency)

to obtain wall-clock time improvements during inference. Additional tests of

the proposed method may be performed on conditional models and datasets

providing larger images as ImageNet [6] or LSUN [41], which are easier to

inspect and might lead to further information and conclusions. Finally, fur-

ther pruning methods that are not covered in this work may be tested, like the

ones ”by design” similar to those proposed in [39] or [8], to close or shrink

the quality gap between the unpruned models and the pruned ones.

Appendix A

Further experiments on gamma

and longer training

Before abandoning the idea of adapting the Taylor-expansion-based criterion

to our method, we tested some different configurations of the value of γ. We

didn’t include these results in the dedicated Chapter as they were highly ex-

perimental and difficult to compare with the other results, considering that the

models weren’t compressed, the attention blocks were not pruned, the thresh-

old T for the criterion wasn’t properly set and contextually, due to some time

constraints, we performed these experiments while also testing longer training

schedules. However, we believe that it is still useful to report these results.

After testing the adaptation reported in Paragraph 4.2, we decided to try

fixing the value of γ to a value in {0.8, 0.5, 0.2} (which represents a ”softer”

mixing than the one presented previously) throughout the distillation process

and using the training loss function in evaluating the pruning saliency score.

The results are reported in Table A.1. As we can see from the table, the relative

comparison between the method adaptations shows that the value of gamma

should decrease during distillation, as the teacher gradients become less and

less informative for the student structure, confirming our intuition and the ob-

servation done in Section 4.1. If we focus on the FID values, we observe a

”curve” trend the gamma value should follow. We find that a close analytical

Further experiments on gamma and longer training 47

32-steps 16-steps 8-steps 4-steps 2-steps
γ = 0.8 2.90 3.78 5.55 7.98 -
γ = 0.5 2.94 3.71 5.10 7.83 13.52
γ = 0.2 3.11 3.75 4.86 7.08 -
Taylor (adapted) 2.94 3.73 5.06 7.20 12.69

Table A.1: FID scores of further experiments fixing the value of γ. (Lower is
better)

curve is the one described by the exponential decay:

γ = 0.8e−k·step (A.1)

where step is the distillation iteration index in [0, 5] and k is set to 0.75 to

mimic our desired curve. We performed this experiment both with the loss

reweighting and computation as done during training (thus, without timestep

truncation) andwith the original loss on the ϵ-prediction (threshold for timestep

truncation set to T = 0.05). This time, each distillation iteration comprises

100’000 training epochs rather than 50’000 (each pruning step is performed

once every 20’000 epochs instead of 10’000). The results are in table A.2.

32-steps 16-steps 8-steps 4-steps 2-steps 1-step
Taylor-based (50k) 3.16 3.61 4.80 6.87 - -
Taylor-based (100k) 3.00 3.32 4.33 5.98 - -
Gamma exp. decay
(100k) 3.06 3.56 4.70 6.70 - -

Gamma exp. decay
w/ trunc. loss (100k) 3.05 3.55 4.58 7.09 11.05 18.44

Removed params ∼15% ∼28% ∼40% ∼45% ∼55% ∼62%

Table A.2: FID results and percentage of removed params of the definitive
score function adaptations with longer training time. (Lower is better)

As we can see, the results between the two adaptations are mostly compa-

rable, showing that the loss reweighting does affect the result of the technique.

Moreover, the method taken out-of-the-box from [9] is better than the adap-

tations, and thus it became our final choice. Its also important to notice that

Further experiments on gamma and longer training 48

adding training epochs to the distillation process brings noticeable improve-

ments to the quality of samples, but it may be impractical as it nullifies the

time-saving benefits of the model compression during training compared with

Progressive Distillation alone. We, however, also remark that in our final

experiments the improvements brought by the longer training schedule was

obtained only in the 2 and 1-step models.

Appendix B

Additonal samples

We report some additional samples generated with our final pruned model

(50’000 training epochs) and their unpruned counterparts. They were gener-

ated by setting the seed to 0 and the batch size to 64.

Additonal samples 50

Figure B.1: Additional samples from the 32-steps models.

Unpruned Pruned

Additonal samples 51

Figure B.2: Additional samples from the 16-steps models.

Unpruned Pruned

Additonal samples 52

Figure B.3: Additional samples from the 8-steps models.

Unpruned Pruned

Additonal samples 53

Figure B.4: Additional samples from the 4-steps models.

Unpruned Pruned

Additonal samples 54

Figure B.5: Additional samples from the 2-steps models.

Unpruned Pruned

Additonal samples 55

Figure B.6: Additional samples from the 1-step models.

Unpruned Pruned

Bibliography

[1] N. Aghli and E. Ribeiro. Combining weight pruning and knowledge dis-

tillation for cnn compression. In 2021 IEEE/CVF Conference on Com-

puter Vision and Pattern RecognitionWorkshops (CVPRW), pages 3185–

3192, 2021. DOI: 10.1109/CVPRW53098.2021.00356.

[2] D. W. Blalock, J. J. G. Ortiz, J. Frankle, and J. V. Guttag. What is the

state of neural network pruning? CoRR, abs/2003.03033, 2020. arXiv:

2003.03033. URL: https://arxiv.org/abs/2003.03033.

[3] J. Bradbury, R. Frostig, P. Hawkins,M. J. Johnson, C. Leary, D.Maclau-

rin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and

Q. Zhang. JAX: composable transformations of Python+NumPy pro-

grams, version 0.4.19, 2018. URL: http://github.com/google/jax.

[4] A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training

for high fidelity natural image synthesis. CoRR, abs/1809.11096, 2018.

arXiv: 1809.11096. URL: http://arxiv.org/abs/1809.11096.

[5] M. Chen, S. Mei, J. Fan, and M. Wang. An overview of diffusion mod-

els: applications, guided generation, statistical rates and optimization,

2024. arXiv: 2404.07771 [cs.LG].

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:

a large-scale hierarchical image database. In 2009 IEEE conference on

computer vision and pattern recognition, pages 248–255. Ieee, 2009.

BIBLIOGRAPHY 57

[7] P. Dhariwal and A. Nichol. Diffusion models beat gans on image syn-

thesis. CoRR, abs/2105.05233, 2021. arXiv: 2105.05233. URL: https:

//arxiv.org/abs/2105.05233.

[8] X. Ding, G. Ding, Y. Guo, and J. Han. Centripetal SGD for pruning

very deep convolutional networks with complicated structure. CoRR,

abs/1904.03837, 2019. arXiv: 1904.03837. URL: http://arxiv.org/

abs/1904.03837.

[9] G. Fang, X. Ma, and X. Wang. Structural pruning for diffusion models,

2023. arXiv: 2305.10924 [cs.LG].

[10] J. Frankle and M. Carbin. The lottery ticket hypothesis: training pruned

neural networks. CoRR, abs/1803.03635, 2018. arXiv: 1803 . 03635.

URL: http://arxiv.org/abs/1803.03635.

[11] J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin. Pruning neu-

ral networks at initialization: why are we missing the mark? CoRR,

abs/2009.08576, 2020. arXiv: 2009.08576. URL: https://arxiv.

org/abs/2009.08576.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. CoRR, abs/1512.03385, 2015. arXiv: 1512.03385. URL:

http://arxiv.org/abs/1512.03385.

[13] Y. He and S. Han. ADC: automated deep compression and accelera-

tion with reinforcement learning. CoRR, abs/1802.03494, 2018. arXiv:

1802.03494. URL: http://arxiv.org/abs/1802.03494.

[14] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer, and

S. Hochreiter. Gans trained by a two time-scale update rule converge to

a nash equilibrium. CoRR, abs/1706.08500, 2017. arXiv: 1706.08500.

URL: http://arxiv.org/abs/1706.08500.

[15] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural

network, 2015. arXiv: 1503.02531 [stat.ML].

BIBLIOGRAPHY 58

[16] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models,

2020. arXiv: 2006.11239 [cs.LG].

[17] J. Ho and T. Salimans. Classifier-free diffusion guidance, 2022. arXiv:

2207.12598 [cs.LG].

[18] M. Kang and B. Han. Operation-aware soft channel pruning using dif-

ferentiable masks, 2020. arXiv: 2007.03938 [cs.LG].

[19] B.-K. Kim, S. Choi, and H. Park. Cut inner layers: a structured pruning

strategy for efficient u-net gans, 2022. arXiv: 2206.14658 [cs.LG].

[20] A. Krizhevsky. Learning multiple layers of features from tiny images.

In 2009. URL: https://api.semanticscholar.org/CorpusID:

18268744.

[21] Y. Lecun, J. Denker, and S. Solla. Optimal brain damage. In volume 2,

pages 598–605, January 1989.

[22] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning fil-

ters for efficient convnets. CoRR, abs/1608.08710, 2016. arXiv: 1608.

08710. URL: http://arxiv.org/abs/1608.08710.

[23] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, K. Cheng, and J. Sun.

Metapruning: meta learning for automatic neural network channel prun-

ing. CoRR, abs/1903.10258, 2019. arXiv: 1903 . 10258. URL: http :

//arxiv.org/abs/1903.10258.

[24] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang. Learning effi-

cient convolutional networks through network slimming. CoRR

, abs/1708.06519, 2017. arXiv: 1708.06519. URL: http://arxiv.

org/abs/1708.06519.

[25] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu. Dpm-solver++:

fast solver for guided sampling of diffusion probabilistic models, 2023.

arXiv: 2211.01095 [cs.LG].

BIBLIOGRAPHY 59

[26] E. Luhman and T. Luhman. Knowledge distillation in iterative gener-

ative models for improved sampling speed, 2021. arXiv: 2101.02388

[cs.LG].

[27] C. Meng, R. Rombach, R. Gao, D. P. Kingma, S. Ermon, J. Ho, and

T. Salimans. On distillation of guided diffusion models, 2023. arXiv:

2210.03142 [cs.CV].

[28] D. Podell, Z. English, K. Lacey, A. Blattmann, T. Dockhorn, J. Müller,

J. Penna, and R. Rombach. Sdxl: improving latent diffusion models for

high-resolution image synthesis, 2023. arXiv: 2307.01952.

[29] A. Renda, J. Frankle, and M. Carbin. Comparing rewinding and fine-

tuning in neural network pruning. CoRR, abs/2003.02389, 2020. arXiv:

2003.02389. URL: https://arxiv.org/abs/2003.02389.

[30] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-

resolution image synthesis with latent diffusion models. CoRR

, abs/2112.10752, 2021. arXiv: 2112.10752. URL: https://arxiv.

org/abs/2112.10752.

[31] O. Ronneberger, P. Fischer, and T. Brox. U-net: convolutional networks

for biomedical image segmentation.CoRR, abs/1505.04597, 2015. arXiv:

1505.04597. URL: http://arxiv.org/abs/1505.04597.

[32] T. Salimans and J. Ho. Progressive distillation for fast sampling of dif-

fusion models, 2022. arXiv: 2202.00512 [cs.LG].

[33] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli.

Deep unsupervised learning using nonequilibrium thermodynamics, 2015.

arXiv: 1503.03585 [cs.LG].

[34] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models.

CoRR, abs/2010.02502, 2020. arXiv: 2010 . 02502. URL: https : / /

arxiv.org/abs/2010.02502.

BIBLIOGRAPHY 60

[35] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and

B. Poole. Score-based generative modeling through stochastic differen-

tial equations. CoRR, abs/2011.13456, 2020. arXiv: 2011.13456. URL:

https://arxiv.org/abs/2011.13456.

[36] H. Thanh-Tung and T. Tran. On catastrophic forgetting and mode col-

lapse in generative adversarial networks, 2020. arXiv: 1807.04015.

[37] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin. Attention is all you need. CoRR

, abs/1706.03762, 2017. arXiv: 1706.03762. URL: http://arxiv.

org/abs/1706.03762.

[38] P. Vincent. A connection between score matching and denoising autoen-

coders. Neural Computation, 23(7):1661–1674, 2011. DOI: 10.1162/

NECO_a_00142.

[39] D. M. Vo, A. Sugimoto, and H. Nakayama. Ppcd-gan: progressive prun-

ing and class-aware distillation for large-scale conditional gans com-

pression, 2022. arXiv: 2203.08456 [cs.CV].

[40] Y. Wu and K. He. Group normalization. CoRR, abs/1803.08494, 2018.

arXiv: 1803.08494. URL: http://arxiv.org/abs/1803.08494.

[41] F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao. Lsun: construction of a

large-scale image dataset using deep learning with humans in the loop.

arXiv preprint arXiv:1506.03365, 2015.

[42] Q. Zhang and Y. Chen. Fast sampling of diffusion models with expo-

nential integrator, 2023. arXiv: 2204.13902 [cs.LG].

Acknowledgements

I’d like to thank all the NII staff for the wonderful experience, and especially

my Japanese co-supervisor Prof. Akihiro Sugimoto for all the constant sup-

port, the ideas, and the guidance on this relatively new and tricky topic. A

special thanks to Ph.D. Minh-Duc Vo in providing, other than his experience

on the task, some of his computing resources to allow me to finish my exper-

iments for this work. Furthermore, I want to acknowledge my supervisor at

UniBo, Prof. Samuele Salti for supporting me and providing ideas after the

end of my Internship. Finally, a deep thanks to my family who was always

with me even if I was in the opposite part of Italy at first and in the opposite

part of the world later.

